1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1MarkSweep.hpp"
  36 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  37 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  38 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  39 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  40 #include "gc_implementation/g1/vm_operations_g1.hpp"
  41 #include "gc_implementation/shared/isGCActiveMark.hpp"
  42 #include "memory/gcLocker.inline.hpp"
  43 #include "memory/genOopClosures.inline.hpp"
  44 #include "memory/generationSpec.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/oop.pcgc.inline.hpp"
  47 #include "runtime/aprofiler.hpp"
  48 #include "runtime/vmThread.hpp"
  49 
  50 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  51 
  52 // turn it on so that the contents of the young list (scan-only /
  53 // to-be-collected) are printed at "strategic" points before / during
  54 // / after the collection --- this is useful for debugging
  55 #define YOUNG_LIST_VERBOSE 0
  56 // CURRENT STATUS
  57 // This file is under construction.  Search for "FIXME".
  58 
  59 // INVARIANTS/NOTES
  60 //
  61 // All allocation activity covered by the G1CollectedHeap interface is
  62 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  63 // and allocate_new_tlab, which are the "entry" points to the
  64 // allocation code from the rest of the JVM.  (Note that this does not
  65 // apply to TLAB allocation, which is not part of this interface: it
  66 // is done by clients of this interface.)
  67 
  68 // Local to this file.
  69 
  70 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  71   SuspendibleThreadSet* _sts;
  72   G1RemSet* _g1rs;
  73   ConcurrentG1Refine* _cg1r;
  74   bool _concurrent;
  75 public:
  76   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  77                               G1RemSet* g1rs,
  78                               ConcurrentG1Refine* cg1r) :
  79     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  80   {}
  81   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  82     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
  83     // This path is executed by the concurrent refine or mutator threads,
  84     // concurrently, and so we do not care if card_ptr contains references
  85     // that point into the collection set.
  86     assert(!oops_into_cset, "should be");
  87 
  88     if (_concurrent && _sts->should_yield()) {
  89       // Caller will actually yield.
  90       return false;
  91     }
  92     // Otherwise, we finished successfully; return true.
  93     return true;
  94   }
  95   void set_concurrent(bool b) { _concurrent = b; }
  96 };
  97 
  98 
  99 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 100   int _calls;
 101   G1CollectedHeap* _g1h;
 102   CardTableModRefBS* _ctbs;
 103   int _histo[256];
 104 public:
 105   ClearLoggedCardTableEntryClosure() :
 106     _calls(0)
 107   {
 108     _g1h = G1CollectedHeap::heap();
 109     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 110     for (int i = 0; i < 256; i++) _histo[i] = 0;
 111   }
 112   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 113     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 114       _calls++;
 115       unsigned char* ujb = (unsigned char*)card_ptr;
 116       int ind = (int)(*ujb);
 117       _histo[ind]++;
 118       *card_ptr = -1;
 119     }
 120     return true;
 121   }
 122   int calls() { return _calls; }
 123   void print_histo() {
 124     gclog_or_tty->print_cr("Card table value histogram:");
 125     for (int i = 0; i < 256; i++) {
 126       if (_histo[i] != 0) {
 127         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 128       }
 129     }
 130   }
 131 };
 132 
 133 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 134   int _calls;
 135   G1CollectedHeap* _g1h;
 136   CardTableModRefBS* _ctbs;
 137 public:
 138   RedirtyLoggedCardTableEntryClosure() :
 139     _calls(0)
 140   {
 141     _g1h = G1CollectedHeap::heap();
 142     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 143   }
 144   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 145     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 146       _calls++;
 147       *card_ptr = 0;
 148     }
 149     return true;
 150   }
 151   int calls() { return _calls; }
 152 };
 153 
 154 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 155 public:
 156   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 157     *card_ptr = CardTableModRefBS::dirty_card_val();
 158     return true;
 159   }
 160 };
 161 
 162 YoungList::YoungList(G1CollectedHeap* g1h)
 163   : _g1h(g1h), _head(NULL),
 164     _length(0),
 165     _last_sampled_rs_lengths(0),
 166     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
 167 {
 168   guarantee( check_list_empty(false), "just making sure..." );
 169 }
 170 
 171 void YoungList::push_region(HeapRegion *hr) {
 172   assert(!hr->is_young(), "should not already be young");
 173   assert(hr->get_next_young_region() == NULL, "cause it should!");
 174 
 175   hr->set_next_young_region(_head);
 176   _head = hr;
 177 
 178   hr->set_young();
 179   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
 180   ++_length;
 181 }
 182 
 183 void YoungList::add_survivor_region(HeapRegion* hr) {
 184   assert(hr->is_survivor(), "should be flagged as survivor region");
 185   assert(hr->get_next_young_region() == NULL, "cause it should!");
 186 
 187   hr->set_next_young_region(_survivor_head);
 188   if (_survivor_head == NULL) {
 189     _survivor_tail = hr;
 190   }
 191   _survivor_head = hr;
 192 
 193   ++_survivor_length;
 194 }
 195 
 196 void YoungList::empty_list(HeapRegion* list) {
 197   while (list != NULL) {
 198     HeapRegion* next = list->get_next_young_region();
 199     list->set_next_young_region(NULL);
 200     list->uninstall_surv_rate_group();
 201     list->set_not_young();
 202     list = next;
 203   }
 204 }
 205 
 206 void YoungList::empty_list() {
 207   assert(check_list_well_formed(), "young list should be well formed");
 208 
 209   empty_list(_head);
 210   _head = NULL;
 211   _length = 0;
 212 
 213   empty_list(_survivor_head);
 214   _survivor_head = NULL;
 215   _survivor_tail = NULL;
 216   _survivor_length = 0;
 217 
 218   _last_sampled_rs_lengths = 0;
 219 
 220   assert(check_list_empty(false), "just making sure...");
 221 }
 222 
 223 bool YoungList::check_list_well_formed() {
 224   bool ret = true;
 225 
 226   size_t length = 0;
 227   HeapRegion* curr = _head;
 228   HeapRegion* last = NULL;
 229   while (curr != NULL) {
 230     if (!curr->is_young()) {
 231       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 232                              "incorrectly tagged (y: %d, surv: %d)",
 233                              curr->bottom(), curr->end(),
 234                              curr->is_young(), curr->is_survivor());
 235       ret = false;
 236     }
 237     ++length;
 238     last = curr;
 239     curr = curr->get_next_young_region();
 240   }
 241   ret = ret && (length == _length);
 242 
 243   if (!ret) {
 244     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 245     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
 246                            length, _length);
 247   }
 248 
 249   return ret;
 250 }
 251 
 252 bool YoungList::check_list_empty(bool check_sample) {
 253   bool ret = true;
 254 
 255   if (_length != 0) {
 256     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
 257                   _length);
 258     ret = false;
 259   }
 260   if (check_sample && _last_sampled_rs_lengths != 0) {
 261     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 262     ret = false;
 263   }
 264   if (_head != NULL) {
 265     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 266     ret = false;
 267   }
 268   if (!ret) {
 269     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 270   }
 271 
 272   return ret;
 273 }
 274 
 275 void
 276 YoungList::rs_length_sampling_init() {
 277   _sampled_rs_lengths = 0;
 278   _curr               = _head;
 279 }
 280 
 281 bool
 282 YoungList::rs_length_sampling_more() {
 283   return _curr != NULL;
 284 }
 285 
 286 void
 287 YoungList::rs_length_sampling_next() {
 288   assert( _curr != NULL, "invariant" );
 289   size_t rs_length = _curr->rem_set()->occupied();
 290 
 291   _sampled_rs_lengths += rs_length;
 292 
 293   // The current region may not yet have been added to the
 294   // incremental collection set (it gets added when it is
 295   // retired as the current allocation region).
 296   if (_curr->in_collection_set()) {
 297     // Update the collection set policy information for this region
 298     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 299   }
 300 
 301   _curr = _curr->get_next_young_region();
 302   if (_curr == NULL) {
 303     _last_sampled_rs_lengths = _sampled_rs_lengths;
 304     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 305   }
 306 }
 307 
 308 void
 309 YoungList::reset_auxilary_lists() {
 310   guarantee( is_empty(), "young list should be empty" );
 311   assert(check_list_well_formed(), "young list should be well formed");
 312 
 313   // Add survivor regions to SurvRateGroup.
 314   _g1h->g1_policy()->note_start_adding_survivor_regions();
 315   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 316 
 317   for (HeapRegion* curr = _survivor_head;
 318        curr != NULL;
 319        curr = curr->get_next_young_region()) {
 320     _g1h->g1_policy()->set_region_survivors(curr);
 321 
 322     // The region is a non-empty survivor so let's add it to
 323     // the incremental collection set for the next evacuation
 324     // pause.
 325     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 326   }
 327   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 328 
 329   _head   = _survivor_head;
 330   _length = _survivor_length;
 331   if (_survivor_head != NULL) {
 332     assert(_survivor_tail != NULL, "cause it shouldn't be");
 333     assert(_survivor_length > 0, "invariant");
 334     _survivor_tail->set_next_young_region(NULL);
 335   }
 336 
 337   // Don't clear the survivor list handles until the start of
 338   // the next evacuation pause - we need it in order to re-tag
 339   // the survivor regions from this evacuation pause as 'young'
 340   // at the start of the next.
 341 
 342   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 343 
 344   assert(check_list_well_formed(), "young list should be well formed");
 345 }
 346 
 347 void YoungList::print() {
 348   HeapRegion* lists[] = {_head,   _survivor_head};
 349   const char* names[] = {"YOUNG", "SURVIVOR"};
 350 
 351   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 352     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 353     HeapRegion *curr = lists[list];
 354     if (curr == NULL)
 355       gclog_or_tty->print_cr("  empty");
 356     while (curr != NULL) {
 357       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
 358                              "age: %4d, y: %d, surv: %d",
 359                              curr->bottom(), curr->end(),
 360                              curr->top(),
 361                              curr->prev_top_at_mark_start(),
 362                              curr->next_top_at_mark_start(),
 363                              curr->top_at_conc_mark_count(),
 364                              curr->age_in_surv_rate_group_cond(),
 365                              curr->is_young(),
 366                              curr->is_survivor());
 367       curr = curr->get_next_young_region();
 368     }
 369   }
 370 
 371   gclog_or_tty->print_cr("");
 372 }
 373 
 374 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 375 {
 376   // Claim the right to put the region on the dirty cards region list
 377   // by installing a self pointer.
 378   HeapRegion* next = hr->get_next_dirty_cards_region();
 379   if (next == NULL) {
 380     HeapRegion* res = (HeapRegion*)
 381       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 382                           NULL);
 383     if (res == NULL) {
 384       HeapRegion* head;
 385       do {
 386         // Put the region to the dirty cards region list.
 387         head = _dirty_cards_region_list;
 388         next = (HeapRegion*)
 389           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 390         if (next == head) {
 391           assert(hr->get_next_dirty_cards_region() == hr,
 392                  "hr->get_next_dirty_cards_region() != hr");
 393           if (next == NULL) {
 394             // The last region in the list points to itself.
 395             hr->set_next_dirty_cards_region(hr);
 396           } else {
 397             hr->set_next_dirty_cards_region(next);
 398           }
 399         }
 400       } while (next != head);
 401     }
 402   }
 403 }
 404 
 405 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 406 {
 407   HeapRegion* head;
 408   HeapRegion* hr;
 409   do {
 410     head = _dirty_cards_region_list;
 411     if (head == NULL) {
 412       return NULL;
 413     }
 414     HeapRegion* new_head = head->get_next_dirty_cards_region();
 415     if (head == new_head) {
 416       // The last region.
 417       new_head = NULL;
 418     }
 419     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 420                                           head);
 421   } while (hr != head);
 422   assert(hr != NULL, "invariant");
 423   hr->set_next_dirty_cards_region(NULL);
 424   return hr;
 425 }
 426 
 427 void G1CollectedHeap::stop_conc_gc_threads() {
 428   _cg1r->stop();
 429   _cmThread->stop();
 430 }
 431 
 432 #ifdef ASSERT
 433 // A region is added to the collection set as it is retired
 434 // so an address p can point to a region which will be in the
 435 // collection set but has not yet been retired.  This method
 436 // therefore is only accurate during a GC pause after all
 437 // regions have been retired.  It is used for debugging
 438 // to check if an nmethod has references to objects that can
 439 // be move during a partial collection.  Though it can be
 440 // inaccurate, it is sufficient for G1 because the conservative
 441 // implementation of is_scavengable() for G1 will indicate that
 442 // all nmethods must be scanned during a partial collection.
 443 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 444   HeapRegion* hr = heap_region_containing(p);
 445   return hr != NULL && hr->in_collection_set();
 446 }
 447 #endif
 448 
 449 // Returns true if the reference points to an object that
 450 // can move in an incremental collecction.
 451 bool G1CollectedHeap::is_scavengable(const void* p) {
 452   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 453   G1CollectorPolicy* g1p = g1h->g1_policy();
 454   HeapRegion* hr = heap_region_containing(p);
 455   if (hr == NULL) {
 456      // perm gen (or null)
 457      return false;
 458   } else {
 459     return !hr->isHumongous();
 460   }
 461 }
 462 
 463 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 464   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 465   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 466 
 467   // Count the dirty cards at the start.
 468   CountNonCleanMemRegionClosure count1(this);
 469   ct_bs->mod_card_iterate(&count1);
 470   int orig_count = count1.n();
 471 
 472   // First clear the logged cards.
 473   ClearLoggedCardTableEntryClosure clear;
 474   dcqs.set_closure(&clear);
 475   dcqs.apply_closure_to_all_completed_buffers();
 476   dcqs.iterate_closure_all_threads(false);
 477   clear.print_histo();
 478 
 479   // Now ensure that there's no dirty cards.
 480   CountNonCleanMemRegionClosure count2(this);
 481   ct_bs->mod_card_iterate(&count2);
 482   if (count2.n() != 0) {
 483     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 484                            count2.n(), orig_count);
 485   }
 486   guarantee(count2.n() == 0, "Card table should be clean.");
 487 
 488   RedirtyLoggedCardTableEntryClosure redirty;
 489   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 490   dcqs.apply_closure_to_all_completed_buffers();
 491   dcqs.iterate_closure_all_threads(false);
 492   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 493                          clear.calls(), orig_count);
 494   guarantee(redirty.calls() == clear.calls(),
 495             "Or else mechanism is broken.");
 496 
 497   CountNonCleanMemRegionClosure count3(this);
 498   ct_bs->mod_card_iterate(&count3);
 499   if (count3.n() != orig_count) {
 500     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 501                            orig_count, count3.n());
 502     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 503   }
 504 
 505   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 506 }
 507 
 508 // Private class members.
 509 
 510 G1CollectedHeap* G1CollectedHeap::_g1h;
 511 
 512 // Private methods.
 513 
 514 HeapRegion*
 515 G1CollectedHeap::new_region_try_secondary_free_list() {
 516   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 517   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 518     if (!_secondary_free_list.is_empty()) {
 519       if (G1ConcRegionFreeingVerbose) {
 520         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 521                                "secondary_free_list has "SIZE_FORMAT" entries",
 522                                _secondary_free_list.length());
 523       }
 524       // It looks as if there are free regions available on the
 525       // secondary_free_list. Let's move them to the free_list and try
 526       // again to allocate from it.
 527       append_secondary_free_list();
 528 
 529       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 530              "empty we should have moved at least one entry to the free_list");
 531       HeapRegion* res = _free_list.remove_head();
 532       if (G1ConcRegionFreeingVerbose) {
 533         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 534                                "allocated "HR_FORMAT" from secondary_free_list",
 535                                HR_FORMAT_PARAMS(res));
 536       }
 537       return res;
 538     }
 539 
 540     // Wait here until we get notifed either when (a) there are no
 541     // more free regions coming or (b) some regions have been moved on
 542     // the secondary_free_list.
 543     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 544   }
 545 
 546   if (G1ConcRegionFreeingVerbose) {
 547     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 548                            "could not allocate from secondary_free_list");
 549   }
 550   return NULL;
 551 }
 552 
 553 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 554   assert(!isHumongous(word_size) ||
 555                                   word_size <= (size_t) HeapRegion::GrainWords,
 556          "the only time we use this to allocate a humongous region is "
 557          "when we are allocating a single humongous region");
 558 
 559   HeapRegion* res;
 560   if (G1StressConcRegionFreeing) {
 561     if (!_secondary_free_list.is_empty()) {
 562       if (G1ConcRegionFreeingVerbose) {
 563         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 564                                "forced to look at the secondary_free_list");
 565       }
 566       res = new_region_try_secondary_free_list();
 567       if (res != NULL) {
 568         return res;
 569       }
 570     }
 571   }
 572   res = _free_list.remove_head_or_null();
 573   if (res == NULL) {
 574     if (G1ConcRegionFreeingVerbose) {
 575       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 576                              "res == NULL, trying the secondary_free_list");
 577     }
 578     res = new_region_try_secondary_free_list();
 579   }
 580   if (res == NULL && do_expand) {
 581     ergo_verbose1(ErgoHeapSizing,
 582                   "attempt heap expansion",
 583                   ergo_format_reason("region allocation request failed")
 584                   ergo_format_byte("allocation request"),
 585                   word_size * HeapWordSize);
 586     if (expand(word_size * HeapWordSize)) {
 587       // Even though the heap was expanded, it might not have reached
 588       // the desired size. So, we cannot assume that the allocation
 589       // will succeed.
 590       res = _free_list.remove_head_or_null();
 591     }
 592   }
 593   return res;
 594 }
 595 
 596 size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
 597                                                           size_t word_size) {
 598   assert(isHumongous(word_size), "word_size should be humongous");
 599   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 600 
 601   size_t first = G1_NULL_HRS_INDEX;
 602   if (num_regions == 1) {
 603     // Only one region to allocate, no need to go through the slower
 604     // path. The caller will attempt the expasion if this fails, so
 605     // let's not try to expand here too.
 606     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 607     if (hr != NULL) {
 608       first = hr->hrs_index();
 609     } else {
 610       first = G1_NULL_HRS_INDEX;
 611     }
 612   } else {
 613     // We can't allocate humongous regions while cleanupComplete() is
 614     // running, since some of the regions we find to be empty might not
 615     // yet be added to the free list and it is not straightforward to
 616     // know which list they are on so that we can remove them. Note
 617     // that we only need to do this if we need to allocate more than
 618     // one region to satisfy the current humongous allocation
 619     // request. If we are only allocating one region we use the common
 620     // region allocation code (see above).
 621     wait_while_free_regions_coming();
 622     append_secondary_free_list_if_not_empty_with_lock();
 623 
 624     if (free_regions() >= num_regions) {
 625       first = _hrs.find_contiguous(num_regions);
 626       if (first != G1_NULL_HRS_INDEX) {
 627         for (size_t i = first; i < first + num_regions; ++i) {
 628           HeapRegion* hr = region_at(i);
 629           assert(hr->is_empty(), "sanity");
 630           assert(is_on_master_free_list(hr), "sanity");
 631           hr->set_pending_removal(true);
 632         }
 633         _free_list.remove_all_pending(num_regions);
 634       }
 635     }
 636   }
 637   return first;
 638 }
 639 
 640 HeapWord*
 641 G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
 642                                                            size_t num_regions,
 643                                                            size_t word_size) {
 644   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 645   assert(isHumongous(word_size), "word_size should be humongous");
 646   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 647 
 648   // Index of last region in the series + 1.
 649   size_t last = first + num_regions;
 650 
 651   // We need to initialize the region(s) we just discovered. This is
 652   // a bit tricky given that it can happen concurrently with
 653   // refinement threads refining cards on these regions and
 654   // potentially wanting to refine the BOT as they are scanning
 655   // those cards (this can happen shortly after a cleanup; see CR
 656   // 6991377). So we have to set up the region(s) carefully and in
 657   // a specific order.
 658 
 659   // The word size sum of all the regions we will allocate.
 660   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
 661   assert(word_size <= word_size_sum, "sanity");
 662 
 663   // This will be the "starts humongous" region.
 664   HeapRegion* first_hr = region_at(first);
 665   // The header of the new object will be placed at the bottom of
 666   // the first region.
 667   HeapWord* new_obj = first_hr->bottom();
 668   // This will be the new end of the first region in the series that
 669   // should also match the end of the last region in the seriers.
 670   HeapWord* new_end = new_obj + word_size_sum;
 671   // This will be the new top of the first region that will reflect
 672   // this allocation.
 673   HeapWord* new_top = new_obj + word_size;
 674 
 675   // First, we need to zero the header of the space that we will be
 676   // allocating. When we update top further down, some refinement
 677   // threads might try to scan the region. By zeroing the header we
 678   // ensure that any thread that will try to scan the region will
 679   // come across the zero klass word and bail out.
 680   //
 681   // NOTE: It would not have been correct to have used
 682   // CollectedHeap::fill_with_object() and make the space look like
 683   // an int array. The thread that is doing the allocation will
 684   // later update the object header to a potentially different array
 685   // type and, for a very short period of time, the klass and length
 686   // fields will be inconsistent. This could cause a refinement
 687   // thread to calculate the object size incorrectly.
 688   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 689 
 690   // We will set up the first region as "starts humongous". This
 691   // will also update the BOT covering all the regions to reflect
 692   // that there is a single object that starts at the bottom of the
 693   // first region.
 694   first_hr->set_startsHumongous(new_top, new_end);
 695 
 696   // Then, if there are any, we will set up the "continues
 697   // humongous" regions.
 698   HeapRegion* hr = NULL;
 699   for (size_t i = first + 1; i < last; ++i) {
 700     hr = region_at(i);
 701     hr->set_continuesHumongous(first_hr);
 702   }
 703   // If we have "continues humongous" regions (hr != NULL), then the
 704   // end of the last one should match new_end.
 705   assert(hr == NULL || hr->end() == new_end, "sanity");
 706 
 707   // Up to this point no concurrent thread would have been able to
 708   // do any scanning on any region in this series. All the top
 709   // fields still point to bottom, so the intersection between
 710   // [bottom,top] and [card_start,card_end] will be empty. Before we
 711   // update the top fields, we'll do a storestore to make sure that
 712   // no thread sees the update to top before the zeroing of the
 713   // object header and the BOT initialization.
 714   OrderAccess::storestore();
 715 
 716   // Now that the BOT and the object header have been initialized,
 717   // we can update top of the "starts humongous" region.
