1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/isGCActiveMark.hpp"
  40 #include "gc_interface/collectedHeap.inline.hpp"
  41 #include "memory/cardTableRS.hpp"
  42 #include "memory/collectorPolicy.hpp"
  43 #include "memory/gcLocker.inline.hpp"
  44 #include "memory/genCollectedHeap.hpp"
  45 #include "memory/genMarkSweep.hpp"
  46 #include "memory/genOopClosures.inline.hpp"
  47 #include "memory/iterator.hpp"
  48 #include "memory/referencePolicy.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "prims/jvmtiExport.hpp"
  52 #include "runtime/globals_extension.hpp"
  53 #include "runtime/handles.inline.hpp"
  54 #include "runtime/java.hpp"
  55 #include "runtime/vmThread.hpp"
  56 #include "services/memoryService.hpp"
  57 #include "services/runtimeService.hpp"
  58 
  59 // statics
  60 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  61 bool          CMSCollector::_full_gc_requested          = false;
  62 
  63 //////////////////////////////////////////////////////////////////
  64 // In support of CMS/VM thread synchronization
  65 //////////////////////////////////////////////////////////////////
  66 // We split use of the CGC_lock into 2 "levels".
  67 // The low-level locking is of the usual CGC_lock monitor. We introduce
  68 // a higher level "token" (hereafter "CMS token") built on top of the
  69 // low level monitor (hereafter "CGC lock").
  70 // The token-passing protocol gives priority to the VM thread. The
  71 // CMS-lock doesn't provide any fairness guarantees, but clients
  72 // should ensure that it is only held for very short, bounded
  73 // durations.
  74 //
  75 // When either of the CMS thread or the VM thread is involved in
  76 // collection operations during which it does not want the other
  77 // thread to interfere, it obtains the CMS token.
  78 //
  79 // If either thread tries to get the token while the other has
  80 // it, that thread waits. However, if the VM thread and CMS thread
  81 // both want the token, then the VM thread gets priority while the
  82 // CMS thread waits. This ensures, for instance, that the "concurrent"
  83 // phases of the CMS thread's work do not block out the VM thread
  84 // for long periods of time as the CMS thread continues to hog
  85 // the token. (See bug 4616232).
  86 //
  87 // The baton-passing functions are, however, controlled by the
  88 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  89 // and here the low-level CMS lock, not the high level token,
  90 // ensures mutual exclusion.
  91 //
  92 // Two important conditions that we have to satisfy:
  93 // 1. if a thread does a low-level wait on the CMS lock, then it
  94 //    relinquishes the CMS token if it were holding that token
  95 //    when it acquired the low-level CMS lock.
  96 // 2. any low-level notifications on the low-level lock
  97 //    should only be sent when a thread has relinquished the token.
  98 //
  99 // In the absence of either property, we'd have potential deadlock.
 100 //
 101 // We protect each of the CMS (concurrent and sequential) phases
 102 // with the CMS _token_, not the CMS _lock_.
 103 //
 104 // The only code protected by CMS lock is the token acquisition code
 105 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 106 // baton-passing code.
 107 //
 108 // Unfortunately, i couldn't come up with a good abstraction to factor and
 109 // hide the naked CGC_lock manipulation in the baton-passing code
 110 // further below. That's something we should try to do. Also, the proof
 111 // of correctness of this 2-level locking scheme is far from obvious,
 112 // and potentially quite slippery. We have an uneasy supsicion, for instance,
 113 // that there may be a theoretical possibility of delay/starvation in the
 114 // low-level lock/wait/notify scheme used for the baton-passing because of
 115 // potential intereference with the priority scheme embodied in the
 116 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 117 // invocation further below and marked with "XXX 20011219YSR".
 118 // Indeed, as we note elsewhere, this may become yet more slippery
 119 // in the presence of multiple CMS and/or multiple VM threads. XXX
 120 
 121 class CMSTokenSync: public StackObj {
 122  private:
 123   bool _is_cms_thread;
 124  public:
 125   CMSTokenSync(bool is_cms_thread):
 126     _is_cms_thread(is_cms_thread) {
 127     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 128            "Incorrect argument to constructor");
 129     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 130   }
 131 
 132   ~CMSTokenSync() {
 133     assert(_is_cms_thread ?
 134              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 135              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 136           "Incorrect state");
 137     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 138   }
 139 };
 140 
 141 // Convenience class that does a CMSTokenSync, and then acquires
 142 // upto three locks.
 143 class CMSTokenSyncWithLocks: public CMSTokenSync {
 144  private:
 145   // Note: locks are acquired in textual declaration order
 146   // and released in the opposite order
 147   MutexLockerEx _locker1, _locker2, _locker3;
 148  public:
 149   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 150                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 151     CMSTokenSync(is_cms_thread),
 152     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 153     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 154     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 155   { }
 156 };
 157 
 158 
 159 // Wrapper class to temporarily disable icms during a foreground cms collection.
 160 class ICMSDisabler: public StackObj {
 161  public:
 162   // The ctor disables icms and wakes up the thread so it notices the change;
 163   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 164   // CMSIncrementalMode.
 165   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 166   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 167 };
 168 
 169 //////////////////////////////////////////////////////////////////
 170 //  Concurrent Mark-Sweep Generation /////////////////////////////
 171 //////////////////////////////////////////////////////////////////
 172 
 173 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 174 
 175 // This struct contains per-thread things necessary to support parallel
 176 // young-gen collection.
 177 class CMSParGCThreadState: public CHeapObj {
 178  public:
 179   CFLS_LAB lab;
 180   PromotionInfo promo;
 181 
 182   // Constructor.
 183   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 184     promo.setSpace(cfls);
 185   }
 186 };
 187 
 188 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 189      ReservedSpace rs, size_t initial_byte_size, int level,
 190      CardTableRS* ct, bool use_adaptive_freelists,
 191      FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
 192   CardGeneration(rs, initial_byte_size, level, ct),
 193   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 194   _debug_collection_type(Concurrent_collection_type)
 195 {
 196   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 197   HeapWord* end    = (HeapWord*) _virtual_space.high();
 198 
 199   _direct_allocated_words = 0;
 200   NOT_PRODUCT(
 201     _numObjectsPromoted = 0;
 202     _numWordsPromoted = 0;
 203     _numObjectsAllocated = 0;
 204     _numWordsAllocated = 0;
 205   )
 206 
 207   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 208                                            use_adaptive_freelists,
 209                                            dictionaryChoice);
 210   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 211   if (_cmsSpace == NULL) {
 212     vm_exit_during_initialization(
 213       "CompactibleFreeListSpace allocation failure");
 214   }
 215   _cmsSpace->_gen = this;
 216 
 217   _gc_stats = new CMSGCStats();
 218 
 219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 220   // offsets match. The ability to tell free chunks from objects
 221   // depends on this property.
 222   debug_only(
 223     FreeChunk* junk = NULL;
 224     assert(UseCompressedOops ||
 225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 226            "Offset of FreeChunk::_prev within FreeChunk must match"
 227            "  that of OopDesc::_klass within OopDesc");
 228   )
 229   if (CollectedHeap::use_parallel_gc_threads()) {
 230     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 231     _par_gc_thread_states =
 232       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
 233     if (_par_gc_thread_states == NULL) {
 234       vm_exit_during_initialization("Could not allocate par gc structs");
 235     }
 236     for (uint i = 0; i < ParallelGCThreads; i++) {
 237       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 238       if (_par_gc_thread_states[i] == NULL) {
 239         vm_exit_during_initialization("Could not allocate par gc structs");
 240       }
 241     }
 242   } else {
 243     _par_gc_thread_states = NULL;
 244   }
 245   _incremental_collection_failed = false;
 246   // The "dilatation_factor" is the expansion that can occur on
 247   // account of the fact that the minimum object size in the CMS
 248   // generation may be larger than that in, say, a contiguous young
 249   //  generation.
 250   // Ideally, in the calculation below, we'd compute the dilatation
 251   // factor as: MinChunkSize/(promoting_gen's min object size)
 252   // Since we do not have such a general query interface for the
 253   // promoting generation, we'll instead just use the mimimum
 254   // object size (which today is a header's worth of space);
 255   // note that all arithmetic is in units of HeapWords.
 256   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 257   assert(_dilatation_factor >= 1.0, "from previous assert");
 258 }
 259 
 260 
 261 // The field "_initiating_occupancy" represents the occupancy percentage
 262 // at which we trigger a new collection cycle.  Unless explicitly specified
 263 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
 264 // is calculated by:
 265 //
 266 //   Let "f" be MinHeapFreeRatio in
 267 //
 268 //    _intiating_occupancy = 100-f +
 269 //                           f * (CMSTrigger[Perm]Ratio/100)
 270 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
 271 //
 272 // That is, if we assume the heap is at its desired maximum occupancy at the
 273 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
 274 // space be allocated before initiating a new collection cycle.
 275 //
 276 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
 277   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
 278   if (io >= 0) {
 279     _initiating_occupancy = (double)io / 100.0;
 280   } else {
 281     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 282                              (double)(tr * MinHeapFreeRatio) / 100.0)
 283                             / 100.0;
 284   }
 285 }
 286 
 287 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 288   assert(collector() != NULL, "no collector");
 289   collector()->ref_processor_init();
 290 }
 291 
 292 void CMSCollector::ref_processor_init() {
 293   if (_ref_processor == NULL) {
 294     // Allocate and initialize a reference processor
 295     _ref_processor =
 296       new ReferenceProcessor(_span,                               // span
 297                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 298                              (int) ParallelGCThreads,             // mt processing degree
 299                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 300                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 301                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 302                              &_is_alive_closure,                  // closure for liveness info
 303                              false);                              // next field updates do not need write barrier
 304     // Initialize the _ref_processor field of CMSGen
 305     _cmsGen->set_ref_processor(_ref_processor);
 306 
 307     // Allocate a dummy ref processor for perm gen.
 308     ReferenceProcessor* rp2 = new ReferenceProcessor();
 309     if (rp2 == NULL) {
 310       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
 311     }
 312     _permGen->set_ref_processor(rp2);
 313   }
 314 }
 315 
 316 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 317   GenCollectedHeap* gch = GenCollectedHeap::heap();
 318   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 319     "Wrong type of heap");
 320   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 321     gch->gen_policy()->size_policy();
 322   assert(sp->is_gc_cms_adaptive_size_policy(),
 323     "Wrong type of size policy");
 324   return sp;
 325 }
 326 
 327 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 328   CMSGCAdaptivePolicyCounters* results =
 329     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 330   assert(
 331     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 332     "Wrong gc policy counter kind");
 333   return results;
 334 }
 335 
 336 
 337 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 338 
 339   const char* gen_name = "old";
 340 
 341   // Generation Counters - generation 1, 1 subspace
 342   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 343 
 344   _space_counters = new GSpaceCounters(gen_name, 0,
 345                                        _virtual_space.reserved_size(),
 346                                        this, _gen_counters);
 347 }
 348 
 349 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 350   _cms_gen(cms_gen)
 351 {
 352   assert(alpha <= 100, "bad value");
 353   _saved_alpha = alpha;
 354 
 355   // Initialize the alphas to the bootstrap value of 100.
 356   _gc0_alpha = _cms_alpha = 100;
 357 
 358   _cms_begin_time.update();
 359   _cms_end_time.update();
 360 
 361   _gc0_duration = 0.0;
 362   _gc0_period = 0.0;
 363   _gc0_promoted = 0;
 364 
 365   _cms_duration = 0.0;
 366   _cms_period = 0.0;
 367   _cms_allocated = 0;
 368 
 369   _cms_used_at_gc0_begin = 0;
 370   _cms_used_at_gc0_end = 0;
 371   _allow_duty_cycle_reduction = false;
 372   _valid_bits = 0;
 373   _icms_duty_cycle = CMSIncrementalDutyCycle;
 374 }
 375 
 376 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 377   // TBD: CR 6909490
 378   return 1.0;
 379 }
 380 
 381 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 382 }
 383 
 384 // If promotion failure handling is on use
 385 // the padded average size of the promotion for each
 386 // young generation collection.
 387 double CMSStats::time_until_cms_gen_full() const {
 388   size_t cms_free = _cms_gen->cmsSpace()->free();
 389   GenCollectedHeap* gch = GenCollectedHeap::heap();
 390   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 391                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 392   if (cms_free > expected_promotion) {
 393     // Start a cms collection if there isn't enough space to promote
 394     // for the next minor collection.  Use the padded average as
 395     // a safety factor.
 396     cms_free -= expected_promotion;
 397 
 398     // Adjust by the safety factor.
 399     double cms_free_dbl = (double)cms_free;
 400     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 401     // Apply a further correction factor which tries to adjust
 402     // for recent occurance of concurrent mode failures.
 403     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 404     cms_free_dbl = cms_free_dbl * cms_adjustment;
 405 
 406     if (PrintGCDetails && Verbose) {
 407       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 408         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 409         cms_free, expected_promotion);
 410       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 411         cms_free_dbl, cms_consumption_rate() + 1.0);
 412     }
 413     // Add 1 in case the consumption rate goes to zero.
 414     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 415   }
 416   return 0.0;
 417 }
 418 
 419 // Compare the duration of the cms collection to the
 420 // time remaining before the cms generation is empty.
 421 // Note that the time from the start of the cms collection
 422 // to the start of the cms sweep (less than the total
 423 // duration of the cms collection) can be used.  This
 424 // has been tried and some applications experienced
 425 // promotion failures early in execution.  This was
 426 // possibly because the averages were not accurate
 427 // enough at the beginning.
 428 double CMSStats::time_until_cms_start() const {
 429   // We add "gc0_period" to the "work" calculation
 430   // below because this query is done (mostly) at the
 431   // end of a scavenge, so we need to conservatively
 432   // account for that much possible delay
 433   // in the query so as to avoid concurrent mode failures
 434   // due to starting the collection just a wee bit too
 435   // late.
 436   double work = cms_duration() + gc0_period();
 437   double deadline = time_until_cms_gen_full();
 438   // If a concurrent mode failure occurred recently, we want to be
 439   // more conservative and halve our expected time_until_cms_gen_full()
 440   if (work > deadline) {
 441     if (Verbose && PrintGCDetails) {
 442       gclog_or_tty->print(
 443         " CMSCollector: collect because of anticipated promotion "
 444         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 445         gc0_period(), time_until_cms_gen_full());
 446     }
 447     return 0.0;
 448   }
 449   return work - deadline;
 450 }
 451 
 452 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 453 // amount of change to prevent wild oscillation.
 454 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 455                                               unsigned int new_duty_cycle) {
 456   assert(old_duty_cycle <= 100, "bad input value");
 457   assert(new_duty_cycle <= 100, "bad input value");
 458 
 459   // Note:  use subtraction with caution since it may underflow (values are
 460   // unsigned).  Addition is safe since we're in the range 0-100.
 461   unsigned int damped_duty_cycle = new_duty_cycle;
 462   if (new_duty_cycle < old_duty_cycle) {
 463     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 464     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 465       damped_duty_cycle = old_duty_cycle - largest_delta;
 466     }
 467   } else if (new_duty_cycle > old_duty_cycle) {
 468     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 469     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 470       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 471     }
 472   }
 473   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 474 
 475   if (CMSTraceIncrementalPacing) {
 476     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 477                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 478   }
 479   return damped_duty_cycle;
 480 }
 481 
 482 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 483   assert(CMSIncrementalPacing && valid(),
 484          "should be handled in icms_update_duty_cycle()");
 485 
 486   double cms_time_so_far = cms_timer().seconds();
 487   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 488   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 489 
 490   // Avoid division by 0.
 491   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 492   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 493 
 494   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 495   if (new_duty_cycle > _icms_duty_cycle) {
 496     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 497     if (new_duty_cycle > 2) {
 498       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 499                                                 new_duty_cycle);
 500     }
 501   } else if (_allow_duty_cycle_reduction) {
 502     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 503     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 504     // Respect the minimum duty cycle.
 505     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 506     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 507   }
 508 
 509   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 510     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 511   }
 512 
 513   _allow_duty_cycle_reduction = false;
 514   return _icms_duty_cycle;
 515 }
 516 
 517 #ifndef PRODUCT
 518 void CMSStats::print_on(outputStream *st) const {
 519   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 520   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 521                gc0_duration(), gc0_period(), gc0_promoted());
 522   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 523             cms_duration(), cms_duration_per_mb(),
 524             cms_period(), cms_allocated());
 525   st->print(",cms_since_beg=%g,cms_since_end=%g",
 526             cms_time_since_begin(), cms_time_since_end());
 527   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 528             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 529   if (CMSIncrementalMode) {
 530     st->print(",dc=%d", icms_duty_cycle());
 531   }
 532 
 533   if (valid()) {
 534     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 535               promotion_rate(), cms_allocation_rate());
 536     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 537               cms_consumption_rate(), time_until_cms_gen_full());
 538   }
 539   st->print(" ");
 540 }
 541 #endif // #ifndef PRODUCT
 542 
 543 CMSCollector::CollectorState CMSCollector::_collectorState =
 544                              CMSCollector::Idling;
 545 bool CMSCollector::_foregroundGCIsActive = false;
 546 bool CMSCollector::_foregroundGCShouldWait = false;
 547 
 548 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 549                            ConcurrentMarkSweepGeneration* permGen,
 550                            CardTableRS*                   ct,
 551                            ConcurrentMarkSweepPolicy*     cp):
 552   _cmsGen(cmsGen),
 553   _permGen(permGen),
 554   _ct(ct),
 555   _ref_processor(NULL),    // will be set later
 556   _conc_workers(NULL),     // may be set later
 557   _abort_preclean(false),
 558   _start_sampling(false),
 559   _between_prologue_and_epilogue(false),
 560   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 561   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
 562   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 563                  -1 /* lock-free */, "No_lock" /* dummy */),
 564   _modUnionClosure(&_modUnionTable),
 565   _modUnionClosurePar(&_modUnionTable),
 566   // Adjust my span to cover old (cms) gen and perm gen
 567   _span(cmsGen->reserved()._union(permGen->reserved())),
 568   // Construct the is_alive_closure with _span & markBitMap
 569   _is_alive_closure(_span, &_markBitMap),
 570   _restart_addr(NULL),
 571   _overflow_list(NULL),
 572   _stats(cmsGen),
 573   _eden_chunk_array(NULL),     // may be set in ctor body
 574   _eden_chunk_capacity(0),     // -- ditto --
 575   _eden_chunk_index(0),        // -- ditto --
 576   _survivor_plab_array(NULL),  // -- ditto --
 577   _survivor_chunk_array(NULL), // -- ditto --
 578   _survivor_chunk_capacity(0), // -- ditto --
 579   _survivor_chunk_index(0),    // -- ditto --
 580   _ser_pmc_preclean_ovflw(0),
 581   _ser_kac_preclean_ovflw(0),
 582   _ser_pmc_remark_ovflw(0),
 583   _par_pmc_remark_ovflw(0),
 584   _ser_kac_ovflw(0),
 585   _par_kac_ovflw(0),
 586 #ifndef PRODUCT
 587   _num_par_pushes(0),
 588 #endif
 589   _collection_count_start(0),
 590   _verifying(false),
 591   _icms_start_limit(NULL),
 592   _icms_stop_limit(NULL),
 593   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 594   _completed_initialization(false),
 595   _collector_policy(cp),
 596   _should_unload_classes(false),
 597   _concurrent_cycles_since_last_unload(0),
 598   _roots_scanning_options(0),
 599   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 600   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
 601 {
 602   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 603     ExplicitGCInvokesConcurrent = true;
 604   }
 605   // Now expand the span and allocate the collection support structures
 606   // (MUT, marking bit map etc.) to cover both generations subject to
 607   // collection.
 608 
 609   // First check that _permGen is adjacent to _cmsGen and above it.
 610   assert(   _cmsGen->reserved().word_size()  > 0
 611          && _permGen->reserved().word_size() > 0,
 612          "generations should not be of zero size");
 613   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
 614          "_cmsGen and _permGen should not overlap");
 615   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
 616          "_cmsGen->end() different from _permGen->start()");
 617 
 618   // For use by dirty card to oop closures.
 619   _cmsGen->cmsSpace()->set_collector(this);
 620   _permGen->cmsSpace()->set_collector(this);
 621 
 622   // Allocate MUT and marking bit map
 623   {
 624     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 625     if (!_markBitMap.allocate(_span)) {
 626       warning("Failed to allocate CMS Bit Map");
 627       return;
 628     }
 629     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 630   }
 631   {
 632     _modUnionTable.allocate(_span);
 633     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 634   }
 635 
 636   if (!_markStack.allocate(MarkStackSize)) {
 637     warning("Failed to allocate CMS Marking Stack");
 638     return;
 639   }
 640   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
 641     warning("Failed to allocate CMS Revisit Stack");
 642     return;
 643   }
 644 
 645   // Support for multi-threaded concurrent phases
 646   if (CMSConcurrentMTEnabled) {
 647     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 648       // just for now
 649       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 650     }
 651     if (ConcGCThreads > 1) {
 652       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 653                                  ConcGCThreads, true);
 654       if (_conc_workers == NULL) {
 655         warning("GC/CMS: _conc_workers allocation failure: "
 656               "forcing -CMSConcurrentMTEnabled");
 657         CMSConcurrentMTEnabled = false;
 658       } else {
 659         _conc_workers->initialize_workers();
 660       }
 661     } else {
 662       CMSConcurrentMTEnabled = false;
 663     }
 664   }
 665   if (!CMSConcurrentMTEnabled) {
 666     ConcGCThreads = 0;
 667   } else {
 668     // Turn off CMSCleanOnEnter optimization temporarily for
 669     // the MT case where it's not fixed yet; see 6178663.
 670     CMSCleanOnEnter = false;
 671   }
 672   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 673          "Inconsistency");
 674 
 675   // Parallel task queues; these are shared for the
 676   // concurrent and stop-world phases of CMS, but
 677   // are not shared with parallel scavenge (ParNew).
 678   {
 679     uint i;
 680     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 681 
 682     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 683          || ParallelRefProcEnabled)
 684         && num_queues > 0) {
 685       _task_queues = new OopTaskQueueSet(num_queues);
 686       if (_task_queues == NULL) {
 687         warning("task_queues allocation failure.");
 688         return;
 689       }
 690       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
 691       if (_hash_seed == NULL) {
 692         warning("_hash_seed array allocation failure");
 693         return;
 694       }
 695 
 696       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 697       for (i = 0; i < num_queues; i++) {
 698         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 699         if (q == NULL) {
 700           warning("work_queue allocation failure.");
 701           return;
 702         }
 703         _task_queues->register_queue(i, q);
 704       }
 705       for (i = 0; i < num_queues; i++) {
 706         _task_queues->queue(i)->initialize();
 707         _hash_seed[i] = 17;  // copied from ParNew
 708       }
 709     }
 710   }
 711 
 712   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 713   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
 714 
 715   // Clip CMSBootstrapOccupancy between 0 and 100.
 716   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
 717                          /(double)100;
 718 
 719   _full_gcs_since_conc_gc = 0;
 720 
 721   // Now tell CMS generations the identity of their collector
 722   ConcurrentMarkSweepGeneration::set_collector(this);
 723 
 724   // Create & start a CMS thread for this CMS collector
 725   _cmsThread = ConcurrentMarkSweepThread::start(this);
 726   assert(cmsThread() != NULL, "CMS Thread should have been created");
 727   assert(cmsThread()->collector() == this,
 728          "CMS Thread should refer to this gen");
 729   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 730 
 731   // Support for parallelizing young gen rescan
 732   GenCollectedHeap* gch = GenCollectedHeap::heap();
 733   _young_gen = gch->prev_gen(_cmsGen);
 734   if (gch->supports_inline_contig_alloc()) {
 735     _top_addr = gch->top_addr();
 736     _end_addr = gch->end_addr();
 737     assert(_young_gen != NULL, "no _young_gen");
 738     _eden_chunk_index = 0;
 739     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 740     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
 741     if (_eden_chunk_array == NULL) {
 742       _eden_chunk_capacity = 0;
 743       warning("GC/CMS: _eden_chunk_array allocation failure");
 744     }
 745   }
 746   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 747 
 748   // Support for parallelizing survivor space rescan
 749   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
 750     const size_t max_plab_samples =
 751       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 752 
 753     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
 754     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
 755     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
 756     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 757         || _cursor == NULL) {
 758       warning("Failed to allocate survivor plab/chunk array");
 759       if (_survivor_plab_array  != NULL) {
 760         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
 761         _survivor_plab_array = NULL;
 762       }
 763       if (_survivor_chunk_array != NULL) {
 764         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
 765         _survivor_chunk_array = NULL;
 766       }
 767       if (_cursor != NULL) {
 768         FREE_C_HEAP_ARRAY(size_t, _cursor);
 769         _cursor = NULL;
 770       }
 771     } else {
 772       _survivor_chunk_capacity = 2*max_plab_samples;
 773       for (uint i = 0; i < ParallelGCThreads; i++) {
 774         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
 775         if (vec == NULL) {
 776           warning("Failed to allocate survivor plab array");
 777           for (int j = i; j > 0; j--) {
 778             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
 779           }
 780           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
 781           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
 782           _survivor_plab_array = NULL;
 783           _survivor_chunk_array = NULL;
 784           _survivor_chunk_capacity = 0;
 785           break;
 786         } else {
 787           ChunkArray* cur =
 788             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 789                                                         max_plab_samples);
 790           assert(cur->end() == 0, "Should be 0");
 791           assert(cur->array() == vec, "Should be vec");
 792           assert(cur->capacity() == max_plab_samples, "Error");
 793         }
 794       }
 795     }
 796   }
 797   assert(   (   _survivor_plab_array  != NULL
 798              && _survivor_chunk_array != NULL)
 799          || (   _survivor_chunk_capacity == 0
 800              && _survivor_chunk_index == 0),
 801          "Error");
 802 
 803   // Choose what strong roots should be scanned depending on verification options
 804   // and perm gen collection mode.
 805   if (!CMSClassUnloadingEnabled) {
 806     // If class unloading is disabled we want to include all classes into the root set.
 807     add_root_scanning_option(SharedHeap::SO_AllClasses);
 808   } else {
 809     add_root_scanning_option(SharedHeap::SO_SystemClasses);
 810   }
 811 
 812   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 813   _gc_counters = new CollectorCounters("CMS", 1);
 814   _completed_initialization = true;
 815   _inter_sweep_timer.start();  // start of time
 816 #ifdef SPARC
 817   // Issue a stern warning, but allow use for experimentation and debugging.
 818   if (VM_Version::is_sun4v() && UseMemSetInBOT) {
 819     assert(!FLAG_IS_DEFAULT(UseMemSetInBOT), "Error");
 820     warning("Experimental flag -XX:+UseMemSetInBOT is known to cause instability"
 821             " on sun4v; please understand that you are using at your own risk!");
 822   }
 823 #endif
 824 }
 825 
 826 const char* ConcurrentMarkSweepGeneration::name() const {
 827   return "concurrent mark-sweep generation";
 828 }
 829 void ConcurrentMarkSweepGeneration::update_counters() {
 830   if (UsePerfData) {
 831     _space_counters->update_all();
 832     _gen_counters->update_all();
 833   }
 834 }
 835 
 836 // this is an optimized version of update_counters(). it takes the
 837 // used value as a parameter rather than computing it.
 838 //
 839 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 840   if (UsePerfData) {
 841     _space_counters->update_used(used);
 842     _space_counters->update_capacity();
 843     _gen_counters->update_all();
 844   }
 845 }
 846 
 847 void ConcurrentMarkSweepGeneration::print() const {
 848   Generation::print();
 849   cmsSpace()->print();
 850 }
 851 
 852 #ifndef PRODUCT
 853 void ConcurrentMarkSweepGeneration::print_statistics() {
 854   cmsSpace()->printFLCensus(0);
 855 }
 856 #endif
 857 
 858 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 859   GenCollectedHeap* gch = GenCollectedHeap::heap();
 860   if (PrintGCDetails) {
 861     if (Verbose) {
 862       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 863         level(), short_name(), s, used(), capacity());
 864     } else {
 865       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 866         level(), short_name(), s, used() / K, capacity() / K);
 867     }
 868   }
 869   if (Verbose) {
 870     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 871               gch->used(), gch->capacity());
 872   } else {
 873     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 874               gch->used() / K, gch->capacity() / K);
 875   }
 876 }
 877 
 878 size_t
 879 ConcurrentMarkSweepGeneration::contiguous_available() const {
 880   // dld proposes an improvement in precision here. If the committed
 881   // part of the space ends in a free block we should add that to
 882   // uncommitted size in the calculation below. Will make this
 883   // change later, staying with the approximation below for the
 884   // time being. -- ysr.
 885   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 886 }
 887 
 888 size_t
 889 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 890   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 891 }
 892 
 893 size_t ConcurrentMarkSweepGeneration::max_available() const {
 894   return free() + _virtual_space.uncommitted_size();
 895 }
 896 
 897 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 898   size_t available = max_available();
 899   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 900   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 901   if (Verbose && PrintGCDetails) {
 902     gclog_or_tty->print_cr(
 903       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 904       "max_promo("SIZE_FORMAT")",
 905       res? "":" not", available, res? ">=":"<",
 906       av_promo, max_promotion_in_bytes);
 907   }
 908   return res;
 909 }
 910 
 911 // At a promotion failure dump information on block layout in heap
 912 // (cms old generation).
 913 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 914   if (CMSDumpAtPromotionFailure) {
 915     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 916   }
 917 }
 918 
 919 CompactibleSpace*
 920 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 921   return _cmsSpace;
 922 }
 923 
 924 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 925   // Clear the promotion information.  These pointers can be adjusted
 926   // along with all the other pointers into the heap but
 927   // compaction is expected to be a rare event with
 928   // a heap using cms so don't do it without seeing the need.
 929   if (CollectedHeap::use_parallel_gc_threads()) {
 930     for (uint i = 0; i < ParallelGCThreads; i++) {
 931       _par_gc_thread_states[i]->promo.reset();
 932     }
 933   }
 934 }
 935 
 936 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 937   blk->do_space(_cmsSpace);
 938 }
 939 
 940 void ConcurrentMarkSweepGeneration::compute_new_size() {
 941   assert_locked_or_safepoint(Heap_lock);
 942 
 943   // If incremental collection failed, we just want to expand
 944   // to the limit.
 945   if (incremental_collection_failed()) {
 946     clear_incremental_collection_failed();
 947     grow_to_reserved();
 948     return;
 949   }
 950 
 951   size_t expand_bytes = 0;
 952   double free_percentage = ((double) free()) / capacity();
 953   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 954   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 955 
 956   // compute expansion delta needed for reaching desired free percentage
 957   if (free_percentage < desired_free_percentage) {
 958     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 959     assert(desired_capacity >= capacity(), "invalid expansion size");
 960     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 961   }
 962   if (expand_bytes > 0) {
 963     if (PrintGCDetails && Verbose) {
 964       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 965       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 966       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 967       gclog_or_tty->print_cr("  Desired free fraction %f",
 968         desired_free_percentage);
 969       gclog_or_tty->print_cr("  Maximum free fraction %f",
 970         maximum_free_percentage);
 971       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 972       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 973         desired_capacity/1000);
 974       int prev_level = level() - 1;
 975       if (prev_level >= 0) {
 976         size_t prev_size = 0;
 977         GenCollectedHeap* gch = GenCollectedHeap::heap();
 978         Generation* prev_gen = gch->_gens[prev_level];
 979         prev_size = prev_gen->capacity();
 980           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 981                                  prev_size/1000);
 982       }
 983       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 984         unsafe_max_alloc_nogc()/1000);
 985       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 986         contiguous_available()/1000);
 987       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 988         expand_bytes);
 989     }
 990     // safe if expansion fails
 991     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 992     if (PrintGCDetails && Verbose) {
 993       gclog_or_tty->print_cr("  Expanded free fraction %f",
 994         ((double) free()) / capacity());
 995     }
 996   }
 997 }
 998 
 999 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
1000   return cmsSpace()->freelistLock();
1001 }
1002 
1003 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1004                                                   bool   tlab) {
1005   CMSSynchronousYieldRequest yr;
1006   MutexLockerEx x(freelistLock(),
1007                   Mutex::_no_safepoint_check_flag);
1008   return have_lock_and_allocate(size, tlab);
1009 }
1010 
1011 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1012                                                   bool   tlab /* ignored */) {
1013   assert_lock_strong(freelistLock());
1014   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1015   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1016   // Allocate the object live (grey) if the background collector has
1017   // started marking. This is necessary because the marker may
1018   // have passed this address and consequently this object will
1019   // not otherwise be greyed and would be incorrectly swept up.
1020   // Note that if this object contains references, the writing
1021   // of those references will dirty the card containing this object
1022   // allowing the object to be blackened (and its references scanned)
1023   // either during a preclean phase or at the final checkpoint.
1024   if (res != NULL) {
1025     // We may block here with an uninitialized object with
1026     // its mark-bit or P-bits not yet set. Such objects need
1027     // to be safely navigable by block_start().
1028     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1029     assert(!((FreeChunk*)res)->isFree(), "Error, block will look free but show wrong size");
1030     collector()->direct_allocated(res, adjustedSize);
1031     _direct_allocated_words += adjustedSize;
1032     // allocation counters
1033     NOT_PRODUCT(
1034       _numObjectsAllocated++;
1035       _numWordsAllocated += (int)adjustedSize;
1036     )
1037   }
1038   return res;
1039 }
1040 
1041 // In the case of direct allocation by mutators in a generation that
1042 // is being concurrently collected, the object must be allocated
1043 // live (grey) if the background collector has started marking.
1044 // This is necessary because the marker may
1045 // have passed this address and consequently this object will
1046 // not otherwise be greyed and would be incorrectly swept up.
1047 // Note that if this object contains references, the writing
1048 // of those references will dirty the card containing this object
1049 // allowing the object to be blackened (and its references scanned)
1050 // either during a preclean phase or at the final checkpoint.
1051 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1052   assert(_markBitMap.covers(start, size), "Out of bounds");
1053   if (_collectorState >= Marking) {
1054     MutexLockerEx y(_markBitMap.lock(),
1055                     Mutex::_no_safepoint_check_flag);
1056     // [see comments preceding SweepClosure::do_blk() below for details]
1057     // 1. need to mark the object as live so it isn't collected
1058     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1059     // 3. need to mark the end of the object so marking, precleaning or sweeping
1060     //    can skip over uninitialized or unparsable objects. An allocated
1061     //    object is considered uninitialized for our purposes as long as
1062     //    its klass word is NULL. (Unparsable objects are those which are
1063     //    initialized in the sense just described, but whose sizes can still
1064     //    not be correctly determined. Note that the class of unparsable objects
1065     //    can only occur in the perm gen. All old gen objects are parsable
1066     //    as soon as they are initialized.)
1067     _markBitMap.mark(start);          // object is live
1068     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1069     _markBitMap.mark(start + size - 1);
1070                                       // mark end of object
1071   }
1072   // check that oop looks uninitialized
1073   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1074 }
1075 
1076 void CMSCollector::promoted(bool par, HeapWord* start,
1077                             bool is_obj_array, size_t obj_size) {
1078   assert(_markBitMap.covers(start), "Out of bounds");
1079   // See comment in direct_allocated() about when objects should
1080   // be allocated live.
1081   if (_collectorState >= Marking) {
1082     // we already hold the marking bit map lock, taken in
1083     // the prologue
1084     if (par) {
1085       _markBitMap.par_mark(start);
1086     } else {
1087       _markBitMap.mark(start);
1088     }
1089     // We don't need to mark the object as uninitialized (as
1090     // in direct_allocated above) because this is being done with the
1091     // world stopped and the object will be initialized by the
1092     // time the marking, precleaning or sweeping get to look at it.
1093     // But see the code for copying objects into the CMS generation,
1094     // where we need to ensure that concurrent readers of the
1095     // block offset table are able to safely navigate a block that
1096     // is in flux from being free to being allocated (and in
1097     // transition while being copied into) and subsequently
1098     // becoming a bona-fide object when the copy/promotion is complete.
1099     assert(SafepointSynchronize::is_at_safepoint(),
1100            "expect promotion only at safepoints");
1101 
1102     if (_collectorState < Sweeping) {
1103       // Mark the appropriate cards in the modUnionTable, so that
1104       // this object gets scanned before the sweep. If this is
1105       // not done, CMS generation references in the object might
1106       // not get marked.
1107       // For the case of arrays, which are otherwise precisely
1108       // marked, we need to dirty the entire array, not just its head.
1109       if (is_obj_array) {
1110         // The [par_]mark_range() method expects mr.end() below to
1111         // be aligned to the granularity of a bit's representation
1112         // in the heap. In the case of the MUT below, that's a
1113         // card size.
1114         MemRegion mr(start,
1115                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1116                         CardTableModRefBS::card_size /* bytes */));
1117         if (par) {
1118           _modUnionTable.par_mark_range(mr);
1119         } else {
1120           _modUnionTable.mark_range(mr);
1121         }
1122       } else {  // not an obj array; we can just mark the head
1123         if (par) {
1124           _modUnionTable.par_mark(start);
1125         } else {
1126           _modUnionTable.mark(start);
1127         }
1128       }
1129     }
1130   }
1131 }
1132 
1133 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1134 {
1135   size_t delta = pointer_delta(addr, space->bottom());
1136   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1137 }
1138 
1139 void CMSCollector::icms_update_allocation_limits()
1140 {
1141   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1142   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1143 
1144   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1145   if (CMSTraceIncrementalPacing) {
1146     stats().print();
1147   }
1148 
1149   assert(duty_cycle <= 100, "invalid duty cycle");
1150   if (duty_cycle != 0) {
1151     // The duty_cycle is a percentage between 0 and 100; convert to words and
1152     // then compute the offset from the endpoints of the space.
1153     size_t free_words = eden->free() / HeapWordSize;
1154     double free_words_dbl = (double)free_words;
1155     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1156     size_t offset_words = (free_words - duty_cycle_words) / 2;
1157 
1158     _icms_start_limit = eden->top() + offset_words;
1159     _icms_stop_limit = eden->end() - offset_words;
1160 
1161     // The limits may be adjusted (shifted to the right) by
1162     // CMSIncrementalOffset, to allow the application more mutator time after a
1163     // young gen gc (when all mutators were stopped) and before CMS starts and
1164     // takes away one or more cpus.
1165     if (CMSIncrementalOffset != 0) {
1166       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1167       size_t adjustment = (size_t)adjustment_dbl;
1168       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1169       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1170         _icms_start_limit += adjustment;
1171         _icms_stop_limit = tmp_stop;
1172       }
1173     }
1174   }
1175   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1176     _icms_start_limit = _icms_stop_limit = eden->end();
1177   }
1178 
1179   // Install the new start limit.
1180   eden->set_soft_end(_icms_start_limit);
1181 
1182   if (CMSTraceIncrementalMode) {
1183     gclog_or_tty->print(" icms alloc limits:  "
1184                            PTR_FORMAT "," PTR_FORMAT
1185                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1186                            _icms_start_limit, _icms_stop_limit,
1187                            percent_of_space(eden, _icms_start_limit),
1188                            percent_of_space(eden, _icms_stop_limit));
1189     if (Verbose) {
1190       gclog_or_tty->print("eden:  ");
1191       eden->print_on(gclog_or_tty);
1192     }
1193   }
1194 }
1195 
1196 // Any changes here should try to maintain the invariant
1197 // that if this method is called with _icms_start_limit
1198 // and _icms_stop_limit both NULL, then it should return NULL
1199 // and not notify the icms thread.
1200 HeapWord*
1201 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1202                                        size_t word_size)
1203 {
1204   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1205   // nop.
1206   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1207     if (top <= _icms_start_limit) {
1208       if (CMSTraceIncrementalMode) {
1209         space->print_on(gclog_or_tty);
1210         gclog_or_tty->stamp();
1211         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1212                                ", new limit=" PTR_FORMAT
1213                                " (" SIZE_FORMAT "%%)",
1214                                top, _icms_stop_limit,
1215                                percent_of_space(space, _icms_stop_limit));
1216       }
1217       ConcurrentMarkSweepThread::start_icms();
1218       assert(top < _icms_stop_limit, "Tautology");
1219       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1220         return _icms_stop_limit;
1221       }
1222 
1223       // The allocation will cross both the _start and _stop limits, so do the
1224       // stop notification also and return end().
1225       if (CMSTraceIncrementalMode) {
1226         space->print_on(gclog_or_tty);
1227         gclog_or_tty->stamp();
1228         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1229                                ", new limit=" PTR_FORMAT
1230                                " (" SIZE_FORMAT "%%)",
1231                                top, space->end(),
1232                                percent_of_space(space, space->end()));
1233       }
1234       ConcurrentMarkSweepThread::stop_icms();
1235       return space->end();
1236     }
1237 
1238     if (top <= _icms_stop_limit) {
1239       if (CMSTraceIncrementalMode) {
1240         space->print_on(gclog_or_tty);
1241         gclog_or_tty->stamp();
1242         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1243                                ", new limit=" PTR_FORMAT
1244                                " (" SIZE_FORMAT "%%)",
1245                                top, space->end(),
1246                                percent_of_space(space, space->end()));
1247       }
1248       ConcurrentMarkSweepThread::stop_icms();
1249       return space->end();
1250     }
1251 
1252     if (CMSTraceIncrementalMode) {
1253       space->print_on(gclog_or_tty);
1254       gclog_or_tty->stamp();
1255       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1256                              ", new limit=" PTR_FORMAT,
1257                              top, NULL);
1258     }
1259   }
1260 
1261   return NULL;
1262 }
1263 
1264 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1265   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1266   // allocate, copy and if necessary update promoinfo --
1267   // delegate to underlying space.
