1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/g1AllocRegion.hpp"
  30 #include "gc_implementation/g1/g1HRPrinter.hpp"
  31 #include "gc_implementation/g1/g1RemSet.hpp"
  32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  33 #include "gc_implementation/g1/heapRegionSeq.hpp"
  34 #include "gc_implementation/g1/heapRegionSets.hpp"
  35 #include "gc_implementation/shared/hSpaceCounters.hpp"
  36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
  37 #include "memory/barrierSet.hpp"
  38 #include "memory/memRegion.hpp"
  39 #include "memory/sharedHeap.hpp"
  40 
  41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  42 // It uses the "Garbage First" heap organization and algorithm, which
  43 // may combine concurrent marking with parallel, incremental compaction of
  44 // heap subsets that will yield large amounts of garbage.
  45 
  46 class HeapRegion;
  47 class HRRSCleanupTask;
  48 class PermanentGenerationSpec;
  49 class GenerationSpec;
  50 class OopsInHeapRegionClosure;
  51 class G1ScanHeapEvacClosure;
  52 class ObjectClosure;
  53 class SpaceClosure;
  54 class CompactibleSpaceClosure;
  55 class Space;
  56 class G1CollectorPolicy;
  57 class GenRemSet;
  58 class G1RemSet;
  59 class HeapRegionRemSetIterator;
  60 class ConcurrentMark;
  61 class ConcurrentMarkThread;
  62 class ConcurrentG1Refine;
  63 class GenerationCounters;
  64 
  65 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
  66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
  67 
  68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  70 
  71 enum GCAllocPurpose {
  72   GCAllocForTenured,
  73   GCAllocForSurvived,
  74   GCAllocPurposeCount
  75 };
  76 
  77 class YoungList : public CHeapObj {
  78 private:
  79   G1CollectedHeap* _g1h;
  80 
  81   HeapRegion* _head;
  82 
  83   HeapRegion* _survivor_head;
  84   HeapRegion* _survivor_tail;
  85 
  86   HeapRegion* _curr;
  87 
  88   size_t      _length;
  89   size_t      _survivor_length;
  90 
  91   size_t      _last_sampled_rs_lengths;
  92   size_t      _sampled_rs_lengths;
  93 
  94   void         empty_list(HeapRegion* list);
  95 
  96 public:
  97   YoungList(G1CollectedHeap* g1h);
  98 
  99   void         push_region(HeapRegion* hr);
 100   void         add_survivor_region(HeapRegion* hr);
 101 
 102   void         empty_list();
 103   bool         is_empty() { return _length == 0; }
 104   size_t       length() { return _length; }
 105   size_t       survivor_length() { return _survivor_length; }
 106 
 107   // Currently we do not keep track of the used byte sum for the
 108   // young list and the survivors and it'd be quite a lot of work to
 109   // do so. When we'll eventually replace the young list with
 110   // instances of HeapRegionLinkedList we'll get that for free. So,
 111   // we'll report the more accurate information then.
 112   size_t       eden_used_bytes() {
 113     assert(length() >= survivor_length(), "invariant");
 114     return (length() - survivor_length()) * HeapRegion::GrainBytes;
 115   }
 116   size_t       survivor_used_bytes() {
 117     return survivor_length() * HeapRegion::GrainBytes;
 118   }
 119 
 120   void rs_length_sampling_init();
 121   bool rs_length_sampling_more();
 122   void rs_length_sampling_next();
 123 
 124   void reset_sampled_info() {
 125     _last_sampled_rs_lengths =   0;
 126   }
 127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 128 
 129   // for development purposes
 130   void reset_auxilary_lists();
 131   void clear() { _head = NULL; _length = 0; }
 132 
 133   void clear_survivors() {
 134     _survivor_head    = NULL;
 135     _survivor_tail    = NULL;
 136     _survivor_length  = 0;
 137   }
 138 
 139   HeapRegion* first_region() { return _head; }
 140   HeapRegion* first_survivor_region() { return _survivor_head; }
 141   HeapRegion* last_survivor_region() { return _survivor_tail; }
 142 
 143   // debugging
 144   bool          check_list_well_formed();
 145   bool          check_list_empty(bool check_sample = true);
 146   void          print();
 147 };
 148 
 149 class MutatorAllocRegion : public G1AllocRegion {
 150 protected:
 151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 153 public:
 154   MutatorAllocRegion()
 155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 156 };
 157 
 158 class SurvivorGCAllocRegion : public G1AllocRegion {
 159 protected:
 160   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 161   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 162 public:
 163   SurvivorGCAllocRegion()
 164   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
 165 };
 166 
 167 class OldGCAllocRegion : public G1AllocRegion {
 168 protected:
 169   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 170   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 171 public:
 172   OldGCAllocRegion()
 173   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
 174 };
 175 
 176 class RefineCardTableEntryClosure;
 177 class G1CollectedHeap : public SharedHeap {
 178   friend class VM_G1CollectForAllocation;
 179   friend class VM_GenCollectForPermanentAllocation;
 180   friend class VM_G1CollectFull;
 181   friend class VM_G1IncCollectionPause;
 182   friend class VMStructs;
 183   friend class MutatorAllocRegion;
 184   friend class SurvivorGCAllocRegion;
 185   friend class OldGCAllocRegion;
 186 
 187   // Closures used in implementation.
 188   friend class G1ParCopyHelper;
 189   friend class G1IsAliveClosure;
 190   friend class G1EvacuateFollowersClosure;
 191   friend class G1ParScanThreadState;
 192   friend class G1ParScanClosureSuper;
 193   friend class G1ParEvacuateFollowersClosure;
 194   friend class G1ParTask;
 195   friend class G1FreeGarbageRegionClosure;
 196   friend class RefineCardTableEntryClosure;
 197   friend class G1PrepareCompactClosure;
 198   friend class RegionSorter;
 199   friend class RegionResetter;
 200   friend class CountRCClosure;
 201   friend class EvacPopObjClosure;
 202   friend class G1ParCleanupCTTask;
 203 
 204   // Other related classes.
 205   friend class G1MarkSweep;
 206 
 207 private:
 208   // The one and only G1CollectedHeap, so static functions can find it.
 209   static G1CollectedHeap* _g1h;
 210 
 211   static size_t _humongous_object_threshold_in_words;
 212 
 213   // Storage for the G1 heap (excludes the permanent generation).
 214   VirtualSpace _g1_storage;
 215   MemRegion    _g1_reserved;
 216 
 217   // The part of _g1_storage that is currently committed.
 218   MemRegion _g1_committed;
 219 
 220   // The master free list. It will satisfy all new region allocations.
 221   MasterFreeRegionList      _free_list;
 222 
 223   // The secondary free list which contains regions that have been
 224   // freed up during the cleanup process. This will be appended to the
 225   // master free list when appropriate.
 226   SecondaryFreeRegionList   _secondary_free_list;
 227 
 228   // It keeps track of the humongous regions.
 229   MasterHumongousRegionSet  _humongous_set;
 230 
 231   // The number of regions we could create by expansion.
 232   size_t _expansion_regions;
 233 
 234   // The block offset table for the G1 heap.
 235   G1BlockOffsetSharedArray* _bot_shared;
 236 
 237   // Move all of the regions off the free lists, then rebuild those free
 238   // lists, before and after full GC.
 239   void tear_down_region_lists();
 240   void rebuild_region_lists();
 241 
 242   // The sequence of all heap regions in the heap.
 243   HeapRegionSeq _hrs;
 244 
 245   // Alloc region used to satisfy mutator allocation requests.
 246   MutatorAllocRegion _mutator_alloc_region;
 247 
 248   // Alloc region used to satisfy allocation requests by the GC for
 249   // survivor objects.
 250   SurvivorGCAllocRegion _survivor_gc_alloc_region;
 251 
 252   // Alloc region used to satisfy allocation requests by the GC for
 253   // old objects.
 254   OldGCAllocRegion _old_gc_alloc_region;
 255 
 256   // The last old region we allocated to during the last GC.
 257   // Typically, it is not full so we should re-use it during the next GC.
 258   HeapRegion* _retained_old_gc_alloc_region;
 259 
 260   // It resets the mutator alloc region before new allocations can take place.
 261   void init_mutator_alloc_region();
 262 
 263   // It releases the mutator alloc region.
 264   void release_mutator_alloc_region();
 265 
 266   // It initializes the GC alloc regions at the start of a GC.
 267   void init_gc_alloc_regions();
 268 
 269   // It releases the GC alloc regions at the end of a GC.
 270   void release_gc_alloc_regions();
 271 
 272   // It does any cleanup that needs to be done on the GC alloc regions
 273   // before a Full GC.
 274   void abandon_gc_alloc_regions();
 275 
 276   // Helper for monitoring and management support.
 277   G1MonitoringSupport* _g1mm;
 278 
 279   // Determines PLAB size for a particular allocation purpose.
 280   static size_t desired_plab_sz(GCAllocPurpose purpose);
 281 
 282   // Outside of GC pauses, the number of bytes used in all regions other
 283   // than the current allocation region.