 718   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 719          "new_top should be in this region");
 720   first_hr->set_top(new_top);
 721   if (_hr_printer.is_active()) {
 722     HeapWord* bottom = first_hr->bottom();
 723     HeapWord* end = first_hr->orig_end();
 724     if ((first + 1) == last) {
 725       // the series has a single humongous region
 726       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 727     } else {
 728       // the series has more than one humongous regions
 729       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 730     }
 731   }
 732 
 733   // Now, we will update the top fields of the "continues humongous"
 734   // regions. The reason we need to do this is that, otherwise,
 735   // these regions would look empty and this will confuse parts of
 736   // G1. For example, the code that looks for a consecutive number
 737   // of empty regions will consider them empty and try to
 738   // re-allocate them. We can extend is_empty() to also include
 739   // !continuesHumongous(), but it is easier to just update the top
 740   // fields here. The way we set top for all regions (i.e., top ==
 741   // end for all regions but the last one, top == new_top for the
 742   // last one) is actually used when we will free up the humongous
 743   // region in free_humongous_region().
 744   hr = NULL;
 745   for (size_t i = first + 1; i < last; ++i) {
 746     hr = region_at(i);
 747     if ((i + 1) == last) {
 748       // last continues humongous region
 749       assert(hr->bottom() < new_top && new_top <= hr->end(),
 750              "new_top should fall on this region");
 751       hr->set_top(new_top);
 752       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 753     } else {
 754       // not last one
 755       assert(new_top > hr->end(), "new_top should be above this region");
 756       hr->set_top(hr->end());
 757       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 758     }
 759   }
 760   // If we have continues humongous regions (hr != NULL), then the
 761   // end of the last one should match new_end and its top should
 762   // match new_top.
 763   assert(hr == NULL ||
 764          (hr->end() == new_end && hr->top() == new_top), "sanity");
 765 
 766   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 767   _summary_bytes_used += first_hr->used();
 768   _humongous_set.add(first_hr);
 769 
 770   return new_obj;
 771 }
 772 
 773 // If could fit into free regions w/o expansion, try.
 774 // Otherwise, if can expand, do so.
 775 // Otherwise, if using ex regions might help, try with ex given back.
 776 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 777   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 778 
 779   verify_region_sets_optional();
 780 
 781   size_t num_regions =
 782          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 783   size_t x_size = expansion_regions();
 784   size_t fs = _hrs.free_suffix();
 785   size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
 786   if (first == G1_NULL_HRS_INDEX) {
 787     // The only thing we can do now is attempt expansion.
 788     if (fs + x_size >= num_regions) {
 789       // If the number of regions we're trying to allocate for this
 790       // object is at most the number of regions in the free suffix,
 791       // then the call to humongous_obj_allocate_find_first() above
 792       // should have succeeded and we wouldn't be here.
 793       //
 794       // We should only be trying to expand when the free suffix is
 795       // not sufficient for the object _and_ we have some expansion
 796       // room available.
 797       assert(num_regions > fs, "earlier allocation should have succeeded");
 798 
 799       ergo_verbose1(ErgoHeapSizing,
 800                     "attempt heap expansion",
 801                     ergo_format_reason("humongous allocation request failed")
 802                     ergo_format_byte("allocation request"),
 803                     word_size * HeapWordSize);
 804       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 805         // Even though the heap was expanded, it might not have
 806         // reached the desired size. So, we cannot assume that the
 807         // allocation will succeed.
 808         first = humongous_obj_allocate_find_first(num_regions, word_size);
 809       }
 810     }
 811   }
 812 
 813   HeapWord* result = NULL;
 814   if (first != G1_NULL_HRS_INDEX) {
 815     result =
 816       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 817     assert(result != NULL, "it should always return a valid result");
 818   }
 819 
 820   verify_region_sets_optional();
 821 
 822   return result;
 823 }
 824 
 825 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 826   assert_heap_not_locked_and_not_at_safepoint();
 827   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 828 
 829   unsigned int dummy_gc_count_before;
 830   return attempt_allocation(word_size, &dummy_gc_count_before);
 831 }
 832 
 833 HeapWord*
 834 G1CollectedHeap::mem_allocate(size_t word_size,
 835                               bool*  gc_overhead_limit_was_exceeded) {
 836   assert_heap_not_locked_and_not_at_safepoint();
 837 
 838   // Loop until the allocation is satisified, or unsatisfied after GC.
 839   for (int try_count = 1; /* we'll return */; try_count += 1) {
 840     unsigned int gc_count_before;
 841 
 842     HeapWord* result = NULL;
 843     if (!isHumongous(word_size)) {
 844       result = attempt_allocation(word_size, &gc_count_before);
 845     } else {
 846       result = attempt_allocation_humongous(word_size, &gc_count_before);
 847     }
 848     if (result != NULL) {
 849       return result;
 850     }
 851 
 852     // Create the garbage collection operation...
 853     VM_G1CollectForAllocation op(gc_count_before, word_size);
 854     // ...and get the VM thread to execute it.
 855     VMThread::execute(&op);
 856 
 857     if (op.prologue_succeeded() && op.pause_succeeded()) {
 858       // If the operation was successful we'll return the result even
 859       // if it is NULL. If the allocation attempt failed immediately
 860       // after a Full GC, it's unlikely we'll be able to allocate now.
 861       HeapWord* result = op.result();
 862       if (result != NULL && !isHumongous(word_size)) {
 863         // Allocations that take place on VM operations do not do any
 864         // card dirtying and we have to do it here. We only have to do
 865         // this for non-humongous allocations, though.
 866         dirty_young_block(result, word_size);
 867       }
 868       return result;
 869     } else {
 870       assert(op.result() == NULL,
 871              "the result should be NULL if the VM op did not succeed");
 872     }
 873 
 874     // Give a warning if we seem to be looping forever.
 875     if ((QueuedAllocationWarningCount > 0) &&
 876         (try_count % QueuedAllocationWarningCount == 0)) {
 877       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 878     }
 879   }
 880 
 881   ShouldNotReachHere();
 882   return NULL;
 883 }
 884 
 885 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 886                                            unsigned int *gc_count_before_ret) {
 887   // Make sure you read the note in attempt_allocation_humongous().
 888 
 889   assert_heap_not_locked_and_not_at_safepoint();
 890   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 891          "be called for humongous allocation requests");
 892 
 893   // We should only get here after the first-level allocation attempt
 894   // (attempt_allocation()) failed to allocate.
 895 
 896   // We will loop until a) we manage to successfully perform the
 897   // allocation or b) we successfully schedule a collection which
 898   // fails to perform the allocation. b) is the only case when we'll
 899   // return NULL.
 900   HeapWord* result = NULL;
 901   for (int try_count = 1; /* we'll return */; try_count += 1) {
 902     bool should_try_gc;
 903     unsigned int gc_count_before;
 904 
 905     {
 906       MutexLockerEx x(Heap_lock);
 907 
 908       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 909                                                       false /* bot_updates */);
 910       if (result != NULL) {
 911         return result;
 912       }
 913 
 914       // If we reach here, attempt_allocation_locked() above failed to
 915       // allocate a new region. So the mutator alloc region should be NULL.
 916       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 917 
 918       if (GC_locker::is_active_and_needs_gc()) {
 919         if (g1_policy()->can_expand_young_list()) {
 920           // No need for an ergo verbose message here,
 921           // can_expand_young_list() does this when it returns true.
 922           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 923                                                       false /* bot_updates */);
 924           if (result != NULL) {
 925             return result;
 926           }
 927         }
 928         should_try_gc = false;
 929       } else {
 930         // Read the GC count while still holding the Heap_lock.
 931         gc_count_before = SharedHeap::heap()->total_collections();
 932         should_try_gc = true;
 933       }
 934     }
 935 
 936     if (should_try_gc) {
 937       bool succeeded;
 938       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 939       if (result != NULL) {
 940         assert(succeeded, "only way to get back a non-NULL result");
 941         return result;
 942       }
 943 
 944       if (succeeded) {
 945         // If we get here we successfully scheduled a collection which
 946         // failed to allocate. No point in trying to allocate
 947         // further. We'll just return NULL.
 948         MutexLockerEx x(Heap_lock);
 949         *gc_count_before_ret = SharedHeap::heap()->total_collections();
 950         return NULL;
 951       }
 952     } else {
 953       GC_locker::stall_until_clear();
 954     }
 955 
 956     // We can reach here if we were unsuccessul in scheduling a
 957     // collection (because another thread beat us to it) or if we were
 958     // stalled due to the GC locker. In either can we should retry the
 959     // allocation attempt in case another thread successfully
 960     // performed a collection and reclaimed enough space. We do the
 961     // first attempt (without holding the Heap_lock) here and the
 962     // follow-on attempt will be at the start of the next loop
 963     // iteration (after taking the Heap_lock).
 964     result = _mutator_alloc_region.attempt_allocation(word_size,
 965                                                       false /* bot_updates */);
 966     if (result != NULL ){
 967       return result;
 968     }
 969 
 970     // Give a warning if we seem to be looping forever.
 971     if ((QueuedAllocationWarningCount > 0) &&
 972         (try_count % QueuedAllocationWarningCount == 0)) {
 973       warning("G1CollectedHeap::attempt_allocation_slow() "
 974               "retries %d times", try_count);
 975     }
 976   }
 977 
 978   ShouldNotReachHere();
 979   return NULL;
 980 }
 981 
 982 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 983                                           unsigned int * gc_count_before_ret) {
 984   // The structure of this method has a lot of similarities to
 985   // attempt_allocation_slow(). The reason these two were not merged
 986   // into a single one is that such a method would require several "if
 987   // allocation is not humongous do this, otherwise do that"
 988   // conditional paths which would obscure its flow. In fact, an early
 989   // version of this code did use a unified method which was harder to
 990   // follow and, as a result, it had subtle bugs that were hard to
 991   // track down. So keeping these two methods separate allows each to
 992   // be more readable. It will be good to keep these two in sync as
 993   // much as possible.
 994 
 995   assert_heap_not_locked_and_not_at_safepoint();
 996   assert(isHumongous(word_size), "attempt_allocation_humongous() "
 997          "should only be called for humongous allocations");
 998 
 999   // We will loop until a) we manage to successfully perform the
1000   // allocation or b) we successfully schedule a collection which
1001   // fails to perform the allocation. b) is the only case when we'll
1002   // return NULL.
1003   HeapWord* result = NULL;
1004   for (int try_count = 1; /* we'll return */; try_count += 1) {
1005     bool should_try_gc;
1006     unsigned int gc_count_before;
1007 
1008     {
1009       MutexLockerEx x(Heap_lock);
1010 
1011       // Given that humongous objects are not allocated in young
1012       // regions, we'll first try to do the allocation without doing a
1013       // collection hoping that there's enough space in the heap.
1014       result = humongous_obj_allocate(word_size);
1015       if (result != NULL) {
1016         return result;
1017       }
1018 
1019       if (GC_locker::is_active_and_needs_gc()) {
1020         should_try_gc = false;
1021       } else {
1022         // Read the GC count while still holding the Heap_lock.
1023         gc_count_before = SharedHeap::heap()->total_collections();
1024         should_try_gc = true;
1025       }
1026     }
1027 
1028     if (should_try_gc) {
1029       // If we failed to allocate the humongous object, we should try to
1030       // do a collection pause (if we're allowed) in case it reclaims
1031       // enough space for the allocation to succeed after the pause.
1032 
1033       bool succeeded;
1034       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1035       if (result != NULL) {
1036         assert(succeeded, "only way to get back a non-NULL result");
1037         return result;
1038       }
1039 
1040       if (succeeded) {
1041         // If we get here we successfully scheduled a collection which
1042         // failed to allocate. No point in trying to allocate
1043         // further. We'll just return NULL.
1044         MutexLockerEx x(Heap_lock);
1045         *gc_count_before_ret = SharedHeap::heap()->total_collections();
1046         return NULL;
1047       }
1048     } else {
1049       GC_locker::stall_until_clear();
1050     }
1051 
1052     // We can reach here if we were unsuccessul in scheduling a
1053     // collection (because another thread beat us to it) or if we were
1054     // stalled due to the GC locker. In either can we should retry the
1055     // allocation attempt in case another thread successfully
1056     // performed a collection and reclaimed enough space.  Give a
1057     // warning if we seem to be looping forever.
1058 
1059     if ((QueuedAllocationWarningCount > 0) &&
1060         (try_count % QueuedAllocationWarningCount == 0)) {
1061       warning("G1CollectedHeap::attempt_allocation_humongous() "
1062               "retries %d times", try_count);
1063     }
1064   }
1065 
1066   ShouldNotReachHere();
1067   return NULL;
1068 }
1069 
1070 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1071                                        bool expect_null_mutator_alloc_region) {
1072   assert_at_safepoint(true /* should_be_vm_thread */);
1073   assert(_mutator_alloc_region.get() == NULL ||
1074                                              !expect_null_mutator_alloc_region,
1075          "the current alloc region was unexpectedly found to be non-NULL");
1076 
1077   if (!isHumongous(word_size)) {
1078     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1079                                                       false /* bot_updates */);
1080   } else {
1081     return humongous_obj_allocate(word_size);
1082   }
1083 
1084   ShouldNotReachHere();
1085 }
1086 
1087 class PostMCRemSetClearClosure: public HeapRegionClosure {
1088   ModRefBarrierSet* _mr_bs;
1089 public:
1090   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1091   bool doHeapRegion(HeapRegion* r) {
1092     r->reset_gc_time_stamp();
1093     if (r->continuesHumongous())
1094       return false;
1095     HeapRegionRemSet* hrrs = r->rem_set();
1096     if (hrrs != NULL) hrrs->clear();
1097     // You might think here that we could clear just the cards
1098     // corresponding to the used region.  But no: if we leave a dirty card
1099     // in a region we might allocate into, then it would prevent that card
1100     // from being enqueued, and cause it to be missed.
1101     // Re: the performance cost: we shouldn't be doing full GC anyway!
1102     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1103     return false;
1104   }
1105 };
1106 
1107 
1108 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
1109   ModRefBarrierSet* _mr_bs;
1110 public:
1111   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1112   bool doHeapRegion(HeapRegion* r) {
1113     if (r->continuesHumongous()) return false;
1114     if (r->used_region().word_size() != 0) {
1115       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
1116     }
1117     return false;
1118   }
1119 };
1120 
1121 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1122   G1CollectedHeap*   _g1h;
1123   UpdateRSOopClosure _cl;
1124   int                _worker_i;
1125 public:
1126   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1127     _cl(g1->g1_rem_set(), worker_i),
1128     _worker_i(worker_i),
1129     _g1h(g1)
1130   { }
1131 
1132   bool doHeapRegion(HeapRegion* r) {
1133     if (!r->continuesHumongous()) {
1134       _cl.set_from(r);
1135       r->oop_iterate(&_cl);
1136     }
1137     return false;
1138   }
1139 };
1140 
1141 class ParRebuildRSTask: public AbstractGangTask {
1142   G1CollectedHeap* _g1;
1143 public:
1144   ParRebuildRSTask(G1CollectedHeap* g1)
1145     : AbstractGangTask("ParRebuildRSTask"),
1146       _g1(g1)
1147   { }
1148 
1149   void work(int i) {
1150     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
1151     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
1152                                          HeapRegion::RebuildRSClaimValue);
1153   }
1154 };
1155 
1156 class PostCompactionPrinterClosure: public HeapRegionClosure {
1157 private:
1158   G1HRPrinter* _hr_printer;
1159 public:
1160   bool doHeapRegion(HeapRegion* hr) {
1161     assert(!hr->is_young(), "not expecting to find young regions");
1162     // We only generate output for non-empty regions.
1163     if (!hr->is_empty()) {
1164       if (!hr->isHumongous()) {
1165         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1166       } else if (hr->startsHumongous()) {
1167         if (hr->capacity() == (size_t) HeapRegion::GrainBytes) {
1168           // single humongous region
1169           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1170         } else {
1171           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1172         }
1173       } else {
1174         assert(hr->continuesHumongous(), "only way to get here");
1175         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1176       }
1177     }
1178     return false;
1179   }
1180 
1181   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1182     : _hr_printer(hr_printer) { }
1183 };
1184 
1185 bool G1CollectedHeap::do_collection(bool explicit_gc,
1186                                     bool clear_all_soft_refs,
1187                                     size_t word_size) {
1188   assert_at_safepoint(true /* should_be_vm_thread */);
1189 
1190   if (GC_locker::check_active_before_gc()) {
1191     return false;
1192   }
1193 
1194   SvcGCMarker sgcm(SvcGCMarker::FULL);
1195   ResourceMark rm;
1196 
1197   if (PrintHeapAtGC) {
1198     Universe::print_heap_before_gc();
1199   }
1200 
1201   verify_region_sets_optional();
1202 
1203   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1204                            collector_policy()->should_clear_all_soft_refs();
1205 
1206   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1207 
1208   {
1209     IsGCActiveMark x;
1210 
1211     // Timing
1212     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
1213     assert(!system_gc || explicit_gc, "invariant");
1214     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
1215     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1216     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1217                 PrintGC, true, gclog_or_tty);
1218 
1219     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1220     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1221 
1222     double start = os::elapsedTime();
1223     g1_policy()->record_full_collection_start();
1224 
1225     wait_while_free_regions_coming();
1226     append_secondary_free_list_if_not_empty_with_lock();
1227 
1228     gc_prologue(true);
1229     increment_total_collections(true /* full gc */);
1230 
1231     size_t g1h_prev_used = used();
1232     assert(used() == recalculate_used(), "Should be equal");
1233 
1234     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
1235       HandleMark hm;  // Discard invalid handles created during verification
1236       gclog_or_tty->print(" VerifyBeforeGC:");
1237       prepare_for_verify();
1238       Universe::verify(/* allow dirty */ true,
1239                        /* silent      */ false,
1240                        /* option      */ VerifyOption_G1UsePrevMarking);
1241 
1242     }
1243     pre_full_gc_dump();
1244 
1245     COMPILER2_PRESENT(DerivedPointerTable::clear());
1246 
1247     // We want to discover references, but not process them yet.
1248     // This mode is disabled in
1249     // instanceRefKlass::process_discovered_references if the
1250     // generation does some collection work, or
1251     // instanceRefKlass::enqueue_discovered_references if the
1252     // generation returns without doing any work.
1253     ref_processor()->disable_discovery();
1254     ref_processor()->abandon_partial_discovery();
1255     ref_processor()->verify_no_references_recorded();
1256 
1257     // Abandon current iterations of concurrent marking and concurrent
1258     // refinement, if any are in progress.
1259     concurrent_mark()->abort();
1260 
1261     // Make sure we'll choose a new allocation region afterwards.
1262     release_mutator_alloc_region();
1263     abandon_gc_alloc_regions();
1264     g1_rem_set()->cleanupHRRS();
1265     tear_down_region_lists();
1266 
1267     // We should call this after we retire any currently active alloc
1268     // regions so that all the ALLOC / RETIRE events are generated
1269     // before the start GC event.
1270     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1271 
1272     // We may have added regions to the current incremental collection
1273     // set between the last GC or pause and now. We need to clear the
1274     // incremental collection set and then start rebuilding it afresh
1275     // after this full GC.
1276     abandon_collection_set(g1_policy()->inc_cset_head());
1277     g1_policy()->clear_incremental_cset();
1278     g1_policy()->stop_incremental_cset_building();
1279 
1280     empty_young_list();
1281     g1_policy()->set_full_young_gcs(true);
1282 
1283     // See the comment in G1CollectedHeap::ref_processing_init() about
1284     // how reference processing currently works in G1.
1285 
1286     // Temporarily make reference _discovery_ single threaded (non-MT).
1287     ReferenceProcessorMTDiscoveryMutator rp_disc_ser(ref_processor(), false);
1288 
1289     // Temporarily make refs discovery atomic
1290     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
1291 
1292     // Temporarily clear _is_alive_non_header
1293     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
1294 
1295     ref_processor()->enable_discovery();
1296     ref_processor()->setup_policy(do_clear_all_soft_refs);
1297     // Do collection work
1298     {
1299       HandleMark hm;  // Discard invalid handles created during gc
1300       G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
1301     }
1302     assert(free_regions() == 0, "we should not have added any free regions");
1303     rebuild_region_lists();
1304 
1305     _summary_bytes_used = recalculate_used();
1306 
1307     ref_processor()->enqueue_discovered_references();
1308 
1309     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1310 
1311     MemoryService::track_memory_usage();
1312 
1313     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
1314       HandleMark hm;  // Discard invalid handles created during verification
1315       gclog_or_tty->print(" VerifyAfterGC:");
1316       prepare_for_verify();
1317       Universe::verify(/* allow dirty */ false,
1318                        /* silent      */ false,
1319                        /* option      */ VerifyOption_G1UsePrevMarking);
1320 
1321     }
1322     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1323 
1324     reset_gc_time_stamp();
1325     // Since everything potentially moved, we will clear all remembered
1326     // sets, and clear all cards.  Later we will rebuild remebered
1327     // sets. We will also reset the GC time stamps of the regions.
1328     PostMCRemSetClearClosure rs_clear(mr_bs());
1329     heap_region_iterate(&rs_clear);
1330 
1331     // Resize the heap if necessary.
1332     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1333 
1334     if (_hr_printer.is_active()) {
1335       // We should do this after we potentially resize the heap so
1336       // that all the COMMIT / UNCOMMIT events are generated before
1337       // the end GC event.
1338 
1339       PostCompactionPrinterClosure cl(hr_printer());
1340       heap_region_iterate(&cl);
1341 
1342       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1343     }
1344 
1345     if (_cg1r->use_cache()) {
1346       _cg1r->clear_and_record_card_counts();
1347       _cg1r->clear_hot_cache();
1348     }
1349 
1350     // Rebuild remembered sets of all regions.
1351 
1352     if (G1CollectedHeap::use_parallel_gc_threads()) {
1353       ParRebuildRSTask rebuild_rs_task(this);
1354       assert(check_heap_region_claim_values(
1355              HeapRegion::InitialClaimValue), "sanity check");
1356       set_par_threads(workers()->total_workers());
1357       workers()->run_task(&rebuild_rs_task);
1358       set_par_threads(0);
1359       assert(check_heap_region_claim_values(
1360              HeapRegion::RebuildRSClaimValue), "sanity check");
1361       reset_heap_region_claim_values();
1362     } else {
1363       RebuildRSOutOfRegionClosure rebuild_rs(this);
1364       heap_region_iterate(&rebuild_rs);
1365     }
1366 
1367     if (PrintGC) {
1368       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1369     }
1370 
1371     if (true) { // FIXME
1372       // Ask the permanent generation to adjust size for full collections
1373       perm()->compute_new_size();
1374     }
1375 
1376     // Start a new incremental collection set for the next pause
1377     assert(g1_policy()->collection_set() == NULL, "must be");
1378     g1_policy()->start_incremental_cset_building();
1379 
1380     // Clear the _cset_fast_test bitmap in anticipation of adding
1381     // regions to the incremental collection set for the next
1382     // evacuation pause.