1268   assert_lock_strong(freelistLock());
1269 
1270 #ifndef PRODUCT
1271   if (Universe::heap()->promotion_should_fail()) {
1272     return NULL;
1273   }
1274 #endif  // #ifndef PRODUCT
1275 
1276   oop res = _cmsSpace->promote(obj, obj_size);
1277   if (res == NULL) {
1278     // expand and retry
1279     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1280     expand(s*HeapWordSize, MinHeapDeltaBytes,
1281       CMSExpansionCause::_satisfy_promotion);
1282     // Since there's currently no next generation, we don't try to promote
1283     // into a more senior generation.
1284     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1285                                "is made to pass on a possibly failing "
1286                                "promotion to next generation");
1287     res = _cmsSpace->promote(obj, obj_size);
1288   }
1289   if (res != NULL) {
1290     // See comment in allocate() about when objects should
1291     // be allocated live.
1292     assert(obj->is_oop(), "Will dereference klass pointer below");
1293     collector()->promoted(false,           // Not parallel
1294                           (HeapWord*)res, obj->is_objArray(), obj_size);
1295     // promotion counters
1296     NOT_PRODUCT(
1297       _numObjectsPromoted++;
1298       _numWordsPromoted +=
1299         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1300     )
1301   }
1302   return res;
1303 }
1304 
1305 
1306 HeapWord*
1307 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1308                                              HeapWord* top,
1309                                              size_t word_sz)
1310 {
1311   return collector()->allocation_limit_reached(space, top, word_sz);
1312 }
1313 
1314 // IMPORTANT: Notes on object size recognition in CMS.
1315 // ---------------------------------------------------
1316 // A block of storage in the CMS generation is always in
1317 // one of three states. A free block (FREE), an allocated
1318 // object (OBJECT) whose size() method reports the correct size,
1319 // and an intermediate state (TRANSIENT) in which its size cannot
1320 // be accurately determined.
1321 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1322 // -----------------------------------------------------
1323 // FREE:      klass_word & 1 == 1; mark_word holds block size
1324 //
1325 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1326 //            obj->size() computes correct size
1327 //            [Perm Gen objects needs to be "parsable" before they can be navigated]
1328 //
1329 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1330 //
1331 // STATE IDENTIFICATION: (64 bit+COOPS)
1332 // ------------------------------------
1333 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1334 //
1335 // OBJECT:    klass_word installed; klass_word != 0;
1336 //            obj->size() computes correct size
1337 //            [Perm Gen comment above continues to hold]
1338 //
1339 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1340 //
1341 //
1342 // STATE TRANSITION DIAGRAM
1343 //
1344 //        mut / parnew                     mut  /  parnew
1345 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1346 //  ^                                                                   |
1347 //  |------------------------ DEAD <------------------------------------|
1348 //         sweep                            mut
1349 //
1350 // While a block is in TRANSIENT state its size cannot be determined
1351 // so readers will either need to come back later or stall until
1352 // the size can be determined. Note that for the case of direct
1353 // allocation, P-bits, when available, may be used to determine the
1354 // size of an object that may not yet have been initialized.
1355 
1356 // Things to support parallel young-gen collection.
1357 oop
1358 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1359                                            oop old, markOop m,
1360                                            size_t word_sz) {
1361 #ifndef PRODUCT
1362   if (Universe::heap()->promotion_should_fail()) {
1363     return NULL;
1364   }
1365 #endif  // #ifndef PRODUCT
1366 
1367   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1368   PromotionInfo* promoInfo = &ps->promo;
1369   // if we are tracking promotions, then first ensure space for
1370   // promotion (including spooling space for saving header if necessary).
1371   // then allocate and copy, then track promoted info if needed.
1372   // When tracking (see PromotionInfo::track()), the mark word may
1373   // be displaced and in this case restoration of the mark word
1374   // occurs in the (oop_since_save_marks_)iterate phase.
1375   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1376     // Out of space for allocating spooling buffers;
1377     // try expanding and allocating spooling buffers.
1378     if (!expand_and_ensure_spooling_space(promoInfo)) {
1379       return NULL;
1380     }
1381   }
1382   assert(promoInfo->has_spooling_space(), "Control point invariant");
1383   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1384   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1385   if (obj_ptr == NULL) {
1386      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1387      if (obj_ptr == NULL) {
1388        return NULL;
1389      }
1390   }
1391   oop obj = oop(obj_ptr);
1392   OrderAccess::storestore();
1393   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1394   assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
1395   // IMPORTANT: See note on object initialization for CMS above.
1396   // Otherwise, copy the object.  Here we must be careful to insert the
1397   // klass pointer last, since this marks the block as an allocated object.
1398   // Except with compressed oops it's the mark word.
1399   HeapWord* old_ptr = (HeapWord*)old;
1400   // Restore the mark word copied above.
1401   obj->set_mark(m);
1402   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1403   assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
1404   OrderAccess::storestore();
1405 
1406   if (UseCompressedOops) {
1407     // Copy gap missed by (aligned) header size calculation below
1408     obj->set_klass_gap(old->klass_gap());
1409   }
1410   if (word_sz > (size_t)oopDesc::header_size()) {
1411     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1412                                  obj_ptr + oopDesc::header_size(),
1413                                  word_sz - oopDesc::header_size());
1414   }
1415 
1416   // Now we can track the promoted object, if necessary.  We take care
1417   // to delay the transition from uninitialized to full object
1418   // (i.e., insertion of klass pointer) until after, so that it
1419   // atomically becomes a promoted object.
1420   if (promoInfo->tracking()) {
1421     promoInfo->track((PromotedObject*)obj, old->klass());
1422   }
1423   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1424   assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
1425   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1426 
1427   // Finally, install the klass pointer (this should be volatile).
1428   OrderAccess::storestore();
1429   obj->set_klass(old->klass());
1430   // We should now be able to calculate the right size for this object
1431   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1432 
1433   collector()->promoted(true,          // parallel
1434                         obj_ptr, old->is_objArray(), word_sz);
1435 
1436   NOT_PRODUCT(
1437     Atomic::inc_ptr(&_numObjectsPromoted);
1438     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1439   )
1440 
1441   return obj;
1442 }
1443 
1444 void
1445 ConcurrentMarkSweepGeneration::
1446 par_promote_alloc_undo(int thread_num,
1447                        HeapWord* obj, size_t word_sz) {
1448   // CMS does not support promotion undo.
1449   ShouldNotReachHere();
1450 }
1451 
1452 void
1453 ConcurrentMarkSweepGeneration::
1454 par_promote_alloc_done(int thread_num) {
1455   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1456   ps->lab.retire(thread_num);
1457 }
1458 
1459 void
1460 ConcurrentMarkSweepGeneration::
1461 par_oop_since_save_marks_iterate_done(int thread_num) {
1462   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1463   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1464   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1465 }
1466 
1467 // XXXPERM
1468 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1469                                                    size_t size,
1470                                                    bool   tlab)
1471 {
1472   // We allow a STW collection only if a full
1473   // collection was requested.
1474   return full || should_allocate(size, tlab); // FIX ME !!!
1475   // This and promotion failure handling are connected at the
1476   // hip and should be fixed by untying them.
1477 }
1478 
1479 bool CMSCollector::shouldConcurrentCollect() {
1480   if (_full_gc_requested) {
1481     if (Verbose && PrintGCDetails) {
1482       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1483                              " gc request (or gc_locker)");
1484     }
1485     return true;
1486   }
1487 
1488   // For debugging purposes, change the type of collection.
1489   // If the rotation is not on the concurrent collection
1490   // type, don't start a concurrent collection.
1491   NOT_PRODUCT(
1492     if (RotateCMSCollectionTypes &&
1493         (_cmsGen->debug_collection_type() !=
1494           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1495       assert(_cmsGen->debug_collection_type() !=
1496         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1497         "Bad cms collection type");
1498       return false;
1499     }
1500   )
1501 
1502   FreelistLocker x(this);
1503   // ------------------------------------------------------------------
1504   // Print out lots of information which affects the initiation of
1505   // a collection.
1506   if (PrintCMSInitiationStatistics && stats().valid()) {
1507     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1508     gclog_or_tty->stamp();
1509     gclog_or_tty->print_cr("");
1510     stats().print_on(gclog_or_tty);
1511     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1512       stats().time_until_cms_gen_full());
1513     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1514     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1515                            _cmsGen->contiguous_available());
1516     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1517     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1518     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1519     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1520     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
1521   }
1522   // ------------------------------------------------------------------
1523 
1524   // If the estimated time to complete a cms collection (cms_duration())
1525   // is less than the estimated time remaining until the cms generation
1526   // is full, start a collection.
1527   if (!UseCMSInitiatingOccupancyOnly) {
1528     if (stats().valid()) {
1529       if (stats().time_until_cms_start() == 0.0) {
1530         return true;
1531       }
1532     } else {
1533       // We want to conservatively collect somewhat early in order
1534       // to try and "bootstrap" our CMS/promotion statistics;
1535       // this branch will not fire after the first successful CMS
1536       // collection because the stats should then be valid.
1537       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1538         if (Verbose && PrintGCDetails) {
1539           gclog_or_tty->print_cr(
1540             " CMSCollector: collect for bootstrapping statistics:"
1541             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1542             _bootstrap_occupancy);
1543         }
1544         return true;
1545       }
1546     }
1547   }
1548 
1549   // Otherwise, we start a collection cycle if either the perm gen or
1550   // old gen want a collection cycle started. Each may use
1551   // an appropriate criterion for making this decision.
1552   // XXX We need to make sure that the gen expansion
1553   // criterion dovetails well with this. XXX NEED TO FIX THIS
1554   if (_cmsGen->should_concurrent_collect()) {
1555     if (Verbose && PrintGCDetails) {
1556       gclog_or_tty->print_cr("CMS old gen initiated");
1557     }
1558     return true;
1559   }
1560 
1561   // We start a collection if we believe an incremental collection may fail;
1562   // this is not likely to be productive in practice because it's probably too
1563   // late anyway.
1564   GenCollectedHeap* gch = GenCollectedHeap::heap();
1565   assert(gch->collector_policy()->is_two_generation_policy(),
1566          "You may want to check the correctness of the following");
1567   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1568     if (Verbose && PrintGCDetails) {
1569       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1570     }
1571     return true;
1572   }
1573 
1574   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
1575     bool res = update_should_unload_classes();
1576     if (res) {
1577       if (Verbose && PrintGCDetails) {
1578         gclog_or_tty->print_cr("CMS perm gen initiated");
1579       }
1580       return true;
1581     }
1582   }
1583   return false;
1584 }
1585 
1586 // Clear _expansion_cause fields of constituent generations
1587 void CMSCollector::clear_expansion_cause() {
1588   _cmsGen->clear_expansion_cause();
1589   _permGen->clear_expansion_cause();
1590 }
1591 
1592 // We should be conservative in starting a collection cycle.  To
1593 // start too eagerly runs the risk of collecting too often in the
1594 // extreme.  To collect too rarely falls back on full collections,
1595 // which works, even if not optimum in terms of concurrent work.
1596 // As a work around for too eagerly collecting, use the flag
1597 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1598 // giving the user an easily understandable way of controlling the
1599 // collections.
1600 // We want to start a new collection cycle if any of the following
1601 // conditions hold:
1602 // . our current occupancy exceeds the configured initiating occupancy
1603 //   for this generation, or
1604 // . we recently needed to expand this space and have not, since that
1605 //   expansion, done a collection of this generation, or
1606 // . the underlying space believes that it may be a good idea to initiate
1607 //   a concurrent collection (this may be based on criteria such as the
1608 //   following: the space uses linear allocation and linear allocation is
1609 //   going to fail, or there is believed to be excessive fragmentation in
1610 //   the generation, etc... or ...
1611 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1612 //   the case of the old generation, not the perm generation; see CR 6543076):
1613 //   we may be approaching a point at which allocation requests may fail because
1614 //   we will be out of sufficient free space given allocation rate estimates.]
1615 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1616 
1617   assert_lock_strong(freelistLock());
1618   if (occupancy() > initiating_occupancy()) {
1619     if (PrintGCDetails && Verbose) {
1620       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1621         short_name(), occupancy(), initiating_occupancy());
1622     }
1623     return true;
1624   }
1625   if (UseCMSInitiatingOccupancyOnly) {
1626     return false;
1627   }
1628   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1629     if (PrintGCDetails && Verbose) {
1630       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1631         short_name());
1632     }
1633     return true;
1634   }
1635   if (_cmsSpace->should_concurrent_collect()) {
1636     if (PrintGCDetails && Verbose) {
1637       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1638         short_name());
1639     }
1640     return true;
1641   }
1642   return false;
1643 }
1644 
1645 void ConcurrentMarkSweepGeneration::collect(bool   full,
1646                                             bool   clear_all_soft_refs,
1647                                             size_t size,
1648                                             bool   tlab)
1649 {
1650   collector()->collect(full, clear_all_soft_refs, size, tlab);
1651 }
1652 
1653 void CMSCollector::collect(bool   full,
1654                            bool   clear_all_soft_refs,
1655                            size_t size,
1656                            bool   tlab)
1657 {
1658   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1659     // For debugging purposes skip the collection if the state
1660     // is not currently idle
1661     if (TraceCMSState) {
1662       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1663         Thread::current(), full, _collectorState);
1664     }
1665     return;
1666   }
1667 
1668   // The following "if" branch is present for defensive reasons.
1669   // In the current uses of this interface, it can be replaced with:
1670   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1671   // But I am not placing that assert here to allow future
1672   // generality in invoking this interface.
1673   if (GC_locker::is_active()) {
1674     // A consistency test for GC_locker
1675     assert(GC_locker::needs_gc(), "Should have been set already");
1676     // Skip this foreground collection, instead
1677     // expanding the heap if necessary.
1678     // Need the free list locks for the call to free() in compute_new_size()
1679     compute_new_size();
1680     return;
1681   }
1682   acquire_control_and_collect(full, clear_all_soft_refs);
1683   _full_gcs_since_conc_gc++;
1684 
1685 }
1686 
1687 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
1688   GenCollectedHeap* gch = GenCollectedHeap::heap();
1689   unsigned int gc_count = gch->total_full_collections();
1690   if (gc_count == full_gc_count) {
1691     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1692     _full_gc_requested = true;
1693     CGC_lock->notify();   // nudge CMS thread
1694   } else {
1695     assert(gc_count > full_gc_count, "Error: causal loop");
1696   }
1697 }
1698 
1699 
1700 // The foreground and background collectors need to coordinate in order
1701 // to make sure that they do not mutually interfere with CMS collections.
1702 // When a background collection is active,
1703 // the foreground collector may need to take over (preempt) and
1704 // synchronously complete an ongoing collection. Depending on the
1705 // frequency of the background collections and the heap usage
1706 // of the application, this preemption can be seldom or frequent.
1707 // There are only certain
1708 // points in the background collection that the "collection-baton"
1709 // can be passed to the foreground collector.
1710 //
1711 // The foreground collector will wait for the baton before
1712 // starting any part of the collection.  The foreground collector
1713 // will only wait at one location.
1714 //
1715 // The background collector will yield the baton before starting a new
1716 // phase of the collection (e.g., before initial marking, marking from roots,
1717 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1718 // of the loop which switches the phases. The background collector does some
1719 // of the phases (initial mark, final re-mark) with the world stopped.
1720 // Because of locking involved in stopping the world,
1721 // the foreground collector should not block waiting for the background
1722 // collector when it is doing a stop-the-world phase.  The background
1723 // collector will yield the baton at an additional point just before
1724 // it enters a stop-the-world phase.  Once the world is stopped, the
1725 // background collector checks the phase of the collection.  If the
1726 // phase has not changed, it proceeds with the collection.  If the
1727 // phase has changed, it skips that phase of the collection.  See
1728 // the comments on the use of the Heap_lock in collect_in_background().
1729 //
1730 // Variable used in baton passing.
1731 //   _foregroundGCIsActive - Set to true by the foreground collector when
1732 //      it wants the baton.  The foreground clears it when it has finished
1733 //      the collection.
1734 //   _foregroundGCShouldWait - Set to true by the background collector
1735 //        when it is running.  The foreground collector waits while
1736 //      _foregroundGCShouldWait is true.
1737 //  CGC_lock - monitor used to protect access to the above variables
1738 //      and to notify the foreground and background collectors.
1739 //  _collectorState - current state of the CMS collection.
1740 //
1741 // The foreground collector
1742 //   acquires the CGC_lock
1743 //   sets _foregroundGCIsActive
1744 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1745 //     various locks acquired in preparation for the collection
1746 //     are released so as not to block the background collector
1747 //     that is in the midst of a collection
1748 //   proceeds with the collection
1749 //   clears _foregroundGCIsActive
1750 //   returns
1751 //
1752 // The background collector in a loop iterating on the phases of the
1753 //      collection
1754 //   acquires the CGC_lock
1755 //   sets _foregroundGCShouldWait
1756 //   if _foregroundGCIsActive is set
1757 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1758 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1759 //     and exits the loop.
1760 //   otherwise
1761 //     proceed with that phase of the collection
1762 //     if the phase is a stop-the-world phase,
1763 //       yield the baton once more just before enqueueing
1764 //       the stop-world CMS operation (executed by the VM thread).
1765 //   returns after all phases of the collection are done
1766 //
1767 
1768 void CMSCollector::acquire_control_and_collect(bool full,
1769         bool clear_all_soft_refs) {
1770   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1771   assert(!Thread::current()->is_ConcurrentGC_thread(),
1772          "shouldn't try to acquire control from self!");
1773 
1774   // Start the protocol for acquiring control of the
1775   // collection from the background collector (aka CMS thread).
1776   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1777          "VM thread should have CMS token");
1778   // Remember the possibly interrupted state of an ongoing
1779   // concurrent collection
1780   CollectorState first_state = _collectorState;
1781 
1782   // Signal to a possibly ongoing concurrent collection that
1783   // we want to do a foreground collection.
1784   _foregroundGCIsActive = true;
1785 
1786   // Disable incremental mode during a foreground collection.
1787   ICMSDisabler icms_disabler;
1788 
1789   // release locks and wait for a notify from the background collector
1790   // releasing the locks in only necessary for phases which
1791   // do yields to improve the granularity of the collection.
1792   assert_lock_strong(bitMapLock());
1793   // We need to lock the Free list lock for the space that we are
1794   // currently collecting.
1795   assert(haveFreelistLocks(), "Must be holding free list locks");
1796   bitMapLock()->unlock();
1797   releaseFreelistLocks();
1798   {
1799     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1800     if (_foregroundGCShouldWait) {
1801       // We are going to be waiting for action for the CMS thread;
1802       // it had better not be gone (for instance at shutdown)!
1803       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1804              "CMS thread must be running");
1805       // Wait here until the background collector gives us the go-ahead
1806       ConcurrentMarkSweepThread::clear_CMS_flag(
1807         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1808       // Get a possibly blocked CMS thread going:
1809       //   Note that we set _foregroundGCIsActive true above,
1810       //   without protection of the CGC_lock.
1811       CGC_lock->notify();
1812       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1813              "Possible deadlock");
1814       while (_foregroundGCShouldWait) {
1815         // wait for notification
1816         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1817         // Possibility of delay/starvation here, since CMS token does
1818         // not know to give priority to VM thread? Actually, i think
1819         // there wouldn't be any delay/starvation, but the proof of
1820         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1821       }
1822       ConcurrentMarkSweepThread::set_CMS_flag(
1823         ConcurrentMarkSweepThread::CMS_vm_has_token);
1824     }
1825   }
1826   // The CMS_token is already held.  Get back the other locks.
1827   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1828          "VM thread should have CMS token");
1829   getFreelistLocks();
1830   bitMapLock()->lock_without_safepoint_check();
1831   if (TraceCMSState) {
1832     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1833       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1834     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1835   }
1836 
1837   // Check if we need to do a compaction, or if not, whether
1838   // we need to start the mark-sweep from scratch.
1839   bool should_compact    = false;
1840   bool should_start_over = false;
1841   decide_foreground_collection_type(clear_all_soft_refs,
1842     &should_compact, &should_start_over);
1843 
1844 NOT_PRODUCT(
1845   if (RotateCMSCollectionTypes) {
1846     if (_cmsGen->debug_collection_type() ==
1847         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1848       should_compact = true;
1849     } else if (_cmsGen->debug_collection_type() ==
1850                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1851       should_compact = false;
1852     }
1853   }
1854 )
1855 
1856   if (PrintGCDetails && first_state > Idling) {
1857     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1858     if (GCCause::is_user_requested_gc(cause) ||
1859         GCCause::is_serviceability_requested_gc(cause)) {
1860       gclog_or_tty->print(" (concurrent mode interrupted)");
1861     } else {
1862       gclog_or_tty->print(" (concurrent mode failure)");
1863     }
1864   }
1865 
1866   if (should_compact) {
1867     // If the collection is being acquired from the background
1868     // collector, there may be references on the discovered
1869     // references lists that have NULL referents (being those
1870     // that were concurrently cleared by a mutator) or
1871     // that are no longer active (having been enqueued concurrently
1872     // by the mutator).
1873     // Scrub the list of those references because Mark-Sweep-Compact
1874     // code assumes referents are not NULL and that all discovered
1875     // Reference objects are active.
1876     ref_processor()->clean_up_discovered_references();
1877 
1878     do_compaction_work(clear_all_soft_refs);
1879 
1880     // Has the GC time limit been exceeded?
1881     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1882     size_t max_eden_size = young_gen->max_capacity() -
1883                            young_gen->to()->capacity() -
1884                            young_gen->from()->capacity();
1885     GenCollectedHeap* gch = GenCollectedHeap::heap();
1886     GCCause::Cause gc_cause = gch->gc_cause();
1887     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1888                                            young_gen->eden()->used(),
1889                                            _cmsGen->max_capacity(),
1890                                            max_eden_size,
1891                                            full,
1892                                            gc_cause,
1893                                            gch->collector_policy());
1894   } else {
1895     do_mark_sweep_work(clear_all_soft_refs, first_state,
1896       should_start_over);
1897   }
1898   // Reset the expansion cause, now that we just completed
1899   // a collection cycle.
1900   clear_expansion_cause();
1901   _foregroundGCIsActive = false;
1902   return;
1903 }
1904 
1905 // Resize the perm generation and the tenured generation
1906 // after obtaining the free list locks for the
1907 // two generations.
1908 void CMSCollector::compute_new_size() {
1909   assert_locked_or_safepoint(Heap_lock);
1910   FreelistLocker z(this);
1911   _permGen->compute_new_size();
1912   _cmsGen->compute_new_size();
1913 }
1914 
1915 // A work method used by foreground collection to determine
1916 // what type of collection (compacting or not, continuing or fresh)
1917 // it should do.
1918 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1919 // and CMSCompactWhenClearAllSoftRefs the default in the future
1920 // and do away with the flags after a suitable period.
1921 void CMSCollector::decide_foreground_collection_type(
1922   bool clear_all_soft_refs, bool* should_compact,
1923   bool* should_start_over) {
1924   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1925   // flag is set, and we have either requested a System.gc() or
1926   // the number of full gc's since the last concurrent cycle
1927   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1928   // or if an incremental collection has failed
1929   GenCollectedHeap* gch = GenCollectedHeap::heap();
1930   assert(gch->collector_policy()->is_two_generation_policy(),
1931          "You may want to check the correctness of the following");
1932   // Inform cms gen if this was due to partial collection failing.
1933   // The CMS gen may use this fact to determine its expansion policy.
1934   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1935     assert(!_cmsGen->incremental_collection_failed(),
1936            "Should have been noticed, reacted to and cleared");
1937     _cmsGen->set_incremental_collection_failed();
1938   }
1939   *should_compact =
1940     UseCMSCompactAtFullCollection &&
1941     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1942      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1943      gch->incremental_collection_will_fail(true /* consult_young */));
1944   *should_start_over = false;
1945   if (clear_all_soft_refs && !*should_compact) {
1946     // We are about to do a last ditch collection attempt
1947     // so it would normally make sense to do a compaction
1948     // to reclaim as much space as possible.
1949     if (CMSCompactWhenClearAllSoftRefs) {
1950       // Default: The rationale is that in this case either
1951       // we are past the final marking phase, in which case
1952       // we'd have to start over, or so little has been done
1953       // that there's little point in saving that work. Compaction
1954       // appears to be the sensible choice in either case.
1955       *should_compact = true;
1956     } else {
1957       // We have been asked to clear all soft refs, but not to
1958       // compact. Make sure that we aren't past the final checkpoint
1959       // phase, for that is where we process soft refs. If we are already
1960       // past that phase, we'll need to redo the refs discovery phase and
1961       // if necessary clear soft refs that weren't previously
1962       // cleared. We do so by remembering the phase in which
1963       // we came in, and if we are past the refs processing
1964       // phase, we'll choose to just redo the mark-sweep
1965       // collection from scratch.
1966       if (_collectorState > FinalMarking) {
1967         // We are past the refs processing phase;
1968         // start over and do a fresh synchronous CMS cycle
1969         _collectorState = Resetting; // skip to reset to start new cycle
1970         reset(false /* == !asynch */);
1971         *should_start_over = true;
1972       } // else we can continue a possibly ongoing current cycle
1973     }
1974   }
1975 }
1976 
1977 // A work method used by the foreground collector to do
1978 // a mark-sweep-compact.
1979 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1980   GenCollectedHeap* gch = GenCollectedHeap::heap();
1981   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
1982   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
1983     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
1984       "collections passed to foreground collector", _full_gcs_since_conc_gc);
1985   }
1986 
1987   // Sample collection interval time and reset for collection pause.
1988   if (UseAdaptiveSizePolicy) {
1989     size_policy()->msc_collection_begin();
1990   }
1991 
1992   // Temporarily widen the span of the weak reference processing to
1993   // the entire heap.
1994   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1995   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1996   // Temporarily, clear the "is_alive_non_header" field of the
1997   // reference processor.
1998   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1999   // Temporarily make reference _processing_ single threaded (non-MT).
2000   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2001   // Temporarily make refs discovery atomic
2002   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2003   // Temporarily make reference _discovery_ single threaded (non-MT)
2004   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2005 
2006   ref_processor()->set_enqueuing_is_done(false);
2007   ref_processor()->enable_discovery();
2008   ref_processor()->setup_policy(clear_all_soft_refs);
2009   // If an asynchronous collection finishes, the _modUnionTable is
2010   // all clear.  If we are assuming the collection from an asynchronous
2011   // collection, clear the _modUnionTable.
2012   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2013     "_modUnionTable should be clear if the baton was not passed");
2014   _modUnionTable.clear_all();
2015 
2016   // We must adjust the allocation statistics being maintained
2017   // in the free list space. We do so by reading and clearing
2018   // the sweep timer and updating the block flux rate estimates below.
2019   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2020   if (_inter_sweep_timer.is_active()) {
2021     _inter_sweep_timer.stop();
2022     // Note that we do not use this sample to update the _inter_sweep_estimate.
2023     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2024                                             _inter_sweep_estimate.padded_average(),
2025                                             _intra_sweep_estimate.padded_average());
2026   }
2027 
2028   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2029     ref_processor(), clear_all_soft_refs);
2030   #ifdef ASSERT
2031     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2032     size_t free_size = cms_space->free();
2033     assert(free_size ==
2034            pointer_delta(cms_space->end(), cms_space->compaction_top())
2035            * HeapWordSize,
2036       "All the free space should be compacted into one chunk at top");
2037     assert(cms_space->dictionary()->totalChunkSize(
2038                                       debug_only(cms_space->freelistLock())) == 0 ||
2039            cms_space->totalSizeInIndexedFreeLists() == 0,
2040       "All the free space should be in a single chunk");
2041     size_t num = cms_space->totalCount();
2042     assert((free_size == 0 && num == 0) ||
2043            (free_size > 0  && (num == 1 || num == 2)),
2044          "There should be at most 2 free chunks after compaction");
2045   #endif // ASSERT
2046   _collectorState = Resetting;
2047   assert(_restart_addr == NULL,
2048          "Should have been NULL'd before baton was passed");
2049   reset(false /* == !asynch */);
2050   _cmsGen->reset_after_compaction();
2051   _concurrent_cycles_since_last_unload = 0;
2052 
2053   if (verifying() && !should_unload_classes()) {
2054     perm_gen_verify_bit_map()->clear_all();
2055   }
2056 
2057   // Clear any data recorded in the PLAB chunk arrays.
2058   if (_survivor_plab_array != NULL) {
2059     reset_survivor_plab_arrays();
2060   }
2061 
2062   // Adjust the per-size allocation stats for the next epoch.
2063   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2064   // Restart the "inter sweep timer" for the next epoch.
2065   _inter_sweep_timer.reset();
2066   _inter_sweep_timer.start();
2067 
2068   // Sample collection pause time and reset for collection interval.
2069   if (UseAdaptiveSizePolicy) {
2070     size_policy()->msc_collection_end(gch->gc_cause());
2071   }
2072 
2073   // For a mark-sweep-compact, compute_new_size() will be called
2074   // in the heap's do_collection() method.
2075 }
2076 
2077 // A work method used by the foreground collector to do
2078 // a mark-sweep, after taking over from a possibly on-going
2079 // concurrent mark-sweep collection.
2080 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2081   CollectorState first_state, bool should_start_over) {
2082   if (PrintGC && Verbose) {
2083     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2084       "collector with count %d",
2085       _full_gcs_since_conc_gc);
2086   }
2087   switch (_collectorState) {
2088     case Idling:
2089       if (first_state == Idling || should_start_over) {
2090         // The background GC was not active, or should
2091         // restarted from scratch;  start the cycle.
2092         _collectorState = InitialMarking;
2093       }
2094       // If first_state was not Idling, then a background GC
2095       // was in progress and has now finished.  No need to do it
2096       // again.  Leave the state as Idling.
2097       break;
2098     case Precleaning:
2099       // In the foreground case don't do the precleaning since
2100       // it is not done concurrently and there is extra work
2101       // required.
2102       _collectorState = FinalMarking;
2103   }
2104   if (PrintGCDetails &&
2105       (_collectorState > Idling ||
2106        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
2107     gclog_or_tty->print(" (concurrent mode failure)");
2108   }
2109   collect_in_foreground(clear_all_soft_refs);
2110 
2111   // For a mark-sweep, compute_new_size() will be called
2112   // in the heap's do_collection() method.
2113 }
2114 
2115 
2116 void CMSCollector::getFreelistLocks() const {
2117   // Get locks for all free lists in all generations that this
2118   // collector is responsible for
2119   _cmsGen->freelistLock()->lock_without_safepoint_check();
2120   _permGen->freelistLock()->lock_without_safepoint_check();
2121 }
2122 
2123 void CMSCollector::releaseFreelistLocks() const {
2124   // Release locks for all free lists in all generations that this
2125   // collector is responsible for
2126   _cmsGen->freelistLock()->unlock();
2127   _permGen->freelistLock()->unlock();
2128 }
2129 
2130 bool CMSCollector::haveFreelistLocks() const {
2131   // Check locks for all free lists in all generations that this
2132   // collector is responsible for
2133   assert_lock_strong(_cmsGen->freelistLock());
2134   assert_lock_strong(_permGen->freelistLock());
2135   PRODUCT_ONLY(ShouldNotReachHere());
2136   return true;
2137 }
2138 
2139 // A utility class that is used by the CMS collector to
2140 // temporarily "release" the foreground collector from its
2141 // usual obligation to wait for the background collector to
2142 // complete an ongoing phase before proceeding.
2143 class ReleaseForegroundGC: public StackObj {
2144  private:
2145   CMSCollector* _c;
2146  public:
2147   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2148     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2149     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2150     // allow a potentially blocked foreground collector to proceed
2151     _c->_foregroundGCShouldWait = false;
2152     if (_c->_foregroundGCIsActive) {
2153       CGC_lock->notify();
2154     }
2155     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2156            "Possible deadlock");
2157   }
2158 
2159   ~ReleaseForegroundGC() {
2160     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2161     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2162     _c->_foregroundGCShouldWait = true;
2163   }
2164 };
2165 
2166 // There are separate collect_in_background and collect_in_foreground because of
2167 // the different locking requirements of the background collector and the
2168 // foreground collector.  There was originally an attempt to share
2169 // one "collect" method between the background collector and the foreground
2170 // collector but the if-then-else required made it cleaner to have
2171 // separate methods.
2172 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
2173   assert(Thread::current()->is_ConcurrentGC_thread(),
2174     "A CMS asynchronous collection is only allowed on a CMS thread.");
2175 
2176   GenCollectedHeap* gch = GenCollectedHeap::heap();
2177   {
2178     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2179     MutexLockerEx hl(Heap_lock, safepoint_check);
2180     FreelistLocker fll(this);
2181     MutexLockerEx x(CGC_lock, safepoint_check);
2182     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2183       // The foreground collector is active or we're
2184       // not using asynchronous collections.  Skip this
2185       // background collection.
2186       assert(!_foregroundGCShouldWait, "Should be clear");
2187       return;
2188     } else {
2189       assert(_collectorState == Idling, "Should be idling before start.");
2190       _collectorState = InitialMarking;
2191       // Reset the expansion cause, now that we are about to begin
2192       // a new cycle.
2193       clear_expansion_cause();
2194     }
2195     // Decide if we want to enable class unloading as part of the
2196     // ensuing concurrent GC cycle.
2197     update_should_unload_classes();
2198     _full_gc_requested = false;           // acks all outstanding full gc requests
2199     // Signal that we are about to start a collection
2200     gch->increment_total_full_collections();  // ... starting a collection cycle
2201     _collection_count_start = gch->total_full_collections();
2202   }
2203 
2204   // Used for PrintGC
2205   size_t prev_used;
2206   if (PrintGC && Verbose) {
2207     prev_used = _cmsGen->used(); // XXXPERM
2208   }
2209 
2210   // The change of the collection state is normally done at this level;
2211   // the exceptions are phases that are executed while the world is
2212   // stopped.  For those phases the change of state is done while the
2213   // world is stopped.  For baton passing purposes this allows the
2214   // background collector to finish the phase and change state atomically.
2215   // The foreground collector cannot wait on a phase that is done
2216   // while the world is stopped because the foreground collector already
2217   // has the world stopped and would deadlock.
2218   while (_collectorState != Idling) {
2219     if (TraceCMSState) {
2220       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2221         Thread::current(), _collectorState);
2222     }
2223     // The foreground collector
2224     //   holds the Heap_lock throughout its collection.
2225     //   holds the CMS token (but not the lock)
2226     //     except while it is waiting for the background collector to yield.
2227     //
2228     // The foreground collector should be blocked (not for long)
2229     //   if the background collector is about to start a phase
2230     //   executed with world stopped.  If the background
2231     //   collector has already started such a phase, the
2232     //   foreground collector is blocked waiting for the
2233     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2234     //   are executed in the VM thread.
2235     //
2236     // The locking order is
2237     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2238     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2239     //   CMS token  (claimed in
2240     //                stop_world_and_do() -->
2241     //                  safepoint_synchronize() -->
2242     //                    CMSThread::synchronize())
2243 
2244     {
2245       // Check if the FG collector wants us to yield.
2246       CMSTokenSync x(true); // is cms thread
2247       if (waitForForegroundGC()) {
2248         // We yielded to a foreground GC, nothing more to be
2249         // done this round.
2250         assert(_foregroundGCShouldWait == false, "We set it to false in "
2251                "waitForForegroundGC()");
2252         if (TraceCMSState) {
2253           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2254             " exiting collection CMS state %d",
2255             Thread::current(), _collectorState);
2256         }
2257         return;
2258       } else {
2259         // The background collector can run but check to see if the
2260         // foreground collector has done a collection while the
2261         // background collector was waiting to get the CGC_lock
2262         // above.  If yes, break so that _foregroundGCShouldWait
2263         // is cleared before returning.
2264         if (_collectorState == Idling) {
2265           break;
2266         }
2267       }
2268     }
2269 
2270     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2271       "should be waiting");
2272 
2273     switch (_collectorState) {
2274       case InitialMarking:
2275         {
2276           ReleaseForegroundGC x(this);
2277           stats().record_cms_begin();
2278 
2279           VM_CMS_Initial_Mark initial_mark_op(this);
2280           VMThread::execute(&initial_mark_op);
2281         }
2282         // The collector state may be any legal state at this point
2283         // since the background collector may have yielded to the
2284         // foreground collector.
2285         break;
2286       case Marking:
2287         // initial marking in checkpointRootsInitialWork has been completed
2288         if (markFromRoots(true)) { // we were successful
2289           assert(_collectorState == Precleaning, "Collector state should "
2290             "have changed");
2291         } else {
2292           assert(_foregroundGCIsActive, "Internal state inconsistency");
2293         }
2294         break;
2295       case Precleaning:
2296         if (UseAdaptiveSizePolicy) {
2297           size_policy()->concurrent_precleaning_begin();
2298         }
2299         // marking from roots in markFromRoots has been completed
2300         preclean();
2301         if (UseAdaptiveSizePolicy) {
2302           size_policy()->concurrent_precleaning_end();
2303         }
2304         assert(_collectorState == AbortablePreclean ||
2305                _collectorState == FinalMarking,
2306                "Collector state should have changed");
2307         break;
2308       case AbortablePreclean:
2309         if (UseAdaptiveSizePolicy) {
2310         size_policy()->concurrent_phases_resume();
2311         }
2312         abortable_preclean();
2313         if (UseAdaptiveSizePolicy) {
2314           size_policy()->concurrent_precleaning_end();
2315         }
2316         assert(_collectorState == FinalMarking, "Collector state should "
2317           "have changed");
2318         break;
2319       case FinalMarking:
2320         {
2321           ReleaseForegroundGC x(this);
2322 
2323           VM_CMS_Final_Remark final_remark_op(this);
2324           VMThread::execute(&final_remark_op);
2325         }
2326         assert(_foregroundGCShouldWait, "block post-condition");
2327         break;
2328       case Sweeping:
2329         if (UseAdaptiveSizePolicy) {
2330           size_policy()->concurrent_sweeping_begin();
2331         }
2332         // final marking in checkpointRootsFinal has been completed
2333         sweep(true);
2334         assert(_collectorState == Resizing, "Collector state change "
2335           "to Resizing must be done under the free_list_lock");
2336         _full_gcs_since_conc_gc = 0;
2337 
2338         // Stop the timers for adaptive size policy for the concurrent phases
2339         if (UseAdaptiveSizePolicy) {
2340           size_policy()->concurrent_sweeping_end();
2341           size_policy()->concurrent_phases_end(gch->gc_cause(),
2342                                              gch->prev_gen(_cmsGen)->capacity(),
2343                                              _cmsGen->free());
2344         }
2345 
2346       case Resizing: {
2347         // Sweeping has been completed...
2348         // At this point the background collection has completed.
2349         // Don't move the call to compute_new_size() down
2350         // into code that might be executed if the background
2351         // collection was preempted.
2352         {
2353           ReleaseForegroundGC x(this);   // unblock FG collection
2354           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2355           CMSTokenSync        z(true);   // not strictly needed.
2356           if (_collectorState == Resizing) {
2357             compute_new_size();
2358             _collectorState = Resetting;
2359           } else {
2360             assert(_collectorState == Idling, "The state should only change"
2361                    " because the foreground collector has finished the collection");
2362           }
2363         }
2364         break;
2365       }
2366       case Resetting:
2367         // CMS heap resizing has been completed
2368         reset(true);
2369         assert(_collectorState == Idling, "Collector state should "
2370           "have changed");
2371         stats().record_cms_end();
2372         // Don't move the concurrent_phases_end() and compute_new_size()
2373         // calls to here because a preempted background collection
2374         // has it's state set to "Resetting".
2375         break;
2376       case Idling:
2377       default:
2378         ShouldNotReachHere();
2379         break;
2380     }
2381     if (TraceCMSState) {
2382       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2383         Thread::current(), _collectorState);
2384     }
2385     assert(_foregroundGCShouldWait, "block post-condition");
2386   }
2387 
2388   // Should this be in gc_epilogue?
2389   collector_policy()->counters()->update_counters();
2390 
2391   {
2392     // Clear _foregroundGCShouldWait and, in the event that the
2393     // foreground collector is waiting, notify it, before
2394     // returning.
