1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  27 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  29 #include "gc_implementation/g1/heapRegion.inline.hpp"
  30 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  31 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  32 #include "memory/genOopClosures.inline.hpp"
  33 #include "memory/iterator.hpp"
  34 #include "oops/oop.inline.hpp"
  35 
  36 int HeapRegion::LogOfHRGrainBytes = 0;
  37 int HeapRegion::LogOfHRGrainWords = 0;
  38 int HeapRegion::GrainBytes        = 0;
  39 int HeapRegion::GrainWords        = 0;
  40 int HeapRegion::CardsPerRegion    = 0;
  41 
  42 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  43                                  HeapRegion* hr, OopClosure* cl,
  44                                  CardTableModRefBS::PrecisionStyle precision,
  45                                  FilterKind fk) :
  46   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
  47   _hr(hr), _fk(fk), _g1(g1)
  48 {}
  49 
  50 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  51                                                    OopClosure* oc) :
  52   _r_bottom(r->bottom()), _r_end(r->end()),
  53   _oc(oc), _out_of_region(0)
  54 {}
  55 
  56 class VerifyLiveClosure: public OopClosure {
  57 private:
  58   G1CollectedHeap* _g1h;
  59   CardTableModRefBS* _bs;
  60   oop _containing_obj;
  61   bool _failures;
  62   int _n_failures;
  63   VerifyOption _vo;
  64 public:
  65   // _vo == UsePrevMarking -> use "prev" marking information,
  66   // _vo == UseNextMarking -> use "next" marking information,
  67   // _vo == UseMarkWord    -> use mark word from object header.
  68   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
  69     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
  70     _failures(false), _n_failures(0), _vo(vo)
  71   {
  72     BarrierSet* bs = _g1h->barrier_set();
  73     if (bs->is_a(BarrierSet::CardTableModRef))
  74       _bs = (CardTableModRefBS*)bs;
  75   }
  76 
  77   void set_containing_obj(oop obj) {
  78     _containing_obj = obj;
  79   }
  80 
  81   bool failures() { return _failures; }
  82   int n_failures() { return _n_failures; }
  83 
  84   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  85   virtual void do_oop(      oop* p) { do_oop_work(p); }
  86 
  87   void print_object(outputStream* out, oop obj) {
  88 #ifdef PRODUCT
  89     klassOop k = obj->klass();
  90     const char* class_name = instanceKlass::cast(k)->external_name();
  91     out->print_cr("class name %s", class_name);
  92 #else // PRODUCT
  93     obj->print_on(out);
  94 #endif // PRODUCT
  95   }
  96 
  97   template <class T> void do_oop_work(T* p) {
  98     assert(_containing_obj != NULL, "Precondition");
  99     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 100            "Precondition");
 101     T heap_oop = oopDesc::load_heap_oop(p);
 102     if (!oopDesc::is_null(heap_oop)) {
 103       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 104       bool failed = false;
 105       if (!_g1h->is_in_closed_subset(obj) ||
 106           _g1h->is_obj_dead_cond(obj, _vo)) {
 107         if (!_failures) {
 108           gclog_or_tty->print_cr("");
 109           gclog_or_tty->print_cr("----------");
 110         }
 111         if (!_g1h->is_in_closed_subset(obj)) {
 112           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 113           gclog_or_tty->print_cr("Field "PTR_FORMAT
 114                                  " of live obj "PTR_FORMAT" in region "
 115                                  "["PTR_FORMAT", "PTR_FORMAT")",
 116                                  p, (void*) _containing_obj,
 117                                  from->bottom(), from->end());
 118           print_object(gclog_or_tty, _containing_obj);
 119           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 120                                  (void*) obj);
 121         } else {
 122           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 123           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 124           gclog_or_tty->print_cr("Field "PTR_FORMAT
 125                                  " of live obj "PTR_FORMAT" in region "
 126                                  "["PTR_FORMAT", "PTR_FORMAT")",
 127                                  p, (void*) _containing_obj,
 128                                  from->bottom(), from->end());
 129           print_object(gclog_or_tty, _containing_obj);
 130           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 131                                  "["PTR_FORMAT", "PTR_FORMAT")",
 132                                  (void*) obj, to->bottom(), to->end());
 133           print_object(gclog_or_tty, obj);
 134         }
 135         gclog_or_tty->print_cr("----------");
 136         _failures = true;
 137         failed = true;
 138         _n_failures++;
 139       }
 140 
 141       if (!_g1h->full_collection()) {
 142         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 143         HeapRegion* to   = _g1h->heap_region_containing(obj);
 144         if (from != NULL && to != NULL &&
 145             from != to &&
 146             !to->isHumongous()) {
 147           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 148           jbyte cv_field = *_bs->byte_for_const(p);
 149           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 150 
 151           bool is_bad = !(from->is_young()
 152                           || to->rem_set()->contains_reference(p)
 153                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 154                               (_containing_obj->is_objArray() ?