1383     clear_cset_fast_test();
1384 
1385     init_mutator_alloc_region();
1386 
1387     double end = os::elapsedTime();
1388     g1_policy()->record_full_collection_end();
1389 
1390 #ifdef TRACESPINNING
1391     ParallelTaskTerminator::print_termination_counts();
1392 #endif
1393 
1394     gc_epilogue(true);
1395 
1396     // Discard all rset updates
1397     JavaThread::dirty_card_queue_set().abandon_logs();
1398     assert(!G1DeferredRSUpdate
1399            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1400   }
1401 
1402   _young_list->reset_sampled_info();
1403   // At this point there should be no regions in the
1404   // entire heap tagged as young.
1405   assert( check_young_list_empty(true /* check_heap */),
1406     "young list should be empty at this point");
1407 
1408   // Update the number of full collections that have been completed.
1409   increment_full_collections_completed(false /* concurrent */);
1410 
1411   _hrs.verify_optional();
1412   verify_region_sets_optional();
1413 
1414   if (PrintHeapAtGC) {
1415     Universe::print_heap_after_gc();
1416   }
1417   g1mm()->update_counters();
1418   post_full_gc_dump();
1419 
1420   return true;
1421 }
1422 
1423 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1424   // do_collection() will return whether it succeeded in performing
1425   // the GC. Currently, there is no facility on the
1426   // do_full_collection() API to notify the caller than the collection
1427   // did not succeed (e.g., because it was locked out by the GC
1428   // locker). So, right now, we'll ignore the return value.
1429   bool dummy = do_collection(true,                /* explicit_gc */
1430                              clear_all_soft_refs,
1431                              0                    /* word_size */);
1432 }
1433 
1434 // This code is mostly copied from TenuredGeneration.
1435 void
1436 G1CollectedHeap::
1437 resize_if_necessary_after_full_collection(size_t word_size) {
1438   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1439 
1440   // Include the current allocation, if any, and bytes that will be
1441   // pre-allocated to support collections, as "used".
1442   const size_t used_after_gc = used();
1443   const size_t capacity_after_gc = capacity();
1444   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1445 
1446   // This is enforced in arguments.cpp.
1447   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1448          "otherwise the code below doesn't make sense");
1449 
1450   // We don't have floating point command-line arguments
1451   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1452   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1453   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1454   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1455 
1456   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1457   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1458 
1459   // We have to be careful here as these two calculations can overflow
1460   // 32-bit size_t's.
1461   double used_after_gc_d = (double) used_after_gc;
1462   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1463   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1464 
1465   // Let's make sure that they are both under the max heap size, which
1466   // by default will make them fit into a size_t.
1467   double desired_capacity_upper_bound = (double) max_heap_size;
1468   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1469                                     desired_capacity_upper_bound);
1470   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1471                                     desired_capacity_upper_bound);
1472 
1473   // We can now safely turn them into size_t's.
1474   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1475   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1476 
1477   // This assert only makes sense here, before we adjust them
1478   // with respect to the min and max heap size.
1479   assert(minimum_desired_capacity <= maximum_desired_capacity,
1480          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1481                  "maximum_desired_capacity = "SIZE_FORMAT,
1482                  minimum_desired_capacity, maximum_desired_capacity));
1483 
1484   // Should not be greater than the heap max size. No need to adjust
1485   // it with respect to the heap min size as it's a lower bound (i.e.,
1486   // we'll try to make the capacity larger than it, not smaller).
1487   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1488   // Should not be less than the heap min size. No need to adjust it
1489   // with respect to the heap max size as it's an upper bound (i.e.,
1490   // we'll try to make the capacity smaller than it, not greater).
1491   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1492 
1493   if (capacity_after_gc < minimum_desired_capacity) {
1494     // Don't expand unless it's significant
1495     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1496     ergo_verbose4(ErgoHeapSizing,
1497                   "attempt heap expansion",
1498                   ergo_format_reason("capacity lower than "
1499                                      "min desired capacity after Full GC")
1500                   ergo_format_byte("capacity")
1501                   ergo_format_byte("occupancy")
1502                   ergo_format_byte_perc("min desired capacity"),
1503                   capacity_after_gc, used_after_gc,
1504                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1505     expand(expand_bytes);
1506 
1507     // No expansion, now see if we want to shrink
1508   } else if (capacity_after_gc > maximum_desired_capacity) {
1509     // Capacity too large, compute shrinking size
1510     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1511     ergo_verbose4(ErgoHeapSizing,
1512                   "attempt heap shrinking",
1513                   ergo_format_reason("capacity higher than "
1514                                      "max desired capacity after Full GC")
1515                   ergo_format_byte("capacity")
1516                   ergo_format_byte("occupancy")
1517                   ergo_format_byte_perc("max desired capacity"),
1518                   capacity_after_gc, used_after_gc,
1519                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1520     shrink(shrink_bytes);
1521   }
1522 }
1523 
1524 
1525 HeapWord*
1526 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1527                                            bool* succeeded) {
1528   assert_at_safepoint(true /* should_be_vm_thread */);
1529 
1530   *succeeded = true;
1531   // Let's attempt the allocation first.
1532   HeapWord* result =
1533     attempt_allocation_at_safepoint(word_size,
1534                                  false /* expect_null_mutator_alloc_region */);
1535   if (result != NULL) {
1536     assert(*succeeded, "sanity");
1537     return result;
1538   }
1539 
1540   // In a G1 heap, we're supposed to keep allocation from failing by
1541   // incremental pauses.  Therefore, at least for now, we'll favor
1542   // expansion over collection.  (This might change in the future if we can
1543   // do something smarter than full collection to satisfy a failed alloc.)
1544   result = expand_and_allocate(word_size);
1545   if (result != NULL) {
1546     assert(*succeeded, "sanity");
1547     return result;
1548   }
1549 
1550   // Expansion didn't work, we'll try to do a Full GC.
1551   bool gc_succeeded = do_collection(false, /* explicit_gc */
1552                                     false, /* clear_all_soft_refs */
1553                                     word_size);
1554   if (!gc_succeeded) {
1555     *succeeded = false;
1556     return NULL;
1557   }
1558 
1559   // Retry the allocation
1560   result = attempt_allocation_at_safepoint(word_size,
1561                                   true /* expect_null_mutator_alloc_region */);
1562   if (result != NULL) {
1563     assert(*succeeded, "sanity");
1564     return result;
1565   }
1566 
1567   // Then, try a Full GC that will collect all soft references.
1568   gc_succeeded = do_collection(false, /* explicit_gc */
1569                                true,  /* clear_all_soft_refs */
1570                                word_size);
1571   if (!gc_succeeded) {
1572     *succeeded = false;
1573     return NULL;
1574   }
1575 
1576   // Retry the allocation once more
1577   result = attempt_allocation_at_safepoint(word_size,
1578                                   true /* expect_null_mutator_alloc_region */);
1579   if (result != NULL) {
1580     assert(*succeeded, "sanity");
1581     return result;
1582   }
1583 
1584   assert(!collector_policy()->should_clear_all_soft_refs(),
1585          "Flag should have been handled and cleared prior to this point");
1586 
1587   // What else?  We might try synchronous finalization later.  If the total
1588   // space available is large enough for the allocation, then a more
1589   // complete compaction phase than we've tried so far might be
1590   // appropriate.
1591   assert(*succeeded, "sanity");
1592   return NULL;
1593 }
1594 
1595 // Attempting to expand the heap sufficiently
1596 // to support an allocation of the given "word_size".  If
1597 // successful, perform the allocation and return the address of the
1598 // allocated block, or else "NULL".
1599 
1600 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1601   assert_at_safepoint(true /* should_be_vm_thread */);
1602 
1603   verify_region_sets_optional();
1604 
1605   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1606   ergo_verbose1(ErgoHeapSizing,
1607                 "attempt heap expansion",
1608                 ergo_format_reason("allocation request failed")
1609                 ergo_format_byte("allocation request"),
1610                 word_size * HeapWordSize);
1611   if (expand(expand_bytes)) {
1612     _hrs.verify_optional();
1613     verify_region_sets_optional();
1614     return attempt_allocation_at_safepoint(word_size,
1615                                  false /* expect_null_mutator_alloc_region */);
1616   }
1617   return NULL;
1618 }
1619 
1620 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1621                                              HeapWord* new_end) {
1622   assert(old_end != new_end, "don't call this otherwise");
1623   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1624 
1625   // Update the committed mem region.
1626   _g1_committed.set_end(new_end);
1627   // Tell the card table about the update.
1628   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1629   // Tell the BOT about the update.
1630   _bot_shared->resize(_g1_committed.word_size());
1631 }
1632 
1633 bool G1CollectedHeap::expand(size_t expand_bytes) {
1634   size_t old_mem_size = _g1_storage.committed_size();
1635   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1636   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1637                                        HeapRegion::GrainBytes);
1638   ergo_verbose2(ErgoHeapSizing,
1639                 "expand the heap",
1640                 ergo_format_byte("requested expansion amount")
1641                 ergo_format_byte("attempted expansion amount"),
1642                 expand_bytes, aligned_expand_bytes);
1643 
1644   // First commit the memory.
1645   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1646   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1647   if (successful) {
1648     // Then propagate this update to the necessary data structures.
1649     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1650     update_committed_space(old_end, new_end);
1651 
1652     FreeRegionList expansion_list("Local Expansion List");
1653     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1654     assert(mr.start() == old_end, "post-condition");
1655     // mr might be a smaller region than what was requested if
1656     // expand_by() was unable to allocate the HeapRegion instances
1657     assert(mr.end() <= new_end, "post-condition");
1658 
1659     size_t actual_expand_bytes = mr.byte_size();
1660     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1661     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1662            "post-condition");
1663     if (actual_expand_bytes < aligned_expand_bytes) {
1664       // We could not expand _hrs to the desired size. In this case we
1665       // need to shrink the committed space accordingly.
1666       assert(mr.end() < new_end, "invariant");
1667 
1668       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1669       // First uncommit the memory.
1670       _g1_storage.shrink_by(diff_bytes);
1671       // Then propagate this update to the necessary data structures.
1672       update_committed_space(new_end, mr.end());
1673     }
1674     _free_list.add_as_tail(&expansion_list);
1675 
1676     if (_hr_printer.is_active()) {
1677       HeapWord* curr = mr.start();
1678       while (curr < mr.end()) {
1679         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1680         _hr_printer.commit(curr, curr_end);
1681         curr = curr_end;
1682       }
1683       assert(curr == mr.end(), "post-condition");
1684     }
1685     g1_policy()->record_new_heap_size(n_regions());
1686   } else {
1687     ergo_verbose0(ErgoHeapSizing,
1688                   "did not expand the heap",
1689                   ergo_format_reason("heap expansion operation failed"));
1690     // The expansion of the virtual storage space was unsuccessful.
1691     // Let's see if it was because we ran out of swap.
1692     if (G1ExitOnExpansionFailure &&
1693         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1694       // We had head room...
1695       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1696     }
1697   }
1698   return successful;
1699 }
1700 
1701 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1702   size_t old_mem_size = _g1_storage.committed_size();
1703   size_t aligned_shrink_bytes =
1704     ReservedSpace::page_align_size_down(shrink_bytes);
1705   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1706                                          HeapRegion::GrainBytes);
1707   size_t num_regions_deleted = 0;
1708   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1709   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1710   assert(mr.end() == old_end, "post-condition");
1711 
1712   ergo_verbose3(ErgoHeapSizing,
1713                 "shrink the heap",
1714                 ergo_format_byte("requested shrinking amount")
1715                 ergo_format_byte("aligned shrinking amount")
1716                 ergo_format_byte("attempted shrinking amount"),
1717                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1718   if (mr.byte_size() > 0) {
1719     if (_hr_printer.is_active()) {
1720       HeapWord* curr = mr.end();
1721       while (curr > mr.start()) {
1722         HeapWord* curr_end = curr;
1723         curr -= HeapRegion::GrainWords;
1724         _hr_printer.uncommit(curr, curr_end);
1725       }
1726       assert(curr == mr.start(), "post-condition");
1727     }
1728 
1729     _g1_storage.shrink_by(mr.byte_size());
1730     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1731     assert(mr.start() == new_end, "post-condition");
1732 
1733     _expansion_regions += num_regions_deleted;
1734     update_committed_space(old_end, new_end);
1735     HeapRegionRemSet::shrink_heap(n_regions());
1736     g1_policy()->record_new_heap_size(n_regions());
1737   } else {
1738     ergo_verbose0(ErgoHeapSizing,
1739                   "did not shrink the heap",
1740                   ergo_format_reason("heap shrinking operation failed"));
1741   }
1742 }
1743 
1744 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1745   verify_region_sets_optional();
1746 
1747   // We should only reach here at the end of a Full GC which means we
1748   // should not not be holding to any GC alloc regions. The method
1749   // below will make sure of that and do any remaining clean up.
1750   abandon_gc_alloc_regions();
1751 
1752   // Instead of tearing down / rebuilding the free lists here, we
1753   // could instead use the remove_all_pending() method on free_list to
1754   // remove only the ones that we need to remove.
1755   tear_down_region_lists();  // We will rebuild them in a moment.
1756   shrink_helper(shrink_bytes);
1757   rebuild_region_lists();
1758 
1759   _hrs.verify_optional();
1760   verify_region_sets_optional();
1761 }
1762 
1763 // Public methods.
1764 
1765 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1766 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1767 #endif // _MSC_VER
1768 
1769 
1770 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1771   SharedHeap(policy_),
1772   _g1_policy(policy_),
1773   _dirty_card_queue_set(false),
1774   _into_cset_dirty_card_queue_set(false),
1775   _is_alive_closure(this),
1776   _ref_processor(NULL),
1777   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1778   _bot_shared(NULL),
1779   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1780   _evac_failure_scan_stack(NULL) ,
1781   _mark_in_progress(false),
1782   _cg1r(NULL), _summary_bytes_used(0),
1783   _refine_cte_cl(NULL),
1784   _full_collection(false),
1785   _free_list("Master Free List"),
1786   _secondary_free_list("Secondary Free List"),
1787   _humongous_set("Master Humongous Set"),
1788   _free_regions_coming(false),
1789   _young_list(new YoungList(this)),
1790   _gc_time_stamp(0),
1791   _retained_old_gc_alloc_region(NULL),
1792   _surviving_young_words(NULL),
1793   _full_collections_completed(0),
1794   _in_cset_fast_test(NULL),
1795   _in_cset_fast_test_base(NULL),
1796   _dirty_cards_region_list(NULL) {
1797   _g1h = this; // To catch bugs.
1798   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1799     vm_exit_during_initialization("Failed necessary allocation.");
1800   }
1801 
1802   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1803 
1804   int n_queues = MAX2((int)ParallelGCThreads, 1);
1805   _task_queues = new RefToScanQueueSet(n_queues);
1806 
1807   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1808   assert(n_rem_sets > 0, "Invariant.");
1809 
1810   HeapRegionRemSetIterator** iter_arr =
1811     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1812   for (int i = 0; i < n_queues; i++) {
1813     iter_arr[i] = new HeapRegionRemSetIterator();
1814   }
1815   _rem_set_iterator = iter_arr;
1816 
1817   for (int i = 0; i < n_queues; i++) {
1818     RefToScanQueue* q = new RefToScanQueue();
1819     q->initialize();
1820     _task_queues->register_queue(i, q);
1821   }
1822 
1823   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1824 }
1825 
1826 jint G1CollectedHeap::initialize() {
1827   CollectedHeap::pre_initialize();
1828   os::enable_vtime();
1829 
1830   // Necessary to satisfy locking discipline assertions.
1831 
1832   MutexLocker x(Heap_lock);
1833 
1834   // We have to initialize the printer before committing the heap, as
1835   // it will be used then.
1836   _hr_printer.set_active(G1PrintHeapRegions);
1837 
1838   // While there are no constraints in the GC code that HeapWordSize
1839   // be any particular value, there are multiple other areas in the
1840   // system which believe this to be true (e.g. oop->object_size in some
1841   // cases incorrectly returns the size in wordSize units rather than
1842   // HeapWordSize).
1843   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1844 
1845   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1846   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1847 
1848   // Ensure that the sizes are properly aligned.
1849   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1850   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1851 
1852   _cg1r = new ConcurrentG1Refine();
1853 
1854   // Reserve the maximum.
1855   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1856   // Includes the perm-gen.
1857 
1858   // When compressed oops are enabled, the preferred heap base
1859   // is calculated by subtracting the requested size from the
1860   // 32Gb boundary and using the result as the base address for
1861   // heap reservation. If the requested size is not aligned to
1862   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1863   // into the ReservedHeapSpace constructor) then the actual
1864   // base of the reserved heap may end up differing from the
1865   // address that was requested (i.e. the preferred heap base).
1866   // If this happens then we could end up using a non-optimal
1867   // compressed oops mode.
1868 
1869   // Since max_byte_size is aligned to the size of a heap region (checked
1870   // above), we also need to align the perm gen size as it might not be.
1871   const size_t total_reserved = max_byte_size +
1872                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
1873   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
1874 
1875   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1876 
1877   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
1878                             UseLargePages, addr);
1879 
1880   if (UseCompressedOops) {
1881     if (addr != NULL && !heap_rs.is_reserved()) {
1882       // Failed to reserve at specified address - the requested memory
1883       // region is taken already, for example, by 'java' launcher.
1884       // Try again to reserver heap higher.
1885       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1886 
1887       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
1888                                  UseLargePages, addr);
1889 
1890       if (addr != NULL && !heap_rs0.is_reserved()) {
1891         // Failed to reserve at specified address again - give up.
1892         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
1893         assert(addr == NULL, "");
1894 
1895         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
1896                                    UseLargePages, addr);
1897         heap_rs = heap_rs1;
1898       } else {
1899         heap_rs = heap_rs0;
1900       }
1901     }
1902   }
1903 
1904   if (!heap_rs.is_reserved()) {
1905     vm_exit_during_initialization("Could not reserve enough space for object heap");
1906     return JNI_ENOMEM;
1907   }
1908 
1909   // It is important to do this in a way such that concurrent readers can't
1910   // temporarily think somethings in the heap.  (I've actually seen this
1911   // happen in asserts: DLD.)
1912   _reserved.set_word_size(0);
1913   _reserved.set_start((HeapWord*)heap_rs.base());
1914   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1915 
1916   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
1917 
1918   // Create the gen rem set (and barrier set) for the entire reserved region.
1919   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1920   set_barrier_set(rem_set()->bs());
1921   if (barrier_set()->is_a(BarrierSet::ModRef)) {
1922     _mr_bs = (ModRefBarrierSet*)_barrier_set;
1923   } else {
1924     vm_exit_during_initialization("G1 requires a mod ref bs.");
1925     return JNI_ENOMEM;
1926   }
1927 
1928   // Also create a G1 rem set.
1929   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
1930     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1931   } else {
1932     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
1933     return JNI_ENOMEM;
1934   }
1935 
1936   // Carve out the G1 part of the heap.
1937 
1938   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
1939   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
1940                            g1_rs.size()/HeapWordSize);
1941   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
1942 
1943   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
1944 
1945   _g1_storage.initialize(g1_rs, 0);
1946   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
1947   _hrs.initialize((HeapWord*) _g1_reserved.start(),
1948                   (HeapWord*) _g1_reserved.end(),
1949                   _expansion_regions);
1950 
1951   // 6843694 - ensure that the maximum region index can fit
1952   // in the remembered set structures.
1953   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1954   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1955 
1956   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1957   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1958   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
1959             "too many cards per region");
1960 
1961   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
1962 
1963   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
1964                                              heap_word_size(init_byte_size));
1965 
1966   _g1h = this;
1967 
1968    _in_cset_fast_test_length = max_regions();
1969    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
1970 
1971    // We're biasing _in_cset_fast_test to avoid subtracting the
1972    // beginning of the heap every time we want to index; basically
1973    // it's the same with what we do with the card table.
1974    _in_cset_fast_test = _in_cset_fast_test_base -
1975                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
1976 
1977    // Clear the _cset_fast_test bitmap in anticipation of adding
1978    // regions to the incremental collection set for the first
1979    // evacuation pause.
1980    clear_cset_fast_test();
1981 
1982   // Create the ConcurrentMark data structure and thread.
1983   // (Must do this late, so that "max_regions" is defined.)
1984   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
1985   _cmThread = _cm->cmThread();
1986 
1987   // Initialize the from_card cache structure of HeapRegionRemSet.
1988   HeapRegionRemSet::init_heap(max_regions());
1989 
1990   // Now expand into the initial heap size.
1991   if (!expand(init_byte_size)) {
1992     vm_exit_during_initialization("Failed to allocate initial heap.");
1993     return JNI_ENOMEM;
1994   }
1995 
1996   // Perform any initialization actions delegated to the policy.
1997   g1_policy()->init();
1998 
1999   g1_policy()->note_start_of_mark_thread();
2000 
2001   _refine_cte_cl =
2002     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2003                                     g1_rem_set(),
2004                                     concurrent_g1_refine());
2005   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2006 
2007   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2008                                                SATB_Q_FL_lock,
2009                                                G1SATBProcessCompletedThreshold,
2010                                                Shared_SATB_Q_lock);
2011 
2012   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2013                                                 DirtyCardQ_FL_lock,
2014                                                 concurrent_g1_refine()->yellow_zone(),
2015                                                 concurrent_g1_refine()->red_zone(),
2016                                                 Shared_DirtyCardQ_lock);
2017 
2018   if (G1DeferredRSUpdate) {
2019     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2020                                       DirtyCardQ_FL_lock,
2021                                       -1, // never trigger processing
2022                                       -1, // no limit on length
2023                                       Shared_DirtyCardQ_lock,
2024                                       &JavaThread::dirty_card_queue_set());
2025   }
2026 
2027   // Initialize the card queue set used to hold cards containing
2028   // references into the collection set.
