1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "memory/referencePolicy.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/jniHandles.hpp"
  35 
  36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  38 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
  39 
  40 void referenceProcessor_init() {
  41   ReferenceProcessor::init_statics();
  42 }
  43 
  44 void ReferenceProcessor::init_statics() {
  45   // Initialize the master soft ref clock.
  46   java_lang_ref_SoftReference::set_clock(os::javaTimeMillis());
  47 
  48   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  49   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
  50                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
  51   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  52     vm_exit_during_initialization("Could not allocate reference policy object");
  53   }
  54   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  55             RefDiscoveryPolicy == ReferentBasedDiscovery,
  56             "Unrecongnized RefDiscoveryPolicy");
  57   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
  58 }
  59 
  60 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  61                                        bool      mt_processing,
  62                                        int       mt_processing_degree,
  63                                        bool      mt_discovery,
  64                                        int       mt_discovery_degree,
  65                                        bool      atomic_discovery,
  66                                        BoolObjectClosure* is_alive_non_header,
  67                                        bool      discovered_list_needs_barrier)  :
  68   _discovering_refs(false),
  69   _enqueuing_is_done(false),
  70   _is_alive_non_header(is_alive_non_header),
  71   _discovered_list_needs_barrier(discovered_list_needs_barrier),
  72   _bs(NULL),
  73   _processing_is_mt(mt_processing),
  74   _next_id(0)
  75 {
  76   _span = span;
  77   _discovery_is_atomic = atomic_discovery;
  78   _discovery_is_mt     = mt_discovery;
  79   _num_q               = MAX2(1, mt_processing_degree);
  80   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
  81   _discoveredSoftRefs  = NEW_C_HEAP_ARRAY(DiscoveredList,
  82                                           _max_num_q * number_of_subclasses_of_ref());
  83   if (_discoveredSoftRefs == NULL) {
  84     vm_exit_during_initialization("Could not allocated RefProc Array");
  85   }
  86   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
  87   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
  88   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
  89   // Initialized all entries to NULL
  90   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
  91     _discoveredSoftRefs[i].set_head(NULL);
  92     _discoveredSoftRefs[i].set_length(0);
  93   }
  94   // If we do barriers, cache a copy of the barrier set.
  95   if (discovered_list_needs_barrier) {
  96     _bs = Universe::heap()->barrier_set();
  97   }
  98   setup_policy(false /* default soft ref policy */);
  99 }
 100 
 101 #ifndef PRODUCT
 102 void ReferenceProcessor::verify_no_references_recorded() {
 103   guarantee(!_discovering_refs, "Discovering refs?");
 104   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 105     guarantee(_discoveredSoftRefs[i].is_empty(),
 106               "Found non-empty discovered list");
 107   }
 108 }
 109 #endif
 110 
 111 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 112   // An alternative implementation of this routine
 113   // could use the following nested loop:
 114   //
 115   // for (int i = 0; i < number_of_subclasses_of_ref(); i++_ {
 116   //   for (int j = 0; j < _num_q; j++) {
 117   //     int index = i * _max_num_q + j;
 118 
 119   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 120     if (UseCompressedOops) {
 121       f->do_oop((narrowOop*)_discoveredSoftRefs[i].adr_head());
 122     } else {
 123       f->do_oop((oop*)_discoveredSoftRefs[i].adr_head());
 124     }
 125   }
 126 }
 127 
 128 void ReferenceProcessor::update_soft_ref_master_clock() {
 129   // Update (advance) the soft ref master clock field. This must be done
 130   // after processing the soft ref list.
 131   jlong now = os::javaTimeMillis();
 132   jlong clock = java_lang_ref_SoftReference::clock();
 133   NOT_PRODUCT(
 134   if (now < clock) {
 135     warning("time warp: %d to %d", clock, now);
 136   }
 137   )
 138   // In product mode, protect ourselves from system time being adjusted
 139   // externally and going backward; see note in the implementation of
 140   // GenCollectedHeap::time_since_last_gc() for the right way to fix
 141   // this uniformly throughout the VM; see bug-id 4741166. XXX
 142   if (now > clock) {
 143     java_lang_ref_SoftReference::set_clock(now);
 144   }
 145   // Else leave clock stalled at its old value until time progresses
 146   // past clock value.
 147 }
 148 
 149 void ReferenceProcessor::process_discovered_references(
 150   BoolObjectClosure*           is_alive,
 151   OopClosure*                  keep_alive,
 152   VoidClosure*                 complete_gc,
 153   AbstractRefProcTaskExecutor* task_executor) {
 154   NOT_PRODUCT(verify_ok_to_handle_reflists());
 155 
 156   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 157   // Stop treating discovered references specially.
 158   disable_discovery();
 159 
 160   bool trace_time = PrintGCDetails && PrintReferenceGC;
 161   // Soft references
 162   {
 163     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
 164     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 165                                is_alive, keep_alive, complete_gc, task_executor);
 166   }
 167 
 168   update_soft_ref_master_clock();
 169 
 170   // Weak references
 171   {
 172     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
 173     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 174                                is_alive, keep_alive, complete_gc, task_executor);
 175   }
 176 
 177   // Final references
 178   {
 179     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
 180     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 181                                is_alive, keep_alive, complete_gc, task_executor);
 182   }
 183 
 184   // Phantom references
 185   {
 186     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
 187     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 188                                is_alive, keep_alive, complete_gc, task_executor);
 189   }
 190 
 191   // Weak global JNI references. It would make more sense (semantically) to
 192   // traverse these simultaneously with the regular weak references above, but
 193   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 194   // thus use JNI weak references to circumvent the phantom references and
 195   // resurrect a "post-mortem" object.
 196   {
 197     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
 198     if (task_executor != NULL) {
 199       task_executor->set_single_threaded_mode();
 200     }
 201     process_phaseJNI(is_alive, keep_alive, complete_gc);
 202   }
 203 }
 204 
 205 #ifndef PRODUCT
 206 // Calculate the number of jni handles.