 155                                   cv_field == dirty
 156                                : cv_obj == dirty || cv_field == dirty));
 157           if (is_bad) {
 158             if (!_failures) {
 159               gclog_or_tty->print_cr("");
 160               gclog_or_tty->print_cr("----------");
 161             }
 162             gclog_or_tty->print_cr("Missing rem set entry:");
 163             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 164                                    "of obj "PTR_FORMAT", "
 165                                    "in region "HR_FORMAT,
 166                                    p, (void*) _containing_obj,
 167                                    HR_FORMAT_PARAMS(from));
 168             _containing_obj->print_on(gclog_or_tty);
 169             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 170                                    "in region "HR_FORMAT,
 171                                    (void*) obj,
 172                                    HR_FORMAT_PARAMS(to));
 173             obj->print_on(gclog_or_tty);
 174             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 175                           cv_obj, cv_field);
 176             gclog_or_tty->print_cr("----------");
 177             _failures = true;
 178             if (!failed) _n_failures++;
 179           }
 180         }
 181       }
 182     }
 183   }
 184 };
 185 
 186 template<class ClosureType>
 187 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
 188                                HeapRegion* hr,
 189                                HeapWord* cur, HeapWord* top) {
 190   oop cur_oop = oop(cur);
 191   int oop_size = cur_oop->size();
 192   HeapWord* next_obj = cur + oop_size;
 193   while (next_obj < top) {
 194     // Keep filtering the remembered set.
 195     if (!g1h->is_obj_dead(cur_oop, hr)) {
 196       // Bottom lies entirely below top, so we can call the
 197       // non-memRegion version of oop_iterate below.
 198       cur_oop->oop_iterate(cl);
 199     }
 200     cur = next_obj;
 201     cur_oop = oop(cur);
 202     oop_size = cur_oop->size();
 203     next_obj = cur + oop_size;
 204   }
 205   return cur;
 206 }
 207 
 208 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
 209                                               HeapWord* bottom,
 210                                               HeapWord* top,
 211                                               OopClosure* cl) {
 212   G1CollectedHeap* g1h = _g1;
 213 
 214   int oop_size;
 215 
 216   OopClosure* cl2 = cl;
 217   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
 218   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
 219   switch (_fk) {
 220   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
 221   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
 222   }
 223 
 224   // Start filtering what we add to the remembered set. If the object is
 225   // not considered dead, either because it is marked (in the mark bitmap)
 226   // or it was allocated after marking finished, then we add it. Otherwise
 227   // we can safely ignore the object.
 228   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 229     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 230   } else {
 231     oop_size = oop(bottom)->size();
 232   }
 233 
 234   bottom += oop_size;
 235 
 236   if (bottom < top) {
 237     // We replicate the loop below for several kinds of possible filters.
 238     switch (_fk) {
 239     case NoFilterKind:
 240       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
 241       break;
 242     case IntoCSFilterKind: {
 243       FilterIntoCSClosure filt(this, g1h, cl);
 244       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 245       break;
 246     }
 247     case OutOfRegionFilterKind: {
 248       FilterOutOfRegionClosure filt(_hr, cl);
 249       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 250       break;
 251     }
 252     default:
 253       ShouldNotReachHere();
 254     }
 255 
 256     // Last object. Need to do dead-obj filtering here too.
