1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/instanceKlass.hpp"
  39 #include "oops/objArrayOop.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/symbol.hpp"
  42 #include "prims/jvm_misc.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/jvmtiThreadState.hpp"
  45 #include "prims/privilegedStack.hpp"
  46 #include "runtime/aprofiler.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/deoptimization.hpp"
  50 #include "runtime/fprofiler.hpp"
  51 #include "runtime/frame.inline.hpp"
  52 #include "runtime/init.hpp"
  53 #include "runtime/interfaceSupport.hpp"
  54 #include "runtime/java.hpp"
  55 #include "runtime/javaCalls.hpp"
  56 #include "runtime/jniPeriodicChecker.hpp"
  57 #include "runtime/memprofiler.hpp"
  58 #include "runtime/mutexLocker.hpp"
  59 #include "runtime/objectMonitor.hpp"
  60 #include "runtime/osThread.hpp"
  61 #include "runtime/safepoint.hpp"
  62 #include "runtime/sharedRuntime.hpp"
  63 #include "runtime/statSampler.hpp"
  64 #include "runtime/stubRoutines.hpp"
  65 #include "runtime/task.hpp"
  66 #include "runtime/threadCritical.hpp"
  67 #include "runtime/threadLocalStorage.hpp"
  68 #include "runtime/vframe.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "runtime/vframe_hp.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "runtime/vm_operations.hpp"
  73 #include "services/attachListener.hpp"
  74 #include "services/management.hpp"
  75 #include "services/threadService.hpp"
  76 #include "utilities/defaultStream.hpp"
  77 #include "utilities/dtrace.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/preserveException.hpp"
  80 #ifdef TARGET_OS_FAMILY_linux
  81 # include "os_linux.inline.hpp"
  82 # include "thread_linux.inline.hpp"
  83 #endif
  84 #ifdef TARGET_OS_FAMILY_solaris
  85 # include "os_solaris.inline.hpp"
  86 # include "thread_solaris.inline.hpp"
  87 #endif
  88 #ifdef TARGET_OS_FAMILY_windows
  89 # include "os_windows.inline.hpp"
  90 # include "thread_windows.inline.hpp"
  91 #endif
  92 #ifndef SERIALGC
  93 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  94 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  95 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  96 #endif
  97 #ifdef COMPILER1
  98 #include "c1/c1_Compiler.hpp"
  99 #endif
 100 #ifdef COMPILER2
 101 #include "opto/c2compiler.hpp"
 102 #include "opto/idealGraphPrinter.hpp"
 103 #endif
 104 
 105 #ifdef DTRACE_ENABLED
 106 
 107 // Only bother with this argument setup if dtrace is available
 108 
 109 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 110 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 111 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 112   intptr_t, intptr_t, bool);
 113 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 114   intptr_t, intptr_t, bool);
 115 
 116 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 117   {                                                                        \
 118     ResourceMark rm(this);                                                 \
 119     int len = 0;                                                           \
 120     const char* name = (javathread)->get_thread_name();                    \
 121     len = strlen(name);                                                    \
 122     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 123       name, len,                                                           \
 124       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 125       (javathread)->osthread()->thread_id(),                               \
 126       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 127   }
 128 
 129 #else //  ndef DTRACE_ENABLED
 130 
 131 #define DTRACE_THREAD_PROBE(probe, javathread)
 132 
 133 #endif // ndef DTRACE_ENABLED
 134 
 135 // Class hierarchy
 136 // - Thread
 137 //   - VMThread
 138 //   - WatcherThread
 139 //   - ConcurrentMarkSweepThread
 140 //   - JavaThread
 141 //     - CompilerThread
 142 
 143 // ======= Thread ========
 144 
 145 // Support for forcing alignment of thread objects for biased locking
 146 void* Thread::operator new(size_t size) {
 147   if (UseBiasedLocking) {
 148     const int alignment = markOopDesc::biased_lock_alignment;
 149     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 150     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
 151     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 152     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 153            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 154            "JavaThread alignment code overflowed allocated storage");
 155     if (TraceBiasedLocking) {
 156       if (aligned_addr != real_malloc_addr)
 157         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 158                       real_malloc_addr, aligned_addr);
 159     }
 160     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 161     return aligned_addr;
 162   } else {
 163     return CHeapObj::operator new(size);
 164   }
 165 }
 166 
 167 void Thread::operator delete(void* p) {
 168   if (UseBiasedLocking) {
 169     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 170     CHeapObj::operator delete(real_malloc_addr);
 171   } else {
 172     CHeapObj::operator delete(p);
 173   }
 174 }
 175 
 176 
 177 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 178 // JavaThread
 179 
 180 
 181 Thread::Thread() {
 182   // stack and get_thread
 183   set_stack_base(NULL);
 184   set_stack_size(0);
 185   set_self_raw_id(0);
 186   set_lgrp_id(-1);
 187 
 188   // allocated data structures
 189   set_osthread(NULL);
 190   set_resource_area(new ResourceArea());
 191   set_handle_area(new HandleArea(NULL));
 192   set_active_handles(NULL);
 193   set_free_handle_block(NULL);
 194   set_last_handle_mark(NULL);
 195 
 196   // This initial value ==> never claimed.
 197   _oops_do_parity = 0;
 198 
 199   // the handle mark links itself to last_handle_mark
 200   new HandleMark(this);
 201 
 202   // plain initialization
 203   debug_only(_owned_locks = NULL;)
 204   debug_only(_allow_allocation_count = 0;)
 205   NOT_PRODUCT(_allow_safepoint_count = 0;)
 206   NOT_PRODUCT(_skip_gcalot = false;)
 207   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 208   _jvmti_env_iteration_count = 0;
 209   set_allocated_bytes(0);
 210   _vm_operation_started_count = 0;
 211   _vm_operation_completed_count = 0;
 212   _current_pending_monitor = NULL;
 213   _current_pending_monitor_is_from_java = true;
 214   _current_waiting_monitor = NULL;
 215   _num_nested_signal = 0;
 216   omFreeList = NULL ;
 217   omFreeCount = 0 ;
 218   omFreeProvision = 32 ;
 219   omInUseList = NULL ;
 220   omInUseCount = 0 ;
 221 
 222   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 223   _suspend_flags = 0;
 224 
 225   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 226   _hashStateX = os::random() ;
 227   _hashStateY = 842502087 ;
 228   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 229   _hashStateW = 273326509 ;
 230 
 231   _OnTrap   = 0 ;
 232   _schedctl = NULL ;
 233   _Stalled  = 0 ;
 234   _TypeTag  = 0x2BAD ;
 235 
 236   // Many of the following fields are effectively final - immutable
 237   // Note that nascent threads can't use the Native Monitor-Mutex
 238   // construct until the _MutexEvent is initialized ...
 239   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 240   // we might instead use a stack of ParkEvents that we could provision on-demand.
 241   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 242   // and ::Release()
 243   _ParkEvent   = ParkEvent::Allocate (this) ;
 244   _SleepEvent  = ParkEvent::Allocate (this) ;
 245   _MutexEvent  = ParkEvent::Allocate (this) ;
 246   _MuxEvent    = ParkEvent::Allocate (this) ;
 247 
 248 #ifdef CHECK_UNHANDLED_OOPS
 249   if (CheckUnhandledOops) {
 250     _unhandled_oops = new UnhandledOops(this);
 251   }
 252 #endif // CHECK_UNHANDLED_OOPS
 253 #ifdef ASSERT
 254   if (UseBiasedLocking) {
 255     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 256     assert(this == _real_malloc_address ||
 257            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 258            "bug in forced alignment of thread objects");
 259   }
 260 #endif /* ASSERT */
 261 }
 262 
 263 void Thread::initialize_thread_local_storage() {
 264   // Note: Make sure this method only calls
 265   // non-blocking operations. Otherwise, it might not work
 266   // with the thread-startup/safepoint interaction.
 267 
 268   // During Java thread startup, safepoint code should allow this
 269   // method to complete because it may need to allocate memory to
 270   // store information for the new thread.
 271 
 272   // initialize structure dependent on thread local storage
 273   ThreadLocalStorage::set_thread(this);
 274 
 275   // set up any platform-specific state.
 276   os::initialize_thread();
 277 
 278 }
 279 
 280 void Thread::record_stack_base_and_size() {
 281   set_stack_base(os::current_stack_base());
 282   set_stack_size(os::current_stack_size());
 283 }
 284 
 285 
 286 Thread::~Thread() {
 287   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 288   ObjectSynchronizer::omFlush (this) ;
 289 
 290   // deallocate data structures
 291   delete resource_area();
 292   // since the handle marks are using the handle area, we have to deallocated the root
 293   // handle mark before deallocating the thread's handle area,
 294   assert(last_handle_mark() != NULL, "check we have an element");
 295   delete last_handle_mark();
 296   assert(last_handle_mark() == NULL, "check we have reached the end");
 297 
 298   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 299   // We NULL out the fields for good hygiene.
 300   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 301   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 302   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 303   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 304 
 305   delete handle_area();
 306 
 307   // osthread() can be NULL, if creation of thread failed.
 308   if (osthread() != NULL) os::free_thread(osthread());
 309 
 310   delete _SR_lock;
 311 
 312   // clear thread local storage if the Thread is deleting itself
 313   if (this == Thread::current()) {
 314     ThreadLocalStorage::set_thread(NULL);
 315   } else {
 316     // In the case where we're not the current thread, invalidate all the
 317     // caches in case some code tries to get the current thread or the
 318     // thread that was destroyed, and gets stale information.
 319     ThreadLocalStorage::invalidate_all();
 320   }
 321   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 322 }
 323 
 324 // NOTE: dummy function for assertion purpose.
 325 void Thread::run() {
 326   ShouldNotReachHere();
 327 }
 328 
 329 #ifdef ASSERT
 330 // Private method to check for dangling thread pointer
 331 void check_for_dangling_thread_pointer(Thread *thread) {
 332  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 333          "possibility of dangling Thread pointer");
 334 }
 335 #endif
 336 
 337 
 338 #ifndef PRODUCT
 339 // Tracing method for basic thread operations
 340 void Thread::trace(const char* msg, const Thread* const thread) {
 341   if (!TraceThreadEvents) return;
 342   ResourceMark rm;
 343   ThreadCritical tc;
 344   const char *name = "non-Java thread";
 345   int prio = -1;
 346   if (thread->is_Java_thread()
 347       && !thread->is_Compiler_thread()) {
 348     // The Threads_lock must be held to get information about
 349     // this thread but may not be in some situations when
 350     // tracing  thread events.
 351     bool release_Threads_lock = false;
 352     if (!Threads_lock->owned_by_self()) {
 353       Threads_lock->lock();
 354       release_Threads_lock = true;
 355     }
 356     JavaThread* jt = (JavaThread *)thread;
 357     name = (char *)jt->get_thread_name();
 358     oop thread_oop = jt->threadObj();
 359     if (thread_oop != NULL) {
 360       prio = java_lang_Thread::priority(thread_oop);
 361     }
 362     if (release_Threads_lock) {
 363       Threads_lock->unlock();
 364     }
 365   }
 366   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 367 }
 368 #endif
 369 
 370 
 371 ThreadPriority Thread::get_priority(const Thread* const thread) {
 372   trace("get priority", thread);
 373   ThreadPriority priority;
 374   // Can return an error!
 375   (void)os::get_priority(thread, priority);
 376   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 377   return priority;
 378 }
 379 
 380 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 381   trace("set priority", thread);
 382   debug_only(check_for_dangling_thread_pointer(thread);)
 383   // Can return an error!
 384   (void)os::set_priority(thread, priority);
 385 }
 386 
 387 
 388 void Thread::start(Thread* thread) {
 389   trace("start", thread);
 390   // Start is different from resume in that its safety is guaranteed by context or
 391   // being called from a Java method synchronized on the Thread object.
 392   if (!DisableStartThread) {
 393     if (thread->is_Java_thread()) {
 394       // Initialize the thread state to RUNNABLE before starting this thread.
 395       // Can not set it after the thread started because we do not know the
 396       // exact thread state at that time. It could be in MONITOR_WAIT or
 397       // in SLEEPING or some other state.
 398       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 399                                           java_lang_Thread::RUNNABLE);
 400     }
 401     os::start_thread(thread);
 402   }
 403 }
 404 
 405 // Enqueue a VM_Operation to do the job for us - sometime later
 406 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 407   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 408   VMThread::execute(vm_stop);
 409 }
 410 
 411 
 412 //
 413 // Check if an external suspend request has completed (or has been
 414 // cancelled). Returns true if the thread is externally suspended and
 415 // false otherwise.
 416 //
 417 // The bits parameter returns information about the code path through
 418 // the routine. Useful for debugging:
 419 //
 420 // set in is_ext_suspend_completed():
 421 // 0x00000001 - routine was entered
 422 // 0x00000010 - routine return false at end
 423 // 0x00000100 - thread exited (return false)
 424 // 0x00000200 - suspend request cancelled (return false)
 425 // 0x00000400 - thread suspended (return true)
 426 // 0x00001000 - thread is in a suspend equivalent state (return true)
 427 // 0x00002000 - thread is native and walkable (return true)
 428 // 0x00004000 - thread is native_trans and walkable (needed retry)
 429 //
 430 // set in wait_for_ext_suspend_completion():
 431 // 0x00010000 - routine was entered
 432 // 0x00020000 - suspend request cancelled before loop (return false)
 433 // 0x00040000 - thread suspended before loop (return true)
 434 // 0x00080000 - suspend request cancelled in loop (return false)
 435 // 0x00100000 - thread suspended in loop (return true)
 436 // 0x00200000 - suspend not completed during retry loop (return false)
 437 //
 438 
 439 // Helper class for tracing suspend wait debug bits.
 440 //
 441 // 0x00000100 indicates that the target thread exited before it could
 442 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 443 // 0x00080000 each indicate a cancelled suspend request so they don't
 444 // count as wait failures either.
 445 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 446 
 447 class TraceSuspendDebugBits : public StackObj {
 448  private:
 449   JavaThread * jt;
 450   bool         is_wait;
 451   bool         called_by_wait;  // meaningful when !is_wait
 452   uint32_t *   bits;
 453 
 454  public:
 455   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 456                         uint32_t *_bits) {
 457     jt             = _jt;
 458     is_wait        = _is_wait;
 459     called_by_wait = _called_by_wait;
 460     bits           = _bits;
 461   }
 462 
 463   ~TraceSuspendDebugBits() {
 464     if (!is_wait) {
 465 #if 1
 466       // By default, don't trace bits for is_ext_suspend_completed() calls.
 467       // That trace is very chatty.
 468       return;
 469 #else
 470       if (!called_by_wait) {
 471         // If tracing for is_ext_suspend_completed() is enabled, then only
 472         // trace calls to it from wait_for_ext_suspend_completion()
 473         return;
 474       }
 475 #endif
 476     }
 477 
 478     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 479       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 480         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 481         ResourceMark rm;
 482 
 483         tty->print_cr(
 484             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 485             jt->get_thread_name(), *bits);
 486 
 487         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 488       }
 489     }
 490   }
 491 };
 492 #undef DEBUG_FALSE_BITS
 493 
 494 
 495 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 496   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 497 
 498   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 499   bool do_trans_retry;           // flag to force the retry
 500 
 501   *bits |= 0x00000001;
 502 
 503   do {
 504     do_trans_retry = false;
 505 
 506     if (is_exiting()) {
 507       // Thread is in the process of exiting. This is always checked
 508       // first to reduce the risk of dereferencing a freed JavaThread.
 509       *bits |= 0x00000100;
 510       return false;
 511     }
 512 
 513     if (!is_external_suspend()) {
 514       // Suspend request is cancelled. This is always checked before
 515       // is_ext_suspended() to reduce the risk of a rogue resume
 516       // confusing the thread that made the suspend request.
 517       *bits |= 0x00000200;
 518       return false;
 519     }
 520 
 521     if (is_ext_suspended()) {
 522       // thread is suspended
 523       *bits |= 0x00000400;
 524       return true;
 525     }
 526 
 527     // Now that we no longer do hard suspends of threads running
 528     // native code, the target thread can be changing thread state
 529     // while we are in this routine:
 530     //
 531     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 532     //
 533     // We save a copy of the thread state as observed at this moment
 534     // and make our decision about suspend completeness based on the
 535     // copy. This closes the race where the thread state is seen as
 536     // _thread_in_native_trans in the if-thread_blocked check, but is
 537     // seen as _thread_blocked in if-thread_in_native_trans check.
 538     JavaThreadState save_state = thread_state();
 539 
 540     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 541       // If the thread's state is _thread_blocked and this blocking
 542       // condition is known to be equivalent to a suspend, then we can
 543       // consider the thread to be externally suspended. This means that
 544       // the code that sets _thread_blocked has been modified to do
 545       // self-suspension if the blocking condition releases. We also
 546       // used to check for CONDVAR_WAIT here, but that is now covered by
 547       // the _thread_blocked with self-suspension check.
 548       //
 549       // Return true since we wouldn't be here unless there was still an
 550       // external suspend request.
 551       *bits |= 0x00001000;
 552       return true;
 553     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 554       // Threads running native code will self-suspend on native==>VM/Java
 555       // transitions. If its stack is walkable (should always be the case
 556       // unless this function is called before the actual java_suspend()
 557       // call), then the wait is done.
 558       *bits |= 0x00002000;
 559       return true;
 560     } else if (!called_by_wait && !did_trans_retry &&
 561                save_state == _thread_in_native_trans &&
 562                frame_anchor()->walkable()) {
 563       // The thread is transitioning from thread_in_native to another
 564       // thread state. check_safepoint_and_suspend_for_native_trans()
 565       // will force the thread to self-suspend. If it hasn't gotten
 566       // there yet we may have caught the thread in-between the native
 567       // code check above and the self-suspend. Lucky us. If we were
 568       // called by wait_for_ext_suspend_completion(), then it
 569       // will be doing the retries so we don't have to.
