1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  33 #include "gc_implementation/g1/g1RemSet.hpp"
  34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  35 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  36 #include "gc_implementation/shared/vmGCOperations.hpp"
  37 #include "memory/genOopClosures.inline.hpp"
  38 #include "memory/referencePolicy.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/java.hpp"
  43 
  44 //
  45 // CMS Bit Map Wrapper
  46 
  47 CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter):
  48   _bm((uintptr_t*)NULL,0),
  49   _shifter(shifter) {
  50   _bmStartWord = (HeapWord*)(rs.base());
  51   _bmWordSize  = rs.size()/HeapWordSize;    // rs.size() is in bytes
  52   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  53                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  54 
  55   guarantee(brs.is_reserved(), "couldn't allocate CMS bit map");
  56   // For now we'll just commit all of the bit map up fromt.
  57   // Later on we'll try to be more parsimonious with swap.
  58   guarantee(_virtual_space.initialize(brs, brs.size()),
  59             "couldn't reseve backing store for CMS bit map");
  60   assert(_virtual_space.committed_size() == brs.size(),
  61          "didn't reserve backing store for all of CMS bit map?");
  62   _bm.set_map((uintptr_t*)_virtual_space.low());
  63   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  64          _bmWordSize, "inconsistency in bit map sizing");
  65   _bm.set_size(_bmWordSize >> _shifter);
  66 }
  67 
  68 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
  69                                                HeapWord* limit) const {
  70   // First we must round addr *up* to a possible object boundary.
  71   addr = (HeapWord*)align_size_up((intptr_t)addr,
  72                                   HeapWordSize << _shifter);
  73   size_t addrOffset = heapWordToOffset(addr);
  74   if (limit == NULL) {
  75     limit = _bmStartWord + _bmWordSize;
  76   }
  77   size_t limitOffset = heapWordToOffset(limit);
  78   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  79   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  80   assert(nextAddr >= addr, "get_next_one postcondition");
  81   assert(nextAddr == limit || isMarked(nextAddr),
  82          "get_next_one postcondition");
  83   return nextAddr;
  84 }
  85 
  86 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
  87                                                  HeapWord* limit) const {
  88   size_t addrOffset = heapWordToOffset(addr);
  89   if (limit == NULL) {
  90     limit = _bmStartWord + _bmWordSize;
  91   }
  92   size_t limitOffset = heapWordToOffset(limit);
  93   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  94   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  95   assert(nextAddr >= addr, "get_next_one postcondition");
  96   assert(nextAddr == limit || !isMarked(nextAddr),
  97          "get_next_one postcondition");
  98   return nextAddr;
  99 }
 100 
 101 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
 102   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
 103   return (int) (diff >> _shifter);
 104 }
 105 
 106 bool CMBitMapRO::iterate(BitMapClosure* cl, MemRegion mr) {
 107   HeapWord* left  = MAX2(_bmStartWord, mr.start());
 108   HeapWord* right = MIN2(_bmStartWord + _bmWordSize, mr.end());
 109   if (right > left) {
 110     // Right-open interval [leftOffset, rightOffset).
 111     return _bm.iterate(cl, heapWordToOffset(left), heapWordToOffset(right));
 112   } else {
 113     return true;
 114   }
 115 }
 116 
 117 void CMBitMapRO::mostly_disjoint_range_union(BitMap*   from_bitmap,
 118                                              size_t    from_start_index,
 119                                              HeapWord* to_start_word,
 120                                              size_t    word_num) {
 121   _bm.mostly_disjoint_range_union(from_bitmap,
 122                                   from_start_index,
 123                                   heapWordToOffset(to_start_word),
 124                                   word_num);
 125 }
 126 
 127 #ifndef PRODUCT
 128 bool CMBitMapRO::covers(ReservedSpace rs) const {
 129   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 130   assert(((size_t)_bm.size() * (size_t)(1 << _shifter)) == _bmWordSize,
 131          "size inconsistency");
 132   return _bmStartWord == (HeapWord*)(rs.base()) &&
 133          _bmWordSize  == rs.size()>>LogHeapWordSize;
 134 }
 135 #endif
 136 
 137 void CMBitMap::clearAll() {
 138   _bm.clear();
 139   return;
 140 }
 141 
 142 void CMBitMap::markRange(MemRegion mr) {
 143   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 144   assert(!mr.is_empty(), "unexpected empty region");
 145   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 146           ((HeapWord *) mr.end())),
 147          "markRange memory region end is not card aligned");
 148   // convert address range into offset range
 149   _bm.at_put_range(heapWordToOffset(mr.start()),
 150                    heapWordToOffset(mr.end()), true);
 151 }
 152 
 153 void CMBitMap::clearRange(MemRegion mr) {
 154   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 155   assert(!mr.is_empty(), "unexpected empty region");
 156   // convert address range into offset range
 157   _bm.at_put_range(heapWordToOffset(mr.start()),
 158                    heapWordToOffset(mr.end()), false);
 159 }
 160 
 161 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 162                                             HeapWord* end_addr) {
 163   HeapWord* start = getNextMarkedWordAddress(addr);
 164   start = MIN2(start, end_addr);
 165   HeapWord* end   = getNextUnmarkedWordAddress(start);
 166   end = MIN2(end, end_addr);
 167   assert(start <= end, "Consistency check");
 168   MemRegion mr(start, end);
 169   if (!mr.is_empty()) {
 170     clearRange(mr);
 171   }
 172   return mr;
 173 }
 174 
 175 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 176   _base(NULL), _cm(cm)
 177 #ifdef ASSERT
 178   , _drain_in_progress(false)
 179   , _drain_in_progress_yields(false)
 180 #endif
 181 {}
 182 
 183 void CMMarkStack::allocate(size_t size) {
 184   _base = NEW_C_HEAP_ARRAY(oop, size);
 185   if (_base == NULL) {
 186     vm_exit_during_initialization("Failed to allocate "
 187                                   "CM region mark stack");
 188   }
 189   _index = 0;
 190   _capacity = (jint) size;
 191   _oops_do_bound = -1;
 192   NOT_PRODUCT(_max_depth = 0);
 193 }
 194 
 195 CMMarkStack::~CMMarkStack() {
 196   if (_base != NULL) {
 197     FREE_C_HEAP_ARRAY(oop, _base);
 198   }
 199 }
 200 
 201 void CMMarkStack::par_push(oop ptr) {
 202   while (true) {
 203     if (isFull()) {
 204       _overflow = true;
 205       return;
 206     }
 207     // Otherwise...
 208     jint index = _index;
 209     jint next_index = index+1;
 210     jint res = Atomic::cmpxchg(next_index, &_index, index);
 211     if (res == index) {
 212       _base[index] = ptr;
 213       // Note that we don't maintain this atomically.  We could, but it
 214       // doesn't seem necessary.
 215       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 216       return;
 217     }
 218     // Otherwise, we need to try again.
 219   }
 220 }
 221 
 222 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 223   while (true) {
 224     if (isFull()) {
 225       _overflow = true;
 226       return;
 227     }
 228     // Otherwise...
 229     jint index = _index;
 230     jint next_index = index + n;
 231     if (next_index > _capacity) {
 232       _overflow = true;
 233       return;
 234     }
 235     jint res = Atomic::cmpxchg(next_index, &_index, index);
 236     if (res == index) {
 237       for (int i = 0; i < n; i++) {
 238         int ind = index + i;
 239         assert(ind < _capacity, "By overflow test above.");
 240         _base[ind] = ptr_arr[i];
 241       }
 242       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 243       return;
 244     }
 245     // Otherwise, we need to try again.
 246   }
 247 }
 248 
 249 
 250 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 251   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 252   jint start = _index;
 253   jint next_index = start + n;
 254   if (next_index > _capacity) {
 255     _overflow = true;
 256     return;
 257   }
 258   // Otherwise.
 259   _index = next_index;
 260   for (int i = 0; i < n; i++) {
 261     int ind = start + i;
 262     assert(ind < _capacity, "By overflow test above.");
 263     _base[ind] = ptr_arr[i];
 264   }
 265 }
 266 
 267 
 268 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 269   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 270   jint index = _index;
 271   if (index == 0) {
 272     *n = 0;
 273     return false;
 274   } else {
 275     int k = MIN2(max, index);
 276     jint new_ind = index - k;
 277     for (int j = 0; j < k; j++) {
 278       ptr_arr[j] = _base[new_ind + j];
 279     }
 280     _index = new_ind;
 281     *n = k;
 282     return true;
 283   }
 284 }
 285 
 286 
 287 CMRegionStack::CMRegionStack() : _base(NULL) {}
 288 
 289 void CMRegionStack::allocate(size_t size) {
 290   _base = NEW_C_HEAP_ARRAY(MemRegion, size);
 291   if (_base == NULL) {
 292     vm_exit_during_initialization("Failed to allocate CM region mark stack");
 293   }
 294   _index = 0;
 295   _capacity = (jint) size;
 296 }
 297 
 298 CMRegionStack::~CMRegionStack() {
 299   if (_base != NULL) {
 300     FREE_C_HEAP_ARRAY(oop, _base);
 301   }
 302 }
 303 
 304 void CMRegionStack::push_lock_free(MemRegion mr) {
 305   assert(mr.word_size() > 0, "Precondition");
 306   while (true) {
 307     jint index = _index;
 308 
 309     if (index >= _capacity) {
 310       _overflow = true;
 311       return;
 312     }
 313     // Otherwise...
 314     jint next_index = index+1;
 315     jint res = Atomic::cmpxchg(next_index, &_index, index);
 316     if (res == index) {
 317       _base[index] = mr;
 318       return;
 319     }
 320     // Otherwise, we need to try again.
 321   }
 322 }
 323 
 324 // Lock-free pop of the region stack. Called during the concurrent
 325 // marking / remark phases. Should only be called in tandem with
 326 // other lock-free pops.
 327 MemRegion CMRegionStack::pop_lock_free() {
 328   while (true) {
 329     jint index = _index;
 330 
 331     if (index == 0) {
 332       return MemRegion();
 333     }
 334     // Otherwise...
 335     jint next_index = index-1;
 336     jint res = Atomic::cmpxchg(next_index, &_index, index);
 337     if (res == index) {
 338       MemRegion mr = _base[next_index];
 339       if (mr.start() != NULL) {
 340         assert(mr.end() != NULL, "invariant");
 341         assert(mr.word_size() > 0, "invariant");
 342         return mr;
 343       } else {
 344         // that entry was invalidated... let's skip it
 345         assert(mr.end() == NULL, "invariant");
 346       }
 347     }
 348     // Otherwise, we need to try again.
 349   }
 350 }
 351 
 352 #if 0
 353 // The routines that manipulate the region stack with a lock are
 354 // not currently used. They should be retained, however, as a
 355 // diagnostic aid.
 356 
 357 void CMRegionStack::push_with_lock(MemRegion mr) {
 358   assert(mr.word_size() > 0, "Precondition");
 359   MutexLockerEx x(CMRegionStack_lock, Mutex::_no_safepoint_check_flag);
 360 
 361   if (isFull()) {
 362     _overflow = true;
 363     return;
 364   }
 365 
 366   _base[_index] = mr;
 367   _index += 1;
 368 }
 369 
 370 MemRegion CMRegionStack::pop_with_lock() {
 371   MutexLockerEx x(CMRegionStack_lock, Mutex::_no_safepoint_check_flag);
 372 
 373   while (true) {
 374     if (_index == 0) {
 375       return MemRegion();
 376     }
 377     _index -= 1;
 378 
 379     MemRegion mr = _base[_index];
 380     if (mr.start() != NULL) {
 381       assert(mr.end() != NULL, "invariant");
 382       assert(mr.word_size() > 0, "invariant");
 383       return mr;
 384     } else {
 385       // that entry was invalidated... let's skip it
 386       assert(mr.end() == NULL, "invariant");
 387     }
 388   }
 389 }
 390 #endif
 391 
 392 bool CMRegionStack::invalidate_entries_into_cset() {
 393   bool result = false;
 394   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 395   for (int i = 0; i < _oops_do_bound; ++i) {
 396     MemRegion mr = _base[i];
 397     if (mr.start() != NULL) {
 398       assert(mr.end() != NULL, "invariant");
 399       assert(mr.word_size() > 0, "invariant");
 400       HeapRegion* hr = g1h->heap_region_containing(mr.start());
 401       assert(hr != NULL, "invariant");
 402       if (hr->in_collection_set()) {
 403         // The region points into the collection set
 404         _base[i] = MemRegion();
 405         result = true;
 406       }
 407     } else {
 408       // that entry was invalidated... let's skip it
 409       assert(mr.end() == NULL, "invariant");
 410     }
 411   }
 412   return result;
 413 }
 414 
 415 template<class OopClosureClass>
 416 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 417   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 418          || SafepointSynchronize::is_at_safepoint(),
 419          "Drain recursion must be yield-safe.");
 420   bool res = true;
 421   debug_only(_drain_in_progress = true);
 422   debug_only(_drain_in_progress_yields = yield_after);
 423   while (!isEmpty()) {
 424     oop newOop = pop();
 425     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 426     assert(newOop->is_oop(), "Expected an oop");
 427     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 428            "only grey objects on this stack");
 429     // iterate over the oops in this oop, marking and pushing
 430     // the ones in CMS generation.
 431     newOop->oop_iterate(cl);
 432     if (yield_after && _cm->do_yield_check()) {
 433       res = false;
 434       break;
 435     }
 436   }
 437   debug_only(_drain_in_progress = false);
 438   return res;
 439 }
 440 
 441 void CMMarkStack::oops_do(OopClosure* f) {
 442   if (_index == 0) return;
 443   assert(_oops_do_bound != -1 && _oops_do_bound <= _index,
 444          "Bound must be set.");
 445   for (int i = 0; i < _oops_do_bound; i++) {
 446     f->do_oop(&_base[i]);
 447   }
 448   _oops_do_bound = -1;
 449 }
 450 
 451 bool ConcurrentMark::not_yet_marked(oop obj) const {
 452   return (_g1h->is_obj_ill(obj)
 453           || (_g1h->is_in_permanent(obj)
 454               && !nextMarkBitMap()->isMarked((HeapWord*)obj)));
 455 }
 456 
 457 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 458 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 459 #endif // _MSC_VER
 460 
 461 ConcurrentMark::ConcurrentMark(ReservedSpace rs,
 462                                int max_regions) :
 463   _markBitMap1(rs, MinObjAlignment - 1),
 464   _markBitMap2(rs, MinObjAlignment - 1),
 465 
 466   _parallel_marking_threads(0),
 467   _sleep_factor(0.0),
 468   _marking_task_overhead(1.0),
 469   _cleanup_sleep_factor(0.0),
 470   _cleanup_task_overhead(1.0),
 471   _cleanup_list("Cleanup List"),
 472   _region_bm(max_regions, false /* in_resource_area*/),
 473   _card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
 474            CardTableModRefBS::card_shift,
 475            false /* in_resource_area*/),
 476   _prevMarkBitMap(&_markBitMap1),
 477   _nextMarkBitMap(&_markBitMap2),
 478   _at_least_one_mark_complete(false),
 479 
 480   _markStack(this),
 481   _regionStack(),
 482   // _finger set in set_non_marking_state
 483 
 484   _max_task_num(MAX2(ParallelGCThreads, (size_t)1)),
 485   // _active_tasks set in set_non_marking_state
 486   // _tasks set inside the constructor
 487   _task_queues(new CMTaskQueueSet((int) _max_task_num)),
 488   _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),
 489 
 490   _has_overflown(false),
 491   _concurrent(false),
 492   _has_aborted(false),
 493   _restart_for_overflow(false),
 494   _concurrent_marking_in_progress(false),
 495   _should_gray_objects(false),
 496 
 497   // _verbose_level set below
 498 
 499   _init_times(),
 500   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 501   _cleanup_times(),
 502   _total_counting_time(0.0),
 503   _total_rs_scrub_time(0.0),
 504 
 505   _parallel_workers(NULL) {
 506   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 507   if (verbose_level < no_verbose) {
 508     verbose_level = no_verbose;
 509   }
 510   if (verbose_level > high_verbose) {
 511     verbose_level = high_verbose;
 512   }
 513   _verbose_level = verbose_level;
 514 
 515   if (verbose_low()) {
 516     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 517                            "heap end = "PTR_FORMAT, _heap_start, _heap_end);
 518   }
 519 
 520   _markStack.allocate(MarkStackSize);
 521   _regionStack.allocate(G1MarkRegionStackSize);
 522 
 523   // Create & start a ConcurrentMark thread.
 524   _cmThread = new ConcurrentMarkThread(this);
 525   assert(cmThread() != NULL, "CM Thread should have been created");
 526   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 527 
 528   _g1h = G1CollectedHeap::heap();
 529   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 530   assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
 531   assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");
 532 
 533   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 534   satb_qs.set_buffer_size(G1SATBBufferSize);
 535 
 536   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num);
 537   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num);
 538 
 539   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 540   _active_tasks = _max_task_num;
 541   for (int i = 0; i < (int) _max_task_num; ++i) {
 542     CMTaskQueue* task_queue = new CMTaskQueue();
 543     task_queue->initialize();
 544     _task_queues->register_queue(i, task_queue);
 545 
 546     _tasks[i] = new CMTask(i, this, task_queue, _task_queues);
 547     _accum_task_vtime[i] = 0.0;
 548   }
 549 
 550   if (ConcGCThreads > ParallelGCThreads) {
 551     vm_exit_during_initialization("Can't have more ConcGCThreads "
 552                                   "than ParallelGCThreads.");
 553   }
 554   if (ParallelGCThreads == 0) {
 555     // if we are not running with any parallel GC threads we will not
 556     // spawn any marking threads either
 557     _parallel_marking_threads =   0;
 558     _sleep_factor             = 0.0;
 559     _marking_task_overhead    = 1.0;
 560   } else {
 561     if (ConcGCThreads > 0) {
 562       // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
 563       // if both are set
 564 
 565       _parallel_marking_threads = ConcGCThreads;
 566       _sleep_factor             = 0.0;
 567       _marking_task_overhead    = 1.0;
 568     } else if (G1MarkingOverheadPercent > 0) {
 569       // we will calculate the number of parallel marking threads
 570       // based on a target overhead with respect to the soft real-time
 571       // goal
 572 
 573       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 574       double overall_cm_overhead =
 575         (double) MaxGCPauseMillis * marking_overhead /
 576         (double) GCPauseIntervalMillis;
 577       double cpu_ratio = 1.0 / (double) os::processor_count();
 578       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 579       double marking_task_overhead =
 580         overall_cm_overhead / marking_thread_num *
 581                                                 (double) os::processor_count();
 582       double sleep_factor =
 583                          (1.0 - marking_task_overhead) / marking_task_overhead;
 584 
 585       _parallel_marking_threads = (size_t) marking_thread_num;
 586       _sleep_factor             = sleep_factor;
 587       _marking_task_overhead    = marking_task_overhead;
 588     } else {
 589       _parallel_marking_threads = MAX2((ParallelGCThreads + 2) / 4, (size_t)1);
 590       _sleep_factor             = 0.0;
 591       _marking_task_overhead    = 1.0;
 592     }
 593 
 594     if (parallel_marking_threads() > 1) {
 595       _cleanup_task_overhead = 1.0;
 596     } else {
 597       _cleanup_task_overhead = marking_task_overhead();
 598     }
 599     _cleanup_sleep_factor =
 600                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 601 
 602 #if 0
 603     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 604     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 605     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 606     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 607     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 608 #endif
 609 
 610     guarantee(parallel_marking_threads() > 0, "peace of mind");
 611     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 612          (int) _parallel_marking_threads, false, true);
 613     if (_parallel_workers == NULL) {
 614       vm_exit_during_initialization("Failed necessary allocation.");
 615     } else {
 616       _parallel_workers->initialize_workers();
 617     }
 618   }
 619 
 620   // so that the call below can read a sensible value
 621   _heap_start = (HeapWord*) rs.base();
 622   set_non_marking_state();
 623 }
 624 
 625 void ConcurrentMark::update_g1_committed(bool force) {
 626   // If concurrent marking is not in progress, then we do not need to
 627   // update _heap_end. This has a subtle and important
 628   // side-effect. Imagine that two evacuation pauses happen between
 629   // marking completion and remark. The first one can grow the
 630   // heap (hence now the finger is below the heap end). Then, the
 631   // second one could unnecessarily push regions on the region
 632   // stack. This causes the invariant that the region stack is empty
 633   // at the beginning of remark to be false. By ensuring that we do
 634   // not observe heap expansions after marking is complete, then we do
 635   // not have this problem.
 636   if (!concurrent_marking_in_progress() && !force) return;
 637 
 638   MemRegion committed = _g1h->g1_committed();
 639   assert(committed.start() == _heap_start, "start shouldn't change");
 640   HeapWord* new_end = committed.end();
 641   if (new_end > _heap_end) {
 642     // The heap has been expanded.
 643 
 644     _heap_end = new_end;
 645   }
 646   // Notice that the heap can also shrink. However, this only happens
 647   // during a Full GC (at least currently) and the entire marking
 648   // phase will bail out and the task will not be restarted. So, let's
 649   // do nothing.
 650 }
 651 
 652 void ConcurrentMark::reset() {
 653   // Starting values for these two. This should be called in a STW
 654   // phase. CM will be notified of any future g1_committed expansions
 655   // will be at the end of evacuation pauses, when tasks are
 656   // inactive.