 207 uint ReferenceProcessor::count_jni_refs() {
 208   class AlwaysAliveClosure: public BoolObjectClosure {
 209   public:
 210     virtual bool do_object_b(oop obj) { return true; }
 211     virtual void do_object(oop obj) { assert(false, "Don't call"); }
 212   };
 213 
 214   class CountHandleClosure: public OopClosure {
 215   private:
 216     int _count;
 217   public:
 218     CountHandleClosure(): _count(0) {}
 219     void do_oop(oop* unused)       { _count++; }
 220     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 221     int count() { return _count; }
 222   };
 223   CountHandleClosure global_handle_count;
 224   AlwaysAliveClosure always_alive;
 225   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 226   return global_handle_count.count();
 227 }
 228 #endif
 229 
 230 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 231                                           OopClosure*        keep_alive,
 232                                           VoidClosure*       complete_gc) {
 233 #ifndef PRODUCT
 234   if (PrintGCDetails && PrintReferenceGC) {
 235     unsigned int count = count_jni_refs();
 236     gclog_or_tty->print(", %u refs", count);
 237   }
 238 #endif
 239   JNIHandles::weak_oops_do(is_alive, keep_alive);
 240   complete_gc->do_void();
 241 }
 242 
 243 
 244 template <class T>
 245 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 246                                    AbstractRefProcTaskExecutor* task_executor) {
 247 
 248   // Remember old value of pending references list
 249   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 250   T old_pending_list_value = *pending_list_addr;
 251 
 252   // Enqueue references that are not made active again, and
 253   // clear the decks for the next collection (cycle).
 254   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 255   // Do the oop-check on pending_list_addr missed in
 256   // enqueue_discovered_reflist. We should probably
 257   // do a raw oop_check so that future such idempotent
 258   // oop_stores relying on the oop-check side-effect
 259   // may be elided automatically and safely without
 260   // affecting correctness.
 261   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 262 
 263   // Stop treating discovered references specially.
 264   ref->disable_discovery();
 265 
 266   // Return true if new pending references were added
 267   return old_pending_list_value != *pending_list_addr;
 268 }
 269 
 270 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 271   NOT_PRODUCT(verify_ok_to_handle_reflists());
 272   if (UseCompressedOops) {
 273     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 274   } else {
 275     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 276   }
 277 }
 278 
 279 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 280                                                     HeapWord* pending_list_addr) {
 281   // Given a list of refs linked through the "discovered" field
 282   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 283   // thus distinguishing them from active References, then
 284   // prepend them to the pending list.
 285   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
 286   // the "next" field is used to chain the pending list, not the discovered
 287   // field.
 288 
 289   if (TraceReferenceGC && PrintGCDetails) {
 290     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 291                            INTPTR_FORMAT, (address)refs_list.head());
 292   }
 293 
 294   oop obj = NULL;
 295   oop next_d = refs_list.head();
 296   if (pending_list_uses_discovered_field()) { // New behaviour
 297     // Walk down the list, self-looping the next field
 298     // so that the References are not considered active.
 299     while (obj != next_d) {
 300       obj = next_d;
 301       assert(obj->is_instanceRef(), "should be reference object");
 302       next_d = java_lang_ref_Reference::discovered(obj);
 303       if (TraceReferenceGC && PrintGCDetails) {
 304         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 305                                obj, next_d);
 306       }
 307       assert(java_lang_ref_Reference::next(obj) == NULL,
 308              "Reference not active; should not be discovered");
 309       // Self-loop next, so as to make Ref not active.
 310       java_lang_ref_Reference::set_next(obj, obj);
 311       if (next_d == obj) {  // obj is last
 312         // Swap refs_list into pendling_list_addr and
 313         // set obj's discovered to what we read from pending_list_addr.
 314         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 315         // Need oop_check on pending_list_addr above;
 316         // see special oop-check code at the end of
 317         // enqueue_discovered_reflists() further below.
 318         java_lang_ref_Reference::set_discovered(obj, old); // old may be NULL
 319       }
 320     }
 321   } else { // Old behaviour
 322     // Walk down the list, copying the discovered field into
 323     // the next field and clearing the discovered field.
 324     while (obj != next_d) {
 325       obj = next_d;
 326       assert(obj->is_instanceRef(), "should be reference object");
 327       next_d = java_lang_ref_Reference::discovered(obj);
 328       if (TraceReferenceGC && PrintGCDetails) {
 329         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 330                                obj, next_d);
 331       }
 332       assert(java_lang_ref_Reference::next(obj) == NULL,
 333              "The reference should not be enqueued");
 334       if (next_d == obj) {  // obj is last
 335         // Swap refs_list into pendling_list_addr and
 336         // set obj's next to what we read from pending_list_addr.
 337         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 338         // Need oop_check on pending_list_addr above;
 339         // see special oop-check code at the end of
 340         // enqueue_discovered_reflists() further below.
 341         if (old == NULL) {
 342           // obj should be made to point to itself, since
 343           // pending list was empty.
 344           java_lang_ref_Reference::set_next(obj, obj);
 345         } else {
 346           java_lang_ref_Reference::set_next(obj, old);
 347         }
 348       } else {
 349         java_lang_ref_Reference::set_next(obj, next_d);
 350       }
 351       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
 352     }
 353   }
 354 }
 355 
 356 // Parallel enqueue task
 357 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 358 public:
 359   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 360                      DiscoveredList      discovered_refs[],
 361                      HeapWord*           pending_list_addr,
 362                      int                 n_queues)
 363     : EnqueueTask(ref_processor, discovered_refs,
 364                   pending_list_addr, n_queues)
 365   { }
 366 
 367   virtual void work(unsigned int work_id) {
 368     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 369     // Simplest first cut: static partitioning.