 570       //
 571       // Since we use the saved thread state in the if-statement above,
 572       // there is a chance that the thread has already transitioned to
 573       // _thread_blocked by the time we get here. In that case, we will
 574       // make a single unnecessary pass through the logic below. This
 575       // doesn't hurt anything since we still do the trans retry.
 576 
 577       *bits |= 0x00004000;
 578 
 579       // Once the thread leaves thread_in_native_trans for another
 580       // thread state, we break out of this retry loop. We shouldn't
 581       // need this flag to prevent us from getting back here, but
 582       // sometimes paranoia is good.
 583       did_trans_retry = true;
 584 
 585       // We wait for the thread to transition to a more usable state.
 586       for (int i = 1; i <= SuspendRetryCount; i++) {
 587         // We used to do an "os::yield_all(i)" call here with the intention
 588         // that yielding would increase on each retry. However, the parameter
 589         // is ignored on Linux which means the yield didn't scale up. Waiting
 590         // on the SR_lock below provides a much more predictable scale up for
 591         // the delay. It also provides a simple/direct point to check for any
 592         // safepoint requests from the VMThread
 593 
 594         // temporarily drops SR_lock while doing wait with safepoint check
 595         // (if we're a JavaThread - the WatcherThread can also call this)
 596         // and increase delay with each retry
 597         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 598 
 599         // check the actual thread state instead of what we saved above
 600         if (thread_state() != _thread_in_native_trans) {
 601           // the thread has transitioned to another thread state so
 602           // try all the checks (except this one) one more time.
 603           do_trans_retry = true;
 604           break;
 605         }
 606       } // end retry loop
 607 
 608 
 609     }
 610   } while (do_trans_retry);
 611 
 612   *bits |= 0x00000010;
 613   return false;
 614 }
 615 
 616 //
 617 // Wait for an external suspend request to complete (or be cancelled).
 618 // Returns true if the thread is externally suspended and false otherwise.
 619 //
 620 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 621        uint32_t *bits) {
 622   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 623                              false /* !called_by_wait */, bits);
 624 
 625   // local flag copies to minimize SR_lock hold time
 626   bool is_suspended;
 627   bool pending;
 628   uint32_t reset_bits;
 629 
 630   // set a marker so is_ext_suspend_completed() knows we are the caller
 631   *bits |= 0x00010000;
 632 
 633   // We use reset_bits to reinitialize the bits value at the top of
 634   // each retry loop. This allows the caller to make use of any
 635   // unused bits for their own marking purposes.
 636   reset_bits = *bits;
 637 
 638   {
 639     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 640     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 641                                             delay, bits);
 642     pending = is_external_suspend();
 643   }
 644   // must release SR_lock to allow suspension to complete
 645 
 646   if (!pending) {
 647     // A cancelled suspend request is the only false return from
 648     // is_ext_suspend_completed() that keeps us from entering the
 649     // retry loop.
 650     *bits |= 0x00020000;
 651     return false;
 652   }
 653 
 654   if (is_suspended) {
 655     *bits |= 0x00040000;
 656     return true;
 657   }
 658 
 659   for (int i = 1; i <= retries; i++) {
 660     *bits = reset_bits;  // reinit to only track last retry
 661 
 662     // We used to do an "os::yield_all(i)" call here with the intention
 663     // that yielding would increase on each retry. However, the parameter
 664     // is ignored on Linux which means the yield didn't scale up. Waiting
 665     // on the SR_lock below provides a much more predictable scale up for
 666     // the delay. It also provides a simple/direct point to check for any
 667     // safepoint requests from the VMThread
 668 
 669     {
 670       MutexLocker ml(SR_lock());
 671       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 672       // can also call this)  and increase delay with each retry
 673       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 674 
 675       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 676                                               delay, bits);
 677 
 678       // It is possible for the external suspend request to be cancelled
 679       // (by a resume) before the actual suspend operation is completed.
 680       // Refresh our local copy to see if we still need to wait.
 681       pending = is_external_suspend();
 682     }
 683 
 684     if (!pending) {
 685       // A cancelled suspend request is the only false return from
 686       // is_ext_suspend_completed() that keeps us from staying in the
 687       // retry loop.
 688       *bits |= 0x00080000;
 689       return false;
 690     }
 691 
 692     if (is_suspended) {
 693       *bits |= 0x00100000;
 694       return true;
 695     }
 696   } // end retry loop
 697 
 698   // thread did not suspend after all our retries
 699   *bits |= 0x00200000;
 700   return false;
 701 }
 702 
 703 #ifndef PRODUCT
 704 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 705 
 706   // This should not need to be atomic as the only way for simultaneous
 707   // updates is via interrupts. Even then this should be rare or non-existant
 708   // and we don't care that much anyway.
 709 
 710   int index = _jmp_ring_index;
 711   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 712   _jmp_ring[index]._target = (intptr_t) target;
 713   _jmp_ring[index]._instruction = (intptr_t) instr;
 714   _jmp_ring[index]._file = file;
 715   _jmp_ring[index]._line = line;
 716 }
 717 #endif /* PRODUCT */
 718 
 719 // Called by flat profiler
 720 // Callers have already called wait_for_ext_suspend_completion
 721 // The assertion for that is currently too complex to put here:
 722 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 723   bool gotframe = false;
 724   // self suspension saves needed state.
 725   if (has_last_Java_frame() && _anchor.walkable()) {
 726      *_fr = pd_last_frame();
 727      gotframe = true;
 728   }
 729   return gotframe;
 730 }
 731 
 732 void Thread::interrupt(Thread* thread) {
 733   trace("interrupt", thread);
 734   debug_only(check_for_dangling_thread_pointer(thread);)
 735   os::interrupt(thread);
 736 }
 737 
 738 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 739   trace("is_interrupted", thread);
 740   debug_only(check_for_dangling_thread_pointer(thread);)
 741   // Note:  If clear_interrupted==false, this simply fetches and
 742   // returns the value of the field osthread()->interrupted().
 743   return os::is_interrupted(thread, clear_interrupted);
 744 }
 745 
 746 
 747 // GC Support
 748 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 749   jint thread_parity = _oops_do_parity;
 750   if (thread_parity != strong_roots_parity) {
 751     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 752     if (res == thread_parity) return true;
 753     else {
 754       guarantee(res == strong_roots_parity, "Or else what?");
 755       assert(SharedHeap::heap()->n_par_threads() > 0,
 756              "Should only fail when parallel.");
 757       return false;
 758     }
 759   }
 760   assert(SharedHeap::heap()->n_par_threads() > 0,
 761          "Should only fail when parallel.");
 762   return false;
 763 }
 764 
 765 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 766   active_handles()->oops_do(f);
 767   // Do oop for ThreadShadow
 768   f->do_oop((oop*)&_pending_exception);
 769   handle_area()->oops_do(f);
 770 }
 771 
 772 void Thread::nmethods_do(CodeBlobClosure* cf) {
 773   // no nmethods in a generic thread...
 774 }
 775 
 776 void Thread::print_on(outputStream* st) const {
 777   // get_priority assumes osthread initialized
 778   if (osthread() != NULL) {
 779     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 780     osthread()->print_on(st);
 781   }
 782   debug_only(if (WizardMode) print_owned_locks_on(st);)
 783 }
 784 
 785 // Thread::print_on_error() is called by fatal error handler. Don't use
 786 // any lock or allocate memory.
 787 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 788   if      (is_VM_thread())                  st->print("VMThread");
 789   else if (is_Compiler_thread())            st->print("CompilerThread");
 790   else if (is_Java_thread())                st->print("JavaThread");
 791   else if (is_GC_task_thread())             st->print("GCTaskThread");
 792   else if (is_Watcher_thread())             st->print("WatcherThread");
 793   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 794   else st->print("Thread");
 795 
 796   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 797             _stack_base - _stack_size, _stack_base);
 798 
 799   if (osthread()) {
 800     st->print(" [id=%d]", osthread()->thread_id());
 801   }
 802 }
 803 
 804 #ifdef ASSERT
 805 void Thread::print_owned_locks_on(outputStream* st) const {
 806   Monitor *cur = _owned_locks;
 807   if (cur == NULL) {
 808     st->print(" (no locks) ");
 809   } else {
 810     st->print_cr(" Locks owned:");
 811     while(cur) {
 812       cur->print_on(st);
 813       cur = cur->next();
 814     }
 815   }
 816 }
 817 
 818 static int ref_use_count  = 0;
 819 
 820 bool Thread::owns_locks_but_compiled_lock() const {
 821   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 822     if (cur != Compile_lock) return true;
 823   }
 824   return false;
 825 }
 826 
 827 
 828 #endif
 829 
 830 #ifndef PRODUCT
 831 
 832 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 833 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 834 // no threads which allow_vm_block's are held
 835 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 836     // Check if current thread is allowed to block at a safepoint
 837     if (!(_allow_safepoint_count == 0))
 838       fatal("Possible safepoint reached by thread that does not allow it");
 839     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 840       fatal("LEAF method calling lock?");
 841     }
 842 
 843 #ifdef ASSERT
 844     if (potential_vm_operation && is_Java_thread()
 845         && !Universe::is_bootstrapping()) {
 846       // Make sure we do not hold any locks that the VM thread also uses.
 847       // This could potentially lead to deadlocks
 848       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 849         // Threads_lock is special, since the safepoint synchronization will not start before this is
 850         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 851         // since it is used to transfer control between JavaThreads and the VMThread
 852         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 853         if ( (cur->allow_vm_block() &&
 854               cur != Threads_lock &&
 855               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 856               cur != VMOperationRequest_lock &&
 857               cur != VMOperationQueue_lock) ||
 858               cur->rank() == Mutex::special) {
 859           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 860         }
 861       }
 862     }
 863 
 864     if (GCALotAtAllSafepoints) {
 865       // We could enter a safepoint here and thus have a gc
 866       InterfaceSupport::check_gc_alot();
 867     }
 868 #endif
 869 }
 870 #endif
 871 
 872 bool Thread::is_in_stack(address adr) const {
 873   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 874   address end = os::current_stack_pointer();
 875   if (stack_base() >= adr && adr >= end) return true;
 876 
 877   return false;
 878 }
 879 
 880 
 881 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 882 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 883 // used for compilation in the future. If that change is made, the need for these methods
 884 // should be revisited, and they should be removed if possible.
 885 
 886 bool Thread::is_lock_owned(address adr) const {
 887   return on_local_stack(adr);
 888 }
 889 
 890 bool Thread::set_as_starting_thread() {
 891  // NOTE: this must be called inside the main thread.
 892   return os::create_main_thread((JavaThread*)this);
 893 }
 894 
 895 static void initialize_class(Symbol* class_name, TRAPS) {
 896   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 897   instanceKlass::cast(klass)->initialize(CHECK);
 898 }
 899 
 900 
 901 // Creates the initial ThreadGroup
 902 static Handle create_initial_thread_group(TRAPS) {
 903   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 904   instanceKlassHandle klass (THREAD, k);
 905 
 906   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 907   {
 908     JavaValue result(T_VOID);
 909     JavaCalls::call_special(&result,
 910                             system_instance,
 911                             klass,
 912                             vmSymbols::object_initializer_name(),
 913                             vmSymbols::void_method_signature(),
 914                             CHECK_NH);
 915   }
 916   Universe::set_system_thread_group(system_instance());
 917 
 918   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 919   {
 920     JavaValue result(T_VOID);
 921     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 922     JavaCalls::call_special(&result,
 923                             main_instance,
 924                             klass,
 925                             vmSymbols::object_initializer_name(),
 926                             vmSymbols::threadgroup_string_void_signature(),
 927                             system_instance,
 928                             string,
 929                             CHECK_NH);
 930   }
 931   return main_instance;
 932 }
 933 
 934 // Creates the initial Thread
 935 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 936   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 937   instanceKlassHandle klass (THREAD, k);
 938   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 939 
 940   java_lang_Thread::set_thread(thread_oop(), thread);
 941   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 942   thread->set_threadObj(thread_oop());
 943 
 944   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 945 
 946   JavaValue result(T_VOID);
 947   JavaCalls::call_special(&result, thread_oop,
 948                                    klass,
 949                                    vmSymbols::object_initializer_name(),
 950                                    vmSymbols::threadgroup_string_void_signature(),
 951                                    thread_group,
 952                                    string,
 953                                    CHECK_NULL);
 954   return thread_oop();
 955 }
 956 
 957 static void call_initializeSystemClass(TRAPS) {
 958   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 959   instanceKlassHandle klass (THREAD, k);
 960 
 961   JavaValue result(T_VOID);
 962   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
 963                                          vmSymbols::void_method_signature(), CHECK);
 964 }
 965 
 966 // General purpose hook into Java code, run once when the VM is initialized.
 967 // The Java library method itself may be changed independently from the VM.
 968 static void call_postVMInitHook(TRAPS) {
 969   klassOop k = SystemDictionary::sun_misc_PostVMInitHook_klass();
 970   instanceKlassHandle klass (THREAD, k);
 971   if (klass.not_null()) {
 972     JavaValue result(T_VOID);
 973     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
 974                                            vmSymbols::void_method_signature(),
 975                                            CHECK);
 976   }
 977 }
 978 
 979 static void reset_vm_info_property(TRAPS) {
 980   // the vm info string
 981   ResourceMark rm(THREAD);
 982   const char *vm_info = VM_Version::vm_info_string();
 983 
 984   // java.lang.System class
 985   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 986   instanceKlassHandle klass (THREAD, k);
 987 
 988   // setProperty arguments
 989   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
 990   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
 991 
 992   // return value
 993   JavaValue r(T_OBJECT);
 994 
 995   // public static String setProperty(String key, String value);
 996   JavaCalls::call_static(&r,
 997                          klass,
 998                          vmSymbols::setProperty_name(),
 999                          vmSymbols::string_string_string_signature(),
1000                          key_str,
1001                          value_str,
1002                          CHECK);
1003 }
1004 
1005 
1006 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1007   assert(thread_group.not_null(), "thread group should be specified");
1008   assert(threadObj() == NULL, "should only create Java thread object once");
1009 
1010   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1011   instanceKlassHandle klass (THREAD, k);
1012   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1013 
1014   java_lang_Thread::set_thread(thread_oop(), this);
1015   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1016   set_threadObj(thread_oop());
1017 
1018   JavaValue result(T_VOID);
1019   if (thread_name != NULL) {
1020     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1021     // Thread gets assigned specified name and null target
1022     JavaCalls::call_special(&result,
1023                             thread_oop,
1024                             klass,
1025                             vmSymbols::object_initializer_name(),
1026                             vmSymbols::threadgroup_string_void_signature(),
1027                             thread_group, // Argument 1
1028                             name,         // Argument 2
1029                             THREAD);
1030   } else {
1031     // Thread gets assigned name "Thread-nnn" and null target
1032     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1033     JavaCalls::call_special(&result,
1034                             thread_oop,
1035                             klass,
1036                             vmSymbols::object_initializer_name(),
1037                             vmSymbols::threadgroup_runnable_void_signature(),
1038                             thread_group, // Argument 1
1039                             Handle(),     // Argument 2
1040                             THREAD);
1041   }
1042 
1043 
1044   if (daemon) {
1045       java_lang_Thread::set_daemon(thread_oop());
1046   }
1047 
1048   if (HAS_PENDING_EXCEPTION) {
1049     return;
1050   }
1051 
1052   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1053   Handle threadObj(this, this->threadObj());
1054 
1055   JavaCalls::call_special(&result,
1056                          thread_group,
1057                          group,
1058                          vmSymbols::add_method_name(),
1059                          vmSymbols::thread_void_signature(),
1060                          threadObj,          // Arg 1
1061                          THREAD);
1062 
1063 
1064 }
1065 
1066 // NamedThread --  non-JavaThread subclasses with multiple
1067 // uniquely named instances should derive from this.
1068 NamedThread::NamedThread() : Thread() {
1069   _name = NULL;
1070   _processed_thread = NULL;
1071 }
1072 
1073 NamedThread::~NamedThread() {
1074   if (_name != NULL) {
1075     FREE_C_HEAP_ARRAY(char, _name);
1076     _name = NULL;
1077   }
1078 }
1079 
1080 void NamedThread::set_name(const char* format, ...) {
1081   guarantee(_name == NULL, "Only get to set name once.");
1082   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1083   guarantee(_name != NULL, "alloc failure");
1084   va_list ap;
1085   va_start(ap, format);
1086   jio_vsnprintf(_name, max_name_len, format, ap);
1087   va_end(ap);
1088 }
1089 
1090 // ======= WatcherThread ========
1091 
1092 // The watcher thread exists to simulate timer interrupts.  It should
1093 // be replaced by an abstraction over whatever native support for
1094 // timer interrupts exists on the platform.
1095 
1096 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1097 volatile bool  WatcherThread::_should_terminate = false;
1098 
1099 WatcherThread::WatcherThread() : Thread() {
1100   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1101   if (os::create_thread(this, os::watcher_thread)) {
1102     _watcher_thread = this;
1103 
1104     // Set the watcher thread to the highest OS priority which should not be
1105     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1106     // is created. The only normal thread using this priority is the reference
1107     // handler thread, which runs for very short intervals only.
1108     // If the VMThread's priority is not lower than the WatcherThread profiling
1109     // will be inaccurate.