2029   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2030                                              DirtyCardQ_FL_lock,
2031                                              -1, // never trigger processing
2032                                              -1, // no limit on length
2033                                              Shared_DirtyCardQ_lock,
2034                                              &JavaThread::dirty_card_queue_set());
2035 
2036   // In case we're keeping closure specialization stats, initialize those
2037   // counts and that mechanism.
2038   SpecializationStats::clear();
2039 
2040   // Do later initialization work for concurrent refinement.
2041   _cg1r->init();
2042 
2043   // Here we allocate the dummy full region that is required by the
2044   // G1AllocRegion class. If we don't pass an address in the reserved
2045   // space here, lots of asserts fire.
2046 
2047   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2048                                              _g1_reserved.start());
2049   // We'll re-use the same region whether the alloc region will
2050   // require BOT updates or not and, if it doesn't, then a non-young
2051   // region will complain that it cannot support allocations without
2052   // BOT updates. So we'll tag the dummy region as young to avoid that.
2053   dummy_region->set_young();
2054   // Make sure it's full.
2055   dummy_region->set_top(dummy_region->end());
2056   G1AllocRegion::setup(this, dummy_region);
2057 
2058   init_mutator_alloc_region();
2059 
2060   // Do create of the monitoring and management support so that
2061   // values in the heap have been properly initialized.
2062   _g1mm = new G1MonitoringSupport(this, &_g1_storage);
2063 
2064   return JNI_OK;
2065 }
2066 
2067 void G1CollectedHeap::ref_processing_init() {
2068   // Reference processing in G1 currently works as follows:
2069   //
2070   // * There is only one reference processor instance that
2071   //   'spans' the entire heap. It is created by the code
2072   //   below.
2073   // * Reference discovery is not enabled during an incremental
2074   //   pause (see 6484982).
2075   // * Discoverered refs are not enqueued nor are they processed
2076   //   during an incremental pause (see 6484982).
2077   // * Reference discovery is enabled at initial marking.
2078   // * Reference discovery is disabled and the discovered
2079   //   references processed etc during remarking.
2080   // * Reference discovery is MT (see below).
2081   // * Reference discovery requires a barrier (see below).
2082   // * Reference processing is currently not MT (see 6608385).
2083   // * A full GC enables (non-MT) reference discovery and
2084   //   processes any discovered references.
2085 
2086   SharedHeap::ref_processing_init();
2087   MemRegion mr = reserved_region();
2088   _ref_processor =
2089     new ReferenceProcessor(mr,    // span
2090                            ParallelRefProcEnabled && (ParallelGCThreads > 1),    // mt processing
2091                            (int) ParallelGCThreads,   // degree of mt processing
2092                            ParallelGCThreads > 1 || ConcGCThreads > 1,  // mt discovery
2093                            (int) MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery
2094                            false,                     // Reference discovery is not atomic
2095                            &_is_alive_closure,        // is alive closure for efficiency
2096                            true);                     // Setting next fields of discovered
2097                                                       // lists requires a barrier.
2098 }
2099 
2100 size_t G1CollectedHeap::capacity() const {
2101   return _g1_committed.byte_size();
2102 }
2103 
2104 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2105                                                  DirtyCardQueue* into_cset_dcq,
2106                                                  bool concurrent,
2107                                                  int worker_i) {
2108   // Clean cards in the hot card cache
2109   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2110 
2111   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2112   int n_completed_buffers = 0;
2113   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2114     n_completed_buffers++;
2115   }
2116   g1_policy()->record_update_rs_processed_buffers(worker_i,
2117                                                   (double) n_completed_buffers);
2118   dcqs.clear_n_completed_buffers();
2119   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2120 }
2121 
2122 
2123 // Computes the sum of the storage used by the various regions.
2124 
2125 size_t G1CollectedHeap::used() const {
2126   assert(Heap_lock->owner() != NULL,
2127          "Should be owned on this thread's behalf.");
2128   size_t result = _summary_bytes_used;
2129   // Read only once in case it is set to NULL concurrently
2130   HeapRegion* hr = _mutator_alloc_region.get();
2131   if (hr != NULL)
2132     result += hr->used();
2133   return result;
2134 }
2135 
2136 size_t G1CollectedHeap::used_unlocked() const {
2137   size_t result = _summary_bytes_used;
2138   return result;
2139 }
2140 
2141 class SumUsedClosure: public HeapRegionClosure {
2142   size_t _used;
2143 public:
2144   SumUsedClosure() : _used(0) {}
2145   bool doHeapRegion(HeapRegion* r) {
2146     if (!r->continuesHumongous()) {
2147       _used += r->used();
2148     }
2149     return false;
2150   }
2151   size_t result() { return _used; }
2152 };
2153 
2154 size_t G1CollectedHeap::recalculate_used() const {
2155   SumUsedClosure blk;
2156   heap_region_iterate(&blk);
2157   return blk.result();
2158 }
2159 
2160 size_t G1CollectedHeap::unsafe_max_alloc() {
2161   if (free_regions() > 0) return HeapRegion::GrainBytes;
2162   // otherwise, is there space in the current allocation region?
2163 
2164   // We need to store the current allocation region in a local variable
2165   // here. The problem is that this method doesn't take any locks and
2166   // there may be other threads which overwrite the current allocation
2167   // region field. attempt_allocation(), for example, sets it to NULL
2168   // and this can happen *after* the NULL check here but before the call
2169   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2170   // to be a problem in the optimized build, since the two loads of the
2171   // current allocation region field are optimized away.
2172   HeapRegion* hr = _mutator_alloc_region.get();
2173   if (hr == NULL) {
2174     return 0;
2175   }
2176   return hr->free();
2177 }
2178 
2179 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2180   return
2181     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
2182      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
2183 }
2184 
2185 #ifndef PRODUCT
2186 void G1CollectedHeap::allocate_dummy_regions() {
2187   // Let's fill up most of the region
2188   size_t word_size = HeapRegion::GrainWords - 1024;
2189   // And as a result the region we'll allocate will be humongous.
2190   guarantee(isHumongous(word_size), "sanity");
2191 
2192   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2193     // Let's use the existing mechanism for the allocation
2194     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2195     if (dummy_obj != NULL) {
2196       MemRegion mr(dummy_obj, word_size);
2197       CollectedHeap::fill_with_object(mr);
2198     } else {
2199       // If we can't allocate once, we probably cannot allocate
2200       // again. Let's get out of the loop.
2201       break;
2202     }
2203   }
2204 }
2205 #endif // !PRODUCT
2206 
2207 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2208   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2209 
2210   // We assume that if concurrent == true, then the caller is a
2211   // concurrent thread that was joined the Suspendible Thread
2212   // Set. If there's ever a cheap way to check this, we should add an
2213   // assert here.
2214 
2215   // We have already incremented _total_full_collections at the start
2216   // of the GC, so total_full_collections() represents how many full
2217   // collections have been started.
2218   unsigned int full_collections_started = total_full_collections();
2219 
2220   // Given that this method is called at the end of a Full GC or of a
2221   // concurrent cycle, and those can be nested (i.e., a Full GC can
2222   // interrupt a concurrent cycle), the number of full collections
2223   // completed should be either one (in the case where there was no
2224   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2225   // behind the number of full collections started.
2226 
2227   // This is the case for the inner caller, i.e. a Full GC.
2228   assert(concurrent ||
2229          (full_collections_started == _full_collections_completed + 1) ||
2230          (full_collections_started == _full_collections_completed + 2),
2231          err_msg("for inner caller (Full GC): full_collections_started = %u "
2232                  "is inconsistent with _full_collections_completed = %u",
2233                  full_collections_started, _full_collections_completed));
2234 
2235   // This is the case for the outer caller, i.e. the concurrent cycle.
2236   assert(!concurrent ||
2237          (full_collections_started == _full_collections_completed + 1),
2238          err_msg("for outer caller (concurrent cycle): "
2239                  "full_collections_started = %u "
2240                  "is inconsistent with _full_collections_completed = %u",
2241                  full_collections_started, _full_collections_completed));
2242 
2243   _full_collections_completed += 1;
2244 
2245   // We need to clear the "in_progress" flag in the CM thread before
2246   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2247   // is set) so that if a waiter requests another System.gc() it doesn't
2248   // incorrectly see that a marking cyle is still in progress.
2249   if (concurrent) {
2250     _cmThread->clear_in_progress();
2251   }
2252 
2253   // This notify_all() will ensure that a thread that called
2254   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2255   // and it's waiting for a full GC to finish will be woken up. It is
2256   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2257   FullGCCount_lock->notify_all();
2258 }
2259 
2260 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2261   assert_at_safepoint(true /* should_be_vm_thread */);
2262   GCCauseSetter gcs(this, cause);
2263   switch (cause) {
2264     case GCCause::_heap_inspection:
2265     case GCCause::_heap_dump: {
2266       HandleMark hm;
2267       do_full_collection(false);         // don't clear all soft refs
2268       break;
2269     }
2270     default: // XXX FIX ME
2271       ShouldNotReachHere(); // Unexpected use of this function
2272   }
2273 }
2274 
2275 void G1CollectedHeap::collect(GCCause::Cause cause) {
2276   // The caller doesn't have the Heap_lock
2277   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2278 
2279   unsigned int gc_count_before;
2280   unsigned int full_gc_count_before;
2281   {
2282     MutexLocker ml(Heap_lock);
2283 
2284     // Read the GC count while holding the Heap_lock
2285     gc_count_before = SharedHeap::heap()->total_collections();
2286     full_gc_count_before = SharedHeap::heap()->total_full_collections();
2287   }
2288 
2289   if (should_do_concurrent_full_gc(cause)) {
2290     // Schedule an initial-mark evacuation pause that will start a
2291     // concurrent cycle. We're setting word_size to 0 which means that
2292     // we are not requesting a post-GC allocation.
2293     VM_G1IncCollectionPause op(gc_count_before,
2294                                0,     /* word_size */
2295                                true,  /* should_initiate_conc_mark */
2296                                g1_policy()->max_pause_time_ms(),
2297                                cause);
2298     VMThread::execute(&op);
2299   } else {
2300     if (cause == GCCause::_gc_locker
2301         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2302 
2303       // Schedule a standard evacuation pause. We're setting word_size
2304       // to 0 which means that we are not requesting a post-GC allocation.
2305       VM_G1IncCollectionPause op(gc_count_before,
2306                                  0,     /* word_size */
2307                                  false, /* should_initiate_conc_mark */
2308                                  g1_policy()->max_pause_time_ms(),
2309                                  cause);
2310       VMThread::execute(&op);
2311     } else {
2312       // Schedule a Full GC.
2313       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2314       VMThread::execute(&op);
2315     }
2316   }
2317 }
2318 
2319 bool G1CollectedHeap::is_in(const void* p) const {
2320   HeapRegion* hr = _hrs.addr_to_region((HeapWord*) p);
2321   if (hr != NULL) {
2322     return hr->is_in(p);
2323   } else {
2324     return _perm_gen->as_gen()->is_in(p);
2325   }
2326 }
2327 
2328 // Iteration functions.
2329 
2330 // Iterates an OopClosure over all ref-containing fields of objects
2331 // within a HeapRegion.
2332 
2333 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2334   MemRegion _mr;
2335   OopClosure* _cl;
2336 public:
2337   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2338     : _mr(mr), _cl(cl) {}
2339   bool doHeapRegion(HeapRegion* r) {
2340     if (! r->continuesHumongous()) {
2341       r->oop_iterate(_cl);
2342     }
2343     return false;
2344   }
2345 };
2346 
2347 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2348   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2349   heap_region_iterate(&blk);
2350   if (do_perm) {
2351     perm_gen()->oop_iterate(cl);
2352   }
2353 }
2354 
2355 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2356   IterateOopClosureRegionClosure blk(mr, cl);
2357   heap_region_iterate(&blk);
2358   if (do_perm) {
2359     perm_gen()->oop_iterate(cl);
2360   }
2361 }
2362 
2363 // Iterates an ObjectClosure over all objects within a HeapRegion.
2364 
2365 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2366   ObjectClosure* _cl;
2367 public:
2368   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2369   bool doHeapRegion(HeapRegion* r) {
2370     if (! r->continuesHumongous()) {
2371       r->object_iterate(_cl);
2372     }
2373     return false;
2374   }
2375 };
2376 
2377 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2378   IterateObjectClosureRegionClosure blk(cl);
2379   heap_region_iterate(&blk);
2380   if (do_perm) {
2381     perm_gen()->object_iterate(cl);
2382   }
2383 }
2384 
2385 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2386   // FIXME: is this right?
2387   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2388 }
2389 
2390 // Calls a SpaceClosure on a HeapRegion.
2391 
2392 class SpaceClosureRegionClosure: public HeapRegionClosure {
2393   SpaceClosure* _cl;
2394 public:
2395   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2396   bool doHeapRegion(HeapRegion* r) {
2397     _cl->do_space(r);
2398     return false;
2399   }
2400 };
2401 
2402 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2403   SpaceClosureRegionClosure blk(cl);
2404   heap_region_iterate(&blk);
2405 }
2406 
2407 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2408   _hrs.iterate(cl);
2409 }
2410 
2411 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2412                                                HeapRegionClosure* cl) const {
2413   _hrs.iterate_from(r, cl);
2414 }
2415 
2416 void
2417 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2418                                                  int worker,
2419                                                  jint claim_value) {
2420   const size_t regions = n_regions();
2421   const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
2422   // try to spread out the starting points of the workers
2423   const size_t start_index = regions / worker_num * (size_t) worker;
2424 
2425   // each worker will actually look at all regions
2426   for (size_t count = 0; count < regions; ++count) {
2427     const size_t index = (start_index + count) % regions;
2428     assert(0 <= index && index < regions, "sanity");
2429     HeapRegion* r = region_at(index);
2430     // we'll ignore "continues humongous" regions (we'll process them
2431     // when we come across their corresponding "start humongous"
2432     // region) and regions already claimed
2433     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2434       continue;
2435     }
2436     // OK, try to claim it
2437     if (r->claimHeapRegion(claim_value)) {
2438       // success!
2439       assert(!r->continuesHumongous(), "sanity");
2440       if (r->startsHumongous()) {
2441         // If the region is "starts humongous" we'll iterate over its
2442         // "continues humongous" first; in fact we'll do them
2443         // first. The order is important. In on case, calling the
2444         // closure on the "starts humongous" region might de-allocate
2445         // and clear all its "continues humongous" regions and, as a
2446         // result, we might end up processing them twice. So, we'll do
2447         // them first (notice: most closures will ignore them anyway) and
2448         // then we'll do the "starts humongous" region.
2449         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
2450           HeapRegion* chr = region_at(ch_index);
2451 
2452           // if the region has already been claimed or it's not
2453           // "continues humongous" we're done
2454           if (chr->claim_value() == claim_value ||
2455               !chr->continuesHumongous()) {
2456             break;
2457           }
2458 
2459           // Noone should have claimed it directly. We can given
2460           // that we claimed its "starts humongous" region.
2461           assert(chr->claim_value() != claim_value, "sanity");
2462           assert(chr->humongous_start_region() == r, "sanity");
2463 
2464           if (chr->claimHeapRegion(claim_value)) {
2465             // we should always be able to claim it; noone else should
2466             // be trying to claim this region
2467 
2468             bool res2 = cl->doHeapRegion(chr);
2469             assert(!res2, "Should not abort");
2470 
2471             // Right now, this holds (i.e., no closure that actually
2472             // does something with "continues humongous" regions
2473             // clears them). We might have to weaken it in the future,
2474             // but let's leave these two asserts here for extra safety.
2475             assert(chr->continuesHumongous(), "should still be the case");
2476             assert(chr->humongous_start_region() == r, "sanity");
2477           } else {
2478             guarantee(false, "we should not reach here");
2479           }
2480         }
2481       }
2482 
2483       assert(!r->continuesHumongous(), "sanity");
2484       bool res = cl->doHeapRegion(r);
2485       assert(!res, "Should not abort");
2486     }
2487   }
2488 }
2489 
2490 class ResetClaimValuesClosure: public HeapRegionClosure {
2491 public:
2492   bool doHeapRegion(HeapRegion* r) {
2493     r->set_claim_value(HeapRegion::InitialClaimValue);
2494     return false;
2495   }
2496 };
2497 
2498 void
2499 G1CollectedHeap::reset_heap_region_claim_values() {
2500   ResetClaimValuesClosure blk;
2501   heap_region_iterate(&blk);
2502 }
2503 
2504 #ifdef ASSERT
2505 // This checks whether all regions in the heap have the correct claim
2506 // value. I also piggy-backed on this a check to ensure that the
2507 // humongous_start_region() information on "continues humongous"
2508 // regions is correct.
2509 
2510 class CheckClaimValuesClosure : public HeapRegionClosure {
2511 private:
2512   jint _claim_value;
2513   size_t _failures;
2514   HeapRegion* _sh_region;
2515 public:
2516   CheckClaimValuesClosure(jint claim_value) :
2517     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2518   bool doHeapRegion(HeapRegion* r) {
2519     if (r->claim_value() != _claim_value) {
2520       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2521                              "claim value = %d, should be %d",
2522                              r->bottom(), r->end(), r->claim_value(),
2523                              _claim_value);
2524       ++_failures;
2525     }
2526     if (!r->isHumongous()) {
2527       _sh_region = NULL;
2528     } else if (r->startsHumongous()) {
2529       _sh_region = r;
2530     } else if (r->continuesHumongous()) {
2531       if (r->humongous_start_region() != _sh_region) {
2532         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2533                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2534                                r->bottom(), r->end(),
2535                                r->humongous_start_region(),
2536                                _sh_region);
2537         ++_failures;
2538       }
2539     }
2540     return false;
2541   }
2542   size_t failures() {
2543     return _failures;
2544   }
2545 };
2546 
2547 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2548   CheckClaimValuesClosure cl(claim_value);
2549   heap_region_iterate(&cl);
2550   return cl.failures() == 0;
2551 }
2552 #endif // ASSERT
2553 
2554 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2555   HeapRegion* r = g1_policy()->collection_set();
2556   while (r != NULL) {
2557     HeapRegion* next = r->next_in_collection_set();
2558     if (cl->doHeapRegion(r)) {
2559       cl->incomplete();
2560       return;
2561     }
2562     r = next;
2563   }
2564 }
2565 
2566 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2567                                                   HeapRegionClosure *cl) {
2568   if (r == NULL) {
2569     // The CSet is empty so there's nothing to do.
2570     return;
2571   }
2572 
2573   assert(r->in_collection_set(),
2574          "Start region must be a member of the collection set.");
2575   HeapRegion* cur = r;
2576   while (cur != NULL) {
2577     HeapRegion* next = cur->next_in_collection_set();
2578     if (cl->doHeapRegion(cur) && false) {
2579       cl->incomplete();
2580       return;
2581     }
2582     cur = next;
2583   }
2584   cur = g1_policy()->collection_set();
2585   while (cur != r) {
2586     HeapRegion* next = cur->next_in_collection_set();
2587     if (cl->doHeapRegion(cur) && false) {
2588       cl->incomplete();
2589       return;
2590     }
2591     cur = next;
2592   }
2593 }
2594 
2595 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2596   return n_regions() > 0 ? region_at(0) : NULL;
2597 }
2598 
2599 
2600 Space* G1CollectedHeap::space_containing(const void* addr) const {
2601   Space* res = heap_region_containing(addr);
2602   if (res == NULL)
2603     res = perm_gen()->space_containing(addr);
2604   return res;
2605 }
2606 
2607 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2608   Space* sp = space_containing(addr);
2609   if (sp != NULL) {
2610     return sp->block_start(addr);
2611   }
2612   return NULL;
2613 }
2614 
2615 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2616   Space* sp = space_containing(addr);
2617   assert(sp != NULL, "block_size of address outside of heap");
2618   return sp->block_size(addr);
2619 }
2620 
2621 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2622   Space* sp = space_containing(addr);
2623   return sp->block_is_obj(addr);
2624 }
2625 
2626 bool G1CollectedHeap::supports_tlab_allocation() const {
2627   return true;
2628 }
2629 
2630 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2631   return HeapRegion::GrainBytes;
2632 }
2633 
2634 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2635   // Return the remaining space in the cur alloc region, but not less than
2636   // the min TLAB size.
2637 
2638   // Also, this value can be at most the humongous object threshold,
2639   // since we can't allow tlabs to grow big enough to accomodate
2640   // humongous objects.
2641 
2642   HeapRegion* hr = _mutator_alloc_region.get();
2643   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2644   if (hr == NULL) {
2645     return max_tlab_size;
2646   } else {
2647     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2648   }
2649 }
2650 
2651 size_t G1CollectedHeap::max_capacity() const {
2652   return _g1_reserved.byte_size();
2653 }
2654 
2655 jlong G1CollectedHeap::millis_since_last_gc() {
2656   // assert(false, "NYI");
2657   return 0;
2658 }
2659 
2660 void G1CollectedHeap::prepare_for_verify() {
2661   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2662     ensure_parsability(false);
2663   }
2664   g1_rem_set()->prepare_for_verify();
2665 }
2666 
2667 class VerifyLivenessOopClosure: public OopClosure {
2668   G1CollectedHeap* _g1h;
2669   VerifyOption _vo;
2670 public:
2671   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2672     _g1h(g1h), _vo(vo)
2673   { }
2674   void do_oop(narrowOop *p) { do_oop_work(p); }
2675   void do_oop(      oop *p) { do_oop_work(p); }
2676 
2677   template <class T> void do_oop_work(T *p) {
2678     oop obj = oopDesc::load_decode_heap_oop(p);
2679     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2680               "Dead object referenced by a not dead object");
2681   }
2682 };
2683 
2684 class VerifyObjsInRegionClosure: public ObjectClosure {
2685 private:
2686   G1CollectedHeap* _g1h;
2687   size_t _live_bytes;
2688   HeapRegion *_hr;
2689   VerifyOption _vo;
2690 public:
2691   // _vo == UsePrevMarking -> use "prev" marking information,
2692   // _vo == UseNextMarking -> use "next" marking information,
2693   // _vo == UseMarkWord    -> use mark word from object header.
2694   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2695     : _live_bytes(0), _hr(hr), _vo(vo) {
2696     _g1h = G1CollectedHeap::heap();
2697   }
2698   void do_object(oop o) {
2699     VerifyLivenessOopClosure isLive(_g1h, _vo);
2700     assert(o != NULL, "Huh?");
2701     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2702       // If the object is alive according to the mark word,
2703       // then verify that the marking information agrees.