2395     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2396     _foregroundGCShouldWait = false;
2397     if (_foregroundGCIsActive) {
2398       CGC_lock->notify();
2399     }
2400     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2401            "Possible deadlock");
2402   }
2403   if (TraceCMSState) {
2404     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2405       " exiting collection CMS state %d",
2406       Thread::current(), _collectorState);
2407   }
2408   if (PrintGC && Verbose) {
2409     _cmsGen->print_heap_change(prev_used);
2410   }
2411 }
2412 
2413 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
2414   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2415          "Foreground collector should be waiting, not executing");
2416   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2417     "may only be done by the VM Thread with the world stopped");
2418   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2419          "VM thread should have CMS token");
2420 
2421   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2422     true, gclog_or_tty);)
2423   if (UseAdaptiveSizePolicy) {
2424     size_policy()->ms_collection_begin();
2425   }
2426   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2427 
2428   HandleMark hm;  // Discard invalid handles created during verification
2429 
2430   if (VerifyBeforeGC &&
2431       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2432     Universe::verify(true);
2433   }
2434 
2435   // Snapshot the soft reference policy to be used in this collection cycle.
2436   ref_processor()->setup_policy(clear_all_soft_refs);
2437 
2438   bool init_mark_was_synchronous = false; // until proven otherwise
2439   while (_collectorState != Idling) {
2440     if (TraceCMSState) {
2441       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2442         Thread::current(), _collectorState);
2443     }
2444     switch (_collectorState) {
2445       case InitialMarking:
2446         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2447         checkpointRootsInitial(false);
2448         assert(_collectorState == Marking, "Collector state should have changed"
2449           " within checkpointRootsInitial()");
2450         break;
2451       case Marking:
2452         // initial marking in checkpointRootsInitialWork has been completed
2453         if (VerifyDuringGC &&
2454             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2455           gclog_or_tty->print("Verify before initial mark: ");
2456           Universe::verify(true);
2457         }
2458         {
2459           bool res = markFromRoots(false);
2460           assert(res && _collectorState == FinalMarking, "Collector state should "
2461             "have changed");
2462           break;
2463         }
2464       case FinalMarking:
2465         if (VerifyDuringGC &&
2466             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2467           gclog_or_tty->print("Verify before re-mark: ");
2468           Universe::verify(true);
2469         }
2470         checkpointRootsFinal(false, clear_all_soft_refs,
2471                              init_mark_was_synchronous);
2472         assert(_collectorState == Sweeping, "Collector state should not "
2473           "have changed within checkpointRootsFinal()");
2474         break;
2475       case Sweeping:
2476         // final marking in checkpointRootsFinal has been completed
2477         if (VerifyDuringGC &&
2478             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2479           gclog_or_tty->print("Verify before sweep: ");
2480           Universe::verify(true);
2481         }
2482         sweep(false);
2483         assert(_collectorState == Resizing, "Incorrect state");
2484         break;
2485       case Resizing: {
2486         // Sweeping has been completed; the actual resize in this case
2487         // is done separately; nothing to be done in this state.
2488         _collectorState = Resetting;
2489         break;
2490       }
2491       case Resetting:
2492         // The heap has been resized.
2493         if (VerifyDuringGC &&
2494             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2495           gclog_or_tty->print("Verify before reset: ");
2496           Universe::verify(true);
2497         }
2498         reset(false);
2499         assert(_collectorState == Idling, "Collector state should "
2500           "have changed");
2501         break;
2502       case Precleaning:
2503       case AbortablePreclean:
2504         // Elide the preclean phase
2505         _collectorState = FinalMarking;
2506         break;
2507       default:
2508         ShouldNotReachHere();
2509     }
2510     if (TraceCMSState) {
2511       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2512         Thread::current(), _collectorState);
2513     }
2514   }
2515 
2516   if (UseAdaptiveSizePolicy) {
2517     GenCollectedHeap* gch = GenCollectedHeap::heap();
2518     size_policy()->ms_collection_end(gch->gc_cause());
2519   }
2520 
2521   if (VerifyAfterGC &&
2522       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2523     Universe::verify(true);
2524   }
2525   if (TraceCMSState) {
2526     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2527       " exiting collection CMS state %d",
2528       Thread::current(), _collectorState);
2529   }
2530 }
2531 
2532 bool CMSCollector::waitForForegroundGC() {
2533   bool res = false;
2534   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2535          "CMS thread should have CMS token");
2536   // Block the foreground collector until the
2537   // background collectors decides whether to
2538   // yield.
2539   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2540   _foregroundGCShouldWait = true;
2541   if (_foregroundGCIsActive) {
2542     // The background collector yields to the
2543     // foreground collector and returns a value
2544     // indicating that it has yielded.  The foreground
2545     // collector can proceed.
2546     res = true;
2547     _foregroundGCShouldWait = false;
2548     ConcurrentMarkSweepThread::clear_CMS_flag(
2549       ConcurrentMarkSweepThread::CMS_cms_has_token);
2550     ConcurrentMarkSweepThread::set_CMS_flag(
2551       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2552     // Get a possibly blocked foreground thread going
2553     CGC_lock->notify();
2554     if (TraceCMSState) {
2555       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2556         Thread::current(), _collectorState);
2557     }
2558     while (_foregroundGCIsActive) {
2559       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2560     }
2561     ConcurrentMarkSweepThread::set_CMS_flag(
2562       ConcurrentMarkSweepThread::CMS_cms_has_token);
2563     ConcurrentMarkSweepThread::clear_CMS_flag(
2564       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2565   }
2566   if (TraceCMSState) {
2567     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2568       Thread::current(), _collectorState);
2569   }
2570   return res;
2571 }
2572 
2573 // Because of the need to lock the free lists and other structures in
2574 // the collector, common to all the generations that the collector is
2575 // collecting, we need the gc_prologues of individual CMS generations
2576 // delegate to their collector. It may have been simpler had the
2577 // current infrastructure allowed one to call a prologue on a
2578 // collector. In the absence of that we have the generation's
2579 // prologue delegate to the collector, which delegates back
2580 // some "local" work to a worker method in the individual generations
2581 // that it's responsible for collecting, while itself doing any
2582 // work common to all generations it's responsible for. A similar
2583 // comment applies to the  gc_epilogue()'s.
2584 // The role of the varaible _between_prologue_and_epilogue is to
2585 // enforce the invocation protocol.
2586 void CMSCollector::gc_prologue(bool full) {
2587   // Call gc_prologue_work() for each CMSGen and PermGen that
2588   // we are responsible for.
2589 
2590   // The following locking discipline assumes that we are only called
2591   // when the world is stopped.
2592   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2593 
2594   // The CMSCollector prologue must call the gc_prologues for the
2595   // "generations" (including PermGen if any) that it's responsible
2596   // for.
2597 
2598   assert(   Thread::current()->is_VM_thread()
2599          || (   CMSScavengeBeforeRemark
2600              && Thread::current()->is_ConcurrentGC_thread()),
2601          "Incorrect thread type for prologue execution");
2602 
2603   if (_between_prologue_and_epilogue) {
2604     // We have already been invoked; this is a gc_prologue delegation
2605     // from yet another CMS generation that we are responsible for, just
2606     // ignore it since all relevant work has already been done.
2607     return;
2608   }
2609 
2610   // set a bit saying prologue has been called; cleared in epilogue
2611   _between_prologue_and_epilogue = true;
2612   // Claim locks for common data structures, then call gc_prologue_work()
2613   // for each CMSGen and PermGen that we are responsible for.
2614 
2615   getFreelistLocks();   // gets free list locks on constituent spaces
2616   bitMapLock()->lock_without_safepoint_check();
2617 
2618   // Should call gc_prologue_work() for all cms gens we are responsible for
2619   bool registerClosure =    _collectorState >= Marking
2620                          && _collectorState < Sweeping;
2621   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2622                                                &_modUnionClosurePar
2623                                                : &_modUnionClosure;
2624   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2625   _permGen->gc_prologue_work(full, registerClosure, muc);
2626 
2627   if (!full) {
2628     stats().record_gc0_begin();
2629   }
2630 }
2631 
2632 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2633   // Delegate to CMScollector which knows how to coordinate between
2634   // this and any other CMS generations that it is responsible for
2635   // collecting.
2636   collector()->gc_prologue(full);
2637 }
2638 
2639 // This is a "private" interface for use by this generation's CMSCollector.
2640 // Not to be called directly by any other entity (for instance,
2641 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2642 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2643   bool registerClosure, ModUnionClosure* modUnionClosure) {
2644   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2645   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2646     "Should be NULL");
2647   if (registerClosure) {
2648     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2649   }
2650   cmsSpace()->gc_prologue();
2651   // Clear stat counters
2652   NOT_PRODUCT(
2653     assert(_numObjectsPromoted == 0, "check");
2654     assert(_numWordsPromoted   == 0, "check");
2655     if (Verbose && PrintGC) {
2656       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2657                           SIZE_FORMAT" bytes concurrently",
2658       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2659     }
2660     _numObjectsAllocated = 0;
2661     _numWordsAllocated   = 0;
2662   )
2663 }
2664 
2665 void CMSCollector::gc_epilogue(bool full) {
2666   // The following locking discipline assumes that we are only called
2667   // when the world is stopped.
2668   assert(SafepointSynchronize::is_at_safepoint(),
2669          "world is stopped assumption");
2670 
2671   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2672   // if linear allocation blocks need to be appropriately marked to allow the
2673   // the blocks to be parsable. We also check here whether we need to nudge the
2674   // CMS collector thread to start a new cycle (if it's not already active).
2675   assert(   Thread::current()->is_VM_thread()
2676          || (   CMSScavengeBeforeRemark
2677              && Thread::current()->is_ConcurrentGC_thread()),
2678          "Incorrect thread type for epilogue execution");
2679 
2680   if (!_between_prologue_and_epilogue) {
2681     // We have already been invoked; this is a gc_epilogue delegation
2682     // from yet another CMS generation that we are responsible for, just
2683     // ignore it since all relevant work has already been done.
2684     return;
2685   }
2686   assert(haveFreelistLocks(), "must have freelist locks");
2687   assert_lock_strong(bitMapLock());
2688 
2689   _cmsGen->gc_epilogue_work(full);
2690   _permGen->gc_epilogue_work(full);
2691 
2692   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2693     // in case sampling was not already enabled, enable it
2694     _start_sampling = true;
2695   }
2696   // reset _eden_chunk_array so sampling starts afresh
2697   _eden_chunk_index = 0;
2698 
2699   size_t cms_used   = _cmsGen->cmsSpace()->used();
2700   size_t perm_used  = _permGen->cmsSpace()->used();
2701 
2702   // update performance counters - this uses a special version of
2703   // update_counters() that allows the utilization to be passed as a
2704   // parameter, avoiding multiple calls to used().
2705   //
2706   _cmsGen->update_counters(cms_used);
2707   _permGen->update_counters(perm_used);
2708 
2709   if (CMSIncrementalMode) {
2710     icms_update_allocation_limits();
2711   }
2712 
2713   bitMapLock()->unlock();
2714   releaseFreelistLocks();
2715 
2716   if (!CleanChunkPoolAsync) {
2717     Chunk::clean_chunk_pool();
2718   }
2719 
2720   _between_prologue_and_epilogue = false;  // ready for next cycle
2721 }
2722 
2723 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2724   collector()->gc_epilogue(full);
2725 
2726   // Also reset promotion tracking in par gc thread states.
2727   if (CollectedHeap::use_parallel_gc_threads()) {
2728     for (uint i = 0; i < ParallelGCThreads; i++) {
2729       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2730     }
2731   }
2732 }
2733 
2734 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2735   assert(!incremental_collection_failed(), "Should have been cleared");
2736   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2737   cmsSpace()->gc_epilogue();
2738     // Print stat counters
2739   NOT_PRODUCT(
2740     assert(_numObjectsAllocated == 0, "check");
2741     assert(_numWordsAllocated == 0, "check");
2742     if (Verbose && PrintGC) {
2743       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2744                           SIZE_FORMAT" bytes",
2745                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2746     }
2747     _numObjectsPromoted = 0;
2748     _numWordsPromoted   = 0;
2749   )
2750 
2751   if (PrintGC && Verbose) {
2752     // Call down the chain in contiguous_available needs the freelistLock
2753     // so print this out before releasing the freeListLock.
2754     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2755                         contiguous_available());
2756   }
2757 }
2758 
2759 #ifndef PRODUCT
2760 bool CMSCollector::have_cms_token() {
2761   Thread* thr = Thread::current();
2762   if (thr->is_VM_thread()) {
2763     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2764   } else if (thr->is_ConcurrentGC_thread()) {
2765     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2766   } else if (thr->is_GC_task_thread()) {
2767     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2768            ParGCRareEvent_lock->owned_by_self();
2769   }
2770   return false;
2771 }
2772 #endif
2773 
2774 // Check reachability of the given heap address in CMS generation,
2775 // treating all other generations as roots.
2776 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2777   // We could "guarantee" below, rather than assert, but i'll
2778   // leave these as "asserts" so that an adventurous debugger
2779   // could try this in the product build provided some subset of
2780   // the conditions were met, provided they were intersted in the
2781   // results and knew that the computation below wouldn't interfere
2782   // with other concurrent computations mutating the structures
2783   // being read or written.
2784   assert(SafepointSynchronize::is_at_safepoint(),
2785          "Else mutations in object graph will make answer suspect");
2786   assert(have_cms_token(), "Should hold cms token");
2787   assert(haveFreelistLocks(), "must hold free list locks");
2788   assert_lock_strong(bitMapLock());
2789 
2790   // Clear the marking bit map array before starting, but, just
2791   // for kicks, first report if the given address is already marked
2792   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2793                 _markBitMap.isMarked(addr) ? "" : " not");
2794 
2795   if (verify_after_remark()) {
2796     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2797     bool result = verification_mark_bm()->isMarked(addr);
2798     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2799                            result ? "IS" : "is NOT");
2800     return result;
2801   } else {
2802     gclog_or_tty->print_cr("Could not compute result");
2803     return false;
2804   }
2805 }
2806 
2807 ////////////////////////////////////////////////////////
2808 // CMS Verification Support
2809 ////////////////////////////////////////////////////////
2810 // Following the remark phase, the following invariant
2811 // should hold -- each object in the CMS heap which is
2812 // marked in markBitMap() should be marked in the verification_mark_bm().
2813 
2814 class VerifyMarkedClosure: public BitMapClosure {
2815   CMSBitMap* _marks;
2816   bool       _failed;
2817 
2818  public:
2819   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2820 
2821   bool do_bit(size_t offset) {
2822     HeapWord* addr = _marks->offsetToHeapWord(offset);
2823     if (!_marks->isMarked(addr)) {
2824       oop(addr)->print_on(gclog_or_tty);
2825       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2826       _failed = true;
2827     }
2828     return true;
2829   }
2830 
2831   bool failed() { return _failed; }
2832 };
2833 
2834 bool CMSCollector::verify_after_remark() {
2835   gclog_or_tty->print(" [Verifying CMS Marking... ");
2836   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2837   static bool init = false;
2838 
2839   assert(SafepointSynchronize::is_at_safepoint(),
2840          "Else mutations in object graph will make answer suspect");
2841   assert(have_cms_token(),
2842          "Else there may be mutual interference in use of "
2843          " verification data structures");
2844   assert(_collectorState > Marking && _collectorState <= Sweeping,
2845          "Else marking info checked here may be obsolete");
2846   assert(haveFreelistLocks(), "must hold free list locks");
2847   assert_lock_strong(bitMapLock());
2848 
2849 
2850   // Allocate marking bit map if not already allocated
2851   if (!init) { // first time
2852     if (!verification_mark_bm()->allocate(_span)) {
2853       return false;
2854     }
2855     init = true;
2856   }
2857 
2858   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2859 
2860   // Turn off refs discovery -- so we will be tracing through refs.
2861   // This is as intended, because by this time
2862   // GC must already have cleared any refs that need to be cleared,
2863   // and traced those that need to be marked; moreover,
2864   // the marking done here is not going to intefere in any
2865   // way with the marking information used by GC.
2866   NoRefDiscovery no_discovery(ref_processor());
2867 
2868   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2869 
2870   // Clear any marks from a previous round
2871   verification_mark_bm()->clear_all();
2872   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2873   verify_work_stacks_empty();
2874 
2875   GenCollectedHeap* gch = GenCollectedHeap::heap();
2876   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2877   // Update the saved marks which may affect the root scans.
2878   gch->save_marks();
2879 
2880   if (CMSRemarkVerifyVariant == 1) {
2881     // In this first variant of verification, we complete
2882     // all marking, then check if the new marks-verctor is
2883     // a subset of the CMS marks-vector.
2884     verify_after_remark_work_1();
2885   } else if (CMSRemarkVerifyVariant == 2) {
2886     // In this second variant of verification, we flag an error
2887     // (i.e. an object reachable in the new marks-vector not reachable
2888     // in the CMS marks-vector) immediately, also indicating the
2889     // identify of an object (A) that references the unmarked object (B) --
2890     // presumably, a mutation to A failed to be picked up by preclean/remark?
2891     verify_after_remark_work_2();
2892   } else {
2893     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2894             CMSRemarkVerifyVariant);
2895   }
2896   gclog_or_tty->print(" done] ");
2897   return true;
2898 }
2899 
2900 void CMSCollector::verify_after_remark_work_1() {
2901   ResourceMark rm;
2902   HandleMark  hm;
2903   GenCollectedHeap* gch = GenCollectedHeap::heap();
2904 
2905   // Mark from roots one level into CMS
2906   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2907   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2908 
2909   gch->gen_process_strong_roots(_cmsGen->level(),
2910                                 true,   // younger gens are roots
2911                                 true,   // activate StrongRootsScope
2912                                 true,   // collecting perm gen
2913                                 SharedHeap::ScanningOption(roots_scanning_options()),
2914                                 &notOlder,
2915                                 true,   // walk code active on stacks
2916                                 NULL);
2917 
2918   // Now mark from the roots
2919   assert(_revisitStack.isEmpty(), "Should be empty");
2920   MarkFromRootsClosure markFromRootsClosure(this, _span,
2921     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
2922     false /* don't yield */, true /* verifying */);
2923   assert(_restart_addr == NULL, "Expected pre-condition");
2924   verification_mark_bm()->iterate(&markFromRootsClosure);
2925   while (_restart_addr != NULL) {
2926     // Deal with stack overflow: by restarting at the indicated
2927     // address.
2928     HeapWord* ra = _restart_addr;
2929     markFromRootsClosure.reset(ra);
2930     _restart_addr = NULL;
2931     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2932   }
2933   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2934   verify_work_stacks_empty();
2935   // Should reset the revisit stack above, since no class tree
2936   // surgery is forthcoming.
2937   _revisitStack.reset(); // throwing away all contents
2938 
2939   // Marking completed -- now verify that each bit marked in
2940   // verification_mark_bm() is also marked in markBitMap(); flag all
2941   // errors by printing corresponding objects.
2942   VerifyMarkedClosure vcl(markBitMap());
2943   verification_mark_bm()->iterate(&vcl);
2944   if (vcl.failed()) {
2945     gclog_or_tty->print("Verification failed");
2946     Universe::heap()->print_on(gclog_or_tty);
2947     fatal("CMS: failed marking verification after remark");
2948   }
2949 }
2950 
2951 void CMSCollector::verify_after_remark_work_2() {
2952   ResourceMark rm;
2953   HandleMark  hm;
2954   GenCollectedHeap* gch = GenCollectedHeap::heap();
2955 
2956   // Mark from roots one level into CMS
2957   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2958                                      markBitMap());
2959   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2960   gch->gen_process_strong_roots(_cmsGen->level(),
2961                                 true,   // younger gens are roots
2962                                 true,   // activate StrongRootsScope
2963                                 true,   // collecting perm gen
2964                                 SharedHeap::ScanningOption(roots_scanning_options()),
2965                                 &notOlder,
2966                                 true,   // walk code active on stacks
2967                                 NULL);
2968 
2969   // Now mark from the roots
2970   assert(_revisitStack.isEmpty(), "Should be empty");
2971   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2972     verification_mark_bm(), markBitMap(), verification_mark_stack());
2973   assert(_restart_addr == NULL, "Expected pre-condition");
2974   verification_mark_bm()->iterate(&markFromRootsClosure);
2975   while (_restart_addr != NULL) {
2976     // Deal with stack overflow: by restarting at the indicated
2977     // address.
2978     HeapWord* ra = _restart_addr;
2979     markFromRootsClosure.reset(ra);
2980     _restart_addr = NULL;
2981     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2982   }
2983   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2984   verify_work_stacks_empty();
2985   // Should reset the revisit stack above, since no class tree
2986   // surgery is forthcoming.
2987   _revisitStack.reset(); // throwing away all contents
2988 
2989   // Marking completed -- now verify that each bit marked in
2990   // verification_mark_bm() is also marked in markBitMap(); flag all
2991   // errors by printing corresponding objects.
2992   VerifyMarkedClosure vcl(markBitMap());
2993   verification_mark_bm()->iterate(&vcl);
2994   assert(!vcl.failed(), "Else verification above should not have succeeded");
2995 }
2996 
2997 void ConcurrentMarkSweepGeneration::save_marks() {
2998   // delegate to CMS space
2999   cmsSpace()->save_marks();
3000   for (uint i = 0; i < ParallelGCThreads; i++) {
3001     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3002   }
3003 }
3004 
3005 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3006   return cmsSpace()->no_allocs_since_save_marks();
3007 }
3008 
3009 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3010                                                                 \
3011 void ConcurrentMarkSweepGeneration::                            \
3012 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3013   cl->set_generation(this);                                     \
3014   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3015   cl->reset_generation();                                       \
3016   save_marks();                                                 \
3017 }
3018 
3019 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3020 
3021 void
3022 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
3023 {
3024   // Not currently implemented; need to do the following. -- ysr.
3025   // dld -- I think that is used for some sort of allocation profiler.  So it
3026   // really means the objects allocated by the mutator since the last
3027   // GC.  We could potentially implement this cheaply by recording only
3028   // the direct allocations in a side data structure.
3029   //
3030   // I think we probably ought not to be required to support these
3031   // iterations at any arbitrary point; I think there ought to be some
3032   // call to enable/disable allocation profiling in a generation/space,
3033   // and the iterator ought to return the objects allocated in the
3034   // gen/space since the enable call, or the last iterator call (which
3035   // will probably be at a GC.)  That way, for gens like CM&S that would
3036   // require some extra data structure to support this, we only pay the
3037   // cost when it's in use...
3038   cmsSpace()->object_iterate_since_last_GC(blk);
3039 }
3040 
3041 void
3042 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3043   cl->set_generation(this);
3044   younger_refs_in_space_iterate(_cmsSpace, cl);
3045   cl->reset_generation();
3046 }
3047 
3048 void
3049 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
3050   if (freelistLock()->owned_by_self()) {
3051     Generation::oop_iterate(mr, cl);
3052   } else {
3053     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3054     Generation::oop_iterate(mr, cl);
3055   }
3056 }
3057 
3058 void
3059 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
3060   if (freelistLock()->owned_by_self()) {
3061     Generation::oop_iterate(cl);
3062   } else {
3063     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3064     Generation::oop_iterate(cl);
3065   }
3066 }
3067 
3068 void
3069 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3070   if (freelistLock()->owned_by_self()) {
3071     Generation::object_iterate(cl);
3072   } else {
3073     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3074     Generation::object_iterate(cl);
3075   }
3076 }
3077 
3078 void
3079 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3080   if (freelistLock()->owned_by_self()) {
3081     Generation::safe_object_iterate(cl);
3082   } else {
3083     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3084     Generation::safe_object_iterate(cl);
3085   }
3086 }
3087 
3088 void
3089 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
3090 }
3091 
3092 void
3093 ConcurrentMarkSweepGeneration::post_compact() {
3094 }
3095 
3096 void
3097 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3098   // Fix the linear allocation blocks to look like free blocks.
3099 
3100   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3101   // are not called when the heap is verified during universe initialization and
3102   // at vm shutdown.
3103   if (freelistLock()->owned_by_self()) {
3104     cmsSpace()->prepare_for_verify();
3105   } else {
3106     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3107     cmsSpace()->prepare_for_verify();
3108   }
3109 }
3110 
3111 void
3112 ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
3113   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3114   // are not called when the heap is verified during universe initialization and
3115   // at vm shutdown.
3116   if (freelistLock()->owned_by_self()) {
3117     cmsSpace()->verify(false /* ignored */);
3118   } else {
3119     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3120     cmsSpace()->verify(false /* ignored */);
3121   }
3122 }
3123 
3124 void CMSCollector::verify(bool allow_dirty /* ignored */) {
3125   _cmsGen->verify(allow_dirty);
3126   _permGen->verify(allow_dirty);
3127 }
3128 
3129 #ifndef PRODUCT
3130 bool CMSCollector::overflow_list_is_empty() const {
3131   assert(_num_par_pushes >= 0, "Inconsistency");
3132   if (_overflow_list == NULL) {
3133     assert(_num_par_pushes == 0, "Inconsistency");
3134   }
3135   return _overflow_list == NULL;
3136 }
3137 
3138 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3139 // merely consolidate assertion checks that appear to occur together frequently.
3140 void CMSCollector::verify_work_stacks_empty() const {
3141   assert(_markStack.isEmpty(), "Marking stack should be empty");
3142   assert(overflow_list_is_empty(), "Overflow list should be empty");
3143 }
3144 
3145 void CMSCollector::verify_overflow_empty() const {
3146   assert(overflow_list_is_empty(), "Overflow list should be empty");
3147   assert(no_preserved_marks(), "No preserved marks");
3148 }
3149 #endif // PRODUCT
3150 
3151 // Decide if we want to enable class unloading as part of the
3152 // ensuing concurrent GC cycle. We will collect the perm gen and
3153 // unload classes if it's the case that:
3154 // (1) an explicit gc request has been made and the flag
3155 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3156 // (2) (a) class unloading is enabled at the command line, and
3157 //     (b) (i)   perm gen threshold has been crossed, or
3158 //         (ii)  old gen is getting really full, or
3159 //         (iii) the previous N CMS collections did not collect the
3160 //               perm gen
3161 // NOTE: Provided there is no change in the state of the heap between
3162 // calls to this method, it should have idempotent results. Moreover,
3163 // its results should be monotonically increasing (i.e. going from 0 to 1,
3164 // but not 1 to 0) between successive calls between which the heap was
3165 // not collected. For the implementation below, it must thus rely on
3166 // the property that concurrent_cycles_since_last_unload()
3167 // will not decrease unless a collection cycle happened and that
3168 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
3169 // themselves also monotonic in that sense. See check_monotonicity()
3170 // below.
3171 bool CMSCollector::update_should_unload_classes() {
3172   _should_unload_classes = false;
3173   // Condition 1 above
3174   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3175     _should_unload_classes = true;
3176   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3177     // Disjuncts 2.b.(i,ii,iii) above
3178     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3179                               CMSClassUnloadingMaxInterval)
3180                            || _permGen->should_concurrent_collect()
3181                            || _cmsGen->is_too_full();
3182   }
3183   return _should_unload_classes;
3184 }
3185 
3186 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3187   bool res = should_concurrent_collect();
3188   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3189   return res;
3190 }
3191 
3192 void CMSCollector::setup_cms_unloading_and_verification_state() {
3193   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3194                              || VerifyBeforeExit;
3195   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3196 
3197   if (should_unload_classes()) {   // Should unload classes this cycle
3198     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3199     set_verifying(should_verify);    // Set verification state for this cycle
3200     return;                            // Nothing else needs to be done at this time
3201   }
3202 
3203   // Not unloading classes this cycle
3204   assert(!should_unload_classes(), "Inconsitency!");
3205   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3206     // We were not verifying, or we _were_ unloading classes in the last cycle,
3207     // AND some verification options are enabled this cycle; in this case,
3208     // we must make sure that the deadness map is allocated if not already so,
3209     // and cleared (if already allocated previously --
3210     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
3211     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
3212       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
3213         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
3214                 "permanent generation verification disabled");
3215         return;  // Note that we leave verification disabled, so we'll retry this
3216                  // allocation next cycle. We _could_ remember this failure
3217                  // and skip further attempts and permanently disable verification
3218                  // attempts if that is considered more desirable.
3219       }
3220       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
3221               "_perm_gen_ver_bit_map inconsistency?");
3222     } else {
3223       perm_gen_verify_bit_map()->clear_all();
3224     }
3225     // Include symbols, strings and code cache elements to prevent their resurrection.
3226     add_root_scanning_option(rso);
3227     set_verifying(true);
3228   } else if (verifying() && !should_verify) {
3229     // We were verifying, but some verification flags got disabled.
3230     set_verifying(false);
3231     // Exclude symbols, strings and code cache elements from root scanning to
3232     // reduce IM and RM pauses.
3233     remove_root_scanning_option(rso);
3234   }
3235 }
3236 
3237 
3238 #ifndef PRODUCT
3239 HeapWord* CMSCollector::block_start(const void* p) const {
3240   const HeapWord* addr = (HeapWord*)p;
3241   if (_span.contains(p)) {
3242     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3243       return _cmsGen->cmsSpace()->block_start(p);
3244     } else {
3245       assert(_permGen->cmsSpace()->is_in_reserved(addr),
3246              "Inconsistent _span?");
3247       return _permGen->cmsSpace()->block_start(p);
3248     }
3249   }
3250   return NULL;
3251 }
3252 #endif
3253 
3254 HeapWord*
3255 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3256                                                    bool   tlab,
3257                                                    bool   parallel) {
3258   CMSSynchronousYieldRequest yr;
3259   assert(!tlab, "Can't deal with TLAB allocation");
3260   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3261   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3262     CMSExpansionCause::_satisfy_allocation);
3263   if (GCExpandToAllocateDelayMillis > 0) {
3264     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3265   }
3266   return have_lock_and_allocate(word_size, tlab);
3267 }
3268 
3269 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3270 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3271 // to CardGeneration and share it...
3272 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3273   return CardGeneration::expand(bytes, expand_bytes);
3274 }
3275 
3276 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3277   CMSExpansionCause::Cause cause)
3278 {
3279 
3280   bool success = expand(bytes, expand_bytes);
3281 
3282   // remember why we expanded; this information is used
3283   // by shouldConcurrentCollect() when making decisions on whether to start
3284   // a new CMS cycle.
3285   if (success) {
3286     set_expansion_cause(cause);
3287     if (PrintGCDetails && Verbose) {
3288       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3289         CMSExpansionCause::to_string(cause));
3290     }
3291   }
3292 }
3293 
3294 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3295   HeapWord* res = NULL;
3296   MutexLocker x(ParGCRareEvent_lock);
3297   while (true) {
3298     // Expansion by some other thread might make alloc OK now:
3299     res = ps->lab.alloc(word_sz);
3300     if (res != NULL) return res;
3301     // If there's not enough expansion space available, give up.
3302     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3303       return NULL;
3304     }
3305     // Otherwise, we try expansion.
3306     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3307       CMSExpansionCause::_allocate_par_lab);
3308     // Now go around the loop and try alloc again;
3309     // A competing par_promote might beat us to the expansion space,
3310     // so we may go around the loop again if promotion fails agaion.
3311     if (GCExpandToAllocateDelayMillis > 0) {
3312       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3313     }
3314   }
3315 }
3316 
3317 
3318 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3319   PromotionInfo* promo) {
3320   MutexLocker x(ParGCRareEvent_lock);
3321   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3322   while (true) {
3323     // Expansion by some other thread might make alloc OK now:
3324     if (promo->ensure_spooling_space()) {
3325       assert(promo->has_spooling_space(),
3326              "Post-condition of successful ensure_spooling_space()");
3327       return true;
3328     }
3329     // If there's not enough expansion space available, give up.
3330     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3331       return false;
3332     }
3333     // Otherwise, we try expansion.
3334     expand(refill_size_bytes, MinHeapDeltaBytes,
3335       CMSExpansionCause::_allocate_par_spooling_space);
3336     // Now go around the loop and try alloc again;
3337     // A competing allocation might beat us to the expansion space,
3338     // so we may go around the loop again if allocation fails again.
3339     if (GCExpandToAllocateDelayMillis > 0) {
3340       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3341     }
3342   }
3343 }
3344 
3345 
3346 
3347 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3348   assert_locked_or_safepoint(Heap_lock);
3349   size_t size = ReservedSpace::page_align_size_down(bytes);
3350   if (size > 0) {
3351     shrink_by(size);
3352   }
3353 }
3354 
3355 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3356   assert_locked_or_safepoint(Heap_lock);
3357   bool result = _virtual_space.expand_by(bytes);
3358   if (result) {
3359     HeapWord* old_end = _cmsSpace->end();
3360     size_t new_word_size =
3361       heap_word_size(_virtual_space.committed_size());
3362     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3363     _bts->resize(new_word_size);  // resize the block offset shared array
3364     Universe::heap()->barrier_set()->resize_covered_region(mr);
3365     // Hmmmm... why doesn't CFLS::set_end verify locking?
3366     // This is quite ugly; FIX ME XXX
3367     _cmsSpace->assert_locked(freelistLock());
3368     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3369 
3370     // update the space and generation capacity counters
3371     if (UsePerfData) {
3372       _space_counters->update_capacity();
3373       _gen_counters->update_all();
3374     }
3375 
3376     if (Verbose && PrintGC) {
3377       size_t new_mem_size = _virtual_space.committed_size();
3378       size_t old_mem_size = new_mem_size - bytes;
3379       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
3380                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3381     }
3382   }
3383   return result;
3384 }
3385 
3386 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3387   assert_locked_or_safepoint(Heap_lock);
3388   bool success = true;
3389   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3390   if (remaining_bytes > 0) {
3391     success = grow_by(remaining_bytes);
3392     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3393   }
3394   return success;
3395 }
3396 
3397 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3398   assert_locked_or_safepoint(Heap_lock);
3399   assert_lock_strong(freelistLock());
3400   // XXX Fix when compaction is implemented.
3401   warning("Shrinking of CMS not yet implemented");
3402   return;
3403 }
3404 
3405 
3406 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3407 // phases.
3408 class CMSPhaseAccounting: public StackObj {
3409  public:
3410   CMSPhaseAccounting(CMSCollector *collector,
3411                      const char *phase,
3412                      bool print_cr = true);
3413   ~CMSPhaseAccounting();
3414 
3415  private:
3416   CMSCollector *_collector;
3417   const char *_phase;
3418   elapsedTimer _wallclock;
3419   bool _print_cr;
3420 
3421  public:
3422   // Not MT-safe; so do not pass around these StackObj's
3423   // where they may be accessed by other threads.
3424   jlong wallclock_millis() {
3425     assert(_wallclock.is_active(), "Wall clock should not stop");
3426     _wallclock.stop();  // to record time
3427     jlong ret = _wallclock.milliseconds();
3428     _wallclock.start(); // restart
3429     return ret;
3430   }
3431 };
3432 
3433 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3434                                        const char *phase,
3435                                        bool print_cr) :
3436   _collector(collector), _phase(phase), _print_cr(print_cr) {
3437 
3438   if (PrintCMSStatistics != 0) {
3439     _collector->resetYields();
3440   }
3441   if (PrintGCDetails && PrintGCTimeStamps) {
3442     gclog_or_tty->date_stamp(PrintGCDateStamps);
3443     gclog_or_tty->stamp();
3444     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
3445       _collector->cmsGen()->short_name(), _phase);
3446   }
3447   _collector->resetTimer();
3448   _wallclock.start();
3449   _collector->startTimer();
3450 }
3451 
3452 CMSPhaseAccounting::~CMSPhaseAccounting() {
3453   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3454   _collector->stopTimer();
3455   _wallclock.stop();
3456   if (PrintGCDetails) {
3457     gclog_or_tty->date_stamp(PrintGCDateStamps);
3458     if (PrintGCTimeStamps) {
3459       gclog_or_tty->stamp();
3460       gclog_or_tty->print(": ");
3461     }
3462     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3463                  _collector->cmsGen()->short_name(),
3464                  _phase, _collector->timerValue(), _wallclock.seconds());
3465     if (_print_cr) {
3466       gclog_or_tty->print_cr("");
3467     }
3468     if (PrintCMSStatistics != 0) {
3469       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3470                     _collector->yields());
3471     }
3472   }
3473 }
3474 
3475 // CMS work
3476 
3477 // Checkpoint the roots into this generation from outside
3478 // this generation. [Note this initial checkpoint need only
3479 // be approximate -- we'll do a catch up phase subsequently.]
3480 void CMSCollector::checkpointRootsInitial(bool asynch) {
3481   assert(_collectorState == InitialMarking, "Wrong collector state");
3482   check_correct_thread_executing();
3483   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3484 
3485   ReferenceProcessor* rp = ref_processor();
3486   SpecializationStats::clear();
3487   assert(_restart_addr == NULL, "Control point invariant");
3488   if (asynch) {
3489     // acquire locks for subsequent manipulations
3490     MutexLockerEx x(bitMapLock(),
3491                     Mutex::_no_safepoint_check_flag);
3492     checkpointRootsInitialWork(asynch);
3493     rp->verify_no_references_recorded();
3494     rp->enable_discovery(); // enable ("weak") refs discovery
3495     _collectorState = Marking;
3496   } else {
3497     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3498     // which recognizes if we are a CMS generation, and doesn't try to turn on
3499     // discovery; verify that they aren't meddling.
3500     assert(!rp->discovery_is_atomic(),
3501            "incorrect setting of discovery predicate");
3502     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3503            "ref discovery for this generation kind");
3504     // already have locks
3505     checkpointRootsInitialWork(asynch);
3506     rp->enable_discovery(); // now enable ("weak") refs discovery
3507     _collectorState = Marking;
3508   }
3509   SpecializationStats::print();
3510 }
3511 
3512 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3513   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3514   assert(_collectorState == InitialMarking, "just checking");
3515 
3516   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3517   // precede our marking with a collection of all
3518   // younger generations to keep floating garbage to a minimum.
3519   // XXX: we won't do this for now -- it's an optimization to be done later.
3520 
3521   // already have locks
3522   assert_lock_strong(bitMapLock());
3523   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3524 
3525   // Setup the verification and class unloading state for this
3526   // CMS collection cycle.
3527   setup_cms_unloading_and_verification_state();
3528 
3529   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
3530     PrintGCDetails && Verbose, true, gclog_or_tty);)
3531   if (UseAdaptiveSizePolicy) {
3532     size_policy()->checkpoint_roots_initial_begin();
3533   }
3534 
3535   // Reset all the PLAB chunk arrays if necessary.
3536   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3537     reset_survivor_plab_arrays();
3538   }
3539 
3540   ResourceMark rm;
3541   HandleMark  hm;
3542 
3543   FalseClosure falseClosure;
3544   // In the case of a synchronous collection, we will elide the
3545   // remark step, so it's important to catch all the nmethod oops
3546   // in this step.
3547   // The final 'true' flag to gen_process_strong_roots will ensure this.
3548   // If 'async' is true, we can relax the nmethod tracing.
3549   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3550   GenCollectedHeap* gch = GenCollectedHeap::heap();
3551 
3552   verify_work_stacks_empty();
3553   verify_overflow_empty();
3554 
3555   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3556   // Update the saved marks which may affect the root scans.
3557   gch->save_marks();
3558 
3559   // weak reference processing has not started yet.
3560   ref_processor()->set_enqueuing_is_done(false);
3561 
3562   {
3563     // This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);)
3564     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3565     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3566     gch->gen_process_strong_roots(_cmsGen->level(),
3567                                   true,   // younger gens are roots
3568                                   true,   // activate StrongRootsScope
3569                                   true,   // collecting perm gen
3570                                   SharedHeap::ScanningOption(roots_scanning_options()),
3571                                   &notOlder,
3572                                   true,   // walk all of code cache if (so & SO_CodeCache)
3573                                   NULL);
3574   }
3575 
3576   // Clear mod-union table; it will be dirtied in the prologue of
3577   // CMS generation per each younger generation collection.
3578 
3579   assert(_modUnionTable.isAllClear(),
3580        "Was cleared in most recent final checkpoint phase"
3581        " or no bits are set in the gc_prologue before the start of the next "
3582        "subsequent marking phase.");
3583 
3584   // Temporarily disabled, since pre/post-consumption closures don't
3585   // care about precleaned cards
3586   #if 0
3587   {
3588     MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
3589                              (HeapWord*)_virtual_space.high());
3590     _ct->ct_bs()->preclean_dirty_cards(mr);
3591   }
3592   #endif
3593 
3594   // Save the end of the used_region of the constituent generations
3595   // to be used to limit the extent of sweep in each generation.
3596   save_sweep_limits();
3597   if (UseAdaptiveSizePolicy) {
3598     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3599   }
3600   verify_overflow_empty();
3601 }
3602 
3603 bool CMSCollector::markFromRoots(bool asynch) {
3604   // we might be tempted to assert that:
3605   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3606   //        "inconsistent argument?");
3607   // However that wouldn't be right, because it's possible that
3608   // a safepoint is indeed in progress as a younger generation
3609   // stop-the-world GC happens even as we mark in this generation.
3610   assert(_collectorState == Marking, "inconsistent state?");
3611   check_correct_thread_executing();
3612   verify_overflow_empty();
3613 
3614   bool res;
3615   if (asynch) {
3616 
3617     // Start the timers for adaptive size policy for the concurrent phases
3618     // Do it here so that the foreground MS can use the concurrent
3619     // timer since a foreground MS might has the sweep done concurrently
3620     // or STW.
3621     if (UseAdaptiveSizePolicy) {
3622       size_policy()->concurrent_marking_begin();
3623     }
3624 
3625     // Weak ref discovery note: We may be discovering weak
3626     // refs in this generation concurrent (but interleaved) with
3627     // weak ref discovery by a younger generation collector.