1110     os::set_priority(this, MaxPriority);
1111     if (!DisableStartThread) {
1112       os::start_thread(this);
1113     }
1114   }
1115 }
1116 
1117 void WatcherThread::run() {
1118   assert(this == watcher_thread(), "just checking");
1119 
1120   this->record_stack_base_and_size();
1121   this->initialize_thread_local_storage();
1122   this->set_active_handles(JNIHandleBlock::allocate_block());
1123   while(!_should_terminate) {
1124     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1125     assert(watcher_thread() == this,  "thread consistency check");
1126 
1127     // Calculate how long it'll be until the next PeriodicTask work
1128     // should be done, and sleep that amount of time.
1129     size_t time_to_wait = PeriodicTask::time_to_wait();
1130 
1131     // we expect this to timeout - we only ever get unparked when
1132     // we should terminate
1133     {
1134       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1135 
1136       jlong prev_time = os::javaTimeNanos();
1137       for (;;) {
1138         int res= _SleepEvent->park(time_to_wait);
1139         if (res == OS_TIMEOUT || _should_terminate)
1140           break;
1141         // spurious wakeup of some kind
1142         jlong now = os::javaTimeNanos();
1143         time_to_wait -= (now - prev_time) / 1000000;
1144         if (time_to_wait <= 0)
1145           break;
1146         prev_time = now;
1147       }
1148     }
1149 
1150     if (is_error_reported()) {
1151       // A fatal error has happened, the error handler(VMError::report_and_die)
1152       // should abort JVM after creating an error log file. However in some
1153       // rare cases, the error handler itself might deadlock. Here we try to
1154       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1155       //
1156       // This code is in WatcherThread because WatcherThread wakes up
1157       // periodically so the fatal error handler doesn't need to do anything;
1158       // also because the WatcherThread is less likely to crash than other
1159       // threads.
1160 
1161       for (;;) {
1162         if (!ShowMessageBoxOnError
1163          && (OnError == NULL || OnError[0] == '\0')
1164          && Arguments::abort_hook() == NULL) {
1165              os::sleep(this, 2 * 60 * 1000, false);
1166              fdStream err(defaultStream::output_fd());
1167              err.print_raw_cr("# [ timer expired, abort... ]");
1168              // skip atexit/vm_exit/vm_abort hooks
1169              os::die();
1170         }
1171 
1172         // Wake up 5 seconds later, the fatal handler may reset OnError or
1173         // ShowMessageBoxOnError when it is ready to abort.
1174         os::sleep(this, 5 * 1000, false);
1175       }
1176     }
1177 
1178     PeriodicTask::real_time_tick(time_to_wait);
1179 
1180     // If we have no more tasks left due to dynamic disenrollment,
1181     // shut down the thread since we don't currently support dynamic enrollment
1182     if (PeriodicTask::num_tasks() == 0) {
1183       _should_terminate = true;
1184     }
1185   }
1186 
1187   // Signal that it is terminated
1188   {
1189     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1190     _watcher_thread = NULL;
1191     Terminator_lock->notify();
1192   }
1193 
1194   // Thread destructor usually does this..
1195   ThreadLocalStorage::set_thread(NULL);
1196 }
1197 
1198 void WatcherThread::start() {
1199   if (watcher_thread() == NULL) {
1200     _should_terminate = false;
1201     // Create the single instance of WatcherThread
1202     new WatcherThread();
1203   }
1204 }
1205 
1206 void WatcherThread::stop() {
1207   // it is ok to take late safepoints here, if needed
1208   MutexLocker mu(Terminator_lock);
1209   _should_terminate = true;
1210   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1211 
1212   Thread* watcher = watcher_thread();
1213   if (watcher != NULL)
1214     watcher->_SleepEvent->unpark();
1215 
1216   while(watcher_thread() != NULL) {
1217     // This wait should make safepoint checks, wait without a timeout,
1218     // and wait as a suspend-equivalent condition.
1219     //
1220     // Note: If the FlatProfiler is running, then this thread is waiting
1221     // for the WatcherThread to terminate and the WatcherThread, via the
1222     // FlatProfiler task, is waiting for the external suspend request on
1223     // this thread to complete. wait_for_ext_suspend_completion() will
1224     // eventually timeout, but that takes time. Making this wait a
1225     // suspend-equivalent condition solves that timeout problem.
1226     //
1227     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1228                           Mutex::_as_suspend_equivalent_flag);
1229   }
1230 }
1231 
1232 void WatcherThread::print_on(outputStream* st) const {
1233   st->print("\"%s\" ", name());
1234   Thread::print_on(st);
1235   st->cr();
1236 }
1237 
1238 // ======= JavaThread ========
1239 
1240 // A JavaThread is a normal Java thread
1241 
1242 void JavaThread::initialize() {
1243   // Initialize fields
1244 
1245   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1246   set_claimed_par_id(-1);
1247 
1248   set_saved_exception_pc(NULL);
1249   set_threadObj(NULL);
1250   _anchor.clear();
1251   set_entry_point(NULL);
1252   set_jni_functions(jni_functions());
1253   set_callee_target(NULL);
1254   set_vm_result(NULL);
1255   set_vm_result_2(NULL);
1256   set_vframe_array_head(NULL);
1257   set_vframe_array_last(NULL);
1258   set_deferred_locals(NULL);
1259   set_deopt_mark(NULL);
1260   set_deopt_nmethod(NULL);
1261   clear_must_deopt_id();
1262   set_monitor_chunks(NULL);
1263   set_next(NULL);
1264   set_thread_state(_thread_new);
1265   _terminated = _not_terminated;
1266   _privileged_stack_top = NULL;
1267   _array_for_gc = NULL;
1268   _suspend_equivalent = false;
1269   _in_deopt_handler = 0;
1270   _doing_unsafe_access = false;
1271   _stack_guard_state = stack_guard_unused;
1272   _exception_oop = NULL;
1273   _exception_pc  = 0;
1274   _exception_handler_pc = 0;
1275   _exception_stack_size = 0;
1276   _is_method_handle_return = 0;
1277   _jvmti_thread_state= NULL;
1278   _should_post_on_exceptions_flag = JNI_FALSE;
1279   _jvmti_get_loaded_classes_closure = NULL;
1280   _interp_only_mode    = 0;
1281   _special_runtime_exit_condition = _no_async_condition;
1282   _pending_async_exception = NULL;
1283   _is_compiling = false;
1284   _thread_stat = NULL;
1285   _thread_stat = new ThreadStatistics();
1286   _blocked_on_compilation = false;
1287   _jni_active_critical = 0;
1288   _do_not_unlock_if_synchronized = false;
1289   _cached_monitor_info = NULL;
1290   _parker = Parker::Allocate(this) ;
1291 
1292 #ifndef PRODUCT
1293   _jmp_ring_index = 0;
1294   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1295     record_jump(NULL, NULL, NULL, 0);
1296   }
1297 #endif /* PRODUCT */
1298 
1299   set_thread_profiler(NULL);
1300   if (FlatProfiler::is_active()) {
1301     // This is where we would decide to either give each thread it's own profiler
1302     // or use one global one from FlatProfiler,
1303     // or up to some count of the number of profiled threads, etc.
1304     ThreadProfiler* pp = new ThreadProfiler();
1305     pp->engage();
1306     set_thread_profiler(pp);
1307   }
1308 
1309   // Setup safepoint state info for this thread
1310   ThreadSafepointState::create(this);
1311 
1312   debug_only(_java_call_counter = 0);
1313 
1314   // JVMTI PopFrame support
1315   _popframe_condition = popframe_inactive;
1316   _popframe_preserved_args = NULL;
1317   _popframe_preserved_args_size = 0;
1318 
1319   pd_initialize();
1320 }
1321 
1322 #ifndef SERIALGC
1323 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1324 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1325 #endif // !SERIALGC
1326 
1327 JavaThread::JavaThread(bool is_attaching) :
1328   Thread()
1329 #ifndef SERIALGC
1330   , _satb_mark_queue(&_satb_mark_queue_set),
1331   _dirty_card_queue(&_dirty_card_queue_set)
1332 #endif // !SERIALGC
1333 {
1334   initialize();
1335   _is_attaching = is_attaching;
1336   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1337 }
1338 
1339 bool JavaThread::reguard_stack(address cur_sp) {
1340   if (_stack_guard_state != stack_guard_yellow_disabled) {
1341     return true; // Stack already guarded or guard pages not needed.
1342   }
1343 
1344   if (register_stack_overflow()) {
1345     // For those architectures which have separate register and
1346     // memory stacks, we must check the register stack to see if
1347     // it has overflowed.
1348     return false;
1349   }
1350 
1351   // Java code never executes within the yellow zone: the latter is only
1352   // there to provoke an exception during stack banging.  If java code
1353   // is executing there, either StackShadowPages should be larger, or
1354   // some exception code in c1, c2 or the interpreter isn't unwinding
1355   // when it should.
1356   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1357 
1358   enable_stack_yellow_zone();
1359   return true;
1360 }
1361 
1362 bool JavaThread::reguard_stack(void) {
1363   return reguard_stack(os::current_stack_pointer());
1364 }
1365 
1366 
1367 void JavaThread::block_if_vm_exited() {
1368   if (_terminated == _vm_exited) {
1369     // _vm_exited is set at safepoint, and Threads_lock is never released
1370     // we will block here forever
1371     Threads_lock->lock_without_safepoint_check();
1372     ShouldNotReachHere();
1373   }
1374 }
1375 
1376 
1377 // Remove this ifdef when C1 is ported to the compiler interface.
1378 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1379 
1380 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1381   Thread()
1382 #ifndef SERIALGC
1383   , _satb_mark_queue(&_satb_mark_queue_set),
1384   _dirty_card_queue(&_dirty_card_queue_set)
1385 #endif // !SERIALGC
1386 {
1387   if (TraceThreadEvents) {
1388     tty->print_cr("creating thread %p", this);
1389   }
1390   initialize();
1391   _is_attaching = false;
1392   set_entry_point(entry_point);
1393   // Create the native thread itself.
1394   // %note runtime_23
1395   os::ThreadType thr_type = os::java_thread;
1396   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1397                                                      os::java_thread;
1398   os::create_thread(this, thr_type, stack_sz);
1399 
1400   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1401   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1402   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1403   // the exception consists of creating the exception object & initializing it, initialization
1404   // will leave the VM via a JavaCall and then all locks must be unlocked).
1405   //
1406   // The thread is still suspended when we reach here. Thread must be explicit started
1407   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1408   // by calling Threads:add. The reason why this is not done here, is because the thread
1409   // object must be fully initialized (take a look at JVM_Start)
1410 }
1411 
1412 JavaThread::~JavaThread() {
1413   if (TraceThreadEvents) {
1414       tty->print_cr("terminate thread %p", this);
1415   }
1416 
1417   // JSR166 -- return the parker to the free list
1418   Parker::Release(_parker);
1419   _parker = NULL ;
1420 
1421   // Free any remaining  previous UnrollBlock
1422   vframeArray* old_array = vframe_array_last();
1423 
1424   if (old_array != NULL) {
1425     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1426     old_array->set_unroll_block(NULL);
1427     delete old_info;
1428     delete old_array;
1429   }
1430 
1431   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1432   if (deferred != NULL) {
1433     // This can only happen if thread is destroyed before deoptimization occurs.
1434     assert(deferred->length() != 0, "empty array!");
1435     do {
1436       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1437       deferred->remove_at(0);
1438       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1439       delete dlv;
1440     } while (deferred->length() != 0);
1441     delete deferred;
1442   }
1443 
1444   // All Java related clean up happens in exit
1445   ThreadSafepointState::destroy(this);
1446   if (_thread_profiler != NULL) delete _thread_profiler;
1447   if (_thread_stat != NULL) delete _thread_stat;
1448 }
1449 
1450 
1451 // The first routine called by a new Java thread
1452 void JavaThread::run() {
1453   // initialize thread-local alloc buffer related fields
1454   this->initialize_tlab();
1455 
1456   // used to test validitity of stack trace backs
1457   this->record_base_of_stack_pointer();
1458 
1459   // Record real stack base and size.
1460   this->record_stack_base_and_size();
1461 
1462   // Initialize thread local storage; set before calling MutexLocker
1463   this->initialize_thread_local_storage();
1464 
1465   this->create_stack_guard_pages();
1466 
1467   this->cache_global_variables();
1468 
1469   // Thread is now sufficient initialized to be handled by the safepoint code as being
1470   // in the VM. Change thread state from _thread_new to _thread_in_vm
1471   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1472 
1473   assert(JavaThread::current() == this, "sanity check");
1474   assert(!Thread::current()->owns_locks(), "sanity check");
1475 
1476   DTRACE_THREAD_PROBE(start, this);
1477 
1478   // This operation might block. We call that after all safepoint checks for a new thread has
1479   // been completed.
1480   this->set_active_handles(JNIHandleBlock::allocate_block());
1481 
1482   if (JvmtiExport::should_post_thread_life()) {
1483     JvmtiExport::post_thread_start(this);
1484   }
1485 
1486   // We call another function to do the rest so we are sure that the stack addresses used
1487   // from there will be lower than the stack base just computed
1488   thread_main_inner();
1489 
1490   // Note, thread is no longer valid at this point!
1491 }
1492 
1493 
1494 void JavaThread::thread_main_inner() {
1495   assert(JavaThread::current() == this, "sanity check");
1496   assert(this->threadObj() != NULL, "just checking");
1497 
1498   // Execute thread entry point unless this thread has a pending exception
1499   // or has been stopped before starting.
1500   // Note: Due to JVM_StopThread we can have pending exceptions already!
1501   if (!this->has_pending_exception() &&
1502       !java_lang_Thread::is_stillborn(this->threadObj())) {
1503     HandleMark hm(this);
1504     this->entry_point()(this, this);
1505   }
1506 
1507   DTRACE_THREAD_PROBE(stop, this);
1508 
1509   this->exit(false);
1510   delete this;
1511 }
1512 
1513 
1514 static void ensure_join(JavaThread* thread) {
1515   // We do not need to grap the Threads_lock, since we are operating on ourself.
1516   Handle threadObj(thread, thread->threadObj());
1517   assert(threadObj.not_null(), "java thread object must exist");
1518   ObjectLocker lock(threadObj, thread);
1519   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1520   thread->clear_pending_exception();
1521   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1522   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1523   // Clear the native thread instance - this makes isAlive return false and allows the join()
1524   // to complete once we've done the notify_all below
1525   java_lang_Thread::set_thread(threadObj(), NULL);
1526   lock.notify_all(thread);
1527   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1528   thread->clear_pending_exception();
1529 }
1530 
1531 
1532 // For any new cleanup additions, please check to see if they need to be applied to
1533 // cleanup_failed_attach_current_thread as well.
1534 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1535   assert(this == JavaThread::current(),  "thread consistency check");
1536   if (!InitializeJavaLangSystem) return;
1537 
1538   HandleMark hm(this);
1539   Handle uncaught_exception(this, this->pending_exception());
1540   this->clear_pending_exception();
1541   Handle threadObj(this, this->threadObj());
1542   assert(threadObj.not_null(), "Java thread object should be created");
1543 
1544   if (get_thread_profiler() != NULL) {
1545     get_thread_profiler()->disengage();
1546     ResourceMark rm;
1547     get_thread_profiler()->print(get_thread_name());
1548   }
1549 
1550 
1551   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1552   {
1553     EXCEPTION_MARK;
1554 
1555     CLEAR_PENDING_EXCEPTION;
1556   }
1557   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1558   // has to be fixed by a runtime query method
1559   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1560     // JSR-166: change call from from ThreadGroup.uncaughtException to
1561     // java.lang.Thread.dispatchUncaughtException
1562     if (uncaught_exception.not_null()) {
1563       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1564       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1565         (address)uncaught_exception(), (address)threadObj(), (address)group());
1566       {
1567         EXCEPTION_MARK;
1568         // Check if the method Thread.dispatchUncaughtException() exists. If so
1569         // call it.  Otherwise we have an older library without the JSR-166 changes,
1570         // so call ThreadGroup.uncaughtException()
1571         KlassHandle recvrKlass(THREAD, threadObj->klass());
1572         CallInfo callinfo;
1573         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1574         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1575                                            vmSymbols::dispatchUncaughtException_name(),
1576                                            vmSymbols::throwable_void_signature(),
1577                                            KlassHandle(), false, false, THREAD);
1578         CLEAR_PENDING_EXCEPTION;
1579         methodHandle method = callinfo.selected_method();
1580         if (method.not_null()) {
1581           JavaValue result(T_VOID);
1582           JavaCalls::call_virtual(&result,
1583                                   threadObj, thread_klass,
1584                                   vmSymbols::dispatchUncaughtException_name(),
1585                                   vmSymbols::throwable_void_signature(),
1586                                   uncaught_exception,
1587                                   THREAD);
1588         } else {
1589           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1590           JavaValue result(T_VOID);
1591           JavaCalls::call_virtual(&result,
1592                                   group, thread_group,
1593                                   vmSymbols::uncaughtException_name(),
1594                                   vmSymbols::thread_throwable_void_signature(),
1595                                   threadObj,           // Arg 1
1596                                   uncaught_exception,  // Arg 2
1597                                   THREAD);
1598         }
1599         if (HAS_PENDING_EXCEPTION) {
1600           ResourceMark rm(this);
1601           jio_fprintf(defaultStream::error_stream(),
1602                 "\nException: %s thrown from the UncaughtExceptionHandler"
1603                 " in thread \"%s\"\n",
1604                 Klass::cast(pending_exception()->klass())->external_name(),
1605                 get_thread_name());
1606           CLEAR_PENDING_EXCEPTION;
1607         }
1608       }
1609     }
1610 
1611     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1612     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1613     // is deprecated anyhow.