 657   MemRegion committed = _g1h->g1_committed();
 658   _heap_start = committed.start();
 659   _heap_end   = committed.end();
 660 
 661   // Separated the asserts so that we know which one fires.
 662   assert(_heap_start != NULL, "heap bounds should look ok");
 663   assert(_heap_end != NULL, "heap bounds should look ok");
 664   assert(_heap_start < _heap_end, "heap bounds should look ok");
 665 
 666   // reset all the marking data structures and any necessary flags
 667   clear_marking_state();
 668 
 669   if (verbose_low()) {
 670     gclog_or_tty->print_cr("[global] resetting");
 671   }
 672 
 673   // We do reset all of them, since different phases will use
 674   // different number of active threads. So, it's easiest to have all
 675   // of them ready.
 676   for (int i = 0; i < (int) _max_task_num; ++i) {
 677     _tasks[i]->reset(_nextMarkBitMap);
 678   }
 679 
 680   // we need this to make sure that the flag is on during the evac
 681   // pause with initial mark piggy-backed
 682   set_concurrent_marking_in_progress();
 683 }
 684 
 685 void ConcurrentMark::set_phase(size_t active_tasks, bool concurrent) {
 686   assert(active_tasks <= _max_task_num, "we should not have more");
 687 
 688   _active_tasks = active_tasks;
 689   // Need to update the three data structures below according to the
 690   // number of active threads for this phase.
 691   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 692   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 693   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 694 
 695   _concurrent = concurrent;
 696   // We propagate this to all tasks, not just the active ones.
 697   for (int i = 0; i < (int) _max_task_num; ++i)
 698     _tasks[i]->set_concurrent(concurrent);
 699 
 700   if (concurrent) {
 701     set_concurrent_marking_in_progress();
 702   } else {
 703     // We currently assume that the concurrent flag has been set to
 704     // false before we start remark. At this point we should also be
 705     // in a STW phase.
 706     assert(!concurrent_marking_in_progress(), "invariant");
 707     assert(_finger == _heap_end, "only way to get here");
 708     update_g1_committed(true);
 709   }
 710 }
 711 
 712 void ConcurrentMark::set_non_marking_state() {
 713   // We set the global marking state to some default values when we're
 714   // not doing marking.
 715   clear_marking_state();
 716   _active_tasks = 0;
 717   clear_concurrent_marking_in_progress();
 718 }
 719 
 720 ConcurrentMark::~ConcurrentMark() {
 721   for (int i = 0; i < (int) _max_task_num; ++i) {
 722     delete _task_queues->queue(i);
 723     delete _tasks[i];
 724   }
 725   delete _task_queues;
 726   FREE_C_HEAP_ARRAY(CMTask*, _max_task_num);
 727 }
 728 
 729 // This closure is used to mark refs into the g1 generation
 730 // from external roots in the CMS bit map.
 731 // Called at the first checkpoint.
 732 //
 733 
 734 void ConcurrentMark::clearNextBitmap() {
 735   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 736   G1CollectorPolicy* g1p = g1h->g1_policy();
 737 
 738   // Make sure that the concurrent mark thread looks to still be in
 739   // the current cycle.
 740   guarantee(cmThread()->during_cycle(), "invariant");
 741 
 742   // We are finishing up the current cycle by clearing the next
 743   // marking bitmap and getting it ready for the next cycle. During
 744   // this time no other cycle can start. So, let's make sure that this
 745   // is the case.
 746   guarantee(!g1h->mark_in_progress(), "invariant");
 747 
 748   // clear the mark bitmap (no grey objects to start with).
 749   // We need to do this in chunks and offer to yield in between
 750   // each chunk.
 751   HeapWord* start  = _nextMarkBitMap->startWord();
 752   HeapWord* end    = _nextMarkBitMap->endWord();
 753   HeapWord* cur    = start;
 754   size_t chunkSize = M;
 755   while (cur < end) {
 756     HeapWord* next = cur + chunkSize;
 757     if (next > end) {
 758       next = end;
 759     }
 760     MemRegion mr(cur,next);
 761     _nextMarkBitMap->clearRange(mr);
 762     cur = next;
 763     do_yield_check();
 764 
 765     // Repeat the asserts from above. We'll do them as asserts here to
 766     // minimize their overhead on the product. However, we'll have
 767     // them as guarantees at the beginning / end of the bitmap
 768     // clearing to get some checking in the product.
 769     assert(cmThread()->during_cycle(), "invariant");
 770     assert(!g1h->mark_in_progress(), "invariant");
 771   }
 772 
 773   // Repeat the asserts from above.
 774   guarantee(cmThread()->during_cycle(), "invariant");
 775   guarantee(!g1h->mark_in_progress(), "invariant");
 776 }
 777 
 778 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 779 public:
 780   bool doHeapRegion(HeapRegion* r) {
 781     if (!r->continuesHumongous()) {
 782       r->note_start_of_marking(true);
 783     }
 784     return false;
 785   }
 786 };
 787 
 788 void ConcurrentMark::checkpointRootsInitialPre() {
 789   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 790   G1CollectorPolicy* g1p = g1h->g1_policy();
 791 
 792   _has_aborted = false;
 793 
 794 #ifndef PRODUCT
 795   if (G1PrintReachableAtInitialMark) {
 796     print_reachable("at-cycle-start",
 797                     VerifyOption_G1UsePrevMarking, true /* all */);
 798   }
 799 #endif
 800 
 801   // Initialise marking structures. This has to be done in a STW phase.
 802   reset();
 803 }
 804 
 805 
 806 void ConcurrentMark::checkpointRootsInitialPost() {
 807   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 808 
 809   // If we force an overflow during remark, the remark operation will
 810   // actually abort and we'll restart concurrent marking. If we always
 811   // force an oveflow during remark we'll never actually complete the
 812   // marking phase. So, we initilize this here, at the start of the
 813   // cycle, so that at the remaining overflow number will decrease at
 814   // every remark and we'll eventually not need to cause one.
 815   force_overflow_stw()->init();
 816 
 817   // For each region note start of marking.
 818   NoteStartOfMarkHRClosure startcl;
 819   g1h->heap_region_iterate(&startcl);
 820 
 821   // Start Concurrent Marking weak-reference discovery.
 822   ReferenceProcessor* rp = g1h->ref_processor_cm();
 823   // enable ("weak") refs discovery
 824   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 825   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 826 
 827   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 828   // This is the start of  the marking cycle, we're expected all
 829   // threads to have SATB queues with active set to false.
 830   satb_mq_set.set_active_all_threads(true, /* new active value */
 831                                      false /* expected_active */);
 832 
 833   // update_g1_committed() will be called at the end of an evac pause
 834   // when marking is on. So, it's also called at the end of the
 835   // initial-mark pause to update the heap end, if the heap expands
 836   // during it. No need to call it here.
 837 }
 838 
 839 /*
 840  * Notice that in the next two methods, we actually leave the STS
 841  * during the barrier sync and join it immediately afterwards. If we
 842  * do not do this, the following deadlock can occur: one thread could
 843  * be in the barrier sync code, waiting for the other thread to also
 844  * sync up, whereas another one could be trying to yield, while also
 845  * waiting for the other threads to sync up too.
 846  *
 847  * Note, however, that this code is also used during remark and in
 848  * this case we should not attempt to leave / enter the STS, otherwise
 849  * we'll either hit an asseert (debug / fastdebug) or deadlock
 850  * (product). So we should only leave / enter the STS if we are
 851  * operating concurrently.
 852  *
 853  * Because the thread that does the sync barrier has left the STS, it
 854  * is possible to be suspended for a Full GC or an evacuation pause
 855  * could occur. This is actually safe, since the entering the sync
 856  * barrier is one of the last things do_marking_step() does, and it
 857  * doesn't manipulate any data structures afterwards.
 858  */
 859 
 860 void ConcurrentMark::enter_first_sync_barrier(int task_num) {
 861   if (verbose_low()) {
 862     gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
 863   }
 864 
 865   if (concurrent()) {
 866     ConcurrentGCThread::stsLeave();
 867   }
 868   _first_overflow_barrier_sync.enter();
 869   if (concurrent()) {
 870     ConcurrentGCThread::stsJoin();
 871   }
 872   // at this point everyone should have synced up and not be doing any
 873   // more work
 874 
 875   if (verbose_low()) {
 876     gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);
 877   }
 878 
 879   // let task 0 do this
 880   if (task_num == 0) {
 881     // task 0 is responsible for clearing the global data structures
 882     // We should be here because of an overflow. During STW we should
 883     // not clear the overflow flag since we rely on it being true when
 884     // we exit this method to abort the pause and restart concurent
 885     // marking.
 886     clear_marking_state(concurrent() /* clear_overflow */);
 887     force_overflow()->update();
 888 
 889     if (PrintGC) {
 890       gclog_or_tty->date_stamp(PrintGCDateStamps);
 891       gclog_or_tty->stamp(PrintGCTimeStamps);
 892       gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
 893     }
 894   }
 895 
 896   // after this, each task should reset its own data structures then
 897   // then go into the second barrier
 898 }
 899 
 900 void ConcurrentMark::enter_second_sync_barrier(int task_num) {
 901   if (verbose_low()) {
 902     gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
 903   }
 904 
 905   if (concurrent()) {
 906     ConcurrentGCThread::stsLeave();
 907   }
 908   _second_overflow_barrier_sync.enter();
 909   if (concurrent()) {
 910     ConcurrentGCThread::stsJoin();
 911   }
 912   // at this point everything should be re-initialised and ready to go
 913 
 914   if (verbose_low()) {
 915     gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
 916   }
 917 }
 918 
 919 #ifndef PRODUCT
 920 void ForceOverflowSettings::init() {
 921   _num_remaining = G1ConcMarkForceOverflow;
 922   _force = false;
 923   update();
 924 }
 925 
 926 void ForceOverflowSettings::update() {
 927   if (_num_remaining > 0) {
 928     _num_remaining -= 1;
 929     _force = true;
 930   } else {
 931     _force = false;
 932   }
 933 }
 934 
 935 bool ForceOverflowSettings::should_force() {
 936   if (_force) {
 937     _force = false;
 938     return true;
 939   } else {
 940     return false;
 941   }
 942 }
 943 #endif // !PRODUCT
 944 
 945 void ConcurrentMark::grayRoot(oop p) {
 946   HeapWord* addr = (HeapWord*) p;
 947   // We can't really check against _heap_start and _heap_end, since it
 948   // is possible during an evacuation pause with piggy-backed
 949   // initial-mark that the committed space is expanded during the
 950   // pause without CM observing this change. So the assertions below
 951   // is a bit conservative; but better than nothing.
 952   assert(_g1h->g1_committed().contains(addr),
 953          "address should be within the heap bounds");
 954 
 955   if (!_nextMarkBitMap->isMarked(addr)) {
 956     _nextMarkBitMap->parMark(addr);
 957   }
 958 }
 959 
 960 void ConcurrentMark::grayRegionIfNecessary(MemRegion mr) {
 961   // The objects on the region have already been marked "in bulk" by
 962   // the caller. We only need to decide whether to push the region on
 963   // the region stack or not.
 964 
 965   if (!concurrent_marking_in_progress() || !_should_gray_objects) {
 966     // We're done with marking and waiting for remark. We do not need to
 967     // push anything else on the region stack.
 968     return;
 969   }
 970 
 971   HeapWord* finger = _finger;
 972 
 973   if (verbose_low()) {
 974     gclog_or_tty->print_cr("[global] attempting to push "
 975                            "region ["PTR_FORMAT", "PTR_FORMAT"), finger is at "
 976                            PTR_FORMAT, mr.start(), mr.end(), finger);
 977   }
 978 
 979   if (mr.start() < finger) {
 980     // The finger is always heap region aligned and it is not possible
 981     // for mr to span heap regions.
 982     assert(mr.end() <= finger, "invariant");
 983 
 984     // Separated the asserts so that we know which one fires.
 985     assert(mr.start() <= mr.end(),
 986            "region boundaries should fall within the committed space");
 987     assert(_heap_start <= mr.start(),
 988            "region boundaries should fall within the committed space");
 989     assert(mr.end() <= _heap_end,
 990            "region boundaries should fall within the committed space");
 991     if (verbose_low()) {
 992       gclog_or_tty->print_cr("[global] region ["PTR_FORMAT", "PTR_FORMAT") "
 993                              "below the finger, pushing it",
 994                              mr.start(), mr.end());
 995     }
 996 
 997     if (!region_stack_push_lock_free(mr)) {
 998       if (verbose_low()) {
 999         gclog_or_tty->print_cr("[global] region stack has overflown.");
1000       }
1001     }
1002   }
1003 }
1004 
1005 void ConcurrentMark::markAndGrayObjectIfNecessary(oop p) {
1006   // The object is not marked by the caller. We need to at least mark
1007   // it and maybe push in on the stack.
1008 
1009   HeapWord* addr = (HeapWord*)p;
1010   if (!_nextMarkBitMap->isMarked(addr)) {
1011     // We definitely need to mark it, irrespective whether we bail out
1012     // because we're done with marking.
1013     if (_nextMarkBitMap->parMark(addr)) {
1014       if (!concurrent_marking_in_progress() || !_should_gray_objects) {
1015         // If we're done with concurrent marking and we're waiting for
1016         // remark, then we're not pushing anything on the stack.
1017         return;
1018       }
1019 
1020       // No OrderAccess:store_load() is needed. It is implicit in the
1021       // CAS done in parMark(addr) above
1022       HeapWord* finger = _finger;
1023 
1024       if (addr < finger) {
1025         if (!mark_stack_push(oop(addr))) {
1026           if (verbose_low()) {
1027             gclog_or_tty->print_cr("[global] global stack overflow "
1028                                    "during parMark");
1029           }
1030         }
1031       }
1032     }
1033   }
1034 }
1035 
1036 class CMConcurrentMarkingTask: public AbstractGangTask {
1037 private:
1038   ConcurrentMark*       _cm;
1039   ConcurrentMarkThread* _cmt;
1040 
1041 public:
1042   void work(int worker_i) {
1043     assert(Thread::current()->is_ConcurrentGC_thread(),
1044            "this should only be done by a conc GC thread");
1045     ResourceMark rm;
1046 
1047     double start_vtime = os::elapsedVTime();
1048 
1049     ConcurrentGCThread::stsJoin();
1050 
1051     assert((size_t) worker_i < _cm->active_tasks(), "invariant");
1052     CMTask* the_task = _cm->task(worker_i);
1053     the_task->record_start_time();
1054     if (!_cm->has_aborted()) {
1055       do {
1056         double start_vtime_sec = os::elapsedVTime();
1057         double start_time_sec = os::elapsedTime();
1058         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1059 
1060         the_task->do_marking_step(mark_step_duration_ms,
1061                                   true /* do_stealing    */,
1062                                   true /* do_termination */);
1063 
1064         double end_time_sec = os::elapsedTime();
1065         double end_vtime_sec = os::elapsedVTime();
1066         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1067         double elapsed_time_sec = end_time_sec - start_time_sec;
1068         _cm->clear_has_overflown();
1069 
1070         bool ret = _cm->do_yield_check(worker_i);
1071 
1072         jlong sleep_time_ms;
1073         if (!_cm->has_aborted() && the_task->has_aborted()) {
1074           sleep_time_ms =
1075             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1076           ConcurrentGCThread::stsLeave();
1077           os::sleep(Thread::current(), sleep_time_ms, false);
1078           ConcurrentGCThread::stsJoin();
1079         }
1080         double end_time2_sec = os::elapsedTime();
1081         double elapsed_time2_sec = end_time2_sec - start_time_sec;
1082 
1083 #if 0
1084           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
1085                                  "overhead %1.4lf",
1086                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
1087                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
1088           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
1089                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
1090 #endif
1091       } while (!_cm->has_aborted() && the_task->has_aborted());
1092     }
1093     the_task->record_end_time();
1094     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1095 
1096     ConcurrentGCThread::stsLeave();
1097 
1098     double end_vtime = os::elapsedVTime();
1099     _cm->update_accum_task_vtime(worker_i, end_vtime - start_vtime);
1100   }
1101 
1102   CMConcurrentMarkingTask(ConcurrentMark* cm,
1103                           ConcurrentMarkThread* cmt) :
1104       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1105 
1106   ~CMConcurrentMarkingTask() { }
1107 };
1108 
1109 void ConcurrentMark::markFromRoots() {
1110   // we might be tempted to assert that:
1111   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1112   //        "inconsistent argument?");
1113   // However that wouldn't be right, because it's possible that
1114   // a safepoint is indeed in progress as a younger generation
1115   // stop-the-world GC happens even as we mark in this generation.
1116 
1117   _restart_for_overflow = false;
1118 
1119   size_t active_workers = MAX2((size_t) 1, parallel_marking_threads());
1120   force_overflow_conc()->init();
1121   set_phase(active_workers, true /* concurrent */);
1122 
1123   CMConcurrentMarkingTask markingTask(this, cmThread());
1124   if (parallel_marking_threads() > 0) {
1125     _parallel_workers->run_task(&markingTask);
1126   } else {
1127     markingTask.work(0);
1128   }
1129   print_stats();
1130 }
1131 
1132 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1133   // world is stopped at this checkpoint
1134   assert(SafepointSynchronize::is_at_safepoint(),
1135          "world should be stopped");
1136 
1137   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1138 
1139   // If a full collection has happened, we shouldn't do this.
1140   if (has_aborted()) {
1141     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1142     return;
1143   }
1144 
1145   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1146 
1147   if (VerifyDuringGC) {
1148     HandleMark hm;  // handle scope
1149     gclog_or_tty->print(" VerifyDuringGC:(before)");
1150     Universe::heap()->prepare_for_verify();
1151     Universe::verify(/* allow dirty */ true,
1152                      /* silent      */ false,
1153                      /* option      */ VerifyOption_G1UsePrevMarking);
1154   }
1155 
1156   G1CollectorPolicy* g1p = g1h->g1_policy();
1157   g1p->record_concurrent_mark_remark_start();
1158 
1159   double start = os::elapsedTime();
1160 
1161   checkpointRootsFinalWork();
1162 
1163   double mark_work_end = os::elapsedTime();
1164 
1165   weakRefsWork(clear_all_soft_refs);
1166 
1167   if (has_overflown()) {
1168     // Oops.  We overflowed.  Restart concurrent marking.
1169     _restart_for_overflow = true;
1170     // Clear the flag. We do not need it any more.
1171     clear_has_overflown();
1172     if (G1TraceMarkStackOverflow) {
1173       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1174     }
1175   } else {
1176     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1177     // We're done with marking.
1178     // This is the end of  the marking cycle, we're expected all
1179     // threads to have SATB queues with active set to true.
1180     satb_mq_set.set_active_all_threads(false, /* new active value */
1181                                        true /* expected_active */);
1182 
1183     if (VerifyDuringGC) {
1184       HandleMark hm;  // handle scope
1185       gclog_or_tty->print(" VerifyDuringGC:(after)");
1186       Universe::heap()->prepare_for_verify();
1187       Universe::verify(/* allow dirty */ true,
1188                        /* silent      */ false,
1189                        /* option      */ VerifyOption_G1UseNextMarking);
1190     }
1191     assert(!restart_for_overflow(), "sanity");
1192   }
1193 
1194   // Reset the marking state if marking completed
1195   if (!restart_for_overflow()) {
1196     set_non_marking_state();
1197   }
1198 
1199 #if VERIFY_OBJS_PROCESSED
1200   _scan_obj_cl.objs_processed = 0;
1201   ThreadLocalObjQueue::objs_enqueued = 0;
1202 #endif
1203 
1204   // Statistics
1205   double now = os::elapsedTime();
1206   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1207   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1208   _remark_times.add((now - start) * 1000.0);
1209 
1210   g1p->record_concurrent_mark_remark_end();
1211 }
1212 
1213 #define CARD_BM_TEST_MODE 0
1214 
1215 class CalcLiveObjectsClosure: public HeapRegionClosure {
1216 
1217   CMBitMapRO* _bm;
1218   ConcurrentMark* _cm;
1219   bool _changed;
1220   bool _yield;
1221   size_t _words_done;
1222   size_t _tot_live;
1223   size_t _tot_used;
1224   size_t _regions_done;
1225   double _start_vtime_sec;
1226 
1227   BitMap* _region_bm;
1228   BitMap* _card_bm;
1229   intptr_t _bottom_card_num;
1230   bool _final;
1231 
1232   void mark_card_num_range(intptr_t start_card_num, intptr_t last_card_num) {
1233     for (intptr_t i = start_card_num; i <= last_card_num; i++) {
1234 #if CARD_BM_TEST_MODE
1235       guarantee(_card_bm->at(i - _bottom_card_num), "Should already be set.");
1236 #else
1237       _card_bm->par_at_put(i - _bottom_card_num, 1);
1238 #endif
1239     }
1240   }
1241 
1242 public:
1243   CalcLiveObjectsClosure(bool final,
1244                          CMBitMapRO *bm, ConcurrentMark *cm,
1245                          BitMap* region_bm, BitMap* card_bm) :
1246     _bm(bm), _cm(cm), _changed(false), _yield(true),
1247     _words_done(0), _tot_live(0), _tot_used(0),
1248     _region_bm(region_bm), _card_bm(card_bm),_final(final),
1249     _regions_done(0), _start_vtime_sec(0.0)
1250   {
1251     _bottom_card_num =
1252       intptr_t(uintptr_t(G1CollectedHeap::heap()->reserved_region().start()) >>
1253                CardTableModRefBS::card_shift);
1254   }
1255 
1256   // It takes a region that's not empty (i.e., it has at least one
1257   // live object in it and sets its corresponding bit on the region
1258   // bitmap to 1. If the region is "starts humongous" it will also set
1259   // to 1 the bits on the region bitmap that correspond to its
1260   // associated "continues humongous" regions.