3628 
3629     CMSTokenSyncWithLocks ts(true, bitMapLock());
3630     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3631     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3632     res = markFromRootsWork(asynch);
3633     if (res) {
3634       _collectorState = Precleaning;
3635     } else { // We failed and a foreground collection wants to take over
3636       assert(_foregroundGCIsActive, "internal state inconsistency");
3637       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3638       if (PrintGCDetails) {
3639         gclog_or_tty->print_cr("bailing out to foreground collection");
3640       }
3641     }
3642     if (UseAdaptiveSizePolicy) {
3643       size_policy()->concurrent_marking_end();
3644     }
3645   } else {
3646     assert(SafepointSynchronize::is_at_safepoint(),
3647            "inconsistent with asynch == false");
3648     if (UseAdaptiveSizePolicy) {
3649       size_policy()->ms_collection_marking_begin();
3650     }
3651     // already have locks
3652     res = markFromRootsWork(asynch);
3653     _collectorState = FinalMarking;
3654     if (UseAdaptiveSizePolicy) {
3655       GenCollectedHeap* gch = GenCollectedHeap::heap();
3656       size_policy()->ms_collection_marking_end(gch->gc_cause());
3657     }
3658   }
3659   verify_overflow_empty();
3660   return res;
3661 }
3662 
3663 bool CMSCollector::markFromRootsWork(bool asynch) {
3664   // iterate over marked bits in bit map, doing a full scan and mark
3665   // from these roots using the following algorithm:
3666   // . if oop is to the right of the current scan pointer,
3667   //   mark corresponding bit (we'll process it later)
3668   // . else (oop is to left of current scan pointer)
3669   //   push oop on marking stack
3670   // . drain the marking stack
3671 
3672   // Note that when we do a marking step we need to hold the
3673   // bit map lock -- recall that direct allocation (by mutators)
3674   // and promotion (by younger generation collectors) is also
3675   // marking the bit map. [the so-called allocate live policy.]
3676   // Because the implementation of bit map marking is not
3677   // robust wrt simultaneous marking of bits in the same word,
3678   // we need to make sure that there is no such interference
3679   // between concurrent such updates.
3680 
3681   // already have locks
3682   assert_lock_strong(bitMapLock());
3683 
3684   // Clear the revisit stack, just in case there are any
3685   // obsolete contents from a short-circuited previous CMS cycle.
3686   _revisitStack.reset();
3687   verify_work_stacks_empty();
3688   verify_overflow_empty();
3689   assert(_revisitStack.isEmpty(), "tabula rasa");
3690   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
3691   bool result = false;
3692   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3693     result = do_marking_mt(asynch);
3694   } else {
3695     result = do_marking_st(asynch);
3696   }
3697   return result;
3698 }
3699 
3700 // Forward decl
3701 class CMSConcMarkingTask;
3702 
3703 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3704   CMSCollector*       _collector;
3705   CMSConcMarkingTask* _task;
3706  public:
3707   virtual void yield();
3708 
3709   // "n_threads" is the number of threads to be terminated.
3710   // "queue_set" is a set of work queues of other threads.
3711   // "collector" is the CMS collector associated with this task terminator.
3712   // "yield" indicates whether we need the gang as a whole to yield.
3713   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3714     ParallelTaskTerminator(n_threads, queue_set),
3715     _collector(collector) { }
3716 
3717   void set_task(CMSConcMarkingTask* task) {
3718     _task = task;
3719   }
3720 };
3721 
3722 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3723   CMSConcMarkingTask* _task;
3724  public:
3725   bool should_exit_termination();
3726   void set_task(CMSConcMarkingTask* task) {
3727     _task = task;
3728   }
3729 };
3730 
3731 // MT Concurrent Marking Task
3732 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3733   CMSCollector* _collector;
3734   int           _n_workers;                  // requested/desired # workers
3735   bool          _asynch;
3736   bool          _result;
3737   CompactibleFreeListSpace*  _cms_space;
3738   CompactibleFreeListSpace* _perm_space;
3739   char          _pad_front[64];   // padding to ...
3740   HeapWord*     _global_finger;   // ... avoid sharing cache line
3741   char          _pad_back[64];
3742   HeapWord*     _restart_addr;
3743 
3744   //  Exposed here for yielding support
3745   Mutex* const _bit_map_lock;
3746 
3747   // The per thread work queues, available here for stealing
3748   OopTaskQueueSet*  _task_queues;
3749 
3750   // Termination (and yielding) support
3751   CMSConcMarkingTerminator _term;
3752   CMSConcMarkingTerminatorTerminator _term_term;
3753 
3754  public:
3755   CMSConcMarkingTask(CMSCollector* collector,
3756                  CompactibleFreeListSpace* cms_space,
3757                  CompactibleFreeListSpace* perm_space,
3758                  bool asynch,
3759                  YieldingFlexibleWorkGang* workers,
3760                  OopTaskQueueSet* task_queues):
3761     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3762     _collector(collector),
3763     _cms_space(cms_space),
3764     _perm_space(perm_space),
3765     _asynch(asynch), _n_workers(0), _result(true),
3766     _task_queues(task_queues),
3767     _term(_n_workers, task_queues, _collector),
3768     _bit_map_lock(collector->bitMapLock())
3769   {
3770     _requested_size = _n_workers;
3771     _term.set_task(this);
3772     _term_term.set_task(this);
3773     assert(_cms_space->bottom() < _perm_space->bottom(),
3774            "Finger incorrectly initialized below");
3775     _restart_addr = _global_finger = _cms_space->bottom();
3776   }
3777 
3778 
3779   OopTaskQueueSet* task_queues()  { return _task_queues; }
3780 
3781   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3782 
3783   HeapWord** global_finger_addr() { return &_global_finger; }
3784 
3785   CMSConcMarkingTerminator* terminator() { return &_term; }
3786 
3787   virtual void set_for_termination(int active_workers) {
3788     terminator()->reset_for_reuse(active_workers);
3789   }
3790 
3791   void work(int i);
3792   bool should_yield() {
3793     return    ConcurrentMarkSweepThread::should_yield()
3794            && !_collector->foregroundGCIsActive()
3795            && _asynch;
3796   }
3797 
3798   virtual void coordinator_yield();  // stuff done by coordinator
3799   bool result() { return _result; }
3800 
3801   void reset(HeapWord* ra) {
3802     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3803     assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)");
3804     assert(ra             <  _perm_space->end(), "ra too large");
3805     _restart_addr = _global_finger = ra;
3806     _term.reset_for_reuse();
3807   }
3808 
3809   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3810                                            OopTaskQueue* work_q);
3811 
3812  private:
3813   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3814   void do_work_steal(int i);
3815   void bump_global_finger(HeapWord* f);
3816 };
3817 
3818 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3819   assert(_task != NULL, "Error");
3820   return _task->yielding();
3821   // Note that we do not need the disjunct || _task->should_yield() above
3822   // because we want terminating threads to yield only if the task
3823   // is already in the midst of yielding, which happens only after at least one
3824   // thread has yielded.
3825 }
3826 
3827 void CMSConcMarkingTerminator::yield() {
3828   if (_task->should_yield()) {
3829     _task->yield();
3830   } else {
3831     ParallelTaskTerminator::yield();
3832   }
3833 }
3834 
3835 ////////////////////////////////////////////////////////////////
3836 // Concurrent Marking Algorithm Sketch
3837 ////////////////////////////////////////////////////////////////
3838 // Until all tasks exhausted (both spaces):
3839 // -- claim next available chunk
3840 // -- bump global finger via CAS
3841 // -- find first object that starts in this chunk
3842 //    and start scanning bitmap from that position
3843 // -- scan marked objects for oops
3844 // -- CAS-mark target, and if successful:
3845 //    . if target oop is above global finger (volatile read)
3846 //      nothing to do
3847 //    . if target oop is in chunk and above local finger
3848 //        then nothing to do
3849 //    . else push on work-queue
3850 // -- Deal with possible overflow issues:
3851 //    . local work-queue overflow causes stuff to be pushed on
3852 //      global (common) overflow queue
3853 //    . always first empty local work queue
3854 //    . then get a batch of oops from global work queue if any
3855 //    . then do work stealing
3856 // -- When all tasks claimed (both spaces)
3857 //    and local work queue empty,
3858 //    then in a loop do:
3859 //    . check global overflow stack; steal a batch of oops and trace
3860 //    . try to steal from other threads oif GOS is empty
3861 //    . if neither is available, offer termination
3862 // -- Terminate and return result
3863 //
3864 void CMSConcMarkingTask::work(int i) {
3865   elapsedTimer _timer;
3866   ResourceMark rm;
3867   HandleMark hm;
3868 
3869   DEBUG_ONLY(_collector->verify_overflow_empty();)
3870 
3871   // Before we begin work, our work queue should be empty
3872   assert(work_queue(i)->size() == 0, "Expected to be empty");
3873   // Scan the bitmap covering _cms_space, tracing through grey objects.
3874   _timer.start();
3875   do_scan_and_mark(i, _cms_space);
3876   _timer.stop();
3877   if (PrintCMSStatistics != 0) {
3878     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3879       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
3880   }
3881 
3882   // ... do the same for the _perm_space
3883   _timer.reset();
3884   _timer.start();
3885   do_scan_and_mark(i, _perm_space);
3886   _timer.stop();
3887   if (PrintCMSStatistics != 0) {
3888     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
3889       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
3890   }
3891 
3892   // ... do work stealing
3893   _timer.reset();
3894   _timer.start();
3895   do_work_steal(i);
3896   _timer.stop();
3897   if (PrintCMSStatistics != 0) {
3898     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3899       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
3900   }
3901   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3902   assert(work_queue(i)->size() == 0, "Should have been emptied");
3903   // Note that under the current task protocol, the
3904   // following assertion is true even of the spaces
3905   // expanded since the completion of the concurrent
3906   // marking. XXX This will likely change under a strict
3907   // ABORT semantics.
3908   assert(_global_finger >  _cms_space->end() &&
3909          _global_finger >= _perm_space->end(),
3910          "All tasks have been completed");
3911   DEBUG_ONLY(_collector->verify_overflow_empty();)
3912 }
3913 
3914 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3915   HeapWord* read = _global_finger;
3916   HeapWord* cur  = read;
3917   while (f > read) {
3918     cur = read;
3919     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3920     if (cur == read) {
3921       // our cas succeeded
3922       assert(_global_finger >= f, "protocol consistency");
3923       break;
3924     }
3925   }
3926 }
3927 
3928 // This is really inefficient, and should be redone by
3929 // using (not yet available) block-read and -write interfaces to the
3930 // stack and the work_queue. XXX FIX ME !!!
3931 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3932                                                       OopTaskQueue* work_q) {
3933   // Fast lock-free check
3934   if (ovflw_stk->length() == 0) {
3935     return false;
3936   }
3937   assert(work_q->size() == 0, "Shouldn't steal");
3938   MutexLockerEx ml(ovflw_stk->par_lock(),
3939                    Mutex::_no_safepoint_check_flag);
3940   // Grab up to 1/4 the size of the work queue
3941   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3942                     (size_t)ParGCDesiredObjsFromOverflowList);
3943   num = MIN2(num, ovflw_stk->length());
3944   for (int i = (int) num; i > 0; i--) {
3945     oop cur = ovflw_stk->pop();
3946     assert(cur != NULL, "Counted wrong?");
3947     work_q->push(cur);
3948   }
3949   return num > 0;
3950 }
3951 
3952 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3953   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3954   int n_tasks = pst->n_tasks();
3955   // We allow that there may be no tasks to do here because
3956   // we are restarting after a stack overflow.
3957   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3958   int nth_task = 0;
3959 
3960   HeapWord* aligned_start = sp->bottom();
3961   if (sp->used_region().contains(_restart_addr)) {
3962     // Align down to a card boundary for the start of 0th task
3963     // for this space.
3964     aligned_start =
3965       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3966                                  CardTableModRefBS::card_size);
3967   }
3968 
3969   size_t chunk_size = sp->marking_task_size();
3970   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3971     // Having claimed the nth task in this space,
3972     // compute the chunk that it corresponds to:
3973     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3974                                aligned_start + (nth_task+1)*chunk_size);
3975     // Try and bump the global finger via a CAS;
3976     // note that we need to do the global finger bump
3977     // _before_ taking the intersection below, because
3978     // the task corresponding to that region will be
3979     // deemed done even if the used_region() expands
3980     // because of allocation -- as it almost certainly will
3981     // during start-up while the threads yield in the
3982     // closure below.
3983     HeapWord* finger = span.end();
3984     bump_global_finger(finger);   // atomically
3985     // There are null tasks here corresponding to chunks
3986     // beyond the "top" address of the space.
3987     span = span.intersection(sp->used_region());
3988     if (!span.is_empty()) {  // Non-null task
3989       HeapWord* prev_obj;
3990       assert(!span.contains(_restart_addr) || nth_task == 0,
3991              "Inconsistency");
3992       if (nth_task == 0) {
3993         // For the 0th task, we'll not need to compute a block_start.
3994         if (span.contains(_restart_addr)) {
3995           // In the case of a restart because of stack overflow,
3996           // we might additionally skip a chunk prefix.
3997           prev_obj = _restart_addr;
3998         } else {
3999           prev_obj = span.start();
4000         }
4001       } else {
4002         // We want to skip the first object because
4003         // the protocol is to scan any object in its entirety
4004         // that _starts_ in this span; a fortiori, any
4005         // object starting in an earlier span is scanned
4006         // as part of an earlier claimed task.
4007         // Below we use the "careful" version of block_start
4008         // so we do not try to navigate uninitialized objects.
4009         prev_obj = sp->block_start_careful(span.start());
4010         // Below we use a variant of block_size that uses the
4011         // Printezis bits to avoid waiting for allocated
4012         // objects to become initialized/parsable.
4013         while (prev_obj < span.start()) {
4014           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4015           if (sz > 0) {
4016             prev_obj += sz;
4017           } else {
4018             // In this case we may end up doing a bit of redundant
4019             // scanning, but that appears unavoidable, short of
4020             // locking the free list locks; see bug 6324141.
4021             break;
4022           }
4023         }
4024       }
4025       if (prev_obj < span.end()) {
4026         MemRegion my_span = MemRegion(prev_obj, span.end());
4027         // Do the marking work within a non-empty span --
4028         // the last argument to the constructor indicates whether the
4029         // iteration should be incremental with periodic yields.
4030         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4031                                     &_collector->_markBitMap,
4032                                     work_queue(i),
4033                                     &_collector->_markStack,
4034                                     &_collector->_revisitStack,
4035                                     _asynch);
4036         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4037       } // else nothing to do for this task
4038     }   // else nothing to do for this task
4039   }
4040   // We'd be tempted to assert here that since there are no
4041   // more tasks left to claim in this space, the global_finger
4042   // must exceed space->top() and a fortiori space->end(). However,
4043   // that would not quite be correct because the bumping of
4044   // global_finger occurs strictly after the claiming of a task,
4045   // so by the time we reach here the global finger may not yet
4046   // have been bumped up by the thread that claimed the last
4047   // task.
4048   pst->all_tasks_completed();
4049 }
4050 
4051 class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure {
4052  private:
4053   CMSConcMarkingTask* _task;
4054   MemRegion     _span;
4055   CMSBitMap*    _bit_map;
4056   CMSMarkStack* _overflow_stack;
4057   OopTaskQueue* _work_queue;
4058  protected:
4059   DO_OOP_WORK_DEFN
4060  public:
4061   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4062                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack,
4063                          CMSMarkStack* revisit_stack):
4064     Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
4065     _task(task),
4066     _span(collector->_span),
4067     _work_queue(work_queue),
4068     _bit_map(bit_map),
4069     _overflow_stack(overflow_stack)
4070   { }
4071   virtual void do_oop(oop* p);
4072   virtual void do_oop(narrowOop* p);
4073   void trim_queue(size_t max);
4074   void handle_stack_overflow(HeapWord* lost);
4075   void do_yield_check() {
4076     if (_task->should_yield()) {
4077       _task->yield();
4078     }
4079   }
4080 };
4081 
4082 // Grey object scanning during work stealing phase --
4083 // the salient assumption here is that any references
4084 // that are in these stolen objects being scanned must
4085 // already have been initialized (else they would not have
4086 // been published), so we do not need to check for
4087 // uninitialized objects before pushing here.
4088 void Par_ConcMarkingClosure::do_oop(oop obj) {
4089   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4090   HeapWord* addr = (HeapWord*)obj;
4091   // Check if oop points into the CMS generation
4092   // and is not marked
4093   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4094     // a white object ...
4095     // If we manage to "claim" the object, by being the
4096     // first thread to mark it, then we push it on our
4097     // marking stack
4098     if (_bit_map->par_mark(addr)) {     // ... now grey
4099       // push on work queue (grey set)
4100       bool simulate_overflow = false;
4101       NOT_PRODUCT(
4102         if (CMSMarkStackOverflowALot &&
4103             _collector->simulate_overflow()) {
4104           // simulate a stack overflow
4105           simulate_overflow = true;
4106         }
4107       )
4108       if (simulate_overflow ||
4109           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4110         // stack overflow
4111         if (PrintCMSStatistics != 0) {
4112           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4113                                  SIZE_FORMAT, _overflow_stack->capacity());
4114         }
4115         // We cannot assert that the overflow stack is full because
4116         // it may have been emptied since.
4117         assert(simulate_overflow ||
4118                _work_queue->size() == _work_queue->max_elems(),
4119               "Else push should have succeeded");
4120         handle_stack_overflow(addr);
4121       }
4122     } // Else, some other thread got there first
4123     do_yield_check();
4124   }
4125 }
4126 
4127 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4128 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4129 
4130 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4131   while (_work_queue->size() > max) {
4132     oop new_oop;
4133     if (_work_queue->pop_local(new_oop)) {
4134       assert(new_oop->is_oop(), "Should be an oop");
4135       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4136       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4137       assert(new_oop->is_parsable(), "Should be parsable");
4138       new_oop->oop_iterate(this);  // do_oop() above
4139       do_yield_check();
4140     }
4141   }
4142 }
4143 
4144 // Upon stack overflow, we discard (part of) the stack,
4145 // remembering the least address amongst those discarded
4146 // in CMSCollector's _restart_address.
4147 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4148   // We need to do this under a mutex to prevent other
4149   // workers from interfering with the work done below.
4150   MutexLockerEx ml(_overflow_stack->par_lock(),
4151                    Mutex::_no_safepoint_check_flag);
4152   // Remember the least grey address discarded
4153   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4154   _collector->lower_restart_addr(ra);
4155   _overflow_stack->reset();  // discard stack contents
4156   _overflow_stack->expand(); // expand the stack if possible
4157 }
4158 
4159 
4160 void CMSConcMarkingTask::do_work_steal(int i) {
4161   OopTaskQueue* work_q = work_queue(i);
4162   oop obj_to_scan;
4163   CMSBitMap* bm = &(_collector->_markBitMap);
4164   CMSMarkStack* ovflw = &(_collector->_markStack);
4165   CMSMarkStack* revisit = &(_collector->_revisitStack);
4166   int* seed = _collector->hash_seed(i);
4167   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw, revisit);
4168   while (true) {
4169     cl.trim_queue(0);
4170     assert(work_q->size() == 0, "Should have been emptied above");
4171     if (get_work_from_overflow_stack(ovflw, work_q)) {
4172       // Can't assert below because the work obtained from the
4173       // overflow stack may already have been stolen from us.
4174       // assert(work_q->size() > 0, "Work from overflow stack");
4175       continue;
4176     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4177       assert(obj_to_scan->is_oop(), "Should be an oop");
4178       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4179       obj_to_scan->oop_iterate(&cl);
4180     } else if (terminator()->offer_termination(&_term_term)) {
4181       assert(work_q->size() == 0, "Impossible!");
4182       break;
4183     } else if (yielding() || should_yield()) {
4184       yield();
4185     }
4186   }
4187 }
4188 
4189 // This is run by the CMS (coordinator) thread.
4190 void CMSConcMarkingTask::coordinator_yield() {
4191   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4192          "CMS thread should hold CMS token");
4193   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4194   // First give up the locks, then yield, then re-lock
4195   // We should probably use a constructor/destructor idiom to
4196   // do this unlock/lock or modify the MutexUnlocker class to
4197   // serve our purpose. XXX
4198   assert_lock_strong(_bit_map_lock);
4199   _bit_map_lock->unlock();
4200   ConcurrentMarkSweepThread::desynchronize(true);
4201   ConcurrentMarkSweepThread::acknowledge_yield_request();
4202   _collector->stopTimer();
4203   if (PrintCMSStatistics != 0) {
4204     _collector->incrementYields();
4205   }
4206   _collector->icms_wait();
4207 
4208   // It is possible for whichever thread initiated the yield request
4209   // not to get a chance to wake up and take the bitmap lock between
4210   // this thread releasing it and reacquiring it. So, while the
4211   // should_yield() flag is on, let's sleep for a bit to give the
4212   // other thread a chance to wake up. The limit imposed on the number
4213   // of iterations is defensive, to avoid any unforseen circumstances
4214   // putting us into an infinite loop. Since it's always been this
4215   // (coordinator_yield()) method that was observed to cause the
4216   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4217   // which is by default non-zero. For the other seven methods that
4218   // also perform the yield operation, as are using a different
4219   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4220   // can enable the sleeping for those methods too, if necessary.
4221   // See 6442774.
4222   //
4223   // We really need to reconsider the synchronization between the GC
4224   // thread and the yield-requesting threads in the future and we
4225   // should really use wait/notify, which is the recommended
4226   // way of doing this type of interaction. Additionally, we should
4227   // consolidate the eight methods that do the yield operation and they
4228   // are almost identical into one for better maintenability and
4229   // readability. See 6445193.
4230   //
4231   // Tony 2006.06.29
4232   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4233                    ConcurrentMarkSweepThread::should_yield() &&
4234                    !CMSCollector::foregroundGCIsActive(); ++i) {
4235     os::sleep(Thread::current(), 1, false);
4236     ConcurrentMarkSweepThread::acknowledge_yield_request();
4237   }
4238 
4239   ConcurrentMarkSweepThread::synchronize(true);
4240   _bit_map_lock->lock_without_safepoint_check();
4241   _collector->startTimer();
4242 }
4243 
4244 bool CMSCollector::do_marking_mt(bool asynch) {
4245   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4246   // In the future this would be determined ergonomically, based
4247   // on #cpu's, # active mutator threads (and load), and mutation rate.
4248   int num_workers = ConcGCThreads;
4249 
4250   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4251   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
4252 
4253   CMSConcMarkingTask tsk(this,
4254                          cms_space,
4255                          perm_space,
4256                          asynch,
4257                          conc_workers(),
4258                          task_queues());
4259 
4260   // Since the actual number of workers we get may be different
4261   // from the number we requested above, do we need to do anything different
4262   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4263   // class?? XXX
4264   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4265   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
4266 
4267   // Refs discovery is already non-atomic.
4268   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4269   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4270   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
4271   conc_workers()->start_task(&tsk);
4272   while (tsk.yielded()) {
4273     tsk.coordinator_yield();
4274     conc_workers()->continue_task(&tsk);
4275   }
4276   // If the task was aborted, _restart_addr will be non-NULL
4277   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4278   while (_restart_addr != NULL) {
4279     // XXX For now we do not make use of ABORTED state and have not
4280     // yet implemented the right abort semantics (even in the original
4281     // single-threaded CMS case). That needs some more investigation
4282     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4283     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4284     // If _restart_addr is non-NULL, a marking stack overflow
4285     // occurred; we need to do a fresh marking iteration from the
4286     // indicated restart address.
4287     if (_foregroundGCIsActive && asynch) {
4288       // We may be running into repeated stack overflows, having
4289       // reached the limit of the stack size, while making very
4290       // slow forward progress. It may be best to bail out and
4291       // let the foreground collector do its job.
4292       // Clear _restart_addr, so that foreground GC
4293       // works from scratch. This avoids the headache of
4294       // a "rescan" which would otherwise be needed because
4295       // of the dirty mod union table & card table.
4296       _restart_addr = NULL;
4297       return false;
4298     }
4299     // Adjust the task to restart from _restart_addr
4300     tsk.reset(_restart_addr);
4301     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4302                   _restart_addr);
4303     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
4304                   _restart_addr);
4305     _restart_addr = NULL;
4306     // Get the workers going again
4307     conc_workers()->start_task(&tsk);
4308     while (tsk.yielded()) {
4309       tsk.coordinator_yield();
4310       conc_workers()->continue_task(&tsk);
4311     }
4312   }
4313   assert(tsk.completed(), "Inconsistency");
4314   assert(tsk.result() == true, "Inconsistency");
4315   return true;
4316 }
4317 
4318 bool CMSCollector::do_marking_st(bool asynch) {
4319   ResourceMark rm;
4320   HandleMark   hm;
4321 
4322   // Temporarily make refs discovery single threaded (non-MT)
4323   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4324   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4325     &_markStack, &_revisitStack, CMSYield && asynch);
4326   // the last argument to iterate indicates whether the iteration
4327   // should be incremental with periodic yields.
4328   _markBitMap.iterate(&markFromRootsClosure);
4329   // If _restart_addr is non-NULL, a marking stack overflow
4330   // occurred; we need to do a fresh iteration from the
4331   // indicated restart address.
4332   while (_restart_addr != NULL) {
4333     if (_foregroundGCIsActive && asynch) {
4334       // We may be running into repeated stack overflows, having
4335       // reached the limit of the stack size, while making very
4336       // slow forward progress. It may be best to bail out and
4337       // let the foreground collector do its job.
4338       // Clear _restart_addr, so that foreground GC
4339       // works from scratch. This avoids the headache of
4340       // a "rescan" which would otherwise be needed because
4341       // of the dirty mod union table & card table.
4342       _restart_addr = NULL;
4343       return false;  // indicating failure to complete marking
4344     }
4345     // Deal with stack overflow:
4346     // we restart marking from _restart_addr
4347     HeapWord* ra = _restart_addr;
4348     markFromRootsClosure.reset(ra);
4349     _restart_addr = NULL;
4350     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4351   }
4352   return true;
4353 }
4354 
4355 void CMSCollector::preclean() {
4356   check_correct_thread_executing();
4357   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4358   verify_work_stacks_empty();
4359   verify_overflow_empty();
4360   _abort_preclean = false;
4361   if (CMSPrecleaningEnabled) {
4362     _eden_chunk_index = 0;
4363     size_t used = get_eden_used();
4364     size_t capacity = get_eden_capacity();
4365     // Don't start sampling unless we will get sufficiently
4366     // many samples.
4367     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4368                 * CMSScheduleRemarkEdenPenetration)) {
4369       _start_sampling = true;
4370     } else {
4371       _start_sampling = false;
4372     }
4373     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4374     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4375     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4376   }
4377   CMSTokenSync x(true); // is cms thread
4378   if (CMSPrecleaningEnabled) {
4379     sample_eden();
4380     _collectorState = AbortablePreclean;
4381   } else {
4382     _collectorState = FinalMarking;
4383   }
4384   verify_work_stacks_empty();
4385   verify_overflow_empty();
4386 }
4387 
4388 // Try and schedule the remark such that young gen
4389 // occupancy is CMSScheduleRemarkEdenPenetration %.
4390 void CMSCollector::abortable_preclean() {
4391   check_correct_thread_executing();
4392   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4393   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4394 
4395   // If Eden's current occupancy is below this threshold,
4396   // immediately schedule the remark; else preclean
4397   // past the next scavenge in an effort to
4398   // schedule the pause as described avove. By choosing
4399   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4400   // we will never do an actual abortable preclean cycle.
4401   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4402     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4403     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4404     // We need more smarts in the abortable preclean
4405     // loop below to deal with cases where allocation
4406     // in young gen is very very slow, and our precleaning
4407     // is running a losing race against a horde of
4408     // mutators intent on flooding us with CMS updates
4409     // (dirty cards).
4410     // One, admittedly dumb, strategy is to give up
4411     // after a certain number of abortable precleaning loops
4412     // or after a certain maximum time. We want to make
4413     // this smarter in the next iteration.
4414     // XXX FIX ME!!! YSR
4415     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4416     while (!(should_abort_preclean() ||
4417              ConcurrentMarkSweepThread::should_terminate())) {
4418       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4419       cumworkdone += workdone;
4420       loops++;
4421       // Voluntarily terminate abortable preclean phase if we have
4422       // been at it for too long.
4423       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4424           loops >= CMSMaxAbortablePrecleanLoops) {
4425         if (PrintGCDetails) {
4426           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4427         }
4428         break;
4429       }
4430       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4431         if (PrintGCDetails) {
4432           gclog_or_tty->print(" CMS: abort preclean due to time ");
4433         }
4434         break;
4435       }
4436       // If we are doing little work each iteration, we should
4437       // take a short break.
4438       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4439         // Sleep for some time, waiting for work to accumulate
4440         stopTimer();
4441         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4442         startTimer();
4443         waited++;
4444       }
4445     }
4446     if (PrintCMSStatistics > 0) {
4447       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4448                           loops, waited, cumworkdone);
4449     }
4450   }
4451   CMSTokenSync x(true); // is cms thread
4452   if (_collectorState != Idling) {
4453     assert(_collectorState == AbortablePreclean,
4454            "Spontaneous state transition?");
4455     _collectorState = FinalMarking;
4456   } // Else, a foreground collection completed this CMS cycle.
4457   return;
4458 }
4459 
4460 // Respond to an Eden sampling opportunity
4461 void CMSCollector::sample_eden() {
4462   // Make sure a young gc cannot sneak in between our
4463   // reading and recording of a sample.
4464   assert(Thread::current()->is_ConcurrentGC_thread(),
4465          "Only the cms thread may collect Eden samples");
4466   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4467          "Should collect samples while holding CMS token");
4468   if (!_start_sampling) {
4469     return;
4470   }
4471   if (_eden_chunk_array) {
4472     if (_eden_chunk_index < _eden_chunk_capacity) {
4473       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4474       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4475              "Unexpected state of Eden");
4476       // We'd like to check that what we just sampled is an oop-start address;
4477       // however, we cannot do that here since the object may not yet have been
4478       // initialized. So we'll instead do the check when we _use_ this sample
4479       // later.
4480       if (_eden_chunk_index == 0 ||
4481           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4482                          _eden_chunk_array[_eden_chunk_index-1])
4483            >= CMSSamplingGrain)) {
4484         _eden_chunk_index++;  // commit sample
4485       }
4486     }
4487   }
4488   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4489     size_t used = get_eden_used();
4490     size_t capacity = get_eden_capacity();
4491     assert(used <= capacity, "Unexpected state of Eden");
4492     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4493       _abort_preclean = true;
4494     }
4495   }
4496 }
4497 
4498 
4499 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4500   assert(_collectorState == Precleaning ||
4501          _collectorState == AbortablePreclean, "incorrect state");
4502   ResourceMark rm;
4503   HandleMark   hm;
4504 
4505   // Precleaning is currently not MT but the reference processor
4506   // may be set for MT.  Disable it temporarily here.
4507   ReferenceProcessor* rp = ref_processor();
4508   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4509 
4510   // Do one pass of scrubbing the discovered reference lists
4511   // to remove any reference objects with strongly-reachable
4512   // referents.
4513   if (clean_refs) {
4514     CMSPrecleanRefsYieldClosure yield_cl(this);
4515     assert(rp->span().equals(_span), "Spans should be equal");
4516     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4517                                    &_markStack, &_revisitStack,
4518                                    true /* preclean */);
4519     CMSDrainMarkingStackClosure complete_trace(this,
4520                                    _span, &_markBitMap, &_markStack,
4521                                    &keep_alive, true /* preclean */);
4522 
4523     // We don't want this step to interfere with a young
4524     // collection because we don't want to take CPU
4525     // or memory bandwidth away from the young GC threads
4526     // (which may be as many as there are CPUs).
4527     // Note that we don't need to protect ourselves from
4528     // interference with mutators because they can't
4529     // manipulate the discovered reference lists nor affect
4530     // the computed reachability of the referents, the
4531     // only properties manipulated by the precleaning
4532     // of these reference lists.
4533     stopTimer();
4534     CMSTokenSyncWithLocks x(true /* is cms thread */,
4535                             bitMapLock());
4536     startTimer();
4537     sample_eden();
4538 
4539     // The following will yield to allow foreground
4540     // collection to proceed promptly. XXX YSR:
4541     // The code in this method may need further
4542     // tweaking for better performance and some restructuring
4543     // for cleaner interfaces.
4544     rp->preclean_discovered_references(
4545           rp->is_alive_non_header(), &keep_alive, &complete_trace,
4546           &yield_cl, should_unload_classes());
4547   }
4548 
4549   if (clean_survivor) {  // preclean the active survivor space(s)
4550     assert(_young_gen->kind() == Generation::DefNew ||
4551            _young_gen->kind() == Generation::ParNew ||
4552            _young_gen->kind() == Generation::ASParNew,
4553          "incorrect type for cast");
4554     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4555     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4556                              &_markBitMap, &_modUnionTable,
4557                              &_markStack, &_revisitStack,
4558                              true /* precleaning phase */);
4559     stopTimer();
4560     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4561                              bitMapLock());
4562     startTimer();
4563     unsigned int before_count =
4564       GenCollectedHeap::heap()->total_collections();
4565     SurvivorSpacePrecleanClosure
4566       sss_cl(this, _span, &_markBitMap, &_markStack,
4567              &pam_cl, before_count, CMSYield);
4568     DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4569     dng->from()->object_iterate_careful(&sss_cl);
4570     dng->to()->object_iterate_careful(&sss_cl);
4571   }
4572   MarkRefsIntoAndScanClosure
4573     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4574              &_markStack, &_revisitStack, this, CMSYield,
4575              true /* precleaning phase */);
4576   // CAUTION: The following closure has persistent state that may need to
4577   // be reset upon a decrease in the sequence of addresses it
4578   // processes.
4579   ScanMarkedObjectsAgainCarefullyClosure
4580     smoac_cl(this, _span,
4581       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
4582 
4583   // Preclean dirty cards in ModUnionTable and CardTable using
4584   // appropriate convergence criterion;
4585   // repeat CMSPrecleanIter times unless we find that
4586   // we are losing.
4587   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4588   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4589          "Bad convergence multiplier");
4590   assert(CMSPrecleanThreshold >= 100,
4591          "Unreasonably low CMSPrecleanThreshold");
4592 
4593   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4594   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4595        numIter < CMSPrecleanIter;
4596        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4597     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4598     if (CMSPermGenPrecleaningEnabled) {
4599       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
4600     }
4601     if (Verbose && PrintGCDetails) {
4602       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4603     }
4604     // Either there are very few dirty cards, so re-mark
4605     // pause will be small anyway, or our pre-cleaning isn't
4606     // that much faster than the rate at which cards are being
4607     // dirtied, so we might as well stop and re-mark since
4608     // precleaning won't improve our re-mark time by much.
4609     if (curNumCards <= CMSPrecleanThreshold ||
4610         (numIter > 0 &&
4611          (curNumCards * CMSPrecleanDenominator >
4612          lastNumCards * CMSPrecleanNumerator))) {
4613       numIter++;
4614       cumNumCards += curNumCards;
4615       break;
4616     }
4617   }
4618   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4619   if (CMSPermGenPrecleaningEnabled) {
4620     curNumCards += preclean_card_table(_permGen, &smoac_cl);
4621   }
4622   cumNumCards += curNumCards;
4623   if (PrintGCDetails && PrintCMSStatistics != 0) {
4624     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4625                   curNumCards, cumNumCards, numIter);
4626   }
4627   return cumNumCards;   // as a measure of useful work done
4628 }
4629 
4630 // PRECLEANING NOTES:
4631 // Precleaning involves:
4632 // . reading the bits of the modUnionTable and clearing the set bits.
4633 // . For the cards corresponding to the set bits, we scan the
4634 //   objects on those cards. This means we need the free_list_lock
4635 //   so that we can safely iterate over the CMS space when scanning
4636 //   for oops.
4637 // . When we scan the objects, we'll be both reading and setting
4638 //   marks in the marking bit map, so we'll need the marking bit map.
4639 // . For protecting _collector_state transitions, we take the CGC_lock.
4640 //   Note that any races in the reading of of card table entries by the
4641 //   CMS thread on the one hand and the clearing of those entries by the
4642 //   VM thread or the setting of those entries by the mutator threads on the
4643 //   other are quite benign. However, for efficiency it makes sense to keep
4644 //   the VM thread from racing with the CMS thread while the latter is
4645 //   dirty card info to the modUnionTable. We therefore also use the
4646 //   CGC_lock to protect the reading of the card table and the mod union
4647 //   table by the CM thread.
4648 // . We run concurrently with mutator updates, so scanning
4649 //   needs to be done carefully  -- we should not try to scan
4650 //   potentially uninitialized objects.
4651 //
4652 // Locking strategy: While holding the CGC_lock, we scan over and
4653 // reset a maximal dirty range of the mod union / card tables, then lock
4654 // the free_list_lock and bitmap lock to do a full marking, then
4655 // release these locks; and repeat the cycle. This allows for a
4656 // certain amount of fairness in the sharing of these locks between
4657 // the CMS collector on the one hand, and the VM thread and the
4658 // mutators on the other.
4659 
4660 // NOTE: preclean_mod_union_table() and preclean_card_table()
4661 // further below are largely identical; if you need to modify
4662 // one of these methods, please check the other method too.
4663 
4664 size_t CMSCollector::preclean_mod_union_table(
4665   ConcurrentMarkSweepGeneration* gen,
4666   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4667   verify_work_stacks_empty();
4668   verify_overflow_empty();
4669 
4670   // Turn off checking for this method but turn it back on
4671   // selectively.  There are yield points in this method
4672   // but it is difficult to turn the checking off just around
4673   // the yield points.  It is simpler to selectively turn
4674   // it on.
4675   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4676 
4677   // strategy: starting with the first card, accumulate contiguous
4678   // ranges of dirty cards; clear these cards, then scan the region
4679   // covered by these cards.
4680 
4681   // Since all of the MUT is committed ahead, we can just use
4682   // that, in case the generations expand while we are precleaning.
4683   // It might also be fine to just use the committed part of the
4684   // generation, but we might potentially miss cards when the
4685   // generation is rapidly expanding while we are in the midst
4686   // of precleaning.
4687   HeapWord* startAddr = gen->reserved().start();
4688   HeapWord* endAddr   = gen->reserved().end();
4689 
4690   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4691 
4692   size_t numDirtyCards, cumNumDirtyCards;
4693   HeapWord *nextAddr, *lastAddr;
4694   for (cumNumDirtyCards = numDirtyCards = 0,
4695        nextAddr = lastAddr = startAddr;
4696        nextAddr < endAddr;
4697        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4698 
4699     ResourceMark rm;
4700     HandleMark   hm;
4701 
4702     MemRegion dirtyRegion;
4703     {
4704       stopTimer();
4705       // Potential yield point
4706       CMSTokenSync ts(true);
4707       startTimer();
4708       sample_eden();
4709       // Get dirty region starting at nextOffset (inclusive),
4710       // simultaneously clearing it.
4711       dirtyRegion =
4712         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4713       assert(dirtyRegion.start() >= nextAddr,
4714              "returned region inconsistent?");
4715     }
4716     // Remember where the next search should begin.
4717     // The returned region (if non-empty) is a right open interval,
4718     // so lastOffset is obtained from the right end of that
4719     // interval.
4720     lastAddr = dirtyRegion.end();
4721     // Should do something more transparent and less hacky XXX
4722     numDirtyCards =
4723       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4724 
4725     // We'll scan the cards in the dirty region (with periodic
4726     // yields for foreground GC as needed).
4727     if (!dirtyRegion.is_empty()) {
4728       assert(numDirtyCards > 0, "consistency check");
4729       HeapWord* stop_point = NULL;
4730       stopTimer();
4731       // Potential yield point
4732       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4733                                bitMapLock());
4734       startTimer();
4735       {
4736         verify_work_stacks_empty();
4737         verify_overflow_empty();
4738         sample_eden();
4739         DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4740         stop_point =
4741           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4742       }
4743       if (stop_point != NULL) {
4744         // The careful iteration stopped early either because it found an
4745         // uninitialized object, or because we were in the midst of an
4746         // "abortable preclean", which should now be aborted. Redirty
4747         // the bits corresponding to the partially-scanned or unscanned
4748         // cards. We'll either restart at the next block boundary or
4749         // abort the preclean.
4750         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
4751                (_collectorState == AbortablePreclean && should_abort_preclean()),
4752                "Unparsable objects should only be in perm gen.");
4753         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4754         if (should_abort_preclean()) {
4755           break; // out of preclean loop
4756         } else {
4757           // Compute the next address at which preclean should pick up;
4758           // might need bitMapLock in order to read P-bits.
4759           lastAddr = next_card_start_after_block(stop_point);
4760         }
4761       }
4762     } else {
4763       assert(lastAddr == endAddr, "consistency check");
4764       assert(numDirtyCards == 0, "consistency check");
4765       break;
4766     }
4767   }
4768   verify_work_stacks_empty();
4769   verify_overflow_empty();
4770   return cumNumDirtyCards;
4771 }
4772 
4773 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4774 // below are largely identical; if you need to modify
4775 // one of these methods, please check the other method too.