 257     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 258       oop(bottom)->oop_iterate(cl2, mr);
 259     }
 260   }
 261 }
 262 
 263 // Minimum region size; we won't go lower than that.
 264 // We might want to decrease this in the future, to deal with small
 265 // heaps a bit more efficiently.
 266 #define MIN_REGION_SIZE  (      1024 * 1024 )
 267 
 268 // Maximum region size; we don't go higher than that. There's a good
 269 // reason for having an upper bound. We don't want regions to get too
 270 // large, otherwise cleanup's effectiveness would decrease as there
 271 // will be fewer opportunities to find totally empty regions after
 272 // marking.
 273 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
 274 
 275 // The automatic region size calculation will try to have around this
 276 // many regions in the heap (based on the min heap size).
 277 #define TARGET_REGION_NUMBER          2048
 278 
 279 void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
 280   // region_size in bytes
 281   uintx region_size = G1HeapRegionSize;
 282   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 283     // We base the automatic calculation on the min heap size. This
 284     // can be problematic if the spread between min and max is quite
 285     // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
 286     // the max size, the region size might be way too large for the
 287     // min size. Either way, some users might have to set the region
 288     // size manually for some -Xms / -Xmx combos.
 289 
 290     region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
 291                        (uintx) MIN_REGION_SIZE);
 292   }
 293 
 294   int region_size_log = log2_long((jlong) region_size);
 295   // Recalculate the region size to make sure it's a power of
 296   // 2. This means that region_size is the largest power of 2 that's
 297   // <= what we've calculated so far.
 298   region_size = ((uintx)1 << region_size_log);
 299 
 300   // Now make sure that we don't go over or under our limits.
 301   if (region_size < MIN_REGION_SIZE) {
 302     region_size = MIN_REGION_SIZE;
 303   } else if (region_size > MAX_REGION_SIZE) {
 304     region_size = MAX_REGION_SIZE;
 305   }
 306 
 307   // And recalculate the log.
 308   region_size_log = log2_long((jlong) region_size);
 309 
 310   // Now, set up the globals.
 311   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 312   LogOfHRGrainBytes = region_size_log;
 313 
 314   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 315   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 316 
 317   guarantee(GrainBytes == 0, "we should only set it once");
 318   // The cast to int is safe, given that we've bounded region_size by
 319   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 320   GrainBytes = (int) region_size;
 321 
 322   guarantee(GrainWords == 0, "we should only set it once");
 323   GrainWords = GrainBytes >> LogHeapWordSize;
 324   guarantee(1 << LogOfHRGrainWords == GrainWords, "sanity");
 325 
 326   guarantee(CardsPerRegion == 0, "we should only set it once");
 327   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 328 }
 329 
 330 void HeapRegion::reset_after_compaction() {
 331   G1OffsetTableContigSpace::reset_after_compaction();
 332   // After a compaction the mark bitmap is invalid, so we must
 333   // treat all objects as being inside the unmarked area.
 334   zero_marked_bytes();
 335   init_top_at_mark_start();
 336 }
 337 
 338 DirtyCardToOopClosure*
 339 HeapRegion::new_dcto_closure(OopClosure* cl,
 340                              CardTableModRefBS::PrecisionStyle precision,
 341                              HeapRegionDCTOC::FilterKind fk) {
 342   return new HeapRegionDCTOC(G1CollectedHeap::heap(),
 343                              this, cl, precision, fk);
 344 }
 345 
 346 void HeapRegion::hr_clear(bool par, bool clear_space) {
 347   assert(_humongous_type == NotHumongous,
 348          "we should have already filtered out humongous regions");
 349   assert(_humongous_start_region == NULL,
 350          "we should have already filtered out humongous regions");
 351   assert(_end == _orig_end,
 352          "we should have already filtered out humongous regions");
 353 
 354   _in_collection_set = false;
 355 
 356   set_young_index_in_cset(-1);
 357   uninstall_surv_rate_group();
 358   set_young_type(NotYoung);
 359   reset_pre_dummy_top();
 360 
 361   if (!par) {
 362     // If this is parallel, this will be done later.