 370     int index = work_id;
 371     // The increment on "index" must correspond to the maximum number of queues
 372     // (n_queues) with which that ReferenceProcessor was created.  That
 373     // is because of the "clever" way the discovered references lists were
 374     // allocated and are indexed into.
 375     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 376     for (int j = 0;
 377          j < ReferenceProcessor::number_of_subclasses_of_ref();
 378          j++, index += _n_queues) {
 379       _ref_processor.enqueue_discovered_reflist(
 380         _refs_lists[index], _pending_list_addr);
 381       _refs_lists[index].set_head(NULL);
 382       _refs_lists[index].set_length(0);
 383     }
 384   }
 385 };
 386 
 387 // Enqueue references that are not made active again
 388 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 389   AbstractRefProcTaskExecutor* task_executor) {
 390   if (_processing_is_mt && task_executor != NULL) {
 391     // Parallel code
 392     RefProcEnqueueTask tsk(*this, _discoveredSoftRefs,
 393                            pending_list_addr, _max_num_q);
 394     task_executor->execute(tsk);
 395   } else {
 396     // Serial code: call the parent class's implementation
 397     for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 398       enqueue_discovered_reflist(_discoveredSoftRefs[i], pending_list_addr);
 399       _discoveredSoftRefs[i].set_head(NULL);
 400       _discoveredSoftRefs[i].set_length(0);
 401     }
 402   }
 403 }
 404 
 405 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 406   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 407   oop discovered = java_lang_ref_Reference::discovered(_ref);
 408   assert(_discovered_addr && discovered->is_oop_or_null(),
 409          "discovered field is bad");
 410   _next = discovered;
 411   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 412   _referent = java_lang_ref_Reference::referent(_ref);
 413   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 414          "Wrong oop found in java.lang.Reference object");
 415   assert(allow_null_referent ?
 416              _referent->is_oop_or_null()
 417            : _referent->is_oop(),
 418          "bad referent");
 419 }
 420 
 421 void DiscoveredListIterator::remove() {
 422   assert(_ref->is_oop(), "Dropping a bad reference");
 423   oop_store_raw(_discovered_addr, NULL);
 424 
 425   // First _prev_next ref actually points into DiscoveredList (gross).
 426   oop new_next;
 427   if (_next == _ref) {
 428     // At the end of the list, we should make _prev point to itself.
 429     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 430     // and _prev will be NULL.
 431     new_next = _prev;
 432   } else {
 433     new_next = _next;
 434   }
 435 
 436   if (UseCompressedOops) {
 437     // Remove Reference object from list.
 438     oopDesc::encode_store_heap_oop((narrowOop*)_prev_next, new_next);
 439   } else {
 440     // Remove Reference object from list.
 441     oopDesc::store_heap_oop((oop*)_prev_next, new_next);
 442   }
 443   NOT_PRODUCT(_removed++);
 444   _refs_list.dec_length(1);
 445 }
 446 
 447 // Make the Reference object active again.
 448 void DiscoveredListIterator::make_active() {
 449   // For G1 we don't want to use set_next - it
 450   // will dirty the card for the next field of
 451   // the reference object and will fail
 452   // CT verification.
 453   if (UseG1GC) {
 454     BarrierSet* bs = oopDesc::bs();
 455     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
 456 
 457     if (UseCompressedOops) {
 458       bs->write_ref_field_pre((narrowOop*)next_addr, NULL);
 459     } else {
 460       bs->write_ref_field_pre((oop*)next_addr, NULL);
 461     }
 462     java_lang_ref_Reference::set_next_raw(_ref, NULL);
 463   } else {
 464     java_lang_ref_Reference::set_next(_ref, NULL);
 465   }
 466 }
 467 
 468 void DiscoveredListIterator::clear_referent() {
 469   oop_store_raw(_referent_addr, NULL);
 470 }
 471 
 472 // NOTE: process_phase*() are largely similar, and at a high level
 473 // merely iterate over the extant list applying a predicate to
 474 // each of its elements and possibly removing that element from the
 475 // list and applying some further closures to that element.
 476 // We should consider the possibility of replacing these
 477 // process_phase*() methods by abstracting them into
 478 // a single general iterator invocation that receives appropriate
 479 // closures that accomplish this work.
 480 
 481 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 482 // referents are not alive, but that should be kept alive for policy reasons.
 483 // Keep alive the transitive closure of all such referents.
 484 void
 485 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 486                                    ReferencePolicy*   policy,
 487                                    BoolObjectClosure* is_alive,
 488                                    OopClosure*        keep_alive,
 489                                    VoidClosure*       complete_gc) {
 490   assert(policy != NULL, "Must have a non-NULL policy");
 491   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 492   // Decide which softly reachable refs should be kept alive.
 493   while (iter.has_next()) {
 494     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 495     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 496     if (referent_is_dead && !policy->should_clear_reference(iter.obj())) {
 497       if (TraceReferenceGC) {
 498         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 499                                iter.obj(), iter.obj()->blueprint()->internal_name());
 500       }
 501       // Remove Reference object from list
 502       iter.remove();
 503       // Make the Reference object active again
 504       iter.make_active();
 505       // keep the referent around
 506       iter.make_referent_alive();
 507       iter.move_to_next();
 508     } else {
 509       iter.next();
 510     }
 511   }
 512   // Close the reachable set
 513   complete_gc->do_void();
 514   NOT_PRODUCT(
 515     if (PrintGCDetails && TraceReferenceGC) {
 516       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
 517         "discovered Refs by policy, from list " INTPTR_FORMAT,
 518         iter.removed(), iter.processed(), (address)refs_list.head());
 519     }
 520   )
 521 }
 522 
 523 // Traverse the list and remove any Refs that are not active, or
 524 // whose referents are either alive or NULL.