1261   void set_bit_for_region(HeapRegion* hr) {
1262     assert(!hr->continuesHumongous(), "should have filtered those out");
1263 
1264     size_t index = hr->hrs_index();
1265     if (!hr->startsHumongous()) {
1266       // Normal (non-humongous) case: just set the bit.
1267       _region_bm->par_at_put((BitMap::idx_t) index, true);
1268     } else {
1269       // Starts humongous case: calculate how many regions are part of
1270       // this humongous region and then set the bit range. It might
1271       // have been a bit more efficient to look at the object that
1272       // spans these humongous regions to calculate their number from
1273       // the object's size. However, it's a good idea to calculate
1274       // this based on the metadata itself, and not the region
1275       // contents, so that this code is not aware of what goes into
1276       // the humongous regions (in case this changes in the future).
1277       G1CollectedHeap* g1h = G1CollectedHeap::heap();
1278       size_t end_index = index + 1;
1279       while (end_index < g1h->n_regions()) {
1280         HeapRegion* chr = g1h->region_at(end_index);
1281         if (!chr->continuesHumongous()) break;
1282         end_index += 1;
1283       }
1284       _region_bm->par_at_put_range((BitMap::idx_t) index,
1285                                    (BitMap::idx_t) end_index, true);
1286     }
1287   }
1288 
1289   bool doHeapRegion(HeapRegion* hr) {
1290     if (!_final && _regions_done == 0) {
1291       _start_vtime_sec = os::elapsedVTime();
1292     }
1293 
1294     if (hr->continuesHumongous()) {
1295       // We will ignore these here and process them when their
1296       // associated "starts humongous" region is processed (see
1297       // set_bit_for_heap_region()). Note that we cannot rely on their
1298       // associated "starts humongous" region to have their bit set to
1299       // 1 since, due to the region chunking in the parallel region
1300       // iteration, a "continues humongous" region might be visited
1301       // before its associated "starts humongous".
1302       return false;
1303     }
1304 
1305     HeapWord* nextTop = hr->next_top_at_mark_start();
1306     HeapWord* start   = hr->top_at_conc_mark_count();
1307     assert(hr->bottom() <= start && start <= hr->end() &&
1308            hr->bottom() <= nextTop && nextTop <= hr->end() &&
1309            start <= nextTop,
1310            "Preconditions.");
1311     // Otherwise, record the number of word's we'll examine.
1312     size_t words_done = (nextTop - start);
1313     // Find the first marked object at or after "start".
1314     start = _bm->getNextMarkedWordAddress(start, nextTop);
1315     size_t marked_bytes = 0;
1316 
1317     // Below, the term "card num" means the result of shifting an address
1318     // by the card shift -- address 0 corresponds to card number 0.  One
1319     // must subtract the card num of the bottom of the heap to obtain a
1320     // card table index.
1321     // The first card num of the sequence of live cards currently being
1322     // constructed.  -1 ==> no sequence.
1323     intptr_t start_card_num = -1;
1324     // The last card num of the sequence of live cards currently being
1325     // constructed.  -1 ==> no sequence.
1326     intptr_t last_card_num = -1;
1327 
1328     while (start < nextTop) {
1329       if (_yield && _cm->do_yield_check()) {
1330         // We yielded.  It might be for a full collection, in which case
1331         // all bets are off; terminate the traversal.
1332         if (_cm->has_aborted()) {
1333           _changed = false;
1334           return true;
1335         } else {
1336           // Otherwise, it might be a collection pause, and the region
1337           // we're looking at might be in the collection set.  We'll
1338           // abandon this region.
1339           return false;
1340         }
1341       }
1342       oop obj = oop(start);
1343       int obj_sz = obj->size();
1344       // The card num of the start of the current object.
1345       intptr_t obj_card_num =
1346         intptr_t(uintptr_t(start) >> CardTableModRefBS::card_shift);
1347 
1348       HeapWord* obj_last = start + obj_sz - 1;
1349       intptr_t obj_last_card_num =
1350         intptr_t(uintptr_t(obj_last) >> CardTableModRefBS::card_shift);
1351 
1352       if (obj_card_num != last_card_num) {
1353         if (start_card_num == -1) {
1354           assert(last_card_num == -1, "Both or neither.");
1355           start_card_num = obj_card_num;
1356         } else {
1357           assert(last_card_num != -1, "Both or neither.");
1358           assert(obj_card_num >= last_card_num, "Inv");
1359           if ((obj_card_num - last_card_num) > 1) {
1360             // Mark the last run, and start a new one.
1361             mark_card_num_range(start_card_num, last_card_num);
1362             start_card_num = obj_card_num;
1363           }
1364         }
1365 #if CARD_BM_TEST_MODE
1366         /*
1367         gclog_or_tty->print_cr("Setting bits from %d/%d.",
1368                                obj_card_num - _bottom_card_num,
1369                                obj_last_card_num - _bottom_card_num);
1370         */
1371         for (intptr_t j = obj_card_num; j <= obj_last_card_num; j++) {
1372           _card_bm->par_at_put(j - _bottom_card_num, 1);
1373         }
1374 #endif
1375       }
1376       // In any case, we set the last card num.
1377       last_card_num = obj_last_card_num;
1378 
1379       marked_bytes += (size_t)obj_sz * HeapWordSize;
1380       // Find the next marked object after this one.
1381       start = _bm->getNextMarkedWordAddress(start + 1, nextTop);
1382       _changed = true;
1383     }
1384     // Handle the last range, if any.
1385     if (start_card_num != -1) {
1386       mark_card_num_range(start_card_num, last_card_num);
1387     }
1388     if (_final) {
1389       // Mark the allocated-since-marking portion...
1390       HeapWord* tp = hr->top();
1391       if (nextTop < tp) {
1392         start_card_num =
1393           intptr_t(uintptr_t(nextTop) >> CardTableModRefBS::card_shift);
1394         last_card_num =
1395           intptr_t(uintptr_t(tp) >> CardTableModRefBS::card_shift);
1396         mark_card_num_range(start_card_num, last_card_num);
1397         // This definitely means the region has live objects.
1398         set_bit_for_region(hr);
1399       }
1400     }
1401 
1402     hr->add_to_marked_bytes(marked_bytes);
1403     // Update the live region bitmap.
1404     if (marked_bytes > 0) {
1405       set_bit_for_region(hr);
1406     }
1407     hr->set_top_at_conc_mark_count(nextTop);
1408     _tot_live += hr->next_live_bytes();
1409     _tot_used += hr->used();
1410     _words_done = words_done;
1411 
1412     if (!_final) {
1413       ++_regions_done;
1414       if (_regions_done % 10 == 0) {
1415         double end_vtime_sec = os::elapsedVTime();
1416         double elapsed_vtime_sec = end_vtime_sec - _start_vtime_sec;
1417         if (elapsed_vtime_sec > (10.0 / 1000.0)) {
1418           jlong sleep_time_ms =
1419             (jlong) (elapsed_vtime_sec * _cm->cleanup_sleep_factor() * 1000.0);
1420           os::sleep(Thread::current(), sleep_time_ms, false);
1421           _start_vtime_sec = end_vtime_sec;
1422         }
1423       }
1424     }
1425 
1426     return false;
1427   }
1428 
1429   bool changed() { return _changed;  }
1430   void reset()   { _changed = false; _words_done = 0; }
1431   void no_yield() { _yield = false; }
1432   size_t words_done() { return _words_done; }
1433   size_t tot_live() { return _tot_live; }
1434   size_t tot_used() { return _tot_used; }
1435 };
1436 
1437 
1438 void ConcurrentMark::calcDesiredRegions() {
1439   _region_bm.clear();
1440   _card_bm.clear();
1441   CalcLiveObjectsClosure calccl(false /*final*/,
1442                                 nextMarkBitMap(), this,
1443                                 &_region_bm, &_card_bm);
1444   G1CollectedHeap *g1h = G1CollectedHeap::heap();
1445   g1h->heap_region_iterate(&calccl);
1446 
1447   do {
1448     calccl.reset();
1449     g1h->heap_region_iterate(&calccl);
1450   } while (calccl.changed());
1451 }
1452 
1453 class G1ParFinalCountTask: public AbstractGangTask {
1454 protected:
1455   G1CollectedHeap* _g1h;
1456   CMBitMap* _bm;
1457   size_t _n_workers;
1458   size_t *_live_bytes;
1459   size_t *_used_bytes;
1460   BitMap* _region_bm;
1461   BitMap* _card_bm;
1462 public:
1463   G1ParFinalCountTask(G1CollectedHeap* g1h, CMBitMap* bm,
1464                       BitMap* region_bm, BitMap* card_bm)
1465     : AbstractGangTask("G1 final counting"), _g1h(g1h),
1466       _bm(bm), _region_bm(region_bm), _card_bm(card_bm) {
1467     if (ParallelGCThreads > 0) {
1468       _n_workers = _g1h->workers()->total_workers();
1469     } else {
1470       _n_workers = 1;
1471     }
1472     _live_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
1473     _used_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
1474   }
1475 
1476   ~G1ParFinalCountTask() {
1477     FREE_C_HEAP_ARRAY(size_t, _live_bytes);
1478     FREE_C_HEAP_ARRAY(size_t, _used_bytes);
1479   }
1480 
1481   void work(int i) {
1482     CalcLiveObjectsClosure calccl(true /*final*/,
1483                                   _bm, _g1h->concurrent_mark(),
1484                                   _region_bm, _card_bm);
1485     calccl.no_yield();
1486     if (G1CollectedHeap::use_parallel_gc_threads()) {
1487       _g1h->heap_region_par_iterate_chunked(&calccl, i,
1488                                             HeapRegion::FinalCountClaimValue);
1489     } else {
1490       _g1h->heap_region_iterate(&calccl);
1491     }
1492     assert(calccl.complete(), "Shouldn't have yielded!");
1493 
1494     assert((size_t) i < _n_workers, "invariant");
1495     _live_bytes[i] = calccl.tot_live();
1496     _used_bytes[i] = calccl.tot_used();
1497   }
1498   size_t live_bytes()  {
1499     size_t live_bytes = 0;
1500     for (size_t i = 0; i < _n_workers; ++i)
1501       live_bytes += _live_bytes[i];
1502     return live_bytes;
1503   }
1504   size_t used_bytes()  {
1505     size_t used_bytes = 0;
1506     for (size_t i = 0; i < _n_workers; ++i)
1507       used_bytes += _used_bytes[i];
1508     return used_bytes;
1509   }
1510 };
1511 
1512 class G1ParNoteEndTask;
1513 
1514 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1515   G1CollectedHeap* _g1;
1516   int _worker_num;
1517   size_t _max_live_bytes;
1518   size_t _regions_claimed;
1519   size_t _freed_bytes;
1520   FreeRegionList* _local_cleanup_list;
1521   HumongousRegionSet* _humongous_proxy_set;
1522   HRRSCleanupTask* _hrrs_cleanup_task;
1523   double _claimed_region_time;
1524   double _max_region_time;
1525 
1526 public:
1527   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1528                              int worker_num,
1529                              FreeRegionList* local_cleanup_list,
1530                              HumongousRegionSet* humongous_proxy_set,
1531                              HRRSCleanupTask* hrrs_cleanup_task);
1532   size_t freed_bytes() { return _freed_bytes; }
1533 
1534   bool doHeapRegion(HeapRegion *r);
1535 
1536   size_t max_live_bytes() { return _max_live_bytes; }
1537   size_t regions_claimed() { return _regions_claimed; }
1538   double claimed_region_time_sec() { return _claimed_region_time; }
1539   double max_region_time_sec() { return _max_region_time; }
1540 };
1541 
1542 class G1ParNoteEndTask: public AbstractGangTask {
1543   friend class G1NoteEndOfConcMarkClosure;
1544 
1545 protected:
1546   G1CollectedHeap* _g1h;
1547   size_t _max_live_bytes;
1548   size_t _freed_bytes;
1549   FreeRegionList* _cleanup_list;
1550 
1551 public:
1552   G1ParNoteEndTask(G1CollectedHeap* g1h,
1553                    FreeRegionList* cleanup_list) :
1554     AbstractGangTask("G1 note end"), _g1h(g1h),
1555     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1556 
1557   void work(int i) {
1558     double start = os::elapsedTime();
1559     FreeRegionList local_cleanup_list("Local Cleanup List");
1560     HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
1561     HRRSCleanupTask hrrs_cleanup_task;
1562     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, i, &local_cleanup_list,
1563                                            &humongous_proxy_set,
1564                                            &hrrs_cleanup_task);
1565     if (G1CollectedHeap::use_parallel_gc_threads()) {
1566       _g1h->heap_region_par_iterate_chunked(&g1_note_end, i,
1567                                             HeapRegion::NoteEndClaimValue);
1568     } else {
1569       _g1h->heap_region_iterate(&g1_note_end);
1570     }
1571     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1572 
1573     // Now update the lists
1574     _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
1575                                             NULL /* free_list */,
1576                                             &humongous_proxy_set,
1577                                             true /* par */);
1578     {
1579       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1580       _max_live_bytes += g1_note_end.max_live_bytes();
1581       _freed_bytes += g1_note_end.freed_bytes();
1582 
1583       // If we iterate over the global cleanup list at the end of
1584       // cleanup to do this printing we will not guarantee to only
1585       // generate output for the newly-reclaimed regions (the list
1586       // might not be empty at the beginning of cleanup; we might
1587       // still be working on its previous contents). So we do the
1588       // printing here, before we append the new regions to the global
1589       // cleanup list.
1590 
1591       G1HRPrinter* hr_printer = _g1h->hr_printer();
1592       if (hr_printer->is_active()) {
1593         HeapRegionLinkedListIterator iter(&local_cleanup_list);
1594         while (iter.more_available()) {
1595           HeapRegion* hr = iter.get_next();
1596           hr_printer->cleanup(hr);
1597         }
1598       }
1599 
1600       _cleanup_list->add_as_tail(&local_cleanup_list);
1601       assert(local_cleanup_list.is_empty(), "post-condition");
1602 
1603       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1604     }
1605     double end = os::elapsedTime();
1606     if (G1PrintParCleanupStats) {
1607       gclog_or_tty->print("     Worker thread %d [%8.3f..%8.3f = %8.3f ms] "
1608                           "claimed %d regions (tot = %8.3f ms, max = %8.3f ms).\n",
1609                           i, start, end, (end-start)*1000.0,
1610                           g1_note_end.regions_claimed(),
1611                           g1_note_end.claimed_region_time_sec()*1000.0,
1612                           g1_note_end.max_region_time_sec()*1000.0);
1613     }
1614   }
1615   size_t max_live_bytes() { return _max_live_bytes; }
1616   size_t freed_bytes() { return _freed_bytes; }
1617 };
1618 
1619 class G1ParScrubRemSetTask: public AbstractGangTask {
1620 protected:
1621   G1RemSet* _g1rs;
1622   BitMap* _region_bm;
1623   BitMap* _card_bm;
1624 public:
1625   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
1626                        BitMap* region_bm, BitMap* card_bm) :
1627     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1628     _region_bm(region_bm), _card_bm(card_bm)
1629   {}
1630 
1631   void work(int i) {
1632     if (G1CollectedHeap::use_parallel_gc_threads()) {
1633       _g1rs->scrub_par(_region_bm, _card_bm, i,
1634                        HeapRegion::ScrubRemSetClaimValue);
1635     } else {
1636       _g1rs->scrub(_region_bm, _card_bm);
1637     }
1638   }
1639 
1640 };
1641 
1642 G1NoteEndOfConcMarkClosure::
1643 G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1644                            int worker_num,
1645                            FreeRegionList* local_cleanup_list,
1646                            HumongousRegionSet* humongous_proxy_set,
1647                            HRRSCleanupTask* hrrs_cleanup_task)
1648   : _g1(g1), _worker_num(worker_num),
1649     _max_live_bytes(0), _regions_claimed(0),
1650     _freed_bytes(0),
1651     _claimed_region_time(0.0), _max_region_time(0.0),
1652     _local_cleanup_list(local_cleanup_list),
1653     _humongous_proxy_set(humongous_proxy_set),
1654     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1655 
1656 bool G1NoteEndOfConcMarkClosure::doHeapRegion(HeapRegion *hr) {
1657   // We use a claim value of zero here because all regions
1658   // were claimed with value 1 in the FinalCount task.
1659   hr->reset_gc_time_stamp();
1660   if (!hr->continuesHumongous()) {
1661     double start = os::elapsedTime();
1662     _regions_claimed++;
1663     hr->note_end_of_marking();
1664     _max_live_bytes += hr->max_live_bytes();
1665     _g1->free_region_if_empty(hr,
1666                               &_freed_bytes,
1667                               _local_cleanup_list,
1668                               _humongous_proxy_set,
1669                               _hrrs_cleanup_task,
1670                               true /* par */);
1671     double region_time = (os::elapsedTime() - start);
1672     _claimed_region_time += region_time;
1673     if (region_time > _max_region_time) {
1674       _max_region_time = region_time;
1675     }
1676   }
1677   return false;
1678 }
1679 
1680 void ConcurrentMark::cleanup() {
1681   // world is stopped at this checkpoint
1682   assert(SafepointSynchronize::is_at_safepoint(),
1683          "world should be stopped");
1684   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1685 
1686   // If a full collection has happened, we shouldn't do this.
1687   if (has_aborted()) {
1688     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1689     return;
1690   }
1691 
1692   g1h->verify_region_sets_optional();
1693 
1694   if (VerifyDuringGC) {
1695     HandleMark hm;  // handle scope
1696     gclog_or_tty->print(" VerifyDuringGC:(before)");
1697     Universe::heap()->prepare_for_verify();
1698     Universe::verify(/* allow dirty */ true,
1699                      /* silent      */ false,
1700                      /* option      */ VerifyOption_G1UsePrevMarking);
1701   }
1702 
1703   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
1704   g1p->record_concurrent_mark_cleanup_start();
1705 
1706   double start = os::elapsedTime();
1707 
1708   HeapRegionRemSet::reset_for_cleanup_tasks();
1709 
1710   // Do counting once more with the world stopped for good measure.
1711   G1ParFinalCountTask g1_par_count_task(g1h, nextMarkBitMap(),
1712                                         &_region_bm, &_card_bm);
1713   if (G1CollectedHeap::use_parallel_gc_threads()) {
1714     assert(g1h->check_heap_region_claim_values(
1715                                                HeapRegion::InitialClaimValue),
1716            "sanity check");
1717 
1718     int n_workers = g1h->workers()->total_workers();
1719     g1h->set_par_threads(n_workers);
1720     g1h->workers()->run_task(&g1_par_count_task);
1721     g1h->set_par_threads(0);
1722 
1723     assert(g1h->check_heap_region_claim_values(
1724                                              HeapRegion::FinalCountClaimValue),
1725            "sanity check");
1726   } else {
1727     g1_par_count_task.work(0);
1728   }
1729 
1730   size_t known_garbage_bytes =
1731     g1_par_count_task.used_bytes() - g1_par_count_task.live_bytes();
1732   g1p->set_known_garbage_bytes(known_garbage_bytes);
1733 
1734   size_t start_used_bytes = g1h->used();
1735   _at_least_one_mark_complete = true;
1736   g1h->set_marking_complete();
1737 
1738   ergo_verbose4(ErgoConcCycles,
1739            "finish cleanup",
1740            ergo_format_byte("occupancy")
1741            ergo_format_byte("capacity")
1742            ergo_format_byte_perc("known garbage"),
1743            start_used_bytes, g1h->capacity(),
1744            known_garbage_bytes,
1745            ((double) known_garbage_bytes / (double) g1h->capacity()) * 100.0);
1746 
1747   double count_end = os::elapsedTime();
1748   double this_final_counting_time = (count_end - start);
1749   if (G1PrintParCleanupStats) {
1750     gclog_or_tty->print_cr("Cleanup:");
1751     gclog_or_tty->print_cr("  Finalize counting: %8.3f ms",
1752                            this_final_counting_time*1000.0);
1753   }
1754   _total_counting_time += this_final_counting_time;
1755 
1756   if (G1PrintRegionLivenessInfo) {
1757     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
1758     _g1h->heap_region_iterate(&cl);
1759   }
1760 
1761   // Install newly created mark bitMap as "prev".
1762   swapMarkBitMaps();
1763 
1764   g1h->reset_gc_time_stamp();
1765 
1766   // Note end of marking in all heap regions.