 363     HeapRegionRemSet* hrrs = rem_set();
 364     if (hrrs != NULL) hrrs->clear();
 365     _claimed = InitialClaimValue;
 366   }
 367   zero_marked_bytes();
 368   set_sort_index(-1);
 369 
 370   _offsets.resize(HeapRegion::GrainWords);
 371   init_top_at_mark_start();
 372   if (clear_space) clear(SpaceDecorator::Mangle);
 373 }
 374 
 375 void HeapRegion::par_clear() {
 376   assert(used() == 0, "the region should have been already cleared");
 377   assert(capacity() == (size_t) HeapRegion::GrainBytes,
 378          "should be back to normal");
 379   HeapRegionRemSet* hrrs = rem_set();
 380   hrrs->clear();
 381   CardTableModRefBS* ct_bs =
 382                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 383   ct_bs->clear(MemRegion(bottom(), end()));
 384 }
 385 
 386 // <PREDICTION>
 387 void HeapRegion::calc_gc_efficiency() {
 388   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 389   _gc_efficiency = (double) garbage_bytes() /
 390                             g1h->predict_region_elapsed_time_ms(this, false);
 391 }
 392 // </PREDICTION>
 393 
 394 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 395   assert(!isHumongous(), "sanity / pre-condition");
 396   assert(end() == _orig_end,
 397          "Should be normal before the humongous object allocation");
 398   assert(top() == bottom(), "should be empty");
 399   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 400 
 401   _humongous_type = StartsHumongous;
 402   _humongous_start_region = this;
 403 
 404   set_end(new_end);
 405   _offsets.set_for_starts_humongous(new_top);
 406 }
 407 
 408 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 409   assert(!isHumongous(), "sanity / pre-condition");
 410   assert(end() == _orig_end,
 411          "Should be normal before the humongous object allocation");
 412   assert(top() == bottom(), "should be empty");
 413   assert(first_hr->startsHumongous(), "pre-condition");
 414 
 415   _humongous_type = ContinuesHumongous;
 416   _humongous_start_region = first_hr;
 417 }
 418 
 419 void HeapRegion::set_notHumongous() {
 420   assert(isHumongous(), "pre-condition");
 421 
 422   if (startsHumongous()) {
 423     assert(top() <= end(), "pre-condition");
 424     set_end(_orig_end);
 425     if (top() > end()) {
 426       // at least one "continues humongous" region after it
 427       set_top(end());
 428     }
 429   } else {
 430     // continues humongous
 431     assert(end() == _orig_end, "sanity");
 432   }
 433 
 434   assert(capacity() == (size_t) HeapRegion::GrainBytes, "pre-condition");
 435   _humongous_type = NotHumongous;
 436   _humongous_start_region = NULL;
 437 }
 438 
 439 bool HeapRegion::claimHeapRegion(jint claimValue) {
 440   jint current = _claimed;
 441   if (current != claimValue) {
 442     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 443     if (res == current) {
 444       return true;
 445     }
 446   }
 447   return false;
 448 }
 449 
 450 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 451   HeapWord* low = addr;
 452   HeapWord* high = end();
 453   while (low < high) {
 454     size_t diff = pointer_delta(high, low);
 455     // Must add one below to bias toward the high amount.  Otherwise, if
 456   // "high" were at the desired value, and "low" were one less, we
 457     // would not converge on "high".  This is not symmetric, because
 458     // we set "high" to a block start, which might be the right one,
 459     // which we don't do for "low".