 525 void
 526 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 527                              BoolObjectClosure* is_alive,
 528                              OopClosure*        keep_alive) {
 529   assert(discovery_is_atomic(), "Error");
 530   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 531   while (iter.has_next()) {
 532     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 533     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 534     assert(next == NULL, "Should not discover inactive Reference");
 535     if (iter.is_referent_alive()) {
 536       if (TraceReferenceGC) {
 537         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 538                                iter.obj(), iter.obj()->blueprint()->internal_name());
 539       }
 540       // The referent is reachable after all.
 541       // Remove Reference object from list.
 542       iter.remove();
 543       // Update the referent pointer as necessary: Note that this
 544       // should not entail any recursive marking because the
 545       // referent must already have been traversed.
 546       iter.make_referent_alive();
 547       iter.move_to_next();
 548     } else {
 549       iter.next();
 550     }
 551   }
 552   NOT_PRODUCT(
 553     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 554       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 555         "Refs in discovered list " INTPTR_FORMAT,
 556         iter.removed(), iter.processed(), (address)refs_list.head());
 557     }
 558   )
 559 }
 560 
 561 void
 562 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 563                                                   BoolObjectClosure* is_alive,
 564                                                   OopClosure*        keep_alive,
 565                                                   VoidClosure*       complete_gc) {
 566   assert(!discovery_is_atomic(), "Error");
 567   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 568   while (iter.has_next()) {
 569     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 570     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 571     oop next = java_lang_ref_Reference::next(iter.obj());
 572     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 573          next != NULL)) {
 574       assert(next->is_oop_or_null(), "bad next field");
 575       // Remove Reference object from list
 576       iter.remove();
 577       // Trace the cohorts
 578       iter.make_referent_alive();
 579       if (UseCompressedOops) {
 580         keep_alive->do_oop((narrowOop*)next_addr);
 581       } else {
 582         keep_alive->do_oop((oop*)next_addr);
 583       }
 584       iter.move_to_next();
 585     } else {
 586       iter.next();
 587     }
 588   }
 589   // Now close the newly reachable set
 590   complete_gc->do_void();
 591   NOT_PRODUCT(
 592     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 593       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 594         "Refs in discovered list " INTPTR_FORMAT,
 595         iter.removed(), iter.processed(), (address)refs_list.head());
 596     }
 597   )
 598 }
 599 
 600 // Traverse the list and process the referents, by either
 601 // clearing them or keeping them (and their reachable
 602 // closure) alive.
 603 void
 604 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 605                                    bool               clear_referent,
 606                                    BoolObjectClosure* is_alive,
 607                                    OopClosure*        keep_alive,
 608                                    VoidClosure*       complete_gc) {
 609   ResourceMark rm;
 610   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 611   while (iter.has_next()) {
 612     iter.update_discovered();
 613     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 614     if (clear_referent) {
 615       // NULL out referent pointer
 616       iter.clear_referent();
 617     } else {
 618       // keep the referent around
 619       iter.make_referent_alive();
 620     }
 621     if (TraceReferenceGC) {
 622       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 623                              clear_referent ? "cleared " : "",
 624                              iter.obj(), iter.obj()->blueprint()->internal_name());
 625     }
 626     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 627     iter.next();
 628   }
 629   // Remember to update the next pointer of the last ref.
 630   iter.update_discovered();
 631   // Close the reachable set
 632   complete_gc->do_void();
 633 }
 634 
 635 void
 636 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 637   oop obj = NULL;
 638   oop next = refs_list.head();
 639   while (next != obj) {
 640     obj = next;
 641     next = java_lang_ref_Reference::discovered(obj);
 642     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 643   }
 644   refs_list.set_head(NULL);
 645   refs_list.set_length(0);
 646 }
 647 
 648 void
 649 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
 650   clear_discovered_references(refs_list);
 651 }
 652 
 653 void ReferenceProcessor::abandon_partial_discovery() {
 654   // loop over the lists
 655   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 656     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 657       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
 658     }
 659     abandon_partial_discovered_list(_discoveredSoftRefs[i]);
 660   }
 661 }
 662 
 663 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 664 public:
 665   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 666                     DiscoveredList      refs_lists[],
 667                     ReferencePolicy*    policy,
 668                     bool                marks_oops_alive)
 669     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 670       _policy(policy)
 671   { }
 672   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 673                     OopClosure& keep_alive,
 674                     VoidClosure& complete_gc)
 675   {
 676     Thread* thr = Thread::current();
 677     int refs_list_index = ((WorkerThread*)thr)->id();
 678     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 679                                   &is_alive, &keep_alive, &complete_gc);
 680   }
 681 private:
 682   ReferencePolicy* _policy;
 683 };
 684 
 685 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 686 public:
 687   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 688                     DiscoveredList      refs_lists[],
 689                     bool                marks_oops_alive)
 690     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 691   { }
 692   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 693                     OopClosure& keep_alive,
 694                     VoidClosure& complete_gc)
 695   {
 696     _ref_processor.process_phase2(_refs_lists[i],
 697                                   &is_alive, &keep_alive, &complete_gc);
 698   }
 699 };
 700 
 701 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 702 public:
 703   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 704                     DiscoveredList      refs_lists[],
 705                     bool                clear_referent,
 706                     bool                marks_oops_alive)
 707     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 708       _clear_referent(clear_referent)
 709   { }
 710   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 711                     OopClosure& keep_alive,
 712                     VoidClosure& complete_gc)
 713   {
 714     // Don't use "refs_list_index" calculated in this way because
 715     // balance_queues() has moved the Ref's into the first n queues.
 716     // Thread* thr = Thread::current();
 717     // int refs_list_index = ((WorkerThread*)thr)->id();
 718     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 719     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 720                                   &is_alive, &keep_alive, &complete_gc);
 721   }
 722 private:
 723   bool _clear_referent;
 724 };
 725 
 726 void ReferenceProcessor::set_discovered(oop ref, oop value) {
 727   if (_discovered_list_needs_barrier) {
 728     java_lang_ref_Reference::set_discovered(ref, value);
 729   } else {
 730     java_lang_ref_Reference::set_discovered_raw(ref, value);
 731   }
 732 }
 733 
 734 // Balances reference queues.