 284   size_t _summary_bytes_used;
 285 
 286   // This is used for a quick test on whether a reference points into
 287   // the collection set or not. Basically, we have an array, with one
 288   // byte per region, and that byte denotes whether the corresponding
 289   // region is in the collection set or not. The entry corresponding
 290   // the bottom of the heap, i.e., region 0, is pointed to by
 291   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
 292   // biased so that it actually points to address 0 of the address
 293   // space, to make the test as fast as possible (we can simply shift
 294   // the address to address into it, instead of having to subtract the
 295   // bottom of the heap from the address before shifting it; basically
 296   // it works in the same way the card table works).
 297   bool* _in_cset_fast_test;
 298 
 299   // The allocated array used for the fast test on whether a reference
 300   // points into the collection set or not. This field is also used to
 301   // free the array.
 302   bool* _in_cset_fast_test_base;
 303 
 304   // The length of the _in_cset_fast_test_base array.
 305   size_t _in_cset_fast_test_length;
 306 
 307   volatile unsigned _gc_time_stamp;
 308 
 309   size_t* _surviving_young_words;
 310 
 311   G1HRPrinter _hr_printer;
 312 
 313   void setup_surviving_young_words();
 314   void update_surviving_young_words(size_t* surv_young_words);
 315   void cleanup_surviving_young_words();
 316 
 317   // It decides whether an explicit GC should start a concurrent cycle
 318   // instead of doing a STW GC. Currently, a concurrent cycle is
 319   // explicitly started if:
 320   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 321   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 322   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 323 
 324   // Keeps track of how many "full collections" (i.e., Full GCs or
 325   // concurrent cycles) we have completed. The number of them we have
 326   // started is maintained in _total_full_collections in CollectedHeap.
 327   volatile unsigned int _full_collections_completed;
 328 
 329   // This is a non-product method that is helpful for testing. It is
 330   // called at the end of a GC and artificially expands the heap by
 331   // allocating a number of dead regions. This way we can induce very
 332   // frequent marking cycles and stress the cleanup / concurrent
 333   // cleanup code more (as all the regions that will be allocated by
 334   // this method will be found dead by the marking cycle).
 335   void allocate_dummy_regions() PRODUCT_RETURN;
 336 
 337   // These are macros so that, if the assert fires, we get the correct
 338   // line number, file, etc.
 339 
 340 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 341   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 342           (_extra_message_),                                                  \
 343           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 344           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 345           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 346 
 347 #define assert_heap_locked()                                                  \
 348   do {                                                                        \
 349     assert(Heap_lock->owned_by_self(),                                        \
 350            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 351   } while (0)
 352 
 353 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 354   do {                                                                        \
 355     assert(Heap_lock->owned_by_self() ||                                      \
 356            (SafepointSynchronize::is_at_safepoint() &&                        \
 357              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 358            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 359                                         "should be at a safepoint"));         \
 360   } while (0)
 361 
 362 #define assert_heap_locked_and_not_at_safepoint()                             \
 363   do {                                                                        \
 364     assert(Heap_lock->owned_by_self() &&                                      \
 365                                     !SafepointSynchronize::is_at_safepoint(), \
 366           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 367                                        "should not be at a safepoint"));      \
 368   } while (0)
 369 
 370 #define assert_heap_not_locked()                                              \
 371   do {                                                                        \
 372     assert(!Heap_lock->owned_by_self(),                                       \
 373         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 374   } while (0)
 375 
 376 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 377   do {                                                                        \
 378     assert(!Heap_lock->owned_by_self() &&                                     \
 379                                     !SafepointSynchronize::is_at_safepoint(), \
 380       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 381                                    "should not be at a safepoint"));          \
 382   } while (0)
 383 
 384 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 385   do {                                                                        \
 386     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 387               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 388            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 389   } while (0)
 390 
 391 #define assert_not_at_safepoint()                                             \
 392   do {                                                                        \
 393     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 394            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 395   } while (0)
 396 
 397 protected:
 398 
 399   // The young region list.
 400   YoungList*  _young_list;
 401 
 402   // The current policy object for the collector.
 403   G1CollectorPolicy* _g1_policy;
 404 
 405   // This is the second level of trying to allocate a new region. If
 406   // new_region() didn't find a region on the free_list, this call will
 407   // check whether there's anything available on the
 408   // secondary_free_list and/or wait for more regions to appear on
 409   // that list, if _free_regions_coming is set.
 410   HeapRegion* new_region_try_secondary_free_list();
 411 
 412   // Try to allocate a single non-humongous HeapRegion sufficient for
 413   // an allocation of the given word_size. If do_expand is true,
 414   // attempt to expand the heap if necessary to satisfy the allocation
 415   // request.
 416   HeapRegion* new_region(size_t word_size, bool do_expand);
 417 
 418   // Attempt to satisfy a humongous allocation request of the given
 419   // size by finding a contiguous set of free regions of num_regions
 420   // length and remove them from the master free list. Return the
 421   // index of the first region or G1_NULL_HRS_INDEX if the search
 422   // was unsuccessful.
 423   size_t humongous_obj_allocate_find_first(size_t num_regions,
 424                                            size_t word_size);
 425 
 426   // Initialize a contiguous set of free regions of length num_regions
 427   // and starting at index first so that they appear as a single
 428   // humongous region.
 429   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
 430                                                       size_t num_regions,
 431                                                       size_t word_size);
 432 
 433   // Attempt to allocate a humongous object of the given size. Return
 434   // NULL if unsuccessful.
 435   HeapWord* humongous_obj_allocate(size_t word_size);
 436 
 437   // The following two methods, allocate_new_tlab() and
 438   // mem_allocate(), are the two main entry points from the runtime
 439   // into the G1's allocation routines. They have the following
 440   // assumptions:
 441   //
 442   // * They should both be called outside safepoints.
 443   //
 444   // * They should both be called without holding the Heap_lock.
 445   //
 446   // * All allocation requests for new TLABs should go to
 447   //   allocate_new_tlab().
 448   //
 449   // * All non-TLAB allocation requests should go to mem_allocate().
 450   //
 451   // * If either call cannot satisfy the allocation request using the
 452   //   current allocating region, they will try to get a new one. If
 453   //   this fails, they will attempt to do an evacuation pause and
 454   //   retry the allocation.
 455   //
 456   // * If all allocation attempts fail, even after trying to schedule
 457   //   an evacuation pause, allocate_new_tlab() will return NULL,
 458   //   whereas mem_allocate() will attempt a heap expansion and/or
 459   //   schedule a Full GC.
 460   //
 461   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 462   //   should never be called with word_size being humongous. All
 463   //   humongous allocation requests should go to mem_allocate() which
 464   //   will satisfy them with a special path.
 465 
 466   virtual HeapWord* allocate_new_tlab(size_t word_size);
 467 
 468   virtual HeapWord* mem_allocate(size_t word_size,
 469                                  bool*  gc_overhead_limit_was_exceeded);
 470 
 471   // The following three methods take a gc_count_before_ret
 472   // parameter which is used to return the GC count if the method
 473   // returns NULL. Given that we are required to read the GC count
 474   // while holding the Heap_lock, and these paths will take the
 475   // Heap_lock at some point, it's easier to get them to read the GC
 476   // count while holding the Heap_lock before they return NULL instead
 477   // of the caller (namely: mem_allocate()) having to also take the
 478   // Heap_lock just to read the GC count.
 479 
 480   // First-level mutator allocation attempt: try to allocate out of
 481   // the mutator alloc region without taking the Heap_lock. This
 482   // should only be used for non-humongous allocations.
 483   inline HeapWord* attempt_allocation(size_t word_size,
 484                                       unsigned int* gc_count_before_ret);
 485 
 486   // Second-level mutator allocation attempt: take the Heap_lock and
 487   // retry the allocation attempt, potentially scheduling a GC
 488   // pause. This should only be used for non-humongous allocations.
 489   HeapWord* attempt_allocation_slow(size_t word_size,
 490                                     unsigned int* gc_count_before_ret);
 491 
 492   // Takes the Heap_lock and attempts a humongous allocation. It can
 493   // potentially schedule a GC pause.
 494   HeapWord* attempt_allocation_humongous(size_t word_size,
 495                                          unsigned int* gc_count_before_ret);
 496 
 497   // Allocation attempt that should be called during safepoints (e.g.,
 498   // at the end of a successful GC). expect_null_mutator_alloc_region
 499   // specifies whether the mutator alloc region is expected to be NULL
 500   // or not.
 501   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 502                                        bool expect_null_mutator_alloc_region);
 503 
 504   // It dirties the cards that cover the block so that so that the post
 505   // write barrier never queues anything when updating objects on this
 506   // block. It is assumed (and in fact we assert) that the block
 507   // belongs to a young region.
 508   inline void dirty_young_block(HeapWord* start, size_t word_size);
 509 
 510   // Allocate blocks during garbage collection. Will ensure an
 511   // allocation region, either by picking one or expanding the
 512   // heap, and then allocate a block of the given size. The block
 513   // may not be a humongous - it must fit into a single heap region.