1614     { int count = 3;
1615       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1616         EXCEPTION_MARK;
1617         JavaValue result(T_VOID);
1618         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1619         JavaCalls::call_virtual(&result,
1620                               threadObj, thread_klass,
1621                               vmSymbols::exit_method_name(),
1622                               vmSymbols::void_method_signature(),
1623                               THREAD);
1624         CLEAR_PENDING_EXCEPTION;
1625       }
1626     }
1627 
1628     // notify JVMTI
1629     if (JvmtiExport::should_post_thread_life()) {
1630       JvmtiExport::post_thread_end(this);
1631     }
1632 
1633     // We have notified the agents that we are exiting, before we go on,
1634     // we must check for a pending external suspend request and honor it
1635     // in order to not surprise the thread that made the suspend request.
1636     while (true) {
1637       {
1638         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1639         if (!is_external_suspend()) {
1640           set_terminated(_thread_exiting);
1641           ThreadService::current_thread_exiting(this);
1642           break;
1643         }
1644         // Implied else:
1645         // Things get a little tricky here. We have a pending external
1646         // suspend request, but we are holding the SR_lock so we
1647         // can't just self-suspend. So we temporarily drop the lock
1648         // and then self-suspend.
1649       }
1650 
1651       ThreadBlockInVM tbivm(this);
1652       java_suspend_self();
1653 
1654       // We're done with this suspend request, but we have to loop around
1655       // and check again. Eventually we will get SR_lock without a pending
1656       // external suspend request and will be able to mark ourselves as
1657       // exiting.
1658     }
1659     // no more external suspends are allowed at this point
1660   } else {
1661     // before_exit() has already posted JVMTI THREAD_END events
1662   }
1663 
1664   // Notify waiters on thread object. This has to be done after exit() is called
1665   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1666   // group should have the destroyed bit set before waiters are notified).
1667   ensure_join(this);
1668   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1669 
1670   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1671   // held by this thread must be released.  A detach operation must only
1672   // get here if there are no Java frames on the stack.  Therefore, any
1673   // owned monitors at this point MUST be JNI-acquired monitors which are
1674   // pre-inflated and in the monitor cache.
1675   //
1676   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1677   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1678     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1679     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1680     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1681   }
1682 
1683   // These things needs to be done while we are still a Java Thread. Make sure that thread
1684   // is in a consistent state, in case GC happens
1685   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1686 
1687   if (active_handles() != NULL) {
1688     JNIHandleBlock* block = active_handles();
1689     set_active_handles(NULL);
1690     JNIHandleBlock::release_block(block);
1691   }
1692 
1693   if (free_handle_block() != NULL) {
1694     JNIHandleBlock* block = free_handle_block();
1695     set_free_handle_block(NULL);
1696     JNIHandleBlock::release_block(block);
1697   }
1698 
1699   // These have to be removed while this is still a valid thread.
1700   remove_stack_guard_pages();
1701 
1702   if (UseTLAB) {
1703     tlab().make_parsable(true);  // retire TLAB
1704   }
1705 
1706   if (JvmtiEnv::environments_might_exist()) {
1707     JvmtiExport::cleanup_thread(this);
1708   }
1709 
1710 #ifndef SERIALGC
1711   // We must flush G1-related buffers before removing a thread from
1712   // the list of active threads.
1713   if (UseG1GC) {
1714     flush_barrier_queues();
1715   }
1716 #endif
1717 
1718   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1719   Threads::remove(this);
1720 }
1721 
1722 #ifndef SERIALGC
1723 // Flush G1-related queues.
1724 void JavaThread::flush_barrier_queues() {
1725   satb_mark_queue().flush();
1726   dirty_card_queue().flush();
1727 }
1728 
1729 void JavaThread::initialize_queues() {
1730   assert(!SafepointSynchronize::is_at_safepoint(),
1731          "we should not be at a safepoint");
1732 
1733   ObjPtrQueue& satb_queue = satb_mark_queue();
1734   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1735   // The SATB queue should have been constructed with its active
1736   // field set to false.
1737   assert(!satb_queue.is_active(), "SATB queue should not be active");
1738   assert(satb_queue.is_empty(), "SATB queue should be empty");
1739   // If we are creating the thread during a marking cycle, we should
1740   // set the active field of the SATB queue to true.
1741   if (satb_queue_set.is_active()) {
1742     satb_queue.set_active(true);
1743   }
1744 
1745   DirtyCardQueue& dirty_queue = dirty_card_queue();
1746   // The dirty card queue should have been constructed with its
1747   // active field set to true.
1748   assert(dirty_queue.is_active(), "dirty card queue should be active");
1749 }
1750 #endif // !SERIALGC
1751 
1752 void JavaThread::cleanup_failed_attach_current_thread() {
1753   if (get_thread_profiler() != NULL) {
1754     get_thread_profiler()->disengage();
1755     ResourceMark rm;
1756     get_thread_profiler()->print(get_thread_name());
1757   }
1758 
1759   if (active_handles() != NULL) {
1760     JNIHandleBlock* block = active_handles();
1761     set_active_handles(NULL);
1762     JNIHandleBlock::release_block(block);
1763   }
1764 
1765   if (free_handle_block() != NULL) {
1766     JNIHandleBlock* block = free_handle_block();
1767     set_free_handle_block(NULL);
1768     JNIHandleBlock::release_block(block);
1769   }
1770 
1771   // These have to be removed while this is still a valid thread.
1772   remove_stack_guard_pages();
1773 
1774   if (UseTLAB) {
1775     tlab().make_parsable(true);  // retire TLAB, if any
1776   }
1777 
1778 #ifndef SERIALGC
1779   if (UseG1GC) {
1780     flush_barrier_queues();
1781   }
1782 #endif
1783 
1784   Threads::remove(this);
1785   delete this;
1786 }
1787 
1788 
1789 
1790 
1791 JavaThread* JavaThread::active() {
1792   Thread* thread = ThreadLocalStorage::thread();
1793   assert(thread != NULL, "just checking");
1794   if (thread->is_Java_thread()) {
1795     return (JavaThread*) thread;
1796   } else {
1797     assert(thread->is_VM_thread(), "this must be a vm thread");
1798     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1799     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1800     assert(ret->is_Java_thread(), "must be a Java thread");
1801     return ret;
1802   }
1803 }
1804 
1805 bool JavaThread::is_lock_owned(address adr) const {
1806   if (Thread::is_lock_owned(adr)) return true;
1807 
1808   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1809     if (chunk->contains(adr)) return true;
1810   }
1811 
1812   return false;
1813 }
1814 
1815 
1816 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1817   chunk->set_next(monitor_chunks());
1818   set_monitor_chunks(chunk);
1819 }
1820 
1821 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1822   guarantee(monitor_chunks() != NULL, "must be non empty");
1823   if (monitor_chunks() == chunk) {
1824     set_monitor_chunks(chunk->next());
1825   } else {
1826     MonitorChunk* prev = monitor_chunks();
1827     while (prev->next() != chunk) prev = prev->next();
1828     prev->set_next(chunk->next());
1829   }
1830 }
1831 
1832 // JVM support.
1833 
1834 // Note: this function shouldn't block if it's called in
1835 // _thread_in_native_trans state (such as from
1836 // check_special_condition_for_native_trans()).
1837 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1838 
1839   if (has_last_Java_frame() && has_async_condition()) {
1840     // If we are at a polling page safepoint (not a poll return)
1841     // then we must defer async exception because live registers
1842     // will be clobbered by the exception path. Poll return is
1843     // ok because the call we a returning from already collides
1844     // with exception handling registers and so there is no issue.
1845     // (The exception handling path kills call result registers but
1846     //  this is ok since the exception kills the result anyway).
1847 
1848     if (is_at_poll_safepoint()) {
1849       // if the code we are returning to has deoptimized we must defer
1850       // the exception otherwise live registers get clobbered on the
1851       // exception path before deoptimization is able to retrieve them.
1852       //
1853       RegisterMap map(this, false);
1854       frame caller_fr = last_frame().sender(&map);
1855       assert(caller_fr.is_compiled_frame(), "what?");
1856       if (caller_fr.is_deoptimized_frame()) {
1857         if (TraceExceptions) {
1858           ResourceMark rm;
1859           tty->print_cr("deferred async exception at compiled safepoint");
1860         }
1861         return;
1862       }
1863     }
1864   }
1865 
1866   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1867   if (condition == _no_async_condition) {
1868     // Conditions have changed since has_special_runtime_exit_condition()
1869     // was called:
1870     // - if we were here only because of an external suspend request,
1871     //   then that was taken care of above (or cancelled) so we are done
1872     // - if we were here because of another async request, then it has
1873     //   been cleared between the has_special_runtime_exit_condition()
1874     //   and now so again we are done
1875     return;
1876   }
1877 
1878   // Check for pending async. exception
1879   if (_pending_async_exception != NULL) {
1880     // Only overwrite an already pending exception, if it is not a threadDeath.
1881     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1882 
1883       // We cannot call Exceptions::_throw(...) here because we cannot block
1884       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1885 
1886       if (TraceExceptions) {
1887         ResourceMark rm;
1888         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1889         if (has_last_Java_frame() ) {
1890           frame f = last_frame();
1891           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1892         }
1893         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1894       }
1895       _pending_async_exception = NULL;
1896       clear_has_async_exception();
1897     }
1898   }
1899 
1900   if (check_unsafe_error &&
1901       condition == _async_unsafe_access_error && !has_pending_exception()) {
1902     condition = _no_async_condition;  // done
1903     switch (thread_state()) {
1904     case _thread_in_vm:
1905       {
1906         JavaThread* THREAD = this;
1907         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1908       }
1909     case _thread_in_native:
1910       {
1911         ThreadInVMfromNative tiv(this);
1912         JavaThread* THREAD = this;
1913         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1914       }
1915     case _thread_in_Java:
1916       {
1917         ThreadInVMfromJava tiv(this);
1918         JavaThread* THREAD = this;
1919         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1920       }
1921     default:
1922       ShouldNotReachHere();
1923     }
1924   }
1925 
1926   assert(condition == _no_async_condition || has_pending_exception() ||
1927          (!check_unsafe_error && condition == _async_unsafe_access_error),
1928          "must have handled the async condition, if no exception");
1929 }
1930 
1931 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1932   //
1933   // Check for pending external suspend. Internal suspend requests do
1934   // not use handle_special_runtime_exit_condition().
1935   // If JNIEnv proxies are allowed, don't self-suspend if the target
1936   // thread is not the current thread. In older versions of jdbx, jdbx
1937   // threads could call into the VM with another thread's JNIEnv so we
1938   // can be here operating on behalf of a suspended thread (4432884).
1939   bool do_self_suspend = is_external_suspend_with_lock();
1940   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1941     //
1942     // Because thread is external suspended the safepoint code will count
1943     // thread as at a safepoint. This can be odd because we can be here
1944     // as _thread_in_Java which would normally transition to _thread_blocked
1945     // at a safepoint. We would like to mark the thread as _thread_blocked
1946     // before calling java_suspend_self like all other callers of it but
1947     // we must then observe proper safepoint protocol. (We can't leave
1948     // _thread_blocked with a safepoint in progress). However we can be
1949     // here as _thread_in_native_trans so we can't use a normal transition
1950     // constructor/destructor pair because they assert on that type of
1951     // transition. We could do something like:
1952     //
1953     // JavaThreadState state = thread_state();
1954     // set_thread_state(_thread_in_vm);
1955     // {
1956     //   ThreadBlockInVM tbivm(this);
1957     //   java_suspend_self()
1958     // }
1959     // set_thread_state(_thread_in_vm_trans);
1960     // if (safepoint) block;
1961     // set_thread_state(state);
1962     //
1963     // but that is pretty messy. Instead we just go with the way the
1964     // code has worked before and note that this is the only path to
1965     // java_suspend_self that doesn't put the thread in _thread_blocked
1966     // mode.
1967 
1968     frame_anchor()->make_walkable(this);
1969     java_suspend_self();
1970 
1971     // We might be here for reasons in addition to the self-suspend request
1972     // so check for other async requests.
1973   }
1974 
1975   if (check_asyncs) {
1976     check_and_handle_async_exceptions();
1977   }
1978 }
1979 
1980 void JavaThread::send_thread_stop(oop java_throwable)  {
1981   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1982   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1983   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1984 
1985   // Do not throw asynchronous exceptions against the compiler thread
1986   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1987   if (is_Compiler_thread()) return;
1988 
1989   {
1990     // Actually throw the Throwable against the target Thread - however
1991     // only if there is no thread death exception installed already.
1992     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1993       // If the topmost frame is a runtime stub, then we are calling into
1994       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1995       // must deoptimize the caller before continuing, as the compiled  exception handler table
1996       // may not be valid
1997       if (has_last_Java_frame()) {
1998         frame f = last_frame();
1999         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2000           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2001           RegisterMap reg_map(this, UseBiasedLocking);
2002           frame compiled_frame = f.sender(&reg_map);
2003           if (compiled_frame.can_be_deoptimized()) {
2004             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2005           }
2006         }
2007       }
2008 
2009       // Set async. pending exception in thread.
2010       set_pending_async_exception(java_throwable);
2011 
2012       if (TraceExceptions) {
2013        ResourceMark rm;
2014        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
2015       }
2016       // for AbortVMOnException flag
2017       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
2018     }
2019   }
2020 
2021 
2022   // Interrupt thread so it will wake up from a potential wait()
2023   Thread::interrupt(this);
2024 }
2025 
2026 // External suspension mechanism.
2027 //
2028 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2029 // to any VM_locks and it is at a transition
2030 // Self-suspension will happen on the transition out of the vm.
2031 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2032 //
2033 // Guarantees on return:
2034 //   + Target thread will not execute any new bytecode (that's why we need to
2035 //     force a safepoint)
2036 //   + Target thread will not enter any new monitors
2037 //
2038 void JavaThread::java_suspend() {
2039   { MutexLocker mu(Threads_lock);
2040     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2041        return;
2042     }
2043   }
2044 
2045   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2046     if (!is_external_suspend()) {
2047       // a racing resume has cancelled us; bail out now
2048       return;
2049     }
2050 
2051     // suspend is done
2052     uint32_t debug_bits = 0;
2053     // Warning: is_ext_suspend_completed() may temporarily drop the
2054     // SR_lock to allow the thread to reach a stable thread state if
2055     // it is currently in a transient thread state.
2056     if (is_ext_suspend_completed(false /* !called_by_wait */,
2057                                  SuspendRetryDelay, &debug_bits) ) {
2058       return;
2059     }
2060   }
2061 
2062   VM_ForceSafepoint vm_suspend;
2063   VMThread::execute(&vm_suspend);
2064 }
2065 
2066 // Part II of external suspension.
2067 // A JavaThread self suspends when it detects a pending external suspend
2068 // request. This is usually on transitions. It is also done in places
2069 // where continuing to the next transition would surprise the caller,
2070 // e.g., monitor entry.
2071 //
2072 // Returns the number of times that the thread self-suspended.
2073 //
2074 // Note: DO NOT call java_suspend_self() when you just want to block current
2075 //       thread. java_suspend_self() is the second stage of cooperative
2076 //       suspension for external suspend requests and should only be used
2077 //       to complete an external suspend request.
2078 //
2079 int JavaThread::java_suspend_self() {
2080   int ret = 0;
2081 
2082   // we are in the process of exiting so don't suspend
2083   if (is_exiting()) {
2084      clear_external_suspend();
2085      return ret;
2086   }
2087 
2088   assert(_anchor.walkable() ||
2089     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2090     "must have walkable stack");
2091 
2092   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2093 
2094   assert(!this->is_ext_suspended(),
2095     "a thread trying to self-suspend should not already be suspended");
2096 
2097   if (this->is_suspend_equivalent()) {
2098     // If we are self-suspending as a result of the lifting of a
2099     // suspend equivalent condition, then the suspend_equivalent
2100     // flag is not cleared until we set the ext_suspended flag so
2101     // that wait_for_ext_suspend_completion() returns consistent
2102     // results.
2103     this->clear_suspend_equivalent();
2104   }
2105 
2106   // A racing resume may have cancelled us before we grabbed SR_lock
2107   // above. Or another external suspend request could be waiting for us
2108   // by the time we return from SR_lock()->wait(). The thread
2109   // that requested the suspension may already be trying to walk our
2110   // stack and if we return now, we can change the stack out from under
2111   // it. This would be a "bad thing (TM)" and cause the stack walker
2112   // to crash. We stay self-suspended until there are no more pending
2113   // external suspend requests.
2114   while (is_external_suspend()) {
2115     ret++;
2116     this->set_ext_suspended();
2117 
2118     // _ext_suspended flag is cleared by java_resume()
2119     while (is_ext_suspended()) {
2120       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2121     }
2122   }
2123 
2124   return ret;
2125 }
2126 
2127 #ifdef ASSERT
2128 // verify the JavaThread has not yet been published in the Threads::list, and
2129 // hence doesn't need protection from concurrent access at this stage
2130 void JavaThread::verify_not_published() {
2131   if (!Threads_lock->owned_by_self()) {
2132    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2133    assert( !Threads::includes(this),
2134            "java thread shouldn't have been published yet!");
2135   }
2136   else {
2137    assert( !Threads::includes(this),
2138            "java thread shouldn't have been published yet!");
2139   }
2140 }
2141 #endif
2142 
2143 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2144 // progress or when _suspend_flags is non-zero.
2145 // Current thread needs to self-suspend if there is a suspend request and/or
2146 // block if a safepoint is in progress.
2147 // Async exception ISN'T checked.
2148 // Note only the ThreadInVMfromNative transition can call this function
2149 // directly and when thread state is _thread_in_native_trans
2150 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2151   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2152 
2153   JavaThread *curJT = JavaThread::current();
2154   bool do_self_suspend = thread->is_external_suspend();
2155 
2156   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2157 
2158   // If JNIEnv proxies are allowed, don't self-suspend if the target
2159   // thread is not the current thread. In older versions of jdbx, jdbx
2160   // threads could call into the VM with another thread's JNIEnv so we
2161   // can be here operating on behalf of a suspended thread (4432884).