 460     HeapWord* middle = low + (diff+1)/2;
 461     if (middle == high) return high;
 462     HeapWord* mid_bs = block_start_careful(middle);
 463     if (mid_bs < addr) {
 464       low = middle;
 465     } else {
 466       high = mid_bs;
 467     }
 468   }
 469   assert(low == high && low >= addr, "Didn't work.");
 470   return low;
 471 }
 472 
 473 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 474   G1OffsetTableContigSpace::initialize(mr, false, mangle_space);
 475   hr_clear(false/*par*/, clear_space);
 476 }
 477 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 478 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 479 #endif // _MSC_VER
 480 
 481 
 482 HeapRegion::
 483 HeapRegion(size_t hrs_index, G1BlockOffsetSharedArray* sharedOffsetArray,
 484            MemRegion mr, bool is_zeroed)
 485   : G1OffsetTableContigSpace(sharedOffsetArray, mr, is_zeroed),
 486     _next_fk(HeapRegionDCTOC::NoFilterKind), _hrs_index(hrs_index),
 487     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 488     _in_collection_set(false),
 489     _next_in_special_set(NULL), _orig_end(NULL),
 490     _claimed(InitialClaimValue), _evacuation_failed(false),
 491     _prev_marked_bytes(0), _next_marked_bytes(0), _sort_index(-1),
 492     _young_type(NotYoung), _next_young_region(NULL),
 493     _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
 494 #ifdef ASSERT
 495     _containing_set(NULL),
 496 #endif // ASSERT
 497      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 498     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 499     _predicted_bytes_to_copy(0)
 500 {
 501   _orig_end = mr.end();
 502   // Note that initialize() will set the start of the unmarked area of the
 503   // region.
 504   this->initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
 505   set_top(bottom());
 506   set_saved_mark();
 507 
 508   _rem_set =  new HeapRegionRemSet(sharedOffsetArray, this);
 509 
 510   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 511   // In case the region is allocated during a pause, note the top.
 512   // We haven't done any counting on a brand new region.
 513   _top_at_conc_mark_count = bottom();
 514 }
 515 
 516 class NextCompactionHeapRegionClosure: public HeapRegionClosure {
 517   const HeapRegion* _target;
 518   bool _target_seen;
 519   HeapRegion* _last;
 520   CompactibleSpace* _res;
 521 public:
 522   NextCompactionHeapRegionClosure(const HeapRegion* target) :
 523     _target(target), _target_seen(false), _res(NULL) {}
 524   bool doHeapRegion(HeapRegion* cur) {
 525     if (_target_seen) {
 526       if (!cur->isHumongous()) {
 527         _res = cur;
 528         return true;
 529       }
 530     } else if (cur == _target) {
 531       _target_seen = true;
 532     }
 533     return false;
 534   }
 535   CompactibleSpace* result() { return _res; }
 536 };
 537 
 538 CompactibleSpace* HeapRegion::next_compaction_space() const {
 539   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 540   // cast away const-ness
 541   HeapRegion* r = (HeapRegion*) this;
 542   NextCompactionHeapRegionClosure blk(r);
 543   g1h->heap_region_iterate_from(r, &blk);
 544   return blk.result();
 545 }
 546 
 547 void HeapRegion::save_marks() {
 548   set_saved_mark();
 549 }
 550 
 551 void HeapRegion::oops_in_mr_iterate(MemRegion mr, OopClosure* cl) {
 552   HeapWord* p = mr.start();
 553   HeapWord* e = mr.end();
 554   oop obj;
 555   while (p < e) {
 556     obj = oop(p);
 557     p += obj->oop_iterate(cl);
 558   }
 559   assert(p == e, "bad memregion: doesn't end on obj boundary");
 560 }
 561 
 562 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 563 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
 564   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
 565 }
 566 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
 567 
 568 
 569 void HeapRegion::oop_before_save_marks_iterate(OopClosure* cl) {
 570   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
 571 }
 572 
 573 HeapWord*
 574 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 575                                                  ObjectClosure* cl) {
 576   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 577   // We used to use "block_start_careful" here.  But we're actually happy
 578   // to update the BOT while we do this...
 579   HeapWord* cur = block_start(mr.start());
 580   mr = mr.intersection(used_region());
 581   if (mr.is_empty()) return NULL;
 582   // Otherwise, find the obj that extends onto mr.start().
 583 
 584   assert(cur <= mr.start()
 585          && (oop(cur)->klass_or_null() == NULL ||
 586              cur + oop(cur)->size() > mr.start()),
 587          "postcondition of block_start");
 588   oop obj;
 589   while (cur < mr.end()) {
 590     obj = oop(cur);
 591     if (obj->klass_or_null() == NULL) {
 592       // Ran into an unparseable point.