 514   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 515 
 516   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
 517                                     HeapRegion*    alloc_region,
 518                                     bool           par,
 519                                     size_t         word_size);
 520 
 521   // Ensure that no further allocations can happen in "r", bearing in mind
 522   // that parallel threads might be attempting allocations.
 523   void par_allocate_remaining_space(HeapRegion* r);
 524 
 525   // Allocation attempt during GC for a survivor object / PLAB.
 526   inline HeapWord* survivor_attempt_allocation(size_t word_size);
 527 
 528   // Allocation attempt during GC for an old object / PLAB.
 529   inline HeapWord* old_attempt_allocation(size_t word_size);
 530 
 531   // These methods are the "callbacks" from the G1AllocRegion class.
 532 
 533   // For mutator alloc regions.
 534   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 535   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 536                                    size_t allocated_bytes);
 537 
 538   // For GC alloc regions.
 539   HeapRegion* new_gc_alloc_region(size_t word_size, size_t count,
 540                                   GCAllocPurpose ap);
 541   void retire_gc_alloc_region(HeapRegion* alloc_region,
 542                               size_t allocated_bytes, GCAllocPurpose ap);
 543 
 544   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 545   //   inspection request and should collect the entire heap
 546   // - if clear_all_soft_refs is true, all soft references should be
 547   //   cleared during the GC
 548   // - if explicit_gc is false, word_size describes the allocation that
 549   //   the GC should attempt (at least) to satisfy
 550   // - it returns false if it is unable to do the collection due to the
 551   //   GC locker being active, true otherwise
 552   bool do_collection(bool explicit_gc,
 553                      bool clear_all_soft_refs,
 554                      size_t word_size);
 555 
 556   // Callback from VM_G1CollectFull operation.
 557   // Perform a full collection.
 558   void do_full_collection(bool clear_all_soft_refs);
 559 
 560   // Resize the heap if necessary after a full collection.  If this is
 561   // after a collect-for allocation, "word_size" is the allocation size,
 562   // and will be considered part of the used portion of the heap.
 563   void resize_if_necessary_after_full_collection(size_t word_size);
 564 
 565   // Callback from VM_G1CollectForAllocation operation.
 566   // This function does everything necessary/possible to satisfy a
 567   // failed allocation request (including collection, expansion, etc.)
 568   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
 569 
 570   // Attempting to expand the heap sufficiently
 571   // to support an allocation of the given "word_size".  If
 572   // successful, perform the allocation and return the address of the
 573   // allocated block, or else "NULL".
 574   HeapWord* expand_and_allocate(size_t word_size);
 575 
 576 public:
 577 
 578   G1MonitoringSupport* g1mm() { return _g1mm; }
 579 
 580   // Expand the garbage-first heap by at least the given size (in bytes!).
 581   // Returns true if the heap was expanded by the requested amount;
 582   // false otherwise.
 583   // (Rounds up to a HeapRegion boundary.)
 584   bool expand(size_t expand_bytes);
 585 
 586   // Do anything common to GC's.
 587   virtual void gc_prologue(bool full);
 588   virtual void gc_epilogue(bool full);
 589 
 590   // We register a region with the fast "in collection set" test. We
 591   // simply set to true the array slot corresponding to this region.
 592   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 593     assert(_in_cset_fast_test_base != NULL, "sanity");
 594     assert(r->in_collection_set(), "invariant");
 595     size_t index = r->hrs_index();
 596     assert(index < _in_cset_fast_test_length, "invariant");
 597     assert(!_in_cset_fast_test_base[index], "invariant");
 598     _in_cset_fast_test_base[index] = true;
 599   }
 600 
 601   // This is a fast test on whether a reference points into the
 602   // collection set or not. It does not assume that the reference
 603   // points into the heap; if it doesn't, it will return false.
 604   bool in_cset_fast_test(oop obj) {
 605     assert(_in_cset_fast_test != NULL, "sanity");
 606     if (_g1_committed.contains((HeapWord*) obj)) {
 607       // no need to subtract the bottom of the heap from obj,
 608       // _in_cset_fast_test is biased
 609       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
 610       bool ret = _in_cset_fast_test[index];
 611       // let's make sure the result is consistent with what the slower
 612       // test returns
 613       assert( ret || !obj_in_cs(obj), "sanity");
 614       assert(!ret ||  obj_in_cs(obj), "sanity");
 615       return ret;
 616     } else {
 617       return false;
 618     }
 619   }
 620 
 621   void clear_cset_fast_test() {
 622     assert(_in_cset_fast_test_base != NULL, "sanity");
 623     memset(_in_cset_fast_test_base, false,
 624         _in_cset_fast_test_length * sizeof(bool));
 625   }
 626 
 627   // This is called at the end of either a concurrent cycle or a Full
 628   // GC to update the number of full collections completed. Those two
 629   // can happen in a nested fashion, i.e., we start a concurrent
 630   // cycle, a Full GC happens half-way through it which ends first,
 631   // and then the cycle notices that a Full GC happened and ends
 632   // too. The concurrent parameter is a boolean to help us do a bit
 633   // tighter consistency checking in the method. If concurrent is
 634   // false, the caller is the inner caller in the nesting (i.e., the
 635   // Full GC). If concurrent is true, the caller is the outer caller
 636   // in this nesting (i.e., the concurrent cycle). Further nesting is
 637   // not currently supported. The end of the this call also notifies
 638   // the FullGCCount_lock in case a Java thread is waiting for a full
 639   // GC to happen (e.g., it called System.gc() with
 640   // +ExplicitGCInvokesConcurrent).
 641   void increment_full_collections_completed(bool concurrent);
 642 
 643   unsigned int full_collections_completed() {
 644     return _full_collections_completed;
 645   }
 646 
 647   G1HRPrinter* hr_printer() { return &_hr_printer; }
 648 
 649 protected:
 650 
 651   // Shrink the garbage-first heap by at most the given size (in bytes!).
 652   // (Rounds down to a HeapRegion boundary.)
 653   virtual void shrink(size_t expand_bytes);
 654   void shrink_helper(size_t expand_bytes);
 655 
 656   #if TASKQUEUE_STATS
 657   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 658   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 659   void reset_taskqueue_stats();
 660   #endif // TASKQUEUE_STATS
 661 
 662   // Schedule the VM operation that will do an evacuation pause to
 663   // satisfy an allocation request of word_size. *succeeded will
 664   // return whether the VM operation was successful (it did do an
 665   // evacuation pause) or not (another thread beat us to it or the GC
 666   // locker was active). Given that we should not be holding the
 667   // Heap_lock when we enter this method, we will pass the
 668   // gc_count_before (i.e., total_collections()) as a parameter since
 669   // it has to be read while holding the Heap_lock. Currently, both
 670   // methods that call do_collection_pause() release the Heap_lock
 671   // before the call, so it's easy to read gc_count_before just before.
 672   HeapWord* do_collection_pause(size_t       word_size,
 673                                 unsigned int gc_count_before,
 674                                 bool*        succeeded);
 675 
 676   // The guts of the incremental collection pause, executed by the vm
 677   // thread. It returns false if it is unable to do the collection due
 678   // to the GC locker being active, true otherwise
 679   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 680 
 681   // Actually do the work of evacuating the collection set.
 682   void evacuate_collection_set();
 683 
 684   // The g1 remembered set of the heap.
 685   G1RemSet* _g1_rem_set;
 686   // And it's mod ref barrier set, used to track updates for the above.
 687   ModRefBarrierSet* _mr_bs;
 688 
 689   // A set of cards that cover the objects for which the Rsets should be updated
 690   // concurrently after the collection.
 691   DirtyCardQueueSet _dirty_card_queue_set;
 692 
 693   // The Heap Region Rem Set Iterator.
 694   HeapRegionRemSetIterator** _rem_set_iterator;
 695 
 696   // The closure used to refine a single card.
 697   RefineCardTableEntryClosure* _refine_cte_cl;
 698 
 699   // A function to check the consistency of dirty card logs.
 700   void check_ct_logs_at_safepoint();
 701 
 702   // A DirtyCardQueueSet that is used to hold cards that contain
 703   // references into the current collection set. This is used to
 704   // update the remembered sets of the regions in the collection
 705   // set in the event of an evacuation failure.
 706   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 707 
 708   // After a collection pause, make the regions in the CS into free
 709   // regions.
 710   void free_collection_set(HeapRegion* cs_head);
 711 
 712   // Abandon the current collection set without recording policy
 713   // statistics or updating free lists.
 714   void abandon_collection_set(HeapRegion* cs_head);
 715 
 716   // Applies "scan_non_heap_roots" to roots outside the heap,
 717   // "scan_rs" to roots inside the heap (having done "set_region" to
 718   // indicate the region in which the root resides), and does "scan_perm"
 719   // (setting the generation to the perm generation.)  If "scan_rs" is
 720   // NULL, then this step is skipped.  The "worker_i"
 721   // param is for use with parallel roots processing, and should be
 722   // the "i" of the calling parallel worker thread's work(i) function.