2162   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2163     JavaThreadState state = thread->thread_state();
2164 
2165     // We mark this thread_blocked state as a suspend-equivalent so
2166     // that a caller to is_ext_suspend_completed() won't be confused.
2167     // The suspend-equivalent state is cleared by java_suspend_self().
2168     thread->set_suspend_equivalent();
2169 
2170     // If the safepoint code sees the _thread_in_native_trans state, it will
2171     // wait until the thread changes to other thread state. There is no
2172     // guarantee on how soon we can obtain the SR_lock and complete the
2173     // self-suspend request. It would be a bad idea to let safepoint wait for
2174     // too long. Temporarily change the state to _thread_blocked to
2175     // let the VM thread know that this thread is ready for GC. The problem
2176     // of changing thread state is that safepoint could happen just after
2177     // java_suspend_self() returns after being resumed, and VM thread will
2178     // see the _thread_blocked state. We must check for safepoint
2179     // after restoring the state and make sure we won't leave while a safepoint
2180     // is in progress.
2181     thread->set_thread_state(_thread_blocked);
2182     thread->java_suspend_self();
2183     thread->set_thread_state(state);
2184     // Make sure new state is seen by VM thread
2185     if (os::is_MP()) {
2186       if (UseMembar) {
2187         // Force a fence between the write above and read below
2188         OrderAccess::fence();
2189       } else {
2190         // Must use this rather than serialization page in particular on Windows
2191         InterfaceSupport::serialize_memory(thread);
2192       }
2193     }
2194   }
2195 
2196   if (SafepointSynchronize::do_call_back()) {
2197     // If we are safepointing, then block the caller which may not be
2198     // the same as the target thread (see above).
2199     SafepointSynchronize::block(curJT);
2200   }
2201 
2202   if (thread->is_deopt_suspend()) {
2203     thread->clear_deopt_suspend();
2204     RegisterMap map(thread, false);
2205     frame f = thread->last_frame();
2206     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2207       f = f.sender(&map);
2208     }
2209     if (f.id() == thread->must_deopt_id()) {
2210       thread->clear_must_deopt_id();
2211       f.deoptimize(thread);
2212     } else {
2213       fatal("missed deoptimization!");
2214     }
2215   }
2216 }
2217 
2218 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2219 // progress or when _suspend_flags is non-zero.
2220 // Current thread needs to self-suspend if there is a suspend request and/or
2221 // block if a safepoint is in progress.
2222 // Also check for pending async exception (not including unsafe access error).
2223 // Note only the native==>VM/Java barriers can call this function and when
2224 // thread state is _thread_in_native_trans.
2225 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2226   check_safepoint_and_suspend_for_native_trans(thread);
2227 
2228   if (thread->has_async_exception()) {
2229     // We are in _thread_in_native_trans state, don't handle unsafe
2230     // access error since that may block.
2231     thread->check_and_handle_async_exceptions(false);
2232   }
2233 }
2234 
2235 // We need to guarantee the Threads_lock here, since resumes are not
2236 // allowed during safepoint synchronization
2237 // Can only resume from an external suspension
2238 void JavaThread::java_resume() {
2239   assert_locked_or_safepoint(Threads_lock);
2240 
2241   // Sanity check: thread is gone, has started exiting or the thread
2242   // was not externally suspended.
2243   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2244     return;
2245   }
2246 
2247   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2248 
2249   clear_external_suspend();
2250 
2251   if (is_ext_suspended()) {
2252     clear_ext_suspended();
2253     SR_lock()->notify_all();
2254   }
2255 }
2256 
2257 void JavaThread::create_stack_guard_pages() {
2258   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2259   address low_addr = stack_base() - stack_size();
2260   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2261 
2262   int allocate = os::allocate_stack_guard_pages();
2263   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2264 
2265   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2266     warning("Attempt to allocate stack guard pages failed.");
2267     return;
2268   }
2269 
2270   if (os::guard_memory((char *) low_addr, len)) {
2271     _stack_guard_state = stack_guard_enabled;
2272   } else {
2273     warning("Attempt to protect stack guard pages failed.");
2274     if (os::uncommit_memory((char *) low_addr, len)) {
2275       warning("Attempt to deallocate stack guard pages failed.");
2276     }
2277   }
2278 }
2279 
2280 void JavaThread::remove_stack_guard_pages() {
2281   if (_stack_guard_state == stack_guard_unused) return;
2282   address low_addr = stack_base() - stack_size();
2283   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2284 
2285   if (os::allocate_stack_guard_pages()) {
2286     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2287       _stack_guard_state = stack_guard_unused;
2288     } else {
2289       warning("Attempt to deallocate stack guard pages failed.");
2290     }
2291   } else {
2292     if (_stack_guard_state == stack_guard_unused) return;
2293     if (os::unguard_memory((char *) low_addr, len)) {
2294       _stack_guard_state = stack_guard_unused;
2295     } else {
2296         warning("Attempt to unprotect stack guard pages failed.");
2297     }
2298   }
2299 }
2300 
2301 void JavaThread::enable_stack_yellow_zone() {
2302   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2303   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2304 
2305   // The base notation is from the stacks point of view, growing downward.
2306   // We need to adjust it to work correctly with guard_memory()
2307   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2308 
2309   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2310   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2311 
2312   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2313     _stack_guard_state = stack_guard_enabled;
2314   } else {
2315     warning("Attempt to guard stack yellow zone failed.");
2316   }
2317   enable_register_stack_guard();
2318 }
2319 
2320 void JavaThread::disable_stack_yellow_zone() {
2321   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2322   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2323 
2324   // Simply return if called for a thread that does not use guard pages.
2325   if (_stack_guard_state == stack_guard_unused) return;
2326 
2327   // The base notation is from the stacks point of view, growing downward.
2328   // We need to adjust it to work correctly with guard_memory()
2329   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2330 
2331   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2332     _stack_guard_state = stack_guard_yellow_disabled;
2333   } else {
2334     warning("Attempt to unguard stack yellow zone failed.");
2335   }
2336   disable_register_stack_guard();
2337 }
2338 
2339 void JavaThread::enable_stack_red_zone() {
2340   // The base notation is from the stacks point of view, growing downward.
2341   // We need to adjust it to work correctly with guard_memory()
2342   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2343   address base = stack_red_zone_base() - stack_red_zone_size();
2344 
2345   guarantee(base < stack_base(),"Error calculating stack red zone");
2346   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2347 
2348   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2349     warning("Attempt to guard stack red zone failed.");
2350   }
2351 }
2352 
2353 void JavaThread::disable_stack_red_zone() {
2354   // The base notation is from the stacks point of view, growing downward.
2355   // We need to adjust it to work correctly with guard_memory()
2356   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2357   address base = stack_red_zone_base() - stack_red_zone_size();
2358   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2359     warning("Attempt to unguard stack red zone failed.");
2360   }
2361 }
2362 
2363 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2364   // ignore is there is no stack
2365   if (!has_last_Java_frame()) return;
2366   // traverse the stack frames. Starts from top frame.
2367   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2368     frame* fr = fst.current();
2369     f(fr, fst.register_map());
2370   }
2371 }
2372 
2373 
2374 #ifndef PRODUCT
2375 // Deoptimization
2376 // Function for testing deoptimization
2377 void JavaThread::deoptimize() {
2378   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2379   StackFrameStream fst(this, UseBiasedLocking);
2380   bool deopt = false;           // Dump stack only if a deopt actually happens.
2381   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2382   // Iterate over all frames in the thread and deoptimize
2383   for(; !fst.is_done(); fst.next()) {
2384     if(fst.current()->can_be_deoptimized()) {
2385 
2386       if (only_at) {
2387         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2388         // consists of comma or carriage return separated numbers so
2389         // search for the current bci in that string.
2390         address pc = fst.current()->pc();
2391         nmethod* nm =  (nmethod*) fst.current()->cb();
2392         ScopeDesc* sd = nm->scope_desc_at( pc);
2393         char buffer[8];
2394         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2395         size_t len = strlen(buffer);
2396         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2397         while (found != NULL) {
2398           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2399               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2400             // Check that the bci found is bracketed by terminators.
2401             break;
2402           }
2403           found = strstr(found + 1, buffer);
2404         }
2405         if (!found) {
2406           continue;
2407         }
2408       }
2409 
2410       if (DebugDeoptimization && !deopt) {
2411         deopt = true; // One-time only print before deopt
2412         tty->print_cr("[BEFORE Deoptimization]");
2413         trace_frames();
2414         trace_stack();
2415       }
2416       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2417     }
2418   }
2419 
2420   if (DebugDeoptimization && deopt) {
2421     tty->print_cr("[AFTER Deoptimization]");
2422     trace_frames();
2423   }
2424 }
2425 
2426 
2427 // Make zombies
2428 void JavaThread::make_zombies() {
2429   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2430     if (fst.current()->can_be_deoptimized()) {
2431       // it is a Java nmethod
2432       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2433       nm->make_not_entrant();
2434     }
2435   }
2436 }
2437 #endif // PRODUCT
2438 
2439 
2440 void JavaThread::deoptimized_wrt_marked_nmethods() {
2441   if (!has_last_Java_frame()) return;
2442   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2443   StackFrameStream fst(this, UseBiasedLocking);
2444   for(; !fst.is_done(); fst.next()) {
2445     if (fst.current()->should_be_deoptimized()) {
2446       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2447     }
2448   }
2449 }
2450 
2451 
2452 // GC support
2453 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2454 
2455 void JavaThread::gc_epilogue() {
2456   frames_do(frame_gc_epilogue);
2457 }
2458 
2459 
2460 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2461 
2462 void JavaThread::gc_prologue() {
2463   frames_do(frame_gc_prologue);
2464 }
2465 
2466 // If the caller is a NamedThread, then remember, in the current scope,
2467 // the given JavaThread in its _processed_thread field.
2468 class RememberProcessedThread: public StackObj {
2469   NamedThread* _cur_thr;
2470 public:
2471   RememberProcessedThread(JavaThread* jthr) {
2472     Thread* thread = Thread::current();
2473     if (thread->is_Named_thread()) {
2474       _cur_thr = (NamedThread *)thread;
2475       _cur_thr->set_processed_thread(jthr);
2476     } else {
2477       _cur_thr = NULL;
2478     }
2479   }
2480 
2481   ~RememberProcessedThread() {
2482     if (_cur_thr) {
2483       _cur_thr->set_processed_thread(NULL);
2484     }
2485   }
2486 };
2487 
2488 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2489   // Verify that the deferred card marks have been flushed.
2490   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2491 
2492   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2493   // since there may be more than one thread using each ThreadProfiler.
2494 
2495   // Traverse the GCHandles
2496   Thread::oops_do(f, cf);
2497 
2498   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2499           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2500 
2501   if (has_last_Java_frame()) {
2502     // Record JavaThread to GC thread
2503     RememberProcessedThread rpt(this);
2504 
2505     // Traverse the privileged stack
2506     if (_privileged_stack_top != NULL) {
2507       _privileged_stack_top->oops_do(f);
2508     }
2509 
2510     // traverse the registered growable array
2511     if (_array_for_gc != NULL) {
2512       for (int index = 0; index < _array_for_gc->length(); index++) {
2513         f->do_oop(_array_for_gc->adr_at(index));
2514       }
2515     }
2516 
2517     // Traverse the monitor chunks
2518     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2519       chunk->oops_do(f);
2520     }
2521 
2522     // Traverse the execution stack
2523     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2524       fst.current()->oops_do(f, cf, fst.register_map());
2525     }
2526   }
2527 
2528   // callee_target is never live across a gc point so NULL it here should
2529   // it still contain a methdOop.
2530 
2531   set_callee_target(NULL);
2532 
2533   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2534   // If we have deferred set_locals there might be oops waiting to be
2535   // written
2536   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2537   if (list != NULL) {
2538     for (int i = 0; i < list->length(); i++) {
2539       list->at(i)->oops_do(f);
2540     }
2541   }
2542 
2543   // Traverse instance variables at the end since the GC may be moving things
2544   // around using this function
2545   f->do_oop((oop*) &_threadObj);
2546   f->do_oop((oop*) &_vm_result);
2547   f->do_oop((oop*) &_vm_result_2);
2548   f->do_oop((oop*) &_exception_oop);
2549   f->do_oop((oop*) &_pending_async_exception);
2550 
2551   if (jvmti_thread_state() != NULL) {
2552     jvmti_thread_state()->oops_do(f);
2553   }
2554 }
2555 
2556 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2557   Thread::nmethods_do(cf);  // (super method is a no-op)
2558 
2559   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2560           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2561 
2562   if (has_last_Java_frame()) {
2563     // Traverse the execution stack
2564     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2565       fst.current()->nmethods_do(cf);
2566     }
2567   }
2568 }
2569 
2570 // Printing
2571 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2572   switch (_thread_state) {
2573   case _thread_uninitialized:     return "_thread_uninitialized";
2574   case _thread_new:               return "_thread_new";
2575   case _thread_new_trans:         return "_thread_new_trans";
2576   case _thread_in_native:         return "_thread_in_native";
2577   case _thread_in_native_trans:   return "_thread_in_native_trans";
2578   case _thread_in_vm:             return "_thread_in_vm";
2579   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2580   case _thread_in_Java:           return "_thread_in_Java";
2581   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2582   case _thread_blocked:           return "_thread_blocked";
2583   case _thread_blocked_trans:     return "_thread_blocked_trans";
2584   default:                        return "unknown thread state";
2585   }
2586 }
2587 
2588 #ifndef PRODUCT
2589 void JavaThread::print_thread_state_on(outputStream *st) const {
2590   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2591 };
2592 void JavaThread::print_thread_state() const {
2593   print_thread_state_on(tty);
2594 };
2595 #endif // PRODUCT
2596 
2597 // Called by Threads::print() for VM_PrintThreads operation
2598 void JavaThread::print_on(outputStream *st) const {
2599   st->print("\"%s\" ", get_thread_name());
2600   oop thread_oop = threadObj();
2601   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2602   Thread::print_on(st);
2603   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2604   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2605   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2606     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2607   }
2608 #ifndef PRODUCT
2609   print_thread_state_on(st);
2610   _safepoint_state->print_on(st);
2611 #endif // PRODUCT
2612 }
2613 
2614 // Called by fatal error handler. The difference between this and
2615 // JavaThread::print() is that we can't grab lock or allocate memory.
2616 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2617   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2618   oop thread_obj = threadObj();
2619   if (thread_obj != NULL) {
2620      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2621   }
2622   st->print(" [");
2623   st->print("%s", _get_thread_state_name(_thread_state));
2624   if (osthread()) {
2625     st->print(", id=%d", osthread()->thread_id());
2626   }
2627   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2628             _stack_base - _stack_size, _stack_base);
2629   st->print("]");
2630   return;
2631 }
2632 
2633 // Verification
2634 
2635 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2636 
2637 void JavaThread::verify() {
2638   // Verify oops in the thread.
2639   oops_do(&VerifyOopClosure::verify_oop, NULL);
2640 
2641   // Verify the stack frames.
2642   frames_do(frame_verify);
2643 }
2644 
2645 // CR 6300358 (sub-CR 2137150)
2646 // Most callers of this method assume that it can't return NULL but a
2647 // thread may not have a name whilst it is in the process of attaching to
2648 // the VM - see CR 6412693, and there are places where a JavaThread can be
2649 // seen prior to having it's threadObj set (eg JNI attaching threads and
2650 // if vm exit occurs during initialization). These cases can all be accounted
2651 // for such that this method never returns NULL.
2652 const char* JavaThread::get_thread_name() const {
2653 #ifdef ASSERT
2654   // early safepoints can hit while current thread does not yet have TLS
2655   if (!SafepointSynchronize::is_at_safepoint()) {
2656     Thread *cur = Thread::current();
2657     if (!(cur->is_Java_thread() && cur == this)) {
2658       // Current JavaThreads are allowed to get their own name without
2659       // the Threads_lock.
2660       assert_locked_or_safepoint(Threads_lock);
2661     }
2662   }
2663 #endif // ASSERT
2664     return get_thread_name_string();
2665 }
2666 
2667 // Returns a non-NULL representation of this thread's name, or a suitable
2668 // descriptive string if there is no set name
2669 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2670   const char* name_str;
2671   oop thread_obj = threadObj();
2672   if (thread_obj != NULL) {
2673     typeArrayOop name = java_lang_Thread::name(thread_obj);
2674     if (name != NULL) {
2675       if (buf == NULL) {
2676         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2677       }
2678       else {
2679         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2680       }
2681     }
2682     else if (is_attaching()) { // workaround for 6412693 - see 6404306
2683       name_str = "<no-name - thread is attaching>";
2684     }
2685     else {
2686       name_str = Thread::name();
2687     }
2688   }
2689   else {
2690     name_str = Thread::name();
2691   }
2692   assert(name_str != NULL, "unexpected NULL thread name");
2693   return name_str;
2694 }
2695 
2696 
2697 const char* JavaThread::get_threadgroup_name() const {
2698   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2699   oop thread_obj = threadObj();
2700   if (thread_obj != NULL) {
2701     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2702     if (thread_group != NULL) {
2703       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2704       // ThreadGroup.name can be null
2705       if (name != NULL) {
2706         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2707         return str;
2708       }
2709     }
2710   }
2711   return NULL;
2712 }
2713 
2714 const char* JavaThread::get_parent_name() const {
2715   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2716   oop thread_obj = threadObj();
2717   if (thread_obj != NULL) {
2718     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2719     if (thread_group != NULL) {
2720       oop parent = java_lang_ThreadGroup::parent(thread_group);
2721       if (parent != NULL) {
2722         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2723         // ThreadGroup.name can be null
2724         if (name != NULL) {
2725           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2726           return str;
2727         }
2728       }
2729     }
2730   }
2731   return NULL;
2732 }
2733 
2734 ThreadPriority JavaThread::java_priority() const {
2735   oop thr_oop = threadObj();
2736   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2737   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2738   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2739   return priority;
2740 }
2741 
2742 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2743 
2744   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2745   // Link Java Thread object <-> C++ Thread
2746 
2747   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2748   // and put it into a new Handle.  The Handle "thread_oop" can then
2749   // be used to pass the C++ thread object to other methods.