1767   double note_end_start = os::elapsedTime();
1768   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
1769   if (G1CollectedHeap::use_parallel_gc_threads()) {
1770     int n_workers = g1h->workers()->total_workers();
1771     g1h->set_par_threads(n_workers);
1772     g1h->workers()->run_task(&g1_par_note_end_task);
1773     g1h->set_par_threads(0);
1774 
1775     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
1776            "sanity check");
1777   } else {
1778     g1_par_note_end_task.work(0);
1779   }
1780 
1781   if (!cleanup_list_is_empty()) {
1782     // The cleanup list is not empty, so we'll have to process it
1783     // concurrently. Notify anyone else that might be wanting free
1784     // regions that there will be more free regions coming soon.
1785     g1h->set_free_regions_coming();
1786   }
1787   double note_end_end = os::elapsedTime();
1788   if (G1PrintParCleanupStats) {
1789     gclog_or_tty->print_cr("  note end of marking: %8.3f ms.",
1790                            (note_end_end - note_end_start)*1000.0);
1791   }
1792 
1793 
1794   // call below, since it affects the metric by which we sort the heap
1795   // regions.
1796   if (G1ScrubRemSets) {
1797     double rs_scrub_start = os::elapsedTime();
1798     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
1799     if (G1CollectedHeap::use_parallel_gc_threads()) {
1800       int n_workers = g1h->workers()->total_workers();
1801       g1h->set_par_threads(n_workers);
1802       g1h->workers()->run_task(&g1_par_scrub_rs_task);
1803       g1h->set_par_threads(0);
1804 
1805       assert(g1h->check_heap_region_claim_values(
1806                                             HeapRegion::ScrubRemSetClaimValue),
1807              "sanity check");
1808     } else {
1809       g1_par_scrub_rs_task.work(0);
1810     }
1811 
1812     double rs_scrub_end = os::elapsedTime();
1813     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
1814     _total_rs_scrub_time += this_rs_scrub_time;
1815   }
1816 
1817   // this will also free any regions totally full of garbage objects,
1818   // and sort the regions.
1819   g1h->g1_policy()->record_concurrent_mark_cleanup_end(
1820                         g1_par_note_end_task.freed_bytes(),
1821                         g1_par_note_end_task.max_live_bytes());
1822 
1823   // Statistics.
1824   double end = os::elapsedTime();
1825   _cleanup_times.add((end - start) * 1000.0);
1826 
1827   // G1CollectedHeap::heap()->print();
1828   // gclog_or_tty->print_cr("HEAP GC TIME STAMP : %d",
1829   // G1CollectedHeap::heap()->get_gc_time_stamp());
1830 
1831   if (PrintGC || PrintGCDetails) {
1832     g1h->print_size_transition(gclog_or_tty,
1833                                start_used_bytes,
1834                                g1h->used(),
1835                                g1h->capacity());
1836   }
1837 
1838   size_t cleaned_up_bytes = start_used_bytes - g1h->used();
1839   g1p->decrease_known_garbage_bytes(cleaned_up_bytes);
1840 
1841   // Clean up will have freed any regions completely full of garbage.
1842   // Update the soft reference policy with the new heap occupancy.
1843   Universe::update_heap_info_at_gc();
1844 
1845   // We need to make this be a "collection" so any collection pause that
1846   // races with it goes around and waits for completeCleanup to finish.
1847   g1h->increment_total_collections();
1848 
1849   if (VerifyDuringGC) {
1850     HandleMark hm;  // handle scope
1851     gclog_or_tty->print(" VerifyDuringGC:(after)");
1852     Universe::heap()->prepare_for_verify();
1853     Universe::verify(/* allow dirty */ true,
1854                      /* silent      */ false,
1855                      /* option      */ VerifyOption_G1UsePrevMarking);
1856   }
1857 
1858   g1h->verify_region_sets_optional();
1859 }
1860 
1861 void ConcurrentMark::completeCleanup() {
1862   if (has_aborted()) return;
1863 
1864   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1865 
1866   _cleanup_list.verify_optional();
1867   FreeRegionList tmp_free_list("Tmp Free List");
1868 
1869   if (G1ConcRegionFreeingVerbose) {
1870     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
1871                            "cleanup list has "SIZE_FORMAT" entries",
1872                            _cleanup_list.length());
1873   }
1874 
1875   // Noone else should be accessing the _cleanup_list at this point,
1876   // so it's not necessary to take any locks
1877   while (!_cleanup_list.is_empty()) {
1878     HeapRegion* hr = _cleanup_list.remove_head();
1879     assert(hr != NULL, "the list was not empty");
1880     hr->par_clear();
1881     tmp_free_list.add_as_tail(hr);
1882 
1883     // Instead of adding one region at a time to the secondary_free_list,
1884     // we accumulate them in the local list and move them a few at a
1885     // time. This also cuts down on the number of notify_all() calls
1886     // we do during this process. We'll also append the local list when
1887     // _cleanup_list is empty (which means we just removed the last
1888     // region from the _cleanup_list).
1889     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1890         _cleanup_list.is_empty()) {
1891       if (G1ConcRegionFreeingVerbose) {
1892         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
1893                                "appending "SIZE_FORMAT" entries to the "
1894                                "secondary_free_list, clean list still has "
1895                                SIZE_FORMAT" entries",
1896                                tmp_free_list.length(),
1897                                _cleanup_list.length());
1898       }
1899 
1900       {
1901         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1902         g1h->secondary_free_list_add_as_tail(&tmp_free_list);
1903         SecondaryFreeList_lock->notify_all();
1904       }
1905 
1906       if (G1StressConcRegionFreeing) {
1907         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1908           os::sleep(Thread::current(), (jlong) 1, false);
1909         }
1910       }
1911     }
1912   }
1913   assert(tmp_free_list.is_empty(), "post-condition");
1914 }
1915 
1916 // Support closures for reference procssing in G1
1917 
1918 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1919   HeapWord* addr = (HeapWord*)obj;
1920   return addr != NULL &&
1921          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1922 }
1923 
1924 class G1CMKeepAliveClosure: public OopClosure {
1925   G1CollectedHeap* _g1;
1926   ConcurrentMark*  _cm;
1927   CMBitMap*        _bitMap;
1928  public:
1929   G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm,
1930                        CMBitMap* bitMap) :
1931     _g1(g1), _cm(cm),
1932     _bitMap(bitMap) {}
1933 
1934   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1935   virtual void do_oop(      oop* p) { do_oop_work(p); }
1936 
1937   template <class T> void do_oop_work(T* p) {
1938     oop obj = oopDesc::load_decode_heap_oop(p);
1939     HeapWord* addr = (HeapWord*)obj;
1940 
1941     if (_cm->verbose_high()) {
1942       gclog_or_tty->print_cr("\t[0] we're looking at location "
1943                              "*"PTR_FORMAT" = "PTR_FORMAT,
1944                              p, (void*) obj);
1945     }
1946 
1947     if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
1948       _bitMap->mark(addr);
1949       _cm->mark_stack_push(obj);
1950     }
1951   }
1952 };
1953 
1954 class G1CMDrainMarkingStackClosure: public VoidClosure {
1955   CMMarkStack*                  _markStack;
1956   CMBitMap*                     _bitMap;
1957   G1CMKeepAliveClosure*         _oopClosure;
1958  public:
1959   G1CMDrainMarkingStackClosure(CMBitMap* bitMap, CMMarkStack* markStack,
1960                                G1CMKeepAliveClosure* oopClosure) :
1961     _bitMap(bitMap),
1962     _markStack(markStack),
1963     _oopClosure(oopClosure)
1964   {}
1965 
1966   void do_void() {
1967     _markStack->drain((OopClosure*)_oopClosure, _bitMap, false);
1968   }
1969 };
1970 
1971 // 'Keep Alive' closure used by parallel reference processing.
1972 // An instance of this closure is used in the parallel reference processing
1973 // code rather than an instance of G1CMKeepAliveClosure. We could have used
1974 // the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
1975 // placed on to discovered ref lists once so we can mark and push with no
1976 // need to check whether the object has already been marked. Using the
1977 // G1CMKeepAliveClosure would mean, however, having all the worker threads
1978 // operating on the global mark stack. This means that an individual
1979 // worker would be doing lock-free pushes while it processes its own
1980 // discovered ref list followed by drain call. If the discovered ref lists
1981 // are unbalanced then this could cause interference with the other
1982 // workers. Using a CMTask (and its embedded local data structures)
1983 // avoids that potential interference.
1984 class G1CMParKeepAliveAndDrainClosure: public OopClosure {
1985   ConcurrentMark*  _cm;
1986   CMTask*          _task;
1987   CMBitMap*        _bitMap;
1988   int              _ref_counter_limit;
1989   int              _ref_counter;
1990  public:
1991   G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm,
1992                                   CMTask* task,
1993                                   CMBitMap* bitMap) :
1994     _cm(cm), _task(task), _bitMap(bitMap),
1995     _ref_counter_limit(G1RefProcDrainInterval)
1996   {
1997     assert(_ref_counter_limit > 0, "sanity");
1998     _ref_counter = _ref_counter_limit;
1999   }
2000 
2001   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2002   virtual void do_oop(      oop* p) { do_oop_work(p); }
2003 
2004   template <class T> void do_oop_work(T* p) {
2005     if (!_cm->has_overflown()) {
2006       oop obj = oopDesc::load_decode_heap_oop(p);
2007       if (_cm->verbose_high()) {
2008         gclog_or_tty->print_cr("\t[%d] we're looking at location "
2009                                "*"PTR_FORMAT" = "PTR_FORMAT,
2010                                _task->task_id(), p, (void*) obj);
2011       }
2012 
2013       _task->deal_with_reference(obj);
2014       _ref_counter--;
2015 
2016       if (_ref_counter == 0) {
2017         // We have dealt with _ref_counter_limit references, pushing them and objects
2018         // reachable from them on to the local stack (and possibly the global stack).
2019         // Call do_marking_step() to process these entries. We call the routine in a
2020         // loop, which we'll exit if there's nothing more to do (i.e. we're done
2021         // with the entries that we've pushed as a result of the deal_with_reference
2022         // calls above) or we overflow.
2023         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
2024         // while there may still be some work to do. (See the comment at the
2025         // beginning of CMTask::do_marking_step() for those conditions - one of which
2026         // is reaching the specified time target.) It is only when
2027         // CMTask::do_marking_step() returns without setting the has_aborted() flag
2028         // that the marking has completed.
2029         do {
2030           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2031           _task->do_marking_step(mark_step_duration_ms,
2032                                  false /* do_stealing    */,
2033                                  false /* do_termination */);
2034         } while (_task->has_aborted() && !_cm->has_overflown());
2035         _ref_counter = _ref_counter_limit;
2036       }
2037     } else {
2038       if (_cm->verbose_high()) {
2039          gclog_or_tty->print_cr("\t[%d] CM Overflow", _task->task_id());
2040       }
2041     }
2042   }
2043 };
2044 
2045 class G1CMParDrainMarkingStackClosure: public VoidClosure {
2046   ConcurrentMark* _cm;
2047   CMTask* _task;
2048  public:
2049   G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
2050     _cm(cm), _task(task)
2051   {}
2052 
2053   void do_void() {
2054     do {
2055       if (_cm->verbose_high()) {
2056         gclog_or_tty->print_cr("\t[%d] Drain: Calling do marking_step",
2057                                _task->task_id());
2058       }
2059 
2060       // We call CMTask::do_marking_step() to completely drain the local and
2061       // global marking stacks. The routine is called in a loop, which we'll
2062       // exit if there's nothing more to do (i.e. we'completely drained the
2063       // entries that were pushed as a result of applying the
2064       // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
2065       // lists above) or we overflow the global marking stack.
2066       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
2067       // while there may still be some work to do. (See the comment at the
2068       // beginning of CMTask::do_marking_step() for those conditions - one of which
2069       // is reaching the specified time target.) It is only when
2070       // CMTask::do_marking_step() returns without setting the has_aborted() flag
2071       // that the marking has completed.
2072 
2073       _task->do_marking_step(1000000000.0 /* something very large */,
2074                              true /* do_stealing    */,
2075                              true /* do_termination */);
2076     } while (_task->has_aborted() && !_cm->has_overflown());
2077   }
2078 };
2079 
2080 // Implementation of AbstractRefProcTaskExecutor for parallel
2081 // reference processing at the end of G1 concurrent marking
2082 
2083 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2084 private:
2085   G1CollectedHeap* _g1h;
2086   ConcurrentMark*  _cm;
2087   CMBitMap*        _bitmap;
2088   WorkGang*        _workers;
2089   int              _active_workers;
2090 
2091 public:
2092   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2093                         ConcurrentMark* cm,
2094                         CMBitMap* bitmap,
2095                         WorkGang* workers,
2096                         int n_workers) :
2097     _g1h(g1h), _cm(cm), _bitmap(bitmap),
2098     _workers(workers), _active_workers(n_workers)
2099   { }
2100 
2101   // Executes the given task using concurrent marking worker threads.
2102   virtual void execute(ProcessTask& task);
2103   virtual void execute(EnqueueTask& task);
2104 };
2105 
2106 class G1CMRefProcTaskProxy: public AbstractGangTask {
2107   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2108   ProcessTask&     _proc_task;
2109   G1CollectedHeap* _g1h;
2110   ConcurrentMark*  _cm;
2111   CMBitMap*        _bitmap;
2112 
2113 public:
2114   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2115                      G1CollectedHeap* g1h,
2116                      ConcurrentMark* cm,
2117                      CMBitMap* bitmap) :
2118     AbstractGangTask("Process reference objects in parallel"),
2119     _proc_task(proc_task), _g1h(g1h), _cm(cm), _bitmap(bitmap)
2120   {}
2121 
2122   virtual void work(int i) {
2123     CMTask* marking_task = _cm->task(i);
2124     G1CMIsAliveClosure g1_is_alive(_g1h);
2125     G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task, _bitmap);
2126     G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);
2127 
2128     _proc_task.work(i, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2129   }
2130 };
2131 
2132 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2133   assert(_workers != NULL, "Need parallel worker threads.");
2134 
2135   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm, _bitmap);
2136 
2137   // We need to reset the phase for each task execution so that
2138   // the termination protocol of CMTask::do_marking_step works.
2139   _cm->set_phase(_active_workers, false /* concurrent */);
2140   _g1h->set_par_threads(_active_workers);
2141   _workers->run_task(&proc_task_proxy);
2142   _g1h->set_par_threads(0);
2143 }
2144 
2145 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2146   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2147   EnqueueTask& _enq_task;
2148 
2149 public:
2150   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2151     AbstractGangTask("Enqueue reference objects in parallel"),
2152     _enq_task(enq_task)
2153   { }
2154 
2155   virtual void work(int i) {
2156     _enq_task.work(i);
2157   }
2158 };
2159 
2160 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2161   assert(_workers != NULL, "Need parallel worker threads.");
2162 
2163   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2164 
2165   _g1h->set_par_threads(_active_workers);
2166   _workers->run_task(&enq_task_proxy);
2167   _g1h->set_par_threads(0);
2168 }
2169 
2170 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2171   ResourceMark rm;
2172   HandleMark   hm;
2173   G1CollectedHeap* g1h   = G1CollectedHeap::heap();
2174   ReferenceProcessor* rp = g1h->ref_processor_cm();
2175 
2176   // See the comment in G1CollectedHeap::ref_processing_init()
2177   // about how reference processing currently works in G1.
2178 
2179   // Process weak references.
2180   rp->setup_policy(clear_all_soft_refs);
2181   assert(_markStack.isEmpty(), "mark stack should be empty");
2182 
2183   G1CMIsAliveClosure   g1_is_alive(g1h);
2184   G1CMKeepAliveClosure g1_keep_alive(g1h, this, nextMarkBitMap());
2185   G1CMDrainMarkingStackClosure
2186     g1_drain_mark_stack(nextMarkBitMap(), &_markStack, &g1_keep_alive);
2187   // We use the work gang from the G1CollectedHeap and we utilize all
2188   // the worker threads.
2189   int active_workers = g1h->workers() ? g1h->workers()->total_workers() : 1;
2190   active_workers = MAX2(MIN2(active_workers, (int)_max_task_num), 1);
2191 
2192   G1CMRefProcTaskExecutor par_task_executor(g1h, this, nextMarkBitMap(),
2193                                           g1h->workers(), active_workers);
2194 
2195 
2196   if (rp->processing_is_mt()) {
2197     // Set the degree of MT here.  If the discovery is done MT, there
2198     // may have been a different number of threads doing the discovery
2199     // and a different number of discovered lists may have Ref objects.
2200     // That is OK as long as the Reference lists are balanced (see
2201     // balance_all_queues() and balance_queues()).
2202     rp->set_active_mt_degree(active_workers);
2203 
2204     rp->process_discovered_references(&g1_is_alive,
2205                                       &g1_keep_alive,
2206                                       &g1_drain_mark_stack,
2207                                       &par_task_executor);
2208 
2209     // The work routines of the parallel keep_alive and drain_marking_stack
2210     // will set the has_overflown flag if we overflow the global marking
2211     // stack.
2212   } else {
2213     rp->process_discovered_references(&g1_is_alive,
2214                                       &g1_keep_alive,
2215                                       &g1_drain_mark_stack,
2216                                       NULL);
2217 
2218   }
2219 
2220   assert(_markStack.overflow() || _markStack.isEmpty(),
2221       "mark stack should be empty (unless it overflowed)");
2222   if (_markStack.overflow()) {
2223     // Should have been done already when we tried to push an
2224     // entry on to the global mark stack. But let's do it again.
2225     set_has_overflown();
2226   }
2227 
2228   if (rp->processing_is_mt()) {
2229     assert(rp->num_q() == active_workers, "why not");
2230     rp->enqueue_discovered_references(&par_task_executor);
2231   } else {
2232     rp->enqueue_discovered_references();
2233   }
2234 
2235   rp->verify_no_references_recorded();
2236   assert(!rp->discovery_enabled(), "Post condition");
2237 
2238   // Now clean up stale oops in StringTable
2239   StringTable::unlink(&g1_is_alive);
2240   // Clean up unreferenced symbols in symbol table.
2241   SymbolTable::unlink();
2242 }
2243 
2244 void ConcurrentMark::swapMarkBitMaps() {
2245   CMBitMapRO* temp = _prevMarkBitMap;
2246   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2247   _nextMarkBitMap  = (CMBitMap*)  temp;
2248 }
2249 
2250 class CMRemarkTask: public AbstractGangTask {
2251 private:
2252   ConcurrentMark *_cm;
2253 
2254 public:
2255   void work(int worker_i) {
2256     // Since all available tasks are actually started, we should
2257     // only proceed if we're supposed to be actived.
2258     if ((size_t)worker_i < _cm->active_tasks()) {
2259       CMTask* task = _cm->task(worker_i);
2260       task->record_start_time();
2261       do {
2262         task->do_marking_step(1000000000.0 /* something very large */,
2263                               true /* do_stealing    */,
2264                               true /* do_termination */);
2265       } while (task->has_aborted() && !_cm->has_overflown());
2266       // If we overflow, then we do not want to restart. We instead
2267       // want to abort remark and do concurrent marking again.
2268       task->record_end_time();
2269     }
2270   }
2271 
2272   CMRemarkTask(ConcurrentMark* cm) :
2273     AbstractGangTask("Par Remark"), _cm(cm) { }
2274 };
2275 
2276 void ConcurrentMark::checkpointRootsFinalWork() {
2277   ResourceMark rm;
2278   HandleMark   hm;
2279   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2280 
2281   g1h->ensure_parsability(false);
2282 
2283   if (G1CollectedHeap::use_parallel_gc_threads()) {
2284     G1CollectedHeap::StrongRootsScope srs(g1h);
2285     // this is remark, so we'll use up all available threads
2286     int active_workers = ParallelGCThreads;
2287     set_phase(active_workers, false /* concurrent */);
2288 
2289     CMRemarkTask remarkTask(this);
2290     // We will start all available threads, even if we decide that the
2291     // active_workers will be fewer. The extra ones will just bail out
2292     // immediately.
2293     int n_workers = g1h->workers()->total_workers();
2294     g1h->set_par_threads(n_workers);
2295     g1h->workers()->run_task(&remarkTask);
2296     g1h->set_par_threads(0);
2297   } else {
2298     G1CollectedHeap::StrongRootsScope srs(g1h);
2299     // this is remark, so we'll use up all available threads
2300     int active_workers = 1;
2301     set_phase(active_workers, false /* concurrent */);
2302 
2303     CMRemarkTask remarkTask(this);
2304     // We will start all available threads, even if we decide that the
2305     // active_workers will be fewer. The extra ones will just bail out
2306     // immediately.