 723   // In the sequential case this param will be ignored.
 724   void g1_process_strong_roots(bool collecting_perm_gen,
 725                                SharedHeap::ScanningOption so,
 726                                OopClosure* scan_non_heap_roots,
 727                                OopsInHeapRegionClosure* scan_rs,
 728                                OopsInGenClosure* scan_perm,
 729                                int worker_i);
 730 
 731   // Apply "blk" to all the weak roots of the system.  These include
 732   // JNI weak roots, the code cache, system dictionary, symbol table,
 733   // string table, and referents of reachable weak refs.
 734   void g1_process_weak_roots(OopClosure* root_closure,
 735                              OopClosure* non_root_closure);
 736 
 737   // Frees a non-humongous region by initializing its contents and
 738   // adding it to the free list that's passed as a parameter (this is
 739   // usually a local list which will be appended to the master free
 740   // list later). The used bytes of freed regions are accumulated in
 741   // pre_used. If par is true, the region's RSet will not be freed
 742   // up. The assumption is that this will be done later.
 743   void free_region(HeapRegion* hr,
 744                    size_t* pre_used,
 745                    FreeRegionList* free_list,
 746                    bool par);
 747 
 748   // Frees a humongous region by collapsing it into individual regions
 749   // and calling free_region() for each of them. The freed regions
 750   // will be added to the free list that's passed as a parameter (this
 751   // is usually a local list which will be appended to the master free
 752   // list later). The used bytes of freed regions are accumulated in
 753   // pre_used. If par is true, the region's RSet will not be freed
 754   // up. The assumption is that this will be done later.
 755   void free_humongous_region(HeapRegion* hr,
 756                              size_t* pre_used,
 757                              FreeRegionList* free_list,
 758                              HumongousRegionSet* humongous_proxy_set,
 759                              bool par);
 760 
 761   // Notifies all the necessary spaces that the committed space has
 762   // been updated (either expanded or shrunk). It should be called
 763   // after _g1_storage is updated.
 764   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
 765 
 766   // The concurrent marker (and the thread it runs in.)
 767   ConcurrentMark* _cm;
 768   ConcurrentMarkThread* _cmThread;
 769   bool _mark_in_progress;
 770 
 771   // The concurrent refiner.
 772   ConcurrentG1Refine* _cg1r;
 773 
 774   // The parallel task queues
 775   RefToScanQueueSet *_task_queues;
 776 
 777   // True iff a evacuation has failed in the current collection.
 778   bool _evacuation_failed;
 779 
 780   // Set the attribute indicating whether evacuation has failed in the
 781   // current collection.
 782   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
 783 
 784   // Failed evacuations cause some logical from-space objects to have
 785   // forwarding pointers to themselves.  Reset them.
 786   void remove_self_forwarding_pointers();
 787 
 788   // When one is non-null, so is the other.  Together, they each pair is
 789   // an object with a preserved mark, and its mark value.
 790   GrowableArray<oop>*     _objs_with_preserved_marks;
 791   GrowableArray<markOop>* _preserved_marks_of_objs;
 792 
 793   // Preserve the mark of "obj", if necessary, in preparation for its mark
 794   // word being overwritten with a self-forwarding-pointer.
 795   void preserve_mark_if_necessary(oop obj, markOop m);
 796 
 797   // The stack of evac-failure objects left to be scanned.
 798   GrowableArray<oop>*    _evac_failure_scan_stack;
 799   // The closure to apply to evac-failure objects.
 800 
 801   OopsInHeapRegionClosure* _evac_failure_closure;
 802   // Set the field above.
 803   void
 804   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 805     _evac_failure_closure = evac_failure_closure;
 806   }
 807 
 808   // Push "obj" on the scan stack.
 809   void push_on_evac_failure_scan_stack(oop obj);
 810   // Process scan stack entries until the stack is empty.
 811   void drain_evac_failure_scan_stack();
 812   // True iff an invocation of "drain_scan_stack" is in progress; to
 813   // prevent unnecessary recursion.
 814   bool _drain_in_progress;
 815 
 816   // Do any necessary initialization for evacuation-failure handling.
 817   // "cl" is the closure that will be used to process evac-failure
 818   // objects.
 819   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 820   // Do any necessary cleanup for evacuation-failure handling data
 821   // structures.
 822   void finalize_for_evac_failure();
 823 
 824   // An attempt to evacuate "obj" has failed; take necessary steps.
 825   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
 826   void handle_evacuation_failure_common(oop obj, markOop m);
 827 
 828   // Instance of the concurrent mark is_alive closure for embedding
 829   // into the reference processor as the is_alive_non_header. This
 830   // prevents unnecessary additions to the discovered lists during
 831   // concurrent discovery.
 832   G1CMIsAliveClosure _is_alive_closure;
 833 
 834   // ("Weak") Reference processing support
 835   ReferenceProcessor* _ref_processor;
 836 
 837   enum G1H_process_strong_roots_tasks {
 838     G1H_PS_mark_stack_oops_do,
 839     G1H_PS_refProcessor_oops_do,
 840     // Leave this one last.
 841     G1H_PS_NumElements
 842   };
 843 
 844   SubTasksDone* _process_strong_tasks;
 845 
 846   volatile bool _free_regions_coming;
 847 
 848 public:
 849 
 850   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
 851 
 852   void set_refine_cte_cl_concurrency(bool concurrent);
 853 
 854   RefToScanQueue *task_queue(int i) const;
 855 
 856   // A set of cards where updates happened during the GC
 857   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 858 
 859   // A DirtyCardQueueSet that is used to hold cards that contain
 860   // references into the current collection set. This is used to
 861   // update the remembered sets of the regions in the collection
 862   // set in the event of an evacuation failure.
 863   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
 864         { return _into_cset_dirty_card_queue_set; }
 865 
 866   // Create a G1CollectedHeap with the specified policy.
 867   // Must call the initialize method afterwards.
 868   // May not return if something goes wrong.
 869   G1CollectedHeap(G1CollectorPolicy* policy);
 870 
 871   // Initialize the G1CollectedHeap to have the initial and
 872   // maximum sizes, permanent generation, and remembered and barrier sets
 873   // specified by the policy object.
 874   jint initialize();
 875 
 876   virtual void ref_processing_init();
 877 
 878   void set_par_threads(int t) {
 879     SharedHeap::set_par_threads(t);
 880     _process_strong_tasks->set_n_threads(t);
 881   }
 882 
 883   virtual CollectedHeap::Name kind() const {
 884     return CollectedHeap::G1CollectedHeap;
 885   }
 886 
 887   // The current policy object for the collector.
 888   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
 889 
 890   // Adaptive size policy.  No such thing for g1.
 891   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
 892 
 893   // The rem set and barrier set.
 894   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 895   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
 896 
 897   // The rem set iterator.
 898   HeapRegionRemSetIterator* rem_set_iterator(int i) {
 899     return _rem_set_iterator[i];
 900   }
 901 
 902   HeapRegionRemSetIterator* rem_set_iterator() {
 903     return _rem_set_iterator[0];
 904   }
 905 
 906   unsigned get_gc_time_stamp() {
 907     return _gc_time_stamp;
 908   }
 909 
 910   void reset_gc_time_stamp() {
 911     _gc_time_stamp = 0;
 912     OrderAccess::fence();
 913   }
 914 
 915   void increment_gc_time_stamp() {
 916     ++_gc_time_stamp;
 917     OrderAccess::fence();
 918   }
 919 
 920   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
 921                                   DirtyCardQueue* into_cset_dcq,
 922                                   bool concurrent, int worker_i);
 923 
 924   // The shared block offset table array.
 925   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
 926 
 927   // Reference Processing accessor
 928   ReferenceProcessor* ref_processor() { return _ref_processor; }
 929 
 930   virtual size_t capacity() const;
 931   virtual size_t used() const;
 932   // This should be called when we're not holding the heap lock. The
 933   // result might be a bit inaccurate.
 934   size_t used_unlocked() const;
 935   size_t recalculate_used() const;
 936 
 937   // These virtual functions do the actual allocation.
 938   // Some heaps may offer a contiguous region for shared non-blocking
 939   // allocation, via inlined code (by exporting the address of the top and
 940   // end fields defining the extent of the contiguous allocation region.)
 941   // But G1CollectedHeap doesn't yet support this.
 942 
 943   // Return an estimate of the maximum allocation that could be performed
 944   // without triggering any collection or expansion activity.  In a
 945   // generational collector, for example, this is probably the largest
 946   // allocation that could be supported (without expansion) in the youngest
 947   // generation.  It is "unsafe" because no locks are taken; the result
 948   // should be treated as an approximation, not a guarantee, for use in
 949   // heuristic resizing decisions.
 950   virtual size_t unsafe_max_alloc();
 951 
 952   virtual bool is_maximal_no_gc() const {
 953     return _g1_storage.uncommitted_size() == 0;
 954   }
 955 
 956   // The total number of regions in the heap.