2704       // Note we can't verify the contra-positive of the
2705       // above: if the object is dead (according to the mark
2706       // word), it may not be marked, or may have been marked
2707       // but has since became dead, or may have been allocated
2708       // since the last marking.
2709       if (_vo == VerifyOption_G1UseMarkWord) {
2710         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2711       }
2712 
2713       o->oop_iterate(&isLive);
2714       if (!_hr->obj_allocated_since_prev_marking(o)) {
2715         size_t obj_size = o->size();    // Make sure we don't overflow
2716         _live_bytes += (obj_size * HeapWordSize);
2717       }
2718     }
2719   }
2720   size_t live_bytes() { return _live_bytes; }
2721 };
2722 
2723 class PrintObjsInRegionClosure : public ObjectClosure {
2724   HeapRegion *_hr;
2725   G1CollectedHeap *_g1;
2726 public:
2727   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2728     _g1 = G1CollectedHeap::heap();
2729   };
2730 
2731   void do_object(oop o) {
2732     if (o != NULL) {
2733       HeapWord *start = (HeapWord *) o;
2734       size_t word_sz = o->size();
2735       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2736                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2737                           (void*) o, word_sz,
2738                           _g1->isMarkedPrev(o),
2739                           _g1->isMarkedNext(o),
2740                           _hr->obj_allocated_since_prev_marking(o));
2741       HeapWord *end = start + word_sz;
2742       HeapWord *cur;
2743       int *val;
2744       for (cur = start; cur < end; cur++) {
2745         val = (int *) cur;
2746         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
2747       }
2748     }
2749   }
2750 };
2751 
2752 class VerifyRegionClosure: public HeapRegionClosure {
2753 private:
2754   bool         _allow_dirty;
2755   bool         _par;
2756   VerifyOption _vo;
2757   bool         _failures;
2758 public:
2759   // _vo == UsePrevMarking -> use "prev" marking information,
2760   // _vo == UseNextMarking -> use "next" marking information,
2761   // _vo == UseMarkWord    -> use mark word from object header.
2762   VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
2763     : _allow_dirty(allow_dirty),
2764       _par(par),
2765       _vo(vo),
2766       _failures(false) {}
2767 
2768   bool failures() {
2769     return _failures;
2770   }
2771 
2772   bool doHeapRegion(HeapRegion* r) {
2773     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
2774               "Should be unclaimed at verify points.");
2775     if (!r->continuesHumongous()) {
2776       bool failures = false;
2777       r->verify(_allow_dirty, _vo, &failures);
2778       if (failures) {
2779         _failures = true;
2780       } else {
2781         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2782         r->object_iterate(&not_dead_yet_cl);
2783         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2784           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2785                                  "max_live_bytes "SIZE_FORMAT" "
2786                                  "< calculated "SIZE_FORMAT,
2787                                  r->bottom(), r->end(),
2788                                  r->max_live_bytes(),
2789                                  not_dead_yet_cl.live_bytes());
2790           _failures = true;
2791         }
2792       }
2793     }
2794     return false; // stop the region iteration if we hit a failure
2795   }
2796 };
2797 
2798 class VerifyRootsClosure: public OopsInGenClosure {
2799 private:
2800   G1CollectedHeap* _g1h;
2801   VerifyOption     _vo;
2802   bool             _failures;
2803 public:
2804   // _vo == UsePrevMarking -> use "prev" marking information,
2805   // _vo == UseNextMarking -> use "next" marking information,
2806   // _vo == UseMarkWord    -> use mark word from object header.
2807   VerifyRootsClosure(VerifyOption vo) :
2808     _g1h(G1CollectedHeap::heap()),
2809     _vo(vo),
2810     _failures(false) { }
2811 
2812   bool failures() { return _failures; }
2813 
2814   template <class T> void do_oop_nv(T* p) {
2815     T heap_oop = oopDesc::load_heap_oop(p);
2816     if (!oopDesc::is_null(heap_oop)) {
2817       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2818       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2819         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2820                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2821         if (_vo == VerifyOption_G1UseMarkWord) {
2822           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2823         }
2824         obj->print_on(gclog_or_tty);
2825         _failures = true;
2826       }
2827     }
2828   }
2829 
2830   void do_oop(oop* p)       { do_oop_nv(p); }
2831   void do_oop(narrowOop* p) { do_oop_nv(p); }
2832 };
2833 
2834 // This is the task used for parallel heap verification.
2835 
2836 class G1ParVerifyTask: public AbstractGangTask {
2837 private:
2838   G1CollectedHeap* _g1h;
2839   bool             _allow_dirty;
2840   VerifyOption     _vo;
2841   bool             _failures;
2842 
2843 public:
2844   // _vo == UsePrevMarking -> use "prev" marking information,
2845   // _vo == UseNextMarking -> use "next" marking information,
2846   // _vo == UseMarkWord    -> use mark word from object header.
2847   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
2848     AbstractGangTask("Parallel verify task"),
2849     _g1h(g1h),
2850     _allow_dirty(allow_dirty),
2851     _vo(vo),
2852     _failures(false) { }
2853 
2854   bool failures() {
2855     return _failures;
2856   }
2857 
2858   void work(int worker_i) {
2859     HandleMark hm;
2860     VerifyRegionClosure blk(_allow_dirty, true, _vo);
2861     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
2862                                           HeapRegion::ParVerifyClaimValue);
2863     if (blk.failures()) {
2864       _failures = true;
2865     }
2866   }
2867 };
2868 
2869 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2870   verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
2871 }
2872 
2873 void G1CollectedHeap::verify(bool allow_dirty,
2874                              bool silent,
2875                              VerifyOption vo) {
2876   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2877     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
2878     VerifyRootsClosure rootsCl(vo);
2879     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
2880 
2881     // We apply the relevant closures to all the oops in the
2882     // system dictionary, the string table and the code cache.
2883     const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
2884 
2885     process_strong_roots(true,      // activate StrongRootsScope
2886                          true,      // we set "collecting perm gen" to true,
2887                                     // so we don't reset the dirty cards in the perm gen.
2888                          SharedHeap::ScanningOption(so),  // roots scanning options
2889                          &rootsCl,
2890                          &blobsCl,
2891                          &rootsCl);
2892 
2893     // If we're verifying after the marking phase of a Full GC then we can't
2894     // treat the perm gen as roots into the G1 heap. Some of the objects in
2895     // the perm gen may be dead and hence not marked. If one of these dead
2896     // objects is considered to be a root then we may end up with a false
2897     // "Root location <x> points to dead ob <y>" failure.
2898     if (vo != VerifyOption_G1UseMarkWord) {
2899       // Since we used "collecting_perm_gen" == true above, we will not have
2900       // checked the refs from perm into the G1-collected heap. We check those
2901       // references explicitly below. Whether the relevant cards are dirty
2902       // is checked further below in the rem set verification.
2903       if (!silent) { gclog_or_tty->print("Permgen roots "); }
2904       perm_gen()->oop_iterate(&rootsCl);
2905     }
2906     bool failures = rootsCl.failures();
2907 
2908     if (vo != VerifyOption_G1UseMarkWord) {
2909       // If we're verifying during a full GC then the region sets
2910       // will have been torn down at the start of the GC. Therefore
2911       // verifying the region sets will fail. So we only verify
2912       // the region sets when not in a full GC.
2913       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
2914       verify_region_sets();
2915     }
2916 
2917     if (!silent) { gclog_or_tty->print("HeapRegions "); }
2918     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
2919       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2920              "sanity check");
2921 
2922       G1ParVerifyTask task(this, allow_dirty, vo);
2923       int n_workers = workers()->total_workers();
2924       set_par_threads(n_workers);
2925       workers()->run_task(&task);
2926       set_par_threads(0);
2927       if (task.failures()) {
2928         failures = true;
2929       }
2930 
2931       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
2932              "sanity check");
2933 
2934       reset_heap_region_claim_values();
2935 
2936       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2937              "sanity check");
2938     } else {
2939       VerifyRegionClosure blk(allow_dirty, false, vo);
2940       heap_region_iterate(&blk);
2941       if (blk.failures()) {
2942         failures = true;
2943       }
2944     }
2945     if (!silent) gclog_or_tty->print("RemSet ");
2946     rem_set()->verify();
2947 
2948     if (failures) {
2949       gclog_or_tty->print_cr("Heap:");
2950       print_on(gclog_or_tty, true /* extended */);
2951       gclog_or_tty->print_cr("");
2952 #ifndef PRODUCT
2953       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
2954         concurrent_mark()->print_reachable("at-verification-failure",
2955                                            vo, false /* all */);
2956       }
2957 #endif
2958       gclog_or_tty->flush();
2959     }
2960     guarantee(!failures, "there should not have been any failures");
2961   } else {
2962     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
2963   }
2964 }
2965 
2966 class PrintRegionClosure: public HeapRegionClosure {
2967   outputStream* _st;
2968 public:
2969   PrintRegionClosure(outputStream* st) : _st(st) {}
2970   bool doHeapRegion(HeapRegion* r) {
2971     r->print_on(_st);
2972     return false;
2973   }
2974 };
2975 
2976 void G1CollectedHeap::print() const { print_on(tty); }
2977 
2978 void G1CollectedHeap::print_on(outputStream* st) const {
2979   print_on(st, PrintHeapAtGCExtended);
2980 }
2981 
2982 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
2983   st->print(" %-20s", "garbage-first heap");
2984   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2985             capacity()/K, used_unlocked()/K);
2986   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
2987             _g1_storage.low_boundary(),
2988             _g1_storage.high(),
2989             _g1_storage.high_boundary());
2990   st->cr();
2991   st->print("  region size " SIZE_FORMAT "K, ",
2992             HeapRegion::GrainBytes/K);
2993   size_t young_regions = _young_list->length();
2994   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
2995             young_regions, young_regions * HeapRegion::GrainBytes / K);
2996   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
2997   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
2998             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
2999   st->cr();
3000   perm()->as_gen()->print_on(st);
3001   if (extended) {
3002     st->cr();
3003     print_on_extended(st);
3004   }
3005 }
3006 
3007 void G1CollectedHeap::print_on_extended(outputStream* st) const {
3008   PrintRegionClosure blk(st);
3009   heap_region_iterate(&blk);
3010 }
3011 
3012 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3013   if (G1CollectedHeap::use_parallel_gc_threads()) {
3014     workers()->print_worker_threads_on(st);
3015   }
3016   _cmThread->print_on(st);
3017   st->cr();
3018   _cm->print_worker_threads_on(st);
3019   _cg1r->print_worker_threads_on(st);
3020   st->cr();
3021 }
3022 
3023 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3024   if (G1CollectedHeap::use_parallel_gc_threads()) {
3025     workers()->threads_do(tc);
3026   }
3027   tc->do_thread(_cmThread);
3028   _cg1r->threads_do(tc);
3029 }
3030 
3031 void G1CollectedHeap::print_tracing_info() const {
3032   // We'll overload this to mean "trace GC pause statistics."
3033   if (TraceGen0Time || TraceGen1Time) {
3034     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3035     // to that.
3036     g1_policy()->print_tracing_info();
3037   }
3038   if (G1SummarizeRSetStats) {
3039     g1_rem_set()->print_summary_info();
3040   }
3041   if (G1SummarizeConcMark) {
3042     concurrent_mark()->print_summary_info();
3043   }
3044   g1_policy()->print_yg_surv_rate_info();
3045   SpecializationStats::print();
3046 }
3047 
3048 #ifndef PRODUCT
3049 // Helpful for debugging RSet issues.
3050 
3051 class PrintRSetsClosure : public HeapRegionClosure {
3052 private:
3053   const char* _msg;
3054   size_t _occupied_sum;
3055 
3056 public:
3057   bool doHeapRegion(HeapRegion* r) {
3058     HeapRegionRemSet* hrrs = r->rem_set();
3059     size_t occupied = hrrs->occupied();
3060     _occupied_sum += occupied;
3061 
3062     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3063                            HR_FORMAT_PARAMS(r));
3064     if (occupied == 0) {
3065       gclog_or_tty->print_cr("  RSet is empty");
3066     } else {
3067       hrrs->print();
3068     }
3069     gclog_or_tty->print_cr("----------");
3070     return false;
3071   }
3072 
3073   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3074     gclog_or_tty->cr();
3075     gclog_or_tty->print_cr("========================================");
3076     gclog_or_tty->print_cr(msg);
3077     gclog_or_tty->cr();
3078   }
3079 
3080   ~PrintRSetsClosure() {
3081     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3082     gclog_or_tty->print_cr("========================================");
3083     gclog_or_tty->cr();
3084   }
3085 };
3086 
3087 void G1CollectedHeap::print_cset_rsets() {
3088   PrintRSetsClosure cl("Printing CSet RSets");
3089   collection_set_iterate(&cl);
3090 }
3091 
3092 void G1CollectedHeap::print_all_rsets() {
3093   PrintRSetsClosure cl("Printing All RSets");;
3094   heap_region_iterate(&cl);
3095 }
3096 #endif // PRODUCT
3097 
3098 G1CollectedHeap* G1CollectedHeap::heap() {
3099   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3100          "not a garbage-first heap");
3101   return _g1h;
3102 }
3103 
3104 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3105   // always_do_update_barrier = false;
3106   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3107   // Call allocation profiler
3108   AllocationProfiler::iterate_since_last_gc();
3109   // Fill TLAB's and such
3110   ensure_parsability(true);
3111 }
3112 
3113 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3114   // FIXME: what is this about?
3115   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3116   // is set.
3117   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3118                         "derived pointer present"));
3119   // always_do_update_barrier = true;
3120 }
3121 
3122 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3123                                                unsigned int gc_count_before,
3124                                                bool* succeeded) {
3125   assert_heap_not_locked_and_not_at_safepoint();
3126   g1_policy()->record_stop_world_start();
3127   VM_G1IncCollectionPause op(gc_count_before,
3128                              word_size,
3129                              false, /* should_initiate_conc_mark */
3130                              g1_policy()->max_pause_time_ms(),
3131                              GCCause::_g1_inc_collection_pause);
3132   VMThread::execute(&op);
3133 
3134   HeapWord* result = op.result();
3135   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3136   assert(result == NULL || ret_succeeded,
3137          "the result should be NULL if the VM did not succeed");
3138   *succeeded = ret_succeeded;
3139 
3140   assert_heap_not_locked();
3141   return result;
3142 }
3143 
3144 void
3145 G1CollectedHeap::doConcurrentMark() {
3146   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3147   if (!_cmThread->in_progress()) {
3148     _cmThread->set_started();
3149     CGC_lock->notify();
3150   }
3151 }
3152 
3153 // <NEW PREDICTION>
3154 
3155 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
3156                                                        bool young) {
3157   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
3158 }
3159 
3160 void G1CollectedHeap::check_if_region_is_too_expensive(double
3161                                                            predicted_time_ms) {
3162   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
3163 }
3164 
3165 size_t G1CollectedHeap::pending_card_num() {
3166   size_t extra_cards = 0;
3167   JavaThread *curr = Threads::first();
3168   while (curr != NULL) {
3169     DirtyCardQueue& dcq = curr->dirty_card_queue();
3170     extra_cards += dcq.size();
3171     curr = curr->next();
3172   }
3173   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3174   size_t buffer_size = dcqs.buffer_size();
3175   size_t buffer_num = dcqs.completed_buffers_num();
3176   return buffer_size * buffer_num + extra_cards;
3177 }
3178 
3179 size_t G1CollectedHeap::max_pending_card_num() {
3180   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3181   size_t buffer_size = dcqs.buffer_size();
3182   size_t buffer_num  = dcqs.completed_buffers_num();
3183   int thread_num  = Threads::number_of_threads();
3184   return (buffer_num + thread_num) * buffer_size;
3185 }
3186 
3187 size_t G1CollectedHeap::cards_scanned() {
3188   return g1_rem_set()->cardsScanned();
3189 }
3190 
3191 void
3192 G1CollectedHeap::setup_surviving_young_words() {
3193   guarantee( _surviving_young_words == NULL, "pre-condition" );
3194   size_t array_length = g1_policy()->young_cset_length();
3195   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
3196   if (_surviving_young_words == NULL) {
3197     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3198                           "Not enough space for young surv words summary.");
3199   }
3200   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3201 #ifdef ASSERT
3202   for (size_t i = 0;  i < array_length; ++i) {
3203     assert( _surviving_young_words[i] == 0, "memset above" );
3204   }
3205 #endif // !ASSERT
3206 }
3207 
3208 void
3209 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3210   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3211   size_t array_length = g1_policy()->young_cset_length();
3212   for (size_t i = 0; i < array_length; ++i)
3213     _surviving_young_words[i] += surv_young_words[i];
3214 }
3215 
3216 void
3217 G1CollectedHeap::cleanup_surviving_young_words() {
3218   guarantee( _surviving_young_words != NULL, "pre-condition" );
3219   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3220   _surviving_young_words = NULL;
3221 }
3222 
3223 // </NEW PREDICTION>
3224 
3225 #ifdef ASSERT
3226 class VerifyCSetClosure: public HeapRegionClosure {
3227 public:
3228   bool doHeapRegion(HeapRegion* hr) {
3229     // Here we check that the CSet region's RSet is ready for parallel
3230     // iteration. The fields that we'll verify are only manipulated
3231     // when the region is part of a CSet and is collected. Afterwards,
3232     // we reset these fields when we clear the region's RSet (when the
3233     // region is freed) so they are ready when the region is
3234     // re-allocated. The only exception to this is if there's an
3235     // evacuation failure and instead of freeing the region we leave
3236     // it in the heap. In that case, we reset these fields during
3237     // evacuation failure handling.
3238     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3239 
3240     // Here's a good place to add any other checks we'd like to
3241     // perform on CSet regions.
3242     return false;
3243   }
3244 };
3245 #endif // ASSERT
3246 
3247 #if TASKQUEUE_STATS
3248 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3249   st->print_raw_cr("GC Task Stats");
3250   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3251   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3252 }
3253 
3254 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3255   print_taskqueue_stats_hdr(st);
3256 
3257   TaskQueueStats totals;
3258   const int n = workers() != NULL ? workers()->total_workers() : 1;
3259   for (int i = 0; i < n; ++i) {
3260     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3261     totals += task_queue(i)->stats;
3262   }
3263   st->print_raw("tot "); totals.print(st); st->cr();
3264 
3265   DEBUG_ONLY(totals.verify());
3266 }
3267 
3268 void G1CollectedHeap::reset_taskqueue_stats() {
3269   const int n = workers() != NULL ? workers()->total_workers() : 1;
3270   for (int i = 0; i < n; ++i) {
3271     task_queue(i)->stats.reset();
3272   }
3273 }
3274 #endif // TASKQUEUE_STATS
3275 
3276 bool
3277 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3278   assert_at_safepoint(true /* should_be_vm_thread */);
3279   guarantee(!is_gc_active(), "collection is not reentrant");
3280 
3281   if (GC_locker::check_active_before_gc()) {
3282     return false;
3283   }
3284 
3285   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3286   ResourceMark rm;
3287 
3288   if (PrintHeapAtGC) {
3289     Universe::print_heap_before_gc();
3290   }
3291 
3292   verify_region_sets_optional();
3293   verify_dirty_young_regions();
3294 
3295   {
3296     // This call will decide whether this pause is an initial-mark
3297     // pause. If it is, during_initial_mark_pause() will return true
3298     // for the duration of this pause.
3299     g1_policy()->decide_on_conc_mark_initiation();
3300 
3301     char verbose_str[128];
3302     sprintf(verbose_str, "GC pause ");
3303     if (g1_policy()->full_young_gcs()) {
3304       strcat(verbose_str, "(young)");
3305     } else {
3306       strcat(verbose_str, "(partial)");
3307     }
3308     if (g1_policy()->during_initial_mark_pause()) {
3309       strcat(verbose_str, " (initial-mark)");
3310       // We are about to start a marking cycle, so we increment the
3311       // full collection counter.
3312       increment_total_full_collections();
3313     }
3314 
3315     // if PrintGCDetails is on, we'll print long statistics information
3316     // in the collector policy code, so let's not print this as the output
3317     // is messy if we do.
3318     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
3319     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3320     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3321 
3322     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3323     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3324 
3325     // If the secondary_free_list is not empty, append it to the
3326     // free_list. No need to wait for the cleanup operation to finish;
3327     // the region allocation code will check the secondary_free_list
3328     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3329     // set, skip this step so that the region allocation code has to
3330     // get entries from the secondary_free_list.
3331     if (!G1StressConcRegionFreeing) {
3332       append_secondary_free_list_if_not_empty_with_lock();
3333     }
3334 
3335     assert(check_young_list_well_formed(),
3336       "young list should be well formed");
3337 
3338     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3339       IsGCActiveMark x;
3340 
3341       gc_prologue(false);
3342       increment_total_collections(false /* full gc */);
3343       increment_gc_time_stamp();
3344 
3345       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
3346         HandleMark hm;  // Discard invalid handles created during verification
3347         gclog_or_tty->print(" VerifyBeforeGC:");
3348         prepare_for_verify();
3349         Universe::verify(/* allow dirty */ false,
3350                          /* silent      */ false,
3351                          /* option      */ VerifyOption_G1UsePrevMarking);
3352 
3353       }
3354 
3355       COMPILER2_PRESENT(DerivedPointerTable::clear());
3356 
3357       // Please see comment in G1CollectedHeap::ref_processing_init()
3358       // to see how reference processing currently works in G1.
3359       //
3360       // We want to turn off ref discovery, if necessary, and turn it back on
3361       // on again later if we do. XXX Dubious: why is discovery disabled?
3362       bool was_enabled = ref_processor()->discovery_enabled();
3363       if (was_enabled) ref_processor()->disable_discovery();
3364 
3365       // Forget the current alloc region (we might even choose it to be part
3366       // of the collection set!).
3367       release_mutator_alloc_region();
3368 
3369       // We should call this after we retire the mutator alloc
3370       // region(s) so that all the ALLOC / RETIRE events are generated
3371       // before the start GC event.
3372       _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3373 
3374       // The elapsed time induced by the start time below deliberately elides
3375       // the possible verification above.