 593       return cur;
 594     } else if (!g1h->is_obj_dead(obj)) {
 595       cl->do_object(obj);
 596     }
 597     if (cl->abort()) return cur;
 598     // The check above must occur before the operation below, since an
 599     // abort might invalidate the "size" operation.
 600     cur += obj->size();
 601   }
 602   return NULL;
 603 }
 604 
 605 HeapWord*
 606 HeapRegion::
 607 oops_on_card_seq_iterate_careful(MemRegion mr,
 608                                  FilterOutOfRegionClosure* cl,
 609                                  bool filter_young,
 610                                  jbyte* card_ptr) {
 611   // Currently, we should only have to clean the card if filter_young
 612   // is true and vice versa.
 613   if (filter_young) {
 614     assert(card_ptr != NULL, "pre-condition");
 615   } else {
 616     assert(card_ptr == NULL, "pre-condition");
 617   }
 618   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 619 
 620   // If we're within a stop-world GC, then we might look at a card in a
 621   // GC alloc region that extends onto a GC LAB, which may not be
 622   // parseable.  Stop such at the "saved_mark" of the region.
 623   if (G1CollectedHeap::heap()->is_gc_active()) {
 624     mr = mr.intersection(used_region_at_save_marks());
 625   } else {
 626     mr = mr.intersection(used_region());
 627   }
 628   if (mr.is_empty()) return NULL;
 629   // Otherwise, find the obj that extends onto mr.start().
 630 
 631   // The intersection of the incoming mr (for the card) and the
 632   // allocated part of the region is non-empty. This implies that
 633   // we have actually allocated into this region. The code in
 634   // G1CollectedHeap.cpp that allocates a new region sets the
 635   // is_young tag on the region before allocating. Thus we
 636   // safely know if this region is young.
 637   if (is_young() && filter_young) {
 638     return NULL;
 639   }
 640 
 641   assert(!is_young(), "check value of filter_young");
 642 
 643   // We can only clean the card here, after we make the decision that
 644   // the card is not young. And we only clean the card if we have been
 645   // asked to (i.e., card_ptr != NULL).
 646   if (card_ptr != NULL) {
 647     *card_ptr = CardTableModRefBS::clean_card_val();
 648     // We must complete this write before we do any of the reads below.
 649     OrderAccess::storeload();
 650   }
 651 
 652   // We used to use "block_start_careful" here.  But we're actually happy
 653   // to update the BOT while we do this...
 654   HeapWord* cur = block_start(mr.start());
 655   assert(cur <= mr.start(), "Postcondition");
 656 
 657   while (cur <= mr.start()) {
 658     if (oop(cur)->klass_or_null() == NULL) {
 659       // Ran into an unparseable point.
 660       return cur;
 661     }
 662     // Otherwise...
 663     int sz = oop(cur)->size();
 664     if (cur + sz > mr.start()) break;
 665     // Otherwise, go on.
 666     cur = cur + sz;
 667   }
 668   oop obj;
 669   obj = oop(cur);
 670   // If we finish this loop...
 671   assert(cur <= mr.start()
 672          && obj->klass_or_null() != NULL
 673          && cur + obj->size() > mr.start(),
 674          "Loop postcondition");
 675   if (!g1h->is_obj_dead(obj)) {
 676     obj->oop_iterate(cl, mr);
 677   }
 678 
 679   HeapWord* next;
 680   while (cur < mr.end()) {
 681     obj = oop(cur);
 682     if (obj->klass_or_null() == NULL) {
 683       // Ran into an unparseable point.
 684       return cur;
 685     };
 686     // Otherwise:
 687     next = (cur + obj->size());
 688     if (!g1h->is_obj_dead(obj)) {
 689       if (next < mr.end()) {
 690         obj->oop_iterate(cl);
 691       } else {
 692         // this obj spans the boundary.  If it's an array, stop at the
 693         // boundary.