 735 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 736 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 737 // corresponding to the active workers will be processed.
 738 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 739 {
 740   // calculate total length
 741   size_t total_refs = 0;
 742   if (TraceReferenceGC && PrintGCDetails) {
 743     gclog_or_tty->print_cr("\nBalance ref_lists ");
 744   }
 745 
 746   for (int i = 0; i < _max_num_q; ++i) {
 747     total_refs += ref_lists[i].length();
 748     if (TraceReferenceGC && PrintGCDetails) {
 749       gclog_or_tty->print("%d ", ref_lists[i].length());
 750     }
 751   }
 752   if (TraceReferenceGC && PrintGCDetails) {
 753     gclog_or_tty->print_cr(" = %d", total_refs);
 754   }
 755   size_t avg_refs = total_refs / _num_q + 1;
 756   int to_idx = 0;
 757   for (int from_idx = 0; from_idx < _max_num_q; from_idx++) {
 758     bool move_all = false;
 759     if (from_idx >= _num_q) {
 760       move_all = ref_lists[from_idx].length() > 0;
 761     }
 762     while ((ref_lists[from_idx].length() > avg_refs) ||
 763            move_all) {
 764       assert(to_idx < _num_q, "Sanity Check!");
 765       if (ref_lists[to_idx].length() < avg_refs) {
 766         // move superfluous refs
 767         size_t refs_to_move;
 768         // Move all the Ref's if the from queue will not be processed.
 769         if (move_all) {
 770           refs_to_move = MIN2(ref_lists[from_idx].length(),
 771                               avg_refs - ref_lists[to_idx].length());
 772         } else {
 773           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 774                               avg_refs - ref_lists[to_idx].length());
 775         }
 776 
 777         assert(refs_to_move > 0, "otherwise the code below will fail");
 778 
 779         oop move_head = ref_lists[from_idx].head();
 780         oop move_tail = move_head;
 781         oop new_head  = move_head;
 782         // find an element to split the list on
 783         for (size_t j = 0; j < refs_to_move; ++j) {
 784           move_tail = new_head;
 785           new_head = java_lang_ref_Reference::discovered(new_head);
 786         }
 787 
 788         // Add the chain to the to list.
 789         if (ref_lists[to_idx].head() == NULL) {
 790           // to list is empty. Make a loop at the end.
 791           set_discovered(move_tail, move_tail);
 792         } else {
 793           set_discovered(move_tail, ref_lists[to_idx].head());
 794         }
 795         ref_lists[to_idx].set_head(move_head);
 796         ref_lists[to_idx].inc_length(refs_to_move);
 797 
 798         // Remove the chain from the from list.
 799         if (move_tail == new_head) {
 800           // We found the end of the from list.
 801           ref_lists[from_idx].set_head(NULL);
 802         } else {
 803           ref_lists[from_idx].set_head(new_head);
 804         }
 805         ref_lists[from_idx].dec_length(refs_to_move);
 806         if (ref_lists[from_idx].length() == 0) {
 807           break;
 808         }
 809       } else {
 810         to_idx = (to_idx + 1) % _num_q;
 811       }
 812     }
 813   }
 814 #ifdef ASSERT
 815   size_t balanced_total_refs = 0;
 816   for (int i = 0; i < _max_num_q; ++i) {
 817     balanced_total_refs += ref_lists[i].length();
 818     if (TraceReferenceGC && PrintGCDetails) {
 819       gclog_or_tty->print("%d ", ref_lists[i].length());
 820     }
 821   }
 822   if (TraceReferenceGC && PrintGCDetails) {
 823     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
 824     gclog_or_tty->flush();
 825   }
 826   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 827 #endif
 828 }
 829 
 830 void ReferenceProcessor::balance_all_queues() {
 831   balance_queues(_discoveredSoftRefs);
 832   balance_queues(_discoveredWeakRefs);
 833   balance_queues(_discoveredFinalRefs);
 834   balance_queues(_discoveredPhantomRefs);
 835 }
 836 
 837 void
 838 ReferenceProcessor::process_discovered_reflist(
 839   DiscoveredList               refs_lists[],
 840   ReferencePolicy*             policy,
 841   bool                         clear_referent,
 842   BoolObjectClosure*           is_alive,
 843   OopClosure*                  keep_alive,
 844   VoidClosure*                 complete_gc,
 845   AbstractRefProcTaskExecutor* task_executor)
 846 {
 847   bool mt_processing = task_executor != NULL && _processing_is_mt;
 848   // If discovery used MT and a dynamic number of GC threads, then
 849   // the queues must be balanced for correctness if fewer than the
 850   // maximum number of queues were used.  The number of queue used
 851   // during discovery may be different than the number to be used
 852   // for processing so don't depend of _num_q < _max_num_q as part
 853   // of the test.
 854   bool must_balance = _discovery_is_mt;
 855 
 856   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 857       must_balance) {
 858     balance_queues(refs_lists);
 859   }
 860   if (PrintReferenceGC && PrintGCDetails) {
 861     size_t total = 0;
 862     for (int i = 0; i < _max_num_q; ++i) {
 863       total += refs_lists[i].length();
 864     }
 865     gclog_or_tty->print(", %u refs", total);
 866   }
 867 
 868   // Phase 1 (soft refs only):
 869   // . Traverse the list and remove any SoftReferences whose
 870   //   referents are not alive, but that should be kept alive for
 871   //   policy reasons. Keep alive the transitive closure of all
 872   //   such referents.