3376       double start_time_sec = os::elapsedTime();
3377       size_t start_used_bytes = used();
3378 
3379 #if YOUNG_LIST_VERBOSE
3380       gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3381       _young_list->print();
3382       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3383 #endif // YOUNG_LIST_VERBOSE
3384 
3385       g1_policy()->record_collection_pause_start(start_time_sec,
3386                                                  start_used_bytes);
3387 
3388 #if YOUNG_LIST_VERBOSE
3389       gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3390       _young_list->print();
3391 #endif // YOUNG_LIST_VERBOSE
3392 
3393       if (g1_policy()->during_initial_mark_pause()) {
3394         concurrent_mark()->checkpointRootsInitialPre();
3395       }
3396       perm_gen()->save_marks();
3397 
3398       // We must do this before any possible evacuation that should propagate
3399       // marks.
3400       if (mark_in_progress()) {
3401         double start_time_sec = os::elapsedTime();
3402 
3403         _cm->drainAllSATBBuffers();
3404         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
3405         g1_policy()->record_satb_drain_time(finish_mark_ms);
3406       }
3407       // Record the number of elements currently on the mark stack, so we
3408       // only iterate over these.  (Since evacuation may add to the mark
3409       // stack, doing more exposes race conditions.)  If no mark is in
3410       // progress, this will be zero.
3411       _cm->set_oops_do_bound();
3412 
3413       if (mark_in_progress()) {
3414         concurrent_mark()->newCSet();
3415       }
3416 
3417 #if YOUNG_LIST_VERBOSE
3418       gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3419       _young_list->print();
3420       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3421 #endif // YOUNG_LIST_VERBOSE
3422 
3423       g1_policy()->choose_collection_set(target_pause_time_ms);
3424 
3425       if (_hr_printer.is_active()) {
3426         HeapRegion* hr = g1_policy()->collection_set();
3427         while (hr != NULL) {
3428           G1HRPrinter::RegionType type;
3429           if (!hr->is_young()) {
3430             type = G1HRPrinter::Old;
3431           } else if (hr->is_survivor()) {
3432             type = G1HRPrinter::Survivor;
3433           } else {
3434             type = G1HRPrinter::Eden;
3435           }
3436           _hr_printer.cset(hr);
3437           hr = hr->next_in_collection_set();
3438         }
3439       }
3440 
3441       // We have chosen the complete collection set. If marking is
3442       // active then, we clear the region fields of any of the
3443       // concurrent marking tasks whose region fields point into
3444       // the collection set as these values will become stale. This
3445       // will cause the owning marking threads to claim a new region
3446       // when marking restarts.
3447       if (mark_in_progress()) {
3448         concurrent_mark()->reset_active_task_region_fields_in_cset();
3449       }
3450 
3451 #ifdef ASSERT
3452       VerifyCSetClosure cl;
3453       collection_set_iterate(&cl);
3454 #endif // ASSERT
3455 
3456       setup_surviving_young_words();
3457 
3458       // Initialize the GC alloc regions.
3459       init_gc_alloc_regions();
3460 
3461       // Actually do the work...
3462       evacuate_collection_set();
3463 
3464       free_collection_set(g1_policy()->collection_set());
3465       g1_policy()->clear_collection_set();
3466 
3467       cleanup_surviving_young_words();
3468 
3469       // Start a new incremental collection set for the next pause.
3470       g1_policy()->start_incremental_cset_building();
3471 
3472       // Clear the _cset_fast_test bitmap in anticipation of adding
3473       // regions to the incremental collection set for the next
3474       // evacuation pause.
3475       clear_cset_fast_test();
3476 
3477       _young_list->reset_sampled_info();
3478 
3479       // Don't check the whole heap at this point as the
3480       // GC alloc regions from this pause have been tagged
3481       // as survivors and moved on to the survivor list.
3482       // Survivor regions will fail the !is_young() check.
3483       assert(check_young_list_empty(false /* check_heap */),
3484         "young list should be empty");
3485 
3486 #if YOUNG_LIST_VERBOSE
3487       gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3488       _young_list->print();
3489 #endif // YOUNG_LIST_VERBOSE
3490 
3491       g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3492         _young_list->first_survivor_region(),
3493         _young_list->last_survivor_region());
3494 
3495       _young_list->reset_auxilary_lists();
3496 
3497       if (evacuation_failed()) {
3498         _summary_bytes_used = recalculate_used();
3499       } else {
3500         // The "used" of the the collection set have already been subtracted
3501         // when they were freed.  Add in the bytes evacuated.
3502         _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3503       }
3504 
3505       if (g1_policy()->during_initial_mark_pause()) {
3506         concurrent_mark()->checkpointRootsInitialPost();
3507         set_marking_started();
3508         // CAUTION: after the doConcurrentMark() call below,
3509         // the concurrent marking thread(s) could be running
3510         // concurrently with us. Make sure that anything after
3511         // this point does not assume that we are the only GC thread
3512         // running. Note: of course, the actual marking work will
3513         // not start until the safepoint itself is released in
3514         // ConcurrentGCThread::safepoint_desynchronize().
3515         doConcurrentMark();
3516       }
3517 
3518       allocate_dummy_regions();
3519 
3520 #if YOUNG_LIST_VERBOSE
3521       gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3522       _young_list->print();
3523       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3524 #endif // YOUNG_LIST_VERBOSE
3525 
3526       init_mutator_alloc_region();
3527 
3528       {
3529         size_t expand_bytes = g1_policy()->expansion_amount();
3530         if (expand_bytes > 0) {
3531           size_t bytes_before = capacity();
3532           if (!expand(expand_bytes)) {
3533             // We failed to expand the heap so let's verify that
3534             // committed/uncommitted amount match the backing store
3535             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3536             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3537           }
3538         }
3539       }
3540 
3541       double end_time_sec = os::elapsedTime();
3542       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
3543       g1_policy()->record_pause_time_ms(pause_time_ms);
3544       g1_policy()->record_collection_pause_end();
3545 
3546       MemoryService::track_memory_usage();
3547 
3548       // In prepare_for_verify() below we'll need to scan the deferred
3549       // update buffers to bring the RSets up-to-date if
3550       // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3551       // the update buffers we'll probably need to scan cards on the
3552       // regions we just allocated to (i.e., the GC alloc
3553       // regions). However, during the last GC we called
3554       // set_saved_mark() on all the GC alloc regions, so card
3555       // scanning might skip the [saved_mark_word()...top()] area of
3556       // those regions (i.e., the area we allocated objects into
3557       // during the last GC). But it shouldn't. Given that
3558       // saved_mark_word() is conditional on whether the GC time stamp
3559       // on the region is current or not, by incrementing the GC time
3560       // stamp here we invalidate all the GC time stamps on all the
3561       // regions and saved_mark_word() will simply return top() for
3562       // all the regions. This is a nicer way of ensuring this rather
3563       // than iterating over the regions and fixing them. In fact, the
3564       // GC time stamp increment here also ensures that
3565       // saved_mark_word() will return top() between pauses, i.e.,
3566       // during concurrent refinement. So we don't need the
3567       // is_gc_active() check to decided which top to use when
3568       // scanning cards (see CR 7039627).
3569       increment_gc_time_stamp();
3570 
3571       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
3572         HandleMark hm;  // Discard invalid handles created during verification
3573         gclog_or_tty->print(" VerifyAfterGC:");
3574         prepare_for_verify();
3575         Universe::verify(/* allow dirty */ true,
3576                          /* silent      */ false,
3577                          /* option      */ VerifyOption_G1UsePrevMarking);
3578       }
3579 
3580       if (was_enabled) ref_processor()->enable_discovery();
3581 
3582       {
3583         size_t expand_bytes = g1_policy()->expansion_amount();
3584         if (expand_bytes > 0) {
3585           size_t bytes_before = capacity();
3586           // No need for an ergo verbose message here,
3587           // expansion_amount() does this when it returns a value > 0.
3588           if (!expand(expand_bytes)) {
3589             // We failed to expand the heap so let's verify that
3590             // committed/uncommitted amount match the backing store
3591             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3592             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3593           }
3594         }
3595       }
3596 
3597       // We should do this after we potentially expand the heap so
3598       // that all the COMMIT events are generated before the end GC
3599       // event, and after we retire the GC alloc regions so that all
3600       // RETIRE events are generated before the end GC event.
3601       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3602 
3603       // We have to do this after we decide whether to expand the heap or not.
3604       g1_policy()->print_heap_transition();
3605 
3606       if (mark_in_progress()) {
3607         concurrent_mark()->update_g1_committed();
3608       }
3609 
3610 #ifdef TRACESPINNING
3611       ParallelTaskTerminator::print_termination_counts();
3612 #endif
3613 
3614       gc_epilogue(false);
3615     }
3616 
3617     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
3618       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
3619       print_tracing_info();
3620       vm_exit(-1);
3621     }
3622   }
3623 
3624   _hrs.verify_optional();
3625   verify_region_sets_optional();
3626 
3627   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
3628   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3629 
3630   if (PrintHeapAtGC) {
3631     Universe::print_heap_after_gc();
3632   }
3633   g1mm()->update_counters();
3634 
3635   if (G1SummarizeRSetStats &&
3636       (G1SummarizeRSetStatsPeriod > 0) &&
3637       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3638     g1_rem_set()->print_summary_info();
3639   }
3640 
3641   return true;
3642 }
3643 
3644 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
3645 {
3646   size_t gclab_word_size;
3647   switch (purpose) {
3648     case GCAllocForSurvived:
3649       gclab_word_size = YoungPLABSize;
3650       break;
3651     case GCAllocForTenured:
3652       gclab_word_size = OldPLABSize;
3653       break;
3654     default:
3655       assert(false, "unknown GCAllocPurpose");
3656       gclab_word_size = OldPLABSize;
3657       break;
3658   }
3659   return gclab_word_size;
3660 }
3661 
3662 void G1CollectedHeap::init_mutator_alloc_region() {
3663   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
3664   _mutator_alloc_region.init();
3665 }
3666 
3667 void G1CollectedHeap::release_mutator_alloc_region() {
3668   _mutator_alloc_region.release();
3669   assert(_mutator_alloc_region.get() == NULL, "post-condition");
3670 }
3671 
3672 void G1CollectedHeap::init_gc_alloc_regions() {
3673   assert_at_safepoint(true /* should_be_vm_thread */);
3674 
3675   _survivor_gc_alloc_region.init();
3676   _old_gc_alloc_region.init();
3677   HeapRegion* retained_region = _retained_old_gc_alloc_region;
3678   _retained_old_gc_alloc_region = NULL;
3679 
3680   // We will discard the current GC alloc region if:
3681   // a) it's in the collection set (it can happen!),
3682   // b) it's already full (no point in using it),
3683   // c) it's empty (this means that it was emptied during
3684   // a cleanup and it should be on the free list now), or
3685   // d) it's humongous (this means that it was emptied
3686   // during a cleanup and was added to the free list, but
3687   // has been subseqently used to allocate a humongous
3688   // object that may be less than the region size).
3689   if (retained_region != NULL &&
3690       !retained_region->in_collection_set() &&
3691       !(retained_region->top() == retained_region->end()) &&
3692       !retained_region->is_empty() &&
3693       !retained_region->isHumongous()) {
3694     retained_region->set_saved_mark();
3695     _old_gc_alloc_region.set(retained_region);
3696     _hr_printer.reuse(retained_region);
3697   }
3698 }
3699 
3700 void G1CollectedHeap::release_gc_alloc_regions() {
3701   _survivor_gc_alloc_region.release();
3702   // If we have an old GC alloc region to release, we'll save it in
3703   // _retained_old_gc_alloc_region. If we don't
3704   // _retained_old_gc_alloc_region will become NULL. This is what we
3705   // want either way so no reason to check explicitly for either
3706   // condition.
3707   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
3708 }
3709 
3710 void G1CollectedHeap::abandon_gc_alloc_regions() {
3711   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
3712   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
3713   _retained_old_gc_alloc_region = NULL;
3714 }
3715 
3716 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
3717   _drain_in_progress = false;
3718   set_evac_failure_closure(cl);
3719   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
3720 }
3721 
3722 void G1CollectedHeap::finalize_for_evac_failure() {
3723   assert(_evac_failure_scan_stack != NULL &&
3724          _evac_failure_scan_stack->length() == 0,
3725          "Postcondition");
3726   assert(!_drain_in_progress, "Postcondition");
3727   delete _evac_failure_scan_stack;
3728   _evac_failure_scan_stack = NULL;
3729 }
3730 
3731 // *** Sequential G1 Evacuation
3732 
3733 class G1IsAliveClosure: public BoolObjectClosure {
3734   G1CollectedHeap* _g1;
3735 public:
3736   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3737   void do_object(oop p) { assert(false, "Do not call."); }
3738   bool do_object_b(oop p) {
3739     // It is reachable if it is outside the collection set, or is inside
3740     // and forwarded.
3741     return !_g1->obj_in_cs(p) || p->is_forwarded();
3742   }
3743 };
3744 
3745 class G1KeepAliveClosure: public OopClosure {
3746   G1CollectedHeap* _g1;
3747 public:
3748   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3749   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3750   void do_oop(      oop* p) {
3751     oop obj = *p;
3752     if (_g1->obj_in_cs(obj)) {
3753       assert( obj->is_forwarded(), "invariant" );
3754       *p = obj->forwardee();
3755     }
3756   }
3757 };
3758 
3759 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
3760 private:
3761   G1CollectedHeap* _g1;
3762   DirtyCardQueue *_dcq;
3763   CardTableModRefBS* _ct_bs;
3764 
3765 public:
3766   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
3767     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3768 
3769   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3770   virtual void do_oop(      oop* p) { do_oop_work(p); }
3771   template <class T> void do_oop_work(T* p) {
3772     assert(_from->is_in_reserved(p), "paranoia");
3773     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
3774         !_from->is_survivor()) {
3775       size_t card_index = _ct_bs->index_for(p);
3776       if (_ct_bs->mark_card_deferred(card_index)) {
3777         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
3778       }
3779     }
3780   }
3781 };
3782 
3783 class RemoveSelfPointerClosure: public ObjectClosure {
3784 private:
3785   G1CollectedHeap* _g1;
3786   ConcurrentMark* _cm;
3787   HeapRegion* _hr;
3788   size_t _prev_marked_bytes;
3789   size_t _next_marked_bytes;
3790   OopsInHeapRegionClosure *_cl;
3791 public:
3792   RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
3793                            OopsInHeapRegionClosure* cl) :
3794     _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
3795     _next_marked_bytes(0), _cl(cl) {}
3796 
3797   size_t prev_marked_bytes() { return _prev_marked_bytes; }
3798   size_t next_marked_bytes() { return _next_marked_bytes; }
3799 
3800   // <original comment>
3801   // The original idea here was to coalesce evacuated and dead objects.
3802   // However that caused complications with the block offset table (BOT).
3803   // In particular if there were two TLABs, one of them partially refined.
3804   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
3805   // The BOT entries of the unrefined part of TLAB_2 point to the start
3806   // of TLAB_2. If the last object of the TLAB_1 and the first object
3807   // of TLAB_2 are coalesced, then the cards of the unrefined part
3808   // would point into middle of the filler object.
3809   // The current approach is to not coalesce and leave the BOT contents intact.
3810   // </original comment>
3811   //
3812   // We now reset the BOT when we start the object iteration over the
3813   // region and refine its entries for every object we come across. So
3814   // the above comment is not really relevant and we should be able
3815   // to coalesce dead objects if we want to.
3816   void do_object(oop obj) {
3817     HeapWord* obj_addr = (HeapWord*) obj;
3818     assert(_hr->is_in(obj_addr), "sanity");
3819     size_t obj_size = obj->size();
3820     _hr->update_bot_for_object(obj_addr, obj_size);
3821     if (obj->is_forwarded() && obj->forwardee() == obj) {
3822       // The object failed to move.
3823       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
3824       _cm->markPrev(obj);
3825       assert(_cm->isPrevMarked(obj), "Should be marked!");
3826       _prev_marked_bytes += (obj_size * HeapWordSize);
3827       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
3828         _cm->markAndGrayObjectIfNecessary(obj);
3829       }
3830       obj->set_mark(markOopDesc::prototype());
3831       // While we were processing RSet buffers during the
3832       // collection, we actually didn't scan any cards on the
3833       // collection set, since we didn't want to update remebered
3834       // sets with entries that point into the collection set, given
3835       // that live objects fromthe collection set are about to move
3836       // and such entries will be stale very soon. This change also
3837       // dealt with a reliability issue which involved scanning a
3838       // card in the collection set and coming across an array that
3839       // was being chunked and looking malformed. The problem is
3840       // that, if evacuation fails, we might have remembered set
3841       // entries missing given that we skipped cards on the
3842       // collection set. So, we'll recreate such entries now.
3843       obj->oop_iterate(_cl);
3844       assert(_cm->isPrevMarked(obj), "Should be marked!");
3845     } else {
3846       // The object has been either evacuated or is dead. Fill it with a
3847       // dummy object.
3848       MemRegion mr((HeapWord*)obj, obj_size);
3849       CollectedHeap::fill_with_object(mr);
3850       _cm->clearRangeBothMaps(mr);
3851     }
3852   }
3853 };
3854 
3855 void G1CollectedHeap::remove_self_forwarding_pointers() {
3856   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
3857   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
3858   UpdateRSetDeferred deferred_update(_g1h, &dcq);
3859   OopsInHeapRegionClosure *cl;
3860   if (G1DeferredRSUpdate) {
3861     cl = &deferred_update;
3862   } else {
3863     cl = &immediate_update;
3864   }
3865   HeapRegion* cur = g1_policy()->collection_set();
3866   while (cur != NULL) {
3867     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3868     assert(!cur->isHumongous(), "sanity");
3869 
3870     if (cur->evacuation_failed()) {
3871       assert(cur->in_collection_set(), "bad CS");
3872       RemoveSelfPointerClosure rspc(_g1h, cur, cl);
3873 
3874       // In the common case we make sure that this is done when the
3875       // region is freed so that it is "ready-to-go" when it's
3876       // re-allocated. However, when evacuation failure happens, a
3877       // region will remain in the heap and might ultimately be added
3878       // to a CSet in the future. So we have to be careful here and
3879       // make sure the region's RSet is ready for parallel iteration
3880       // whenever this might be required in the future.
3881       cur->rem_set()->reset_for_par_iteration();
3882       cur->reset_bot();
3883       cl->set_region(cur);
3884       cur->object_iterate(&rspc);
3885 
3886       // A number of manipulations to make the TAMS be the current top,
3887       // and the marked bytes be the ones observed in the iteration.
3888       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
3889         // The comments below are the postconditions achieved by the
3890         // calls.  Note especially the last such condition, which says that
3891         // the count of marked bytes has been properly restored.
3892         cur->note_start_of_marking(false);
3893         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3894         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
3895         // _next_marked_bytes == prev_marked_bytes.
3896         cur->note_end_of_marking();
3897         // _prev_top_at_mark_start == top(),
3898         // _prev_marked_bytes == prev_marked_bytes
3899       }
3900       // If there is no mark in progress, we modified the _next variables
3901       // above needlessly, but harmlessly.
3902       if (_g1h->mark_in_progress()) {
3903         cur->note_start_of_marking(false);
3904         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3905         // _next_marked_bytes == next_marked_bytes.
3906       }
3907 
3908       // Now make sure the region has the right index in the sorted array.
3909       g1_policy()->note_change_in_marked_bytes(cur);
3910     }
3911     cur = cur->next_in_collection_set();
3912   }
3913   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3914 
3915   // Now restore saved marks, if any.
3916   if (_objs_with_preserved_marks != NULL) {
3917     assert(_preserved_marks_of_objs != NULL, "Both or none.");
3918     guarantee(_objs_with_preserved_marks->length() ==
3919               _preserved_marks_of_objs->length(), "Both or none.");
3920     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
3921       oop obj   = _objs_with_preserved_marks->at(i);
3922       markOop m = _preserved_marks_of_objs->at(i);
3923       obj->set_mark(m);
3924     }
3925     // Delete the preserved marks growable arrays (allocated on the C heap).
3926     delete _objs_with_preserved_marks;
3927     delete _preserved_marks_of_objs;
3928     _objs_with_preserved_marks = NULL;
3929     _preserved_marks_of_objs = NULL;
3930   }
3931 }
3932 
3933 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
3934   _evac_failure_scan_stack->push(obj);
3935 }
3936 
3937 void G1CollectedHeap::drain_evac_failure_scan_stack() {
3938   assert(_evac_failure_scan_stack != NULL, "precondition");
3939 
3940   while (_evac_failure_scan_stack->length() > 0) {
3941      oop obj = _evac_failure_scan_stack->pop();
3942      _evac_failure_closure->set_region(heap_region_containing(obj));
3943      obj->oop_iterate_backwards(_evac_failure_closure);
3944   }
3945 }
3946 
3947 oop
3948 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
3949                                                oop old) {
3950   assert(obj_in_cs(old),
3951          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
3952                  (HeapWord*) old));
3953   markOop m = old->mark();
3954   oop forward_ptr = old->forward_to_atomic(old);
3955   if (forward_ptr == NULL) {
3956     // Forward-to-self succeeded.
3957     if (_evac_failure_closure != cl) {
3958       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
3959       assert(!_drain_in_progress,
3960              "Should only be true while someone holds the lock.");
3961       // Set the global evac-failure closure to the current thread's.
3962       assert(_evac_failure_closure == NULL, "Or locking has failed.");
3963       set_evac_failure_closure(cl);
3964       // Now do the common part.
3965       handle_evacuation_failure_common(old, m);
3966       // Reset to NULL.
3967       set_evac_failure_closure(NULL);
3968     } else {
3969       // The lock is already held, and this is recursive.
3970       assert(_drain_in_progress, "This should only be the recursive case.");
3971       handle_evacuation_failure_common(old, m);
3972     }
3973     return old;
3974   } else {
3975     // Forward-to-self failed. Either someone else managed to allocate
3976     // space for this object (old != forward_ptr) or they beat us in
3977     // self-forwarding it (old == forward_ptr).
3978     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
3979            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
3980                    "should not be in the CSet",
3981                    (HeapWord*) old, (HeapWord*) forward_ptr));
3982     return forward_ptr;
3983   }
3984 }
3985 
3986 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
3987   set_evacuation_failed(true);
3988 
3989   preserve_mark_if_necessary(old, m);
3990 
3991   HeapRegion* r = heap_region_containing(old);
3992   if (!r->evacuation_failed()) {
3993     r->set_evacuation_failed(true);
3994     _hr_printer.evac_failure(r);
3995   }
3996 
3997   push_on_evac_failure_scan_stack(old);
3998 
3999   if (!_drain_in_progress) {
4000     // prevent recursion in copy_to_survivor_space()
4001     _drain_in_progress = true;
4002     drain_evac_failure_scan_stack();
4003     _drain_in_progress = false;
4004   }
4005 }
4006 
4007 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4008   assert(evacuation_failed(), "Oversaving!");
4009   // We want to call the "for_promotion_failure" version only in the
4010   // case of a promotion failure.