 694         if (obj->is_objArray()) {
 695           obj->oop_iterate(cl, mr);
 696         } else {
 697           obj->oop_iterate(cl);
 698         }
 699       }
 700     }
 701     cur = next;
 702   }
 703   return NULL;
 704 }
 705 
 706 void HeapRegion::print() const { print_on(gclog_or_tty); }
 707 void HeapRegion::print_on(outputStream* st) const {
 708   if (isHumongous()) {
 709     if (startsHumongous())
 710       st->print(" HS");
 711     else
 712       st->print(" HC");
 713   } else {
 714     st->print("   ");
 715   }
 716   if (in_collection_set())
 717     st->print(" CS");
 718   else
 719     st->print("   ");
 720   if (is_young())
 721     st->print(is_survivor() ? " SU" : " Y ");
 722   else
 723     st->print("   ");
 724   if (is_empty())
 725     st->print(" F");
 726   else
 727     st->print("  ");
 728   st->print(" %5d", _gc_time_stamp);
 729   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 730             prev_top_at_mark_start(), next_top_at_mark_start());
 731   G1OffsetTableContigSpace::print_on(st);
 732 }
 733 
 734 void HeapRegion::verify(bool allow_dirty) const {
 735   bool dummy = false;
 736   verify(allow_dirty, VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 737 }
 738 
 739 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 740 // We would need a mechanism to make that code skip dead objects.
 741 
 742 void HeapRegion::verify(bool allow_dirty,
 743                         VerifyOption vo,
 744                         bool* failures) const {
 745   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 746   *failures = false;
 747   HeapWord* p = bottom();
 748   HeapWord* prev_p = NULL;
 749   VerifyLiveClosure vl_cl(g1, vo);
 750   bool is_humongous = isHumongous();
 751   bool do_bot_verify = !is_young();
 752   size_t object_num = 0;
 753   while (p < top()) {
 754     oop obj = oop(p);
 755     size_t obj_size = obj->size();
 756     object_num += 1;
 757 
 758     if (is_humongous != g1->isHumongous(obj_size)) {
 759       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 760                              SIZE_FORMAT" words) in a %shumongous region",
 761                              p, g1->isHumongous(obj_size) ? "" : "non-",
 762                              obj_size, is_humongous ? "" : "non-");
 763        *failures = true;
 764        return;
 765     }
 766 
 767     // If it returns false, verify_for_object() will output the
 768     // appropriate messasge.
 769     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
 770       *failures = true;
 771       return;
 772     }
 773 
 774     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 775       if (obj->is_oop()) {
 776         klassOop klass = obj->klass();
 777         if (!klass->is_perm()) {
 778           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 779                                  "not in perm", klass, obj);
 780           *failures = true;
 781           return;
 782         } else if (!klass->is_klass()) {
 783           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 784                                  "not a klass", klass, obj);
 785           *failures = true;
 786           return;
 787         } else {
 788           vl_cl.set_containing_obj(obj);
 789           obj->oop_iterate(&vl_cl);
 790           if (vl_cl.failures()) {
 791             *failures = true;
 792           }
 793           if (G1MaxVerifyFailures >= 0 &&
 794               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 795             return;
 796           }
 797         }
 798       } else {
 799         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
 800         *failures = true;
 801         return;
 802       }
 803     }
 804     prev_p = p;
 805     p += obj_size;
 806   }
 807 
 808   if (p != top()) {
 809     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 810                            "does not match top "PTR_FORMAT, p, top());
 811     *failures = true;
 812     return;
 813   }
 814 
 815   HeapWord* the_end = end();
 816   assert(p == top(), "it should still hold");
 817   // Do some extra BOT consistency checking for addresses in the
 818   // range [top, end). BOT look-ups in this range should yield
 819   // top. No point in doing that if top == end (there's nothing there).