 957   size_t n_regions() { return _hrs.length(); }
 958 
 959   // The max number of regions in the heap.
 960   size_t max_regions() { return _hrs.max_length(); }
 961 
 962   // The number of regions that are completely free.
 963   size_t free_regions() { return _free_list.length(); }
 964 
 965   // The number of regions that are not completely free.
 966   size_t used_regions() { return n_regions() - free_regions(); }
 967 
 968   // The number of regions available for "regular" expansion.
 969   size_t expansion_regions() { return _expansion_regions; }
 970 
 971   // Factory method for HeapRegion instances. It will return NULL if
 972   // the allocation fails.
 973   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
 974 
 975   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
 976   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
 977   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
 978   void verify_dirty_young_regions() PRODUCT_RETURN;
 979 
 980   // verify_region_sets() performs verification over the region
 981   // lists. It will be compiled in the product code to be used when
 982   // necessary (i.e., during heap verification).
 983   void verify_region_sets();
 984 
 985   // verify_region_sets_optional() is planted in the code for
 986   // list verification in non-product builds (and it can be enabled in
 987   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
 988 #if HEAP_REGION_SET_FORCE_VERIFY
 989   void verify_region_sets_optional() {
 990     verify_region_sets();
 991   }
 992 #else // HEAP_REGION_SET_FORCE_VERIFY
 993   void verify_region_sets_optional() { }
 994 #endif // HEAP_REGION_SET_FORCE_VERIFY
 995 
 996 #ifdef ASSERT
 997   bool is_on_master_free_list(HeapRegion* hr) {
 998     return hr->containing_set() == &_free_list;
 999   }
1000 
1001   bool is_in_humongous_set(HeapRegion* hr) {
1002     return hr->containing_set() == &_humongous_set;
1003   }
1004 #endif // ASSERT
1005 
1006   // Wrapper for the region list operations that can be called from
1007   // methods outside this class.
1008 
1009   void secondary_free_list_add_as_tail(FreeRegionList* list) {
1010     _secondary_free_list.add_as_tail(list);
1011   }
1012 
1013   void append_secondary_free_list() {
1014     _free_list.add_as_head(&_secondary_free_list);
1015   }
1016 
1017   void append_secondary_free_list_if_not_empty_with_lock() {
1018     // If the secondary free list looks empty there's no reason to
1019     // take the lock and then try to append it.
1020     if (!_secondary_free_list.is_empty()) {
1021       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1022       append_secondary_free_list();
1023     }
1024   }
1025 
1026   void set_free_regions_coming();
1027   void reset_free_regions_coming();
1028   bool free_regions_coming() { return _free_regions_coming; }
1029   void wait_while_free_regions_coming();
1030 
1031   // Perform a collection of the heap; intended for use in implementing
1032   // "System.gc".  This probably implies as full a collection as the
1033   // "CollectedHeap" supports.
1034   virtual void collect(GCCause::Cause cause);
1035 
1036   // The same as above but assume that the caller holds the Heap_lock.
1037   void collect_locked(GCCause::Cause cause);
1038 
1039   // This interface assumes that it's being called by the
1040   // vm thread. It collects the heap assuming that the
1041   // heap lock is already held and that we are executing in
1042   // the context of the vm thread.
1043   virtual void collect_as_vm_thread(GCCause::Cause cause);
1044 
1045   // True iff a evacuation has failed in the most-recent collection.
1046   bool evacuation_failed() { return _evacuation_failed; }
1047 
1048   // It will free a region if it has allocated objects in it that are
1049   // all dead. It calls either free_region() or
1050   // free_humongous_region() depending on the type of the region that
1051   // is passed to it.
1052   void free_region_if_empty(HeapRegion* hr,
1053                             size_t* pre_used,
1054                             FreeRegionList* free_list,
1055                             HumongousRegionSet* humongous_proxy_set,
1056                             HRRSCleanupTask* hrrs_cleanup_task,
1057                             bool par);
1058 
1059   // It appends the free list to the master free list and updates the
1060   // master humongous list according to the contents of the proxy
1061   // list. It also adjusts the total used bytes according to pre_used
1062   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
1063   void update_sets_after_freeing_regions(size_t pre_used,
1064                                        FreeRegionList* free_list,
1065                                        HumongousRegionSet* humongous_proxy_set,
1066                                        bool par);
1067 
1068   // Returns "TRUE" iff "p" points into the allocated area of the heap.
1069   virtual bool is_in(const void* p) const;
1070 
1071   // Return "TRUE" iff the given object address is within the collection
1072   // set.
1073   inline bool obj_in_cs(oop obj);
1074 
1075   // Return "TRUE" iff the given object address is in the reserved
1076   // region of g1 (excluding the permanent generation).
1077   bool is_in_g1_reserved(const void* p) const {
1078     return _g1_reserved.contains(p);
1079   }
1080 
1081   // Returns a MemRegion that corresponds to the space that has been
1082   // reserved for the heap
1083   MemRegion g1_reserved() {
1084     return _g1_reserved;
1085   }
1086 
1087   // Returns a MemRegion that corresponds to the space that has been
1088   // committed in the heap
1089   MemRegion g1_committed() {
1090     return _g1_committed;
1091   }
1092 
1093   virtual bool is_in_closed_subset(const void* p) const;
1094 
1095   // This resets the card table to all zeros.  It is used after
1096   // a collection pause which used the card table to claim cards.
1097   void cleanUpCardTable();
1098 
1099   // Iteration functions.
1100 
1101   // Iterate over all the ref-containing fields of all objects, calling
1102   // "cl.do_oop" on each.
1103   virtual void oop_iterate(OopClosure* cl) {
1104     oop_iterate(cl, true);
1105   }
1106   void oop_iterate(OopClosure* cl, bool do_perm);
1107 
1108   // Same as above, restricted to a memory region.
1109   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
1110     oop_iterate(mr, cl, true);
1111   }
1112   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
1113 
1114   // Iterate over all objects, calling "cl.do_object" on each.
1115   virtual void object_iterate(ObjectClosure* cl) {
1116     object_iterate(cl, true);
1117   }
1118   virtual void safe_object_iterate(ObjectClosure* cl) {
1119     object_iterate(cl, true);
1120   }
1121   void object_iterate(ObjectClosure* cl, bool do_perm);
1122 
1123   // Iterate over all objects allocated since the last collection, calling
1124   // "cl.do_object" on each.  The heap must have been initialized properly
1125   // to support this function, or else this call will fail.
1126   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
1127 
1128   // Iterate over all spaces in use in the heap, in ascending address order.
1129   virtual void space_iterate(SpaceClosure* cl);
1130 
1131   // Iterate over heap regions, in address order, terminating the
1132   // iteration early if the "doHeapRegion" method returns "true".
1133   void heap_region_iterate(HeapRegionClosure* blk) const;
1134 
1135   // Iterate over heap regions starting with r (or the first region if "r"
1136   // is NULL), in address order, terminating early if the "doHeapRegion"
1137   // method returns "true".
1138   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
1139 
1140   // Return the region with the given index. It assumes the index is valid.
1141   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
1142 
1143   // Divide the heap region sequence into "chunks" of some size (the number
1144   // of regions divided by the number of parallel threads times some
1145   // overpartition factor, currently 4).  Assumes that this will be called
1146   // in parallel by ParallelGCThreads worker threads with discinct worker
1147   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1148   // calls will use the same "claim_value", and that that claim value is
1149   // different from the claim_value of any heap region before the start of
1150   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1151   // attempting to claim the first region in each chunk, and, if
1152   // successful, applying the closure to each region in the chunk (and
1153   // setting the claim value of the second and subsequent regions of the
1154   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1155   // i.e., that a closure never attempt to abort a traversal.
1156   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1157                                        int worker,
1158                                        jint claim_value);
1159 
1160   // It resets all the region claim values to the default.
1161   void reset_heap_region_claim_values();
1162 
1163 #ifdef ASSERT
1164   bool check_heap_region_claim_values(jint claim_value);
1165 #endif // ASSERT
1166 
1167   // Iterate over the regions (if any) in the current collection set.
1168   void collection_set_iterate(HeapRegionClosure* blk);
1169 
1170   // As above but starting from region r
1171   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1172 
1173   // Returns the first (lowest address) compactible space in the heap.
1174   virtual CompactibleSpace* first_compactible_space();
1175 
1176   // A CollectedHeap will contain some number of spaces.  This finds the
1177   // space containing a given address, or else returns NULL.
1178   virtual Space* space_containing(const void* addr) const;
1179 
1180   // A G1CollectedHeap will contain some number of heap regions.  This
1181   // finds the region containing a given address, or else returns NULL.
1182   template <class T>
1183   inline HeapRegion* heap_region_containing(const T addr) const;
1184 
1185   // Like the above, but requires "addr" to be in the heap (to avoid a
1186   // null-check), and unlike the above, may return an continuing humongous
1187   // region.