4011   if (m->must_be_preserved_for_promotion_failure(obj)) {
4012     if (_objs_with_preserved_marks == NULL) {
4013       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4014       _objs_with_preserved_marks =
4015         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4016       _preserved_marks_of_objs =
4017         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
4018     }
4019     _objs_with_preserved_marks->push(obj);
4020     _preserved_marks_of_objs->push(m);
4021   }
4022 }
4023 
4024 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4025                                                   size_t word_size) {
4026   if (purpose == GCAllocForSurvived) {
4027     HeapWord* result = survivor_attempt_allocation(word_size);
4028     if (result != NULL) {
4029       return result;
4030     } else {
4031       // Let's try to allocate in the old gen in case we can fit the
4032       // object there.
4033       return old_attempt_allocation(word_size);
4034     }
4035   } else {
4036     assert(purpose ==  GCAllocForTenured, "sanity");
4037     HeapWord* result = old_attempt_allocation(word_size);
4038     if (result != NULL) {
4039       return result;
4040     } else {
4041       // Let's try to allocate in the survivors in case we can fit the
4042       // object there.
4043       return survivor_attempt_allocation(word_size);
4044     }
4045   }
4046 
4047   ShouldNotReachHere();
4048   // Trying to keep some compilers happy.
4049   return NULL;
4050 }
4051 
4052 #ifndef PRODUCT
4053 bool GCLabBitMapClosure::do_bit(size_t offset) {
4054   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
4055   guarantee(_cm->isMarked(oop(addr)), "it should be!");
4056   return true;
4057 }
4058 #endif // PRODUCT
4059 
4060 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4061   ParGCAllocBuffer(gclab_word_size),
4062   _should_mark_objects(false),
4063   _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
4064   _retired(false)
4065 {
4066   //_should_mark_objects is set to true when G1ParCopyHelper needs to
4067   // mark the forwarded location of an evacuated object.
4068   // We set _should_mark_objects to true if marking is active, i.e. when we
4069   // need to propagate a mark, or during an initial mark pause, i.e. when we
4070   // need to mark objects immediately reachable by the roots.
4071   if (G1CollectedHeap::heap()->mark_in_progress() ||
4072       G1CollectedHeap::heap()->g1_policy()->during_initial_mark_pause()) {
4073     _should_mark_objects = true;
4074   }
4075 }
4076 
4077 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
4078   : _g1h(g1h),
4079     _refs(g1h->task_queue(queue_num)),
4080     _dcq(&g1h->dirty_card_queue_set()),
4081     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4082     _g1_rem(g1h->g1_rem_set()),
4083     _hash_seed(17), _queue_num(queue_num),
4084     _term_attempts(0),
4085     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4086     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4087     _age_table(false),
4088     _strong_roots_time(0), _term_time(0),
4089     _alloc_buffer_waste(0), _undo_waste(0)
4090 {
4091   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4092   // we "sacrifice" entry 0 to keep track of surviving bytes for
4093   // non-young regions (where the age is -1)
4094   // We also add a few elements at the beginning and at the end in
4095   // an attempt to eliminate cache contention
4096   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
4097   size_t array_length = PADDING_ELEM_NUM +
4098                         real_length +
4099                         PADDING_ELEM_NUM;
4100   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
4101   if (_surviving_young_words_base == NULL)
4102     vm_exit_out_of_memory(array_length * sizeof(size_t),
4103                           "Not enough space for young surv histo.");
4104   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4105   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
4106 
4107   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4108   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4109 
4110   _start = os::elapsedTime();
4111 }
4112 
4113 void
4114 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4115 {
4116   st->print_raw_cr("GC Termination Stats");
4117   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4118                    " ------waste (KiB)------");
4119   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4120                    "  total   alloc    undo");
4121   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4122                    " ------- ------- -------");
4123 }
4124 
4125 void
4126 G1ParScanThreadState::print_termination_stats(int i,
4127                                               outputStream* const st) const
4128 {
4129   const double elapsed_ms = elapsed_time() * 1000.0;
4130   const double s_roots_ms = strong_roots_time() * 1000.0;
4131   const double term_ms    = term_time() * 1000.0;
4132   st->print_cr("%3d %9.2f %9.2f %6.2f "
4133                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4134                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4135                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4136                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4137                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4138                alloc_buffer_waste() * HeapWordSize / K,
4139                undo_waste() * HeapWordSize / K);
4140 }
4141 
4142 #ifdef ASSERT
4143 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4144   assert(ref != NULL, "invariant");
4145   assert(UseCompressedOops, "sanity");
4146   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4147   oop p = oopDesc::load_decode_heap_oop(ref);
4148   assert(_g1h->is_in_g1_reserved(p),
4149          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4150   return true;
4151 }
4152 
4153 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4154   assert(ref != NULL, "invariant");
4155   if (has_partial_array_mask(ref)) {
4156     // Must be in the collection set--it's already been copied.
4157     oop p = clear_partial_array_mask(ref);
4158     assert(_g1h->obj_in_cs(p),
4159            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4160   } else {
4161     oop p = oopDesc::load_decode_heap_oop(ref);
4162     assert(_g1h->is_in_g1_reserved(p),
4163            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4164   }
4165   return true;
4166 }
4167 
4168 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4169   if (ref.is_narrow()) {
4170     return verify_ref((narrowOop*) ref);
4171   } else {
4172     return verify_ref((oop*) ref);
4173   }
4174 }
4175 #endif // ASSERT
4176 
4177 void G1ParScanThreadState::trim_queue() {
4178   StarTask ref;
4179   do {
4180     // Drain the overflow stack first, so other threads can steal.
4181     while (refs()->pop_overflow(ref)) {
4182       deal_with_reference(ref);
4183     }
4184     while (refs()->pop_local(ref)) {
4185       deal_with_reference(ref);
4186     }
4187   } while (!refs()->is_empty());
4188 }
4189 
4190 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
4191   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4192   _par_scan_state(par_scan_state),
4193   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4194   _mark_in_progress(_g1->mark_in_progress()) { }
4195 
4196 template <class T> void G1ParCopyHelper::mark_object(T* p) {
4197   // This is called from do_oop_work for objects that are not
4198   // in the collection set. Objects in the collection set
4199   // are marked after they have been evacuated.
4200 
4201   T heap_oop = oopDesc::load_heap_oop(p);
4202   if (!oopDesc::is_null(heap_oop)) {
4203     oop obj = oopDesc::decode_heap_oop(heap_oop);
4204     HeapWord* addr = (HeapWord*)obj;
4205     if (_g1->is_in_g1_reserved(addr)) {
4206       _cm->grayRoot(oop(addr));
4207     }
4208   }
4209 }
4210 
4211 oop G1ParCopyHelper::copy_to_survivor_space(oop old, bool should_mark_copy) {
4212   size_t    word_sz = old->size();
4213   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4214   // +1 to make the -1 indexes valid...
4215   int       young_index = from_region->young_index_in_cset()+1;
4216   assert( (from_region->is_young() && young_index > 0) ||
4217           (!from_region->is_young() && young_index == 0), "invariant" );
4218   G1CollectorPolicy* g1p = _g1->g1_policy();
4219   markOop m = old->mark();
4220   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4221                                            : m->age();
4222   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4223                                                              word_sz);
4224   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4225   oop       obj     = oop(obj_ptr);
4226 
4227   if (obj_ptr == NULL) {
4228     // This will either forward-to-self, or detect that someone else has
4229     // installed a forwarding pointer.
4230     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4231     return _g1->handle_evacuation_failure_par(cl, old);
4232   }
4233 
4234   // We're going to allocate linearly, so might as well prefetch ahead.
4235   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4236 
4237   oop forward_ptr = old->forward_to_atomic(obj);
4238   if (forward_ptr == NULL) {
4239     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4240     if (g1p->track_object_age(alloc_purpose)) {
4241       // We could simply do obj->incr_age(). However, this causes a
4242       // performance issue. obj->incr_age() will first check whether
4243       // the object has a displaced mark by checking its mark word;
4244       // getting the mark word from the new location of the object
4245       // stalls. So, given that we already have the mark word and we
4246       // are about to install it anyway, it's better to increase the
4247       // age on the mark word, when the object does not have a
4248       // displaced mark word. We're not expecting many objects to have
4249       // a displaced marked word, so that case is not optimized
4250       // further (it could be...) and we simply call obj->incr_age().
4251 
4252       if (m->has_displaced_mark_helper()) {
4253         // in this case, we have to install the mark word first,
4254         // otherwise obj looks to be forwarded (the old mark word,
4255         // which contains the forward pointer, was copied)
4256         obj->set_mark(m);
4257         obj->incr_age();
4258       } else {
4259         m = m->incr_age();
4260         obj->set_mark(m);
4261       }
4262       _par_scan_state->age_table()->add(obj, word_sz);
4263     } else {
4264       obj->set_mark(m);
4265     }
4266 
4267     // Mark the evacuated object or propagate "next" mark bit
4268     if (should_mark_copy) {
4269       if (!use_local_bitmaps ||
4270           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
4271         // if we couldn't mark it on the local bitmap (this happens when
4272         // the object was not allocated in the GCLab), we have to bite
4273         // the bullet and do the standard parallel mark
4274         _cm->markAndGrayObjectIfNecessary(obj);
4275       }
4276 
4277       if (_g1->isMarkedNext(old)) {
4278         // Unmark the object's old location so that marking
4279         // doesn't think the old object is alive.
4280         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
4281       }
4282     }
4283 
4284     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4285     surv_young_words[young_index] += word_sz;
4286 
4287     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4288       arrayOop(old)->set_length(0);
4289       oop* old_p = set_partial_array_mask(old);
4290       _par_scan_state->push_on_queue(old_p);
4291     } else {
4292       // No point in using the slower heap_region_containing() method,
4293       // given that we know obj is in the heap.
4294       _scanner->set_region(_g1->heap_region_containing_raw(obj));
4295       obj->oop_iterate_backwards(_scanner);
4296     }
4297   } else {
4298     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4299     obj = forward_ptr;
4300   }
4301   return obj;
4302 }
4303 
4304 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4305 template <class T>
4306 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4307 ::do_oop_work(T* p) {
4308   oop obj = oopDesc::load_decode_heap_oop(p);
4309   assert(barrier != G1BarrierRS || obj != NULL,
4310          "Precondition: G1BarrierRS implies obj is nonNull");
4311 
4312   // Marking:
4313   // If the object is in the collection set, then the thread
4314   // that copies the object should mark, or propagate the
4315   // mark to, the evacuated object.
4316   // If the object is not in the collection set then we
4317   // should call the mark_object() method depending on the
4318   // value of the template parameter do_mark_object (which will
4319   // be true for root scanning closures during an initial mark
4320   // pause).
4321   // The mark_object() method first checks whether the object
4322   // is marked and, if not, attempts to mark the object.
4323 
4324   // here the null check is implicit in the cset_fast_test() test
4325   if (_g1->in_cset_fast_test(obj)) {
4326     if (obj->is_forwarded()) {
4327       oopDesc::encode_store_heap_oop(p, obj->forwardee());
4328       // If we are a root scanning closure during an initial
4329       // mark pause (i.e. do_mark_object will be true) then
4330       // we also need to handle marking of roots in the
4331       // event of an evacuation failure. In the event of an
4332       // evacuation failure, the object is forwarded to itself
4333       // and not copied so let's mark it here.
4334       if (do_mark_object && obj->forwardee() == obj) {
4335         mark_object(p);
4336       }
4337     } else {
4338       // We need to mark the copied object if we're a root scanning
4339       // closure during an initial mark pause (i.e. do_mark_object
4340       // will be true), or the object is already marked and we need
4341       // to propagate the mark to the evacuated copy.
4342       bool should_mark_copy = do_mark_object ||
4343                               _during_initial_mark ||
4344                               (_mark_in_progress && !_g1->is_obj_ill(obj));
4345 
4346       oop copy_oop = copy_to_survivor_space(obj, should_mark_copy);
4347       oopDesc::encode_store_heap_oop(p, copy_oop);
4348     }
4349     // When scanning the RS, we only care about objs in CS.
4350     if (barrier == G1BarrierRS) {
4351       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4352     }
4353   } else {
4354     // The object is not in collection set. If we're a root scanning
4355     // closure during an initial mark pause (i.e. do_mark_object will
4356     // be true) then attempt to mark the object.
4357     if (do_mark_object) {
4358       mark_object(p);
4359     }
4360   }
4361 
4362   if (barrier == G1BarrierEvac && obj != NULL) {
4363     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4364   }
4365 
4366   if (do_gen_barrier && obj != NULL) {
4367     par_do_barrier(p);
4368   }
4369 }
4370 
4371 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4372 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4373 
4374 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4375   assert(has_partial_array_mask(p), "invariant");
4376   oop old = clear_partial_array_mask(p);
4377   assert(old->is_objArray(), "must be obj array");
4378   assert(old->is_forwarded(), "must be forwarded");
4379   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
4380 
4381   objArrayOop obj = objArrayOop(old->forwardee());
4382   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
4383   // Process ParGCArrayScanChunk elements now
4384   // and push the remainder back onto queue
4385   int start     = arrayOop(old)->length();
4386   int end       = obj->length();
4387   int remainder = end - start;
4388   assert(start <= end, "just checking");
4389   if (remainder > 2 * ParGCArrayScanChunk) {
4390     // Test above combines last partial chunk with a full chunk
4391     end = start + ParGCArrayScanChunk;
4392     arrayOop(old)->set_length(end);
4393     // Push remainder.
4394     oop* old_p = set_partial_array_mask(old);
4395     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
4396     _par_scan_state->push_on_queue(old_p);
4397   } else {
4398     // Restore length so that the heap remains parsable in
4399     // case of evacuation failure.
4400     arrayOop(old)->set_length(end);
4401   }
4402   _scanner.set_region(_g1->heap_region_containing_raw(obj));
4403   // process our set of indices (include header in first chunk)
4404   obj->oop_iterate_range(&_scanner, start, end);
4405 }
4406 
4407 class G1ParEvacuateFollowersClosure : public VoidClosure {
4408 protected:
4409   G1CollectedHeap*              _g1h;
4410   G1ParScanThreadState*         _par_scan_state;
4411   RefToScanQueueSet*            _queues;
4412   ParallelTaskTerminator*       _terminator;
4413 
4414   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4415   RefToScanQueueSet*      queues()         { return _queues; }
4416   ParallelTaskTerminator* terminator()     { return _terminator; }
4417 
4418 public:
4419   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4420                                 G1ParScanThreadState* par_scan_state,
4421                                 RefToScanQueueSet* queues,
4422                                 ParallelTaskTerminator* terminator)
4423     : _g1h(g1h), _par_scan_state(par_scan_state),
4424       _queues(queues), _terminator(terminator) {}
4425 
4426   void do_void();
4427 
4428 private:
4429   inline bool offer_termination();
4430 };
4431 
4432 bool G1ParEvacuateFollowersClosure::offer_termination() {
4433   G1ParScanThreadState* const pss = par_scan_state();
4434   pss->start_term_time();
4435   const bool res = terminator()->offer_termination();
4436   pss->end_term_time();
4437   return res;
4438 }
4439 
4440 void G1ParEvacuateFollowersClosure::do_void() {
4441   StarTask stolen_task;
4442   G1ParScanThreadState* const pss = par_scan_state();
4443   pss->trim_queue();
4444 
4445   do {
4446     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4447       assert(pss->verify_task(stolen_task), "sanity");
4448       if (stolen_task.is_narrow()) {
4449         pss->deal_with_reference((narrowOop*) stolen_task);
4450       } else {
4451         pss->deal_with_reference((oop*) stolen_task);
4452       }
4453 
4454       // We've just processed a reference and we might have made
4455       // available new entries on the queues. So we have to make sure
4456       // we drain the queues as necessary.
4457       pss->trim_queue();
4458     }
4459   } while (!offer_termination());
4460 
4461   pss->retire_alloc_buffers();
4462 }
4463 
4464 class G1ParTask : public AbstractGangTask {
4465 protected:
4466   G1CollectedHeap*       _g1h;
4467   RefToScanQueueSet      *_queues;
4468   ParallelTaskTerminator _terminator;
4469   int _n_workers;
4470 
4471   Mutex _stats_lock;
4472   Mutex* stats_lock() { return &_stats_lock; }
4473 
4474   size_t getNCards() {
4475     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4476       / G1BlockOffsetSharedArray::N_bytes;
4477   }
4478 
4479 public:
4480   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
4481     : AbstractGangTask("G1 collection"),
4482       _g1h(g1h),
4483       _queues(task_queues),
4484       _terminator(workers, _queues),
4485       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
4486       _n_workers(workers)
4487   {}
4488 
4489   RefToScanQueueSet* queues() { return _queues; }
4490 
4491   RefToScanQueue *work_queue(int i) {
4492     return queues()->queue(i);
4493   }
4494 
4495   void work(int i) {
4496     if (i >= _n_workers) return;  // no work needed this round
4497 
4498     double start_time_ms = os::elapsedTime() * 1000.0;
4499     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
4500 
4501     ResourceMark rm;
4502     HandleMark   hm;
4503 
4504     G1ParScanThreadState            pss(_g1h, i);
4505     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
4506     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
4507     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4508 
4509     pss.set_evac_closure(&scan_evac_cl);
4510     pss.set_evac_failure_closure(&evac_failure_cl);
4511     pss.set_partial_scan_closure(&partial_scan_cl);
4512 
4513     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
4514     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
4515     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4516     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4517 
4518     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
4519     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
4520     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
4521 
4522     OopsInHeapRegionClosure        *scan_root_cl;
4523     OopsInHeapRegionClosure        *scan_perm_cl;
4524 
4525     if (_g1h->g1_policy()->during_initial_mark_pause()) {
4526       scan_root_cl = &scan_mark_root_cl;
4527       scan_perm_cl = &scan_mark_perm_cl;
4528     } else {
4529       scan_root_cl = &only_scan_root_cl;
4530       scan_perm_cl = &only_scan_perm_cl;
4531     }
4532 
4533     pss.start_strong_roots();
4534     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4535                                   SharedHeap::SO_AllClasses,
4536                                   scan_root_cl,
4537                                   &push_heap_rs_cl,
4538                                   scan_perm_cl,
4539                                   i);
4540     pss.end_strong_roots();
4541 
4542     {
4543       double start = os::elapsedTime();
4544       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4545       evac.do_void();
4546       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4547       double term_ms = pss.term_time()*1000.0;
4548       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4549       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4550     }
4551     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4552     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4553 
4554     // Clean up any par-expanded rem sets.
4555     HeapRegionRemSet::par_cleanup();
4556 
4557     if (ParallelGCVerbose) {
4558       MutexLocker x(stats_lock());
4559       pss.print_termination_stats(i);
4560     }
4561 
4562     assert(pss.refs()->is_empty(), "should be empty");
4563     double end_time_ms = os::elapsedTime() * 1000.0;
4564     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4565   }
4566 };
4567 
4568 // *** Common G1 Evacuation Stuff
4569 
4570 // This method is run in a GC worker.
4571 
4572 void
4573 G1CollectedHeap::
4574 g1_process_strong_roots(bool collecting_perm_gen,
4575                         SharedHeap::ScanningOption so,
4576                         OopClosure* scan_non_heap_roots,
4577                         OopsInHeapRegionClosure* scan_rs,
4578                         OopsInGenClosure* scan_perm,
4579                         int worker_i) {
4580   // First scan the strong roots, including the perm gen.
4581   double ext_roots_start = os::elapsedTime();
4582   double closure_app_time_sec = 0.0;
4583 
4584   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4585   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4586   buf_scan_perm.set_generation(perm_gen());
4587 
4588   // Walk the code cache w/o buffering, because StarTask cannot handle
4589   // unaligned oop locations.
4590   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
4591 
4592   process_strong_roots(false, // no scoping; this is parallel code
4593                        collecting_perm_gen, so,
4594                        &buf_scan_non_heap_roots,
4595                        &eager_scan_code_roots,
4596                        &buf_scan_perm);
4597 
4598   // Now the ref_processor roots.
4599   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4600     // We need to treat the discovered reference lists as roots and
4601     // keep entries (which are added by the marking threads) on them
4602     // live until they can be processed at the end of marking.
4603     ref_processor()->weak_oops_do(&buf_scan_non_heap_roots);
4604   }
4605 
4606   // Finish up any enqueued closure apps (attributed as object copy time).
4607   buf_scan_non_heap_roots.done();
4608   buf_scan_perm.done();
4609 
4610   double ext_roots_end = os::elapsedTime();
4611 
4612   g1_policy()->reset_obj_copy_time(worker_i);
4613   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
4614                                 buf_scan_non_heap_roots.closure_app_seconds();
4615   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4616 
4617   double ext_root_time_ms =
4618     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4619 
4620   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4621 
4622   // Scan strong roots in mark stack.
4623   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
4624     concurrent_mark()->oops_do(scan_non_heap_roots);
4625   }
4626   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4627   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
4628 
4629   // Now scan the complement of the collection set.
4630   if (scan_rs != NULL) {
4631     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4632   }
4633 
4634   _process_strong_tasks->all_tasks_completed();
4635 }
4636 
4637 void
4638 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4639                                        OopClosure* non_root_closure) {
4640   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
4641   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4642 }
4643 
4644 void G1CollectedHeap::evacuate_collection_set() {
4645   set_evacuation_failed(false);
4646 
4647   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4648   concurrent_g1_refine()->set_use_cache(false);
4649   concurrent_g1_refine()->clear_hot_cache_claimed_index();
4650 
4651   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
4652   set_par_threads(n_workers);
4653   G1ParTask g1_par_task(this, n_workers, _task_queues);
4654 
4655   init_for_evac_failure(NULL);
4656 
4657   rem_set()->prepare_for_younger_refs_iterate(true);
4658 
4659   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4660   double start_par = os::elapsedTime();
4661   if (G1CollectedHeap::use_parallel_gc_threads()) {
4662     // The individual threads will set their evac-failure closures.
4663     StrongRootsScope srs(this);
4664     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
4665     workers()->run_task(&g1_par_task);
4666   } else {
4667     StrongRootsScope srs(this);
4668     g1_par_task.work(0);
4669   }
4670 
4671   double par_time = (os::elapsedTime() - start_par) * 1000.0;
4672   g1_policy()->record_par_time(par_time);
4673   set_par_threads(0);
4674 
4675   // Weak root processing.