 873   if (policy != NULL) {
 874     if (mt_processing) {
 875       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 876       task_executor->execute(phase1);
 877     } else {
 878       for (int i = 0; i < _max_num_q; i++) {
 879         process_phase1(refs_lists[i], policy,
 880                        is_alive, keep_alive, complete_gc);
 881       }
 882     }
 883   } else { // policy == NULL
 884     assert(refs_lists != _discoveredSoftRefs,
 885            "Policy must be specified for soft references.");
 886   }
 887 
 888   // Phase 2:
 889   // . Traverse the list and remove any refs whose referents are alive.
 890   if (mt_processing) {
 891     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 892     task_executor->execute(phase2);
 893   } else {
 894     for (int i = 0; i < _max_num_q; i++) {
 895       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 896     }
 897   }
 898 
 899   // Phase 3:
 900   // . Traverse the list and process referents as appropriate.
 901   if (mt_processing) {
 902     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 903     task_executor->execute(phase3);
 904   } else {
 905     for (int i = 0; i < _max_num_q; i++) {
 906       process_phase3(refs_lists[i], clear_referent,
 907                      is_alive, keep_alive, complete_gc);
 908     }
 909   }
 910 }
 911 
 912 void ReferenceProcessor::clean_up_discovered_references() {
 913   // loop over the lists
 914 
 915   // An alternative implementation of this routine could
 916   // use the following nested loop:
 917   //
 918   // for (int i = 0; i < number_of_subclasses_of_ref(); i++) {
 919   //   for (int j = 0; j < _num_q; j++) {
 920   //     int index = i * _max_num_q + j;
 921 
 922   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 923     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 924       gclog_or_tty->print_cr(
 925         "\nScrubbing %s discovered list of Null referents",
 926         list_name(i));
 927     }
 928     clean_up_discovered_reflist(_discoveredSoftRefs[i]);
 929   }
 930 }
 931 
 932 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
 933   assert(!discovery_is_atomic(), "Else why call this method?");
 934   DiscoveredListIterator iter(refs_list, NULL, NULL);
 935   while (iter.has_next()) {
 936     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 937     oop next = java_lang_ref_Reference::next(iter.obj());
 938     assert(next->is_oop_or_null(), "bad next field");
 939     // If referent has been cleared or Reference is not active,
 940     // drop it.
 941     if (iter.referent() == NULL || next != NULL) {
 942       debug_only(
 943         if (PrintGCDetails && TraceReferenceGC) {
 944           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
 945             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
 946             " and referent: " INTPTR_FORMAT,
 947             iter.obj(), next, iter.referent());
 948         }
 949       )
 950       // Remove Reference object from list
 951       iter.remove();
 952       iter.move_to_next();
 953     } else {
 954       iter.next();
 955     }
 956   }
 957   NOT_PRODUCT(
 958     if (PrintGCDetails && TraceReferenceGC) {
 959       gclog_or_tty->print(
 960         " Removed %d Refs with NULL referents out of %d discovered Refs",
 961         iter.removed(), iter.processed());
 962     }
 963   )
 964 }
 965 
 966 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 967   int id = 0;
 968   // Determine the queue index to use for this object.
 969   if (_discovery_is_mt) {
 970     // During a multi-threaded discovery phase,
 971     // each thread saves to its "own" list.
 972     Thread* thr = Thread::current();
 973     id = thr->as_Worker_thread()->id();
 974   } else {
 975     // single-threaded discovery, we save in round-robin
 976     // fashion to each of the lists.
 977     if (_processing_is_mt) {
 978       id = next_id();
 979     }
 980   }
 981   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
 982 
 983   // Get the discovered queue to which we will add
 984   DiscoveredList* list = NULL;
 985   switch (rt) {
 986     case REF_OTHER:
 987       // Unknown reference type, no special treatment
 988       break;
 989     case REF_SOFT:
 990       list = &_discoveredSoftRefs[id];
 991       break;
 992     case REF_WEAK:
 993       list = &_discoveredWeakRefs[id];
 994       break;
 995     case REF_FINAL:
 996       list = &_discoveredFinalRefs[id];
 997       break;
 998     case REF_PHANTOM:
 999       list = &_discoveredPhantomRefs[id];
1000       break;
1001     case REF_NONE:
1002       // we should not reach here if we are an instanceRefKlass
1003     default:
1004       ShouldNotReachHere();
1005   }
1006   if (TraceReferenceGC && PrintGCDetails) {
1007     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
1008   }
1009   return list;
1010 }
1011 
1012 inline void
1013 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
1014                                               oop             obj,
1015                                               HeapWord*       discovered_addr) {
1016   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
1017   // First we must make sure this object is only enqueued once. CAS in a non null
1018   // discovered_addr.
1019   oop current_head = refs_list.head();
1020   // The last ref must have its discovered field pointing to itself.
1021   oop next_discovered = (current_head != NULL) ? current_head : obj;
1022 
1023   // Note: In the case of G1, this specific pre-barrier is strictly
1024   // not necessary because the only case we are interested in
1025   // here is when *discovered_addr is NULL (see the CAS further below),
1026   // so this will expand to nothing. As a result, we have manually
1027   // elided this out for G1, but left in the test for some future
1028   // collector that might have need for a pre-barrier here, e.g.:-
1029   // _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
1030   assert(!_discovered_list_needs_barrier || UseG1GC,
1031          "Need to check non-G1 collector: "
1032          "may need a pre-write-barrier for CAS from NULL below");
1033   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
1034                                                     NULL);
1035   if (retest == NULL) {
1036     // This thread just won the right to enqueue the object.
1037     // We have separate lists for enqueueing, so no synchronization
1038     // is necessary.
1039     refs_list.set_head(obj);
1040     refs_list.inc_length(1);
1041     if (_discovered_list_needs_barrier) {
1042       _bs->write_ref_field((void*)discovered_addr, next_discovered);
1043     }
1044 
1045     if (TraceReferenceGC) {
1046       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
1047                              obj, obj->blueprint()->internal_name());
1048     }
1049   } else {
1050     // If retest was non NULL, another thread beat us to it:
1051     // The reference has already been discovered...