2307     remarkTask.work(0);
2308   }
2309   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2310   guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
2311 
2312   print_stats();
2313 
2314 #if VERIFY_OBJS_PROCESSED
2315   if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
2316     gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
2317                            _scan_obj_cl.objs_processed,
2318                            ThreadLocalObjQueue::objs_enqueued);
2319     guarantee(_scan_obj_cl.objs_processed ==
2320               ThreadLocalObjQueue::objs_enqueued,
2321               "Different number of objs processed and enqueued.");
2322   }
2323 #endif
2324 }
2325 
2326 #ifndef PRODUCT
2327 
2328 class PrintReachableOopClosure: public OopClosure {
2329 private:
2330   G1CollectedHeap* _g1h;
2331   outputStream*    _out;
2332   VerifyOption     _vo;
2333   bool             _all;
2334 
2335 public:
2336   PrintReachableOopClosure(outputStream* out,
2337                            VerifyOption  vo,
2338                            bool          all) :
2339     _g1h(G1CollectedHeap::heap()),
2340     _out(out), _vo(vo), _all(all) { }
2341 
2342   void do_oop(narrowOop* p) { do_oop_work(p); }
2343   void do_oop(      oop* p) { do_oop_work(p); }
2344 
2345   template <class T> void do_oop_work(T* p) {
2346     oop         obj = oopDesc::load_decode_heap_oop(p);
2347     const char* str = NULL;
2348     const char* str2 = "";
2349 
2350     if (obj == NULL) {
2351       str = "";
2352     } else if (!_g1h->is_in_g1_reserved(obj)) {
2353       str = " O";
2354     } else {
2355       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2356       guarantee(hr != NULL, "invariant");
2357       bool over_tams = false;
2358       bool marked = false;
2359 
2360       switch (_vo) {
2361         case VerifyOption_G1UsePrevMarking:
2362           over_tams = hr->obj_allocated_since_prev_marking(obj);
2363           marked = _g1h->isMarkedPrev(obj);
2364           break;
2365         case VerifyOption_G1UseNextMarking:
2366           over_tams = hr->obj_allocated_since_next_marking(obj);
2367           marked = _g1h->isMarkedNext(obj);
2368           break;
2369         case VerifyOption_G1UseMarkWord:
2370           marked = obj->is_gc_marked();
2371           break;
2372         default:
2373           ShouldNotReachHere();
2374       }
2375 
2376       if (over_tams) {
2377         str = " >";
2378         if (marked) {
2379           str2 = " AND MARKED";
2380         }
2381       } else if (marked) {
2382         str = " M";
2383       } else {
2384         str = " NOT";
2385       }
2386     }
2387 
2388     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2389                    p, (void*) obj, str, str2);
2390   }
2391 };
2392 
2393 class PrintReachableObjectClosure : public ObjectClosure {
2394 private:
2395   G1CollectedHeap* _g1h;
2396   outputStream*    _out;
2397   VerifyOption     _vo;
2398   bool             _all;
2399   HeapRegion*      _hr;
2400 
2401 public:
2402   PrintReachableObjectClosure(outputStream* out,
2403                               VerifyOption  vo,
2404                               bool          all,
2405                               HeapRegion*   hr) :
2406     _g1h(G1CollectedHeap::heap()),
2407     _out(out), _vo(vo), _all(all), _hr(hr) { }
2408 
2409   void do_object(oop o) {
2410     bool over_tams = false;
2411     bool marked = false;
2412 
2413     switch (_vo) {
2414       case VerifyOption_G1UsePrevMarking:
2415         over_tams = _hr->obj_allocated_since_prev_marking(o);
2416         marked = _g1h->isMarkedPrev(o);
2417         break;
2418       case VerifyOption_G1UseNextMarking:
2419         over_tams = _hr->obj_allocated_since_next_marking(o);
2420         marked = _g1h->isMarkedNext(o);
2421         break;
2422       case VerifyOption_G1UseMarkWord:
2423         marked = o->is_gc_marked();
2424         break;
2425       default:
2426         ShouldNotReachHere();
2427     }
2428     bool print_it = _all || over_tams || marked;
2429 
2430     if (print_it) {
2431       _out->print_cr(" "PTR_FORMAT"%s",
2432                      o, (over_tams) ? " >" : (marked) ? " M" : "");
2433       PrintReachableOopClosure oopCl(_out, _vo, _all);
2434       o->oop_iterate(&oopCl);
2435     }
2436   }
2437 };
2438 
2439 class PrintReachableRegionClosure : public HeapRegionClosure {
2440 private:
2441   outputStream* _out;
2442   VerifyOption  _vo;
2443   bool          _all;
2444 
2445 public:
2446   bool doHeapRegion(HeapRegion* hr) {
2447     HeapWord* b = hr->bottom();
2448     HeapWord* e = hr->end();
2449     HeapWord* t = hr->top();
2450     HeapWord* p = NULL;
2451 
2452     switch (_vo) {
2453       case VerifyOption_G1UsePrevMarking:
2454         p = hr->prev_top_at_mark_start();
2455         break;
2456       case VerifyOption_G1UseNextMarking:
2457         p = hr->next_top_at_mark_start();
2458         break;
2459       case VerifyOption_G1UseMarkWord:
2460         // When we are verifying marking using the mark word
2461         // TAMS has no relevance.
2462         assert(p == NULL, "post-condition");
2463         break;
2464       default:
2465         ShouldNotReachHere();
2466     }
2467     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2468                    "TAMS: "PTR_FORMAT, b, e, t, p);
2469     _out->cr();
2470 
2471     HeapWord* from = b;
2472     HeapWord* to   = t;
2473 
2474     if (to > from) {
2475       _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
2476       _out->cr();
2477       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2478       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2479       _out->cr();
2480     }
2481 
2482     return false;
2483   }
2484 
2485   PrintReachableRegionClosure(outputStream* out,
2486                               VerifyOption  vo,
2487                               bool          all) :
2488     _out(out), _vo(vo), _all(all) { }
2489 };
2490 
2491 static const char* verify_option_to_tams(VerifyOption vo) {
2492   switch (vo) {
2493     case VerifyOption_G1UsePrevMarking:
2494       return "PTAMS";
2495     case VerifyOption_G1UseNextMarking:
2496       return "NTAMS";
2497     default:
2498       return "NONE";
2499   }
2500 }
2501 
2502 void ConcurrentMark::print_reachable(const char* str,
2503                                      VerifyOption vo,
2504                                      bool all) {
2505   gclog_or_tty->cr();
2506   gclog_or_tty->print_cr("== Doing heap dump... ");
2507 
2508   if (G1PrintReachableBaseFile == NULL) {
2509     gclog_or_tty->print_cr("  #### error: no base file defined");
2510     return;
2511   }
2512 
2513   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2514       (JVM_MAXPATHLEN - 1)) {
2515     gclog_or_tty->print_cr("  #### error: file name too long");
2516     return;
2517   }
2518 
2519   char file_name[JVM_MAXPATHLEN];
2520   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2521   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2522 
2523   fileStream fout(file_name);
2524   if (!fout.is_open()) {
2525     gclog_or_tty->print_cr("  #### error: could not open file");
2526     return;
2527   }
2528 
2529   outputStream* out = &fout;
2530   out->print_cr("-- USING %s", verify_option_to_tams(vo));
2531   out->cr();
2532 
2533   out->print_cr("--- ITERATING OVER REGIONS");
2534   out->cr();
2535   PrintReachableRegionClosure rcl(out, vo, all);
2536   _g1h->heap_region_iterate(&rcl);
2537   out->cr();
2538 
2539   gclog_or_tty->print_cr("  done");
2540   gclog_or_tty->flush();
2541 }
2542 
2543 #endif // PRODUCT
2544 
2545 // This note is for drainAllSATBBuffers and the code in between.
2546 // In the future we could reuse a task to do this work during an
2547 // evacuation pause (since now tasks are not active and can be claimed
2548 // during an evacuation pause). This was a late change to the code and
2549 // is currently not being taken advantage of.
2550 
2551 class CMGlobalObjectClosure : public ObjectClosure {
2552 private:
2553   ConcurrentMark* _cm;
2554 
2555 public:
2556   void do_object(oop obj) {
2557     _cm->deal_with_reference(obj);
2558   }
2559 
2560   CMGlobalObjectClosure(ConcurrentMark* cm) : _cm(cm) { }
2561 };
2562 
2563 void ConcurrentMark::deal_with_reference(oop obj) {
2564   if (verbose_high()) {
2565     gclog_or_tty->print_cr("[global] we're dealing with reference "PTR_FORMAT,
2566                            (void*) obj);
2567   }
2568 
2569   HeapWord* objAddr = (HeapWord*) obj;
2570   assert(obj->is_oop_or_null(true /* ignore mark word */), "Error");
2571   if (_g1h->is_in_g1_reserved(objAddr)) {
2572     assert(obj != NULL, "null check is implicit");
2573     if (!_nextMarkBitMap->isMarked(objAddr)) {
2574       // Only get the containing region if the object is not marked on the
2575       // bitmap (otherwise, it's a waste of time since we won't do
2576       // anything with it).
2577       HeapRegion* hr = _g1h->heap_region_containing_raw(obj);
2578       if (!hr->obj_allocated_since_next_marking(obj)) {
2579         if (verbose_high()) {
2580           gclog_or_tty->print_cr("[global] "PTR_FORMAT" is not considered "
2581                                  "marked", (void*) obj);
2582         }
2583 
2584         // we need to mark it first
2585         if (_nextMarkBitMap->parMark(objAddr)) {
2586           // No OrderAccess:store_load() is needed. It is implicit in the
2587           // CAS done in parMark(objAddr) above
2588           HeapWord* finger = _finger;
2589           if (objAddr < finger) {
2590             if (verbose_high()) {
2591               gclog_or_tty->print_cr("[global] below the global finger "
2592                                      "("PTR_FORMAT"), pushing it", finger);
2593             }
2594             if (!mark_stack_push(obj)) {
2595               if (verbose_low()) {
2596                 gclog_or_tty->print_cr("[global] global stack overflow during "
2597                                        "deal_with_reference");
2598               }
2599             }
2600           }
2601         }
2602       }
2603     }
2604   }
2605 }
2606 
2607 void ConcurrentMark::drainAllSATBBuffers() {
2608   CMGlobalObjectClosure oc(this);
2609   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2610   satb_mq_set.set_closure(&oc);
2611 
2612   while (satb_mq_set.apply_closure_to_completed_buffer()) {
2613     if (verbose_medium()) {
2614       gclog_or_tty->print_cr("[global] processed an SATB buffer");
2615     }
2616   }
2617 
2618   // no need to check whether we should do this, as this is only
2619   // called during an evacuation pause
2620   satb_mq_set.iterate_closure_all_threads();
2621 
2622   satb_mq_set.set_closure(NULL);
2623   assert(satb_mq_set.completed_buffers_num() == 0, "invariant");
2624 }
2625 
2626 void ConcurrentMark::markPrev(oop p) {
2627   // Note we are overriding the read-only view of the prev map here, via
2628   // the cast.
2629   ((CMBitMap*)_prevMarkBitMap)->mark((HeapWord*)p);
2630 }
2631 
2632 void ConcurrentMark::clear(oop p) {
2633   assert(p != NULL && p->is_oop(), "expected an oop");
2634   HeapWord* addr = (HeapWord*)p;
2635   assert(addr >= _nextMarkBitMap->startWord() ||
2636          addr < _nextMarkBitMap->endWord(), "in a region");
2637 
2638   _nextMarkBitMap->clear(addr);
2639 }
2640 
2641 void ConcurrentMark::clearRangeBothMaps(MemRegion mr) {
2642   // Note we are overriding the read-only view of the prev map here, via
2643   // the cast.
2644   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2645   _nextMarkBitMap->clearRange(mr);
2646 }
2647 
2648 HeapRegion*
2649 ConcurrentMark::claim_region(int task_num) {
2650   // "checkpoint" the finger
2651   HeapWord* finger = _finger;
2652 
2653   // _heap_end will not change underneath our feet; it only changes at
2654   // yield points.
2655   while (finger < _heap_end) {
2656     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2657 
2658     // Note on how this code handles humongous regions. In the
2659     // normal case the finger will reach the start of a "starts
2660     // humongous" (SH) region. Its end will either be the end of the
2661     // last "continues humongous" (CH) region in the sequence, or the
2662     // standard end of the SH region (if the SH is the only region in
2663     // the sequence). That way claim_region() will skip over the CH
2664     // regions. However, there is a subtle race between a CM thread
2665     // executing this method and a mutator thread doing a humongous
2666     // object allocation. The two are not mutually exclusive as the CM
2667     // thread does not need to hold the Heap_lock when it gets
2668     // here. So there is a chance that claim_region() will come across
2669     // a free region that's in the progress of becoming a SH or a CH
2670     // region. In the former case, it will either
2671     //   a) Miss the update to the region's end, in which case it will
2672     //      visit every subsequent CH region, will find their bitmaps
2673     //      empty, and do nothing, or
2674     //   b) Will observe the update of the region's end (in which case
2675     //      it will skip the subsequent CH regions).
2676     // If it comes across a region that suddenly becomes CH, the
2677     // scenario will be similar to b). So, the race between
2678     // claim_region() and a humongous object allocation might force us
2679     // to do a bit of unnecessary work (due to some unnecessary bitmap
2680     // iterations) but it should not introduce and correctness issues.
2681     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2682     HeapWord*   bottom        = curr_region->bottom();
2683     HeapWord*   end           = curr_region->end();
2684     HeapWord*   limit         = curr_region->next_top_at_mark_start();
2685 
2686     if (verbose_low()) {
2687       gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
2688                              "["PTR_FORMAT", "PTR_FORMAT"), "
2689                              "limit = "PTR_FORMAT,
2690                              task_num, curr_region, bottom, end, limit);
2691     }
2692 
2693     // Is the gap between reading the finger and doing the CAS too long?
2694     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2695     if (res == finger) {
2696       // we succeeded
2697 
2698       // notice that _finger == end cannot be guaranteed here since,
2699       // someone else might have moved the finger even further
2700       assert(_finger >= end, "the finger should have moved forward");
2701 
2702       if (verbose_low()) {
2703         gclog_or_tty->print_cr("[%d] we were successful with region = "
2704                                PTR_FORMAT, task_num, curr_region);
2705       }
2706 
2707       if (limit > bottom) {
2708         if (verbose_low()) {
2709           gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
2710                                  "returning it ", task_num, curr_region);
2711         }
2712         return curr_region;
2713       } else {
2714         assert(limit == bottom,
2715                "the region limit should be at bottom");
2716         if (verbose_low()) {
2717           gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
2718                                  "returning NULL", task_num, curr_region);
2719         }
2720         // we return NULL and the caller should try calling
2721         // claim_region() again.
2722         return NULL;
2723       }
2724     } else {
2725       assert(_finger > finger, "the finger should have moved forward");
2726       if (verbose_low()) {
2727         gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
2728                                "global finger = "PTR_FORMAT", "
2729                                "our finger = "PTR_FORMAT,
2730                                task_num, _finger, finger);
2731       }
2732 
2733       // read it again
2734       finger = _finger;
2735     }
2736   }
2737 
2738   return NULL;
2739 }
2740 
2741 bool ConcurrentMark::invalidate_aborted_regions_in_cset() {
2742   bool result = false;
2743   for (int i = 0; i < (int)_max_task_num; ++i) {
2744     CMTask* the_task = _tasks[i];
2745     MemRegion mr = the_task->aborted_region();
2746     if (mr.start() != NULL) {
2747       assert(mr.end() != NULL, "invariant");
2748       assert(mr.word_size() > 0, "invariant");
2749       HeapRegion* hr = _g1h->heap_region_containing(mr.start());
2750       assert(hr != NULL, "invariant");
2751       if (hr->in_collection_set()) {
2752         // The region points into the collection set
2753         the_task->set_aborted_region(MemRegion());
2754         result = true;
2755       }
2756     }
2757   }
2758   return result;
2759 }
2760 
2761 bool ConcurrentMark::has_aborted_regions() {
2762   for (int i = 0; i < (int)_max_task_num; ++i) {
2763     CMTask* the_task = _tasks[i];
2764     MemRegion mr = the_task->aborted_region();
2765     if (mr.start() != NULL) {
2766       assert(mr.end() != NULL, "invariant");
2767       assert(mr.word_size() > 0, "invariant");
2768       return true;
2769     }
2770   }
2771   return false;
2772 }
2773 
2774 void ConcurrentMark::oops_do(OopClosure* cl) {
2775   if (_markStack.size() > 0 && verbose_low()) {
2776     gclog_or_tty->print_cr("[global] scanning the global marking stack, "
2777                            "size = %d", _markStack.size());
2778   }
2779   // we first iterate over the contents of the mark stack...
2780   _markStack.oops_do(cl);
2781 
2782   for (int i = 0; i < (int)_max_task_num; ++i) {
2783     OopTaskQueue* queue = _task_queues->queue((int)i);
2784 
2785     if (queue->size() > 0 && verbose_low()) {
2786       gclog_or_tty->print_cr("[global] scanning task queue of task %d, "
2787                              "size = %d", i, queue->size());
2788     }
2789 
2790     // ...then over the contents of the all the task queues.
2791     queue->oops_do(cl);
2792   }
2793 
2794   // Invalidate any entries, that are in the region stack, that
2795   // point into the collection set
2796   if (_regionStack.invalidate_entries_into_cset()) {
2797     // otherwise, any gray objects copied during the evacuation pause
2798     // might not be visited.
2799     assert(_should_gray_objects, "invariant");
2800   }
2801 
2802   // Invalidate any aborted regions, recorded in the individual CM
2803   // tasks, that point into the collection set.
2804   if (invalidate_aborted_regions_in_cset()) {
2805     // otherwise, any gray objects copied during the evacuation pause
2806     // might not be visited.
2807     assert(_should_gray_objects, "invariant");
2808   }
2809 
2810 }
2811 
2812 void ConcurrentMark::clear_marking_state(bool clear_overflow) {
2813   _markStack.setEmpty();
2814   _markStack.clear_overflow();
2815   _regionStack.setEmpty();
2816   _regionStack.clear_overflow();
2817   if (clear_overflow) {
2818     clear_has_overflown();
2819   } else {
2820     assert(has_overflown(), "pre-condition");
2821   }
2822   _finger = _heap_start;
2823 
2824   for (int i = 0; i < (int)_max_task_num; ++i) {
2825     OopTaskQueue* queue = _task_queues->queue(i);
2826     queue->set_empty();
2827     // Clear any partial regions from the CMTasks
2828     _tasks[i]->clear_aborted_region();
2829   }
2830 }
2831 
2832 void ConcurrentMark::print_stats() {
2833   if (verbose_stats()) {
2834     gclog_or_tty->print_cr("---------------------------------------------------------------------");
2835     for (size_t i = 0; i < _active_tasks; ++i) {
2836       _tasks[i]->print_stats();
2837       gclog_or_tty->print_cr("---------------------------------------------------------------------");
2838     }
2839   }
2840 }
2841 
2842 class CSMarkOopClosure: public OopClosure {
2843   friend class CSMarkBitMapClosure;
2844 
2845   G1CollectedHeap* _g1h;
2846   CMBitMap*        _bm;
2847   ConcurrentMark*  _cm;
2848   oop*             _ms;
2849   jint*            _array_ind_stack;
2850   int              _ms_size;
2851   int              _ms_ind;
2852   int              _array_increment;
2853 
2854   bool push(oop obj, int arr_ind = 0) {
2855     if (_ms_ind == _ms_size) {
2856       gclog_or_tty->print_cr("Mark stack is full.");
2857       return false;
2858     }
2859     _ms[_ms_ind] = obj;
2860     if (obj->is_objArray()) {
2861       _array_ind_stack[_ms_ind] = arr_ind;
2862     }
2863     _ms_ind++;
2864     return true;
2865   }
2866 
2867   oop pop() {
2868     if (_ms_ind == 0) {
2869       return NULL;
2870     } else {
2871       _ms_ind--;
2872       return _ms[_ms_ind];
2873     }
2874   }
2875 
2876   template <class T> bool drain() {
2877     while (_ms_ind > 0) {
2878       oop obj = pop();
2879       assert(obj != NULL, "Since index was non-zero.");
2880       if (obj->is_objArray()) {
2881         jint arr_ind = _array_ind_stack[_ms_ind];
2882         objArrayOop aobj = objArrayOop(obj);
2883         jint len = aobj->length();
2884         jint next_arr_ind = arr_ind + _array_increment;
2885         if (next_arr_ind < len) {
2886           push(obj, next_arr_ind);
2887         }
2888         // Now process this portion of this one.
2889         int lim = MIN2(next_arr_ind, len);
2890         for (int j = arr_ind; j < lim; j++) {
2891           do_oop(aobj->objArrayOopDesc::obj_at_addr<T>(j));
2892         }
2893 
2894       } else {
2895         obj->oop_iterate(this);
2896       }
2897       if (abort()) return false;
2898     }
2899     return true;
2900   }
2901 
2902 public:
2903   CSMarkOopClosure(ConcurrentMark* cm, int ms_size) :
2904     _g1h(G1CollectedHeap::heap()),
2905     _cm(cm),
2906     _bm(cm->nextMarkBitMap()),
2907     _ms_size(ms_size), _ms_ind(0),
2908     _ms(NEW_C_HEAP_ARRAY(oop, ms_size)),
2909     _array_ind_stack(NEW_C_HEAP_ARRAY(jint, ms_size)),
2910     _array_increment(MAX2(ms_size/8, 16))
2911   {}
2912 
2913   ~CSMarkOopClosure() {
2914     FREE_C_HEAP_ARRAY(oop, _ms);
2915     FREE_C_HEAP_ARRAY(jint, _array_ind_stack);
2916   }
2917 
2918   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2919   virtual void do_oop(      oop* p) { do_oop_work(p); }
2920 
2921   template <class T> void do_oop_work(T* p) {
2922     T heap_oop = oopDesc::load_heap_oop(p);
2923     if (oopDesc::is_null(heap_oop)) return;
2924     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2925     if (obj->is_forwarded()) {
2926       // If the object has already been forwarded, we have to make sure
2927       // that it's marked.  So follow the forwarding pointer.  Note that
2928       // this does the right thing for self-forwarding pointers in the
2929       // evacuation failure case.