1188   template <class T>
1189   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1190 
1191   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1192   // each address in the (reserved) heap is a member of exactly
1193   // one block.  The defining characteristic of a block is that it is
1194   // possible to find its size, and thus to progress forward to the next
1195   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1196   // represent Java objects, or they might be free blocks in a
1197   // free-list-based heap (or subheap), as long as the two kinds are
1198   // distinguishable and the size of each is determinable.
1199 
1200   // Returns the address of the start of the "block" that contains the
1201   // address "addr".  We say "blocks" instead of "object" since some heaps
1202   // may not pack objects densely; a chunk may either be an object or a
1203   // non-object.
1204   virtual HeapWord* block_start(const void* addr) const;
1205 
1206   // Requires "addr" to be the start of a chunk, and returns its size.
1207   // "addr + size" is required to be the start of a new chunk, or the end
1208   // of the active area of the heap.
1209   virtual size_t block_size(const HeapWord* addr) const;
1210 
1211   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1212   // the block is an object.
1213   virtual bool block_is_obj(const HeapWord* addr) const;
1214 
1215   // Does this heap support heap inspection? (+PrintClassHistogram)
1216   virtual bool supports_heap_inspection() const { return true; }
1217 
1218   // Section on thread-local allocation buffers (TLABs)
1219   // See CollectedHeap for semantics.
1220 
1221   virtual bool supports_tlab_allocation() const;
1222   virtual size_t tlab_capacity(Thread* thr) const;
1223   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
1224 
1225   // Can a compiler initialize a new object without store barriers?
1226   // This permission only extends from the creation of a new object
1227   // via a TLAB up to the first subsequent safepoint. If such permission
1228   // is granted for this heap type, the compiler promises to call
1229   // defer_store_barrier() below on any slow path allocation of
1230   // a new object for which such initializing store barriers will
1231   // have been elided. G1, like CMS, allows this, but should be
1232   // ready to provide a compensating write barrier as necessary
1233   // if that storage came out of a non-young region. The efficiency
1234   // of this implementation depends crucially on being able to
1235   // answer very efficiently in constant time whether a piece of
1236   // storage in the heap comes from a young region or not.
1237   // See ReduceInitialCardMarks.
1238   virtual bool can_elide_tlab_store_barriers() const {
1239     // 6920090: Temporarily disabled, because of lingering
1240     // instabilities related to RICM with G1. In the
1241     // interim, the option ReduceInitialCardMarksForG1
1242     // below is left solely as a debugging device at least
1243     // until 6920109 fixes the instabilities.
1244     return ReduceInitialCardMarksForG1;
1245   }
1246 
1247   virtual bool card_mark_must_follow_store() const {
1248     return true;
1249   }
1250 
1251   bool is_in_young(const oop obj) {
1252     HeapRegion* hr = heap_region_containing(obj);
1253     return hr != NULL && hr->is_young();
1254   }
1255 
1256 #ifdef ASSERT
1257   virtual bool is_in_partial_collection(const void* p);
1258 #endif
1259 
1260   virtual bool is_scavengable(const void* addr);
1261 
1262   // We don't need barriers for initializing stores to objects
1263   // in the young gen: for the SATB pre-barrier, there is no
1264   // pre-value that needs to be remembered; for the remembered-set
1265   // update logging post-barrier, we don't maintain remembered set
1266   // information for young gen objects.
1267   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
1268     // Re 6920090, 6920109 above.
1269     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
1270     return is_in_young(new_obj);
1271   }
1272 
1273   // Can a compiler elide a store barrier when it writes
1274   // a permanent oop into the heap?  Applies when the compiler
1275   // is storing x to the heap, where x->is_perm() is true.
1276   virtual bool can_elide_permanent_oop_store_barriers() const {
1277     // At least until perm gen collection is also G1-ified, at
1278     // which point this should return false.
1279     return true;
1280   }
1281 
1282   // Returns "true" iff the given word_size is "very large".
1283   static bool isHumongous(size_t word_size) {
1284     // Note this has to be strictly greater-than as the TLABs
1285     // are capped at the humongous thresold and we want to
1286     // ensure that we don't try to allocate a TLAB as
1287     // humongous and that we don't allocate a humongous
1288     // object in a TLAB.
1289     return word_size > _humongous_object_threshold_in_words;
1290   }
1291 
1292   // Update mod union table with the set of dirty cards.
1293   void updateModUnion();
1294 
1295   // Set the mod union bits corresponding to the given memRegion.  Note
1296   // that this is always a safe operation, since it doesn't clear any
1297   // bits.
1298   void markModUnionRange(MemRegion mr);
1299 
1300   // Records the fact that a marking phase is no longer in progress.
1301   void set_marking_complete() {
1302     _mark_in_progress = false;
1303   }
1304   void set_marking_started() {
1305     _mark_in_progress = true;
1306   }
1307   bool mark_in_progress() {
1308     return _mark_in_progress;
1309   }
1310 
1311   // Print the maximum heap capacity.
1312   virtual size_t max_capacity() const;
1313 
1314   virtual jlong millis_since_last_gc();
1315 
1316   // Perform any cleanup actions necessary before allowing a verification.
1317   virtual void prepare_for_verify();
1318 
1319   // Perform verification.
1320 
1321   // vo == UsePrevMarking  -> use "prev" marking information,
1322   // vo == UseNextMarking -> use "next" marking information
1323   // vo == UseMarkWord    -> use the mark word in the object header
1324   //
1325   // NOTE: Only the "prev" marking information is guaranteed to be
1326   // consistent most of the time, so most calls to this should use
1327   // vo == UsePrevMarking.
1328   // Currently, there is only one case where this is called with
1329   // vo == UseNextMarking, which is to verify the "next" marking
1330   // information at the end of remark.
1331   // Currently there is only one place where this is called with
1332   // vo == UseMarkWord, which is to verify the marking during a
1333   // full GC.
1334   void verify(bool allow_dirty, bool silent, VerifyOption vo);
1335 
1336   // Override; it uses the "prev" marking information
1337   virtual void verify(bool allow_dirty, bool silent);
1338   // Default behavior by calling print(tty);
1339   virtual void print() const;
1340   // This calls print_on(st, PrintHeapAtGCExtended).
1341   virtual void print_on(outputStream* st) const;
1342   // If extended is true, it will print out information for all
1343   // regions in the heap by calling print_on_extended(st).
1344   virtual void print_on(outputStream* st, bool extended) const;
1345   virtual void print_on_extended(outputStream* st) const;
1346 
1347   virtual void print_gc_threads_on(outputStream* st) const;
1348   virtual void gc_threads_do(ThreadClosure* tc) const;
1349 
1350   // Override
1351   void print_tracing_info() const;
1352 
1353   // The following two methods are helpful for debugging RSet issues.
1354   void print_cset_rsets() PRODUCT_RETURN;
1355   void print_all_rsets() PRODUCT_RETURN;
1356 
1357   // Convenience function to be used in situations where the heap type can be
1358   // asserted to be this type.
1359   static G1CollectedHeap* heap();
1360 
1361   void empty_young_list();
1362 
1363   void set_region_short_lived_locked(HeapRegion* hr);
1364   // add appropriate methods for any other surv rate groups
1365 
1366   YoungList* young_list() { return _young_list; }
1367 
1368   // debugging
1369   bool check_young_list_well_formed() {
1370     return _young_list->check_list_well_formed();
1371   }
1372 
1373   bool check_young_list_empty(bool check_heap,
1374                               bool check_sample = true);
1375 
1376   // *** Stuff related to concurrent marking.  It's not clear to me that so
1377   // many of these need to be public.
1378 
1379   // The functions below are helper functions that a subclass of
1380   // "CollectedHeap" can use in the implementation of its virtual
1381   // functions.
1382   // This performs a concurrent marking of the live objects in a
1383   // bitmap off to the side.
1384   void doConcurrentMark();
1385 
1386   bool isMarkedPrev(oop obj) const;
1387   bool isMarkedNext(oop obj) const;
1388 
1389   // vo == UsePrevMarking -> use "prev" marking information,
1390   // vo == UseNextMarking -> use "next" marking information,
1391   // vo == UseMarkWord    -> use mark word from object header
1392   bool is_obj_dead_cond(const oop obj,
1393                         const HeapRegion* hr,
1394                         const VerifyOption vo) const {
1395 
1396     switch (vo) {
1397       case VerifyOption_G1UsePrevMarking:
1398         return is_obj_dead(obj, hr);
1399       case VerifyOption_G1UseNextMarking:
1400         return is_obj_ill(obj, hr);
1401       default:
1402         assert(vo == VerifyOption_G1UseMarkWord, "must be");
1403         return !obj->is_gc_marked();
1404     }
1405   }
1406 
1407   // Determine if an object is dead, given the object and also
1408   // the region to which the object belongs. An object is dead
1409   // iff a) it was not allocated since the last mark and b) it
1410   // is not marked.
1411 
1412   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1413     return
1414       !hr->obj_allocated_since_prev_marking(obj) &&
1415       !isMarkedPrev(obj);
1416   }
1417 
1418   // This is used when copying an object to survivor space.