1052     if (TraceReferenceGC) {
1053       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1054                              obj, obj->blueprint()->internal_name());
1055     }
1056   }
1057 }
1058 
1059 #ifndef PRODUCT
1060 // Non-atomic (i.e. concurrent) discovery might allow us
1061 // to observe j.l.References with NULL referents, being those
1062 // cleared concurrently by mutators during (or after) discovery.
1063 void ReferenceProcessor::verify_referent(oop obj) {
1064   bool da = discovery_is_atomic();
1065   oop referent = java_lang_ref_Reference::referent(obj);
1066   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
1067          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
1068                  INTPTR_FORMAT " during %satomic discovery ",
1069                  (intptr_t)referent, (intptr_t)obj, da ? "" : "non-"));
1070 }
1071 #endif
1072 
1073 // We mention two of several possible choices here:
1074 // #0: if the reference object is not in the "originating generation"
1075 //     (or part of the heap being collected, indicated by our "span"
1076 //     we don't treat it specially (i.e. we scan it as we would
1077 //     a normal oop, treating its references as strong references).
1078 //     This means that references can't be discovered unless their
1079 //     referent is also in the same span. This is the simplest,
1080 //     most "local" and most conservative approach, albeit one
1081 //     that may cause weak references to be enqueued least promptly.
1082 //     We call this choice the "ReferenceBasedDiscovery" policy.
1083 // #1: the reference object may be in any generation (span), but if
1084 //     the referent is in the generation (span) being currently collected
1085 //     then we can discover the reference object, provided
1086 //     the object has not already been discovered by
1087 //     a different concurrently running collector (as may be the
1088 //     case, for instance, if the reference object is in CMS and
1089 //     the referent in DefNewGeneration), and provided the processing
1090 //     of this reference object by the current collector will
1091 //     appear atomic to every other collector in the system.
1092 //     (Thus, for instance, a concurrent collector may not
1093 //     discover references in other generations even if the
1094 //     referent is in its own generation). This policy may,
1095 //     in certain cases, enqueue references somewhat sooner than
1096 //     might Policy #0 above, but at marginally increased cost
1097 //     and complexity in processing these references.
1098 //     We call this choice the "RefeferentBasedDiscovery" policy.
1099 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1100   // Make sure we are discovering refs (rather than processing discovered refs).
1101   if (!_discovering_refs || !RegisterReferences) {
1102     return false;
1103   }
1104   // We only discover active references.
1105   oop next = java_lang_ref_Reference::next(obj);
1106   if (next != NULL) {   // Ref is no longer active
1107     return false;
1108   }
1109 
1110   HeapWord* obj_addr = (HeapWord*)obj;
1111   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1112       !_span.contains(obj_addr)) {
1113     // Reference is not in the originating generation;
1114     // don't treat it specially (i.e. we want to scan it as a normal
1115     // object with strong references).
1116     return false;
1117   }
1118 
1119   // We only discover references whose referents are not (yet)
1120   // known to be strongly reachable.
1121   if (is_alive_non_header() != NULL) {
1122     verify_referent(obj);
1123     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1124       return false;  // referent is reachable
1125     }
1126   }
1127   if (rt == REF_SOFT) {
1128     // For soft refs we can decide now if these are not
1129     // current candidates for clearing, in which case we
1130     // can mark through them now, rather than delaying that
1131     // to the reference-processing phase. Since all current
1132     // time-stamp policies advance the soft-ref clock only
1133     // at a major collection cycle, this is always currently
1134     // accurate.
1135     if (!_current_soft_ref_policy->should_clear_reference(obj)) {
1136       return false;
1137     }
1138   }
1139 
1140   ResourceMark rm;      // Needed for tracing.
1141 
1142   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1143   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1144   assert(discovered->is_oop_or_null(), "bad discovered field");
1145   if (discovered != NULL) {
1146     // The reference has already been discovered...
1147     if (TraceReferenceGC) {
1148       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1149                              obj, obj->blueprint()->internal_name());
1150     }
1151     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1152       // assumes that an object is not processed twice;
1153       // if it's been already discovered it must be on another
1154       // generation's discovered list; so we won't discover it.
1155       return false;
1156     } else {
1157       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1158              "Unrecognized policy");
1159       // Check assumption that an object is not potentially
1160       // discovered twice except by concurrent collectors that potentially
1161       // trace the same Reference object twice.
1162       assert(UseConcMarkSweepGC || UseG1GC,
1163              "Only possible with a concurrent marking collector");
1164       return true;
1165     }
1166   }
1167 
1168   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1169     verify_referent(obj);
1170     // Discover if and only if EITHER:
1171     // .. reference is in our span, OR
1172     // .. we are an atomic collector and referent is in our span
1173     if (_span.contains(obj_addr) ||
1174         (discovery_is_atomic() &&
1175          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1176       // should_enqueue = true;
1177     } else {
1178       return false;
1179     }
1180   } else {
1181     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1182            _span.contains(obj_addr), "code inconsistency");
1183   }
1184 
1185   // Get the right type of discovered queue head.
1186   DiscoveredList* list = get_discovered_list(rt);
1187   if (list == NULL) {
1188     return false;   // nothing special needs to be done
1189   }
1190 
1191   if (_discovery_is_mt) {
1192     add_to_discovered_list_mt(*list, obj, discovered_addr);
1193   } else {
1194     // If "_discovered_list_needs_barrier", we do write barriers when
1195     // updating the discovered reference list.  Otherwise, we do a raw store
1196     // here: the field will be visited later when processing the discovered
1197     // references.
1198     oop current_head = list->head();
1199     // The last ref must have its discovered field pointing to itself.
1200     oop next_discovered = (current_head != NULL) ? current_head : obj;
1201 
1202     // As in the case further above, since we are over-writing a NULL
1203     // pre-value, we can safely elide the pre-barrier here for the case of G1.