2930       obj = obj->forwardee();
2931     }
2932     HeapRegion* hr = _g1h->heap_region_containing(obj);
2933     if (hr != NULL) {
2934       if (hr->in_collection_set()) {
2935         if (_g1h->is_obj_ill(obj)) {
2936           _bm->mark((HeapWord*)obj);
2937           if (!push(obj)) {
2938             gclog_or_tty->print_cr("Setting abort in CSMarkOopClosure because push failed.");
2939             set_abort();
2940           }
2941         }
2942       } else {
2943         // Outside the collection set; we need to gray it
2944         _cm->deal_with_reference(obj);
2945       }
2946     }
2947   }
2948 };
2949 
2950 class CSMarkBitMapClosure: public BitMapClosure {
2951   G1CollectedHeap* _g1h;
2952   CMBitMap*        _bitMap;
2953   ConcurrentMark*  _cm;
2954   CSMarkOopClosure _oop_cl;
2955 public:
2956   CSMarkBitMapClosure(ConcurrentMark* cm, int ms_size) :
2957     _g1h(G1CollectedHeap::heap()),
2958     _bitMap(cm->nextMarkBitMap()),
2959     _oop_cl(cm, ms_size)
2960   {}
2961 
2962   ~CSMarkBitMapClosure() {}
2963 
2964   bool do_bit(size_t offset) {
2965     // convert offset into a HeapWord*
2966     HeapWord* addr = _bitMap->offsetToHeapWord(offset);
2967     assert(_bitMap->endWord() && addr < _bitMap->endWord(),
2968            "address out of range");
2969     assert(_bitMap->isMarked(addr), "tautology");
2970     oop obj = oop(addr);
2971     if (!obj->is_forwarded()) {
2972       if (!_oop_cl.push(obj)) return false;
2973       if (UseCompressedOops) {
2974         if (!_oop_cl.drain<narrowOop>()) return false;
2975       } else {
2976         if (!_oop_cl.drain<oop>()) return false;
2977       }
2978     }
2979     // Otherwise...
2980     return true;
2981   }
2982 };
2983 
2984 
2985 class CompleteMarkingInCSHRClosure: public HeapRegionClosure {
2986   CMBitMap* _bm;
2987   CSMarkBitMapClosure _bit_cl;
2988   enum SomePrivateConstants {
2989     MSSize = 1000
2990   };
2991   bool _completed;
2992 public:
2993   CompleteMarkingInCSHRClosure(ConcurrentMark* cm) :
2994     _bm(cm->nextMarkBitMap()),
2995     _bit_cl(cm, MSSize),
2996     _completed(true)
2997   {}
2998 
2999   ~CompleteMarkingInCSHRClosure() {}
3000 
3001   bool doHeapRegion(HeapRegion* r) {
3002     if (!r->evacuation_failed()) {
3003       MemRegion mr = MemRegion(r->bottom(), r->next_top_at_mark_start());
3004       if (!mr.is_empty()) {
3005         if (!_bm->iterate(&_bit_cl, mr)) {
3006           _completed = false;
3007           return true;
3008         }
3009       }
3010     }
3011     return false;
3012   }
3013 
3014   bool completed() { return _completed; }
3015 };
3016 
3017 class ClearMarksInHRClosure: public HeapRegionClosure {
3018   CMBitMap* _bm;
3019 public:
3020   ClearMarksInHRClosure(CMBitMap* bm): _bm(bm) { }
3021 
3022   bool doHeapRegion(HeapRegion* r) {
3023     if (!r->used_region().is_empty() && !r->evacuation_failed()) {
3024       MemRegion usedMR = r->used_region();
3025       _bm->clearRange(r->used_region());
3026     }
3027     return false;
3028   }
3029 };
3030 
3031 void ConcurrentMark::complete_marking_in_collection_set() {
3032   G1CollectedHeap* g1h =  G1CollectedHeap::heap();
3033 
3034   if (!g1h->mark_in_progress()) {
3035     g1h->g1_policy()->record_mark_closure_time(0.0);
3036     return;
3037   }
3038 
3039   int i = 1;
3040   double start = os::elapsedTime();
3041   while (true) {
3042     i++;
3043     CompleteMarkingInCSHRClosure cmplt(this);
3044     g1h->collection_set_iterate(&cmplt);
3045     if (cmplt.completed()) break;
3046   }
3047   double end_time = os::elapsedTime();
3048   double elapsed_time_ms = (end_time - start) * 1000.0;
3049   g1h->g1_policy()->record_mark_closure_time(elapsed_time_ms);
3050 
3051   ClearMarksInHRClosure clr(nextMarkBitMap());
3052   g1h->collection_set_iterate(&clr);
3053 }
3054 
3055 // The next two methods deal with the following optimisation. Some
3056 // objects are gray by being marked and located above the finger. If
3057 // they are copied, during an evacuation pause, below the finger then
3058 // the need to be pushed on the stack. The observation is that, if
3059 // there are no regions in the collection set located above the
3060 // finger, then the above cannot happen, hence we do not need to
3061 // explicitly gray any objects when copying them to below the
3062 // finger. The global stack will be scanned to ensure that, if it
3063 // points to objects being copied, it will update their
3064 // location. There is a tricky situation with the gray objects in
3065 // region stack that are being coped, however. See the comment in
3066 // newCSet().
3067 
3068 void ConcurrentMark::newCSet() {
3069   if (!concurrent_marking_in_progress()) {
3070     // nothing to do if marking is not in progress
3071     return;
3072   }
3073 
3074   // find what the lowest finger is among the global and local fingers
3075   _min_finger = _finger;
3076   for (int i = 0; i < (int)_max_task_num; ++i) {
3077     CMTask* task = _tasks[i];
3078     HeapWord* task_finger = task->finger();
3079     if (task_finger != NULL && task_finger < _min_finger) {
3080       _min_finger = task_finger;
3081     }
3082   }
3083 
3084   _should_gray_objects = false;
3085 
3086   // This fixes a very subtle and fustrating bug. It might be the case
3087   // that, during en evacuation pause, heap regions that contain
3088   // objects that are gray (by being in regions contained in the
3089   // region stack) are included in the collection set. Since such gray
3090   // objects will be moved, and because it's not easy to redirect
3091   // region stack entries to point to a new location (because objects
3092   // in one region might be scattered to multiple regions after they
3093   // are copied), one option is to ensure that all marked objects
3094   // copied during a pause are pushed on the stack. Notice, however,
3095   // that this problem can only happen when the region stack is not
3096   // empty during an evacuation pause. So, we make the fix a bit less
3097   // conservative and ensure that regions are pushed on the stack,
3098   // irrespective whether all collection set regions are below the
3099   // finger, if the region stack is not empty. This is expected to be
3100   // a rare case, so I don't think it's necessary to be smarted about it.
3101   if (!region_stack_empty() || has_aborted_regions()) {
3102     _should_gray_objects = true;
3103   }
3104 }
3105 
3106 void ConcurrentMark::registerCSetRegion(HeapRegion* hr) {
3107   if (!concurrent_marking_in_progress()) return;
3108 
3109   HeapWord* region_end = hr->end();
3110   if (region_end > _min_finger) {
3111     _should_gray_objects = true;
3112   }
3113 }
3114 
3115 // Resets the region fields of active CMTasks whose values point
3116 // into the collection set.
3117 void ConcurrentMark::reset_active_task_region_fields_in_cset() {
3118   assert(SafepointSynchronize::is_at_safepoint(), "should be in STW");
3119   assert(parallel_marking_threads() <= _max_task_num, "sanity");
3120 
3121   for (int i = 0; i < (int)parallel_marking_threads(); i += 1) {
3122     CMTask* task = _tasks[i];
3123     HeapWord* task_finger = task->finger();
3124     if (task_finger != NULL) {
3125       assert(_g1h->is_in_g1_reserved(task_finger), "not in heap");
3126       HeapRegion* finger_region = _g1h->heap_region_containing(task_finger);
3127       if (finger_region->in_collection_set()) {
3128         // The task's current region is in the collection set.
3129         // This region will be evacuated in the current GC and
3130         // the region fields in the task will be stale.
3131         task->giveup_current_region();
3132       }
3133     }
3134   }
3135 }
3136 
3137 // abandon current marking iteration due to a Full GC
3138 void ConcurrentMark::abort() {
3139   // Clear all marks to force marking thread to do nothing
3140   _nextMarkBitMap->clearAll();
3141   // Empty mark stack
3142   clear_marking_state();
3143   for (int i = 0; i < (int)_max_task_num; ++i) {
3144     _tasks[i]->clear_region_fields();
3145   }
3146   _has_aborted = true;
3147 
3148   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3149   satb_mq_set.abandon_partial_marking();
3150   // This can be called either during or outside marking, we'll read
3151   // the expected_active value from the SATB queue set.
3152   satb_mq_set.set_active_all_threads(
3153                                  false, /* new active value */
3154                                  satb_mq_set.is_active() /* expected_active */);
3155 }
3156 
3157 static void print_ms_time_info(const char* prefix, const char* name,
3158                                NumberSeq& ns) {
3159   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3160                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3161   if (ns.num() > 0) {
3162     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3163                            prefix, ns.sd(), ns.maximum());
3164   }
3165 }
3166 
3167 void ConcurrentMark::print_summary_info() {
3168   gclog_or_tty->print_cr(" Concurrent marking:");
3169   print_ms_time_info("  ", "init marks", _init_times);
3170   print_ms_time_info("  ", "remarks", _remark_times);
3171   {
3172     print_ms_time_info("     ", "final marks", _remark_mark_times);
3173     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3174 
3175   }
3176   print_ms_time_info("  ", "cleanups", _cleanup_times);
3177   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3178                          _total_counting_time,
3179                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3180                           (double)_cleanup_times.num()
3181                          : 0.0));
3182   if (G1ScrubRemSets) {
3183     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3184                            _total_rs_scrub_time,
3185                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3186                             (double)_cleanup_times.num()
3187                            : 0.0));
3188   }
3189   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3190                          (_init_times.sum() + _remark_times.sum() +
3191                           _cleanup_times.sum())/1000.0);
3192   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3193                 "(%8.2f s marking, %8.2f s counting).",
3194                 cmThread()->vtime_accum(),
3195                 cmThread()->vtime_mark_accum(),
3196                 cmThread()->vtime_count_accum());
3197 }
3198 
3199 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3200   _parallel_workers->print_worker_threads_on(st);
3201 }
3202 
3203 // Closures
3204 // XXX: there seems to be a lot of code  duplication here;
3205 // should refactor and consolidate the shared code.
3206 
3207 // This closure is used to mark refs into the CMS generation in
3208 // the CMS bit map. Called at the first checkpoint.
3209 
3210 // We take a break if someone is trying to stop the world.
3211 bool ConcurrentMark::do_yield_check(int worker_i) {
3212   if (should_yield()) {
3213     if (worker_i == 0) {
3214       _g1h->g1_policy()->record_concurrent_pause();
3215     }
3216     cmThread()->yield();
3217     if (worker_i == 0) {
3218       _g1h->g1_policy()->record_concurrent_pause_end();
3219     }
3220     return true;
3221   } else {
3222     return false;
3223   }
3224 }
3225 
3226 bool ConcurrentMark::should_yield() {
3227   return cmThread()->should_yield();
3228 }
3229 
3230 bool ConcurrentMark::containing_card_is_marked(void* p) {
3231   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
3232   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
3233 }
3234 
3235 bool ConcurrentMark::containing_cards_are_marked(void* start,
3236                                                  void* last) {
3237   return containing_card_is_marked(start) &&
3238          containing_card_is_marked(last);
3239 }
3240 
3241 #ifndef PRODUCT
3242 // for debugging purposes
3243 void ConcurrentMark::print_finger() {
3244   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3245                          _heap_start, _heap_end, _finger);
3246   for (int i = 0; i < (int) _max_task_num; ++i) {
3247     gclog_or_tty->print("   %d: "PTR_FORMAT, i, _tasks[i]->finger());
3248   }
3249   gclog_or_tty->print_cr("");
3250 }
3251 #endif
3252 
3253 void CMTask::scan_object(oop obj) {
3254   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3255 
3256   if (_cm->verbose_high()) {
3257     gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
3258                            _task_id, (void*) obj);
3259   }
3260 
3261   size_t obj_size = obj->size();
3262   _words_scanned += obj_size;
3263 
3264   obj->oop_iterate(_cm_oop_closure);
3265   statsOnly( ++_objs_scanned );
3266   check_limits();
3267 }
3268 
3269 // Closure for iteration over bitmaps
3270 class CMBitMapClosure : public BitMapClosure {
3271 private:
3272   // the bitmap that is being iterated over
3273   CMBitMap*                   _nextMarkBitMap;
3274   ConcurrentMark*             _cm;
3275   CMTask*                     _task;
3276   // true if we're scanning a heap region claimed by the task (so that
3277   // we move the finger along), false if we're not, i.e. currently when
3278   // scanning a heap region popped from the region stack (so that we
3279   // do not move the task finger along; it'd be a mistake if we did so).
3280   bool                        _scanning_heap_region;
3281 
3282 public:
3283   CMBitMapClosure(CMTask *task,
3284                   ConcurrentMark* cm,
3285                   CMBitMap* nextMarkBitMap)
3286     :  _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3287 
3288   void set_scanning_heap_region(bool scanning_heap_region) {
3289     _scanning_heap_region = scanning_heap_region;
3290   }
3291 
3292   bool do_bit(size_t offset) {
3293     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3294     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3295     assert( addr < _cm->finger(), "invariant");
3296 
3297     if (_scanning_heap_region) {
3298       statsOnly( _task->increase_objs_found_on_bitmap() );
3299       assert(addr >= _task->finger(), "invariant");
3300       // We move that task's local finger along.
3301       _task->move_finger_to(addr);
3302     } else {
3303       // We move the task's region finger along.
3304       _task->move_region_finger_to(addr);
3305     }
3306 
3307     _task->scan_object(oop(addr));
3308     // we only partially drain the local queue and global stack
3309     _task->drain_local_queue(true);
3310     _task->drain_global_stack(true);
3311 
3312     // if the has_aborted flag has been raised, we need to bail out of
3313     // the iteration
3314     return !_task->has_aborted();
3315   }
3316 };
3317 
3318 // Closure for iterating over objects, currently only used for
3319 // processing SATB buffers.
3320 class CMObjectClosure : public ObjectClosure {
3321 private:
3322   CMTask* _task;
3323 
3324 public:
3325   void do_object(oop obj) {
3326     _task->deal_with_reference(obj);
3327   }
3328 
3329   CMObjectClosure(CMTask* task) : _task(task) { }
3330 };
3331 
3332 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3333                                ConcurrentMark* cm,
3334                                CMTask* task)
3335   : _g1h(g1h), _cm(cm), _task(task) {
3336   assert(_ref_processor == NULL, "should be initialized to NULL");
3337 
3338   if (G1UseConcMarkReferenceProcessing) {
3339     _ref_processor = g1h->ref_processor_cm();
3340     assert(_ref_processor != NULL, "should not be NULL");
3341   }
3342 }
3343 
3344 void CMTask::setup_for_region(HeapRegion* hr) {
3345   // Separated the asserts so that we know which one fires.
3346   assert(hr != NULL,
3347         "claim_region() should have filtered out continues humongous regions");
3348   assert(!hr->continuesHumongous(),
3349         "claim_region() should have filtered out continues humongous regions");
3350 
3351   if (_cm->verbose_low()) {
3352     gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
3353                            _task_id, hr);
3354   }
3355 
3356   _curr_region  = hr;
3357   _finger       = hr->bottom();
3358   update_region_limit();
3359 }
3360 
3361 void CMTask::update_region_limit() {
3362   HeapRegion* hr            = _curr_region;
3363   HeapWord* bottom          = hr->bottom();
3364   HeapWord* limit           = hr->next_top_at_mark_start();
3365 
3366   if (limit == bottom) {
3367     if (_cm->verbose_low()) {
3368       gclog_or_tty->print_cr("[%d] found an empty region "
3369                              "["PTR_FORMAT", "PTR_FORMAT")",
3370                              _task_id, bottom, limit);
3371     }
3372     // The region was collected underneath our feet.
3373     // We set the finger to bottom to ensure that the bitmap
3374     // iteration that will follow this will not do anything.
3375     // (this is not a condition that holds when we set the region up,
3376     // as the region is not supposed to be empty in the first place)
3377     _finger = bottom;
3378   } else if (limit >= _region_limit) {
3379     assert(limit >= _finger, "peace of mind");
3380   } else {
3381     assert(limit < _region_limit, "only way to get here");
3382     // This can happen under some pretty unusual circumstances.  An
3383     // evacuation pause empties the region underneath our feet (NTAMS
3384     // at bottom). We then do some allocation in the region (NTAMS
3385     // stays at bottom), followed by the region being used as a GC
3386     // alloc region (NTAMS will move to top() and the objects
3387     // originally below it will be grayed). All objects now marked in
3388     // the region are explicitly grayed, if below the global finger,
3389     // and we do not need in fact to scan anything else. So, we simply
3390     // set _finger to be limit to ensure that the bitmap iteration
3391     // doesn't do anything.
3392     _finger = limit;
3393   }
3394 
3395   _region_limit = limit;
3396 }
3397 
3398 void CMTask::giveup_current_region() {
3399   assert(_curr_region != NULL, "invariant");
3400   if (_cm->verbose_low()) {
3401     gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
3402                            _task_id, _curr_region);
3403   }
3404   clear_region_fields();
3405 }
3406 
3407 void CMTask::clear_region_fields() {
3408   // Values for these three fields that indicate that we're not
3409   // holding on to a region.
3410   _curr_region   = NULL;
3411   _finger        = NULL;
3412   _region_limit  = NULL;
3413 
3414   _region_finger = NULL;
3415 }
3416 
3417 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3418   if (cm_oop_closure == NULL) {
3419     assert(_cm_oop_closure != NULL, "invariant");
3420   } else {
3421     assert(_cm_oop_closure == NULL, "invariant");
3422   }
3423   _cm_oop_closure = cm_oop_closure;
3424 }
3425 
3426 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3427   guarantee(nextMarkBitMap != NULL, "invariant");
3428 
3429   if (_cm->verbose_low()) {
3430     gclog_or_tty->print_cr("[%d] resetting", _task_id);
3431   }
3432 
3433   _nextMarkBitMap                = nextMarkBitMap;
3434   clear_region_fields();
3435   assert(_aborted_region.is_empty(), "should have been cleared");
3436 
3437   _calls                         = 0;
3438   _elapsed_time_ms               = 0.0;
3439   _termination_time_ms           = 0.0;
3440   _termination_start_time_ms     = 0.0;
3441 
3442 #if _MARKING_STATS_
3443   _local_pushes                  = 0;
3444   _local_pops                    = 0;
3445   _local_max_size                = 0;
3446   _objs_scanned                  = 0;
3447   _global_pushes                 = 0;
3448   _global_pops                   = 0;
3449   _global_max_size               = 0;
3450   _global_transfers_to           = 0;
3451   _global_transfers_from         = 0;
3452   _region_stack_pops             = 0;
3453   _regions_claimed               = 0;
3454   _objs_found_on_bitmap          = 0;
3455   _satb_buffers_processed        = 0;
3456   _steal_attempts                = 0;
3457   _steals                        = 0;
3458   _aborted                       = 0;
3459   _aborted_overflow              = 0;
3460   _aborted_cm_aborted            = 0;
3461   _aborted_yield                 = 0;
3462   _aborted_timed_out             = 0;
3463   _aborted_satb                  = 0;
3464   _aborted_termination           = 0;
3465 #endif // _MARKING_STATS_
3466 }
3467 
3468 bool CMTask::should_exit_termination() {
3469   regular_clock_call();
3470   // This is called when we are in the termination protocol. We should
3471   // quit if, for some reason, this task wants to abort or the global
3472   // stack is not empty (this means that we can get work from it).
3473   return !_cm->mark_stack_empty() || has_aborted();
3474 }
3475 
3476 void CMTask::reached_limit() {
3477   assert(_words_scanned >= _words_scanned_limit ||
3478          _refs_reached >= _refs_reached_limit ,
3479          "shouldn't have been called otherwise");
3480   regular_clock_call();
3481 }
3482 
3483 void CMTask::regular_clock_call() {
3484   if (has_aborted()) return;
3485 
3486   // First, we need to recalculate the words scanned and refs reached
3487   // limits for the next clock call.
3488   recalculate_limits();
3489 
3490   // During the regular clock call we do the following
3491 
3492   // (1) If an overflow has been flagged, then we abort.
3493   if (_cm->has_overflown()) {
3494     set_has_aborted();
3495     return;
3496   }
3497 
3498   // If we are not concurrent (i.e. we're doing remark) we don't need
3499   // to check anything else. The other steps are only needed during
3500   // the concurrent marking phase.
3501   if (!concurrent()) return;
3502 
3503   // (2) If marking has been aborted for Full GC, then we also abort.
3504   if (_cm->has_aborted()) {
3505     set_has_aborted();
3506     statsOnly( ++_aborted_cm_aborted );
3507     return;
3508   }
3509 
3510   double curr_time_ms = os::elapsedVTime() * 1000.0;
3511 
3512   // (3) If marking stats are enabled, then we update the step history.
3513 #if _MARKING_STATS_
3514   if (_words_scanned >= _words_scanned_limit) {
3515     ++_clock_due_to_scanning;
3516   }
3517   if (_refs_reached >= _refs_reached_limit) {
3518     ++_clock_due_to_marking;
3519   }
3520 
3521   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3522   _interval_start_time_ms = curr_time_ms;
3523   _all_clock_intervals_ms.add(last_interval_ms);
3524 
3525   if (_cm->verbose_medium()) {
3526       gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
3527                         "scanned = %d%s, refs reached = %d%s",
3528                         _task_id, last_interval_ms,
3529                         _words_scanned,
3530                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3531                         _refs_reached,
3532                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3533   }
3534 #endif // _MARKING_STATS_
3535 
3536   // (4) We check whether we should yield. If we have to, then we abort.
3537   if (_cm->should_yield()) {
3538     // We should yield. To do this we abort the task. The caller is
3539     // responsible for yielding.
3540     set_has_aborted();
3541     statsOnly( ++_aborted_yield );
3542     return;
3543   }
3544 
3545   // (5) We check whether we've reached our time quota. If we have,
3546   // then we abort.
3547   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3548   if (elapsed_time_ms > _time_target_ms) {
3549     set_has_aborted();
3550     _has_timed_out = true;
3551     statsOnly( ++_aborted_timed_out );
3552     return;
3553   }
3554 
3555   // (6) Finally, we check whether there are enough completed STAB
3556   // buffers available for processing. If there are, we abort.
3557   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3558   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3559     if (_cm->verbose_low()) {
3560       gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
3561                              _task_id);
3562     }
3563     // we do need to process SATB buffers, we'll abort and restart
3564     // the marking task to do so
3565     set_has_aborted();
3566     statsOnly( ++_aborted_satb );
3567     return;
3568   }
3569 }
3570 
3571 void CMTask::recalculate_limits() {
3572   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3573   _words_scanned_limit      = _real_words_scanned_limit;
3574 
3575   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3576   _refs_reached_limit       = _real_refs_reached_limit;
3577 }
3578 
3579 void CMTask::decrease_limits() {
3580   // This is called when we believe that we're going to do an infrequent
3581   // operation which will increase the per byte scanned cost (i.e. move
3582   // entries to/from the global stack). It basically tries to decrease the
3583   // scanning limit so that the clock is called earlier.
3584 
3585   if (_cm->verbose_medium()) {
3586     gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);
3587   }
3588 
3589   _words_scanned_limit = _real_words_scanned_limit -
3590     3 * words_scanned_period / 4;
3591   _refs_reached_limit  = _real_refs_reached_limit -
3592     3 * refs_reached_period / 4;
3593 }
3594 
3595 void CMTask::move_entries_to_global_stack() {
3596   // local array where we'll store the entries that will be popped
3597   // from the local queue
3598   oop buffer[global_stack_transfer_size];
3599 
3600   int n = 0;
3601   oop obj;
3602   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3603     buffer[n] = obj;
3604     ++n;
3605   }
3606 
3607   if (n > 0) {
3608     // we popped at least one entry from the local queue
3609 
3610     statsOnly( ++_global_transfers_to; _local_pops += n );
3611 
3612     if (!_cm->mark_stack_push(buffer, n)) {
3613       if (_cm->verbose_low()) {
3614         gclog_or_tty->print_cr("[%d] aborting due to global stack overflow",
3615                                _task_id);
3616       }
3617       set_has_aborted();
3618     } else {
3619       // the transfer was successful
3620 
3621       if (_cm->verbose_medium()) {
3622         gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
3623                                _task_id, n);
3624       }
3625       statsOnly( int tmp_size = _cm->mark_stack_size();
3626                  if (tmp_size > _global_max_size) {
3627                    _global_max_size = tmp_size;
3628                  }
3629                  _global_pushes += n );
3630     }
3631   }
3632 
3633   // this operation was quite expensive, so decrease the limits
3634   decrease_limits();
3635 }
3636 
3637 void CMTask::get_entries_from_global_stack() {
3638   // local array where we'll store the entries that will be popped
3639   // from the global stack.
3640   oop buffer[global_stack_transfer_size];
3641   int n;
3642   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3643   assert(n <= global_stack_transfer_size,
3644          "we should not pop more than the given limit");
3645   if (n > 0) {
3646     // yes, we did actually pop at least one entry
3647 
3648     statsOnly( ++_global_transfers_from; _global_pops += n );
3649     if (_cm->verbose_medium()) {
3650       gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
3651                              _task_id, n);
3652     }
3653     for (int i = 0; i < n; ++i) {
3654       bool success = _task_queue->push(buffer[i]);
3655       // We only call this when the local queue is empty or under a
3656       // given target limit. So, we do not expect this push to fail.
3657       assert(success, "invariant");
3658     }
3659 
3660     statsOnly( int tmp_size = _task_queue->size();
3661                if (tmp_size > _local_max_size) {
3662                  _local_max_size = tmp_size;
3663                }
3664                _local_pushes += n );
3665   }
3666 
3667   // this operation was quite expensive, so decrease the limits
3668   decrease_limits();
3669 }
3670 
3671 void CMTask::drain_local_queue(bool partially) {
3672   if (has_aborted()) return;
3673 
3674   // Decide what the target size is, depending whether we're going to
3675   // drain it partially (so that other tasks can steal if they run out
3676   // of things to do) or totally (at the very end).
3677   size_t target_size;
3678   if (partially) {
3679     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3680   } else {
3681     target_size = 0;
3682   }
3683 
3684   if (_task_queue->size() > target_size) {
3685     if (_cm->verbose_high()) {
3686       gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
3687                              _task_id, target_size);
3688     }
3689 
3690     oop obj;
3691     bool ret = _task_queue->pop_local(obj);
3692     while (ret) {
3693       statsOnly( ++_local_pops );
3694 
3695       if (_cm->verbose_high()) {
3696         gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
3697                                (void*) obj);
3698       }
3699 
3700       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3701       assert(!_g1h->is_on_master_free_list(
3702                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3703 
3704       scan_object(obj);
3705 
3706       if (_task_queue->size() <= target_size || has_aborted()) {
3707         ret = false;
3708       } else {
3709         ret = _task_queue->pop_local(obj);
3710       }
3711     }
3712 
3713     if (_cm->verbose_high()) {
3714       gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
3715                              _task_id, _task_queue->size());
3716     }
3717   }
3718 }
3719 
3720 void CMTask::drain_global_stack(bool partially) {
3721   if (has_aborted()) return;
3722 
3723   // We have a policy to drain the local queue before we attempt to
3724   // drain the global stack.
3725   assert(partially || _task_queue->size() == 0, "invariant");
3726 
3727   // Decide what the target size is, depending whether we're going to
3728   // drain it partially (so that other tasks can steal if they run out
3729   // of things to do) or totally (at the very end).  Notice that,
3730   // because we move entries from the global stack in chunks or
3731   // because another task might be doing the same, we might in fact
3732   // drop below the target. But, this is not a problem.
3733   size_t target_size;
3734   if (partially) {
3735     target_size = _cm->partial_mark_stack_size_target();
3736   } else {
3737     target_size = 0;
3738   }
3739 
3740   if (_cm->mark_stack_size() > target_size) {
3741     if (_cm->verbose_low()) {
3742       gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
3743                              _task_id, target_size);
3744     }
3745 
3746     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3747       get_entries_from_global_stack();
3748       drain_local_queue(partially);
3749     }
3750 
3751     if (_cm->verbose_low()) {
3752       gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
3753                              _task_id, _cm->mark_stack_size());
3754     }
3755   }
3756 }
3757 
3758 // SATB Queue has several assumptions on whether to call the par or
3759 // non-par versions of the methods. this is why some of the code is
3760 // replicated. We should really get rid of the single-threaded version
3761 // of the code to simplify things.
3762 void CMTask::drain_satb_buffers() {
3763   if (has_aborted()) return;
3764 
3765   // We set this so that the regular clock knows that we're in the
3766   // middle of draining buffers and doesn't set the abort flag when it
3767   // notices that SATB buffers are available for draining. It'd be
3768   // very counter productive if it did that. :-)
3769   _draining_satb_buffers = true;
3770 
3771   CMObjectClosure oc(this);
3772   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3773   if (G1CollectedHeap::use_parallel_gc_threads()) {
3774     satb_mq_set.set_par_closure(_task_id, &oc);
3775   } else {
3776     satb_mq_set.set_closure(&oc);
3777   }
3778 
3779   // This keeps claiming and applying the closure to completed buffers
3780   // until we run out of buffers or we need to abort.
3781   if (G1CollectedHeap::use_parallel_gc_threads()) {
3782     while (!has_aborted() &&
3783            satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
3784       if (_cm->verbose_medium()) {
3785         gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3786       }
3787       statsOnly( ++_satb_buffers_processed );
3788       regular_clock_call();
3789     }
3790   } else {
3791     while (!has_aborted() &&
3792            satb_mq_set.apply_closure_to_completed_buffer()) {
3793       if (_cm->verbose_medium()) {
3794         gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3795       }
3796       statsOnly( ++_satb_buffers_processed );
3797       regular_clock_call();
3798     }
3799   }
3800 
3801   if (!concurrent() && !has_aborted()) {
3802     // We should only do this during remark.
3803     if (G1CollectedHeap::use_parallel_gc_threads()) {
3804       satb_mq_set.par_iterate_closure_all_threads(_task_id);
3805     } else {
3806       satb_mq_set.iterate_closure_all_threads();
3807     }
3808   }
3809 
3810   _draining_satb_buffers = false;
3811 
3812   assert(has_aborted() ||
3813          concurrent() ||
3814          satb_mq_set.completed_buffers_num() == 0, "invariant");
3815 
3816   if (G1CollectedHeap::use_parallel_gc_threads()) {
3817     satb_mq_set.set_par_closure(_task_id, NULL);
3818   } else {
3819     satb_mq_set.set_closure(NULL);
3820   }
3821 
3822   // again, this was a potentially expensive operation, decrease the
3823   // limits to get the regular clock call early
3824   decrease_limits();
3825 }
3826 
3827 void CMTask::drain_region_stack(BitMapClosure* bc) {
3828   if (has_aborted()) return;
3829 
3830   assert(_region_finger == NULL,
3831          "it should be NULL when we're not scanning a region");
3832 
3833   if (!_cm->region_stack_empty() || !_aborted_region.is_empty()) {
3834     if (_cm->verbose_low()) {
3835       gclog_or_tty->print_cr("[%d] draining region stack, size = %d",
3836                              _task_id, _cm->region_stack_size());
3837     }
3838 
3839     MemRegion mr;
3840 
3841     if (!_aborted_region.is_empty()) {
3842       mr = _aborted_region;
3843       _aborted_region = MemRegion();
3844 
3845       if (_cm->verbose_low()) {
3846         gclog_or_tty->print_cr("[%d] scanning aborted region "
3847                                "[ " PTR_FORMAT ", " PTR_FORMAT " )",
3848                                _task_id, mr.start(), mr.end());
3849       }
3850     } else {
3851       mr = _cm->region_stack_pop_lock_free();
3852       // it returns MemRegion() if the pop fails
3853       statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
3854     }
3855 
3856     while (mr.start() != NULL) {
3857       if (_cm->verbose_medium()) {
3858         gclog_or_tty->print_cr("[%d] we are scanning region "
3859                                "["PTR_FORMAT", "PTR_FORMAT")",
3860                                _task_id, mr.start(), mr.end());
3861       }
3862 
3863       assert(mr.end() <= _cm->finger(),
3864              "otherwise the region shouldn't be on the stack");
3865       assert(!mr.is_empty(), "Only non-empty regions live on the region stack");
3866       if (_nextMarkBitMap->iterate(bc, mr)) {
3867         assert(!has_aborted(),
3868                "cannot abort the task without aborting the bitmap iteration");
3869 
3870         // We finished iterating over the region without aborting.
3871         regular_clock_call();
3872         if (has_aborted()) {
3873           mr = MemRegion();
3874         } else {
3875           mr = _cm->region_stack_pop_lock_free();
3876           // it returns MemRegion() if the pop fails
3877           statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
3878         }
3879       } else {
3880         assert(has_aborted(), "currently the only way to do so");
3881 
3882         // The only way to abort the bitmap iteration is to return
3883         // false from the do_bit() method. However, inside the
3884         // do_bit() method we move the _region_finger to point to the
3885         // object currently being looked at. So, if we bail out, we
3886         // have definitely set _region_finger to something non-null.
3887         assert(_region_finger != NULL, "invariant");
3888 
3889         // Make sure that any previously aborted region has been
3890         // cleared.
3891         assert(_aborted_region.is_empty(), "aborted region not cleared");
3892 
3893         // The iteration was actually aborted. So now _region_finger
3894         // points to the address of the object we last scanned. If we
3895         // leave it there, when we restart this task, we will rescan
3896         // the object. It is easy to avoid this. We move the finger by
3897         // enough to point to the next possible object header (the
3898         // bitmap knows by how much we need to move it as it knows its
3899         // granularity).
3900         MemRegion newRegion =
3901           MemRegion(_nextMarkBitMap->nextWord(_region_finger), mr.end());
3902 
3903         if (!newRegion.is_empty()) {
3904           if (_cm->verbose_low()) {
3905             gclog_or_tty->print_cr("[%d] recording unscanned region"
3906                                    "[" PTR_FORMAT "," PTR_FORMAT ") in CMTask",
3907                                    _task_id,
3908                                    newRegion.start(), newRegion.end());
3909           }
3910           // Now record the part of the region we didn't scan to
3911           // make sure this task scans it later.
3912           _aborted_region = newRegion;
3913         }
3914         // break from while
3915         mr = MemRegion();
3916       }
3917       _region_finger = NULL;
3918     }
3919 
3920     if (_cm->verbose_low()) {
3921       gclog_or_tty->print_cr("[%d] drained region stack, size = %d",
3922                              _task_id, _cm->region_stack_size());
3923     }
3924   }
3925 }
3926 
3927 void CMTask::print_stats() {
3928   gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
3929                          _task_id, _calls);
3930   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3931                          _elapsed_time_ms, _termination_time_ms);
3932   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3933                          _step_times_ms.num(), _step_times_ms.avg(),
3934                          _step_times_ms.sd());
3935   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3936                          _step_times_ms.maximum(), _step_times_ms.sum());
3937 
3938 #if _MARKING_STATS_
3939   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3940                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3941                          _all_clock_intervals_ms.sd());
3942   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3943                          _all_clock_intervals_ms.maximum(),
3944                          _all_clock_intervals_ms.sum());
3945   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
3946                          _clock_due_to_scanning, _clock_due_to_marking);
3947   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
3948                          _objs_scanned, _objs_found_on_bitmap);
3949   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
3950                          _local_pushes, _local_pops, _local_max_size);
3951   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
3952                          _global_pushes, _global_pops, _global_max_size);
3953   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
3954                          _global_transfers_to,_global_transfers_from);
3955   gclog_or_tty->print_cr("  Regions: claimed = %d, Region Stack: pops = %d",
3956                          _regions_claimed, _region_stack_pops);
3957   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
3958   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
3959                          _steal_attempts, _steals);
3960   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
3961   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
3962                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3963   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
3964                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3965 #endif // _MARKING_STATS_
3966 }
3967 
3968 /*****************************************************************************
3969 
3970     The do_marking_step(time_target_ms) method is the building block
3971     of the parallel marking framework. It can be called in parallel
3972     with other invocations of do_marking_step() on different tasks
3973     (but only one per task, obviously) and concurrently with the
3974     mutator threads, or during remark, hence it eliminates the need
3975     for two versions of the code. When called during remark, it will
3976     pick up from where the task left off during the concurrent marking
3977     phase. Interestingly, tasks are also claimable during evacuation
3978     pauses too, since do_marking_step() ensures that it aborts before
3979     it needs to yield.
3980 
3981     The data structures that is uses to do marking work are the
3982     following:
3983 
3984       (1) Marking Bitmap. If there are gray objects that appear only
3985       on the bitmap (this happens either when dealing with an overflow
3986       or when the initial marking phase has simply marked the roots
3987       and didn't push them on the stack), then tasks claim heap
3988       regions whose bitmap they then scan to find gray objects. A
3989       global finger indicates where the end of the last claimed region
3990       is. A local finger indicates how far into the region a task has
3991       scanned. The two fingers are used to determine how to gray an
3992       object (i.e. whether simply marking it is OK, as it will be
3993       visited by a task in the future, or whether it needs to be also
3994       pushed on a stack).
3995 
3996       (2) Local Queue. The local queue of the task which is accessed
3997       reasonably efficiently by the task. Other tasks can steal from
3998       it when they run out of work. Throughout the marking phase, a
3999       task attempts to keep its local queue short but not totally
4000       empty, so that entries are available for stealing by other
4001       tasks. Only when there is no more work, a task will totally
4002       drain its local queue.
4003 
4004       (3) Global Mark Stack. This handles local queue overflow. During
4005       marking only sets of entries are moved between it and the local
4006       queues, as access to it requires a mutex and more fine-grain
4007       interaction with it which might cause contention. If it
4008       overflows, then the marking phase should restart and iterate
4009       over the bitmap to identify gray objects. Throughout the marking
4010       phase, tasks attempt to keep the global mark stack at a small
4011       length but not totally empty, so that entries are available for
4012       popping by other tasks. Only when there is no more work, tasks
4013       will totally drain the global mark stack.
4014 
4015       (4) Global Region Stack. Entries on it correspond to areas of
4016       the bitmap that need to be scanned since they contain gray
4017       objects. Pushes on the region stack only happen during
4018       evacuation pauses and typically correspond to areas covered by
4019       GC LABS. If it overflows, then the marking phase should restart
4020       and iterate over the bitmap to identify gray objects. Tasks will
4021       try to totally drain the region stack as soon as possible.
4022 
4023       (5) SATB Buffer Queue. This is where completed SATB buffers are
4024       made available. Buffers are regularly removed from this queue
4025       and scanned for roots, so that the queue doesn't get too
4026       long. During remark, all completed buffers are processed, as
4027       well as the filled in parts of any uncompleted buffers.
4028 
4029     The do_marking_step() method tries to abort when the time target
4030     has been reached. There are a few other cases when the
4031     do_marking_step() method also aborts:
4032 
4033       (1) When the marking phase has been aborted (after a Full GC).
4034 
4035       (2) When a global overflow (either on the global stack or the
4036       region stack) has been triggered. Before the task aborts, it
4037       will actually sync up with the other tasks to ensure that all
4038       the marking data structures (local queues, stacks, fingers etc.)
4039       are re-initialised so that when do_marking_step() completes,
4040       the marking phase can immediately restart.
4041 
4042       (3) When enough completed SATB buffers are available. The
4043       do_marking_step() method only tries to drain SATB buffers right
4044       at the beginning. So, if enough buffers are available, the
4045       marking step aborts and the SATB buffers are processed at
4046       the beginning of the next invocation.
4047 
4048       (4) To yield. when we have to yield then we abort and yield
4049       right at the end of do_marking_step(). This saves us from a lot
4050       of hassle as, by yielding we might allow a Full GC. If this
4051       happens then objects will be compacted underneath our feet, the
4052       heap might shrink, etc. We save checking for this by just
4053       aborting and doing the yield right at the end.
4054 
4055     From the above it follows that the do_marking_step() method should
4056     be called in a loop (or, otherwise, regularly) until it completes.
4057 
4058     If a marking step completes without its has_aborted() flag being
4059     true, it means it has completed the current marking phase (and
4060     also all other marking tasks have done so and have all synced up).
4061 
4062     A method called regular_clock_call() is invoked "regularly" (in
4063     sub ms intervals) throughout marking. It is this clock method that
4064     checks all the abort conditions which were mentioned above and
4065     decides when the task should abort. A work-based scheme is used to
4066     trigger this clock method: when the number of object words the
4067     marking phase has scanned or the number of references the marking
4068     phase has visited reach a given limit. Additional invocations to
4069     the method clock have been planted in a few other strategic places
4070     too. The initial reason for the clock method was to avoid calling
4071     vtime too regularly, as it is quite expensive. So, once it was in
4072     place, it was natural to piggy-back all the other conditions on it
4073     too and not constantly check them throughout the code.
4074 
4075  *****************************************************************************/
4076 
4077 void CMTask::do_marking_step(double time_target_ms,
4078                              bool do_stealing,
4079                              bool do_termination) {
4080   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4081   assert(concurrent() == _cm->concurrent(), "they should be the same");
4082 
4083   assert(concurrent() || _cm->region_stack_empty(),
4084          "the region stack should have been cleared before remark");
4085   assert(concurrent() || !_cm->has_aborted_regions(),
4086          "aborted regions should have been cleared before remark");
4087   assert(_region_finger == NULL,
4088          "this should be non-null only when a region is being scanned");
4089 
4090   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4091   assert(_task_queues != NULL, "invariant");
4092   assert(_task_queue != NULL, "invariant");
4093   assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
4094 
4095   assert(!_claimed,
4096          "only one thread should claim this task at any one time");
4097 
4098   // OK, this doesn't safeguard again all possible scenarios, as it is
4099   // possible for two threads to set the _claimed flag at the same
4100   // time. But it is only for debugging purposes anyway and it will
4101   // catch most problems.
4102   _claimed = true;
4103 
4104   _start_time_ms = os::elapsedVTime() * 1000.0;
4105   statsOnly( _interval_start_time_ms = _start_time_ms );
4106 
4107   double diff_prediction_ms =
4108     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4109   _time_target_ms = time_target_ms - diff_prediction_ms;
4110 
4111   // set up the variables that are used in the work-based scheme to
4112   // call the regular clock method
4113   _words_scanned = 0;
4114   _refs_reached  = 0;
4115   recalculate_limits();
4116 
4117   // clear all flags
4118   clear_has_aborted();
4119   _has_timed_out = false;
4120   _draining_satb_buffers = false;
4121 
4122   ++_calls;
4123 
4124   if (_cm->verbose_low()) {
4125     gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
4126                            "target = %1.2lfms >>>>>>>>>>",
4127                            _task_id, _calls, _time_target_ms);
4128   }
4129 
4130   // Set up the bitmap and oop closures. Anything that uses them is
4131   // eventually called from this method, so it is OK to allocate these
4132   // statically.
4133   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4134   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4135   set_cm_oop_closure(&cm_oop_closure);
4136 
4137   if (_cm->has_overflown()) {
4138     // This can happen if the region stack or the mark stack overflows
4139     // during a GC pause and this task, after a yield point,
4140     // restarts. We have to abort as we need to get into the overflow
4141     // protocol which happens right at the end of this task.
4142     set_has_aborted();
4143   }
4144 
4145   // First drain any available SATB buffers. After this, we will not
4146   // look at SATB buffers before the next invocation of this method.
4147   // If enough completed SATB buffers are queued up, the regular clock
4148   // will abort this task so that it restarts.
4149   drain_satb_buffers();
4150   // ...then partially drain the local queue and the global stack
4151   drain_local_queue(true);
4152   drain_global_stack(true);
4153 
4154   // Then totally drain the region stack.  We will not look at
4155   // it again before the next invocation of this method. Entries on
4156   // the region stack are only added during evacuation pauses, for
4157   // which we have to yield. When we do, we abort the task anyway so
4158   // it will look at the region stack again when it restarts.
4159   bitmap_closure.set_scanning_heap_region(false);
4160   drain_region_stack(&bitmap_closure);
4161   // ...then partially drain the local queue and the global stack
4162   drain_local_queue(true);
4163   drain_global_stack(true);
4164 
4165   do {
4166     if (!has_aborted() && _curr_region != NULL) {
4167       // This means that we're already holding on to a region.
4168       assert(_finger != NULL, "if region is not NULL, then the finger "
4169              "should not be NULL either");
4170 
4171       // We might have restarted this task after an evacuation pause
4172       // which might have evacuated the region we're holding on to
4173       // underneath our feet. Let's read its limit again to make sure
4174       // that we do not iterate over a region of the heap that
4175       // contains garbage (update_region_limit() will also move
4176       // _finger to the start of the region if it is found empty).
4177       update_region_limit();
4178       // We will start from _finger not from the start of the region,
4179       // as we might be restarting this task after aborting half-way
4180       // through scanning this region. In this case, _finger points to
4181       // the address where we last found a marked object. If this is a
4182       // fresh region, _finger points to start().
4183       MemRegion mr = MemRegion(_finger, _region_limit);
4184 
4185       if (_cm->verbose_low()) {
4186         gclog_or_tty->print_cr("[%d] we're scanning part "
4187                                "["PTR_FORMAT", "PTR_FORMAT") "
4188                                "of region "PTR_FORMAT,
4189                                _task_id, _finger, _region_limit, _curr_region);
4190       }
4191 
4192       // Let's iterate over the bitmap of the part of the
4193       // region that is left.
4194       bitmap_closure.set_scanning_heap_region(true);
4195       if (mr.is_empty() ||
4196           _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4197         // We successfully completed iterating over the region. Now,
4198         // let's give up the region.
4199         giveup_current_region();
4200         regular_clock_call();
4201       } else {
4202         assert(has_aborted(), "currently the only way to do so");
4203         // The only way to abort the bitmap iteration is to return
4204         // false from the do_bit() method. However, inside the
4205         // do_bit() method we move the _finger to point to the
4206         // object currently being looked at. So, if we bail out, we
4207         // have definitely set _finger to something non-null.
4208         assert(_finger != NULL, "invariant");
4209 
4210         // Region iteration was actually aborted. So now _finger
4211         // points to the address of the object we last scanned. If we
4212         // leave it there, when we restart this task, we will rescan
4213         // the object. It is easy to avoid this. We move the finger by
4214         // enough to point to the next possible object header (the
4215         // bitmap knows by how much we need to move it as it knows its
4216         // granularity).
4217         assert(_finger < _region_limit, "invariant");
4218         HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
4219         // Check if bitmap iteration was aborted while scanning the last object
4220         if (new_finger >= _region_limit) {
4221             giveup_current_region();
4222         } else {
4223             move_finger_to(new_finger);
4224         }
4225       }
4226     }
4227     // At this point we have either completed iterating over the
4228     // region we were holding on to, or we have aborted.
4229 
4230     // We then partially drain the local queue and the global stack.
4231     // (Do we really need this?)
4232     drain_local_queue(true);
4233     drain_global_stack(true);
4234 
4235     // Read the note on the claim_region() method on why it might
4236     // return NULL with potentially more regions available for
4237     // claiming and why we have to check out_of_regions() to determine
4238     // whether we're done or not.
4239     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4240       // We are going to try to claim a new region. We should have
4241       // given up on the previous one.
4242       // Separated the asserts so that we know which one fires.
4243       assert(_curr_region  == NULL, "invariant");
4244       assert(_finger       == NULL, "invariant");
4245       assert(_region_limit == NULL, "invariant");
4246       if (_cm->verbose_low()) {
4247         gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
4248       }
4249       HeapRegion* claimed_region = _cm->claim_region(_task_id);
4250       if (claimed_region != NULL) {
4251         // Yes, we managed to claim one
4252         statsOnly( ++_regions_claimed );
4253 
4254         if (_cm->verbose_low()) {
4255           gclog_or_tty->print_cr("[%d] we successfully claimed "
4256                                  "region "PTR_FORMAT,
4257                                  _task_id, claimed_region);
4258         }
4259 
4260         setup_for_region(claimed_region);
4261         assert(_curr_region == claimed_region, "invariant");
4262       }
4263       // It is important to call the regular clock here. It might take
4264       // a while to claim a region if, for example, we hit a large
4265       // block of empty regions. So we need to call the regular clock
4266       // method once round the loop to make sure it's called
4267       // frequently enough.
4268       regular_clock_call();
4269     }
4270 
4271     if (!has_aborted() && _curr_region == NULL) {
4272       assert(_cm->out_of_regions(),
4273              "at this point we should be out of regions");
4274     }
4275   } while ( _curr_region != NULL && !has_aborted());
4276 
4277   if (!has_aborted()) {
4278     // We cannot check whether the global stack is empty, since other
4279     // tasks might be pushing objects to it concurrently. We also cannot
4280     // check if the region stack is empty because if a thread is aborting
4281     // it can push a partially done region back.
4282     assert(_cm->out_of_regions(),
4283            "at this point we should be out of regions");
4284 
4285     if (_cm->verbose_low()) {
4286       gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
4287     }
4288 
4289     // Try to reduce the number of available SATB buffers so that
4290     // remark has less work to do.
4291     drain_satb_buffers();
4292   }
4293 
4294   // Since we've done everything else, we can now totally drain the
4295   // local queue and global stack.
4296   drain_local_queue(false);
4297   drain_global_stack(false);
4298 
4299   // Attempt at work stealing from other task's queues.
4300   if (do_stealing && !has_aborted()) {
4301     // We have not aborted. This means that we have finished all that
4302     // we could. Let's try to do some stealing...
4303 
4304     // We cannot check whether the global stack is empty, since other
4305     // tasks might be pushing objects to it concurrently. We also cannot
4306     // check if the region stack is empty because if a thread is aborting
4307     // it can push a partially done region back.
4308     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4309            "only way to reach here");
4310 
4311     if (_cm->verbose_low()) {
4312       gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
4313     }
4314 
4315     while (!has_aborted()) {
4316       oop obj;
4317       statsOnly( ++_steal_attempts );
4318 
4319       if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
4320         if (_cm->verbose_medium()) {
4321           gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
4322                                  _task_id, (void*) obj);
4323         }
4324 
4325         statsOnly( ++_steals );
4326 
4327         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4328                "any stolen object should be marked");
4329         scan_object(obj);
4330 
4331         // And since we're towards the end, let's totally drain the
4332         // local queue and global stack.
4333         drain_local_queue(false);
4334         drain_global_stack(false);
4335       } else {
4336         break;
4337       }
4338     }
4339   }
4340 
4341   // If we are about to wrap up and go into termination, check if we
4342   // should raise the overflow flag.
4343   if (do_termination && !has_aborted()) {
4344     if (_cm->force_overflow()->should_force()) {
4345       _cm->set_has_overflown();
4346       regular_clock_call();
4347     }
4348   }
4349 
4350   // We still haven't aborted. Now, let's try to get into the
4351   // termination protocol.
4352   if (do_termination && !has_aborted()) {
4353     // We cannot check whether the global stack is empty, since other
4354     // tasks might be concurrently pushing objects on it. We also cannot
4355     // check if the region stack is empty because if a thread is aborting
4356     // it can push a partially done region back.
4357     // Separated the asserts so that we know which one fires.
4358     assert(_cm->out_of_regions(), "only way to reach here");
4359     assert(_task_queue->size() == 0, "only way to reach here");
4360 
4361     if (_cm->verbose_low()) {
4362       gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
4363     }
4364 
4365     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4366     // The CMTask class also extends the TerminatorTerminator class,
4367     // hence its should_exit_termination() method will also decide
4368     // whether to exit the termination protocol or not.
4369     bool finished = _cm->terminator()->offer_termination(this);
4370     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4371     _termination_time_ms +=
4372       termination_end_time_ms - _termination_start_time_ms;
4373 
4374     if (finished) {
4375       // We're all done.
4376 
4377       if (_task_id == 0) {
4378         // let's allow task 0 to do this
4379         if (concurrent()) {
4380           assert(_cm->concurrent_marking_in_progress(), "invariant");
4381           // we need to set this to false before the next
4382           // safepoint. This way we ensure that the marking phase
4383           // doesn't observe any more heap expansions.
4384           _cm->clear_concurrent_marking_in_progress();
4385         }
4386       }
4387 
4388       // We can now guarantee that the global stack is empty, since
4389       // all other tasks have finished. We separated the guarantees so
4390       // that, if a condition is false, we can immediately find out
4391       // which one.
4392       guarantee(_cm->out_of_regions(), "only way to reach here");
4393       guarantee(_aborted_region.is_empty(), "only way to reach here");
4394       guarantee(_cm->region_stack_empty(), "only way to reach here");
4395       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4396       guarantee(_task_queue->size() == 0, "only way to reach here");
4397       guarantee(!_cm->has_overflown(), "only way to reach here");
4398       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4399       guarantee(!_cm->region_stack_overflow(), "only way to reach here");
4400 
4401       if (_cm->verbose_low()) {
4402         gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
4403       }
4404     } else {
4405       // Apparently there's more work to do. Let's abort this task. It
4406       // will restart it and we can hopefully find more things to do.
4407 
4408       if (_cm->verbose_low()) {
4409         gclog_or_tty->print_cr("[%d] apparently there is more work to do",
4410                                _task_id);
4411       }
4412 
4413       set_has_aborted();
4414       statsOnly( ++_aborted_termination );
4415     }
4416   }
4417 
4418   // Mainly for debugging purposes to make sure that a pointer to the
4419   // closure which was statically allocated in this frame doesn't
4420   // escape it by accident.
4421   set_cm_oop_closure(NULL);
4422   double end_time_ms = os::elapsedVTime() * 1000.0;
4423   double elapsed_time_ms = end_time_ms - _start_time_ms;
4424   // Update the step history.
4425   _step_times_ms.add(elapsed_time_ms);
4426 
4427   if (has_aborted()) {
4428     // The task was aborted for some reason.
4429 
4430     statsOnly( ++_aborted );
4431 
4432     if (_has_timed_out) {
4433       double diff_ms = elapsed_time_ms - _time_target_ms;
4434       // Keep statistics of how well we did with respect to hitting
4435       // our target only if we actually timed out (if we aborted for
4436       // other reasons, then the results might get skewed).
4437       _marking_step_diffs_ms.add(diff_ms);
4438     }
4439 
4440     if (_cm->has_overflown()) {
4441       // This is the interesting one. We aborted because a global
4442       // overflow was raised. This means we have to restart the
4443       // marking phase and start iterating over regions. However, in
4444       // order to do this we have to make sure that all tasks stop
4445       // what they are doing and re-initialise in a safe manner. We
4446       // will achieve this with the use of two barrier sync points.
4447 
4448       if (_cm->verbose_low()) {
4449         gclog_or_tty->print_cr("[%d] detected overflow", _task_id);
4450       }
4451 
4452       _cm->enter_first_sync_barrier(_task_id);
4453       // When we exit this sync barrier we know that all tasks have
4454       // stopped doing marking work. So, it's now safe to
4455       // re-initialise our data structures. At the end of this method,
4456       // task 0 will clear the global data structures.
4457 
4458       statsOnly( ++_aborted_overflow );
4459 
4460       // We clear the local state of this task...
4461       clear_region_fields();
4462 
4463       // ...and enter the second barrier.
4464       _cm->enter_second_sync_barrier(_task_id);
4465       // At this point everything has bee re-initialised and we're
4466       // ready to restart.
4467     }
4468 
4469     if (_cm->verbose_low()) {
4470       gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4471                              "elapsed = %1.2lfms <<<<<<<<<<",
4472                              _task_id, _time_target_ms, elapsed_time_ms);
4473       if (_cm->has_aborted()) {
4474         gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
4475                                _task_id);
4476       }
4477     }
4478   } else {
4479     if (_cm->verbose_low()) {
4480       gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4481                              "elapsed = %1.2lfms <<<<<<<<<<",
4482                              _task_id, _time_target_ms, elapsed_time_ms);
4483     }
4484   }
4485 
4486   _claimed = false;
4487 }
4488 
4489 CMTask::CMTask(int task_id,
4490                ConcurrentMark* cm,
4491                CMTaskQueue* task_queue,
4492                CMTaskQueueSet* task_queues)
4493   : _g1h(G1CollectedHeap::heap()),
4494     _task_id(task_id), _cm(cm),
4495     _claimed(false),
4496     _nextMarkBitMap(NULL), _hash_seed(17),
4497     _task_queue(task_queue),
4498     _task_queues(task_queues),
4499     _cm_oop_closure(NULL),
4500     _aborted_region(MemRegion()) {
4501   guarantee(task_queue != NULL, "invariant");
4502   guarantee(task_queues != NULL, "invariant");
4503 
4504   statsOnly( _clock_due_to_scanning = 0;
4505              _clock_due_to_marking  = 0 );
4506 
4507   _marking_step_diffs_ms.add(0.5);
4508 }
4509 
4510 // These are formatting macros that are used below to ensure
4511 // consistent formatting. The *_H_* versions are used to format the
4512 // header for a particular value and they should be kept consistent
4513 // with the corresponding macro. Also note that most of the macros add
4514 // the necessary white space (as a prefix) which makes them a bit
4515 // easier to compose.
4516 
4517 // All the output lines are prefixed with this string to be able to
4518 // identify them easily in a large log file.
4519 #define G1PPRL_LINE_PREFIX            "###"
4520 
4521 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4522 #ifdef _LP64
4523 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4524 #else // _LP64
4525 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4526 #endif // _LP64
4527 
4528 // For per-region info
4529 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4530 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4531 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4532 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4533 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4534 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4535 
4536 // For summary info
4537 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4538 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4539 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4540 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4541 
4542 G1PrintRegionLivenessInfoClosure::
4543 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4544   : _out(out),
4545     _total_used_bytes(0), _total_capacity_bytes(0),
4546     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4547     _hum_used_bytes(0), _hum_capacity_bytes(0),
4548     _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
4549   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4550   MemRegion g1_committed = g1h->g1_committed();
4551   MemRegion g1_reserved = g1h->g1_reserved();
4552   double now = os::elapsedTime();
4553 
4554   // Print the header of the output.
4555   _out->cr();
4556   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4557   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4558                  G1PPRL_SUM_ADDR_FORMAT("committed")
4559                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4560                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4561                  g1_committed.start(), g1_committed.end(),
4562                  g1_reserved.start(), g1_reserved.end(),
4563                  HeapRegion::GrainBytes);
4564   _out->print_cr(G1PPRL_LINE_PREFIX);
4565   _out->print_cr(G1PPRL_LINE_PREFIX
4566                  G1PPRL_TYPE_H_FORMAT
4567                  G1PPRL_ADDR_BASE_H_FORMAT
4568                  G1PPRL_BYTE_H_FORMAT
4569                  G1PPRL_BYTE_H_FORMAT
4570                  G1PPRL_BYTE_H_FORMAT
4571                  G1PPRL_DOUBLE_H_FORMAT,
4572                  "type", "address-range",
4573                  "used", "prev-live", "next-live", "gc-eff");
4574 }
4575 
4576 // It takes as a parameter a reference to one of the _hum_* fields, it
4577 // deduces the corresponding value for a region in a humongous region
4578 // series (either the region size, or what's left if the _hum_* field
4579 // is < the region size), and updates the _hum_* field accordingly.
4580 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4581   size_t bytes = 0;
4582   // The > 0 check is to deal with the prev and next live bytes which
4583   // could be 0.
4584   if (*hum_bytes > 0) {
4585     bytes = MIN2((size_t) HeapRegion::GrainBytes, *hum_bytes);
4586     *hum_bytes -= bytes;
4587   }
4588   return bytes;
4589 }
4590 
4591 // It deduces the values for a region in a humongous region series
4592 // from the _hum_* fields and updates those accordingly. It assumes
4593 // that that _hum_* fields have already been set up from the "starts
4594 // humongous" region and we visit the regions in address order.
4595 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4596                                                      size_t* capacity_bytes,
4597                                                      size_t* prev_live_bytes,
4598                                                      size_t* next_live_bytes) {
4599   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4600   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4601   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4602   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4603   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4604 }
4605 
4606 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4607   const char* type = "";
4608   HeapWord* bottom       = r->bottom();
4609   HeapWord* end          = r->end();
4610   size_t capacity_bytes  = r->capacity();
4611   size_t used_bytes      = r->used();
4612   size_t prev_live_bytes = r->live_bytes();
4613   size_t next_live_bytes = r->next_live_bytes();
4614   double gc_eff          = r->gc_efficiency();
4615   if (r->used() == 0) {
4616     type = "FREE";
4617   } else if (r->is_survivor()) {
4618     type = "SURV";
4619   } else if (r->is_young()) {
4620     type = "EDEN";
4621   } else if (r->startsHumongous()) {
4622     type = "HUMS";
4623 
4624     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4625            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4626            "they should have been zeroed after the last time we used them");
4627     // Set up the _hum_* fields.
4628     _hum_capacity_bytes  = capacity_bytes;
4629     _hum_used_bytes      = used_bytes;
4630     _hum_prev_live_bytes = prev_live_bytes;
4631     _hum_next_live_bytes = next_live_bytes;
4632     get_hum_bytes(&used_bytes, &capacity_bytes,
4633                   &prev_live_bytes, &next_live_bytes);
4634     end = bottom + HeapRegion::GrainWords;
4635   } else if (r->continuesHumongous()) {
4636     type = "HUMC";
4637     get_hum_bytes(&used_bytes, &capacity_bytes,
4638                   &prev_live_bytes, &next_live_bytes);
4639     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4640   } else {
4641     type = "OLD";
4642   }
4643 
4644   _total_used_bytes      += used_bytes;
4645   _total_capacity_bytes  += capacity_bytes;
4646   _total_prev_live_bytes += prev_live_bytes;
4647   _total_next_live_bytes += next_live_bytes;
4648 
4649   // Print a line for this particular region.
4650   _out->print_cr(G1PPRL_LINE_PREFIX
4651                  G1PPRL_TYPE_FORMAT
4652                  G1PPRL_ADDR_BASE_FORMAT
4653                  G1PPRL_BYTE_FORMAT
4654                  G1PPRL_BYTE_FORMAT
4655                  G1PPRL_BYTE_FORMAT
4656                  G1PPRL_DOUBLE_FORMAT,
4657                  type, bottom, end,
4658                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff);
4659 
4660   return false;
4661 }
4662 
4663 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4664   // Print the footer of the output.
4665   _out->print_cr(G1PPRL_LINE_PREFIX);
4666   _out->print_cr(G1PPRL_LINE_PREFIX
4667                  " SUMMARY"
4668                  G1PPRL_SUM_MB_FORMAT("capacity")
4669                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4670                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4671                  G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
4672                  bytes_to_mb(_total_capacity_bytes),
4673                  bytes_to_mb(_total_used_bytes),
4674                  perc(_total_used_bytes, _total_capacity_bytes),
4675                  bytes_to_mb(_total_prev_live_bytes),
4676                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4677                  bytes_to_mb(_total_next_live_bytes),
4678                  perc(_total_next_live_bytes, _total_capacity_bytes));
4679   _out->cr();
4680 }