1419   // If the object is marked live, then we mark the copy live.
1420   // If the object is allocated since the start of this mark
1421   // cycle, then we mark the copy live.
1422   // If the object has been around since the previous mark
1423   // phase, and hasn't been marked yet during this phase,
1424   // then we don't mark it, we just wait for the
1425   // current marking cycle to get to it.
1426 
1427   // This function returns true when an object has been
1428   // around since the previous marking and hasn't yet
1429   // been marked during this marking.
1430 
1431   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1432     return
1433       !hr->obj_allocated_since_next_marking(obj) &&
1434       !isMarkedNext(obj);
1435   }
1436 
1437   // Determine if an object is dead, given only the object itself.
1438   // This will find the region to which the object belongs and
1439   // then call the region version of the same function.
1440 
1441   // Added if it is in permanent gen it isn't dead.
1442   // Added if it is NULL it isn't dead.
1443 
1444   // vo == UsePrevMarking -> use "prev" marking information,
1445   // vo == UseNextMarking -> use "next" marking information,
1446   // vo == UseMarkWord    -> use mark word from object header
1447   bool is_obj_dead_cond(const oop obj,
1448                         const VerifyOption vo) const {
1449 
1450     switch (vo) {
1451       case VerifyOption_G1UsePrevMarking:
1452         return is_obj_dead(obj);
1453       case VerifyOption_G1UseNextMarking:
1454         return is_obj_ill(obj);
1455       default:
1456         assert(vo == VerifyOption_G1UseMarkWord, "must be");
1457         return !obj->is_gc_marked();
1458     }
1459   }
1460 
1461   bool is_obj_dead(const oop obj) const {
1462     const HeapRegion* hr = heap_region_containing(obj);
1463     if (hr == NULL) {
1464       if (Universe::heap()->is_in_permanent(obj))
1465         return false;
1466       else if (obj == NULL) return false;
1467       else return true;
1468     }
1469     else return is_obj_dead(obj, hr);
1470   }
1471 
1472   bool is_obj_ill(const oop obj) const {
1473     const HeapRegion* hr = heap_region_containing(obj);
1474     if (hr == NULL) {
1475       if (Universe::heap()->is_in_permanent(obj))
1476         return false;
1477       else if (obj == NULL) return false;
1478       else return true;
1479     }
1480     else return is_obj_ill(obj, hr);
1481   }
1482 
1483   // The following is just to alert the verification code
1484   // that a full collection has occurred and that the
1485   // remembered sets are no longer up to date.
1486   bool _full_collection;
1487   void set_full_collection() { _full_collection = true;}
1488   void clear_full_collection() {_full_collection = false;}
1489   bool full_collection() {return _full_collection;}
1490 
1491   ConcurrentMark* concurrent_mark() const { return _cm; }
1492   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1493 
1494   // The dirty cards region list is used to record a subset of regions
1495   // whose cards need clearing. The list if populated during the
1496   // remembered set scanning and drained during the card table
1497   // cleanup. Although the methods are reentrant, population/draining
1498   // phases must not overlap. For synchronization purposes the last
1499   // element on the list points to itself.
1500   HeapRegion* _dirty_cards_region_list;
1501   void push_dirty_cards_region(HeapRegion* hr);
1502   HeapRegion* pop_dirty_cards_region();
1503 
1504 public:
1505   void stop_conc_gc_threads();
1506 
1507   // <NEW PREDICTION>
1508 
1509   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
1510   void check_if_region_is_too_expensive(double predicted_time_ms);
1511   size_t pending_card_num();
1512   size_t max_pending_card_num();
1513   size_t cards_scanned();
1514 
1515   // </NEW PREDICTION>
1516 
1517 protected:
1518   size_t _max_heap_capacity;
1519 };
1520 
1521 #define use_local_bitmaps         1
1522 #define verify_local_bitmaps      0
1523 #define oop_buffer_length       256
1524 
1525 #ifndef PRODUCT
1526 class GCLabBitMap;
1527 class GCLabBitMapClosure: public BitMapClosure {
1528 private:
1529   ConcurrentMark* _cm;
1530   GCLabBitMap*    _bitmap;
1531 
1532 public:
1533   GCLabBitMapClosure(ConcurrentMark* cm,
1534                      GCLabBitMap* bitmap) {
1535     _cm     = cm;
1536     _bitmap = bitmap;
1537   }
1538 
1539   virtual bool do_bit(size_t offset);
1540 };
1541 #endif // !PRODUCT
1542 
1543 class GCLabBitMap: public BitMap {
1544 private:
1545   ConcurrentMark* _cm;
1546 
1547   int       _shifter;
1548   size_t    _bitmap_word_covers_words;
1549 
1550   // beginning of the heap
1551   HeapWord* _heap_start;
1552 
1553   // this is the actual start of the GCLab
1554   HeapWord* _real_start_word;
1555 
1556   // this is the actual end of the GCLab
1557   HeapWord* _real_end_word;
1558 
1559   // this is the first word, possibly located before the actual start
1560   // of the GCLab, that corresponds to the first bit of the bitmap
1561   HeapWord* _start_word;
1562 
1563   // size of a GCLab in words
1564   size_t _gclab_word_size;
1565 
1566   static int shifter() {
1567     return MinObjAlignment - 1;
1568   }
1569 
1570   // how many heap words does a single bitmap word corresponds to?
1571   static size_t bitmap_word_covers_words() {
1572     return BitsPerWord << shifter();
1573   }
1574 
1575   size_t gclab_word_size() const {
1576     return _gclab_word_size;
1577   }
1578 
1579   // Calculates actual GCLab size in words
1580   size_t gclab_real_word_size() const {
1581     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
1582            / BitsPerWord;
1583   }
1584 
1585   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
1586     size_t bits_in_bitmap = gclab_word_size >> shifter();
1587     // We are going to ensure that the beginning of a word in this
1588     // bitmap also corresponds to the beginning of a word in the
1589     // global marking bitmap. To handle the case where a GCLab
1590     // starts from the middle of the bitmap, we need to add enough
1591     // space (i.e. up to a bitmap word) to ensure that we have
1592     // enough bits in the bitmap.
1593     return bits_in_bitmap + BitsPerWord - 1;
1594   }
1595 public:
1596   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
1597     : BitMap(bitmap_size_in_bits(gclab_word_size)),
1598       _cm(G1CollectedHeap::heap()->concurrent_mark()),
1599       _shifter(shifter()),
1600       _bitmap_word_covers_words(bitmap_word_covers_words()),
1601       _heap_start(heap_start),
1602       _gclab_word_size(gclab_word_size),
1603       _real_start_word(NULL),
1604       _real_end_word(NULL),
1605       _start_word(NULL)
1606   {
1607     guarantee( size_in_words() >= bitmap_size_in_words(),
1608                "just making sure");
1609   }
1610 
1611   inline unsigned heapWordToOffset(HeapWord* addr) {
1612     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
1613     assert(offset < size(), "offset should be within bounds");
1614     return offset;
1615   }
1616 
1617   inline HeapWord* offsetToHeapWord(size_t offset) {
1618     HeapWord* addr =  _start_word + (offset << _shifter);
1619     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
1620     return addr;
1621   }
1622 
1623   bool fields_well_formed() {
1624     bool ret1 = (_real_start_word == NULL) &&
1625                 (_real_end_word == NULL) &&
1626                 (_start_word == NULL);
1627     if (ret1)
1628       return true;
1629 
1630     bool ret2 = _real_start_word >= _start_word &&
1631       _start_word < _real_end_word &&
1632       (_real_start_word + _gclab_word_size) == _real_end_word &&
1633       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
1634                                                               > _real_end_word;
1635     return ret2;
1636   }
1637 
1638   inline bool mark(HeapWord* addr) {
1639     guarantee(use_local_bitmaps, "invariant");
1640     assert(fields_well_formed(), "invariant");
1641 
1642     if (addr >= _real_start_word && addr < _real_end_word) {
1643       assert(!isMarked(addr), "should not have already been marked");
1644 
1645       // first mark it on the bitmap
1646       at_put(heapWordToOffset(addr), true);
1647 
1648       return true;
1649     } else {
1650       return false;
1651     }
1652   }
1653 
1654   inline bool isMarked(HeapWord* addr) {
1655     guarantee(use_local_bitmaps, "invariant");
1656     assert(fields_well_formed(), "invariant");
1657 
1658     return at(heapWordToOffset(addr));
1659   }
1660 
1661   void set_buffer(HeapWord* start) {
1662     guarantee(use_local_bitmaps, "invariant");
1663     clear();
1664 
1665     assert(start != NULL, "invariant");
1666     _real_start_word = start;
1667     _real_end_word   = start + _gclab_word_size;
1668 
1669     size_t diff =
1670       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
1671     _start_word = start - diff;
1672 
1673     assert(fields_well_formed(), "invariant");
1674   }
1675 
1676 #ifndef PRODUCT
1677   void verify() {
1678     // verify that the marks have been propagated
1679     GCLabBitMapClosure cl(_cm, this);
1680     iterate(&cl);
1681   }
1682 #endif // PRODUCT
1683 
1684   void retire() {
1685     guarantee(use_local_bitmaps, "invariant");
1686     assert(fields_well_formed(), "invariant");
1687 
1688     if (_start_word != NULL) {
1689       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
1690 
1691       // this means that the bitmap was set up for the GCLab
1692       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