4676   // Note: when JSR 292 is enabled and code blobs can contain
4677   // non-perm oops then we will need to process the code blobs
4678   // here too.
4679   {
4680     G1IsAliveClosure is_alive(this);
4681     G1KeepAliveClosure keep_alive(this);
4682     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4683   }
4684   release_gc_alloc_regions();
4685   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4686 
4687   concurrent_g1_refine()->clear_hot_cache();
4688   concurrent_g1_refine()->set_use_cache(true);
4689 
4690   finalize_for_evac_failure();
4691 
4692   // Must do this before removing self-forwarding pointers, which clears
4693   // the per-region evac-failure flags.
4694   concurrent_mark()->complete_marking_in_collection_set();
4695 
4696   if (evacuation_failed()) {
4697     remove_self_forwarding_pointers();
4698     if (PrintGCDetails) {
4699       gclog_or_tty->print(" (to-space overflow)");
4700     } else if (PrintGC) {
4701       gclog_or_tty->print("--");
4702     }
4703   }
4704 
4705   if (G1DeferredRSUpdate) {
4706     RedirtyLoggedCardTableEntryFastClosure redirty;
4707     dirty_card_queue_set().set_closure(&redirty);
4708     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4709 
4710     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4711     dcq.merge_bufferlists(&dirty_card_queue_set());
4712     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4713   }
4714   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
4715 }
4716 
4717 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
4718                                      size_t* pre_used,
4719                                      FreeRegionList* free_list,
4720                                      HumongousRegionSet* humongous_proxy_set,
4721                                      HRRSCleanupTask* hrrs_cleanup_task,
4722                                      bool par) {
4723   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
4724     if (hr->isHumongous()) {
4725       assert(hr->startsHumongous(), "we should only see starts humongous");
4726       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
4727     } else {
4728       free_region(hr, pre_used, free_list, par);
4729     }
4730   } else {
4731     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
4732   }
4733 }
4734 
4735 void G1CollectedHeap::free_region(HeapRegion* hr,
4736                                   size_t* pre_used,
4737                                   FreeRegionList* free_list,
4738                                   bool par) {
4739   assert(!hr->isHumongous(), "this is only for non-humongous regions");
4740   assert(!hr->is_empty(), "the region should not be empty");
4741   assert(free_list != NULL, "pre-condition");
4742 
4743   *pre_used += hr->used();
4744   hr->hr_clear(par, true /* clear_space */);
4745   free_list->add_as_head(hr);
4746 }
4747 
4748 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4749                                      size_t* pre_used,
4750                                      FreeRegionList* free_list,
4751                                      HumongousRegionSet* humongous_proxy_set,
4752                                      bool par) {
4753   assert(hr->startsHumongous(), "this is only for starts humongous regions");
4754   assert(free_list != NULL, "pre-condition");
4755   assert(humongous_proxy_set != NULL, "pre-condition");
4756 
4757   size_t hr_used = hr->used();
4758   size_t hr_capacity = hr->capacity();
4759   size_t hr_pre_used = 0;
4760   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
4761   hr->set_notHumongous();
4762   free_region(hr, &hr_pre_used, free_list, par);
4763 
4764   size_t i = hr->hrs_index() + 1;
4765   size_t num = 1;
4766   while (i < n_regions()) {
4767     HeapRegion* curr_hr = region_at(i);
4768     if (!curr_hr->continuesHumongous()) {
4769       break;
4770     }
4771     curr_hr->set_notHumongous();
4772     free_region(curr_hr, &hr_pre_used, free_list, par);
4773     num += 1;
4774     i += 1;
4775   }
4776   assert(hr_pre_used == hr_used,
4777          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
4778                  "should be the same", hr_pre_used, hr_used));
4779   *pre_used += hr_pre_used;
4780 }
4781 
4782 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
4783                                        FreeRegionList* free_list,
4784                                        HumongousRegionSet* humongous_proxy_set,
4785                                        bool par) {
4786   if (pre_used > 0) {
4787     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
4788     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
4789     assert(_summary_bytes_used >= pre_used,
4790            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
4791                    "should be >= pre_used: "SIZE_FORMAT,
4792                    _summary_bytes_used, pre_used));
4793     _summary_bytes_used -= pre_used;
4794   }
4795   if (free_list != NULL && !free_list->is_empty()) {
4796     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4797     _free_list.add_as_head(free_list);
4798   }
4799   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
4800     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4801     _humongous_set.update_from_proxy(humongous_proxy_set);
4802   }
4803 }
4804 
4805 class G1ParCleanupCTTask : public AbstractGangTask {
4806   CardTableModRefBS* _ct_bs;
4807   G1CollectedHeap* _g1h;
4808   HeapRegion* volatile _su_head;
4809 public:
4810   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
4811                      G1CollectedHeap* g1h) :
4812     AbstractGangTask("G1 Par Cleanup CT Task"),
4813     _ct_bs(ct_bs), _g1h(g1h) { }
4814 
4815   void work(int i) {
4816     HeapRegion* r;
4817     while (r = _g1h->pop_dirty_cards_region()) {
4818       clear_cards(r);
4819     }
4820   }
4821 
4822   void clear_cards(HeapRegion* r) {
4823     // Cards of the survivors should have already been dirtied.
4824     if (!r->is_survivor()) {
4825       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
4826     }
4827   }
4828 };
4829 
4830 #ifndef PRODUCT
4831 class G1VerifyCardTableCleanup: public HeapRegionClosure {
4832   G1CollectedHeap* _g1h;
4833   CardTableModRefBS* _ct_bs;
4834 public:
4835   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
4836     : _g1h(g1h), _ct_bs(ct_bs) { }
4837   virtual bool doHeapRegion(HeapRegion* r) {
4838     if (r->is_survivor()) {
4839       _g1h->verify_dirty_region(r);
4840     } else {
4841       _g1h->verify_not_dirty_region(r);
4842     }
4843     return false;
4844   }
4845 };
4846 
4847 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
4848   // All of the region should be clean.
4849   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
4850   MemRegion mr(hr->bottom(), hr->end());
4851   ct_bs->verify_not_dirty_region(mr);
4852 }
4853 
4854 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
4855   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
4856   // dirty allocated blocks as they allocate them. The thread that
4857   // retires each region and replaces it with a new one will do a
4858   // maximal allocation to fill in [pre_dummy_top(),end()] but will
4859   // not dirty that area (one less thing to have to do while holding
4860   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
4861   // is dirty.
4862   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
4863   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
4864   ct_bs->verify_dirty_region(mr);
4865 }
4866 
4867 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
4868   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
4869   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
4870     verify_dirty_region(hr);
4871   }
4872 }
4873 
4874 void G1CollectedHeap::verify_dirty_young_regions() {
4875   verify_dirty_young_list(_young_list->first_region());
4876   verify_dirty_young_list(_young_list->first_survivor_region());
4877 }
4878 #endif
4879 
4880 void G1CollectedHeap::cleanUpCardTable() {
4881   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
4882   double start = os::elapsedTime();
4883 
4884   // Iterate over the dirty cards region list.
4885   G1ParCleanupCTTask cleanup_task(ct_bs, this);
4886 
4887   if (ParallelGCThreads > 0) {
4888     set_par_threads(workers()->total_workers());
4889     workers()->run_task(&cleanup_task);
4890     set_par_threads(0);
4891   } else {
4892     while (_dirty_cards_region_list) {
4893       HeapRegion* r = _dirty_cards_region_list;
4894       cleanup_task.clear_cards(r);
4895       _dirty_cards_region_list = r->get_next_dirty_cards_region();
4896       if (_dirty_cards_region_list == r) {
4897         // The last region.
4898         _dirty_cards_region_list = NULL;
4899       }
4900       r->set_next_dirty_cards_region(NULL);
4901     }
4902   }
4903 
4904   double elapsed = os::elapsedTime() - start;
4905   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
4906 #ifndef PRODUCT
4907   if (G1VerifyCTCleanup || VerifyAfterGC) {
4908     G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
4909     heap_region_iterate(&cleanup_verifier);
4910   }
4911 #endif
4912 }
4913 
4914 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
4915   size_t pre_used = 0;
4916   FreeRegionList local_free_list("Local List for CSet Freeing");
4917 
4918   double young_time_ms     = 0.0;
4919   double non_young_time_ms = 0.0;
4920 
4921   // Since the collection set is a superset of the the young list,
4922   // all we need to do to clear the young list is clear its
4923   // head and length, and unlink any young regions in the code below
4924   _young_list->clear();
4925 
4926   G1CollectorPolicy* policy = g1_policy();
4927 
4928   double start_sec = os::elapsedTime();
4929   bool non_young = true;
4930 
4931   HeapRegion* cur = cs_head;
4932   int age_bound = -1;
4933   size_t rs_lengths = 0;
4934 
4935   while (cur != NULL) {
4936     assert(!is_on_master_free_list(cur), "sanity");
4937 
4938     if (non_young) {
4939       if (cur->is_young()) {
4940         double end_sec = os::elapsedTime();
4941         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4942         non_young_time_ms += elapsed_ms;
4943 
4944         start_sec = os::elapsedTime();
4945         non_young = false;
4946       }
4947     } else {
4948       double end_sec = os::elapsedTime();
4949       double elapsed_ms = (end_sec - start_sec) * 1000.0;
4950       young_time_ms += elapsed_ms;
4951 
4952       start_sec = os::elapsedTime();
4953       non_young = true;
4954     }
4955 
4956     rs_lengths += cur->rem_set()->occupied();
4957 
4958     HeapRegion* next = cur->next_in_collection_set();
4959     assert(cur->in_collection_set(), "bad CS");
4960     cur->set_next_in_collection_set(NULL);
4961     cur->set_in_collection_set(false);
4962 
4963     if (cur->is_young()) {
4964       int index = cur->young_index_in_cset();
4965       guarantee( index != -1, "invariant" );
4966       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
4967       size_t words_survived = _surviving_young_words[index];
4968       cur->record_surv_words_in_group(words_survived);
4969 
4970       // At this point the we have 'popped' cur from the collection set
4971       // (linked via next_in_collection_set()) but it is still in the
4972       // young list (linked via next_young_region()). Clear the
4973       // _next_young_region field.
4974       cur->set_next_young_region(NULL);
4975     } else {
4976       int index = cur->young_index_in_cset();
4977       guarantee( index == -1, "invariant" );
4978     }
4979 
4980     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
4981             (!cur->is_young() && cur->young_index_in_cset() == -1),
4982             "invariant" );
4983 
4984     if (!cur->evacuation_failed()) {
4985       // And the region is empty.
4986       assert(!cur->is_empty(), "Should not have empty regions in a CS.");
4987       free_region(cur, &pre_used, &local_free_list, false /* par */);
4988     } else {
4989       cur->uninstall_surv_rate_group();
4990       if (cur->is_young())
4991         cur->set_young_index_in_cset(-1);
4992       cur->set_not_young();
4993       cur->set_evacuation_failed(false);
4994     }
4995     cur = next;
4996   }
4997 
4998   policy->record_max_rs_lengths(rs_lengths);
4999   policy->cset_regions_freed();
5000 
5001   double end_sec = os::elapsedTime();
5002   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5003   if (non_young)
5004     non_young_time_ms += elapsed_ms;
5005   else
5006     young_time_ms += elapsed_ms;
5007 
5008   update_sets_after_freeing_regions(pre_used, &local_free_list,
5009                                     NULL /* humongous_proxy_set */,
5010                                     false /* par */);
5011   policy->record_young_free_cset_time_ms(young_time_ms);
5012   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
5013 }
5014 
5015 // This routine is similar to the above but does not record
5016 // any policy statistics or update free lists; we are abandoning
5017 // the current incremental collection set in preparation of a
5018 // full collection. After the full GC we will start to build up
5019 // the incremental collection set again.
5020 // This is only called when we're doing a full collection
5021 // and is immediately followed by the tearing down of the young list.
5022 
5023 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5024   HeapRegion* cur = cs_head;
5025 
5026   while (cur != NULL) {
5027     HeapRegion* next = cur->next_in_collection_set();
5028     assert(cur->in_collection_set(), "bad CS");
5029     cur->set_next_in_collection_set(NULL);
5030     cur->set_in_collection_set(false);
5031     cur->set_young_index_in_cset(-1);
5032     cur = next;
5033   }
5034 }
5035 
5036 void G1CollectedHeap::set_free_regions_coming() {
5037   if (G1ConcRegionFreeingVerbose) {
5038     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5039                            "setting free regions coming");
5040   }
5041 
5042   assert(!free_regions_coming(), "pre-condition");
5043   _free_regions_coming = true;
5044 }
5045 
5046 void G1CollectedHeap::reset_free_regions_coming() {
5047   {
5048     assert(free_regions_coming(), "pre-condition");
5049     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5050     _free_regions_coming = false;
5051     SecondaryFreeList_lock->notify_all();
5052   }
5053 
5054   if (G1ConcRegionFreeingVerbose) {
5055     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5056                            "reset free regions coming");
5057   }
5058 }
5059 
5060 void G1CollectedHeap::wait_while_free_regions_coming() {
5061   // Most of the time we won't have to wait, so let's do a quick test
5062   // first before we take the lock.
5063   if (!free_regions_coming()) {
5064     return;
5065   }
5066 
5067   if (G1ConcRegionFreeingVerbose) {
5068     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5069                            "waiting for free regions");
5070   }
5071 
5072   {
5073     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5074     while (free_regions_coming()) {
5075       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5076     }
5077   }
5078 
5079   if (G1ConcRegionFreeingVerbose) {
5080     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5081                            "done waiting for free regions");
5082   }
5083 }
5084 
5085 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5086   assert(heap_lock_held_for_gc(),
5087               "the heap lock should already be held by or for this thread");
5088   _young_list->push_region(hr);
5089   g1_policy()->set_region_short_lived(hr);
5090 }
5091 
5092 class NoYoungRegionsClosure: public HeapRegionClosure {
5093 private:
5094   bool _success;
5095 public:
5096   NoYoungRegionsClosure() : _success(true) { }
5097   bool doHeapRegion(HeapRegion* r) {
5098     if (r->is_young()) {
5099       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
5100                              r->bottom(), r->end());
5101       _success = false;
5102     }
5103     return false;
5104   }
5105   bool success() { return _success; }
5106 };
5107 
5108 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5109   bool ret = _young_list->check_list_empty(check_sample);
5110 
5111   if (check_heap) {
5112     NoYoungRegionsClosure closure;
5113     heap_region_iterate(&closure);
5114     ret = ret && closure.success();
5115   }
5116 
5117   return ret;
5118 }
5119 
5120 void G1CollectedHeap::empty_young_list() {
5121   assert(heap_lock_held_for_gc(),
5122               "the heap lock should already be held by or for this thread");
5123 
5124   _young_list->empty_list();
5125 }
5126 
5127 // Done at the start of full GC.
5128 void G1CollectedHeap::tear_down_region_lists() {
5129   _free_list.remove_all();
5130 }
5131 
5132 class RegionResetter: public HeapRegionClosure {
5133   G1CollectedHeap* _g1h;
5134   FreeRegionList _local_free_list;
5135 
5136 public:
5137   RegionResetter() : _g1h(G1CollectedHeap::heap()),
5138                      _local_free_list("Local Free List for RegionResetter") { }
5139 
5140   bool doHeapRegion(HeapRegion* r) {
5141     if (r->continuesHumongous()) return false;
5142     if (r->top() > r->bottom()) {
5143       if (r->top() < r->end()) {
5144         Copy::fill_to_words(r->top(),
5145                           pointer_delta(r->end(), r->top()));
5146       }
5147     } else {
5148       assert(r->is_empty(), "tautology");
5149       _local_free_list.add_as_tail(r);
5150     }
5151     return false;
5152   }
5153 
5154   void update_free_lists() {
5155     _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
5156                                             false /* par */);
5157   }
5158 };
5159 
5160 // Done at the end of full GC.
5161 void G1CollectedHeap::rebuild_region_lists() {
5162   // This needs to go at the end of the full GC.
5163   RegionResetter rs;
5164   heap_region_iterate(&rs);
5165   rs.update_free_lists();
5166 }
5167 
5168 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5169   _refine_cte_cl->set_concurrent(concurrent);
5170 }
5171 
5172 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5173   HeapRegion* hr = heap_region_containing(p);
5174   if (hr == NULL) {
5175     return is_in_permanent(p);
5176   } else {
5177     return hr->is_in(p);
5178   }
5179 }
5180 
5181 // Methods for the mutator alloc region
5182 
5183 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5184                                                       bool force) {
5185   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5186   assert(!force || g1_policy()->can_expand_young_list(),
5187          "if force is true we should be able to expand the young list");
5188   bool young_list_full = g1_policy()->is_young_list_full();
5189   if (force || !young_list_full) {
5190     HeapRegion* new_alloc_region = new_region(word_size,
5191                                               false /* do_expand */);
5192     if (new_alloc_region != NULL) {
5193       g1_policy()->update_region_num(true /* next_is_young */);
5194       set_region_short_lived_locked(new_alloc_region);
5195       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
5196       g1mm()->update_eden_counters();
5197       return new_alloc_region;
5198     }
5199   }
5200   return NULL;
5201 }
5202 
5203 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5204                                                   size_t allocated_bytes) {
5205   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5206   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
5207 
5208   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
5209   _summary_bytes_used += allocated_bytes;
5210   _hr_printer.retire(alloc_region);
5211 }
5212 
5213 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
5214                                                     bool force) {
5215   return _g1h->new_mutator_alloc_region(word_size, force);
5216 }
5217 
5218 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
5219                                        size_t allocated_bytes) {
5220   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
5221 }
5222 
5223 // Methods for the GC alloc regions
5224 
5225 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
5226                                                  size_t count,
5227                                                  GCAllocPurpose ap) {
5228   assert(FreeList_lock->owned_by_self(), "pre-condition");
5229 
5230   if (count < g1_policy()->max_regions(ap)) {
5231     HeapRegion* new_alloc_region = new_region(word_size,
5232                                               true /* do_expand */);
5233     if (new_alloc_region != NULL) {
5234       // We really only need to do this for old regions given that we
5235       // should never scan survivors. But it doesn't hurt to do it
5236       // for survivors too.
5237       new_alloc_region->set_saved_mark();
5238       if (ap == GCAllocForSurvived) {
5239         new_alloc_region->set_survivor();
5240         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
5241       } else {
5242         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
5243       }
5244       return new_alloc_region;
5245     } else {
5246       g1_policy()->note_alloc_region_limit_reached(ap);
5247     }
5248   }
5249   return NULL;
5250 }
5251 
5252 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5253                                              size_t allocated_bytes,
5254                                              GCAllocPurpose ap) {
5255   alloc_region->note_end_of_copying();
5256   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5257   if (ap == GCAllocForSurvived) {
5258     young_list()->add_survivor_region(alloc_region);
5259   }
5260   _hr_printer.retire(alloc_region);
5261 }
5262 
5263 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
5264                                                        bool force) {
5265   assert(!force, "not supported for GC alloc regions");
5266   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
5267 }
5268 
5269 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
5270                                           size_t allocated_bytes) {
5271   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
5272                                GCAllocForSurvived);
5273 }
5274 
5275 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
5276                                                   bool force) {
5277   assert(!force, "not supported for GC alloc regions");
5278   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
5279 }
5280 
5281 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
5282                                      size_t allocated_bytes) {
5283   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
5284                                GCAllocForTenured);
5285 }
5286 // Heap region set verification
5287 
5288 class VerifyRegionListsClosure : public HeapRegionClosure {
5289 private:
5290   HumongousRegionSet* _humongous_set;
5291   FreeRegionList*     _free_list;
5292   size_t              _region_count;
5293 
5294 public:
5295   VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
5296                            FreeRegionList* free_list) :
5297     _humongous_set(humongous_set), _free_list(free_list),
5298     _region_count(0) { }
5299 
5300   size_t region_count()      { return _region_count;      }
5301 
5302   bool doHeapRegion(HeapRegion* hr) {
5303     _region_count += 1;
5304 
5305     if (hr->continuesHumongous()) {
5306       return false;
5307     }
5308 
5309     if (hr->is_young()) {
5310       // TODO
5311     } else if (hr->startsHumongous()) {
5312       _humongous_set->verify_next_region(hr);
5313     } else if (hr->is_empty()) {
5314       _free_list->verify_next_region(hr);
5315     }
5316     return false;
5317   }
5318 };
5319 
5320 HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
5321                                              HeapWord* bottom) {
5322   HeapWord* end = bottom + HeapRegion::GrainWords;
5323   MemRegion mr(bottom, end);
5324   assert(_g1_reserved.contains(mr), "invariant");
5325   // This might return NULL if the allocation fails
5326   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
5327 }
5328 
5329 void G1CollectedHeap::verify_region_sets() {
5330   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5331 
5332   // First, check the explicit lists.
5333   _free_list.verify();
5334   {
5335     // Given that a concurrent operation might be adding regions to
5336     // the secondary free list we have to take the lock before
5337     // verifying it.
5338     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5339     _secondary_free_list.verify();
5340   }
5341   _humongous_set.verify();
5342 
5343   // If a concurrent region freeing operation is in progress it will
5344   // be difficult to correctly attributed any free regions we come
5345   // across to the correct free list given that they might belong to
5346   // one of several (free_list, secondary_free_list, any local lists,
5347   // etc.). So, if that's the case we will skip the rest of the
5348   // verification operation. Alternatively, waiting for the concurrent
5349   // operation to complete will have a non-trivial effect on the GC's
5350   // operation (no concurrent operation will last longer than the
5351   // interval between two calls to verification) and it might hide
5352   // any issues that we would like to catch during testing.
5353   if (free_regions_coming()) {
5354     return;
5355   }
5356 
5357   // Make sure we append the secondary_free_list on the free_list so
5358   // that all free regions we will come across can be safely
5359   // attributed to the free_list.
5360   append_secondary_free_list_if_not_empty_with_lock();
5361 
5362   // Finally, make sure that the region accounting in the lists is
5363   // consistent with what we see in the heap.
5364   _humongous_set.verify_start();
5365   _free_list.verify_start();
5366 
5367   VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
5368   heap_region_iterate(&cl);
5369 
5370   _humongous_set.verify_end();
5371   _free_list.verify_end();
5372 }