2750 
2751   // Set the Java level thread object (jthread) field of the
2752   // new thread (a JavaThread *) to C++ thread object using the
2753   // "thread_oop" handle.
2754 
2755   // Set the thread field (a JavaThread *) of the
2756   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2757 
2758   Handle thread_oop(Thread::current(),
2759                     JNIHandles::resolve_non_null(jni_thread));
2760   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2761     "must be initialized");
2762   set_threadObj(thread_oop());
2763   java_lang_Thread::set_thread(thread_oop(), this);
2764 
2765   if (prio == NoPriority) {
2766     prio = java_lang_Thread::priority(thread_oop());
2767     assert(prio != NoPriority, "A valid priority should be present");
2768   }
2769 
2770   // Push the Java priority down to the native thread; needs Threads_lock
2771   Thread::set_priority(this, prio);
2772 
2773   // Add the new thread to the Threads list and set it in motion.
2774   // We must have threads lock in order to call Threads::add.
2775   // It is crucial that we do not block before the thread is
2776   // added to the Threads list for if a GC happens, then the java_thread oop
2777   // will not be visited by GC.
2778   Threads::add(this);
2779 }
2780 
2781 oop JavaThread::current_park_blocker() {
2782   // Support for JSR-166 locks
2783   oop thread_oop = threadObj();
2784   if (thread_oop != NULL &&
2785       JDK_Version::current().supports_thread_park_blocker()) {
2786     return java_lang_Thread::park_blocker(thread_oop);
2787   }
2788   return NULL;
2789 }
2790 
2791 
2792 void JavaThread::print_stack_on(outputStream* st) {
2793   if (!has_last_Java_frame()) return;
2794   ResourceMark rm;
2795   HandleMark   hm;
2796 
2797   RegisterMap reg_map(this);
2798   vframe* start_vf = last_java_vframe(&reg_map);
2799   int count = 0;
2800   for (vframe* f = start_vf; f; f = f->sender() ) {
2801     if (f->is_java_frame()) {
2802       javaVFrame* jvf = javaVFrame::cast(f);
2803       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2804 
2805       // Print out lock information
2806       if (JavaMonitorsInStackTrace) {
2807         jvf->print_lock_info_on(st, count);
2808       }
2809     } else {
2810       // Ignore non-Java frames
2811     }
2812 
2813     // Bail-out case for too deep stacks
2814     count++;
2815     if (MaxJavaStackTraceDepth == count) return;
2816   }
2817 }
2818 
2819 
2820 // JVMTI PopFrame support
2821 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2822   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2823   if (in_bytes(size_in_bytes) != 0) {
2824     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2825     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2826     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2827   }
2828 }
2829 
2830 void* JavaThread::popframe_preserved_args() {
2831   return _popframe_preserved_args;
2832 }
2833 
2834 ByteSize JavaThread::popframe_preserved_args_size() {
2835   return in_ByteSize(_popframe_preserved_args_size);
2836 }
2837 
2838 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2839   int sz = in_bytes(popframe_preserved_args_size());
2840   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2841   return in_WordSize(sz / wordSize);
2842 }
2843 
2844 void JavaThread::popframe_free_preserved_args() {
2845   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2846   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2847   _popframe_preserved_args = NULL;
2848   _popframe_preserved_args_size = 0;
2849 }
2850 
2851 #ifndef PRODUCT
2852 
2853 void JavaThread::trace_frames() {
2854   tty->print_cr("[Describe stack]");
2855   int frame_no = 1;
2856   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2857     tty->print("  %d. ", frame_no++);
2858     fst.current()->print_value_on(tty,this);
2859     tty->cr();
2860   }
2861 }
2862 
2863 
2864 #ifdef ASSERT
2865 // Print or validate the layout of stack frames
2866 void JavaThread::print_frame_layout(int depth, bool validate_only) {
2867   ResourceMark rm;
2868   PRESERVE_EXCEPTION_MARK;
2869   FrameValues values;
2870   int frame_no = 0;
2871   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
2872     fst.current()->describe(values, ++frame_no);
2873     if (depth == frame_no) break;
2874   }
2875   if (validate_only) {
2876     values.validate();
2877   } else {
2878     tty->print_cr("[Describe stack layout]");
2879     values.print();
2880   }
2881 }
2882 #endif
2883 
2884 void JavaThread::trace_stack_from(vframe* start_vf) {
2885   ResourceMark rm;
2886   int vframe_no = 1;
2887   for (vframe* f = start_vf; f; f = f->sender() ) {
2888     if (f->is_java_frame()) {
2889       javaVFrame::cast(f)->print_activation(vframe_no++);
2890     } else {
2891       f->print();
2892     }
2893     if (vframe_no > StackPrintLimit) {
2894       tty->print_cr("...<more frames>...");
2895       return;
2896     }
2897   }
2898 }
2899 
2900 
2901 void JavaThread::trace_stack() {
2902   if (!has_last_Java_frame()) return;
2903   ResourceMark rm;
2904   HandleMark   hm;
2905   RegisterMap reg_map(this);
2906   trace_stack_from(last_java_vframe(&reg_map));
2907 }
2908 
2909 
2910 #endif // PRODUCT
2911 
2912 
2913 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2914   assert(reg_map != NULL, "a map must be given");
2915   frame f = last_frame();
2916   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2917     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2918   }
2919   return NULL;
2920 }
2921 
2922 
2923 klassOop JavaThread::security_get_caller_class(int depth) {
2924   vframeStream vfst(this);
2925   vfst.security_get_caller_frame(depth);
2926   if (!vfst.at_end()) {
2927     return vfst.method()->method_holder();
2928   }
2929   return NULL;
2930 }
2931 
2932 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2933   assert(thread->is_Compiler_thread(), "must be compiler thread");
2934   CompileBroker::compiler_thread_loop();
2935 }
2936 
2937 // Create a CompilerThread
2938 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2939 : JavaThread(&compiler_thread_entry) {
2940   _env   = NULL;
2941   _log   = NULL;
2942   _task  = NULL;
2943   _queue = queue;
2944   _counters = counters;
2945   _buffer_blob = NULL;
2946   _scanned_nmethod = NULL;
2947 
2948 #ifndef PRODUCT
2949   _ideal_graph_printer = NULL;
2950 #endif
2951 }
2952 
2953 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2954   JavaThread::oops_do(f, cf);
2955   if (_scanned_nmethod != NULL && cf != NULL) {
2956     // Safepoints can occur when the sweeper is scanning an nmethod so
2957     // process it here to make sure it isn't unloaded in the middle of
2958     // a scan.
2959     cf->do_code_blob(_scanned_nmethod);
2960   }
2961 }
2962 
2963 // ======= Threads ========
2964 
2965 // The Threads class links together all active threads, and provides
2966 // operations over all threads.  It is protected by its own Mutex
2967 // lock, which is also used in other contexts to protect thread
2968 // operations from having the thread being operated on from exiting
2969 // and going away unexpectedly (e.g., safepoint synchronization)
2970 
2971 JavaThread* Threads::_thread_list = NULL;
2972 int         Threads::_number_of_threads = 0;
2973 int         Threads::_number_of_non_daemon_threads = 0;
2974 int         Threads::_return_code = 0;
2975 size_t      JavaThread::_stack_size_at_create = 0;
2976 
2977 // All JavaThreads
2978 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2979 
2980 void os_stream();
2981 
2982 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2983 void Threads::threads_do(ThreadClosure* tc) {
2984   assert_locked_or_safepoint(Threads_lock);
2985   // ALL_JAVA_THREADS iterates through all JavaThreads
2986   ALL_JAVA_THREADS(p) {
2987     tc->do_thread(p);
2988   }
2989   // Someday we could have a table or list of all non-JavaThreads.
2990   // For now, just manually iterate through them.
2991   tc->do_thread(VMThread::vm_thread());
2992   Universe::heap()->gc_threads_do(tc);
2993   WatcherThread *wt = WatcherThread::watcher_thread();
2994   // Strictly speaking, the following NULL check isn't sufficient to make sure
2995   // the data for WatcherThread is still valid upon being examined. However,
2996   // considering that WatchThread terminates when the VM is on the way to
2997   // exit at safepoint, the chance of the above is extremely small. The right
2998   // way to prevent termination of WatcherThread would be to acquire
2999   // Terminator_lock, but we can't do that without violating the lock rank
3000   // checking in some cases.
3001   if (wt != NULL)
3002     tc->do_thread(wt);
3003 
3004   // If CompilerThreads ever become non-JavaThreads, add them here
3005 }
3006 
3007 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3008 
3009   extern void JDK_Version_init();
3010 
3011   // Check version
3012   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3013 
3014   // Initialize the output stream module
3015   ostream_init();
3016 
3017   // Process java launcher properties.
3018   Arguments::process_sun_java_launcher_properties(args);
3019 
3020   // Initialize the os module before using TLS
3021   os::init();
3022 
3023   // Initialize system properties.
3024   Arguments::init_system_properties();
3025 
3026   // So that JDK version can be used as a discrimintor when parsing arguments
3027   JDK_Version_init();
3028 
3029   // Update/Initialize System properties after JDK version number is known
3030   Arguments::init_version_specific_system_properties();
3031 
3032   // Parse arguments
3033   jint parse_result = Arguments::parse(args);
3034   if (parse_result != JNI_OK) return parse_result;
3035 
3036   if (PauseAtStartup) {
3037     os::pause();
3038   }
3039 
3040   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3041 
3042   // Record VM creation timing statistics
3043   TraceVmCreationTime create_vm_timer;
3044   create_vm_timer.start();
3045 
3046   // Timing (must come after argument parsing)
3047   TraceTime timer("Create VM", TraceStartupTime);
3048 
3049   // Initialize the os module after parsing the args
3050   jint os_init_2_result = os::init_2();
3051   if (os_init_2_result != JNI_OK) return os_init_2_result;
3052 
3053   // Initialize output stream logging
3054   ostream_init_log();
3055 
3056   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3057   // Must be before create_vm_init_agents()
3058   if (Arguments::init_libraries_at_startup()) {
3059     convert_vm_init_libraries_to_agents();
3060   }
3061 
3062   // Launch -agentlib/-agentpath and converted -Xrun agents
3063   if (Arguments::init_agents_at_startup()) {
3064     create_vm_init_agents();
3065   }
3066 
3067   // Initialize Threads state
3068   _thread_list = NULL;
3069   _number_of_threads = 0;
3070   _number_of_non_daemon_threads = 0;
3071 
3072   // Initialize TLS
3073   ThreadLocalStorage::init();
3074 
3075   // Initialize global data structures and create system classes in heap
3076   vm_init_globals();
3077 
3078   // Attach the main thread to this os thread
3079   JavaThread* main_thread = new JavaThread();
3080   main_thread->set_thread_state(_thread_in_vm);
3081   // must do this before set_active_handles and initialize_thread_local_storage
3082   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3083   // change the stack size recorded here to one based on the java thread
3084   // stacksize. This adjusted size is what is used to figure the placement
3085   // of the guard pages.
3086   main_thread->record_stack_base_and_size();
3087   main_thread->initialize_thread_local_storage();
3088 
3089   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3090 
3091   if (!main_thread->set_as_starting_thread()) {
3092     vm_shutdown_during_initialization(
3093       "Failed necessary internal allocation. Out of swap space");
3094     delete main_thread;
3095     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3096     return JNI_ENOMEM;
3097   }
3098 
3099   // Enable guard page *after* os::create_main_thread(), otherwise it would
3100   // crash Linux VM, see notes in os_linux.cpp.
3101   main_thread->create_stack_guard_pages();
3102 
3103   // Initialize Java-Level synchronization subsystem
3104   ObjectMonitor::Initialize() ;
3105 
3106   // Initialize global modules
3107   jint status = init_globals();
3108   if (status != JNI_OK) {
3109     delete main_thread;
3110     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3111     return status;
3112   }
3113 
3114   // Should be done after the heap is fully created
3115   main_thread->cache_global_variables();
3116 
3117   HandleMark hm;
3118 
3119   { MutexLocker mu(Threads_lock);
3120     Threads::add(main_thread);
3121   }
3122 
3123   // Any JVMTI raw monitors entered in onload will transition into
3124   // real raw monitor. VM is setup enough here for raw monitor enter.
3125   JvmtiExport::transition_pending_onload_raw_monitors();
3126 
3127   if (VerifyBeforeGC &&
3128       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3129     Universe::heap()->prepare_for_verify();
3130     Universe::verify();   // make sure we're starting with a clean slate
3131   }
3132 
3133   // Create the VMThread
3134   { TraceTime timer("Start VMThread", TraceStartupTime);
3135     VMThread::create();
3136     Thread* vmthread = VMThread::vm_thread();
3137 
3138     if (!os::create_thread(vmthread, os::vm_thread))
3139       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3140 
3141     // Wait for the VM thread to become ready, and VMThread::run to initialize
3142     // Monitors can have spurious returns, must always check another state flag
3143     {
3144       MutexLocker ml(Notify_lock);
3145       os::start_thread(vmthread);
3146       while (vmthread->active_handles() == NULL) {
3147         Notify_lock->wait();
3148       }
3149     }
3150   }
3151 
3152   assert (Universe::is_fully_initialized(), "not initialized");
3153   EXCEPTION_MARK;
3154 
3155   // At this point, the Universe is initialized, but we have not executed
3156   // any byte code.  Now is a good time (the only time) to dump out the
3157   // internal state of the JVM for sharing.
3158 
3159   if (DumpSharedSpaces) {
3160     Universe::heap()->preload_and_dump(CHECK_0);
3161     ShouldNotReachHere();
3162   }
3163 
3164   // Always call even when there are not JVMTI environments yet, since environments
3165   // may be attached late and JVMTI must track phases of VM execution
3166   JvmtiExport::enter_start_phase();
3167 
3168   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3169   JvmtiExport::post_vm_start();
3170 
3171   {
3172     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3173 
3174     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3175       create_vm_init_libraries();
3176     }
3177 
3178     if (InitializeJavaLangString) {
3179       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3180     } else {
3181       warning("java.lang.String not initialized");
3182     }
3183 
3184     if (AggressiveOpts) {
3185       {
3186         // Forcibly initialize java/util/HashMap and mutate the private
3187         // static final "frontCacheEnabled" field before we start creating instances
3188 #ifdef ASSERT
3189         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3190         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3191 #endif
3192         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3193         KlassHandle k = KlassHandle(THREAD, k_o);
3194         guarantee(k.not_null(), "Must find java/util/HashMap");
3195         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3196         ik->initialize(CHECK_0);
3197         fieldDescriptor fd;
3198         // Possible we might not find this field; if so, don't break
3199         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3200           k()->java_mirror()->bool_field_put(fd.offset(), true);
3201         }
3202       }
3203 
3204       if (UseStringCache) {
3205         // Forcibly initialize java/lang/StringValue and mutate the private
3206         // static final "stringCacheEnabled" field before we start creating instances
3207         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3208         // Possible that StringValue isn't present: if so, silently don't break
3209         if (k_o != NULL) {
3210           KlassHandle k = KlassHandle(THREAD, k_o);
3211           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3212           ik->initialize(CHECK_0);
3213           fieldDescriptor fd;
3214           // Possible we might not find this field: if so, silently don't break
3215           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3216             k()->java_mirror()->bool_field_put(fd.offset(), true);
3217           }
3218         }
3219       }
3220     }
3221 
3222     // Initialize java_lang.System (needed before creating the thread)
3223     if (InitializeJavaLangSystem) {
3224       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3225       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3226       Handle thread_group = create_initial_thread_group(CHECK_0);
3227       Universe::set_main_thread_group(thread_group());
3228       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3229       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3230       main_thread->set_threadObj(thread_object);
3231       // Set thread status to running since main thread has
3232       // been started and running.
3233       java_lang_Thread::set_thread_status(thread_object,
3234                                           java_lang_Thread::RUNNABLE);
3235 
3236       // The VM preresolve methods to these classes. Make sure that get initialized
3237       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3238       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3239       // The VM creates & returns objects of this class. Make sure it's initialized.
3240       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3241       call_initializeSystemClass(CHECK_0);
3242     } else {
3243       warning("java.lang.System not initialized");
3244     }
3245 
3246     // an instance of OutOfMemory exception has been allocated earlier
3247     if (InitializeJavaLangExceptionsErrors) {
3248       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3249       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3250       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3251       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3252       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3253       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3254       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3255     } else {
3256       warning("java.lang.OutOfMemoryError has not been initialized");
3257       warning("java.lang.NullPointerException has not been initialized");
3258       warning("java.lang.ClassCastException has not been initialized");
3259       warning("java.lang.ArrayStoreException has not been initialized");
3260       warning("java.lang.ArithmeticException has not been initialized");
3261       warning("java.lang.StackOverflowError has not been initialized");
3262     }
3263   }
3264 
3265   // See        : bugid 4211085.
3266   // Background : the static initializer of java.lang.Compiler tries to read
3267   //              property"java.compiler" and read & write property "java.vm.info".
3268   //              When a security manager is installed through the command line
3269   //              option "-Djava.security.manager", the above properties are not
3270   //              readable and the static initializer for java.lang.Compiler fails
3271   //              resulting in a NoClassDefFoundError.  This can happen in any
3272   //              user code which calls methods in java.lang.Compiler.