 820   if (p < the_end) {
 821     // Look up top
 822     HeapWord* addr_1 = p;
 823     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 824     if (b_start_1 != p) {
 825       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 826                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 827                              addr_1, b_start_1, p);
 828       *failures = true;
 829       return;
 830     }
 831 
 832     // Look up top + 1
 833     HeapWord* addr_2 = p + 1;
 834     if (addr_2 < the_end) {
 835       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 836       if (b_start_2 != p) {
 837         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
 838                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 839                                addr_2, b_start_2, p);
 840         *failures = true;
 841         return;
 842       }
 843     }
 844 
 845     // Look up an address between top and end
 846     size_t diff = pointer_delta(the_end, p) / 2;
 847     HeapWord* addr_3 = p + diff;
 848     if (addr_3 < the_end) {
 849       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 850       if (b_start_3 != p) {
 851         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
 852                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 853                                addr_3, b_start_3, p);
 854         *failures = true;
 855         return;
 856       }
 857     }
 858 
 859     // Loook up end - 1
 860     HeapWord* addr_4 = the_end - 1;
 861     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
 862     if (b_start_4 != p) {
 863       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
 864                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 865                              addr_4, b_start_4, p);
 866       *failures = true;
 867       return;
 868     }
 869   }
 870 
 871   if (is_humongous && object_num > 1) {
 872     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
 873                            "but has "SIZE_FORMAT", objects",
 874                            bottom(), end(), object_num);
 875     *failures = true;
 876     return;
 877   }
 878 }
 879 
 880 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 881 // away eventually.
 882 
 883 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 884   // false ==> we'll do the clearing if there's clearing to be done.
 885   ContiguousSpace::initialize(mr, false, mangle_space);
 886   _offsets.zero_bottom_entry();
 887   _offsets.initialize_threshold();
 888   if (clear_space) clear(mangle_space);
 889 }
 890 
 891 void G1OffsetTableContigSpace::clear(bool mangle_space) {
 892   ContiguousSpace::clear(mangle_space);
 893   _offsets.zero_bottom_entry();
 894   _offsets.initialize_threshold();
 895 }
 896 
 897 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 898   Space::set_bottom(new_bottom);
 899   _offsets.set_bottom(new_bottom);
 900 }
 901 
 902 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
 903   Space::set_end(new_end);
 904   _offsets.resize(new_end - bottom());
 905 }
 906 
 907 void G1OffsetTableContigSpace::print() const {
 908   print_short();
 909   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 910                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 911                 bottom(), top(), _offsets.threshold(), end());
 912 }
 913 
 914 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
 915   return _offsets.initialize_threshold();
 916 }
 917 
 918 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
 919                                                     HeapWord* end) {
 920   _offsets.alloc_block(start, end);
 921   return _offsets.threshold();
 922 }
 923 
 924 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
 925   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 926   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
 927   if (_gc_time_stamp < g1h->get_gc_time_stamp())
 928     return top();
 929   else
 930     return ContiguousSpace::saved_mark_word();
 931 }
 932 
 933 void G1OffsetTableContigSpace::set_saved_mark() {
 934   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 935   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
 936 
 937   if (_gc_time_stamp < curr_gc_time_stamp) {
 938     // The order of these is important, as another thread might be
 939     // about to start scanning this region. If it does so after
 940     // set_saved_mark and before _gc_time_stamp = ..., then the latter
 941     // will be false, and it will pick up top() as the high water mark
 942     // of region. If it does so after _gc_time_stamp = ..., then it
 943     // will pick up the right saved_mark_word() as the high water mark
 944     // of the region. Either way, the behaviour will be correct.
 945     ContiguousSpace::set_saved_mark();
 946     OrderAccess::storestore();
 947     _gc_time_stamp = curr_gc_time_stamp;
 948     // No need to do another barrier to flush the writes above. If
 949     // this is called in parallel with other threads trying to
 950     // allocate into the region, the caller should call this while
 951     // holding a lock and when the lock is released the writes will be
 952     // flushed.
 953   }
 954 }
 955 
 956 G1OffsetTableContigSpace::
 957 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 958                          MemRegion mr, bool is_zeroed) :
 959   _offsets(sharedOffsetArray, mr),
 960   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
 961   _gc_time_stamp(0)
 962 {
 963   _offsets.set_space(this);
 964   initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
 965 }