4776 
4777 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4778   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4779   // strategy: it's similar to precleamModUnionTable above, in that
4780   // we accumulate contiguous ranges of dirty cards, mark these cards
4781   // precleaned, then scan the region covered by these cards.
4782   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4783   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4784 
4785   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4786 
4787   size_t numDirtyCards, cumNumDirtyCards;
4788   HeapWord *lastAddr, *nextAddr;
4789 
4790   for (cumNumDirtyCards = numDirtyCards = 0,
4791        nextAddr = lastAddr = startAddr;
4792        nextAddr < endAddr;
4793        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4794 
4795     ResourceMark rm;
4796     HandleMark   hm;
4797 
4798     MemRegion dirtyRegion;
4799     {
4800       // See comments in "Precleaning notes" above on why we
4801       // do this locking. XXX Could the locking overheads be
4802       // too high when dirty cards are sparse? [I don't think so.]
4803       stopTimer();
4804       CMSTokenSync x(true); // is cms thread
4805       startTimer();
4806       sample_eden();
4807       // Get and clear dirty region from card table
4808       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4809                                     MemRegion(nextAddr, endAddr),
4810                                     true,
4811                                     CardTableModRefBS::precleaned_card_val());
4812 
4813       assert(dirtyRegion.start() >= nextAddr,
4814              "returned region inconsistent?");
4815     }
4816     lastAddr = dirtyRegion.end();
4817     numDirtyCards =
4818       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4819 
4820     if (!dirtyRegion.is_empty()) {
4821       stopTimer();
4822       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4823       startTimer();
4824       sample_eden();
4825       verify_work_stacks_empty();
4826       verify_overflow_empty();
4827       DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4828       HeapWord* stop_point =
4829         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4830       if (stop_point != NULL) {
4831         // The careful iteration stopped early because it found an
4832         // uninitialized object.  Redirty the bits corresponding to the
4833         // partially-scanned or unscanned cards, and start again at the
4834         // next block boundary.
4835         assert(CMSPermGenPrecleaningEnabled ||
4836                (_collectorState == AbortablePreclean && should_abort_preclean()),
4837                "Unparsable objects should only be in perm gen.");
4838         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4839         if (should_abort_preclean()) {
4840           break; // out of preclean loop
4841         } else {
4842           // Compute the next address at which preclean should pick up.
4843           lastAddr = next_card_start_after_block(stop_point);
4844         }
4845       }
4846     } else {
4847       break;
4848     }
4849   }
4850   verify_work_stacks_empty();
4851   verify_overflow_empty();
4852   return cumNumDirtyCards;
4853 }
4854 
4855 void CMSCollector::checkpointRootsFinal(bool asynch,
4856   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4857   assert(_collectorState == FinalMarking, "incorrect state transition?");
4858   check_correct_thread_executing();
4859   // world is stopped at this checkpoint
4860   assert(SafepointSynchronize::is_at_safepoint(),
4861          "world should be stopped");
4862   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4863 
4864   verify_work_stacks_empty();
4865   verify_overflow_empty();
4866 
4867   SpecializationStats::clear();
4868   if (PrintGCDetails) {
4869     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4870                         _young_gen->used() / K,
4871                         _young_gen->capacity() / K);
4872   }
4873   if (asynch) {
4874     if (CMSScavengeBeforeRemark) {
4875       GenCollectedHeap* gch = GenCollectedHeap::heap();
4876       // Temporarily set flag to false, GCH->do_collection will
4877       // expect it to be false and set to true
4878       FlagSetting fl(gch->_is_gc_active, false);
4879       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
4880         PrintGCDetails && Verbose, true, gclog_or_tty);)
4881       int level = _cmsGen->level() - 1;
4882       if (level >= 0) {
4883         gch->do_collection(true,        // full (i.e. force, see below)
4884                            false,       // !clear_all_soft_refs
4885                            0,           // size
4886                            false,       // is_tlab
4887                            level        // max_level
4888                           );
4889       }
4890     }
4891     FreelistLocker x(this);
4892     MutexLockerEx y(bitMapLock(),
4893                     Mutex::_no_safepoint_check_flag);
4894     assert(!init_mark_was_synchronous, "but that's impossible!");
4895     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4896   } else {
4897     // already have all the locks
4898     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4899                              init_mark_was_synchronous);
4900   }
4901   verify_work_stacks_empty();
4902   verify_overflow_empty();
4903   SpecializationStats::print();
4904 }
4905 
4906 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4907   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4908 
4909   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
4910 
4911   assert(haveFreelistLocks(), "must have free list locks");
4912   assert_lock_strong(bitMapLock());
4913 
4914   if (UseAdaptiveSizePolicy) {
4915     size_policy()->checkpoint_roots_final_begin();
4916   }
4917 
4918   ResourceMark rm;
4919   HandleMark   hm;
4920 
4921   GenCollectedHeap* gch = GenCollectedHeap::heap();
4922 
4923   if (should_unload_classes()) {
4924     CodeCache::gc_prologue();
4925   }
4926   assert(haveFreelistLocks(), "must have free list locks");
4927   assert_lock_strong(bitMapLock());
4928 
4929   DEBUG_ONLY(RememberKlassesChecker fmx(should_unload_classes());)
4930   if (!init_mark_was_synchronous) {
4931     // We might assume that we need not fill TLAB's when
4932     // CMSScavengeBeforeRemark is set, because we may have just done
4933     // a scavenge which would have filled all TLAB's -- and besides
4934     // Eden would be empty. This however may not always be the case --
4935     // for instance although we asked for a scavenge, it may not have
4936     // happened because of a JNI critical section. We probably need
4937     // a policy for deciding whether we can in that case wait until
4938     // the critical section releases and then do the remark following
4939     // the scavenge, and skip it here. In the absence of that policy,
4940     // or of an indication of whether the scavenge did indeed occur,
4941     // we cannot rely on TLAB's having been filled and must do
4942     // so here just in case a scavenge did not happen.
4943     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4944     // Update the saved marks which may affect the root scans.
4945     gch->save_marks();
4946 
4947     {
4948       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4949 
4950       // Note on the role of the mod union table:
4951       // Since the marker in "markFromRoots" marks concurrently with
4952       // mutators, it is possible for some reachable objects not to have been
4953       // scanned. For instance, an only reference to an object A was
4954       // placed in object B after the marker scanned B. Unless B is rescanned,
4955       // A would be collected. Such updates to references in marked objects
4956       // are detected via the mod union table which is the set of all cards
4957       // dirtied since the first checkpoint in this GC cycle and prior to
4958       // the most recent young generation GC, minus those cleaned up by the
4959       // concurrent precleaning.
4960       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
4961         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
4962         do_remark_parallel();
4963       } else {
4964         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4965                     gclog_or_tty);
4966         do_remark_non_parallel();
4967       }
4968     }
4969   } else {
4970     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
4971     // The initial mark was stop-world, so there's no rescanning to
4972     // do; go straight on to the next step below.
4973   }
4974   verify_work_stacks_empty();
4975   verify_overflow_empty();
4976 
4977   {
4978     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
4979     refProcessingWork(asynch, clear_all_soft_refs);
4980   }
4981   verify_work_stacks_empty();
4982   verify_overflow_empty();
4983 
4984   if (should_unload_classes()) {
4985     CodeCache::gc_epilogue();
4986   }
4987   JvmtiExport::gc_epilogue();
4988 
4989   // If we encountered any (marking stack / work queue) overflow
4990   // events during the current CMS cycle, take appropriate
4991   // remedial measures, where possible, so as to try and avoid
4992   // recurrence of that condition.
4993   assert(_markStack.isEmpty(), "No grey objects");
4994   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4995                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4996   if (ser_ovflw > 0) {
4997     if (PrintCMSStatistics != 0) {
4998       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4999         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5000         ", kac_preclean="SIZE_FORMAT")",
5001         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5002         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5003     }
5004     _markStack.expand();
5005     _ser_pmc_remark_ovflw = 0;
5006     _ser_pmc_preclean_ovflw = 0;
5007     _ser_kac_preclean_ovflw = 0;
5008     _ser_kac_ovflw = 0;
5009   }
5010   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5011     if (PrintCMSStatistics != 0) {
5012       gclog_or_tty->print_cr("Work queue overflow (benign) "
5013         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5014         _par_pmc_remark_ovflw, _par_kac_ovflw);
5015     }
5016     _par_pmc_remark_ovflw = 0;
5017     _par_kac_ovflw = 0;
5018   }
5019   if (PrintCMSStatistics != 0) {
5020      if (_markStack._hit_limit > 0) {
5021        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5022                               _markStack._hit_limit);
5023      }
5024      if (_markStack._failed_double > 0) {
5025        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5026                               " current capacity "SIZE_FORMAT,
5027                               _markStack._failed_double,
5028                               _markStack.capacity());
5029      }
5030   }
5031   _markStack._hit_limit = 0;
5032   _markStack._failed_double = 0;
5033 
5034   // Check that all the klasses have been checked
5035   assert(_revisitStack.isEmpty(), "Not all klasses revisited");
5036 
5037   if ((VerifyAfterGC || VerifyDuringGC) &&
5038       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5039     verify_after_remark();
5040   }
5041 
5042   // Change under the freelistLocks.
5043   _collectorState = Sweeping;
5044   // Call isAllClear() under bitMapLock
5045   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
5046     " final marking");
5047   if (UseAdaptiveSizePolicy) {
5048     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5049   }
5050 }
5051 
5052 // Parallel remark task
5053 class CMSParRemarkTask: public AbstractGangTask {
5054   CMSCollector* _collector;
5055   int           _n_workers;
5056   CompactibleFreeListSpace* _cms_space;
5057   CompactibleFreeListSpace* _perm_space;
5058 
5059   // The per-thread work queues, available here for stealing.
5060   OopTaskQueueSet*       _task_queues;
5061   ParallelTaskTerminator _term;
5062 
5063  public:
5064   CMSParRemarkTask(CMSCollector* collector,
5065                    CompactibleFreeListSpace* cms_space,
5066                    CompactibleFreeListSpace* perm_space,
5067                    int n_workers, FlexibleWorkGang* workers,
5068                    OopTaskQueueSet* task_queues):
5069     AbstractGangTask("Rescan roots and grey objects in parallel"),
5070     _collector(collector),
5071     _cms_space(cms_space), _perm_space(perm_space),
5072     _n_workers(n_workers),
5073     _task_queues(task_queues),
5074     _term(n_workers, task_queues) { }
5075 
5076   OopTaskQueueSet* task_queues() { return _task_queues; }
5077 
5078   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5079 
5080   ParallelTaskTerminator* terminator() { return &_term; }
5081   int n_workers() { return _n_workers; }
5082 
5083   void work(int i);
5084 
5085  private:
5086   // Work method in support of parallel rescan ... of young gen spaces
5087   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
5088                              ContiguousSpace* space,
5089                              HeapWord** chunk_array, size_t chunk_top);
5090 
5091   // ... of  dirty cards in old space
5092   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5093                                   Par_MarkRefsIntoAndScanClosure* cl);
5094 
5095   // ... work stealing for the above
5096   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5097 };
5098 
5099 // work_queue(i) is passed to the closure
5100 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5101 // also is passed to do_dirty_card_rescan_tasks() and to
5102 // do_work_steal() to select the i-th task_queue.
5103 
5104 void CMSParRemarkTask::work(int i) {
5105   elapsedTimer _timer;
5106   ResourceMark rm;
5107   HandleMark   hm;
5108 
5109   // ---------- rescan from roots --------------
5110   _timer.start();
5111   GenCollectedHeap* gch = GenCollectedHeap::heap();
5112   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5113     _collector->_span, _collector->ref_processor(),
5114     &(_collector->_markBitMap),
5115     work_queue(i), &(_collector->_revisitStack));
5116 
5117   // Rescan young gen roots first since these are likely
5118   // coarsely partitioned and may, on that account, constitute
5119   // the critical path; thus, it's best to start off that
5120   // work first.
5121   // ---------- young gen roots --------------
5122   {
5123     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5124     EdenSpace* eden_space = dng->eden();
5125     ContiguousSpace* from_space = dng->from();
5126     ContiguousSpace* to_space   = dng->to();
5127 
5128     HeapWord** eca = _collector->_eden_chunk_array;
5129     size_t     ect = _collector->_eden_chunk_index;
5130     HeapWord** sca = _collector->_survivor_chunk_array;
5131     size_t     sct = _collector->_survivor_chunk_index;
5132 
5133     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5134     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5135 
5136     do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
5137     do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
5138     do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
5139 
5140     _timer.stop();
5141     if (PrintCMSStatistics != 0) {
5142       gclog_or_tty->print_cr(
5143         "Finished young gen rescan work in %dth thread: %3.3f sec",
5144         i, _timer.seconds());
5145     }
5146   }
5147 
5148   // ---------- remaining roots --------------
5149   _timer.reset();
5150   _timer.start();
5151   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5152                                 false,     // yg was scanned above
5153                                 false,     // this is parallel code
5154                                 true,      // collecting perm gen
5155                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5156                                 &par_mrias_cl,
5157                                 true,   // walk all of code cache if (so & SO_CodeCache)
5158                                 NULL);
5159   assert(_collector->should_unload_classes()
5160          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5161          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5162   _timer.stop();
5163   if (PrintCMSStatistics != 0) {
5164     gclog_or_tty->print_cr(
5165       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5166       i, _timer.seconds());
5167   }
5168 
5169   // ---------- rescan dirty cards ------------
5170   _timer.reset();
5171   _timer.start();
5172 
5173   // Do the rescan tasks for each of the two spaces
5174   // (cms_space and perm_space) in turn.
5175   // "i" is passed to select the "i-th" task_queue
5176   do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
5177   do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
5178   _timer.stop();
5179   if (PrintCMSStatistics != 0) {
5180     gclog_or_tty->print_cr(
5181       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5182       i, _timer.seconds());
5183   }
5184 
5185   // ---------- steal work from other threads ...
5186   // ---------- ... and drain overflow list.
5187   _timer.reset();
5188   _timer.start();
5189   do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
5190   _timer.stop();
5191   if (PrintCMSStatistics != 0) {
5192     gclog_or_tty->print_cr(
5193       "Finished work stealing in %dth thread: %3.3f sec",
5194       i, _timer.seconds());
5195   }
5196 }
5197 
5198 // Note that parameter "i" is not used.
5199 void
5200 CMSParRemarkTask::do_young_space_rescan(int i,
5201   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
5202   HeapWord** chunk_array, size_t chunk_top) {
5203   // Until all tasks completed:
5204   // . claim an unclaimed task
5205   // . compute region boundaries corresponding to task claimed
5206   //   using chunk_array
5207   // . par_oop_iterate(cl) over that region
5208 
5209   ResourceMark rm;
5210   HandleMark   hm;
5211 
5212   SequentialSubTasksDone* pst = space->par_seq_tasks();
5213   assert(pst->valid(), "Uninitialized use?");
5214 
5215   int nth_task = 0;
5216   int n_tasks  = pst->n_tasks();
5217 
5218   HeapWord *start, *end;
5219   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5220     // We claimed task # nth_task; compute its boundaries.
5221     if (chunk_top == 0) {  // no samples were taken
5222       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5223       start = space->bottom();
5224       end   = space->top();
5225     } else if (nth_task == 0) {
5226       start = space->bottom();
5227       end   = chunk_array[nth_task];
5228     } else if (nth_task < (jint)chunk_top) {
5229       assert(nth_task >= 1, "Control point invariant");
5230       start = chunk_array[nth_task - 1];
5231       end   = chunk_array[nth_task];
5232     } else {
5233       assert(nth_task == (jint)chunk_top, "Control point invariant");
5234       start = chunk_array[chunk_top - 1];
5235       end   = space->top();
5236     }
5237     MemRegion mr(start, end);
5238     // Verify that mr is in space
5239     assert(mr.is_empty() || space->used_region().contains(mr),
5240            "Should be in space");
5241     // Verify that "start" is an object boundary
5242     assert(mr.is_empty() || oop(mr.start())->is_oop(),
5243            "Should be an oop");
5244     space->par_oop_iterate(mr, cl);
5245   }
5246   pst->all_tasks_completed();
5247 }
5248 
5249 void
5250 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5251   CompactibleFreeListSpace* sp, int i,
5252   Par_MarkRefsIntoAndScanClosure* cl) {
5253   // Until all tasks completed:
5254   // . claim an unclaimed task
5255   // . compute region boundaries corresponding to task claimed
5256   // . transfer dirty bits ct->mut for that region
5257   // . apply rescanclosure to dirty mut bits for that region
5258 
5259   ResourceMark rm;
5260   HandleMark   hm;
5261 
5262   OopTaskQueue* work_q = work_queue(i);
5263   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5264   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5265   // CAUTION: This closure has state that persists across calls to
5266   // the work method dirty_range_iterate_clear() in that it has
5267   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5268   // use of that state in the imbedded UpwardsObjectClosure instance
5269   // assumes that the cards are always iterated (even if in parallel
5270   // by several threads) in monotonically increasing order per each
5271   // thread. This is true of the implementation below which picks
5272   // card ranges (chunks) in monotonically increasing order globally
5273   // and, a-fortiori, in monotonically increasing order per thread
5274   // (the latter order being a subsequence of the former).
5275   // If the work code below is ever reorganized into a more chaotic
5276   // work-partitioning form than the current "sequential tasks"
5277   // paradigm, the use of that persistent state will have to be
5278   // revisited and modified appropriately. See also related
5279   // bug 4756801 work on which should examine this code to make
5280   // sure that the changes there do not run counter to the
5281   // assumptions made here and necessary for correctness and
5282   // efficiency. Note also that this code might yield inefficient
5283   // behaviour in the case of very large objects that span one or
5284   // more work chunks. Such objects would potentially be scanned
5285   // several times redundantly. Work on 4756801 should try and
5286   // address that performance anomaly if at all possible. XXX
5287   MemRegion  full_span  = _collector->_span;
5288   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5289   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
5290   MarkFromDirtyCardsClosure
5291     greyRescanClosure(_collector, full_span, // entire span of interest
5292                       sp, bm, work_q, rs, cl);
5293 
5294   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5295   assert(pst->valid(), "Uninitialized use?");
5296   int nth_task = 0;
5297   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5298   MemRegion span = sp->used_region();
5299   HeapWord* start_addr = span.start();
5300   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5301                                            alignment);
5302   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5303   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5304          start_addr, "Check alignment");
5305   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5306          chunk_size, "Check alignment");
5307 
5308   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5309     // Having claimed the nth_task, compute corresponding mem-region,
5310     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5311     // The alignment restriction ensures that we do not need any
5312     // synchronization with other gang-workers while setting or
5313     // clearing bits in thus chunk of the MUT.
5314     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5315                                     start_addr + (nth_task+1)*chunk_size);
5316     // The last chunk's end might be way beyond end of the
5317     // used region. In that case pull back appropriately.
5318     if (this_span.end() > end_addr) {
5319       this_span.set_end(end_addr);
5320       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5321     }
5322     // Iterate over the dirty cards covering this chunk, marking them
5323     // precleaned, and setting the corresponding bits in the mod union
5324     // table. Since we have been careful to partition at Card and MUT-word
5325     // boundaries no synchronization is needed between parallel threads.
5326     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5327                                                  &modUnionClosure);
5328 
5329     // Having transferred these marks into the modUnionTable,
5330     // rescan the marked objects on the dirty cards in the modUnionTable.
5331     // Even if this is at a synchronous collection, the initial marking
5332     // may have been done during an asynchronous collection so there
5333     // may be dirty bits in the mod-union table.
5334     _collector->_modUnionTable.dirty_range_iterate_clear(
5335                   this_span, &greyRescanClosure);
5336     _collector->_modUnionTable.verifyNoOneBitsInRange(
5337                                  this_span.start(),
5338                                  this_span.end());
5339   }
5340   pst->all_tasks_completed();  // declare that i am done
5341 }
5342 
5343 // . see if we can share work_queues with ParNew? XXX
5344 void
5345 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5346                                 int* seed) {
5347   OopTaskQueue* work_q = work_queue(i);
5348   NOT_PRODUCT(int num_steals = 0;)
5349   oop obj_to_scan;
5350   CMSBitMap* bm = &(_collector->_markBitMap);
5351 
5352   while (true) {
5353     // Completely finish any left over work from (an) earlier round(s)
5354     cl->trim_queue(0);
5355     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5356                                          (size_t)ParGCDesiredObjsFromOverflowList);
5357     // Now check if there's any work in the overflow list
5358     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5359     // only affects the number of attempts made to get work from the
5360     // overflow list and does not affect the number of workers.  Just
5361     // pass ParallelGCThreads so this behavior is unchanged.
5362     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5363                                                 work_q,
5364                                                 ParallelGCThreads)) {
5365       // found something in global overflow list;
5366       // not yet ready to go stealing work from others.
5367       // We'd like to assert(work_q->size() != 0, ...)
5368       // because we just took work from the overflow list,
5369       // but of course we can't since all of that could have
5370       // been already stolen from us.
5371       // "He giveth and He taketh away."
5372       continue;
5373     }
5374     // Verify that we have no work before we resort to stealing
5375     assert(work_q->size() == 0, "Have work, shouldn't steal");
5376     // Try to steal from other queues that have work
5377     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5378       NOT_PRODUCT(num_steals++;)
5379       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5380       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5381       // Do scanning work
5382       obj_to_scan->oop_iterate(cl);
5383       // Loop around, finish this work, and try to steal some more
5384     } else if (terminator()->offer_termination()) {
5385         break;  // nirvana from the infinite cycle
5386     }
5387   }
5388   NOT_PRODUCT(
5389     if (PrintCMSStatistics != 0) {
5390       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5391     }
5392   )
5393   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5394          "Else our work is not yet done");
5395 }
5396 
5397 // Return a thread-local PLAB recording array, as appropriate.
5398 void* CMSCollector::get_data_recorder(int thr_num) {
5399   if (_survivor_plab_array != NULL &&
5400       (CMSPLABRecordAlways ||
5401        (_collectorState > Marking && _collectorState < FinalMarking))) {
5402     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5403     ChunkArray* ca = &_survivor_plab_array[thr_num];
5404     ca->reset();   // clear it so that fresh data is recorded
5405     return (void*) ca;
5406   } else {
5407     return NULL;
5408   }
5409 }
5410 
5411 // Reset all the thread-local PLAB recording arrays
5412 void CMSCollector::reset_survivor_plab_arrays() {
5413   for (uint i = 0; i < ParallelGCThreads; i++) {
5414     _survivor_plab_array[i].reset();
5415   }
5416 }
5417 
5418 // Merge the per-thread plab arrays into the global survivor chunk
5419 // array which will provide the partitioning of the survivor space
5420 // for CMS rescan.
5421 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5422                                               int no_of_gc_threads) {
5423   assert(_survivor_plab_array  != NULL, "Error");
5424   assert(_survivor_chunk_array != NULL, "Error");
5425   assert(_collectorState == FinalMarking, "Error");
5426   for (int j = 0; j < no_of_gc_threads; j++) {
5427     _cursor[j] = 0;
5428   }
5429   HeapWord* top = surv->top();
5430   size_t i;
5431   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5432     HeapWord* min_val = top;          // Higher than any PLAB address
5433     uint      min_tid = 0;            // position of min_val this round
5434     for (int j = 0; j < no_of_gc_threads; j++) {
5435       ChunkArray* cur_sca = &_survivor_plab_array[j];
5436       if (_cursor[j] == cur_sca->end()) {
5437         continue;
5438       }
5439       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5440       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5441       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5442       if (cur_val < min_val) {
5443         min_tid = j;
5444         min_val = cur_val;
5445       } else {
5446         assert(cur_val < top, "All recorded addresses should be less");
5447       }
5448     }
5449     // At this point min_val and min_tid are respectively
5450     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5451     // and the thread (j) that witnesses that address.
5452     // We record this address in the _survivor_chunk_array[i]
5453     // and increment _cursor[min_tid] prior to the next round i.
5454     if (min_val == top) {
5455       break;
5456     }
5457     _survivor_chunk_array[i] = min_val;
5458     _cursor[min_tid]++;
5459   }
5460   // We are all done; record the size of the _survivor_chunk_array
5461   _survivor_chunk_index = i; // exclusive: [0, i)
5462   if (PrintCMSStatistics > 0) {
5463     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5464   }
5465   // Verify that we used up all the recorded entries
5466   #ifdef ASSERT
5467     size_t total = 0;
5468     for (int j = 0; j < no_of_gc_threads; j++) {
5469       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5470       total += _cursor[j];
5471     }
5472     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5473     // Check that the merged array is in sorted order
5474     if (total > 0) {
5475       for (size_t i = 0; i < total - 1; i++) {
5476         if (PrintCMSStatistics > 0) {
5477           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5478                               i, _survivor_chunk_array[i]);
5479         }
5480         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5481                "Not sorted");
5482       }
5483     }
5484   #endif // ASSERT
5485 }
5486 
5487 // Set up the space's par_seq_tasks structure for work claiming
5488 // for parallel rescan of young gen.
5489 // See ParRescanTask where this is currently used.
5490 void
5491 CMSCollector::
5492 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5493   assert(n_threads > 0, "Unexpected n_threads argument");
5494   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5495 
5496   // Eden space
5497   {
5498     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5499     assert(!pst->valid(), "Clobbering existing data?");
5500     // Each valid entry in [0, _eden_chunk_index) represents a task.
5501     size_t n_tasks = _eden_chunk_index + 1;
5502     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5503     // Sets the condition for completion of the subtask (how many threads
5504     // need to finish in order to be done).
5505     pst->set_n_threads(n_threads);
5506     pst->set_n_tasks((int)n_tasks);
5507   }
5508 
5509   // Merge the survivor plab arrays into _survivor_chunk_array
5510   if (_survivor_plab_array != NULL) {
5511     merge_survivor_plab_arrays(dng->from(), n_threads);
5512   } else {
5513     assert(_survivor_chunk_index == 0, "Error");
5514   }
5515 
5516   // To space
5517   {
5518     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5519     assert(!pst->valid(), "Clobbering existing data?");
5520     // Sets the condition for completion of the subtask (how many threads
5521     // need to finish in order to be done).
5522     pst->set_n_threads(n_threads);
5523     pst->set_n_tasks(1);
5524     assert(pst->valid(), "Error");
5525   }
5526 
5527   // From space
5528   {
5529     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5530     assert(!pst->valid(), "Clobbering existing data?");
5531     size_t n_tasks = _survivor_chunk_index + 1;
5532     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5533     // Sets the condition for completion of the subtask (how many threads
5534     // need to finish in order to be done).
5535     pst->set_n_threads(n_threads);
5536     pst->set_n_tasks((int)n_tasks);
5537     assert(pst->valid(), "Error");
5538   }
5539 }
5540 
5541 // Parallel version of remark
5542 void CMSCollector::do_remark_parallel() {
5543   GenCollectedHeap* gch = GenCollectedHeap::heap();
5544   FlexibleWorkGang* workers = gch->workers();
5545   assert(workers != NULL, "Need parallel worker threads.");
5546   int n_workers = workers->total_workers();
5547   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5548   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
5549 
5550   CMSParRemarkTask tsk(this,
5551     cms_space, perm_space,
5552     n_workers, workers, task_queues());
5553 
5554   // Set up for parallel process_strong_roots work.
5555   gch->set_par_threads(n_workers);
5556   // We won't be iterating over the cards in the card table updating
5557   // the younger_gen cards, so we shouldn't call the following else
5558   // the verification code as well as subsequent younger_refs_iterate
5559   // code would get confused. XXX
5560   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5561 
5562   // The young gen rescan work will not be done as part of
5563   // process_strong_roots (which currently doesn't knw how to
5564   // parallelize such a scan), but rather will be broken up into
5565   // a set of parallel tasks (via the sampling that the [abortable]
5566   // preclean phase did of EdenSpace, plus the [two] tasks of
5567   // scanning the [two] survivor spaces. Further fine-grain
5568   // parallelization of the scanning of the survivor spaces
5569   // themselves, and of precleaning of the younger gen itself
5570   // is deferred to the future.
5571   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5572 
5573   // The dirty card rescan work is broken up into a "sequence"
5574   // of parallel tasks (per constituent space) that are dynamically
5575   // claimed by the parallel threads.
5576   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5577   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
5578 
5579   // It turns out that even when we're using 1 thread, doing the work in a
5580   // separate thread causes wide variance in run times.  We can't help this
5581   // in the multi-threaded case, but we special-case n=1 here to get
5582   // repeatable measurements of the 1-thread overhead of the parallel code.
5583   if (n_workers > 1) {
5584     // Make refs discovery MT-safe, if it isn't already: it may not
5585     // necessarily be so, since it's possible that we are doing
5586     // ST marking.
5587     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5588     GenCollectedHeap::StrongRootsScope srs(gch);
5589     workers->run_task(&tsk);
5590   } else {
5591     GenCollectedHeap::StrongRootsScope srs(gch);
5592     tsk.work(0);
5593   }
5594   gch->set_par_threads(0);  // 0 ==> non-parallel.
5595   // restore, single-threaded for now, any preserved marks
5596   // as a result of work_q overflow
5597   restore_preserved_marks_if_any();
5598 }
5599 
5600 // Non-parallel version of remark
5601 void CMSCollector::do_remark_non_parallel() {
5602   ResourceMark rm;
5603   HandleMark   hm;
5604   GenCollectedHeap* gch = GenCollectedHeap::heap();
5605   MarkRefsIntoAndScanClosure
5606     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
5607              &_markStack, &_revisitStack, this,
5608              false /* should_yield */, false /* not precleaning */);
5609   MarkFromDirtyCardsClosure
5610     markFromDirtyCardsClosure(this, _span,
5611                               NULL,  // space is set further below
5612                               &_markBitMap, &_markStack, &_revisitStack,
5613                               &mrias_cl);
5614   {
5615     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
5616     // Iterate over the dirty cards, setting the corresponding bits in the
5617     // mod union table.
5618     {
5619       ModUnionClosure modUnionClosure(&_modUnionTable);
5620       _ct->ct_bs()->dirty_card_iterate(
5621                       _cmsGen->used_region(),
5622                       &modUnionClosure);
5623       _ct->ct_bs()->dirty_card_iterate(
5624                       _permGen->used_region(),
5625                       &modUnionClosure);
5626     }
5627     // Having transferred these marks into the modUnionTable, we just need
5628     // to rescan the marked objects on the dirty cards in the modUnionTable.
5629     // The initial marking may have been done during an asynchronous
5630     // collection so there may be dirty bits in the mod-union table.
5631     const int alignment =
5632       CardTableModRefBS::card_size * BitsPerWord;
5633     {
5634       // ... First handle dirty cards in CMS gen
5635       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5636       MemRegion ur = _cmsGen->used_region();
5637       HeapWord* lb = ur.start();
5638       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5639       MemRegion cms_span(lb, ub);
5640       _modUnionTable.dirty_range_iterate_clear(cms_span,
5641                                                &markFromDirtyCardsClosure);
5642       verify_work_stacks_empty();
5643       if (PrintCMSStatistics != 0) {
5644         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5645           markFromDirtyCardsClosure.num_dirty_cards());
5646       }
5647     }
5648     {
5649       // .. and then repeat for dirty cards in perm gen
5650       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
5651       MemRegion ur = _permGen->used_region();
5652       HeapWord* lb = ur.start();
5653       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5654       MemRegion perm_span(lb, ub);
5655       _modUnionTable.dirty_range_iterate_clear(perm_span,
5656                                                &markFromDirtyCardsClosure);
5657       verify_work_stacks_empty();
5658       if (PrintCMSStatistics != 0) {
5659         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
5660           markFromDirtyCardsClosure.num_dirty_cards());
5661       }
5662     }
5663   }
5664   if (VerifyDuringGC &&
5665       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5666     HandleMark hm;  // Discard invalid handles created during verification
5667     Universe::verify(true);
5668   }
5669   {
5670     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
5671 
5672     verify_work_stacks_empty();
5673 
5674     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5675     GenCollectedHeap::StrongRootsScope srs(gch);
5676     gch->gen_process_strong_roots(_cmsGen->level(),
5677                                   true,  // younger gens as roots
5678                                   false, // use the local StrongRootsScope
5679                                   true,  // collecting perm gen
5680                                   SharedHeap::ScanningOption(roots_scanning_options()),
5681                                   &mrias_cl,
5682                                   true,   // walk code active on stacks
5683                                   NULL);
5684     assert(should_unload_classes()
5685            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
5686            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5687   }
5688   verify_work_stacks_empty();
5689   // Restore evacuated mark words, if any, used for overflow list links
5690   if (!CMSOverflowEarlyRestoration) {
5691     restore_preserved_marks_if_any();
5692   }
5693   verify_overflow_empty();
5694 }
5695 
5696 ////////////////////////////////////////////////////////
5697 // Parallel Reference Processing Task Proxy Class
5698 ////////////////////////////////////////////////////////
5699 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5700   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5701   CMSCollector*          _collector;
5702   CMSBitMap*             _mark_bit_map;
5703   const MemRegion        _span;
5704   ProcessTask&           _task;
5705 
5706 public:
5707   CMSRefProcTaskProxy(ProcessTask&     task,
5708                       CMSCollector*    collector,
5709                       const MemRegion& span,
5710                       CMSBitMap*       mark_bit_map,
5711                       AbstractWorkGang* workers,
5712                       OopTaskQueueSet* task_queues):
5713     // XXX Should superclass AGTWOQ also know about AWG since it knows
5714     // about the task_queues used by the AWG? Then it could initialize
5715     // the terminator() object. See 6984287. The set_for_termination()
5716     // below is a temporary band-aid for the regression in 6984287.
5717     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5718       task_queues),
5719     _task(task),
5720     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5721   {
5722     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5723            "Inconsistency in _span");
5724     set_for_termination(workers->active_workers());
5725   }
5726 
5727   OopTaskQueueSet* task_queues() { return queues(); }
5728 
5729   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5730 
5731   void do_work_steal(int i,
5732                      CMSParDrainMarkingStackClosure* drain,
5733                      CMSParKeepAliveClosure* keep_alive,
5734                      int* seed);
5735 
5736   virtual void work(int i);
5737 };
5738 
5739 void CMSRefProcTaskProxy::work(int i) {
5740   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5741   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5742                                         _mark_bit_map,
5743                                         &_collector->_revisitStack,
5744                                         work_queue(i));
5745   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5746                                                  _mark_bit_map,
5747                                                  &_collector->_revisitStack,
5748                                                  work_queue(i));
5749   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5750   _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
5751   if (_task.marks_oops_alive()) {
5752     do_work_steal(i, &par_drain_stack, &par_keep_alive,
5753                   _collector->hash_seed(i));
5754   }
5755   assert(work_queue(i)->size() == 0, "work_queue should be empty");
5756   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5757 }
5758 
5759 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5760   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5761   EnqueueTask& _task;
5762 
5763 public:
5764   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5765     : AbstractGangTask("Enqueue reference objects in parallel"),
5766       _task(task)
5767   { }
5768 
5769   virtual void work(int i)
5770   {
5771     _task.work(i);
5772   }
5773 };
5774 
5775 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5776   MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack,
5777   OopTaskQueue* work_queue):
5778    Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
5779    _span(span),
5780    _bit_map(bit_map),
5781    _work_queue(work_queue),
5782    _mark_and_push(collector, span, bit_map, revisit_stack, work_queue),
5783    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5784                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5785 { }
5786 
5787 // . see if we can share work_queues with ParNew? XXX
5788 void CMSRefProcTaskProxy::do_work_steal(int i,
5789   CMSParDrainMarkingStackClosure* drain,
5790   CMSParKeepAliveClosure* keep_alive,
5791   int* seed) {
5792   OopTaskQueue* work_q = work_queue(i);
5793   NOT_PRODUCT(int num_steals = 0;)
5794   oop obj_to_scan;
5795 
5796   while (true) {
5797     // Completely finish any left over work from (an) earlier round(s)
5798     drain->trim_queue(0);
5799     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5800                                          (size_t)ParGCDesiredObjsFromOverflowList);
5801     // Now check if there's any work in the overflow list
5802     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5803     // only affects the number of attempts made to get work from the
5804     // overflow list and does not affect the number of workers.  Just
5805     // pass ParallelGCThreads so this behavior is unchanged.
5806     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5807                                                 work_q,
5808                                                 ParallelGCThreads)) {
5809       // Found something in global overflow list;
5810       // not yet ready to go stealing work from others.
5811       // We'd like to assert(work_q->size() != 0, ...)
5812       // because we just took work from the overflow list,
5813       // but of course we can't, since all of that might have
5814       // been already stolen from us.
5815       continue;
5816     }
5817     // Verify that we have no work before we resort to stealing
5818     assert(work_q->size() == 0, "Have work, shouldn't steal");
5819     // Try to steal from other queues that have work
5820     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5821       NOT_PRODUCT(num_steals++;)
5822       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5823       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5824       // Do scanning work
5825       obj_to_scan->oop_iterate(keep_alive);
5826       // Loop around, finish this work, and try to steal some more
5827     } else if (terminator()->offer_termination()) {
5828       break;  // nirvana from the infinite cycle
5829     }
5830   }
5831   NOT_PRODUCT(
5832     if (PrintCMSStatistics != 0) {
5833       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5834     }
5835   )
5836 }
5837 
5838 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5839 {
5840   GenCollectedHeap* gch = GenCollectedHeap::heap();
5841   FlexibleWorkGang* workers = gch->workers();
5842   assert(workers != NULL, "Need parallel worker threads.");
5843   CMSRefProcTaskProxy rp_task(task, &_collector,
5844                               _collector.ref_processor()->span(),
5845                               _collector.markBitMap(),
5846                               workers, _collector.task_queues());
5847   workers->run_task(&rp_task);
5848 }
5849 
5850 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5851 {
5852 
5853   GenCollectedHeap* gch = GenCollectedHeap::heap();
5854   FlexibleWorkGang* workers = gch->workers();
5855   assert(workers != NULL, "Need parallel worker threads.");
5856   CMSRefEnqueueTaskProxy enq_task(task);
5857   workers->run_task(&enq_task);
5858 }
5859 
5860 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
5861 
5862   ResourceMark rm;
5863   HandleMark   hm;
5864 
5865   ReferenceProcessor* rp = ref_processor();
5866   assert(rp->span().equals(_span), "Spans should be equal");
5867   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5868   // Process weak references.
5869   rp->setup_policy(clear_all_soft_refs);
5870   verify_work_stacks_empty();
5871 
5872   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5873                                           &_markStack, &_revisitStack,
5874                                           false /* !preclean */);
5875   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5876                                 _span, &_markBitMap, &_markStack,
5877                                 &cmsKeepAliveClosure, false /* !preclean */);
5878   {
5879     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
5880     if (rp->processing_is_mt()) {
5881       // Set the degree of MT here.  If the discovery is done MT, there
5882       // may have been a different number of threads doing the discovery
5883       // and a different number of discovered lists may have Ref objects.
5884       // That is OK as long as the Reference lists are balanced (see
5885       // balance_all_queues() and balance_queues()).
5886 
5887       rp->set_active_mt_degree(ParallelGCThreads);
5888       CMSRefProcTaskExecutor task_executor(*this);
5889       rp->process_discovered_references(&_is_alive_closure,
5890                                         &cmsKeepAliveClosure,
5891                                         &cmsDrainMarkingStackClosure,
5892                                         &task_executor);
5893     } else {
5894       rp->process_discovered_references(&_is_alive_closure,
5895                                         &cmsKeepAliveClosure,
5896                                         &cmsDrainMarkingStackClosure,
5897                                         NULL);
5898     }
5899     verify_work_stacks_empty();
5900   }
5901 
5902   if (should_unload_classes()) {
5903     {
5904       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
5905 
5906       // Follow SystemDictionary roots and unload classes
5907       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5908 
5909       // Follow CodeCache roots and unload any methods marked for unloading
5910       CodeCache::do_unloading(&_is_alive_closure,
5911                               &cmsKeepAliveClosure,
5912                               purged_class);
5913 
5914       cmsDrainMarkingStackClosure.do_void();
5915       verify_work_stacks_empty();
5916 
5917       // Update subklass/sibling/implementor links in KlassKlass descendants
5918       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
5919       oop k;
5920       while ((k = _revisitStack.pop()) != NULL) {
5921         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
5922                        &_is_alive_closure,
5923                        &cmsKeepAliveClosure);
5924       }
5925       assert(!ClassUnloading ||
5926              (_markStack.isEmpty() && overflow_list_is_empty()),
5927              "Should not have found new reachable objects");
5928       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
5929       cmsDrainMarkingStackClosure.do_void();
5930       verify_work_stacks_empty();
5931     }
5932 
5933     {
5934       TraceTime t("scrub symbol table", PrintGCDetails, false, gclog_or_tty);
5935       // Clean up unreferenced symbols in symbol table.
5936       SymbolTable::unlink();
5937     }
5938   }
5939 
5940   if (should_unload_classes() || !JavaObjectsInPerm) {
5941     TraceTime t("scrub string table", PrintGCDetails, false, gclog_or_tty);
5942     // Now clean up stale oops in StringTable
5943     StringTable::unlink(&_is_alive_closure);
5944   }
5945 
5946   verify_work_stacks_empty();
5947   // Restore any preserved marks as a result of mark stack or
5948   // work queue overflow
5949   restore_preserved_marks_if_any();  // done single-threaded for now
5950 
5951   rp->set_enqueuing_is_done(true);
5952   if (rp->processing_is_mt()) {
5953     rp->balance_all_queues();
5954     CMSRefProcTaskExecutor task_executor(*this);
5955     rp->enqueue_discovered_references(&task_executor);
5956   } else {
5957     rp->enqueue_discovered_references(NULL);
5958   }
5959   rp->verify_no_references_recorded();
5960   assert(!rp->discovery_enabled(), "should have been disabled");
5961 }
5962 
5963 #ifndef PRODUCT
5964 void CMSCollector::check_correct_thread_executing() {
5965   Thread* t = Thread::current();
5966   // Only the VM thread or the CMS thread should be here.
5967   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5968          "Unexpected thread type");
5969   // If this is the vm thread, the foreground process
5970   // should not be waiting.  Note that _foregroundGCIsActive is
5971   // true while the foreground collector is waiting.
5972   if (_foregroundGCShouldWait) {
5973     // We cannot be the VM thread
5974     assert(t->is_ConcurrentGC_thread(),
5975            "Should be CMS thread");
5976   } else {
5977     // We can be the CMS thread only if we are in a stop-world
5978     // phase of CMS collection.
5979     if (t->is_ConcurrentGC_thread()) {
5980       assert(_collectorState == InitialMarking ||
5981              _collectorState == FinalMarking,
5982              "Should be a stop-world phase");
5983       // The CMS thread should be holding the CMS_token.
5984       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5985              "Potential interference with concurrently "
5986              "executing VM thread");
5987     }
5988   }
5989 }
5990 #endif
5991 
5992 void CMSCollector::sweep(bool asynch) {
5993   assert(_collectorState == Sweeping, "just checking");
5994   check_correct_thread_executing();
5995   verify_work_stacks_empty();
5996   verify_overflow_empty();
5997   increment_sweep_count();
5998   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5999 
6000   _inter_sweep_timer.stop();
6001   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6002   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6003 
6004   // PermGen verification support: If perm gen sweeping is disabled in
6005   // this cycle, we preserve the perm gen object "deadness" information
6006   // in the perm_gen_verify_bit_map. In order to do that we traverse
6007   // all blocks in perm gen and mark all dead objects.
6008   if (verifying() && !should_unload_classes()) {
6009     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
6010            "Should have already been allocated");
6011     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
6012                                markBitMap(), perm_gen_verify_bit_map());
6013     if (asynch) {
6014       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
6015                                bitMapLock());
6016       _permGen->cmsSpace()->blk_iterate(&mdo);
6017     } else {
6018       // In the case of synchronous sweep, we already have
6019       // the requisite locks/tokens.
6020       _permGen->cmsSpace()->blk_iterate(&mdo);
6021     }
6022   }
6023 
6024   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6025   _intra_sweep_timer.reset();
6026   _intra_sweep_timer.start();
6027   if (asynch) {
6028     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6029     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6030     // First sweep the old gen then the perm gen
6031     {
6032       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6033                                bitMapLock());
6034       sweepWork(_cmsGen, asynch);
6035     }
6036 
6037     // Now repeat for perm gen
6038     if (should_unload_classes()) {
6039       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
6040                              bitMapLock());
6041       sweepWork(_permGen, asynch);
6042     }
6043 
6044     // Update Universe::_heap_*_at_gc figures.
6045     // We need all the free list locks to make the abstract state
6046     // transition from Sweeping to Resetting. See detailed note
6047     // further below.
6048     {
6049       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6050                                _permGen->freelistLock());
6051       // Update heap occupancy information which is used as
6052       // input to soft ref clearing policy at the next gc.
6053       Universe::update_heap_info_at_gc();
6054       _collectorState = Resizing;
6055     }
6056   } else {
6057     // already have needed locks
6058     sweepWork(_cmsGen,  asynch);
6059 
6060     if (should_unload_classes()) {
6061       sweepWork(_permGen, asynch);
6062     }
6063     // Update heap occupancy information which is used as
6064     // input to soft ref clearing policy at the next gc.
6065     Universe::update_heap_info_at_gc();
6066     _collectorState = Resizing;
6067   }
6068   verify_work_stacks_empty();
6069   verify_overflow_empty();
6070 
6071   _intra_sweep_timer.stop();
6072   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6073 
6074   _inter_sweep_timer.reset();
6075   _inter_sweep_timer.start();
6076 
6077   update_time_of_last_gc(os::javaTimeMillis());
6078 
6079   // NOTE on abstract state transitions:
6080   // Mutators allocate-live and/or mark the mod-union table dirty
6081   // based on the state of the collection.  The former is done in
6082   // the interval [Marking, Sweeping] and the latter in the interval
6083   // [Marking, Sweeping).  Thus the transitions into the Marking state
6084   // and out of the Sweeping state must be synchronously visible
6085   // globally to the mutators.
6086   // The transition into the Marking state happens with the world
6087   // stopped so the mutators will globally see it.  Sweeping is
6088   // done asynchronously by the background collector so the transition
6089   // from the Sweeping state to the Resizing state must be done
6090   // under the freelistLock (as is the check for whether to
6091   // allocate-live and whether to dirty the mod-union table).
6092   assert(_collectorState == Resizing, "Change of collector state to"
6093     " Resizing must be done under the freelistLocks (plural)");
6094 
6095   // Now that sweeping has been completed, we clear
6096   // the incremental_collection_failed flag,
6097   // thus inviting a younger gen collection to promote into
6098   // this generation. If such a promotion may still fail,
6099   // the flag will be set again when a young collection is
6100   // attempted.
6101   GenCollectedHeap* gch = GenCollectedHeap::heap();
6102   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6103   gch->update_full_collections_completed(_collection_count_start);
6104 }
6105 
6106 // FIX ME!!! Looks like this belongs in CFLSpace, with
6107 // CMSGen merely delegating to it.
6108 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6109   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6110   HeapWord*  minAddr        = _cmsSpace->bottom();
6111   HeapWord*  largestAddr    =
6112     (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
6113   if (largestAddr == NULL) {
6114     // The dictionary appears to be empty.  In this case
6115     // try to coalesce at the end of the heap.
6116     largestAddr = _cmsSpace->end();
6117   }
6118   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6119   size_t nearLargestOffset =
6120     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6121   if (PrintFLSStatistics != 0) {
6122     gclog_or_tty->print_cr(
6123       "CMS: Large Block: " PTR_FORMAT ";"
6124       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6125       largestAddr,
6126       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6127   }
6128   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6129 }
6130 
6131 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6132   return addr >= _cmsSpace->nearLargestChunk();
6133 }
6134 
6135 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6136   return _cmsSpace->find_chunk_at_end();
6137 }
6138 
6139 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6140                                                     bool full) {
6141   // The next lower level has been collected.  Gather any statistics
6142   // that are of interest at this point.
6143   if (!full && (current_level + 1) == level()) {
6144     // Gather statistics on the young generation collection.
6145     collector()->stats().record_gc0_end(used());
6146   }
6147 }
6148 
6149 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6150   GenCollectedHeap* gch = GenCollectedHeap::heap();
6151   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6152     "Wrong type of heap");
6153   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6154     gch->gen_policy()->size_policy();
6155   assert(sp->is_gc_cms_adaptive_size_policy(),
6156     "Wrong type of size policy");
6157   return sp;
6158 }
6159 
6160 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6161   if (PrintGCDetails && Verbose) {
6162     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6163   }
6164   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6165   _debug_collection_type =
6166     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6167   if (PrintGCDetails && Verbose) {
6168     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6169   }
6170 }
6171 
6172 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6173   bool asynch) {
6174   // We iterate over the space(s) underlying this generation,
6175   // checking the mark bit map to see if the bits corresponding
6176   // to specific blocks are marked or not. Blocks that are
6177   // marked are live and are not swept up. All remaining blocks
6178   // are swept up, with coalescing on-the-fly as we sweep up
6179   // contiguous free and/or garbage blocks:
6180   // We need to ensure that the sweeper synchronizes with allocators
6181   // and stop-the-world collectors. In particular, the following
6182   // locks are used:
6183   // . CMS token: if this is held, a stop the world collection cannot occur
6184   // . freelistLock: if this is held no allocation can occur from this
6185   //                 generation by another thread
6186   // . bitMapLock: if this is held, no other thread can access or update
6187   //
6188 
6189   // Note that we need to hold the freelistLock if we use
6190   // block iterate below; else the iterator might go awry if
6191   // a mutator (or promotion) causes block contents to change
6192   // (for instance if the allocator divvies up a block).
6193   // If we hold the free list lock, for all practical purposes
6194   // young generation GC's can't occur (they'll usually need to
6195   // promote), so we might as well prevent all young generation
6196   // GC's while we do a sweeping step. For the same reason, we might
6197   // as well take the bit map lock for the entire duration
6198 
6199   // check that we hold the requisite locks
6200   assert(have_cms_token(), "Should hold cms token");
6201   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6202          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6203         "Should possess CMS token to sweep");
6204   assert_lock_strong(gen->freelistLock());
6205   assert_lock_strong(bitMapLock());
6206 
6207   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6208   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6209   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6210                                       _inter_sweep_estimate.padded_average(),
6211                                       _intra_sweep_estimate.padded_average());
6212   gen->setNearLargestChunk();
6213 
6214   {
6215     SweepClosure sweepClosure(this, gen, &_markBitMap,
6216                             CMSYield && asynch);
6217     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6218     // We need to free-up/coalesce garbage/blocks from a
6219     // co-terminal free run. This is done in the SweepClosure
6220     // destructor; so, do not remove this scope, else the
6221     // end-of-sweep-census below will be off by a little bit.
6222   }
6223   gen->cmsSpace()->sweep_completed();
6224   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6225   if (should_unload_classes()) {                // unloaded classes this cycle,
6226     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6227   } else {                                      // did not unload classes,
6228     _concurrent_cycles_since_last_unload++;     // ... increment count
6229   }
6230 }
6231 
6232 // Reset CMS data structures (for now just the marking bit map)
6233 // preparatory for the next cycle.
6234 void CMSCollector::reset(bool asynch) {
6235   GenCollectedHeap* gch = GenCollectedHeap::heap();
6236   CMSAdaptiveSizePolicy* sp = size_policy();
6237   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6238   if (asynch) {
6239     CMSTokenSyncWithLocks ts(true, bitMapLock());
6240 
6241     // If the state is not "Resetting", the foreground  thread
6242     // has done a collection and the resetting.
6243     if (_collectorState != Resetting) {
6244       assert(_collectorState == Idling, "The state should only change"
6245         " because the foreground collector has finished the collection");
6246       return;
6247     }
6248 
6249     // Clear the mark bitmap (no grey objects to start with)
6250     // for the next cycle.
6251     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6252     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6253 
6254     HeapWord* curAddr = _markBitMap.startWord();
6255     while (curAddr < _markBitMap.endWord()) {
6256       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6257       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6258       _markBitMap.clear_large_range(chunk);
6259       if (ConcurrentMarkSweepThread::should_yield() &&
6260           !foregroundGCIsActive() &&
6261           CMSYield) {
6262         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6263                "CMS thread should hold CMS token");
6264         assert_lock_strong(bitMapLock());
6265         bitMapLock()->unlock();
6266         ConcurrentMarkSweepThread::desynchronize(true);
6267         ConcurrentMarkSweepThread::acknowledge_yield_request();
6268         stopTimer();
6269         if (PrintCMSStatistics != 0) {
6270           incrementYields();
6271         }
6272         icms_wait();
6273 
6274         // See the comment in coordinator_yield()
6275         for (unsigned i = 0; i < CMSYieldSleepCount &&
6276                          ConcurrentMarkSweepThread::should_yield() &&
6277                          !CMSCollector::foregroundGCIsActive(); ++i) {
6278           os::sleep(Thread::current(), 1, false);
6279           ConcurrentMarkSweepThread::acknowledge_yield_request();
6280         }
6281 
6282         ConcurrentMarkSweepThread::synchronize(true);
6283         bitMapLock()->lock_without_safepoint_check();
6284         startTimer();
6285       }
6286       curAddr = chunk.end();
6287     }
6288     // A successful mostly concurrent collection has been done.
6289     // Because only the full (i.e., concurrent mode failure) collections
6290     // are being measured for gc overhead limits, clean the "near" flag
6291     // and count.
6292     sp->reset_gc_overhead_limit_count();
6293     _collectorState = Idling;
6294   } else {
6295     // already have the lock
6296     assert(_collectorState == Resetting, "just checking");
6297     assert_lock_strong(bitMapLock());
6298     _markBitMap.clear_all();
6299     _collectorState = Idling;
6300   }
6301 
6302   // Stop incremental mode after a cycle completes, so that any future cycles
6303   // are triggered by allocation.
6304   stop_icms();
6305 
6306   NOT_PRODUCT(
6307     if (RotateCMSCollectionTypes) {
6308       _cmsGen->rotate_debug_collection_type();
6309     }
6310   )
6311 }
6312 
6313 void CMSCollector::do_CMS_operation(CMS_op_type op) {
6314   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6315   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6316   TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
6317   TraceCollectorStats tcs(counters());
6318 
6319   switch (op) {
6320     case CMS_op_checkpointRootsInitial: {
6321       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6322       checkpointRootsInitial(true);       // asynch
6323       if (PrintGC) {
6324         _cmsGen->printOccupancy("initial-mark");
6325       }
6326       break;
6327     }
6328     case CMS_op_checkpointRootsFinal: {
6329       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6330       checkpointRootsFinal(true,    // asynch
6331                            false,   // !clear_all_soft_refs
6332                            false);  // !init_mark_was_synchronous
6333       if (PrintGC) {
6334         _cmsGen->printOccupancy("remark");
6335       }
6336       break;
6337     }
6338     default:
6339       fatal("No such CMS_op");
6340   }
6341 }
6342 
6343 #ifndef PRODUCT
6344 size_t const CMSCollector::skip_header_HeapWords() {
6345   return FreeChunk::header_size();
6346 }
6347 
6348 // Try and collect here conditions that should hold when
6349 // CMS thread is exiting. The idea is that the foreground GC
6350 // thread should not be blocked if it wants to terminate
6351 // the CMS thread and yet continue to run the VM for a while
6352 // after that.
6353 void CMSCollector::verify_ok_to_terminate() const {
6354   assert(Thread::current()->is_ConcurrentGC_thread(),
6355          "should be called by CMS thread");
6356   assert(!_foregroundGCShouldWait, "should be false");
6357   // We could check here that all the various low-level locks
6358   // are not held by the CMS thread, but that is overkill; see
6359   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6360   // is checked.
6361 }
6362 #endif
6363 
6364 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6365    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6366           "missing Printezis mark?");
6367   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6368   size_t size = pointer_delta(nextOneAddr + 1, addr);
6369   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6370          "alignment problem");
6371   assert(size >= 3, "Necessary for Printezis marks to work");
6372   return size;
6373 }
6374 
6375 // A variant of the above (block_size_using_printezis_bits()) except
6376 // that we return 0 if the P-bits are not yet set.
6377 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6378   if (_markBitMap.isMarked(addr + 1)) {
6379     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6380     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6381     size_t size = pointer_delta(nextOneAddr + 1, addr);
6382     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6383            "alignment problem");
6384     assert(size >= 3, "Necessary for Printezis marks to work");
6385     return size;
6386   }
6387   return 0;
6388 }
6389 
6390 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6391   size_t sz = 0;
6392   oop p = (oop)addr;
6393   if (p->klass_or_null() != NULL && p->is_parsable()) {
6394     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6395   } else {
6396     sz = block_size_using_printezis_bits(addr);
6397   }
6398   assert(sz > 0, "size must be nonzero");
6399   HeapWord* next_block = addr + sz;
6400   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6401                                              CardTableModRefBS::card_size);
6402   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6403          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6404          "must be different cards");
6405   return next_card;
6406 }
6407 
6408 
6409 // CMS Bit Map Wrapper /////////////////////////////////////////
6410 
6411 // Construct a CMS bit map infrastructure, but don't create the
6412 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6413 // further below.
6414 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6415   _bm(),
6416   _shifter(shifter),
6417   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6418 {
6419   _bmStartWord = 0;
6420   _bmWordSize  = 0;
6421 }
6422 
6423 bool CMSBitMap::allocate(MemRegion mr) {
6424   _bmStartWord = mr.start();
6425   _bmWordSize  = mr.word_size();
6426   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6427                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6428   if (!brs.is_reserved()) {
6429     warning("CMS bit map allocation failure");
6430     return false;
6431   }
6432   // For now we'll just commit all of the bit map up fromt.
6433   // Later on we'll try to be more parsimonious with swap.
6434   if (!_virtual_space.initialize(brs, brs.size())) {
6435     warning("CMS bit map backing store failure");
6436     return false;
6437   }
6438   assert(_virtual_space.committed_size() == brs.size(),
6439          "didn't reserve backing store for all of CMS bit map?");
6440   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6441   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6442          _bmWordSize, "inconsistency in bit map sizing");
6443   _bm.set_size(_bmWordSize >> _shifter);
6444 
6445   // bm.clear(); // can we rely on getting zero'd memory? verify below
6446   assert(isAllClear(),
6447          "Expected zero'd memory from ReservedSpace constructor");
6448   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6449          "consistency check");
6450   return true;
6451 }
6452 
6453 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6454   HeapWord *next_addr, *end_addr, *last_addr;
6455   assert_locked();
6456   assert(covers(mr), "out-of-range error");
6457   // XXX assert that start and end are appropriately aligned
6458   for (next_addr = mr.start(), end_addr = mr.end();
6459        next_addr < end_addr; next_addr = last_addr) {
6460     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6461     last_addr = dirty_region.end();
6462     if (!dirty_region.is_empty()) {
6463       cl->do_MemRegion(dirty_region);
6464     } else {
6465       assert(last_addr == end_addr, "program logic");
6466       return;
6467     }
6468   }
6469 }
6470 
6471 #ifndef PRODUCT
6472 void CMSBitMap::assert_locked() const {
6473   CMSLockVerifier::assert_locked(lock());
6474 }
6475 
6476 bool CMSBitMap::covers(MemRegion mr) const {
6477   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6478   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6479          "size inconsistency");
6480   return (mr.start() >= _bmStartWord) &&
6481          (mr.end()   <= endWord());
6482 }
6483 
6484 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6485     return (start >= _bmStartWord && (start + size) <= endWord());
6486 }
6487 
6488 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6489   // verify that there are no 1 bits in the interval [left, right)
6490   FalseBitMapClosure falseBitMapClosure;
6491   iterate(&falseBitMapClosure, left, right);
6492 }
6493 
6494 void CMSBitMap::region_invariant(MemRegion mr)
6495 {
6496   assert_locked();
6497   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6498   assert(!mr.is_empty(), "unexpected empty region");
6499   assert(covers(mr), "mr should be covered by bit map");
6500   // convert address range into offset range
6501   size_t start_ofs = heapWordToOffset(mr.start());
6502   // Make sure that end() is appropriately aligned
6503   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6504                         (1 << (_shifter+LogHeapWordSize))),
6505          "Misaligned mr.end()");
6506   size_t end_ofs   = heapWordToOffset(mr.end());
6507   assert(end_ofs > start_ofs, "Should mark at least one bit");
6508 }
6509 
6510 #endif
6511 
6512 bool CMSMarkStack::allocate(size_t size) {
6513   // allocate a stack of the requisite depth
6514   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6515                    size * sizeof(oop)));
6516   if (!rs.is_reserved()) {
6517     warning("CMSMarkStack allocation failure");
6518     return false;
6519   }
6520   if (!_virtual_space.initialize(rs, rs.size())) {
6521     warning("CMSMarkStack backing store failure");
6522     return false;
6523   }
6524   assert(_virtual_space.committed_size() == rs.size(),
6525          "didn't reserve backing store for all of CMS stack?");
6526   _base = (oop*)(_virtual_space.low());
6527   _index = 0;
6528   _capacity = size;
6529   NOT_PRODUCT(_max_depth = 0);
6530   return true;
6531 }
6532 
6533 // XXX FIX ME !!! In the MT case we come in here holding a
6534 // leaf lock. For printing we need to take a further lock
6535 // which has lower rank. We need to recallibrate the two
6536 // lock-ranks involved in order to be able to rpint the
6537 // messages below. (Or defer the printing to the caller.
6538 // For now we take the expedient path of just disabling the
6539 // messages for the problematic case.)
6540 void CMSMarkStack::expand() {
6541   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6542   if (_capacity == MarkStackSizeMax) {
6543     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6544       // We print a warning message only once per CMS cycle.
6545       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6546     }
6547     return;
6548   }
6549   // Double capacity if possible
6550   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6551   // Do not give up existing stack until we have managed to
6552   // get the double capacity that we desired.
6553   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6554                    new_capacity * sizeof(oop)));
6555   if (rs.is_reserved()) {
6556     // Release the backing store associated with old stack
6557     _virtual_space.release();
6558     // Reinitialize virtual space for new stack
6559     if (!_virtual_space.initialize(rs, rs.size())) {
6560       fatal("Not enough swap for expanded marking stack");
6561     }
6562     _base = (oop*)(_virtual_space.low());
6563     _index = 0;
6564     _capacity = new_capacity;
6565   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6566     // Failed to double capacity, continue;
6567     // we print a detail message only once per CMS cycle.
6568     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6569             SIZE_FORMAT"K",
6570             _capacity / K, new_capacity / K);
6571   }
6572 }
6573 
6574 
6575 // Closures
6576 // XXX: there seems to be a lot of code  duplication here;
6577 // should refactor and consolidate common code.
6578 
6579 // This closure is used to mark refs into the CMS generation in
6580 // the CMS bit map. Called at the first checkpoint. This closure
6581 // assumes that we do not need to re-mark dirty cards; if the CMS
6582 // generation on which this is used is not an oldest (modulo perm gen)
6583 // generation then this will lose younger_gen cards!
6584 
6585 MarkRefsIntoClosure::MarkRefsIntoClosure(
6586   MemRegion span, CMSBitMap* bitMap):
6587     _span(span),
6588     _bitMap(bitMap)
6589 {
6590     assert(_ref_processor == NULL, "deliberately left NULL");
6591     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6592 }
6593 
6594 void MarkRefsIntoClosure::do_oop(oop obj) {
6595   // if p points into _span, then mark corresponding bit in _markBitMap
6596   assert(obj->is_oop(), "expected an oop");
6597   HeapWord* addr = (HeapWord*)obj;
6598   if (_span.contains(addr)) {
6599     // this should be made more efficient
6600     _bitMap->mark(addr);
6601   }
6602 }
6603 
6604 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6605 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6606 
6607 // A variant of the above, used for CMS marking verification.
6608 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6609   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6610     _span(span),
6611     _verification_bm(verification_bm),
6612     _cms_bm(cms_bm)
6613 {
6614     assert(_ref_processor == NULL, "deliberately left NULL");
6615     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6616 }
6617 
6618 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6619   // if p points into _span, then mark corresponding bit in _markBitMap
6620   assert(obj->is_oop(), "expected an oop");
6621   HeapWord* addr = (HeapWord*)obj;
6622   if (_span.contains(addr)) {
6623     _verification_bm->mark(addr);
6624     if (!_cms_bm->isMarked(addr)) {
6625       oop(addr)->print();
6626       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6627       fatal("... aborting");
6628     }
6629   }
6630 }
6631 
6632 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6633 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6634 
6635 //////////////////////////////////////////////////
6636 // MarkRefsIntoAndScanClosure
6637 //////////////////////////////////////////////////
6638 
6639 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6640                                                        ReferenceProcessor* rp,
6641                                                        CMSBitMap* bit_map,
6642                                                        CMSBitMap* mod_union_table,
6643                                                        CMSMarkStack*  mark_stack,
6644                                                        CMSMarkStack*  revisit_stack,
6645                                                        CMSCollector* collector,
6646                                                        bool should_yield,
6647                                                        bool concurrent_precleaning):
6648   _collector(collector),
6649   _span(span),
6650   _bit_map(bit_map),
6651   _mark_stack(mark_stack),
6652   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6653                       mark_stack, revisit_stack, concurrent_precleaning),
6654   _yield(should_yield),
6655   _concurrent_precleaning(concurrent_precleaning),
6656   _freelistLock(NULL)
6657 {
6658   _ref_processor = rp;
6659   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6660 }
6661 
6662 // This closure is used to mark refs into the CMS generation at the
6663 // second (final) checkpoint, and to scan and transitively follow
6664 // the unmarked oops. It is also used during the concurrent precleaning
6665 // phase while scanning objects on dirty cards in the CMS generation.
6666 // The marks are made in the marking bit map and the marking stack is
6667 // used for keeping the (newly) grey objects during the scan.
6668 // The parallel version (Par_...) appears further below.
6669 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6670   if (obj != NULL) {
6671     assert(obj->is_oop(), "expected an oop");
6672     HeapWord* addr = (HeapWord*)obj;
6673     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6674     assert(_collector->overflow_list_is_empty(),
6675            "overflow list should be empty");
6676     if (_span.contains(addr) &&
6677         !_bit_map->isMarked(addr)) {
6678       // mark bit map (object is now grey)
6679       _bit_map->mark(addr);
6680       // push on marking stack (stack should be empty), and drain the
6681       // stack by applying this closure to the oops in the oops popped
6682       // from the stack (i.e. blacken the grey objects)
6683       bool res = _mark_stack->push(obj);
6684       assert(res, "Should have space to push on empty stack");
6685       do {
6686         oop new_oop = _mark_stack->pop();
6687         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6688         assert(new_oop->is_parsable(), "Found unparsable oop");
6689         assert(_bit_map->isMarked((HeapWord*)new_oop),
6690                "only grey objects on this stack");
6691         // iterate over the oops in this oop, marking and pushing
6692         // the ones in CMS heap (i.e. in _span).
6693         new_oop->oop_iterate(&_pushAndMarkClosure);
6694         // check if it's time to yield
6695         do_yield_check();
6696       } while (!_mark_stack->isEmpty() ||
6697                (!_concurrent_precleaning && take_from_overflow_list()));
6698         // if marking stack is empty, and we are not doing this
6699         // during precleaning, then check the overflow list
6700     }
6701     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6702     assert(_collector->overflow_list_is_empty(),
6703            "overflow list was drained above");
6704     // We could restore evacuated mark words, if any, used for
6705     // overflow list links here because the overflow list is
6706     // provably empty here. That would reduce the maximum
6707     // size requirements for preserved_{oop,mark}_stack.
6708     // But we'll just postpone it until we are all done
6709     // so we can just stream through.
6710     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6711       _collector->restore_preserved_marks_if_any();
6712       assert(_collector->no_preserved_marks(), "No preserved marks");
6713     }
6714     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6715            "All preserved marks should have been restored above");
6716   }
6717 }
6718 
6719 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6720 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6721 
6722 void MarkRefsIntoAndScanClosure::do_yield_work() {
6723   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6724          "CMS thread should hold CMS token");
6725   assert_lock_strong(_freelistLock);
6726   assert_lock_strong(_bit_map->lock());
6727   // relinquish the free_list_lock and bitMaplock()
6728   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6729   _bit_map->lock()->unlock();
6730   _freelistLock->unlock();
6731   ConcurrentMarkSweepThread::desynchronize(true);
6732   ConcurrentMarkSweepThread::acknowledge_yield_request();
6733   _collector->stopTimer();
6734   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6735   if (PrintCMSStatistics != 0) {
6736     _collector->incrementYields();
6737   }
6738   _collector->icms_wait();
6739 
6740   // See the comment in coordinator_yield()
6741   for (unsigned i = 0;
6742        i < CMSYieldSleepCount &&
6743        ConcurrentMarkSweepThread::should_yield() &&
6744        !CMSCollector::foregroundGCIsActive();
6745        ++i) {
6746     os::sleep(Thread::current(), 1, false);
6747     ConcurrentMarkSweepThread::acknowledge_yield_request();
6748   }
6749 
6750   ConcurrentMarkSweepThread::synchronize(true);
6751   _freelistLock->lock_without_safepoint_check();
6752   _bit_map->lock()->lock_without_safepoint_check();
6753   _collector->startTimer();
6754 }
6755 
6756 ///////////////////////////////////////////////////////////
6757 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6758 //                                 MarkRefsIntoAndScanClosure
6759 ///////////////////////////////////////////////////////////
6760 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6761   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6762   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
6763   _span(span),
6764   _bit_map(bit_map),
6765   _work_queue(work_queue),
6766   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6767                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6768   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
6769                           revisit_stack)
6770 {
6771   _ref_processor = rp;
6772   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6773 }
6774 
6775 // This closure is used to mark refs into the CMS generation at the
6776 // second (final) checkpoint, and to scan and transitively follow
6777 // the unmarked oops. The marks are made in the marking bit map and
6778 // the work_queue is used for keeping the (newly) grey objects during
6779 // the scan phase whence they are also available for stealing by parallel
6780 // threads. Since the marking bit map is shared, updates are
6781 // synchronized (via CAS).
6782 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6783   if (obj != NULL) {
6784     // Ignore mark word because this could be an already marked oop
6785     // that may be chained at the end of the overflow list.
6786     assert(obj->is_oop(true), "expected an oop");
6787     HeapWord* addr = (HeapWord*)obj;
6788     if (_span.contains(addr) &&
6789         !_bit_map->isMarked(addr)) {
6790       // mark bit map (object will become grey):
6791       // It is possible for several threads to be
6792       // trying to "claim" this object concurrently;
6793       // the unique thread that succeeds in marking the
6794       // object first will do the subsequent push on
6795       // to the work queue (or overflow list).
6796       if (_bit_map->par_mark(addr)) {
6797         // push on work_queue (which may not be empty), and trim the
6798         // queue to an appropriate length by applying this closure to
6799         // the oops in the oops popped from the stack (i.e. blacken the
6800         // grey objects)
6801         bool res = _work_queue->push(obj);
6802         assert(res, "Low water mark should be less than capacity?");
6803         trim_queue(_low_water_mark);
6804       } // Else, another thread claimed the object
6805     }
6806   }
6807 }
6808 
6809 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6810 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6811 
6812 // This closure is used to rescan the marked objects on the dirty cards
6813 // in the mod union table and the card table proper.
6814 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6815   oop p, MemRegion mr) {
6816 
6817   size_t size = 0;
6818   HeapWord* addr = (HeapWord*)p;
6819   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6820   assert(_span.contains(addr), "we are scanning the CMS generation");
6821   // check if it's time to yield
6822   if (do_yield_check()) {
6823     // We yielded for some foreground stop-world work,
6824     // and we have been asked to abort this ongoing preclean cycle.
6825     return 0;
6826   }
6827   if (_bitMap->isMarked(addr)) {
6828     // it's marked; is it potentially uninitialized?
6829     if (p->klass_or_null() != NULL) {
6830       // If is_conc_safe is false, the object may be undergoing
6831       // change by the VM outside a safepoint.  Don't try to
6832       // scan it, but rather leave it for the remark phase.
6833       if (CMSPermGenPrecleaningEnabled &&
6834           (!p->is_conc_safe() || !p->is_parsable())) {
6835         // Signal precleaning to redirty the card since
6836         // the klass pointer is already installed.
6837         assert(size == 0, "Initial value");
6838       } else {
6839         assert(p->is_parsable(), "must be parsable.");
6840         // an initialized object; ignore mark word in verification below
6841         // since we are running concurrent with mutators
6842         assert(p->is_oop(true), "should be an oop");
6843         if (p->is_objArray()) {
6844           // objArrays are precisely marked; restrict scanning
6845           // to dirty cards only.
6846           size = CompactibleFreeListSpace::adjustObjectSize(
6847                    p->oop_iterate(_scanningClosure, mr));
6848         } else {
6849           // A non-array may have been imprecisely marked; we need
6850           // to scan object in its entirety.
6851           size = CompactibleFreeListSpace::adjustObjectSize(
6852                    p->oop_iterate(_scanningClosure));
6853         }
6854         #ifdef DEBUG
6855           size_t direct_size =
6856             CompactibleFreeListSpace::adjustObjectSize(p->size());
6857           assert(size == direct_size, "Inconsistency in size");
6858           assert(size >= 3, "Necessary for Printezis marks to work");
6859           if (!_bitMap->isMarked(addr+1)) {
6860             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6861           } else {
6862             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6863             assert(_bitMap->isMarked(addr+size-1),
6864                    "inconsistent Printezis mark");
6865           }
6866         #endif // DEBUG
6867       }
6868     } else {
6869       // an unitialized object
6870       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6871       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6872       size = pointer_delta(nextOneAddr + 1, addr);
6873       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6874              "alignment problem");
6875       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6876       // will dirty the card when the klass pointer is installed in the
6877       // object (signalling the completion of initialization).
6878     }
6879   } else {
6880     // Either a not yet marked object or an uninitialized object
6881     if (p->klass_or_null() == NULL || !p->is_parsable()) {
6882       // An uninitialized object, skip to the next card, since
6883       // we may not be able to read its P-bits yet.
6884       assert(size == 0, "Initial value");
6885     } else {
6886       // An object not (yet) reached by marking: we merely need to
6887       // compute its size so as to go look at the next block.
6888       assert(p->is_oop(true), "should be an oop");
6889       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6890     }
6891   }
6892   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6893   return size;
6894 }
6895 
6896 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6897   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6898          "CMS thread should hold CMS token");
6899   assert_lock_strong(_freelistLock);
6900   assert_lock_strong(_bitMap->lock());
6901   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6902   // relinquish the free_list_lock and bitMaplock()
6903   _bitMap->lock()->unlock();
6904   _freelistLock->unlock();
6905   ConcurrentMarkSweepThread::desynchronize(true);
6906   ConcurrentMarkSweepThread::acknowledge_yield_request();
6907   _collector->stopTimer();
6908   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6909   if (PrintCMSStatistics != 0) {
6910     _collector->incrementYields();
6911   }
6912   _collector->icms_wait();
6913 
6914   // See the comment in coordinator_yield()
6915   for (unsigned i = 0; i < CMSYieldSleepCount &&
6916                    ConcurrentMarkSweepThread::should_yield() &&
6917                    !CMSCollector::foregroundGCIsActive(); ++i) {
6918     os::sleep(Thread::current(), 1, false);
6919     ConcurrentMarkSweepThread::acknowledge_yield_request();
6920   }
6921 
6922   ConcurrentMarkSweepThread::synchronize(true);
6923   _freelistLock->lock_without_safepoint_check();
6924   _bitMap->lock()->lock_without_safepoint_check();
6925   _collector->startTimer();
6926 }
6927 
6928 
6929 //////////////////////////////////////////////////////////////////
6930 // SurvivorSpacePrecleanClosure
6931 //////////////////////////////////////////////////////////////////
6932 // This (single-threaded) closure is used to preclean the oops in
6933 // the survivor spaces.
6934 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6935 
6936   HeapWord* addr = (HeapWord*)p;
6937   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6938   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6939   assert(p->klass_or_null() != NULL, "object should be initializd");
6940   assert(p->is_parsable(), "must be parsable.");
6941   // an initialized object; ignore mark word in verification below
6942   // since we are running concurrent with mutators
6943   assert(p->is_oop(true), "should be an oop");
6944   // Note that we do not yield while we iterate over
6945   // the interior oops of p, pushing the relevant ones
6946   // on our marking stack.
6947   size_t size = p->oop_iterate(_scanning_closure);
6948   do_yield_check();
6949   // Observe that below, we do not abandon the preclean
6950   // phase as soon as we should; rather we empty the
6951   // marking stack before returning. This is to satisfy
6952   // some existing assertions. In general, it may be a
6953   // good idea to abort immediately and complete the marking
6954   // from the grey objects at a later time.
6955   while (!_mark_stack->isEmpty()) {
6956     oop new_oop = _mark_stack->pop();
6957     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6958     assert(new_oop->is_parsable(), "Found unparsable oop");
6959     assert(_bit_map->isMarked((HeapWord*)new_oop),
6960            "only grey objects on this stack");
6961     // iterate over the oops in this oop, marking and pushing
6962     // the ones in CMS heap (i.e. in _span).
6963     new_oop->oop_iterate(_scanning_closure);
6964     // check if it's time to yield
6965     do_yield_check();
6966   }
6967   unsigned int after_count =
6968     GenCollectedHeap::heap()->total_collections();
6969   bool abort = (_before_count != after_count) ||
6970                _collector->should_abort_preclean();
6971   return abort ? 0 : size;
6972 }
6973 
6974 void SurvivorSpacePrecleanClosure::do_yield_work() {
6975   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6976          "CMS thread should hold CMS token");
6977   assert_lock_strong(_bit_map->lock());
6978   DEBUG_ONLY(RememberKlassesChecker smx(false);)
6979   // Relinquish the bit map lock
6980   _bit_map->lock()->unlock();
6981   ConcurrentMarkSweepThread::desynchronize(true);
6982   ConcurrentMarkSweepThread::acknowledge_yield_request();
6983   _collector->stopTimer();
6984   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6985   if (PrintCMSStatistics != 0) {
6986     _collector->incrementYields();
6987   }
6988   _collector->icms_wait();
6989 
6990   // See the comment in coordinator_yield()
6991   for (unsigned i = 0; i < CMSYieldSleepCount &&
6992                        ConcurrentMarkSweepThread::should_yield() &&
6993                        !CMSCollector::foregroundGCIsActive(); ++i) {
6994     os::sleep(Thread::current(), 1, false);
6995     ConcurrentMarkSweepThread::acknowledge_yield_request();
6996   }
6997 
6998   ConcurrentMarkSweepThread::synchronize(true);
6999   _bit_map->lock()->lock_without_safepoint_check();
7000   _collector->startTimer();
7001 }
7002 
7003 // This closure is used to rescan the marked objects on the dirty cards
7004 // in the mod union table and the card table proper. In the parallel
7005 // case, although the bitMap is shared, we do a single read so the
7006 // isMarked() query is "safe".
7007 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7008   // Ignore mark word because we are running concurrent with mutators
7009   assert(p->is_oop_or_null(true), "expected an oop or null");
7010   HeapWord* addr = (HeapWord*)p;
7011   assert(_span.contains(addr), "we are scanning the CMS generation");
7012   bool is_obj_array = false;
7013   #ifdef DEBUG
7014     if (!_parallel) {
7015       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7016       assert(_collector->overflow_list_is_empty(),
7017              "overflow list should be empty");
7018 
7019     }
7020   #endif // DEBUG
7021   if (_bit_map->isMarked(addr)) {
7022     // Obj arrays are precisely marked, non-arrays are not;
7023     // so we scan objArrays precisely and non-arrays in their
7024     // entirety.
7025     if (p->is_objArray()) {
7026       is_obj_array = true;
7027       if (_parallel) {
7028         p->oop_iterate(_par_scan_closure, mr);
7029       } else {
7030         p->oop_iterate(_scan_closure, mr);
7031       }
7032     } else {
7033       if (_parallel) {
7034         p->oop_iterate(_par_scan_closure);
7035       } else {
7036         p->oop_iterate(_scan_closure);
7037       }
7038     }
7039   }
7040   #ifdef DEBUG
7041     if (!_parallel) {
7042       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7043       assert(_collector->overflow_list_is_empty(),
7044              "overflow list should be empty");
7045 
7046     }
7047   #endif // DEBUG
7048   return is_obj_array;
7049 }
7050 
7051 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7052                         MemRegion span,
7053                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7054                         CMSMarkStack*  revisitStack,
7055                         bool should_yield, bool verifying):
7056   _collector(collector),
7057   _span(span),
7058   _bitMap(bitMap),
7059   _mut(&collector->_modUnionTable),
7060   _markStack(markStack),
7061   _revisitStack(revisitStack),
7062   _yield(should_yield),
7063   _skipBits(0)
7064 {
7065   assert(_markStack->isEmpty(), "stack should be empty");
7066   _finger = _bitMap->startWord();
7067   _threshold = _finger;
7068   assert(_collector->_restart_addr == NULL, "Sanity check");
7069   assert(_span.contains(_finger), "Out of bounds _finger?");
7070   DEBUG_ONLY(_verifying = verifying;)
7071 }
7072 
7073 void MarkFromRootsClosure::reset(HeapWord* addr) {
7074   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7075   assert(_span.contains(addr), "Out of bounds _finger?");
7076   _finger = addr;
7077   _threshold = (HeapWord*)round_to(
7078                  (intptr_t)_finger, CardTableModRefBS::card_size);
7079 }
7080 
7081 // Should revisit to see if this should be restructured for
7082 // greater efficiency.
7083 bool MarkFromRootsClosure::do_bit(size_t offset) {
7084   if (_skipBits > 0) {
7085     _skipBits--;
7086     return true;
7087   }
7088   // convert offset into a HeapWord*
7089   HeapWord* addr = _bitMap->startWord() + offset;
7090   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7091          "address out of range");
7092   assert(_bitMap->isMarked(addr), "tautology");
7093   if (_bitMap->isMarked(addr+1)) {
7094     // this is an allocated but not yet initialized object
7095     assert(_skipBits == 0, "tautology");
7096     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7097     oop p = oop(addr);
7098     if (p->klass_or_null() == NULL || !p->is_parsable()) {
7099       DEBUG_ONLY(if (!_verifying) {)
7100         // We re-dirty the cards on which this object lies and increase
7101         // the _threshold so that we'll come back to scan this object
7102         // during the preclean or remark phase. (CMSCleanOnEnter)
7103         if (CMSCleanOnEnter) {
7104           size_t sz = _collector->block_size_using_printezis_bits(addr);
7105           HeapWord* end_card_addr   = (HeapWord*)round_to(
7106                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7107           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7108           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7109           // Bump _threshold to end_card_addr; note that
7110           // _threshold cannot possibly exceed end_card_addr, anyhow.
7111           // This prevents future clearing of the card as the scan proceeds
7112           // to the right.
7113           assert(_threshold <= end_card_addr,
7114                  "Because we are just scanning into this object");
7115           if (_threshold < end_card_addr) {
7116             _threshold = end_card_addr;
7117           }
7118           if (p->klass_or_null() != NULL) {
7119             // Redirty the range of cards...
7120             _mut->mark_range(redirty_range);
7121           } // ...else the setting of klass will dirty the card anyway.
7122         }
7123       DEBUG_ONLY(})
7124       return true;
7125     }
7126   }
7127   scanOopsInOop(addr);
7128   return true;
7129 }
7130 
7131 // We take a break if we've been at this for a while,
7132 // so as to avoid monopolizing the locks involved.
7133 void MarkFromRootsClosure::do_yield_work() {
7134   // First give up the locks, then yield, then re-lock
7135   // We should probably use a constructor/destructor idiom to
7136   // do this unlock/lock or modify the MutexUnlocker class to
7137   // serve our purpose. XXX
7138   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7139          "CMS thread should hold CMS token");
7140   assert_lock_strong(_bitMap->lock());
7141   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7142   _bitMap->lock()->unlock();
7143   ConcurrentMarkSweepThread::desynchronize(true);
7144   ConcurrentMarkSweepThread::acknowledge_yield_request();
7145   _collector->stopTimer();
7146   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7147   if (PrintCMSStatistics != 0) {
7148     _collector->incrementYields();
7149   }
7150   _collector->icms_wait();
7151 
7152   // See the comment in coordinator_yield()
7153   for (unsigned i = 0; i < CMSYieldSleepCount &&
7154                        ConcurrentMarkSweepThread::should_yield() &&
7155                        !CMSCollector::foregroundGCIsActive(); ++i) {
7156     os::sleep(Thread::current(), 1, false);
7157     ConcurrentMarkSweepThread::acknowledge_yield_request();
7158   }
7159 
7160   ConcurrentMarkSweepThread::synchronize(true);
7161   _bitMap->lock()->lock_without_safepoint_check();
7162   _collector->startTimer();
7163 }
7164 
7165 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7166   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7167   assert(_markStack->isEmpty(),
7168          "should drain stack to limit stack usage");
7169   // convert ptr to an oop preparatory to scanning
7170   oop obj = oop(ptr);
7171   // Ignore mark word in verification below, since we
7172   // may be running concurrent with mutators.
7173   assert(obj->is_oop(true), "should be an oop");
7174   assert(_finger <= ptr, "_finger runneth ahead");
7175   // advance the finger to right end of this object
7176   _finger = ptr + obj->size();
7177   assert(_finger > ptr, "we just incremented it above");
7178   // On large heaps, it may take us some time to get through
7179   // the marking phase (especially if running iCMS). During
7180   // this time it's possible that a lot of mutations have
7181   // accumulated in the card table and the mod union table --
7182   // these mutation records are redundant until we have
7183   // actually traced into the corresponding card.
7184   // Here, we check whether advancing the finger would make
7185   // us cross into a new card, and if so clear corresponding
7186   // cards in the MUT (preclean them in the card-table in the
7187   // future).
7188 
7189   DEBUG_ONLY(if (!_verifying) {)
7190     // The clean-on-enter optimization is disabled by default,
7191     // until we fix 6178663.
7192     if (CMSCleanOnEnter && (_finger > _threshold)) {
7193       // [_threshold, _finger) represents the interval
7194       // of cards to be cleared  in MUT (or precleaned in card table).
7195       // The set of cards to be cleared is all those that overlap
7196       // with the interval [_threshold, _finger); note that
7197       // _threshold is always kept card-aligned but _finger isn't
7198       // always card-aligned.
7199       HeapWord* old_threshold = _threshold;
7200       assert(old_threshold == (HeapWord*)round_to(
7201               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7202              "_threshold should always be card-aligned");
7203       _threshold = (HeapWord*)round_to(
7204                      (intptr_t)_finger, CardTableModRefBS::card_size);
7205       MemRegion mr(old_threshold, _threshold);
7206       assert(!mr.is_empty(), "Control point invariant");
7207       assert(_span.contains(mr), "Should clear within span");
7208       // XXX When _finger crosses from old gen into perm gen
7209       // we may be doing unnecessary cleaning; do better in the
7210       // future by detecting that condition and clearing fewer
7211       // MUT/CT entries.
7212       _mut->clear_range(mr);
7213     }
7214   DEBUG_ONLY(})
7215   // Note: the finger doesn't advance while we drain
7216   // the stack below.
7217   PushOrMarkClosure pushOrMarkClosure(_collector,
7218                                       _span, _bitMap, _markStack,
7219                                       _revisitStack,
7220                                       _finger, this);
7221   bool res = _markStack->push(obj);
7222   assert(res, "Empty non-zero size stack should have space for single push");
7223   while (!_markStack->isEmpty()) {
7224     oop new_oop = _markStack->pop();
7225     // Skip verifying header mark word below because we are
7226     // running concurrent with mutators.
7227     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7228     // now scan this oop's oops
7229     new_oop->oop_iterate(&pushOrMarkClosure);
7230     do_yield_check();
7231   }
7232   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7233 }
7234 
7235 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7236                        CMSCollector* collector, MemRegion span,
7237                        CMSBitMap* bit_map,
7238                        OopTaskQueue* work_queue,
7239                        CMSMarkStack*  overflow_stack,
7240                        CMSMarkStack*  revisit_stack,
7241                        bool should_yield):
7242   _collector(collector),
7243   _whole_span(collector->_span),
7244   _span(span),
7245   _bit_map(bit_map),
7246   _mut(&collector->_modUnionTable),
7247   _work_queue(work_queue),
7248   _overflow_stack(overflow_stack),
7249   _revisit_stack(revisit_stack),
7250   _yield(should_yield),
7251   _skip_bits(0),
7252   _task(task)
7253 {
7254   assert(_work_queue->size() == 0, "work_queue should be empty");
7255   _finger = span.start();
7256   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7257   assert(_span.contains(_finger), "Out of bounds _finger?");
7258 }
7259 
7260 // Should revisit to see if this should be restructured for
7261 // greater efficiency.
7262 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7263   if (_skip_bits > 0) {
7264     _skip_bits--;
7265     return true;
7266   }
7267   // convert offset into a HeapWord*
7268   HeapWord* addr = _bit_map->startWord() + offset;
7269   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7270          "address out of range");
7271   assert(_bit_map->isMarked(addr), "tautology");
7272   if (_bit_map->isMarked(addr+1)) {
7273     // this is an allocated object that might not yet be initialized
7274     assert(_skip_bits == 0, "tautology");
7275     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7276     oop p = oop(addr);
7277     if (p->klass_or_null() == NULL || !p->is_parsable()) {
7278       // in the case of Clean-on-Enter optimization, redirty card
7279       // and avoid clearing card by increasing  the threshold.
7280       return true;
7281     }
7282   }
7283   scan_oops_in_oop(addr);
7284   return true;
7285 }
7286 
7287 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7288   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7289   // Should we assert that our work queue is empty or
7290   // below some drain limit?
7291   assert(_work_queue->size() == 0,
7292          "should drain stack to limit stack usage");
7293   // convert ptr to an oop preparatory to scanning
7294   oop obj = oop(ptr);
7295   // Ignore mark word in verification below, since we
7296   // may be running concurrent with mutators.
7297   assert(obj->is_oop(true), "should be an oop");
7298   assert(_finger <= ptr, "_finger runneth ahead");
7299   // advance the finger to right end of this object
7300   _finger = ptr + obj->size();
7301   assert(_finger > ptr, "we just incremented it above");
7302   // On large heaps, it may take us some time to get through
7303   // the marking phase (especially if running iCMS). During
7304   // this time it's possible that a lot of mutations have
7305   // accumulated in the card table and the mod union table --
7306   // these mutation records are redundant until we have
7307   // actually traced into the corresponding card.
7308   // Here, we check whether advancing the finger would make
7309   // us cross into a new card, and if so clear corresponding
7310   // cards in the MUT (preclean them in the card-table in the
7311   // future).
7312 
7313   // The clean-on-enter optimization is disabled by default,
7314   // until we fix 6178663.
7315   if (CMSCleanOnEnter && (_finger > _threshold)) {
7316     // [_threshold, _finger) represents the interval
7317     // of cards to be cleared  in MUT (or precleaned in card table).
7318     // The set of cards to be cleared is all those that overlap
7319     // with the interval [_threshold, _finger); note that
7320     // _threshold is always kept card-aligned but _finger isn't
7321     // always card-aligned.
7322     HeapWord* old_threshold = _threshold;
7323     assert(old_threshold == (HeapWord*)round_to(
7324             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7325            "_threshold should always be card-aligned");
7326     _threshold = (HeapWord*)round_to(
7327                    (intptr_t)_finger, CardTableModRefBS::card_size);
7328     MemRegion mr(old_threshold, _threshold);
7329     assert(!mr.is_empty(), "Control point invariant");
7330     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7331     // XXX When _finger crosses from old gen into perm gen
7332     // we may be doing unnecessary cleaning; do better in the
7333     // future by detecting that condition and clearing fewer
7334     // MUT/CT entries.
7335     _mut->clear_range(mr);
7336   }
7337 
7338   // Note: the local finger doesn't advance while we drain
7339   // the stack below, but the global finger sure can and will.
7340   HeapWord** gfa = _task->global_finger_addr();
7341   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7342                                       _span, _bit_map,
7343                                       _work_queue,
7344                                       _overflow_stack,
7345                                       _revisit_stack,
7346                                       _finger,
7347                                       gfa, this);
7348   bool res = _work_queue->push(obj);   // overflow could occur here
7349   assert(res, "Will hold once we use workqueues");
7350   while (true) {
7351     oop new_oop;
7352     if (!_work_queue->pop_local(new_oop)) {
7353       // We emptied our work_queue; check if there's stuff that can
7354       // be gotten from the overflow stack.
7355       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7356             _overflow_stack, _work_queue)) {
7357         do_yield_check();
7358         continue;
7359       } else {  // done
7360         break;
7361       }
7362     }
7363     // Skip verifying header mark word below because we are
7364     // running concurrent with mutators.
7365     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7366     // now scan this oop's oops
7367     new_oop->oop_iterate(&pushOrMarkClosure);
7368     do_yield_check();
7369   }
7370   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7371 }
7372 
7373 // Yield in response to a request from VM Thread or
7374 // from mutators.
7375 void Par_MarkFromRootsClosure::do_yield_work() {
7376   assert(_task != NULL, "sanity");
7377   _task->yield();
7378 }
7379 
7380 // A variant of the above used for verifying CMS marking work.
7381 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7382                         MemRegion span,
7383                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7384                         CMSMarkStack*  mark_stack):
7385   _collector(collector),
7386   _span(span),
7387   _verification_bm(verification_bm),
7388   _cms_bm(cms_bm),
7389   _mark_stack(mark_stack),
7390   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7391                       mark_stack)
7392 {
7393   assert(_mark_stack->isEmpty(), "stack should be empty");
7394   _finger = _verification_bm->startWord();
7395   assert(_collector->_restart_addr == NULL, "Sanity check");
7396   assert(_span.contains(_finger), "Out of bounds _finger?");
7397 }
7398 
7399 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7400   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7401   assert(_span.contains(addr), "Out of bounds _finger?");
7402   _finger = addr;
7403 }
7404 
7405 // Should revisit to see if this should be restructured for
7406 // greater efficiency.
7407 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7408   // convert offset into a HeapWord*
7409   HeapWord* addr = _verification_bm->startWord() + offset;
7410   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7411          "address out of range");
7412   assert(_verification_bm->isMarked(addr), "tautology");
7413   assert(_cms_bm->isMarked(addr), "tautology");
7414 
7415   assert(_mark_stack->isEmpty(),
7416          "should drain stack to limit stack usage");
7417   // convert addr to an oop preparatory to scanning
7418   oop obj = oop(addr);
7419   assert(obj->is_oop(), "should be an oop");
7420   assert(_finger <= addr, "_finger runneth ahead");
7421   // advance the finger to right end of this object
7422   _finger = addr + obj->size();
7423   assert(_finger > addr, "we just incremented it above");
7424   // Note: the finger doesn't advance while we drain
7425   // the stack below.
7426   bool res = _mark_stack->push(obj);
7427   assert(res, "Empty non-zero size stack should have space for single push");
7428   while (!_mark_stack->isEmpty()) {
7429     oop new_oop = _mark_stack->pop();
7430     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7431     // now scan this oop's oops
7432     new_oop->oop_iterate(&_pam_verify_closure);
7433   }
7434   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7435   return true;
7436 }
7437 
7438 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7439   CMSCollector* collector, MemRegion span,
7440   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7441   CMSMarkStack*  mark_stack):
7442   OopClosure(collector->ref_processor()),
7443   _collector(collector),
7444   _span(span),
7445   _verification_bm(verification_bm),
7446   _cms_bm(cms_bm),
7447   _mark_stack(mark_stack)
7448 { }
7449 
7450 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7451 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7452 
7453 // Upon stack overflow, we discard (part of) the stack,
7454 // remembering the least address amongst those discarded
7455 // in CMSCollector's _restart_address.
7456 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7457   // Remember the least grey address discarded
7458   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7459   _collector->lower_restart_addr(ra);
7460   _mark_stack->reset();  // discard stack contents
7461   _mark_stack->expand(); // expand the stack if possible
7462 }
7463 
7464 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7465   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7466   HeapWord* addr = (HeapWord*)obj;
7467   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7468     // Oop lies in _span and isn't yet grey or black
7469     _verification_bm->mark(addr);            // now grey
7470     if (!_cms_bm->isMarked(addr)) {
7471       oop(addr)->print();
7472       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7473                              addr);
7474       fatal("... aborting");
7475     }
7476 
7477     if (!_mark_stack->push(obj)) { // stack overflow
7478       if (PrintCMSStatistics != 0) {
7479         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7480                                SIZE_FORMAT, _mark_stack->capacity());
7481       }
7482       assert(_mark_stack->isFull(), "Else push should have succeeded");
7483       handle_stack_overflow(addr);
7484     }
7485     // anything including and to the right of _finger
7486     // will be scanned as we iterate over the remainder of the
7487     // bit map
7488   }
7489 }
7490 
7491 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7492                      MemRegion span,
7493                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7494                      CMSMarkStack*  revisitStack,
7495                      HeapWord* finger, MarkFromRootsClosure* parent) :
7496   KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack),
7497   _span(span),
7498   _bitMap(bitMap),
7499   _markStack(markStack),
7500   _finger(finger),
7501   _parent(parent)
7502 { }
7503 
7504 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7505                      MemRegion span,
7506                      CMSBitMap* bit_map,
7507                      OopTaskQueue* work_queue,
7508                      CMSMarkStack*  overflow_stack,
7509                      CMSMarkStack*  revisit_stack,
7510                      HeapWord* finger,
7511                      HeapWord** global_finger_addr,
7512                      Par_MarkFromRootsClosure* parent) :
7513   Par_KlassRememberingOopClosure(collector,
7514                             collector->ref_processor(),
7515                             revisit_stack),
7516   _whole_span(collector->_span),
7517   _span(span),
7518   _bit_map(bit_map),
7519   _work_queue(work_queue),
7520   _overflow_stack(overflow_stack),
7521   _finger(finger),
7522   _global_finger_addr(global_finger_addr),
7523   _parent(parent)
7524 { }
7525 
7526 // Assumes thread-safe access by callers, who are
7527 // responsible for mutual exclusion.
7528 void CMSCollector::lower_restart_addr(HeapWord* low) {
7529   assert(_span.contains(low), "Out of bounds addr");
7530   if (_restart_addr == NULL) {
7531     _restart_addr = low;
7532   } else {
7533     _restart_addr = MIN2(_restart_addr, low);
7534   }
7535 }
7536 
7537 // Upon stack overflow, we discard (part of) the stack,
7538 // remembering the least address amongst those discarded
7539 // in CMSCollector's _restart_address.
7540 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7541   // Remember the least grey address discarded
7542   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7543   _collector->lower_restart_addr(ra);
7544   _markStack->reset();  // discard stack contents
7545   _markStack->expand(); // expand the stack if possible
7546 }
7547 
7548 // Upon stack overflow, we discard (part of) the stack,
7549 // remembering the least address amongst those discarded
7550 // in CMSCollector's _restart_address.
7551 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7552   // We need to do this under a mutex to prevent other
7553   // workers from interfering with the work done below.
7554   MutexLockerEx ml(_overflow_stack->par_lock(),
7555                    Mutex::_no_safepoint_check_flag);
7556   // Remember the least grey address discarded
7557   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7558   _collector->lower_restart_addr(ra);
7559   _overflow_stack->reset();  // discard stack contents
7560   _overflow_stack->expand(); // expand the stack if possible
7561 }
7562 
7563 void PushOrMarkClosure::do_oop(oop obj) {
7564   // Ignore mark word because we are running concurrent with mutators.
7565   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7566   HeapWord* addr = (HeapWord*)obj;
7567   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7568     // Oop lies in _span and isn't yet grey or black
7569     _bitMap->mark(addr);            // now grey
7570     if (addr < _finger) {
7571       // the bit map iteration has already either passed, or
7572       // sampled, this bit in the bit map; we'll need to
7573       // use the marking stack to scan this oop's oops.
7574       bool simulate_overflow = false;
7575       NOT_PRODUCT(
7576         if (CMSMarkStackOverflowALot &&
7577             _collector->simulate_overflow()) {
7578           // simulate a stack overflow
7579           simulate_overflow = true;
7580         }
7581       )
7582       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7583         if (PrintCMSStatistics != 0) {
7584           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7585                                  SIZE_FORMAT, _markStack->capacity());
7586         }
7587         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7588         handle_stack_overflow(addr);
7589       }
7590     }
7591     // anything including and to the right of _finger
7592     // will be scanned as we iterate over the remainder of the
7593     // bit map
7594     do_yield_check();
7595   }
7596 }
7597 
7598 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7599 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7600 
7601 void Par_PushOrMarkClosure::do_oop(oop obj) {
7602   // Ignore mark word because we are running concurrent with mutators.
7603   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7604   HeapWord* addr = (HeapWord*)obj;
7605   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7606     // Oop lies in _span and isn't yet grey or black
7607     // We read the global_finger (volatile read) strictly after marking oop
7608     bool res = _bit_map->par_mark(addr);    // now grey
7609     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7610     // Should we push this marked oop on our stack?
7611     // -- if someone else marked it, nothing to do
7612     // -- if target oop is above global finger nothing to do
7613     // -- if target oop is in chunk and above local finger
7614     //      then nothing to do
7615     // -- else push on work queue
7616     if (   !res       // someone else marked it, they will deal with it
7617         || (addr >= *gfa)  // will be scanned in a later task
7618         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7619       return;
7620     }
7621     // the bit map iteration has already either passed, or
7622     // sampled, this bit in the bit map; we'll need to
7623     // use the marking stack to scan this oop's oops.
7624     bool simulate_overflow = false;
7625     NOT_PRODUCT(
7626       if (CMSMarkStackOverflowALot &&
7627           _collector->simulate_overflow()) {
7628         // simulate a stack overflow
7629         simulate_overflow = true;
7630       }
7631     )
7632     if (simulate_overflow ||
7633         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7634       // stack overflow
7635       if (PrintCMSStatistics != 0) {
7636         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7637                                SIZE_FORMAT, _overflow_stack->capacity());
7638       }
7639       // We cannot assert that the overflow stack is full because
7640       // it may have been emptied since.
7641       assert(simulate_overflow ||
7642              _work_queue->size() == _work_queue->max_elems(),
7643             "Else push should have succeeded");
7644       handle_stack_overflow(addr);
7645     }
7646     do_yield_check();
7647   }
7648 }
7649 
7650 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7651 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7652 
7653 KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector,
7654                                              ReferenceProcessor* rp,
7655                                              CMSMarkStack* revisit_stack) :
7656   OopClosure(rp),
7657   _collector(collector),
7658   _revisit_stack(revisit_stack),
7659   _should_remember_klasses(collector->should_unload_classes()) {}
7660 
7661 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7662                                        MemRegion span,
7663                                        ReferenceProcessor* rp,
7664                                        CMSBitMap* bit_map,
7665                                        CMSBitMap* mod_union_table,
7666                                        CMSMarkStack*  mark_stack,
7667                                        CMSMarkStack*  revisit_stack,
7668                                        bool           concurrent_precleaning):
7669   KlassRememberingOopClosure(collector, rp, revisit_stack),
7670   _span(span),
7671   _bit_map(bit_map),
7672   _mod_union_table(mod_union_table),
7673   _mark_stack(mark_stack),
7674   _concurrent_precleaning(concurrent_precleaning)
7675 {
7676   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7677 }
7678 
7679 // Grey object rescan during pre-cleaning and second checkpoint phases --
7680 // the non-parallel version (the parallel version appears further below.)
7681 void PushAndMarkClosure::do_oop(oop obj) {
7682   // Ignore mark word verification. If during concurrent precleaning,
7683   // the object monitor may be locked. If during the checkpoint
7684   // phases, the object may already have been reached by a  different
7685   // path and may be at the end of the global overflow list (so
7686   // the mark word may be NULL).
7687   assert(obj->is_oop_or_null(true /* ignore mark word */),
7688          "expected an oop or NULL");
7689   HeapWord* addr = (HeapWord*)obj;
7690   // Check if oop points into the CMS generation
7691   // and is not marked
7692   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7693     // a white object ...
7694     _bit_map->mark(addr);         // ... now grey
7695     // push on the marking stack (grey set)
7696     bool simulate_overflow = false;
7697     NOT_PRODUCT(
7698       if (CMSMarkStackOverflowALot &&
7699           _collector->simulate_overflow()) {
7700         // simulate a stack overflow
7701         simulate_overflow = true;
7702       }
7703     )
7704     if (simulate_overflow || !_mark_stack->push(obj)) {
7705       if (_concurrent_precleaning) {
7706          // During precleaning we can just dirty the appropriate card(s)
7707          // in the mod union table, thus ensuring that the object remains
7708          // in the grey set  and continue. In the case of object arrays
7709          // we need to dirty all of the cards that the object spans,
7710          // since the rescan of object arrays will be limited to the
7711          // dirty cards.
7712          // Note that no one can be intefering with us in this action
7713          // of dirtying the mod union table, so no locking or atomics
7714          // are required.
7715          if (obj->is_objArray()) {
7716            size_t sz = obj->size();
7717            HeapWord* end_card_addr = (HeapWord*)round_to(
7718                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7719            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7720            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7721            _mod_union_table->mark_range(redirty_range);
7722          } else {
7723            _mod_union_table->mark(addr);
7724          }
7725          _collector->_ser_pmc_preclean_ovflw++;
7726       } else {
7727          // During the remark phase, we need to remember this oop
7728          // in the overflow list.
7729          _collector->push_on_overflow_list(obj);
7730          _collector->_ser_pmc_remark_ovflw++;
7731       }
7732     }
7733   }
7734 }
7735 
7736 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7737                                                MemRegion span,
7738                                                ReferenceProcessor* rp,
7739                                                CMSBitMap* bit_map,
7740                                                OopTaskQueue* work_queue,
7741                                                CMSMarkStack* revisit_stack):
7742   Par_KlassRememberingOopClosure(collector, rp, revisit_stack),
7743   _span(span),
7744   _bit_map(bit_map),
7745   _work_queue(work_queue)
7746 {
7747   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7748 }
7749 
7750 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7751 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7752 
7753 // Grey object rescan during second checkpoint phase --
7754 // the parallel version.
7755 void Par_PushAndMarkClosure::do_oop(oop obj) {
7756   // In the assert below, we ignore the mark word because
7757   // this oop may point to an already visited object that is
7758   // on the overflow stack (in which case the mark word has
7759   // been hijacked for chaining into the overflow stack --
7760   // if this is the last object in the overflow stack then
7761   // its mark word will be NULL). Because this object may
7762   // have been subsequently popped off the global overflow
7763   // stack, and the mark word possibly restored to the prototypical
7764   // value, by the time we get to examined this failing assert in
7765   // the debugger, is_oop_or_null(false) may subsequently start
7766   // to hold.
7767   assert(obj->is_oop_or_null(true),
7768          "expected an oop or NULL");
7769   HeapWord* addr = (HeapWord*)obj;
7770   // Check if oop points into the CMS generation
7771   // and is not marked
7772   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7773     // a white object ...
7774     // If we manage to "claim" the object, by being the
7775     // first thread to mark it, then we push it on our
7776     // marking stack
7777     if (_bit_map->par_mark(addr)) {     // ... now grey
7778       // push on work queue (grey set)
7779       bool simulate_overflow = false;
7780       NOT_PRODUCT(
7781         if (CMSMarkStackOverflowALot &&
7782             _collector->par_simulate_overflow()) {
7783           // simulate a stack overflow
7784           simulate_overflow = true;
7785         }
7786       )
7787       if (simulate_overflow || !_work_queue->push(obj)) {
7788         _collector->par_push_on_overflow_list(obj);
7789         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7790       }
7791     } // Else, some other thread got there first
7792   }
7793 }
7794 
7795 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7796 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7797 
7798 void PushAndMarkClosure::remember_mdo(DataLayout* v) {
7799   // TBD
7800 }
7801 
7802 void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) {
7803   // TBD
7804 }
7805 
7806 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7807   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7808   Mutex* bml = _collector->bitMapLock();
7809   assert_lock_strong(bml);
7810   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7811          "CMS thread should hold CMS token");
7812 
7813   bml->unlock();
7814   ConcurrentMarkSweepThread::desynchronize(true);
7815 
7816   ConcurrentMarkSweepThread::acknowledge_yield_request();
7817 
7818   _collector->stopTimer();
7819   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7820   if (PrintCMSStatistics != 0) {
7821     _collector->incrementYields();
7822   }
7823   _collector->icms_wait();
7824 
7825   // See the comment in coordinator_yield()
7826   for (unsigned i = 0; i < CMSYieldSleepCount &&
7827                        ConcurrentMarkSweepThread::should_yield() &&
7828                        !CMSCollector::foregroundGCIsActive(); ++i) {
7829     os::sleep(Thread::current(), 1, false);
7830     ConcurrentMarkSweepThread::acknowledge_yield_request();
7831   }
7832 
7833   ConcurrentMarkSweepThread::synchronize(true);
7834   bml->lock();
7835 
7836   _collector->startTimer();
7837 }
7838 
7839 bool CMSPrecleanRefsYieldClosure::should_return() {
7840   if (ConcurrentMarkSweepThread::should_yield()) {
7841     do_yield_work();
7842   }
7843   return _collector->foregroundGCIsActive();
7844 }
7845 
7846 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7847   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7848          "mr should be aligned to start at a card boundary");
7849   // We'd like to assert:
7850   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7851   //        "mr should be a range of cards");
7852   // However, that would be too strong in one case -- the last
7853   // partition ends at _unallocated_block which, in general, can be
7854   // an arbitrary boundary, not necessarily card aligned.
7855   if (PrintCMSStatistics != 0) {
7856     _num_dirty_cards +=
7857          mr.word_size()/CardTableModRefBS::card_size_in_words;
7858   }
7859   _space->object_iterate_mem(mr, &_scan_cl);
7860 }
7861 
7862 SweepClosure::SweepClosure(CMSCollector* collector,
7863                            ConcurrentMarkSweepGeneration* g,
7864                            CMSBitMap* bitMap, bool should_yield) :
7865   _collector(collector),
7866   _g(g),
7867   _sp(g->cmsSpace()),
7868   _limit(_sp->sweep_limit()),
7869   _freelistLock(_sp->freelistLock()),
7870   _bitMap(bitMap),
7871   _yield(should_yield),
7872   _inFreeRange(false),           // No free range at beginning of sweep
7873   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7874   _lastFreeRangeCoalesced(false),
7875   _freeFinger(g->used_region().start())
7876 {
7877   NOT_PRODUCT(
7878     _numObjectsFreed = 0;
7879     _numWordsFreed   = 0;
7880     _numObjectsLive = 0;
7881     _numWordsLive = 0;
7882     _numObjectsAlreadyFree = 0;
7883     _numWordsAlreadyFree = 0;
7884     _last_fc = NULL;
7885 
7886     _sp->initializeIndexedFreeListArrayReturnedBytes();
7887     _sp->dictionary()->initializeDictReturnedBytes();
7888   )
7889   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7890          "sweep _limit out of bounds");
7891   if (CMSTraceSweeper) {
7892     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7893                         _limit);
7894   }
7895 }
7896 
7897 void SweepClosure::print_on(outputStream* st) const {
7898   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7899                 _sp->bottom(), _sp->end());
7900   tty->print_cr("_limit = " PTR_FORMAT, _limit);
7901   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
7902   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
7903   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7904                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7905 }
7906 
7907 #ifndef PRODUCT
7908 // Assertion checking only:  no useful work in product mode --
7909 // however, if any of the flags below become product flags,
7910 // you may need to review this code to see if it needs to be
7911 // enabled in product mode.
7912 SweepClosure::~SweepClosure() {
7913   assert_lock_strong(_freelistLock);
7914   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7915          "sweep _limit out of bounds");
7916   if (inFreeRange()) {
7917     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7918     print();
7919     ShouldNotReachHere();
7920   }
7921   if (Verbose && PrintGC) {
7922     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7923                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7924     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7925                            SIZE_FORMAT" bytes  "
7926       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7927       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7928       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7929     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7930                         * sizeof(HeapWord);
7931     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7932 
7933     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7934       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7935       size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
7936       size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
7937       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
7938       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7939         indexListReturnedBytes);
7940       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7941         dictReturnedBytes);
7942     }
7943   }
7944   if (CMSTraceSweeper) {
7945     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7946                            _limit);
7947   }
7948 }
7949 #endif  // PRODUCT
7950 
7951 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7952     bool freeRangeInFreeLists) {
7953   if (CMSTraceSweeper) {
7954     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
7955                freeFinger, freeRangeInFreeLists);
7956   }
7957   assert(!inFreeRange(), "Trampling existing free range");
7958   set_inFreeRange(true);
7959   set_lastFreeRangeCoalesced(false);
7960 
7961   set_freeFinger(freeFinger);
7962   set_freeRangeInFreeLists(freeRangeInFreeLists);
7963   if (CMSTestInFreeList) {
7964     if (freeRangeInFreeLists) {
7965       FreeChunk* fc = (FreeChunk*) freeFinger;
7966       assert(fc->isFree(), "A chunk on the free list should be free.");
7967       assert(fc->size() > 0, "Free range should have a size");
7968       assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
7969     }
7970   }
7971 }
7972 
7973 // Note that the sweeper runs concurrently with mutators. Thus,
7974 // it is possible for direct allocation in this generation to happen
7975 // in the middle of the sweep. Note that the sweeper also coalesces
7976 // contiguous free blocks. Thus, unless the sweeper and the allocator
7977 // synchronize appropriately freshly allocated blocks may get swept up.
7978 // This is accomplished by the sweeper locking the free lists while
7979 // it is sweeping. Thus blocks that are determined to be free are
7980 // indeed free. There is however one additional complication:
7981 // blocks that have been allocated since the final checkpoint and
7982 // mark, will not have been marked and so would be treated as
7983 // unreachable and swept up. To prevent this, the allocator marks
7984 // the bit map when allocating during the sweep phase. This leads,
7985 // however, to a further complication -- objects may have been allocated
7986 // but not yet initialized -- in the sense that the header isn't yet
7987 // installed. The sweeper can not then determine the size of the block
7988 // in order to skip over it. To deal with this case, we use a technique
7989 // (due to Printezis) to encode such uninitialized block sizes in the
7990 // bit map. Since the bit map uses a bit per every HeapWord, but the
7991 // CMS generation has a minimum object size of 3 HeapWords, it follows
7992 // that "normal marks" won't be adjacent in the bit map (there will
7993 // always be at least two 0 bits between successive 1 bits). We make use
7994 // of these "unused" bits to represent uninitialized blocks -- the bit
7995 // corresponding to the start of the uninitialized object and the next
7996 // bit are both set. Finally, a 1 bit marks the end of the object that
7997 // started with the two consecutive 1 bits to indicate its potentially
7998 // uninitialized state.
7999 
8000 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8001   FreeChunk* fc = (FreeChunk*)addr;
8002   size_t res;
8003 
8004   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8005   // than "addr == _limit" because although _limit was a block boundary when
8006   // we started the sweep, it may no longer be one because heap expansion
8007   // may have caused us to coalesce the block ending at the address _limit
8008   // with a newly expanded chunk (this happens when _limit was set to the
8009   // previous _end of the space), so we may have stepped past _limit:
8010   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8011   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8012     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8013            "sweep _limit out of bounds");
8014     assert(addr < _sp->end(), "addr out of bounds");
8015     // Flush any free range we might be holding as a single
8016     // coalesced chunk to the appropriate free list.
8017     if (inFreeRange()) {
8018       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8019              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8020       flush_cur_free_chunk(freeFinger(),
8021                            pointer_delta(addr, freeFinger()));
8022       if (CMSTraceSweeper) {
8023         gclog_or_tty->print("Sweep: last chunk: ");
8024         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8025                    "[coalesced:"SIZE_FORMAT"]\n",
8026                    freeFinger(), pointer_delta(addr, freeFinger()),
8027                    lastFreeRangeCoalesced());
8028       }
8029     }
8030 
8031     // help the iterator loop finish
8032     return pointer_delta(_sp->end(), addr);
8033   }
8034 
8035   assert(addr < _limit, "sweep invariant");
8036   // check if we should yield
8037   do_yield_check(addr);
8038   if (fc->isFree()) {
8039     // Chunk that is already free
8040     res = fc->size();
8041     do_already_free_chunk(fc);
8042     debug_only(_sp->verifyFreeLists());
8043     // If we flush the chunk at hand in lookahead_and_flush()
8044     // and it's coalesced with a preceding chunk, then the
8045     // process of "mangling" the payload of the coalesced block
8046     // will cause erasure of the size information from the
8047     // (erstwhile) header of all the coalesced blocks but the
8048     // first, so the first disjunct in the assert will not hold
8049     // in that specific case (in which case the second disjunct
8050     // will hold).
8051     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8052            "Otherwise the size info doesn't change at this step");
8053     NOT_PRODUCT(
8054       _numObjectsAlreadyFree++;
8055       _numWordsAlreadyFree += res;
8056     )
8057     NOT_PRODUCT(_last_fc = fc;)
8058   } else if (!_bitMap->isMarked(addr)) {
8059     // Chunk is fresh garbage
8060     res = do_garbage_chunk(fc);
8061     debug_only(_sp->verifyFreeLists());
8062     NOT_PRODUCT(
8063       _numObjectsFreed++;
8064       _numWordsFreed += res;
8065     )
8066   } else {
8067     // Chunk that is alive.
8068     res = do_live_chunk(fc);
8069     debug_only(_sp->verifyFreeLists());
8070     NOT_PRODUCT(
8071         _numObjectsLive++;
8072         _numWordsLive += res;
8073     )
8074   }
8075   return res;
8076 }
8077 
8078 // For the smart allocation, record following
8079 //  split deaths - a free chunk is removed from its free list because
8080 //      it is being split into two or more chunks.
8081 //  split birth - a free chunk is being added to its free list because
8082 //      a larger free chunk has been split and resulted in this free chunk.
8083 //  coal death - a free chunk is being removed from its free list because
8084 //      it is being coalesced into a large free chunk.
8085 //  coal birth - a free chunk is being added to its free list because
8086 //      it was created when two or more free chunks where coalesced into
8087 //      this free chunk.
8088 //
8089 // These statistics are used to determine the desired number of free
8090 // chunks of a given size.  The desired number is chosen to be relative
8091 // to the end of a CMS sweep.  The desired number at the end of a sweep
8092 // is the
8093 //      count-at-end-of-previous-sweep (an amount that was enough)
8094 //              - count-at-beginning-of-current-sweep  (the excess)
8095 //              + split-births  (gains in this size during interval)
8096 //              - split-deaths  (demands on this size during interval)
8097 // where the interval is from the end of one sweep to the end of the
8098 // next.
8099 //
8100 // When sweeping the sweeper maintains an accumulated chunk which is
8101 // the chunk that is made up of chunks that have been coalesced.  That
8102 // will be termed the left-hand chunk.  A new chunk of garbage that
8103 // is being considered for coalescing will be referred to as the
8104 // right-hand chunk.
8105 //
8106 // When making a decision on whether to coalesce a right-hand chunk with
8107 // the current left-hand chunk, the current count vs. the desired count
8108 // of the left-hand chunk is considered.  Also if the right-hand chunk
8109 // is near the large chunk at the end of the heap (see
8110 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8111 // left-hand chunk is coalesced.
8112 //
8113 // When making a decision about whether to split a chunk, the desired count
8114 // vs. the current count of the candidate to be split is also considered.
8115 // If the candidate is underpopulated (currently fewer chunks than desired)
8116 // a chunk of an overpopulated (currently more chunks than desired) size may
8117 // be chosen.  The "hint" associated with a free list, if non-null, points
8118 // to a free list which may be overpopulated.
8119 //
8120 
8121 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8122   const size_t size = fc->size();
8123   // Chunks that cannot be coalesced are not in the
8124   // free lists.
8125   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8126     assert(_sp->verifyChunkInFreeLists(fc),
8127       "free chunk should be in free lists");
8128   }
8129   // a chunk that is already free, should not have been
8130   // marked in the bit map
8131   HeapWord* const addr = (HeapWord*) fc;
8132   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8133   // Verify that the bit map has no bits marked between
8134   // addr and purported end of this block.
8135   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8136 
8137   // Some chunks cannot be coalesced under any circumstances.
8138   // See the definition of cantCoalesce().
8139   if (!fc->cantCoalesce()) {
8140     // This chunk can potentially be coalesced.
8141     if (_sp->adaptive_freelists()) {
8142       // All the work is done in
8143       do_post_free_or_garbage_chunk(fc, size);
8144     } else {  // Not adaptive free lists
8145       // this is a free chunk that can potentially be coalesced by the sweeper;
8146       if (!inFreeRange()) {
8147         // if the next chunk is a free block that can't be coalesced
8148         // it doesn't make sense to remove this chunk from the free lists
8149         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8150         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8151         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8152             nextChunk->isFree()               &&     // ... which is free...
8153             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8154           // nothing to do
8155         } else {
8156           // Potentially the start of a new free range:
8157           // Don't eagerly remove it from the free lists.
8158           // No need to remove it if it will just be put
8159           // back again.  (Also from a pragmatic point of view
8160           // if it is a free block in a region that is beyond
8161           // any allocated blocks, an assertion will fail)
8162           // Remember the start of a free run.
8163           initialize_free_range(addr, true);
8164           // end - can coalesce with next chunk
8165         }
8166       } else {
8167         // the midst of a free range, we are coalescing
8168         print_free_block_coalesced(fc);
8169         if (CMSTraceSweeper) {
8170           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8171         }
8172         // remove it from the free lists
8173         _sp->removeFreeChunkFromFreeLists(fc);
8174         set_lastFreeRangeCoalesced(true);
8175         // If the chunk is being coalesced and the current free range is
8176         // in the free lists, remove the current free range so that it
8177         // will be returned to the free lists in its entirety - all
8178         // the coalesced pieces included.
8179         if (freeRangeInFreeLists()) {
8180           FreeChunk* ffc = (FreeChunk*) freeFinger();
8181           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8182             "Size of free range is inconsistent with chunk size.");
8183           if (CMSTestInFreeList) {
8184             assert(_sp->verifyChunkInFreeLists(ffc),
8185               "free range is not in free lists");
8186           }
8187           _sp->removeFreeChunkFromFreeLists(ffc);
8188           set_freeRangeInFreeLists(false);
8189         }
8190       }
8191     }
8192     // Note that if the chunk is not coalescable (the else arm
8193     // below), we unconditionally flush, without needing to do
8194     // a "lookahead," as we do below.
8195     if (inFreeRange()) lookahead_and_flush(fc, size);
8196   } else {
8197     // Code path common to both original and adaptive free lists.
8198 
8199     // cant coalesce with previous block; this should be treated
8200     // as the end of a free run if any
8201     if (inFreeRange()) {
8202       // we kicked some butt; time to pick up the garbage
8203       assert(freeFinger() < addr, "freeFinger points too high");
8204       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8205     }
8206     // else, nothing to do, just continue
8207   }
8208 }
8209 
8210 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8211   // This is a chunk of garbage.  It is not in any free list.
8212   // Add it to a free list or let it possibly be coalesced into
8213   // a larger chunk.
8214   HeapWord* const addr = (HeapWord*) fc;
8215   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8216 
8217   if (_sp->adaptive_freelists()) {
8218     // Verify that the bit map has no bits marked between
8219     // addr and purported end of just dead object.
8220     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8221 
8222     do_post_free_or_garbage_chunk(fc, size);
8223   } else {
8224     if (!inFreeRange()) {
8225       // start of a new free range
8226       assert(size > 0, "A free range should have a size");
8227       initialize_free_range(addr, false);
8228     } else {
8229       // this will be swept up when we hit the end of the
8230       // free range
8231       if (CMSTraceSweeper) {
8232         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8233       }
8234       // If the chunk is being coalesced and the current free range is
8235       // in the free lists, remove the current free range so that it
8236       // will be returned to the free lists in its entirety - all
8237       // the coalesced pieces included.
8238       if (freeRangeInFreeLists()) {
8239         FreeChunk* ffc = (FreeChunk*)freeFinger();
8240         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8241           "Size of free range is inconsistent with chunk size.");
8242         if (CMSTestInFreeList) {
8243           assert(_sp->verifyChunkInFreeLists(ffc),
8244             "free range is not in free lists");
8245         }
8246         _sp->removeFreeChunkFromFreeLists(ffc);
8247         set_freeRangeInFreeLists(false);
8248       }
8249       set_lastFreeRangeCoalesced(true);
8250     }
8251     // this will be swept up when we hit the end of the free range
8252 
8253     // Verify that the bit map has no bits marked between
8254     // addr and purported end of just dead object.
8255     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8256   }
8257   assert(_limit >= addr + size,
8258          "A freshly garbage chunk can't possibly straddle over _limit");
8259   if (inFreeRange()) lookahead_and_flush(fc, size);
8260   return size;
8261 }
8262 
8263 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8264   HeapWord* addr = (HeapWord*) fc;
8265   // The sweeper has just found a live object. Return any accumulated
8266   // left hand chunk to the free lists.
8267   if (inFreeRange()) {
8268     assert(freeFinger() < addr, "freeFinger points too high");
8269     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8270   }
8271 
8272   // This object is live: we'd normally expect this to be
8273   // an oop, and like to assert the following:
8274   // assert(oop(addr)->is_oop(), "live block should be an oop");
8275   // However, as we commented above, this may be an object whose
8276   // header hasn't yet been initialized.
8277   size_t size;
8278   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8279   if (_bitMap->isMarked(addr + 1)) {
8280     // Determine the size from the bit map, rather than trying to
8281     // compute it from the object header.
8282     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8283     size = pointer_delta(nextOneAddr + 1, addr);
8284     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8285            "alignment problem");
8286 
8287 #ifdef DEBUG
8288       if (oop(addr)->klass_or_null() != NULL &&
8289           (   !_collector->should_unload_classes()
8290            || (oop(addr)->is_parsable()) &&
8291                oop(addr)->is_conc_safe())) {
8292         // Ignore mark word because we are running concurrent with mutators
8293         assert(oop(addr)->is_oop(true), "live block should be an oop");
8294         // is_conc_safe is checked before performing this assertion
8295         // because an object that is not is_conc_safe may yet have
8296         // the return from size() correct.
8297         assert(size ==
8298                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8299                "P-mark and computed size do not agree");
8300       }
8301 #endif
8302 
8303   } else {
8304     // This should be an initialized object that's alive.
8305     assert(oop(addr)->klass_or_null() != NULL &&
8306            (!_collector->should_unload_classes()
8307             || oop(addr)->is_parsable()),
8308            "Should be an initialized object");
8309     // Note that there are objects used during class redefinition,
8310     // e.g. merge_cp in VM_RedefineClasses::merge_cp_and_rewrite(),
8311     // which are discarded with their is_conc_safe state still
8312     // false.  These object may be floating garbage so may be
8313     // seen here.  If they are floating garbage their size
8314     // should be attainable from their klass.  Do not that
8315     // is_conc_safe() is true for oop(addr).
8316     // Ignore mark word because we are running concurrent with mutators
8317     assert(oop(addr)->is_oop(true), "live block should be an oop");
8318     // Verify that the bit map has no bits marked between
8319     // addr and purported end of this block.
8320     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8321     assert(size >= 3, "Necessary for Printezis marks to work");
8322     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8323     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8324   }
8325   return size;
8326 }
8327 
8328 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8329                                                  size_t chunkSize) {
8330   // do_post_free_or_garbage_chunk() should only be called in the case
8331   // of the adaptive free list allocator.
8332   const bool fcInFreeLists = fc->isFree();
8333   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8334   assert((HeapWord*)fc <= _limit, "sweep invariant");
8335   if (CMSTestInFreeList && fcInFreeLists) {
8336     assert(_sp->verifyChunkInFreeLists(fc), "free chunk is not in free lists");
8337   }
8338 
8339   if (CMSTraceSweeper) {
8340     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8341   }
8342 
8343   HeapWord* const fc_addr = (HeapWord*) fc;
8344 
8345   bool coalesce;
8346   const size_t left  = pointer_delta(fc_addr, freeFinger());
8347   const size_t right = chunkSize;
8348   switch (FLSCoalescePolicy) {
8349     // numeric value forms a coalition aggressiveness metric
8350     case 0:  { // never coalesce
8351       coalesce = false;
8352       break;
8353     }
8354     case 1: { // coalesce if left & right chunks on overpopulated lists
8355       coalesce = _sp->coalOverPopulated(left) &&
8356                  _sp->coalOverPopulated(right);
8357       break;
8358     }
8359     case 2: { // coalesce if left chunk on overpopulated list (default)
8360       coalesce = _sp->coalOverPopulated(left);
8361       break;
8362     }
8363     case 3: { // coalesce if left OR right chunk on overpopulated list
8364       coalesce = _sp->coalOverPopulated(left) ||
8365                  _sp->coalOverPopulated(right);
8366       break;
8367     }
8368     case 4: { // always coalesce
8369       coalesce = true;
8370       break;
8371     }
8372     default:
8373      ShouldNotReachHere();
8374   }
8375 
8376   // Should the current free range be coalesced?
8377   // If the chunk is in a free range and either we decided to coalesce above
8378   // or the chunk is near the large block at the end of the heap
8379   // (isNearLargestChunk() returns true), then coalesce this chunk.
8380   const bool doCoalesce = inFreeRange()
8381                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8382   if (doCoalesce) {
8383     // Coalesce the current free range on the left with the new
8384     // chunk on the right.  If either is on a free list,
8385     // it must be removed from the list and stashed in the closure.
8386     if (freeRangeInFreeLists()) {
8387       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8388       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8389         "Size of free range is inconsistent with chunk size.");
8390       if (CMSTestInFreeList) {
8391         assert(_sp->verifyChunkInFreeLists(ffc),
8392           "Chunk is not in free lists");
8393       }
8394       _sp->coalDeath(ffc->size());
8395       _sp->removeFreeChunkFromFreeLists(ffc);
8396       set_freeRangeInFreeLists(false);
8397     }
8398     if (fcInFreeLists) {
8399       _sp->coalDeath(chunkSize);
8400       assert(fc->size() == chunkSize,
8401         "The chunk has the wrong size or is not in the free lists");
8402       _sp->removeFreeChunkFromFreeLists(fc);
8403     }
8404     set_lastFreeRangeCoalesced(true);
8405     print_free_block_coalesced(fc);
8406   } else {  // not in a free range and/or should not coalesce
8407     // Return the current free range and start a new one.
8408     if (inFreeRange()) {
8409       // In a free range but cannot coalesce with the right hand chunk.
8410       // Put the current free range into the free lists.
8411       flush_cur_free_chunk(freeFinger(),
8412                            pointer_delta(fc_addr, freeFinger()));
8413     }
8414     // Set up for new free range.  Pass along whether the right hand
8415     // chunk is in the free lists.
8416     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8417   }
8418 }
8419 
8420 // Lookahead flush:
8421 // If we are tracking a free range, and this is the last chunk that
8422 // we'll look at because its end crosses past _limit, we'll preemptively
8423 // flush it along with any free range we may be holding on to. Note that
8424 // this can be the case only for an already free or freshly garbage
8425 // chunk. If this block is an object, it can never straddle
8426 // over _limit. The "straddling" occurs when _limit is set at
8427 // the previous end of the space when this cycle started, and
8428 // a subsequent heap expansion caused the previously co-terminal
8429 // free block to be coalesced with the newly expanded portion,
8430 // thus rendering _limit a non-block-boundary making it dangerous
8431 // for the sweeper to step over and examine.
8432 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8433   assert(inFreeRange(), "Should only be called if currently in a free range.");
8434   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8435   assert(_sp->used_region().contains(eob - 1),
8436          err_msg("eob = " PTR_FORMAT " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8437                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8438                  _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8439   if (eob >= _limit) {
8440     assert(eob == _limit || fc->isFree(), "Only a free chunk should allow us to cross over the limit");
8441     if (CMSTraceSweeper) {
8442       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8443                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8444                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8445                              _limit, fc, eob, _sp->bottom(), _sp->end());
8446     }
8447     // Return the storage we are tracking back into the free lists.
8448     if (CMSTraceSweeper) {
8449       gclog_or_tty->print_cr("Flushing ... ");
8450     }
8451     assert(freeFinger() < eob, "Error");
8452     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8453   }
8454 }
8455 
8456 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8457   assert(inFreeRange(), "Should only be called if currently in a free range.");
8458   assert(size > 0,
8459     "A zero sized chunk cannot be added to the free lists.");
8460   if (!freeRangeInFreeLists()) {
8461     if (CMSTestInFreeList) {
8462       FreeChunk* fc = (FreeChunk*) chunk;
8463       fc->setSize(size);
8464       assert(!_sp->verifyChunkInFreeLists(fc),
8465         "chunk should not be in free lists yet");
8466     }
8467     if (CMSTraceSweeper) {
8468       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8469                     chunk, size);
8470     }
8471     // A new free range is going to be starting.  The current
8472     // free range has not been added to the free lists yet or
8473     // was removed so add it back.
8474     // If the current free range was coalesced, then the death
8475     // of the free range was recorded.  Record a birth now.
8476     if (lastFreeRangeCoalesced()) {
8477       _sp->coalBirth(size);
8478     }
8479     _sp->addChunkAndRepairOffsetTable(chunk, size,
8480             lastFreeRangeCoalesced());
8481   } else if (CMSTraceSweeper) {
8482     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8483   }
8484   set_inFreeRange(false);
8485   set_freeRangeInFreeLists(false);
8486 }
8487 
8488 // We take a break if we've been at this for a while,
8489 // so as to avoid monopolizing the locks involved.
8490 void SweepClosure::do_yield_work(HeapWord* addr) {
8491   // Return current free chunk being used for coalescing (if any)
8492   // to the appropriate freelist.  After yielding, the next
8493   // free block encountered will start a coalescing range of
8494   // free blocks.  If the next free block is adjacent to the
8495   // chunk just flushed, they will need to wait for the next
8496   // sweep to be coalesced.
8497   if (inFreeRange()) {
8498     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8499   }
8500 
8501   // First give up the locks, then yield, then re-lock.
8502   // We should probably use a constructor/destructor idiom to
8503   // do this unlock/lock or modify the MutexUnlocker class to
8504   // serve our purpose. XXX
8505   assert_lock_strong(_bitMap->lock());
8506   assert_lock_strong(_freelistLock);
8507   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8508          "CMS thread should hold CMS token");
8509   _bitMap->lock()->unlock();
8510   _freelistLock->unlock();
8511   ConcurrentMarkSweepThread::desynchronize(true);
8512   ConcurrentMarkSweepThread::acknowledge_yield_request();
8513   _collector->stopTimer();
8514   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8515   if (PrintCMSStatistics != 0) {
8516     _collector->incrementYields();
8517   }
8518   _collector->icms_wait();
8519 
8520   // See the comment in coordinator_yield()
8521   for (unsigned i = 0; i < CMSYieldSleepCount &&
8522                        ConcurrentMarkSweepThread::should_yield() &&
8523                        !CMSCollector::foregroundGCIsActive(); ++i) {
8524     os::sleep(Thread::current(), 1, false);
8525     ConcurrentMarkSweepThread::acknowledge_yield_request();
8526   }
8527 
8528   ConcurrentMarkSweepThread::synchronize(true);
8529   _freelistLock->lock();
8530   _bitMap->lock()->lock_without_safepoint_check();
8531   _collector->startTimer();
8532 }
8533 
8534 #ifndef PRODUCT
8535 // This is actually very useful in a product build if it can
8536 // be called from the debugger.  Compile it into the product
8537 // as needed.
8538 bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
8539   return debug_cms_space->verifyChunkInFreeLists(fc);
8540 }
8541 #endif
8542 
8543 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8544   if (CMSTraceSweeper) {
8545     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8546                            fc, fc->size());
8547   }
8548 }
8549 
8550 // CMSIsAliveClosure
8551 bool CMSIsAliveClosure::do_object_b(oop obj) {
8552   HeapWord* addr = (HeapWord*)obj;
8553   return addr != NULL &&
8554          (!_span.contains(addr) || _bit_map->isMarked(addr));
8555 }
8556 
8557 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8558                       MemRegion span,
8559                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8560                       CMSMarkStack* revisit_stack, bool cpc):
8561   KlassRememberingOopClosure(collector, NULL, revisit_stack),
8562   _span(span),
8563   _bit_map(bit_map),
8564   _mark_stack(mark_stack),
8565   _concurrent_precleaning(cpc) {
8566   assert(!_span.is_empty(), "Empty span could spell trouble");
8567 }
8568 
8569 
8570 // CMSKeepAliveClosure: the serial version
8571 void CMSKeepAliveClosure::do_oop(oop obj) {
8572   HeapWord* addr = (HeapWord*)obj;
8573   if (_span.contains(addr) &&
8574       !_bit_map->isMarked(addr)) {
8575     _bit_map->mark(addr);
8576     bool simulate_overflow = false;
8577     NOT_PRODUCT(
8578       if (CMSMarkStackOverflowALot &&
8579           _collector->simulate_overflow()) {
8580         // simulate a stack overflow
8581         simulate_overflow = true;
8582       }
8583     )
8584     if (simulate_overflow || !_mark_stack->push(obj)) {
8585       if (_concurrent_precleaning) {
8586         // We dirty the overflown object and let the remark
8587         // phase deal with it.
8588         assert(_collector->overflow_list_is_empty(), "Error");
8589         // In the case of object arrays, we need to dirty all of
8590         // the cards that the object spans. No locking or atomics
8591         // are needed since no one else can be mutating the mod union
8592         // table.
8593         if (obj->is_objArray()) {
8594           size_t sz = obj->size();
8595           HeapWord* end_card_addr =
8596             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8597           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8598           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8599           _collector->_modUnionTable.mark_range(redirty_range);
8600         } else {
8601           _collector->_modUnionTable.mark(addr);
8602         }
8603         _collector->_ser_kac_preclean_ovflw++;
8604       } else {
8605         _collector->push_on_overflow_list(obj);
8606         _collector->_ser_kac_ovflw++;
8607       }
8608     }
8609   }
8610 }
8611 
8612 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8613 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8614 
8615 // CMSParKeepAliveClosure: a parallel version of the above.
8616 // The work queues are private to each closure (thread),
8617 // but (may be) available for stealing by other threads.
8618 void CMSParKeepAliveClosure::do_oop(oop obj) {
8619   HeapWord* addr = (HeapWord*)obj;
8620   if (_span.contains(addr) &&
8621       !_bit_map->isMarked(addr)) {
8622     // In general, during recursive tracing, several threads
8623     // may be concurrently getting here; the first one to
8624     // "tag" it, claims it.
8625     if (_bit_map->par_mark(addr)) {
8626       bool res = _work_queue->push(obj);
8627       assert(res, "Low water mark should be much less than capacity");
8628       // Do a recursive trim in the hope that this will keep
8629       // stack usage lower, but leave some oops for potential stealers
8630       trim_queue(_low_water_mark);
8631     } // Else, another thread got there first
8632   }
8633 }
8634 
8635 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8636 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8637 
8638 void CMSParKeepAliveClosure::trim_queue(uint max) {
8639   while (_work_queue->size() > max) {
8640     oop new_oop;
8641     if (_work_queue->pop_local(new_oop)) {
8642       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8643       assert(_bit_map->isMarked((HeapWord*)new_oop),
8644              "no white objects on this stack!");
8645       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8646       // iterate over the oops in this oop, marking and pushing
8647       // the ones in CMS heap (i.e. in _span).
8648       new_oop->oop_iterate(&_mark_and_push);
8649     }
8650   }
8651 }
8652 
8653 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8654                                 CMSCollector* collector,
8655                                 MemRegion span, CMSBitMap* bit_map,
8656                                 CMSMarkStack* revisit_stack,
8657                                 OopTaskQueue* work_queue):
8658   Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
8659   _span(span),
8660   _bit_map(bit_map),
8661   _work_queue(work_queue) { }
8662 
8663 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8664   HeapWord* addr = (HeapWord*)obj;
8665   if (_span.contains(addr) &&
8666       !_bit_map->isMarked(addr)) {
8667     if (_bit_map->par_mark(addr)) {
8668       bool simulate_overflow = false;
8669       NOT_PRODUCT(
8670         if (CMSMarkStackOverflowALot &&
8671             _collector->par_simulate_overflow()) {
8672           // simulate a stack overflow
8673           simulate_overflow = true;
8674         }
8675       )
8676       if (simulate_overflow || !_work_queue->push(obj)) {
8677         _collector->par_push_on_overflow_list(obj);
8678         _collector->_par_kac_ovflw++;
8679       }
8680     } // Else another thread got there already
8681   }
8682 }
8683 
8684 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8685 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8686 
8687 //////////////////////////////////////////////////////////////////
8688 //  CMSExpansionCause                /////////////////////////////
8689 //////////////////////////////////////////////////////////////////
8690 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8691   switch (cause) {
8692     case _no_expansion:
8693       return "No expansion";
8694     case _satisfy_free_ratio:
8695       return "Free ratio";
8696     case _satisfy_promotion:
8697       return "Satisfy promotion";
8698     case _satisfy_allocation:
8699       return "allocation";
8700     case _allocate_par_lab:
8701       return "Par LAB";
8702     case _allocate_par_spooling_space:
8703       return "Par Spooling Space";
8704     case _adaptive_size_policy:
8705       return "Ergonomics";
8706     default:
8707       return "unknown";
8708   }
8709 }
8710 
8711 void CMSDrainMarkingStackClosure::do_void() {
8712   // the max number to take from overflow list at a time
8713   const size_t num = _mark_stack->capacity()/4;
8714   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8715          "Overflow list should be NULL during concurrent phases");
8716   while (!_mark_stack->isEmpty() ||
8717          // if stack is empty, check the overflow list
8718          _collector->take_from_overflow_list(num, _mark_stack)) {
8719     oop obj = _mark_stack->pop();
8720     HeapWord* addr = (HeapWord*)obj;
8721     assert(_span.contains(addr), "Should be within span");
8722     assert(_bit_map->isMarked(addr), "Should be marked");
8723     assert(obj->is_oop(), "Should be an oop");
8724     obj->oop_iterate(_keep_alive);
8725   }
8726 }
8727 
8728 void CMSParDrainMarkingStackClosure::do_void() {
8729   // drain queue
8730   trim_queue(0);
8731 }
8732 
8733 // Trim our work_queue so its length is below max at return
8734 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8735   while (_work_queue->size() > max) {
8736     oop new_oop;
8737     if (_work_queue->pop_local(new_oop)) {
8738       assert(new_oop->is_oop(), "Expected an oop");
8739       assert(_bit_map->isMarked((HeapWord*)new_oop),
8740              "no white objects on this stack!");
8741       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8742       // iterate over the oops in this oop, marking and pushing
8743       // the ones in CMS heap (i.e. in _span).
8744       new_oop->oop_iterate(&_mark_and_push);
8745     }
8746   }
8747 }
8748 
8749 ////////////////////////////////////////////////////////////////////
8750 // Support for Marking Stack Overflow list handling and related code
8751 ////////////////////////////////////////////////////////////////////
8752 // Much of the following code is similar in shape and spirit to the
8753 // code used in ParNewGC. We should try and share that code
8754 // as much as possible in the future.
8755 
8756 #ifndef PRODUCT
8757 // Debugging support for CMSStackOverflowALot
8758 
8759 // It's OK to call this multi-threaded;  the worst thing
8760 // that can happen is that we'll get a bunch of closely
8761 // spaced simulated oveflows, but that's OK, in fact
8762 // probably good as it would exercise the overflow code
8763 // under contention.
8764 bool CMSCollector::simulate_overflow() {
8765   if (_overflow_counter-- <= 0) { // just being defensive
8766     _overflow_counter = CMSMarkStackOverflowInterval;
8767     return true;
8768   } else {
8769     return false;
8770   }
8771 }
8772 
8773 bool CMSCollector::par_simulate_overflow() {
8774   return simulate_overflow();
8775 }
8776 #endif
8777 
8778 // Single-threaded
8779 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8780   assert(stack->isEmpty(), "Expected precondition");
8781   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8782   size_t i = num;
8783   oop  cur = _overflow_list;
8784   const markOop proto = markOopDesc::prototype();
8785   NOT_PRODUCT(ssize_t n = 0;)
8786   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8787     next = oop(cur->mark());
8788     cur->set_mark(proto);   // until proven otherwise
8789     assert(cur->is_oop(), "Should be an oop");
8790     bool res = stack->push(cur);
8791     assert(res, "Bit off more than can chew?");
8792     NOT_PRODUCT(n++;)
8793   }
8794   _overflow_list = cur;
8795 #ifndef PRODUCT
8796   assert(_num_par_pushes >= n, "Too many pops?");
8797   _num_par_pushes -=n;
8798 #endif
8799   return !stack->isEmpty();
8800 }
8801 
8802 #define BUSY  (oop(0x1aff1aff))
8803 // (MT-safe) Get a prefix of at most "num" from the list.
8804 // The overflow list is chained through the mark word of
8805 // each object in the list. We fetch the entire list,
8806 // break off a prefix of the right size and return the
8807 // remainder. If other threads try to take objects from
8808 // the overflow list at that time, they will wait for
8809 // some time to see if data becomes available. If (and
8810 // only if) another thread places one or more object(s)
8811 // on the global list before we have returned the suffix
8812 // to the global list, we will walk down our local list
8813 // to find its end and append the global list to
8814 // our suffix before returning it. This suffix walk can
8815 // prove to be expensive (quadratic in the amount of traffic)
8816 // when there are many objects in the overflow list and
8817 // there is much producer-consumer contention on the list.
8818 // *NOTE*: The overflow list manipulation code here and
8819 // in ParNewGeneration:: are very similar in shape,
8820 // except that in the ParNew case we use the old (from/eden)
8821 // copy of the object to thread the list via its klass word.
8822 // Because of the common code, if you make any changes in
8823 // the code below, please check the ParNew version to see if
8824 // similar changes might be needed.
8825 // CR 6797058 has been filed to consolidate the common code.
8826 bool CMSCollector::par_take_from_overflow_list(size_t num,
8827                                                OopTaskQueue* work_q,
8828                                                int no_of_gc_threads) {
8829   assert(work_q->size() == 0, "First empty local work queue");
8830   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8831   if (_overflow_list == NULL) {
8832     return false;
8833   }
8834   // Grab the entire list; we'll put back a suffix
8835   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8836   Thread* tid = Thread::current();
8837   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8838   // set to ParallelGCThreads.
8839   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8840   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8841   // If the list is busy, we spin for a short while,
8842   // sleeping between attempts to get the list.
8843   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8844     os::sleep(tid, sleep_time_millis, false);
8845     if (_overflow_list == NULL) {
8846       // Nothing left to take
8847       return false;
8848     } else if (_overflow_list != BUSY) {
8849       // Try and grab the prefix
8850       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8851     }
8852   }
8853   // If the list was found to be empty, or we spun long
8854   // enough, we give up and return empty-handed. If we leave
8855   // the list in the BUSY state below, it must be the case that
8856   // some other thread holds the overflow list and will set it
8857   // to a non-BUSY state in the future.
8858   if (prefix == NULL || prefix == BUSY) {
8859      // Nothing to take or waited long enough
8860      if (prefix == NULL) {
8861        // Write back the NULL in case we overwrote it with BUSY above
8862        // and it is still the same value.
8863        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8864      }
8865      return false;
8866   }
8867   assert(prefix != NULL && prefix != BUSY, "Error");
8868   size_t i = num;
8869   oop cur = prefix;
8870   // Walk down the first "num" objects, unless we reach the end.
8871   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8872   if (cur->mark() == NULL) {
8873     // We have "num" or fewer elements in the list, so there
8874     // is nothing to return to the global list.
8875     // Write back the NULL in lieu of the BUSY we wrote
8876     // above, if it is still the same value.
8877     if (_overflow_list == BUSY) {
8878       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8879     }
8880   } else {
8881     // Chop off the suffix and rerturn it to the global list.
8882     assert(cur->mark() != BUSY, "Error");
8883     oop suffix_head = cur->mark(); // suffix will be put back on global list
8884     cur->set_mark(NULL);           // break off suffix
8885     // It's possible that the list is still in the empty(busy) state
8886     // we left it in a short while ago; in that case we may be
8887     // able to place back the suffix without incurring the cost
8888     // of a walk down the list.
8889     oop observed_overflow_list = _overflow_list;
8890     oop cur_overflow_list = observed_overflow_list;
8891     bool attached = false;
8892     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8893       observed_overflow_list =
8894         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8895       if (cur_overflow_list == observed_overflow_list) {
8896         attached = true;
8897         break;
8898       } else cur_overflow_list = observed_overflow_list;
8899     }
8900     if (!attached) {
8901       // Too bad, someone else sneaked in (at least) an element; we'll need
8902       // to do a splice. Find tail of suffix so we can prepend suffix to global
8903       // list.
8904       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8905       oop suffix_tail = cur;
8906       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8907              "Tautology");
8908       observed_overflow_list = _overflow_list;
8909       do {
8910         cur_overflow_list = observed_overflow_list;
8911         if (cur_overflow_list != BUSY) {
8912           // Do the splice ...
8913           suffix_tail->set_mark(markOop(cur_overflow_list));
8914         } else { // cur_overflow_list == BUSY
8915           suffix_tail->set_mark(NULL);
8916         }
8917         // ... and try to place spliced list back on overflow_list ...
8918         observed_overflow_list =
8919           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8920       } while (cur_overflow_list != observed_overflow_list);
8921       // ... until we have succeeded in doing so.
8922     }
8923   }
8924 
8925   // Push the prefix elements on work_q
8926   assert(prefix != NULL, "control point invariant");
8927   const markOop proto = markOopDesc::prototype();
8928   oop next;
8929   NOT_PRODUCT(ssize_t n = 0;)
8930   for (cur = prefix; cur != NULL; cur = next) {
8931     next = oop(cur->mark());
8932     cur->set_mark(proto);   // until proven otherwise
8933     assert(cur->is_oop(), "Should be an oop");
8934     bool res = work_q->push(cur);
8935     assert(res, "Bit off more than we can chew?");
8936     NOT_PRODUCT(n++;)
8937   }
8938 #ifndef PRODUCT
8939   assert(_num_par_pushes >= n, "Too many pops?");
8940   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8941 #endif
8942   return true;
8943 }
8944 
8945 // Single-threaded
8946 void CMSCollector::push_on_overflow_list(oop p) {
8947   NOT_PRODUCT(_num_par_pushes++;)
8948   assert(p->is_oop(), "Not an oop");
8949   preserve_mark_if_necessary(p);
8950   p->set_mark((markOop)_overflow_list);
8951   _overflow_list = p;
8952 }
8953 
8954 // Multi-threaded; use CAS to prepend to overflow list
8955 void CMSCollector::par_push_on_overflow_list(oop p) {
8956   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8957   assert(p->is_oop(), "Not an oop");
8958   par_preserve_mark_if_necessary(p);
8959   oop observed_overflow_list = _overflow_list;
8960   oop cur_overflow_list;
8961   do {
8962     cur_overflow_list = observed_overflow_list;
8963     if (cur_overflow_list != BUSY) {
8964       p->set_mark(markOop(cur_overflow_list));
8965     } else {
8966       p->set_mark(NULL);
8967     }
8968     observed_overflow_list =
8969       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8970   } while (cur_overflow_list != observed_overflow_list);
8971 }
8972 #undef BUSY
8973 
8974 // Single threaded
8975 // General Note on GrowableArray: pushes may silently fail
8976 // because we are (temporarily) out of C-heap for expanding
8977 // the stack. The problem is quite ubiquitous and affects
8978 // a lot of code in the JVM. The prudent thing for GrowableArray
8979 // to do (for now) is to exit with an error. However, that may
8980 // be too draconian in some cases because the caller may be
8981 // able to recover without much harm. For such cases, we
8982 // should probably introduce a "soft_push" method which returns
8983 // an indication of success or failure with the assumption that
8984 // the caller may be able to recover from a failure; code in
8985 // the VM can then be changed, incrementally, to deal with such
8986 // failures where possible, thus, incrementally hardening the VM
8987 // in such low resource situations.
8988 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8989   _preserved_oop_stack.push(p);
8990   _preserved_mark_stack.push(m);
8991   assert(m == p->mark(), "Mark word changed");
8992   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8993          "bijection");
8994 }
8995 
8996 // Single threaded
8997 void CMSCollector::preserve_mark_if_necessary(oop p) {
8998   markOop m = p->mark();
8999   if (m->must_be_preserved(p)) {
9000     preserve_mark_work(p, m);
9001   }
9002 }
9003 
9004 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9005   markOop m = p->mark();
9006   if (m->must_be_preserved(p)) {
9007     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9008     // Even though we read the mark word without holding
9009     // the lock, we are assured that it will not change
9010     // because we "own" this oop, so no other thread can
9011     // be trying to push it on the overflow list; see
9012     // the assertion in preserve_mark_work() that checks
9013     // that m == p->mark().
9014     preserve_mark_work(p, m);
9015   }
9016 }
9017 
9018 // We should be able to do this multi-threaded,
9019 // a chunk of stack being a task (this is
9020 // correct because each oop only ever appears
9021 // once in the overflow list. However, it's
9022 // not very easy to completely overlap this with
9023 // other operations, so will generally not be done
9024 // until all work's been completed. Because we
9025 // expect the preserved oop stack (set) to be small,
9026 // it's probably fine to do this single-threaded.
9027 // We can explore cleverer concurrent/overlapped/parallel
9028 // processing of preserved marks if we feel the
9029 // need for this in the future. Stack overflow should
9030 // be so rare in practice and, when it happens, its
9031 // effect on performance so great that this will
9032 // likely just be in the noise anyway.
9033 void CMSCollector::restore_preserved_marks_if_any() {
9034   assert(SafepointSynchronize::is_at_safepoint(),
9035          "world should be stopped");
9036   assert(Thread::current()->is_ConcurrentGC_thread() ||
9037          Thread::current()->is_VM_thread(),
9038          "should be single-threaded");
9039   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9040          "bijection");
9041 
9042   while (!_preserved_oop_stack.is_empty()) {
9043     oop p = _preserved_oop_stack.pop();
9044     assert(p->is_oop(), "Should be an oop");
9045     assert(_span.contains(p), "oop should be in _span");
9046     assert(p->mark() == markOopDesc::prototype(),
9047            "Set when taken from overflow list");
9048     markOop m = _preserved_mark_stack.pop();
9049     p->set_mark(m);
9050   }
9051   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9052          "stacks were cleared above");
9053 }
9054 
9055 #ifndef PRODUCT
9056 bool CMSCollector::no_preserved_marks() const {
9057   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9058 }
9059 #endif
9060 
9061 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9062 {
9063   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9064   CMSAdaptiveSizePolicy* size_policy =
9065     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9066   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9067     "Wrong type for size policy");
9068   return size_policy;
9069 }
9070 
9071 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9072                                            size_t desired_promo_size) {
9073   if (cur_promo_size < desired_promo_size) {
9074     size_t expand_bytes = desired_promo_size - cur_promo_size;
9075     if (PrintAdaptiveSizePolicy && Verbose) {
9076       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9077         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9078         expand_bytes);
9079     }
9080     expand(expand_bytes,
9081            MinHeapDeltaBytes,
9082            CMSExpansionCause::_adaptive_size_policy);
9083   } else if (desired_promo_size < cur_promo_size) {
9084     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9085     if (PrintAdaptiveSizePolicy && Verbose) {
9086       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9087         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9088         shrink_bytes);
9089     }
9090     shrink(shrink_bytes);
9091   }
9092 }
9093 
9094 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9095   GenCollectedHeap* gch = GenCollectedHeap::heap();
9096   CMSGCAdaptivePolicyCounters* counters =
9097     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9098   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9099     "Wrong kind of counters");
9100   return counters;
9101 }
9102 
9103 
9104 void ASConcurrentMarkSweepGeneration::update_counters() {
9105   if (UsePerfData) {
9106     _space_counters->update_all();
9107     _gen_counters->update_all();
9108     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9109     GenCollectedHeap* gch = GenCollectedHeap::heap();
9110     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9111     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9112       "Wrong gc statistics type");
9113     counters->update_counters(gc_stats_l);
9114   }
9115 }
9116 
9117 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9118   if (UsePerfData) {
9119     _space_counters->update_used(used);
9120     _space_counters->update_capacity();
9121     _gen_counters->update_all();
9122 
9123     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9124     GenCollectedHeap* gch = GenCollectedHeap::heap();
9125     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9126     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9127       "Wrong gc statistics type");
9128     counters->update_counters(gc_stats_l);
9129   }
9130 }
9131 
9132 // The desired expansion delta is computed so that:
9133 // . desired free percentage or greater is used
9134 void ASConcurrentMarkSweepGeneration::compute_new_size() {
9135   assert_locked_or_safepoint(Heap_lock);
9136 
9137   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9138 
9139   // If incremental collection failed, we just want to expand
9140   // to the limit.
9141   if (incremental_collection_failed()) {
9142     clear_incremental_collection_failed();
9143     grow_to_reserved();
9144     return;
9145   }
9146 
9147   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
9148 
9149   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
9150     "Wrong type of heap");
9151   int prev_level = level() - 1;
9152   assert(prev_level >= 0, "The cms generation is the lowest generation");
9153   Generation* prev_gen = gch->get_gen(prev_level);
9154   assert(prev_gen->kind() == Generation::ASParNew,
9155     "Wrong type of young generation");
9156   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
9157   size_t cur_eden = younger_gen->eden()->capacity();
9158   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
9159   size_t cur_promo = free();
9160   size_policy->compute_tenured_generation_free_space(cur_promo,
9161                                                        max_available(),
9162                                                        cur_eden);
9163   resize(cur_promo, size_policy->promo_size());
9164 
9165   // Record the new size of the space in the cms generation
9166   // that is available for promotions.  This is temporary.
9167   // It should be the desired promo size.
9168   size_policy->avg_cms_promo()->sample(free());
9169   size_policy->avg_old_live()->sample(used());
9170 
9171   if (UsePerfData) {
9172     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9173     counters->update_cms_capacity_counter(capacity());
9174   }
9175 }
9176 
9177 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9178   assert_locked_or_safepoint(Heap_lock);
9179   assert_lock_strong(freelistLock());
9180   HeapWord* old_end = _cmsSpace->end();
9181   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9182   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9183   FreeChunk* chunk_at_end = find_chunk_at_end();
9184   if (chunk_at_end == NULL) {
9185     // No room to shrink
9186     if (PrintGCDetails && Verbose) {
9187       gclog_or_tty->print_cr("No room to shrink: old_end  "
9188         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9189         " chunk_at_end  " PTR_FORMAT,
9190         old_end, unallocated_start, chunk_at_end);
9191     }
9192     return;
9193   } else {
9194 
9195     // Find the chunk at the end of the space and determine
9196     // how much it can be shrunk.
9197     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9198     size_t aligned_shrinkable_size_in_bytes =
9199       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9200     assert(unallocated_start <= chunk_at_end->end(),
9201       "Inconsistent chunk at end of space");
9202     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9203     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9204 
9205     // Shrink the underlying space
9206     _virtual_space.shrink_by(bytes);
9207     if (PrintGCDetails && Verbose) {
9208       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9209         " desired_bytes " SIZE_FORMAT
9210         " shrinkable_size_in_bytes " SIZE_FORMAT
9211         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9212         "  bytes  " SIZE_FORMAT,
9213         desired_bytes, shrinkable_size_in_bytes,
9214         aligned_shrinkable_size_in_bytes, bytes);
9215       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9216         "  unallocated_start  " SIZE_FORMAT,
9217         old_end, unallocated_start);
9218     }
9219 
9220     // If the space did shrink (shrinking is not guaranteed),
9221     // shrink the chunk at the end by the appropriate amount.
9222     if (((HeapWord*)_virtual_space.high()) < old_end) {
9223       size_t new_word_size =
9224         heap_word_size(_virtual_space.committed_size());
9225 
9226       // Have to remove the chunk from the dictionary because it is changing
9227       // size and might be someplace elsewhere in the dictionary.
9228 
9229       // Get the chunk at end, shrink it, and put it
9230       // back.
9231       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9232       size_t word_size_change = word_size_before - new_word_size;
9233       size_t chunk_at_end_old_size = chunk_at_end->size();
9234       assert(chunk_at_end_old_size >= word_size_change,
9235         "Shrink is too large");
9236       chunk_at_end->setSize(chunk_at_end_old_size -
9237                           word_size_change);
9238       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9239         word_size_change);
9240 
9241       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9242 
9243       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9244       _bts->resize(new_word_size);  // resize the block offset shared array
9245       Universe::heap()->barrier_set()->resize_covered_region(mr);
9246       _cmsSpace->assert_locked();
9247       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9248 
9249       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9250 
9251       // update the space and generation capacity counters
9252       if (UsePerfData) {
9253         _space_counters->update_capacity();
9254         _gen_counters->update_all();
9255       }
9256 
9257       if (Verbose && PrintGCDetails) {
9258         size_t new_mem_size = _virtual_space.committed_size();
9259         size_t old_mem_size = new_mem_size + bytes;
9260         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
9261                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9262       }
9263     }
9264 
9265     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9266       "Inconsistency at end of space");
9267     assert(chunk_at_end->end() == _cmsSpace->end(),
9268       "Shrinking is inconsistent");
9269     return;
9270   }
9271 }
9272 
9273 // Transfer some number of overflown objects to usual marking
9274 // stack. Return true if some objects were transferred.
9275 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9276   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9277                     (size_t)ParGCDesiredObjsFromOverflowList);
9278 
9279   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9280   assert(_collector->overflow_list_is_empty() || res,
9281          "If list is not empty, we should have taken something");
9282   assert(!res || !_mark_stack->isEmpty(),
9283          "If we took something, it should now be on our stack");
9284   return res;
9285 }
9286 
9287 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9288   size_t res = _sp->block_size_no_stall(addr, _collector);
9289   if (_sp->block_is_obj(addr)) {
9290     if (_live_bit_map->isMarked(addr)) {
9291       // It can't have been dead in a previous cycle
9292       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9293     } else {
9294       _dead_bit_map->mark(addr);      // mark the dead object
9295     }
9296   }
9297   // Could be 0, if the block size could not be computed without stalling.
9298   return res;
9299 }
9300 
9301 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9302 
9303   switch (phase) {
9304     case CMSCollector::InitialMarking:
9305       initialize(true  /* fullGC */ ,
9306                  cause /* cause of the GC */,
9307                  true  /* recordGCBeginTime */,
9308                  true  /* recordPreGCUsage */,
9309                  false /* recordPeakUsage */,
9310                  false /* recordPostGCusage */,
9311                  true  /* recordAccumulatedGCTime */,
9312                  false /* recordGCEndTime */,
9313                  false /* countCollection */  );
9314       break;
9315 
9316     case CMSCollector::FinalMarking:
9317       initialize(true  /* fullGC */ ,
9318                  cause /* cause of the GC */,
9319                  false /* recordGCBeginTime */,
9320                  false /* recordPreGCUsage */,
9321                  false /* recordPeakUsage */,
9322                  false /* recordPostGCusage */,
9323                  true  /* recordAccumulatedGCTime */,
9324                  false /* recordGCEndTime */,
9325                  false /* countCollection */  );
9326       break;
9327 
9328     case CMSCollector::Sweeping:
9329       initialize(true  /* fullGC */ ,
9330                  cause /* cause of the GC */,
9331                  false /* recordGCBeginTime */,
9332                  false /* recordPreGCUsage */,
9333                  true  /* recordPeakUsage */,
9334                  true  /* recordPostGCusage */,
9335                  false /* recordAccumulatedGCTime */,
9336                  true  /* recordGCEndTime */,
9337                  true  /* countCollection */  );
9338       break;
9339 
9340     default:
9341       ShouldNotReachHere();
9342   }
9343 }
9344