3273   // Hack :       the hack is to pre-load and initialize this class, so that only
3274   //              system domains are on the stack when the properties are read.
3275   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3276   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3277   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3278   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3279   //              Once that is done, we should remove this hack.
3280   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3281 
3282   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3283   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3284   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3285   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3286   // This should also be taken out as soon as 4211383 gets fixed.
3287   reset_vm_info_property(CHECK_0);
3288 
3289   quicken_jni_functions();
3290 
3291   // Set flag that basic initialization has completed. Used by exceptions and various
3292   // debug stuff, that does not work until all basic classes have been initialized.
3293   set_init_completed();
3294 
3295   HS_DTRACE_PROBE(hotspot, vm__init__end);
3296 
3297   // record VM initialization completion time
3298   Management::record_vm_init_completed();
3299 
3300   // Compute system loader. Note that this has to occur after set_init_completed, since
3301   // valid exceptions may be thrown in the process.
3302   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3303   // set_init_completed has just been called, causing exceptions not to be shortcut
3304   // anymore. We call vm_exit_during_initialization directly instead.
3305   SystemDictionary::compute_java_system_loader(THREAD);
3306   if (HAS_PENDING_EXCEPTION) {
3307     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3308   }
3309 
3310 #ifndef SERIALGC
3311   // Support for ConcurrentMarkSweep. This should be cleaned up
3312   // and better encapsulated. The ugly nested if test would go away
3313   // once things are properly refactored. XXX YSR
3314   if (UseConcMarkSweepGC || UseG1GC) {
3315     if (UseConcMarkSweepGC) {
3316       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3317     } else {
3318       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3319     }
3320     if (HAS_PENDING_EXCEPTION) {
3321       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3322     }
3323   }
3324 #endif // SERIALGC
3325 
3326   // Always call even when there are not JVMTI environments yet, since environments
3327   // may be attached late and JVMTI must track phases of VM execution
3328   JvmtiExport::enter_live_phase();
3329 
3330   // Signal Dispatcher needs to be started before VMInit event is posted
3331   os::signal_init();
3332 
3333   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3334   if (!DisableAttachMechanism) {
3335     if (StartAttachListener || AttachListener::init_at_startup()) {
3336       AttachListener::init();
3337     }
3338   }
3339 
3340   // Launch -Xrun agents
3341   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3342   // back-end can launch with -Xdebug -Xrunjdwp.
3343   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3344     create_vm_init_libraries();
3345   }
3346 
3347   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3348   JvmtiExport::post_vm_initialized();
3349 
3350   if (CleanChunkPoolAsync) {
3351     Chunk::start_chunk_pool_cleaner_task();
3352   }
3353 
3354   // initialize compiler(s)
3355   CompileBroker::compilation_init();
3356 
3357   Management::initialize(THREAD);
3358   if (HAS_PENDING_EXCEPTION) {
3359     // management agent fails to start possibly due to
3360     // configuration problem and is responsible for printing
3361     // stack trace if appropriate. Simply exit VM.
3362     vm_exit(1);
3363   }
3364 
3365   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3366   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3367   if (MemProfiling)                   MemProfiler::engage();
3368   StatSampler::engage();
3369   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3370 
3371   BiasedLocking::init();
3372 
3373   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3374     call_postVMInitHook(THREAD);
3375     // The Java side of PostVMInitHook.run must deal with all
3376     // exceptions and provide means of diagnosis.
3377     if (HAS_PENDING_EXCEPTION) {
3378       CLEAR_PENDING_EXCEPTION;
3379     }
3380   }
3381 
3382   // Start up the WatcherThread if there are any periodic tasks
3383   // NOTE:  All PeriodicTasks should be registered by now. If they
3384   //   aren't, late joiners might appear to start slowly (we might
3385   //   take a while to process their first tick).
3386   if (PeriodicTask::num_tasks() > 0) {
3387     WatcherThread::start();
3388   }
3389 
3390   // Give os specific code one last chance to start
3391   os::init_3();
3392 
3393   create_vm_timer.end();
3394   return JNI_OK;
3395 }
3396 
3397 // type for the Agent_OnLoad and JVM_OnLoad entry points
3398 extern "C" {
3399   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3400 }
3401 // Find a command line agent library and return its entry point for
3402 //         -agentlib:  -agentpath:   -Xrun
3403 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3404 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3405   OnLoadEntry_t on_load_entry = NULL;
3406   void *library = agent->os_lib();  // check if we have looked it up before
3407 
3408   if (library == NULL) {
3409     char buffer[JVM_MAXPATHLEN];
3410     char ebuf[1024];
3411     const char *name = agent->name();
3412     const char *msg = "Could not find agent library ";
3413 
3414     if (agent->is_absolute_path()) {
3415       library = os::dll_load(name, ebuf, sizeof ebuf);
3416       if (library == NULL) {
3417         const char *sub_msg = " in absolute path, with error: ";
3418         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3419         char *buf = NEW_C_HEAP_ARRAY(char, len);
3420         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3421         // If we can't find the agent, exit.
3422         vm_exit_during_initialization(buf, NULL);
3423         FREE_C_HEAP_ARRAY(char, buf);
3424       }
3425     } else {
3426       // Try to load the agent from the standard dll directory
3427       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3428       library = os::dll_load(buffer, ebuf, sizeof ebuf);
3429 #ifdef KERNEL
3430       // Download instrument dll
3431       if (library == NULL && strcmp(name, "instrument") == 0) {
3432         char *props = Arguments::get_kernel_properties();
3433         char *home  = Arguments::get_java_home();
3434         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3435                       " sun.jkernel.DownloadManager -download client_jvm";
3436         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3437         char *cmd = NEW_C_HEAP_ARRAY(char, length);
3438         jio_snprintf(cmd, length, fmt, home, props);
3439         int status = os::fork_and_exec(cmd);
3440         FreeHeap(props);
3441         if (status == -1) {
3442           warning(cmd);
3443           vm_exit_during_initialization("fork_and_exec failed: %s",
3444                                          strerror(errno));
3445         }
3446         FREE_C_HEAP_ARRAY(char, cmd);
3447         // when this comes back the instrument.dll should be where it belongs.
3448         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3449       }
3450 #endif // KERNEL
3451       if (library == NULL) { // Try the local directory
3452         char ns[1] = {0};
3453         os::dll_build_name(buffer, sizeof(buffer), ns, name);
3454         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3455         if (library == NULL) {
3456           const char *sub_msg = " on the library path, with error: ";
3457           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3458           char *buf = NEW_C_HEAP_ARRAY(char, len);
3459           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3460           // If we can't find the agent, exit.
3461           vm_exit_during_initialization(buf, NULL);
3462           FREE_C_HEAP_ARRAY(char, buf);
3463         }
3464       }
3465     }
3466     agent->set_os_lib(library);
3467   }
3468 
3469   // Find the OnLoad function.
3470   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3471     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3472     if (on_load_entry != NULL) break;
3473   }
3474   return on_load_entry;
3475 }
3476 
3477 // Find the JVM_OnLoad entry point
3478 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3479   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3480   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3481 }
3482 
3483 // Find the Agent_OnLoad entry point
3484 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3485   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3486   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3487 }
3488 
3489 // For backwards compatibility with -Xrun
3490 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3491 // treated like -agentpath:
3492 // Must be called before agent libraries are created
3493 void Threads::convert_vm_init_libraries_to_agents() {
3494   AgentLibrary* agent;
3495   AgentLibrary* next;
3496 
3497   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3498     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3499     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3500 
3501     // If there is an JVM_OnLoad function it will get called later,
3502     // otherwise see if there is an Agent_OnLoad
3503     if (on_load_entry == NULL) {
3504       on_load_entry = lookup_agent_on_load(agent);
3505       if (on_load_entry != NULL) {
3506         // switch it to the agent list -- so that Agent_OnLoad will be called,
3507         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3508         Arguments::convert_library_to_agent(agent);
3509       } else {
3510         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3511       }
3512     }
3513   }
3514 }
3515 
3516 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3517 // Invokes Agent_OnLoad
3518 // Called very early -- before JavaThreads exist
3519 void Threads::create_vm_init_agents() {
3520   extern struct JavaVM_ main_vm;
3521   AgentLibrary* agent;
3522 
3523   JvmtiExport::enter_onload_phase();
3524   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3525     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3526 
3527     if (on_load_entry != NULL) {
3528       // Invoke the Agent_OnLoad function
3529       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3530       if (err != JNI_OK) {
3531         vm_exit_during_initialization("agent library failed to init", agent->name());
3532       }
3533     } else {
3534       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3535     }
3536   }
3537   JvmtiExport::enter_primordial_phase();
3538 }
3539 
3540 extern "C" {
3541   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3542 }
3543 
3544 void Threads::shutdown_vm_agents() {
3545   // Send any Agent_OnUnload notifications
3546   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3547   extern struct JavaVM_ main_vm;
3548   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3549 
3550     // Find the Agent_OnUnload function.
3551     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3552       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3553                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3554 
3555       // Invoke the Agent_OnUnload function
3556       if (unload_entry != NULL) {
3557         JavaThread* thread = JavaThread::current();
3558         ThreadToNativeFromVM ttn(thread);
3559         HandleMark hm(thread);
3560         (*unload_entry)(&main_vm);
3561         break;
3562       }
3563     }
3564   }
3565 }
3566 
3567 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3568 // Invokes JVM_OnLoad
3569 void Threads::create_vm_init_libraries() {
3570   extern struct JavaVM_ main_vm;
3571   AgentLibrary* agent;
3572 
3573   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3574     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3575 
3576     if (on_load_entry != NULL) {
3577       // Invoke the JVM_OnLoad function
3578       JavaThread* thread = JavaThread::current();
3579       ThreadToNativeFromVM ttn(thread);
3580       HandleMark hm(thread);
3581       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3582       if (err != JNI_OK) {
3583         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3584       }
3585     } else {
3586       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3587     }
3588   }
3589 }
3590 
3591 // Last thread running calls java.lang.Shutdown.shutdown()
3592 void JavaThread::invoke_shutdown_hooks() {
3593   HandleMark hm(this);
3594 
3595   // We could get here with a pending exception, if so clear it now.
3596   if (this->has_pending_exception()) {
3597     this->clear_pending_exception();
3598   }
3599 
3600   EXCEPTION_MARK;
3601   klassOop k =
3602     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3603                                       THREAD);
3604   if (k != NULL) {
3605     // SystemDictionary::resolve_or_null will return null if there was
3606     // an exception.  If we cannot load the Shutdown class, just don't
3607     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3608     // and finalizers (if runFinalizersOnExit is set) won't be run.
3609     // Note that if a shutdown hook was registered or runFinalizersOnExit
3610     // was called, the Shutdown class would have already been loaded
3611     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3612     instanceKlassHandle shutdown_klass (THREAD, k);
3613     JavaValue result(T_VOID);
3614     JavaCalls::call_static(&result,
3615                            shutdown_klass,
3616                            vmSymbols::shutdown_method_name(),
3617                            vmSymbols::void_method_signature(),
3618                            THREAD);
3619   }
3620   CLEAR_PENDING_EXCEPTION;
3621 }
3622 
3623 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3624 // the program falls off the end of main(). Another VM exit path is through
3625 // vm_exit() when the program calls System.exit() to return a value or when
3626 // there is a serious error in VM. The two shutdown paths are not exactly
3627 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3628 // and VM_Exit op at VM level.
3629 //
3630 // Shutdown sequence:
3631 //   + Wait until we are the last non-daemon thread to execute
3632 //     <-- every thing is still working at this moment -->
3633 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3634 //        shutdown hooks, run finalizers if finalization-on-exit
3635 //   + Call before_exit(), prepare for VM exit
3636 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3637 //        currently the only user of this mechanism is File.deleteOnExit())
3638 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3639 //        post thread end and vm death events to JVMTI,
3640 //        stop signal thread
3641 //   + Call JavaThread::exit(), it will:
3642 //      > release JNI handle blocks, remove stack guard pages
3643 //      > remove this thread from Threads list
3644 //     <-- no more Java code from this thread after this point -->
3645 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3646 //     the compiler threads at safepoint
3647 //     <-- do not use anything that could get blocked by Safepoint -->
3648 //   + Disable tracing at JNI/JVM barriers
3649 //   + Set _vm_exited flag for threads that are still running native code
3650 //   + Delete this thread
3651 //   + Call exit_globals()
3652 //      > deletes tty
3653 //      > deletes PerfMemory resources
3654 //   + Return to caller
3655 
3656 bool Threads::destroy_vm() {
3657   JavaThread* thread = JavaThread::current();
3658 
3659   // Wait until we are the last non-daemon thread to execute
3660   { MutexLocker nu(Threads_lock);
3661     while (Threads::number_of_non_daemon_threads() > 1 )
3662       // This wait should make safepoint checks, wait without a timeout,
3663       // and wait as a suspend-equivalent condition.
3664       //
3665       // Note: If the FlatProfiler is running and this thread is waiting
3666       // for another non-daemon thread to finish, then the FlatProfiler
3667       // is waiting for the external suspend request on this thread to
3668       // complete. wait_for_ext_suspend_completion() will eventually
3669       // timeout, but that takes time. Making this wait a suspend-
3670       // equivalent condition solves that timeout problem.
3671       //
3672       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3673                          Mutex::_as_suspend_equivalent_flag);
3674   }
3675 
3676   // Hang forever on exit if we are reporting an error.
3677   if (ShowMessageBoxOnError && is_error_reported()) {
3678     os::infinite_sleep();
3679   }
3680   os::wait_for_keypress_at_exit();
3681 
3682   if (JDK_Version::is_jdk12x_version()) {
3683     // We are the last thread running, so check if finalizers should be run.
3684     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3685     HandleMark rm(thread);
3686     Universe::run_finalizers_on_exit();
3687   } else {
3688     // run Java level shutdown hooks
3689     thread->invoke_shutdown_hooks();
3690   }
3691 
3692   before_exit(thread);
3693 
3694   thread->exit(true);
3695 
3696   // Stop VM thread.
3697   {
3698     // 4945125 The vm thread comes to a safepoint during exit.
3699     // GC vm_operations can get caught at the safepoint, and the
3700     // heap is unparseable if they are caught. Grab the Heap_lock
3701     // to prevent this. The GC vm_operations will not be able to
3702     // queue until after the vm thread is dead.
3703     // After this point, we'll never emerge out of the safepoint before
3704     // the VM exits, so concurrent GC threads do not need to be explicitly
3705     // stopped; they remain inactive until the process exits.
3706     // Note: some concurrent G1 threads may be running during a safepoint,
3707     // but these will not be accessing the heap, just some G1-specific side
3708     // data structures that are not accessed by any other threads but them
3709     // after this point in a terminal safepoint.
3710 
3711     MutexLocker ml(Heap_lock);
3712 
3713     VMThread::wait_for_vm_thread_exit();
3714     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3715     VMThread::destroy();
3716   }
3717 
3718   // clean up ideal graph printers
3719 #if defined(COMPILER2) && !defined(PRODUCT)
3720   IdealGraphPrinter::clean_up();
3721 #endif
3722 
3723   // Now, all Java threads are gone except daemon threads. Daemon threads
3724   // running Java code or in VM are stopped by the Safepoint. However,
3725   // daemon threads executing native code are still running.  But they
3726   // will be stopped at native=>Java/VM barriers. Note that we can't
3727   // simply kill or suspend them, as it is inherently deadlock-prone.
3728 
3729 #ifndef PRODUCT
3730   // disable function tracing at JNI/JVM barriers
3731   TraceJNICalls = false;
3732   TraceJVMCalls = false;
3733   TraceRuntimeCalls = false;
3734 #endif
3735 
3736   VM_Exit::set_vm_exited();
3737 
3738   notify_vm_shutdown();
3739 
3740   delete thread;
3741 
3742   // exit_globals() will delete tty
3743   exit_globals();
3744 
3745   return true;
3746 }
3747 
3748 
3749 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3750   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3751   return is_supported_jni_version(version);
3752 }
3753 
3754 
3755 jboolean Threads::is_supported_jni_version(jint version) {
3756   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3757   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3758   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3759   return JNI_FALSE;
3760 }
3761 
3762 
3763 void Threads::add(JavaThread* p, bool force_daemon) {
3764   // The threads lock must be owned at this point
3765   assert_locked_or_safepoint(Threads_lock);
3766 
3767   // See the comment for this method in thread.hpp for its purpose and
3768   // why it is called here.
3769   p->initialize_queues();
3770   p->set_next(_thread_list);
3771   _thread_list = p;
3772   _number_of_threads++;
3773   oop threadObj = p->threadObj();
3774   bool daemon = true;
3775   // Bootstrapping problem: threadObj can be null for initial
3776   // JavaThread (or for threads attached via JNI)
3777   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3778     _number_of_non_daemon_threads++;
3779     daemon = false;
3780   }
3781 
3782   ThreadService::add_thread(p, daemon);
3783 
3784   // Possible GC point.
3785   Events::log("Thread added: " INTPTR_FORMAT, p);
3786 }
3787 
3788 void Threads::remove(JavaThread* p) {
3789   // Extra scope needed for Thread_lock, so we can check
3790   // that we do not remove thread without safepoint code notice
3791   { MutexLocker ml(Threads_lock);
3792 
3793     assert(includes(p), "p must be present");
3794 
3795     JavaThread* current = _thread_list;
3796     JavaThread* prev    = NULL;
3797 
3798     while (current != p) {
3799       prev    = current;
3800       current = current->next();
3801     }
3802 
3803     if (prev) {
3804       prev->set_next(current->next());
3805     } else {
3806       _thread_list = p->next();
3807     }
3808     _number_of_threads--;
3809     oop threadObj = p->threadObj();
3810     bool daemon = true;
3811     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3812       _number_of_non_daemon_threads--;
3813       daemon = false;
3814 
3815       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3816       // on destroy_vm will wake up.
3817       if (number_of_non_daemon_threads() == 1)
3818         Threads_lock->notify_all();
3819     }
3820     ThreadService::remove_thread(p, daemon);
3821 
3822     // Make sure that safepoint code disregard this thread. This is needed since
3823     // the thread might mess around with locks after this point. This can cause it
3824     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3825     // of this thread since it is removed from the queue.
3826     p->set_terminated_value();
3827   } // unlock Threads_lock
3828 
3829   // Since Events::log uses a lock, we grab it outside the Threads_lock
3830   Events::log("Thread exited: " INTPTR_FORMAT, p);
3831 }
3832 
3833 // Threads_lock must be held when this is called (or must be called during a safepoint)
3834 bool Threads::includes(JavaThread* p) {
3835   assert(Threads_lock->is_locked(), "sanity check");
3836   ALL_JAVA_THREADS(q) {
3837     if (q == p ) {
3838       return true;
3839     }
3840   }
3841   return false;
3842 }
3843 
3844 // Operations on the Threads list for GC.  These are not explicitly locked,
3845 // but the garbage collector must provide a safe context for them to run.
3846 // In particular, these things should never be called when the Threads_lock
3847 // is held by some other thread. (Note: the Safepoint abstraction also
3848 // uses the Threads_lock to gurantee this property. It also makes sure that
3849 // all threads gets blocked when exiting or starting).
3850 
3851 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3852   ALL_JAVA_THREADS(p) {
3853     p->oops_do(f, cf);
3854   }
3855   VMThread::vm_thread()->oops_do(f, cf);
3856 }
3857 
3858 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3859   // Introduce a mechanism allowing parallel threads to claim threads as
3860   // root groups.  Overhead should be small enough to use all the time,
3861   // even in sequential code.
3862   SharedHeap* sh = SharedHeap::heap();
3863   bool is_par = (sh->n_par_threads() > 0);
3864   int cp = SharedHeap::heap()->strong_roots_parity();
3865   ALL_JAVA_THREADS(p) {
3866     if (p->claim_oops_do(is_par, cp)) {
3867       p->oops_do(f, cf);
3868     }
3869   }
3870   VMThread* vmt = VMThread::vm_thread();
3871   if (vmt->claim_oops_do(is_par, cp))
3872     vmt->oops_do(f, cf);
3873 }
3874 
3875 #ifndef SERIALGC
3876 // Used by ParallelScavenge
3877 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3878   ALL_JAVA_THREADS(p) {
3879     q->enqueue(new ThreadRootsTask(p));
3880   }
3881   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3882 }
3883 
3884 // Used by Parallel Old
3885 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3886   ALL_JAVA_THREADS(p) {
3887     q->enqueue(new ThreadRootsMarkingTask(p));
3888   }
3889   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3890 }
3891 #endif // SERIALGC
3892 
3893 void Threads::nmethods_do(CodeBlobClosure* cf) {
3894   ALL_JAVA_THREADS(p) {
3895     p->nmethods_do(cf);
3896   }
3897   VMThread::vm_thread()->nmethods_do(cf);
3898 }
3899 
3900 void Threads::gc_epilogue() {
3901   ALL_JAVA_THREADS(p) {
3902     p->gc_epilogue();
3903   }
3904 }
3905 
3906 void Threads::gc_prologue() {
3907   ALL_JAVA_THREADS(p) {
3908     p->gc_prologue();
3909   }
3910 }
3911 
3912 void Threads::deoptimized_wrt_marked_nmethods() {
3913   ALL_JAVA_THREADS(p) {
3914     p->deoptimized_wrt_marked_nmethods();
3915   }
3916 }
3917 
3918 
3919 // Get count Java threads that are waiting to enter the specified monitor.
3920 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3921   address monitor, bool doLock) {
3922   assert(doLock || SafepointSynchronize::is_at_safepoint(),
3923     "must grab Threads_lock or be at safepoint");
3924   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3925 
3926   int i = 0;
3927   {
3928     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3929     ALL_JAVA_THREADS(p) {
3930       if (p->is_Compiler_thread()) continue;
3931 
3932       address pending = (address)p->current_pending_monitor();
3933       if (pending == monitor) {             // found a match
3934         if (i < count) result->append(p);   // save the first count matches
3935         i++;
3936       }
3937     }
3938   }
3939   return result;
3940 }
3941 
3942 
3943 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3944   assert(doLock ||
3945          Threads_lock->owned_by_self() ||
3946          SafepointSynchronize::is_at_safepoint(),
3947          "must grab Threads_lock or be at safepoint");
3948 
3949   // NULL owner means not locked so we can skip the search
3950   if (owner == NULL) return NULL;
3951 
3952   {
3953     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3954     ALL_JAVA_THREADS(p) {
3955       // first, see if owner is the address of a Java thread
3956       if (owner == (address)p) return p;
3957     }
3958   }
3959   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3960   if (UseHeavyMonitors) return NULL;
3961 
3962   //
3963   // If we didn't find a matching Java thread and we didn't force use of
3964   // heavyweight monitors, then the owner is the stack address of the
3965   // Lock Word in the owning Java thread's stack.
3966   //
3967   JavaThread* the_owner = NULL;
3968   {
3969     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3970     ALL_JAVA_THREADS(q) {
3971       if (q->is_lock_owned(owner)) {
3972         the_owner = q;
3973         break;
3974       }
3975     }
3976   }
3977   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3978   return the_owner;
3979 }
3980 
3981 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3982 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3983   char buf[32];
3984   st->print_cr(os::local_time_string(buf, sizeof(buf)));
3985 
3986   st->print_cr("Full thread dump %s (%s %s):",
3987                 Abstract_VM_Version::vm_name(),
3988                 Abstract_VM_Version::vm_release(),
3989                 Abstract_VM_Version::vm_info_string()
3990                );
3991   st->cr();
3992 
3993 #ifndef SERIALGC
3994   // Dump concurrent locks
3995   ConcurrentLocksDump concurrent_locks;
3996   if (print_concurrent_locks) {
3997     concurrent_locks.dump_at_safepoint();
3998   }
3999 #endif // SERIALGC
4000 
4001   ALL_JAVA_THREADS(p) {
4002     ResourceMark rm;
4003     p->print_on(st);
4004     if (print_stacks) {
4005       if (internal_format) {
4006         p->trace_stack();
4007       } else {
4008         p->print_stack_on(st);
4009       }
4010     }
4011     st->cr();
4012 #ifndef SERIALGC
4013     if (print_concurrent_locks) {
4014       concurrent_locks.print_locks_on(p, st);
4015     }
4016 #endif // SERIALGC
4017   }
4018 
4019   VMThread::vm_thread()->print_on(st);
4020   st->cr();
4021   Universe::heap()->print_gc_threads_on(st);
4022   WatcherThread* wt = WatcherThread::watcher_thread();
4023   if (wt != NULL) wt->print_on(st);
4024   st->cr();
4025   CompileBroker::print_compiler_threads_on(st);
4026   st->flush();
4027 }
4028 
4029 // Threads::print_on_error() is called by fatal error handler. It's possible
4030 // that VM is not at safepoint and/or current thread is inside signal handler.
4031 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4032 // memory (even in resource area), it might deadlock the error handler.
4033 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4034   bool found_current = false;
4035   st->print_cr("Java Threads: ( => current thread )");
4036   ALL_JAVA_THREADS(thread) {
4037     bool is_current = (current == thread);
4038     found_current = found_current || is_current;
4039 
4040     st->print("%s", is_current ? "=>" : "  ");
4041 
4042     st->print(PTR_FORMAT, thread);
4043     st->print(" ");
4044     thread->print_on_error(st, buf, buflen);
4045     st->cr();
4046   }
4047   st->cr();
4048 
4049   st->print_cr("Other Threads:");
4050   if (VMThread::vm_thread()) {
4051     bool is_current = (current == VMThread::vm_thread());
4052     found_current = found_current || is_current;
4053     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4054 
4055     st->print(PTR_FORMAT, VMThread::vm_thread());
4056     st->print(" ");
4057     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4058     st->cr();
4059   }
4060   WatcherThread* wt = WatcherThread::watcher_thread();
4061   if (wt != NULL) {
4062     bool is_current = (current == wt);
4063     found_current = found_current || is_current;
4064     st->print("%s", is_current ? "=>" : "  ");
4065 
4066     st->print(PTR_FORMAT, wt);
4067     st->print(" ");
4068     wt->print_on_error(st, buf, buflen);
4069     st->cr();
4070   }
4071   if (!found_current) {
4072     st->cr();
4073     st->print("=>" PTR_FORMAT " (exited) ", current);
4074     current->print_on_error(st, buf, buflen);
4075     st->cr();
4076   }
4077 }
4078 
4079 // Internal SpinLock and Mutex
4080 // Based on ParkEvent
4081 
4082 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4083 //
4084 // We employ SpinLocks _only for low-contention, fixed-length
4085 // short-duration critical sections where we're concerned
4086 // about native mutex_t or HotSpot Mutex:: latency.
4087 // The mux construct provides a spin-then-block mutual exclusion
4088 // mechanism.
4089 //
4090 // Testing has shown that contention on the ListLock guarding gFreeList
4091 // is common.  If we implement ListLock as a simple SpinLock it's common
4092 // for the JVM to devolve to yielding with little progress.  This is true
4093 // despite the fact that the critical sections protected by ListLock are
4094 // extremely short.
4095 //
4096 // TODO-FIXME: ListLock should be of type SpinLock.
4097 // We should make this a 1st-class type, integrated into the lock
4098 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4099 // should have sufficient padding to avoid false-sharing and excessive
4100 // cache-coherency traffic.
4101 
4102 
4103 typedef volatile int SpinLockT ;
4104 
4105 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4106   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4107      return ;   // normal fast-path return
4108   }
4109 
4110   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4111   TEVENT (SpinAcquire - ctx) ;
4112   int ctr = 0 ;
4113   int Yields = 0 ;
4114   for (;;) {
4115      while (*adr != 0) {
4116         ++ctr ;
4117         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4118            if (Yields > 5) {
4119              // Consider using a simple NakedSleep() instead.
4120              // Then SpinAcquire could be called by non-JVM threads
4121              Thread::current()->_ParkEvent->park(1) ;
4122            } else {
4123              os::NakedYield() ;
4124              ++Yields ;
4125            }
4126         } else {
4127            SpinPause() ;
4128         }
4129      }
4130      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4131   }
4132 }
4133 
4134 void Thread::SpinRelease (volatile int * adr) {
4135   assert (*adr != 0, "invariant") ;
4136   OrderAccess::fence() ;      // guarantee at least release consistency.
4137   // Roach-motel semantics.
4138   // It's safe if subsequent LDs and STs float "up" into the critical section,
4139   // but prior LDs and STs within the critical section can't be allowed
4140   // to reorder or float past the ST that releases the lock.
4141   *adr = 0 ;
4142 }
4143 
4144 // muxAcquire and muxRelease:
4145 //
4146 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4147 //    The LSB of the word is set IFF the lock is held.
4148 //    The remainder of the word points to the head of a singly-linked list
4149 //    of threads blocked on the lock.
4150 //
4151 // *  The current implementation of muxAcquire-muxRelease uses its own
4152 //    dedicated Thread._MuxEvent instance.  If we're interested in
4153 //    minimizing the peak number of extant ParkEvent instances then
4154 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4155 //    as certain invariants were satisfied.  Specifically, care would need
4156 //    to be taken with regards to consuming unpark() "permits".
4157 //    A safe rule of thumb is that a thread would never call muxAcquire()
4158 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4159 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4160 //    consume an unpark() permit intended for monitorenter, for instance.
4161 //    One way around this would be to widen the restricted-range semaphore
4162 //    implemented in park().  Another alternative would be to provide
4163 //    multiple instances of the PlatformEvent() for each thread.  One
4164 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4165 //
4166 // *  Usage:
4167 //    -- Only as leaf locks
4168 //    -- for short-term locking only as muxAcquire does not perform
4169 //       thread state transitions.
4170 //
4171 // Alternatives:
4172 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4173 //    but with parking or spin-then-park instead of pure spinning.
4174 // *  Use Taura-Oyama-Yonenzawa locks.
4175 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4176 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4177 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4178 //    acquiring threads use timers (ParkTimed) to detect and recover from
4179 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4180 //    boundaries by using placement-new.
4181 // *  Augment MCS with advisory back-link fields maintained with CAS().
4182 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4183 //    The validity of the backlinks must be ratified before we trust the value.
4184 //    If the backlinks are invalid the exiting thread must back-track through the
4185 //    the forward links, which are always trustworthy.
4186 // *  Add a successor indication.  The LockWord is currently encoded as
4187 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4188 //    to provide the usual futile-wakeup optimization.
4189 //    See RTStt for details.
4190 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4191 //
4192 
4193 
4194 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4195 enum MuxBits { LOCKBIT = 1 } ;
4196 
4197 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4198   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4199   if (w == 0) return ;
4200   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4201      return ;
4202   }
4203 
4204   TEVENT (muxAcquire - Contention) ;
4205   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4206   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4207   for (;;) {
4208      int its = (os::is_MP() ? 100 : 0) + 1 ;
4209 
4210      // Optional spin phase: spin-then-park strategy
4211      while (--its >= 0) {
4212        w = *Lock ;
4213        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4214           return ;
4215        }
4216      }
4217 
4218      Self->reset() ;
4219      Self->OnList = intptr_t(Lock) ;
4220      // The following fence() isn't _strictly necessary as the subsequent
4221      // CAS() both serializes execution and ratifies the fetched *Lock value.
4222      OrderAccess::fence();
4223      for (;;) {
4224         w = *Lock ;
4225         if ((w & LOCKBIT) == 0) {
4226             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4227                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4228                 return ;
4229             }
4230             continue ;      // Interference -- *Lock changed -- Just retry
4231         }
4232         assert (w & LOCKBIT, "invariant") ;
4233         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4234         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4235      }
4236 
4237      while (Self->OnList != 0) {
4238         Self->park() ;
4239      }
4240   }
4241 }
4242 
4243 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4244   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4245   if (w == 0) return ;
4246   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4247     return ;
4248   }
4249 
4250   TEVENT (muxAcquire - Contention) ;
4251   ParkEvent * ReleaseAfter = NULL ;
4252   if (ev == NULL) {
4253     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4254   }
4255   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4256   for (;;) {
4257     guarantee (ev->OnList == 0, "invariant") ;
4258     int its = (os::is_MP() ? 100 : 0) + 1 ;
4259 
4260     // Optional spin phase: spin-then-park strategy
4261     while (--its >= 0) {
4262       w = *Lock ;
4263       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4264         if (ReleaseAfter != NULL) {
4265           ParkEvent::Release (ReleaseAfter) ;
4266         }
4267         return ;
4268       }
4269     }
4270 
4271     ev->reset() ;
4272     ev->OnList = intptr_t(Lock) ;
4273     // The following fence() isn't _strictly necessary as the subsequent
4274     // CAS() both serializes execution and ratifies the fetched *Lock value.
4275     OrderAccess::fence();
4276     for (;;) {
4277       w = *Lock ;
4278       if ((w & LOCKBIT) == 0) {
4279         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4280           ev->OnList = 0 ;
4281           // We call ::Release while holding the outer lock, thus
4282           // artificially lengthening the critical section.
4283           // Consider deferring the ::Release() until the subsequent unlock(),
4284           // after we've dropped the outer lock.
4285           if (ReleaseAfter != NULL) {
4286             ParkEvent::Release (ReleaseAfter) ;
4287           }
4288           return ;
4289         }
4290         continue ;      // Interference -- *Lock changed -- Just retry
4291       }
4292       assert (w & LOCKBIT, "invariant") ;
4293       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4294       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4295     }
4296 
4297     while (ev->OnList != 0) {
4298       ev->park() ;
4299     }
4300   }
4301 }
4302 
4303 // Release() must extract a successor from the list and then wake that thread.
4304 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4305 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4306 // Release() would :
4307 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4308 // (B) Extract a successor from the private list "in-hand"
4309 // (C) attempt to CAS() the residual back into *Lock over null.
4310 //     If there were any newly arrived threads and the CAS() would fail.
4311 //     In that case Release() would detach the RATs, re-merge the list in-hand
4312 //     with the RATs and repeat as needed.  Alternately, Release() might
4313 //     detach and extract a successor, but then pass the residual list to the wakee.
4314 //     The wakee would be responsible for reattaching and remerging before it
4315 //     competed for the lock.
4316 //
4317 // Both "pop" and DMR are immune from ABA corruption -- there can be
4318 // multiple concurrent pushers, but only one popper or detacher.
4319 // This implementation pops from the head of the list.  This is unfair,
4320 // but tends to provide excellent throughput as hot threads remain hot.
4321 // (We wake recently run threads first).
4322 
4323 void Thread::muxRelease (volatile intptr_t * Lock)  {
4324   for (;;) {
4325     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4326     assert (w & LOCKBIT, "invariant") ;
4327     if (w == LOCKBIT) return ;
4328     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4329     assert (List != NULL, "invariant") ;
4330     assert (List->OnList == intptr_t(Lock), "invariant") ;
4331     ParkEvent * nxt = List->ListNext ;
4332 
4333     // The following CAS() releases the lock and pops the head element.
4334     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4335       continue ;
4336     }
4337     List->OnList = 0 ;
4338     OrderAccess::fence() ;
4339     List->unpark () ;
4340     return ;
4341   }
4342 }
4343 
4344 
4345 void Threads::verify() {
4346   ALL_JAVA_THREADS(p) {
4347     p->verify();
4348   }
4349   VMThread* thread = VMThread::vm_thread();
4350   if (thread != NULL) thread->verify();
4351 }