1204     // e.g.:- _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
1205     assert(discovered == NULL, "control point invariant");
1206     assert(!_discovered_list_needs_barrier || UseG1GC,
1207            "For non-G1 collector, may need a pre-write-barrier for CAS from NULL below");
1208     oop_store_raw(discovered_addr, next_discovered);
1209     if (_discovered_list_needs_barrier) {
1210       _bs->write_ref_field((void*)discovered_addr, next_discovered);
1211     }
1212     list->set_head(obj);
1213     list->inc_length(1);
1214 
1215     if (TraceReferenceGC) {
1216       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
1217                                 obj, obj->blueprint()->internal_name());
1218     }
1219   }
1220   assert(obj->is_oop(), "Discovered a bad reference");
1221   verify_referent(obj);
1222   return true;
1223 }
1224 
1225 // Preclean the discovered references by removing those
1226 // whose referents are alive, and by marking from those that
1227 // are not active. These lists can be handled here
1228 // in any order and, indeed, concurrently.
1229 void ReferenceProcessor::preclean_discovered_references(
1230   BoolObjectClosure* is_alive,
1231   OopClosure* keep_alive,
1232   VoidClosure* complete_gc,
1233   YieldClosure* yield,
1234   bool should_unload_classes) {
1235 
1236   NOT_PRODUCT(verify_ok_to_handle_reflists());
1237 
1238 #ifdef ASSERT
1239   bool must_remember_klasses = ClassUnloading && !UseConcMarkSweepGC ||
1240                                CMSClassUnloadingEnabled && UseConcMarkSweepGC ||
1241                                ExplicitGCInvokesConcurrentAndUnloadsClasses &&
1242                                  UseConcMarkSweepGC && should_unload_classes;
1243   RememberKlassesChecker mx(must_remember_klasses);
1244 #endif
1245   // Soft references
1246   {
1247     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1248               false, gclog_or_tty);
1249     for (int i = 0; i < _max_num_q; i++) {
1250       if (yield->should_return()) {
1251         return;
1252       }
1253       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1254                                   keep_alive, complete_gc, yield);
1255     }
1256   }
1257 
1258   // Weak references
1259   {
1260     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1261               false, gclog_or_tty);
1262     for (int i = 0; i < _max_num_q; i++) {
1263       if (yield->should_return()) {
1264         return;
1265       }
1266       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1267                                   keep_alive, complete_gc, yield);
1268     }
1269   }
1270 
1271   // Final references
1272   {
1273     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1274               false, gclog_or_tty);
1275     for (int i = 0; i < _max_num_q; i++) {
1276       if (yield->should_return()) {
1277         return;
1278       }
1279       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1280                                   keep_alive, complete_gc, yield);
1281     }
1282   }
1283 
1284   // Phantom references
1285   {
1286     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1287               false, gclog_or_tty);
1288     for (int i = 0; i < _max_num_q; i++) {
1289       if (yield->should_return()) {
1290         return;
1291       }
1292       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1293                                   keep_alive, complete_gc, yield);
1294     }
1295   }
1296 }
1297 
1298 // Walk the given discovered ref list, and remove all reference objects
1299 // whose referents are still alive, whose referents are NULL or which
1300 // are not active (have a non-NULL next field). NOTE: When we are
1301 // thus precleaning the ref lists (which happens single-threaded today),
1302 // we do not disable refs discovery to honour the correct semantics of
1303 // java.lang.Reference. As a result, we need to be careful below
1304 // that ref removal steps interleave safely with ref discovery steps
1305 // (in this thread).
1306 void
1307 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1308                                                 BoolObjectClosure* is_alive,
1309                                                 OopClosure*        keep_alive,
1310                                                 VoidClosure*       complete_gc,
1311                                                 YieldClosure*      yield) {
1312   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1313   while (iter.has_next()) {
1314     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1315     oop obj = iter.obj();
1316     oop next = java_lang_ref_Reference::next(obj);
1317     if (iter.referent() == NULL || iter.is_referent_alive() ||
1318         next != NULL) {
1319       // The referent has been cleared, or is alive, or the Reference is not
1320       // active; we need to trace and mark its cohort.
1321       if (TraceReferenceGC) {
1322         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1323                                iter.obj(), iter.obj()->blueprint()->internal_name());
1324       }
1325       // Remove Reference object from list
1326       iter.remove();
1327       // Keep alive its cohort.
1328       iter.make_referent_alive();
1329       if (UseCompressedOops) {
1330         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1331         keep_alive->do_oop(next_addr);
1332       } else {
1333         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1334         keep_alive->do_oop(next_addr);
1335       }
1336       iter.move_to_next();
1337     } else {
1338       iter.next();
1339     }
1340   }
1341   // Close the reachable set
1342   complete_gc->do_void();
1343 
1344   NOT_PRODUCT(
1345     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
1346       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
1347         "Refs in discovered list " INTPTR_FORMAT,
1348         iter.removed(), iter.processed(), (address)refs_list.head());
1349     }
1350   )
1351 }
1352 
1353 const char* ReferenceProcessor::list_name(int i) {
1354    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
1355           "Out of bounds index");
1356 
1357    int j = i / _max_num_q;
1358    switch (j) {
1359      case 0: return "SoftRef";
1360      case 1: return "WeakRef";
1361      case 2: return "FinalRef";
1362      case 3: return "PhantomRef";
1363    }
1364    ShouldNotReachHere();
1365    return NULL;
1366 }
1367 
1368 #ifndef PRODUCT
1369 void ReferenceProcessor::verify_ok_to_handle_reflists() {
1370   // empty for now
1371 }
1372 #endif
1373 
1374 #ifndef PRODUCT
1375 void ReferenceProcessor::clear_discovered_references() {
1376   guarantee(!_discovering_refs, "Discovering refs?");
1377   for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
1378     clear_discovered_references(_discoveredSoftRefs[i]);
1379   }
1380 }
1381 
1382 #endif // PRODUCT