1693 
1694       mark_bitmap->mostly_disjoint_range_union(this,
1695                                 0, // always start from the start of the bitmap
1696                                 _start_word,
1697                                 gclab_real_word_size());
1698       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
1699 
1700 #ifndef PRODUCT
1701       if (use_local_bitmaps && verify_local_bitmaps)
1702         verify();
1703 #endif // PRODUCT
1704     } else {
1705       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
1706     }
1707   }
1708 
1709   size_t bitmap_size_in_words() const {
1710     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
1711   }
1712 
1713 };
1714 
1715 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1716 private:
1717   bool        _retired;
1718   bool        _should_mark_objects;
1719   GCLabBitMap _bitmap;
1720 
1721 public:
1722   G1ParGCAllocBuffer(size_t gclab_word_size);
1723 
1724   inline bool mark(HeapWord* addr) {
1725     guarantee(use_local_bitmaps, "invariant");
1726     assert(_should_mark_objects, "invariant");
1727     return _bitmap.mark(addr);
1728   }
1729 
1730   inline void set_buf(HeapWord* buf) {
1731     if (use_local_bitmaps && _should_mark_objects) {
1732       _bitmap.set_buffer(buf);
1733     }
1734     ParGCAllocBuffer::set_buf(buf);
1735     _retired = false;
1736   }
1737 
1738   inline void retire(bool end_of_gc, bool retain) {
1739     if (_retired)
1740       return;
1741     if (use_local_bitmaps && _should_mark_objects) {
1742       _bitmap.retire();
1743     }
1744     ParGCAllocBuffer::retire(end_of_gc, retain);
1745     _retired = true;
1746   }
1747 };
1748 
1749 class G1ParScanThreadState : public StackObj {
1750 protected:
1751   G1CollectedHeap* _g1h;
1752   RefToScanQueue*  _refs;
1753   DirtyCardQueue   _dcq;
1754   CardTableModRefBS* _ct_bs;
1755   G1RemSet* _g1_rem;
1756 
1757   G1ParGCAllocBuffer  _surviving_alloc_buffer;
1758   G1ParGCAllocBuffer  _tenured_alloc_buffer;
1759   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
1760   ageTable            _age_table;
1761 
1762   size_t           _alloc_buffer_waste;
1763   size_t           _undo_waste;
1764 
1765   OopsInHeapRegionClosure*      _evac_failure_cl;
1766   G1ParScanHeapEvacClosure*     _evac_cl;
1767   G1ParScanPartialArrayClosure* _partial_scan_cl;
1768 
1769   int _hash_seed;
1770   int _queue_num;
1771 
1772   size_t _term_attempts;
1773 
1774   double _start;
1775   double _start_strong_roots;
1776   double _strong_roots_time;
1777   double _start_term;
1778   double _term_time;
1779 
1780   // Map from young-age-index (0 == not young, 1 is youngest) to
1781   // surviving words. base is what we get back from the malloc call
1782   size_t* _surviving_young_words_base;
1783   // this points into the array, as we use the first few entries for padding
1784   size_t* _surviving_young_words;
1785 
1786 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1787 
1788   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
1789 
1790   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
1791 
1792   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
1793   CardTableModRefBS* ctbs()                      { return _ct_bs; }
1794 
1795   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
1796     if (!from->is_survivor()) {
1797       _g1_rem->par_write_ref(from, p, tid);
1798     }
1799   }
1800 
1801   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
1802     // If the new value of the field points to the same region or
1803     // is the to-space, we don't need to include it in the Rset updates.
1804     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
1805       size_t card_index = ctbs()->index_for(p);
1806       // If the card hasn't been added to the buffer, do it.
1807       if (ctbs()->mark_card_deferred(card_index)) {
1808         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
1809       }
1810     }
1811   }
1812 
1813 public:
1814   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
1815 
1816   ~G1ParScanThreadState() {
1817     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
1818   }
1819 
1820   RefToScanQueue*   refs()            { return _refs;             }
1821   ageTable*         age_table()       { return &_age_table;       }
1822 
1823   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
1824     return _alloc_buffers[purpose];
1825   }
1826 
1827   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
1828   size_t undo_waste() const                      { return _undo_waste; }
1829 
1830 #ifdef ASSERT
1831   bool verify_ref(narrowOop* ref) const;
1832   bool verify_ref(oop* ref) const;
1833   bool verify_task(StarTask ref) const;
1834 #endif // ASSERT
1835 
1836   template <class T> void push_on_queue(T* ref) {
1837     assert(verify_ref(ref), "sanity");
1838     refs()->push(ref);
1839   }
1840 
1841   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
1842     if (G1DeferredRSUpdate) {
1843       deferred_rs_update(from, p, tid);
1844     } else {
1845       immediate_rs_update(from, p, tid);
1846     }
1847   }
1848 
1849   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
1850 
1851     HeapWord* obj = NULL;
1852     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
1853     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1854       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
1855       assert(gclab_word_size == alloc_buf->word_sz(),
1856              "dynamic resizing is not supported");
1857       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
1858       alloc_buf->retire(false, false);
1859 
1860       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1861       if (buf == NULL) return NULL; // Let caller handle allocation failure.
1862       // Otherwise.
1863       alloc_buf->set_buf(buf);
1864 
1865       obj = alloc_buf->allocate(word_sz);
1866       assert(obj != NULL, "buffer was definitely big enough...");
1867     } else {
1868       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
1869     }
1870     return obj;
1871   }
1872 
1873   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
1874     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
1875     if (obj != NULL) return obj;
1876     return allocate_slow(purpose, word_sz);
1877   }
1878 
1879   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
1880     if (alloc_buffer(purpose)->contains(obj)) {
1881       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
1882              "should contain whole object");
1883       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
1884     } else {
1885       CollectedHeap::fill_with_object(obj, word_sz);
1886       add_to_undo_waste(word_sz);
1887     }
1888   }
1889 
1890   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
1891     _evac_failure_cl = evac_failure_cl;
1892   }
1893   OopsInHeapRegionClosure* evac_failure_closure() {
1894     return _evac_failure_cl;
1895   }
1896 
1897   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
1898     _evac_cl = evac_cl;
1899   }
1900 
1901   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
1902     _partial_scan_cl = partial_scan_cl;
1903   }
1904 
1905   int* hash_seed() { return &_hash_seed; }
1906   int  queue_num() { return _queue_num; }
1907 
1908   size_t term_attempts() const  { return _term_attempts; }
1909   void note_term_attempt() { _term_attempts++; }
1910 
1911   void start_strong_roots() {
1912     _start_strong_roots = os::elapsedTime();
1913   }
1914   void end_strong_roots() {
1915     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
1916   }
1917   double strong_roots_time() const { return _strong_roots_time; }
1918 
1919   void start_term_time() {
1920     note_term_attempt();
1921     _start_term = os::elapsedTime();
1922   }
1923   void end_term_time() {
1924     _term_time += (os::elapsedTime() - _start_term);
1925   }
1926   double term_time() const { return _term_time; }
1927 
1928   double elapsed_time() const {
1929     return os::elapsedTime() - _start;
1930   }
1931 
1932   static void
1933     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
1934   void
1935     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
1936 
1937   size_t* surviving_young_words() {
1938     // We add on to hide entry 0 which accumulates surviving words for
1939     // age -1 regions (i.e. non-young ones)
1940     return _surviving_young_words;
1941   }
1942 
1943   void retire_alloc_buffers() {
1944     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1945       size_t waste = _alloc_buffers[ap]->words_remaining();
1946       add_to_alloc_buffer_waste(waste);
1947       _alloc_buffers[ap]->retire(true, false);
1948     }
1949   }
1950 
1951   template <class T> void deal_with_reference(T* ref_to_scan) {
1952     if (has_partial_array_mask(ref_to_scan)) {
1953       _partial_scan_cl->do_oop_nv(ref_to_scan);
1954     } else {
1955       // Note: we can use "raw" versions of "region_containing" because
1956       // "obj_to_scan" is definitely in the heap, and is not in a
1957       // humongous region.
1958       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
1959       _evac_cl->set_region(r);
1960       _evac_cl->do_oop_nv(ref_to_scan);
1961     }
1962   }
1963 
1964   void deal_with_reference(StarTask ref) {
1965     assert(verify_task(ref), "sanity");
1966     if (ref.is_narrow()) {
1967       deal_with_reference((narrowOop*)ref);
1968     } else {
1969       deal_with_reference((oop*)ref);
1970     }
1971   }
1972 
1973 public:
1974   void trim_queue();
1975 };
1976 
1977 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP