1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/instanceKlass.hpp"
  39 #include "oops/objArrayOop.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/symbol.hpp"
  42 #include "prims/jvm_misc.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/jvmtiThreadState.hpp"
  45 #include "prims/privilegedStack.hpp"
  46 #include "runtime/aprofiler.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/deoptimization.hpp"
  50 #include "runtime/fprofiler.hpp"
  51 #include "runtime/frame.inline.hpp"
  52 #include "runtime/init.hpp"
  53 #include "runtime/interfaceSupport.hpp"
  54 #include "runtime/java.hpp"
  55 #include "runtime/javaCalls.hpp"
  56 #include "runtime/jniPeriodicChecker.hpp"
  57 #include "runtime/memprofiler.hpp"
  58 #include "runtime/mutexLocker.hpp"
  59 #include "runtime/objectMonitor.hpp"
  60 #include "runtime/osThread.hpp"
  61 #include "runtime/safepoint.hpp"
  62 #include "runtime/sharedRuntime.hpp"
  63 #include "runtime/statSampler.hpp"
  64 #include "runtime/stubRoutines.hpp"
  65 #include "runtime/task.hpp"
  66 #include "runtime/threadCritical.hpp"
  67 #include "runtime/threadLocalStorage.hpp"
  68 #include "runtime/vframe.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "runtime/vframe_hp.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "runtime/vm_operations.hpp"
  73 #include "services/attachListener.hpp"
  74 #include "services/management.hpp"
  75 #include "services/threadService.hpp"
  76 #include "utilities/defaultStream.hpp"
  77 #include "utilities/dtrace.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/preserveException.hpp"
  80 #ifdef TARGET_OS_FAMILY_linux
  81 # include "os_linux.inline.hpp"
  82 # include "thread_linux.inline.hpp"
  83 #endif
  84 #ifdef TARGET_OS_FAMILY_solaris
  85 # include "os_solaris.inline.hpp"
  86 # include "thread_solaris.inline.hpp"
  87 #endif
  88 #ifdef TARGET_OS_FAMILY_windows
  89 # include "os_windows.inline.hpp"
  90 # include "thread_windows.inline.hpp"
  91 #endif
  92 #ifndef SERIALGC
  93 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  94 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  95 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  96 #endif
  97 #ifdef COMPILER1
  98 #include "c1/c1_Compiler.hpp"
  99 #endif
 100 #ifdef COMPILER2
 101 #include "opto/c2compiler.hpp"
 102 #include "opto/idealGraphPrinter.hpp"
 103 #endif
 104 
 105 #ifdef DTRACE_ENABLED
 106 
 107 // Only bother with this argument setup if dtrace is available
 108 
 109 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 110 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 111 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 112   intptr_t, intptr_t, bool);
 113 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 114   intptr_t, intptr_t, bool);
 115 
 116 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 117   {                                                                        \
 118     ResourceMark rm(this);                                                 \
 119     int len = 0;                                                           \
 120     const char* name = (javathread)->get_thread_name();                    \
 121     len = strlen(name);                                                    \
 122     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 123       name, len,                                                           \
 124       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 125       (javathread)->osthread()->thread_id(),                               \
 126       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 127   }
 128 
 129 #else //  ndef DTRACE_ENABLED
 130 
 131 #define DTRACE_THREAD_PROBE(probe, javathread)
 132 
 133 #endif // ndef DTRACE_ENABLED
 134 
 135 // Class hierarchy
 136 // - Thread
 137 //   - VMThread
 138 //   - WatcherThread
 139 //   - ConcurrentMarkSweepThread
 140 //   - JavaThread
 141 //     - CompilerThread
 142 
 143 // ======= Thread ========
 144 
 145 // Support for forcing alignment of thread objects for biased locking
 146 void* Thread::operator new(size_t size) {
 147   if (UseBiasedLocking) {
 148     const int alignment = markOopDesc::biased_lock_alignment;
 149     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 150     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
 151     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 152     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 153            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 154            "JavaThread alignment code overflowed allocated storage");
 155     if (TraceBiasedLocking) {
 156       if (aligned_addr != real_malloc_addr)
 157         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 158                       real_malloc_addr, aligned_addr);
 159     }
 160     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 161     return aligned_addr;
 162   } else {
 163     return CHeapObj::operator new(size);
 164   }
 165 }
 166 
 167 void Thread::operator delete(void* p) {
 168   if (UseBiasedLocking) {
 169     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 170     CHeapObj::operator delete(real_malloc_addr);
 171   } else {
 172     CHeapObj::operator delete(p);
 173   }
 174 }
 175 
 176 
 177 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 178 // JavaThread
 179 
 180 
 181 Thread::Thread() {
 182   // stack and get_thread
 183   set_stack_base(NULL);
 184   set_stack_size(0);
 185   set_self_raw_id(0);
 186   set_lgrp_id(-1);
 187 
 188   // allocated data structures
 189   set_osthread(NULL);
 190   set_resource_area(new ResourceArea());
 191   set_handle_area(new HandleArea(NULL));
 192   set_active_handles(NULL);
 193   set_free_handle_block(NULL);
 194   set_last_handle_mark(NULL);
 195 
 196   // This initial value ==> never claimed.
 197   _oops_do_parity = 0;
 198 
 199   // the handle mark links itself to last_handle_mark
 200   new HandleMark(this);
 201 
 202   // plain initialization
 203   debug_only(_owned_locks = NULL;)
 204   debug_only(_allow_allocation_count = 0;)
 205   NOT_PRODUCT(_allow_safepoint_count = 0;)
 206   NOT_PRODUCT(_skip_gcalot = false;)
 207   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 208   _jvmti_env_iteration_count = 0;
 209   set_allocated_bytes(0);
 210   _vm_operation_started_count = 0;
 211   _vm_operation_completed_count = 0;
 212   _current_pending_monitor = NULL;
 213   _current_pending_monitor_is_from_java = true;
 214   _current_waiting_monitor = NULL;
 215   _num_nested_signal = 0;
 216   omFreeList = NULL ;
 217   omFreeCount = 0 ;
 218   omFreeProvision = 32 ;
 219   omInUseList = NULL ;
 220   omInUseCount = 0 ;
 221 
 222   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 223   _suspend_flags = 0;
 224 
 225   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 226   _hashStateX = os::random() ;
 227   _hashStateY = 842502087 ;
 228   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 229   _hashStateW = 273326509 ;
 230 
 231   _OnTrap   = 0 ;
 232   _schedctl = NULL ;
 233   _Stalled  = 0 ;
 234   _TypeTag  = 0x2BAD ;
 235 
 236   // Many of the following fields are effectively final - immutable
 237   // Note that nascent threads can't use the Native Monitor-Mutex
 238   // construct until the _MutexEvent is initialized ...
 239   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 240   // we might instead use a stack of ParkEvents that we could provision on-demand.
 241   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 242   // and ::Release()
 243   _ParkEvent   = ParkEvent::Allocate (this) ;
 244   _SleepEvent  = ParkEvent::Allocate (this) ;
 245   _MutexEvent  = ParkEvent::Allocate (this) ;
 246   _MuxEvent    = ParkEvent::Allocate (this) ;
 247 
 248 #ifdef CHECK_UNHANDLED_OOPS
 249   if (CheckUnhandledOops) {
 250     _unhandled_oops = new UnhandledOops(this);
 251   }
 252 #endif // CHECK_UNHANDLED_OOPS
 253 #ifdef ASSERT
 254   if (UseBiasedLocking) {
 255     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 256     assert(this == _real_malloc_address ||
 257            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 258            "bug in forced alignment of thread objects");
 259   }
 260 #endif /* ASSERT */
 261 }
 262 
 263 void Thread::initialize_thread_local_storage() {
 264   // Note: Make sure this method only calls
 265   // non-blocking operations. Otherwise, it might not work
 266   // with the thread-startup/safepoint interaction.
 267 
 268   // During Java thread startup, safepoint code should allow this
 269   // method to complete because it may need to allocate memory to
 270   // store information for the new thread.
 271 
 272   // initialize structure dependent on thread local storage
 273   ThreadLocalStorage::set_thread(this);
 274 
 275   // set up any platform-specific state.
 276   os::initialize_thread();
 277 
 278 }
 279 
 280 void Thread::record_stack_base_and_size() {
 281   set_stack_base(os::current_stack_base());
 282   set_stack_size(os::current_stack_size());
 283 }
 284 
 285 
 286 Thread::~Thread() {
 287   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 288   ObjectSynchronizer::omFlush (this) ;
 289 
 290   // deallocate data structures
 291   delete resource_area();
 292   // since the handle marks are using the handle area, we have to deallocated the root
 293   // handle mark before deallocating the thread's handle area,
 294   assert(last_handle_mark() != NULL, "check we have an element");
 295   delete last_handle_mark();
 296   assert(last_handle_mark() == NULL, "check we have reached the end");
 297 
 298   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 299   // We NULL out the fields for good hygiene.
 300   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 301   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 302   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 303   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 304 
 305   delete handle_area();
 306 
 307   // osthread() can be NULL, if creation of thread failed.
 308   if (osthread() != NULL) os::free_thread(osthread());
 309 
 310   delete _SR_lock;
 311 
 312   // clear thread local storage if the Thread is deleting itself
 313   if (this == Thread::current()) {
 314     ThreadLocalStorage::set_thread(NULL);
 315   } else {
 316     // In the case where we're not the current thread, invalidate all the
 317     // caches in case some code tries to get the current thread or the
 318     // thread that was destroyed, and gets stale information.
 319     ThreadLocalStorage::invalidate_all();
 320   }
 321   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 322 }
 323 
 324 // NOTE: dummy function for assertion purpose.
 325 void Thread::run() {
 326   ShouldNotReachHere();
 327 }
 328 
 329 #ifdef ASSERT
 330 // Private method to check for dangling thread pointer
 331 void check_for_dangling_thread_pointer(Thread *thread) {
 332  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 333          "possibility of dangling Thread pointer");
 334 }
 335 #endif
 336 
 337 
 338 #ifndef PRODUCT
 339 // Tracing method for basic thread operations
 340 void Thread::trace(const char* msg, const Thread* const thread) {
 341   if (!TraceThreadEvents) return;
 342   ResourceMark rm;
 343   ThreadCritical tc;
 344   const char *name = "non-Java thread";
 345   int prio = -1;
 346   if (thread->is_Java_thread()
 347       && !thread->is_Compiler_thread()) {
 348     // The Threads_lock must be held to get information about
 349     // this thread but may not be in some situations when
 350     // tracing  thread events.
 351     bool release_Threads_lock = false;
 352     if (!Threads_lock->owned_by_self()) {
 353       Threads_lock->lock();
 354       release_Threads_lock = true;
 355     }
 356     JavaThread* jt = (JavaThread *)thread;
 357     name = (char *)jt->get_thread_name();
 358     oop thread_oop = jt->threadObj();
 359     if (thread_oop != NULL) {
 360       prio = java_lang_Thread::priority(thread_oop);
 361     }
 362     if (release_Threads_lock) {
 363       Threads_lock->unlock();
 364     }
 365   }
 366   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 367 }
 368 #endif
 369 
 370 
 371 ThreadPriority Thread::get_priority(const Thread* const thread) {
 372   trace("get priority", thread);
 373   ThreadPriority priority;
 374   // Can return an error!
 375   (void)os::get_priority(thread, priority);
 376   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 377   return priority;
 378 }
 379 
 380 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 381   trace("set priority", thread);
 382   debug_only(check_for_dangling_thread_pointer(thread);)
 383   // Can return an error!
 384   (void)os::set_priority(thread, priority);
 385 }
 386 
 387 
 388 void Thread::start(Thread* thread) {
 389   trace("start", thread);
 390   // Start is different from resume in that its safety is guaranteed by context or
 391   // being called from a Java method synchronized on the Thread object.
 392   if (!DisableStartThread) {
 393     if (thread->is_Java_thread()) {
 394       // Initialize the thread state to RUNNABLE before starting this thread.
 395       // Can not set it after the thread started because we do not know the
 396       // exact thread state at that time. It could be in MONITOR_WAIT or
 397       // in SLEEPING or some other state.
 398       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 399                                           java_lang_Thread::RUNNABLE);
 400     }
 401     os::start_thread(thread);
 402   }
 403 }
 404 
 405 // Enqueue a VM_Operation to do the job for us - sometime later
 406 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 407   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 408   VMThread::execute(vm_stop);
 409 }
 410 
 411 
 412 //
 413 // Check if an external suspend request has completed (or has been
 414 // cancelled). Returns true if the thread is externally suspended and
 415 // false otherwise.
 416 //
 417 // The bits parameter returns information about the code path through
 418 // the routine. Useful for debugging:
 419 //
 420 // set in is_ext_suspend_completed():
 421 // 0x00000001 - routine was entered
 422 // 0x00000010 - routine return false at end
 423 // 0x00000100 - thread exited (return false)
 424 // 0x00000200 - suspend request cancelled (return false)
 425 // 0x00000400 - thread suspended (return true)
 426 // 0x00001000 - thread is in a suspend equivalent state (return true)
 427 // 0x00002000 - thread is native and walkable (return true)
 428 // 0x00004000 - thread is native_trans and walkable (needed retry)
 429 //
 430 // set in wait_for_ext_suspend_completion():
 431 // 0x00010000 - routine was entered
 432 // 0x00020000 - suspend request cancelled before loop (return false)
 433 // 0x00040000 - thread suspended before loop (return true)
 434 // 0x00080000 - suspend request cancelled in loop (return false)
 435 // 0x00100000 - thread suspended in loop (return true)
 436 // 0x00200000 - suspend not completed during retry loop (return false)
 437 //
 438 
 439 // Helper class for tracing suspend wait debug bits.
 440 //
 441 // 0x00000100 indicates that the target thread exited before it could
 442 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 443 // 0x00080000 each indicate a cancelled suspend request so they don't
 444 // count as wait failures either.
 445 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 446 
 447 class TraceSuspendDebugBits : public StackObj {
 448  private:
 449   JavaThread * jt;
 450   bool         is_wait;
 451   bool         called_by_wait;  // meaningful when !is_wait
 452   uint32_t *   bits;
 453 
 454  public:
 455   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 456                         uint32_t *_bits) {
 457     jt             = _jt;
 458     is_wait        = _is_wait;
 459     called_by_wait = _called_by_wait;
 460     bits           = _bits;
 461   }
 462 
 463   ~TraceSuspendDebugBits() {
 464     if (!is_wait) {
 465 #if 1
 466       // By default, don't trace bits for is_ext_suspend_completed() calls.
 467       // That trace is very chatty.
 468       return;
 469 #else
 470       if (!called_by_wait) {
 471         // If tracing for is_ext_suspend_completed() is enabled, then only
 472         // trace calls to it from wait_for_ext_suspend_completion()
 473         return;
 474       }
 475 #endif
 476     }
 477 
 478     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 479       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 480         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 481         ResourceMark rm;
 482 
 483         tty->print_cr(
 484             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 485             jt->get_thread_name(), *bits);
 486 
 487         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 488       }
 489     }
 490   }
 491 };
 492 #undef DEBUG_FALSE_BITS
 493 
 494 
 495 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 496   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 497 
 498   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 499   bool do_trans_retry;           // flag to force the retry
 500 
 501   *bits |= 0x00000001;
 502 
 503   do {
 504     do_trans_retry = false;
 505 
 506     if (is_exiting()) {
 507       // Thread is in the process of exiting. This is always checked
 508       // first to reduce the risk of dereferencing a freed JavaThread.
 509       *bits |= 0x00000100;
 510       return false;
 511     }
 512 
 513     if (!is_external_suspend()) {
 514       // Suspend request is cancelled. This is always checked before
 515       // is_ext_suspended() to reduce the risk of a rogue resume
 516       // confusing the thread that made the suspend request.
 517       *bits |= 0x00000200;
 518       return false;
 519     }
 520 
 521     if (is_ext_suspended()) {
 522       // thread is suspended
 523       *bits |= 0x00000400;
 524       return true;
 525     }
 526 
 527     // Now that we no longer do hard suspends of threads running
 528     // native code, the target thread can be changing thread state
 529     // while we are in this routine:
 530     //
 531     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 532     //
 533     // We save a copy of the thread state as observed at this moment
 534     // and make our decision about suspend completeness based on the
 535     // copy. This closes the race where the thread state is seen as
 536     // _thread_in_native_trans in the if-thread_blocked check, but is
 537     // seen as _thread_blocked in if-thread_in_native_trans check.
 538     JavaThreadState save_state = thread_state();
 539 
 540     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 541       // If the thread's state is _thread_blocked and this blocking
 542       // condition is known to be equivalent to a suspend, then we can
 543       // consider the thread to be externally suspended. This means that
 544       // the code that sets _thread_blocked has been modified to do
 545       // self-suspension if the blocking condition releases. We also
 546       // used to check for CONDVAR_WAIT here, but that is now covered by
 547       // the _thread_blocked with self-suspension check.
 548       //
 549       // Return true since we wouldn't be here unless there was still an
 550       // external suspend request.
 551       *bits |= 0x00001000;
 552       return true;
 553     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 554       // Threads running native code will self-suspend on native==>VM/Java
 555       // transitions. If its stack is walkable (should always be the case
 556       // unless this function is called before the actual java_suspend()
 557       // call), then the wait is done.
 558       *bits |= 0x00002000;
 559       return true;
 560     } else if (!called_by_wait && !did_trans_retry &&
 561                save_state == _thread_in_native_trans &&
 562                frame_anchor()->walkable()) {
 563       // The thread is transitioning from thread_in_native to another
 564       // thread state. check_safepoint_and_suspend_for_native_trans()
 565       // will force the thread to self-suspend. If it hasn't gotten
 566       // there yet we may have caught the thread in-between the native
 567       // code check above and the self-suspend. Lucky us. If we were
 568       // called by wait_for_ext_suspend_completion(), then it
 569       // will be doing the retries so we don't have to.
 570       //
 571       // Since we use the saved thread state in the if-statement above,
 572       // there is a chance that the thread has already transitioned to
 573       // _thread_blocked by the time we get here. In that case, we will
 574       // make a single unnecessary pass through the logic below. This
 575       // doesn't hurt anything since we still do the trans retry.
 576 
 577       *bits |= 0x00004000;
 578 
 579       // Once the thread leaves thread_in_native_trans for another
 580       // thread state, we break out of this retry loop. We shouldn't
 581       // need this flag to prevent us from getting back here, but
 582       // sometimes paranoia is good.
 583       did_trans_retry = true;
 584 
 585       // We wait for the thread to transition to a more usable state.
 586       for (int i = 1; i <= SuspendRetryCount; i++) {
 587         // We used to do an "os::yield_all(i)" call here with the intention
 588         // that yielding would increase on each retry. However, the parameter
 589         // is ignored on Linux which means the yield didn't scale up. Waiting
 590         // on the SR_lock below provides a much more predictable scale up for
 591         // the delay. It also provides a simple/direct point to check for any
 592         // safepoint requests from the VMThread
 593 
 594         // temporarily drops SR_lock while doing wait with safepoint check
 595         // (if we're a JavaThread - the WatcherThread can also call this)
 596         // and increase delay with each retry
 597         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 598 
 599         // check the actual thread state instead of what we saved above
 600         if (thread_state() != _thread_in_native_trans) {
 601           // the thread has transitioned to another thread state so
 602           // try all the checks (except this one) one more time.
 603           do_trans_retry = true;
 604           break;
 605         }
 606       } // end retry loop
 607 
 608 
 609     }
 610   } while (do_trans_retry);
 611 
 612   *bits |= 0x00000010;
 613   return false;
 614 }
 615 
 616 //
 617 // Wait for an external suspend request to complete (or be cancelled).
 618 // Returns true if the thread is externally suspended and false otherwise.
 619 //
 620 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 621        uint32_t *bits) {
 622   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 623                              false /* !called_by_wait */, bits);
 624 
 625   // local flag copies to minimize SR_lock hold time
 626   bool is_suspended;
 627   bool pending;
 628   uint32_t reset_bits;
 629 
 630   // set a marker so is_ext_suspend_completed() knows we are the caller
 631   *bits |= 0x00010000;
 632 
 633   // We use reset_bits to reinitialize the bits value at the top of
 634   // each retry loop. This allows the caller to make use of any
 635   // unused bits for their own marking purposes.
 636   reset_bits = *bits;
 637 
 638   {
 639     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 640     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 641                                             delay, bits);
 642     pending = is_external_suspend();
 643   }
 644   // must release SR_lock to allow suspension to complete
 645 
 646   if (!pending) {
 647     // A cancelled suspend request is the only false return from
 648     // is_ext_suspend_completed() that keeps us from entering the
 649     // retry loop.
 650     *bits |= 0x00020000;
 651     return false;
 652   }
 653 
 654   if (is_suspended) {
 655     *bits |= 0x00040000;
 656     return true;
 657   }
 658 
 659   for (int i = 1; i <= retries; i++) {
 660     *bits = reset_bits;  // reinit to only track last retry
 661 
 662     // We used to do an "os::yield_all(i)" call here with the intention
 663     // that yielding would increase on each retry. However, the parameter
 664     // is ignored on Linux which means the yield didn't scale up. Waiting
 665     // on the SR_lock below provides a much more predictable scale up for
 666     // the delay. It also provides a simple/direct point to check for any
 667     // safepoint requests from the VMThread
 668 
 669     {
 670       MutexLocker ml(SR_lock());
 671       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 672       // can also call this)  and increase delay with each retry
 673       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 674 
 675       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 676                                               delay, bits);
 677 
 678       // It is possible for the external suspend request to be cancelled
 679       // (by a resume) before the actual suspend operation is completed.
 680       // Refresh our local copy to see if we still need to wait.
 681       pending = is_external_suspend();
 682     }
 683 
 684     if (!pending) {
 685       // A cancelled suspend request is the only false return from
 686       // is_ext_suspend_completed() that keeps us from staying in the
 687       // retry loop.
 688       *bits |= 0x00080000;
 689       return false;
 690     }
 691 
 692     if (is_suspended) {
 693       *bits |= 0x00100000;
 694       return true;
 695     }
 696   } // end retry loop
 697 
 698   // thread did not suspend after all our retries
 699   *bits |= 0x00200000;
 700   return false;
 701 }
 702 
 703 #ifndef PRODUCT
 704 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 705 
 706   // This should not need to be atomic as the only way for simultaneous
 707   // updates is via interrupts. Even then this should be rare or non-existant
 708   // and we don't care that much anyway.
 709 
 710   int index = _jmp_ring_index;
 711   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 712   _jmp_ring[index]._target = (intptr_t) target;
 713   _jmp_ring[index]._instruction = (intptr_t) instr;
 714   _jmp_ring[index]._file = file;
 715   _jmp_ring[index]._line = line;
 716 }
 717 #endif /* PRODUCT */
 718 
 719 // Called by flat profiler
 720 // Callers have already called wait_for_ext_suspend_completion
 721 // The assertion for that is currently too complex to put here:
 722 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 723   bool gotframe = false;
 724   // self suspension saves needed state.
 725   if (has_last_Java_frame() && _anchor.walkable()) {
 726      *_fr = pd_last_frame();
 727      gotframe = true;
 728   }
 729   return gotframe;
 730 }
 731 
 732 void Thread::interrupt(Thread* thread) {
 733   trace("interrupt", thread);
 734   debug_only(check_for_dangling_thread_pointer(thread);)
 735   os::interrupt(thread);
 736 }
 737 
 738 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 739   trace("is_interrupted", thread);
 740   debug_only(check_for_dangling_thread_pointer(thread);)
 741   // Note:  If clear_interrupted==false, this simply fetches and
 742   // returns the value of the field osthread()->interrupted().
 743   return os::is_interrupted(thread, clear_interrupted);
 744 }
 745 
 746 
 747 // GC Support
 748 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 749   jint thread_parity = _oops_do_parity;
 750   if (thread_parity != strong_roots_parity) {
 751     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 752     if (res == thread_parity) return true;
 753     else {
 754       guarantee(res == strong_roots_parity, "Or else what?");
 755       assert(SharedHeap::heap()->n_par_threads() > 0,
 756              "Should only fail when parallel.");
 757       return false;
 758     }
 759   }
 760   assert(SharedHeap::heap()->n_par_threads() > 0,
 761          "Should only fail when parallel.");
 762   return false;
 763 }
 764 
 765 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 766   active_handles()->oops_do(f);
 767   // Do oop for ThreadShadow
 768   f->do_oop((oop*)&_pending_exception);
 769   handle_area()->oops_do(f);
 770 }
 771 
 772 void Thread::nmethods_do(CodeBlobClosure* cf) {
 773   // no nmethods in a generic thread...
 774 }
 775 
 776 void Thread::print_on(outputStream* st) const {
 777   // get_priority assumes osthread initialized
 778   if (osthread() != NULL) {
 779     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 780     osthread()->print_on(st);
 781   }
 782   debug_only(if (WizardMode) print_owned_locks_on(st);)
 783 }
 784 
 785 // Thread::print_on_error() is called by fatal error handler. Don't use
 786 // any lock or allocate memory.
 787 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 788   if      (is_VM_thread())                  st->print("VMThread");
 789   else if (is_Compiler_thread())            st->print("CompilerThread");
 790   else if (is_Java_thread())                st->print("JavaThread");
 791   else if (is_GC_task_thread())             st->print("GCTaskThread");
 792   else if (is_Watcher_thread())             st->print("WatcherThread");
 793   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 794   else st->print("Thread");
 795 
 796   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 797             _stack_base - _stack_size, _stack_base);
 798 
 799   if (osthread()) {
 800     st->print(" [id=%d]", osthread()->thread_id());
 801   }
 802 }
 803 
 804 #ifdef ASSERT
 805 void Thread::print_owned_locks_on(outputStream* st) const {
 806   Monitor *cur = _owned_locks;
 807   if (cur == NULL) {
 808     st->print(" (no locks) ");
 809   } else {
 810     st->print_cr(" Locks owned:");
 811     while(cur) {
 812       cur->print_on(st);
 813       cur = cur->next();
 814     }
 815   }
 816 }
 817 
 818 static int ref_use_count  = 0;
 819 
 820 bool Thread::owns_locks_but_compiled_lock() const {
 821   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 822     if (cur != Compile_lock) return true;
 823   }
 824   return false;
 825 }
 826 
 827 
 828 #endif
 829 
 830 #ifndef PRODUCT
 831 
 832 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 833 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 834 // no threads which allow_vm_block's are held
 835 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 836     // Check if current thread is allowed to block at a safepoint
 837     if (!(_allow_safepoint_count == 0))
 838       fatal("Possible safepoint reached by thread that does not allow it");
 839     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 840       fatal("LEAF method calling lock?");
 841     }
 842 
 843 #ifdef ASSERT
 844     if (potential_vm_operation && is_Java_thread()
 845         && !Universe::is_bootstrapping()) {
 846       // Make sure we do not hold any locks that the VM thread also uses.
 847       // This could potentially lead to deadlocks
 848       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 849         // Threads_lock is special, since the safepoint synchronization will not start before this is
 850         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 851         // since it is used to transfer control between JavaThreads and the VMThread
 852         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 853         if ( (cur->allow_vm_block() &&
 854               cur != Threads_lock &&
 855               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 856               cur != VMOperationRequest_lock &&
 857               cur != VMOperationQueue_lock) ||
 858               cur->rank() == Mutex::special) {
 859           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 860         }
 861       }
 862     }
 863 
 864     if (GCALotAtAllSafepoints) {
 865       // We could enter a safepoint here and thus have a gc
 866       InterfaceSupport::check_gc_alot();
 867     }
 868 #endif
 869 }
 870 #endif
 871 
 872 bool Thread::is_in_stack(address adr) const {
 873   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 874   address end = os::current_stack_pointer();
 875   if (stack_base() >= adr && adr >= end) return true;
 876 
 877   return false;
 878 }
 879 
 880 
 881 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 882 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 883 // used for compilation in the future. If that change is made, the need for these methods
 884 // should be revisited, and they should be removed if possible.
 885 
 886 bool Thread::is_lock_owned(address adr) const {
 887   return on_local_stack(adr);
 888 }
 889 
 890 bool Thread::set_as_starting_thread() {
 891  // NOTE: this must be called inside the main thread.
 892   return os::create_main_thread((JavaThread*)this);
 893 }
 894 
 895 static void initialize_class(Symbol* class_name, TRAPS) {
 896   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 897   instanceKlass::cast(klass)->initialize(CHECK);
 898 }
 899 
 900 
 901 // Creates the initial ThreadGroup
 902 static Handle create_initial_thread_group(TRAPS) {
 903   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 904   instanceKlassHandle klass (THREAD, k);
 905 
 906   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 907   {
 908     JavaValue result(T_VOID);
 909     JavaCalls::call_special(&result,
 910                             system_instance,
 911                             klass,
 912                             vmSymbols::object_initializer_name(),
 913                             vmSymbols::void_method_signature(),
 914                             CHECK_NH);
 915   }
 916   Universe::set_system_thread_group(system_instance());
 917 
 918   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 919   {
 920     JavaValue result(T_VOID);
 921     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 922     JavaCalls::call_special(&result,
 923                             main_instance,
 924                             klass,
 925                             vmSymbols::object_initializer_name(),
 926                             vmSymbols::threadgroup_string_void_signature(),
 927                             system_instance,
 928                             string,
 929                             CHECK_NH);
 930   }
 931   return main_instance;
 932 }
 933 
 934 // Creates the initial Thread
 935 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 936   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 937   instanceKlassHandle klass (THREAD, k);
 938   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 939 
 940   java_lang_Thread::set_thread(thread_oop(), thread);
 941   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 942   thread->set_threadObj(thread_oop());
 943 
 944   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 945 
 946   JavaValue result(T_VOID);
 947   JavaCalls::call_special(&result, thread_oop,
 948                                    klass,
 949                                    vmSymbols::object_initializer_name(),
 950                                    vmSymbols::threadgroup_string_void_signature(),
 951                                    thread_group,
 952                                    string,
 953                                    CHECK_NULL);
 954   return thread_oop();
 955 }
 956 
 957 static void call_initializeSystemClass(TRAPS) {
 958   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 959   instanceKlassHandle klass (THREAD, k);
 960 
 961   JavaValue result(T_VOID);
 962   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
 963                                          vmSymbols::void_method_signature(), CHECK);
 964 }
 965 
 966 // General purpose hook into Java code, run once when the VM is initialized.
 967 // The Java library method itself may be changed independently from the VM.
 968 static void call_postVMInitHook(TRAPS) {
 969   klassOop k = SystemDictionary::sun_misc_PostVMInitHook_klass();
 970   instanceKlassHandle klass (THREAD, k);
 971   if (klass.not_null()) {
 972     JavaValue result(T_VOID);
 973     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
 974                                            vmSymbols::void_method_signature(),
 975                                            CHECK);
 976   }
 977 }
 978 
 979 static void reset_vm_info_property(TRAPS) {
 980   // the vm info string
 981   ResourceMark rm(THREAD);
 982   const char *vm_info = VM_Version::vm_info_string();
 983 
 984   // java.lang.System class
 985   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 986   instanceKlassHandle klass (THREAD, k);
 987 
 988   // setProperty arguments
 989   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
 990   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
 991 
 992   // return value
 993   JavaValue r(T_OBJECT);
 994 
 995   // public static String setProperty(String key, String value);
 996   JavaCalls::call_static(&r,
 997                          klass,
 998                          vmSymbols::setProperty_name(),
 999                          vmSymbols::string_string_string_signature(),
1000                          key_str,
1001                          value_str,
1002                          CHECK);
1003 }
1004 
1005 
1006 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1007   assert(thread_group.not_null(), "thread group should be specified");
1008   assert(threadObj() == NULL, "should only create Java thread object once");
1009 
1010   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1011   instanceKlassHandle klass (THREAD, k);
1012   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1013 
1014   java_lang_Thread::set_thread(thread_oop(), this);
1015   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1016   set_threadObj(thread_oop());
1017 
1018   JavaValue result(T_VOID);
1019   if (thread_name != NULL) {
1020     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1021     // Thread gets assigned specified name and null target
1022     JavaCalls::call_special(&result,
1023                             thread_oop,
1024                             klass,
1025                             vmSymbols::object_initializer_name(),
1026                             vmSymbols::threadgroup_string_void_signature(),
1027                             thread_group, // Argument 1
1028                             name,         // Argument 2
1029                             THREAD);
1030   } else {
1031     // Thread gets assigned name "Thread-nnn" and null target
1032     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1033     JavaCalls::call_special(&result,
1034                             thread_oop,
1035                             klass,
1036                             vmSymbols::object_initializer_name(),
1037                             vmSymbols::threadgroup_runnable_void_signature(),
1038                             thread_group, // Argument 1
1039                             Handle(),     // Argument 2
1040                             THREAD);
1041   }
1042 
1043 
1044   if (daemon) {
1045       java_lang_Thread::set_daemon(thread_oop());
1046   }
1047 
1048   if (HAS_PENDING_EXCEPTION) {
1049     return;
1050   }
1051 
1052   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1053   Handle threadObj(this, this->threadObj());
1054 
1055   JavaCalls::call_special(&result,
1056                          thread_group,
1057                          group,
1058                          vmSymbols::add_method_name(),
1059                          vmSymbols::thread_void_signature(),
1060                          threadObj,          // Arg 1
1061                          THREAD);
1062 
1063 
1064 }
1065 
1066 // NamedThread --  non-JavaThread subclasses with multiple
1067 // uniquely named instances should derive from this.
1068 NamedThread::NamedThread() : Thread() {
1069   _name = NULL;
1070   _processed_thread = NULL;
1071 }
1072 
1073 NamedThread::~NamedThread() {
1074   if (_name != NULL) {
1075     FREE_C_HEAP_ARRAY(char, _name);
1076     _name = NULL;
1077   }
1078 }
1079 
1080 void NamedThread::set_name(const char* format, ...) {
1081   guarantee(_name == NULL, "Only get to set name once.");
1082   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1083   guarantee(_name != NULL, "alloc failure");
1084   va_list ap;
1085   va_start(ap, format);
1086   jio_vsnprintf(_name, max_name_len, format, ap);
1087   va_end(ap);
1088 }
1089 
1090 // ======= WatcherThread ========
1091 
1092 // The watcher thread exists to simulate timer interrupts.  It should
1093 // be replaced by an abstraction over whatever native support for
1094 // timer interrupts exists on the platform.
1095 
1096 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1097 volatile bool  WatcherThread::_should_terminate = false;
1098 
1099 WatcherThread::WatcherThread() : Thread() {
1100   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1101   if (os::create_thread(this, os::watcher_thread)) {
1102     _watcher_thread = this;
1103 
1104     // Set the watcher thread to the highest OS priority which should not be
1105     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1106     // is created. The only normal thread using this priority is the reference
1107     // handler thread, which runs for very short intervals only.
1108     // If the VMThread's priority is not lower than the WatcherThread profiling
1109     // will be inaccurate.
1110     os::set_priority(this, MaxPriority);
1111     if (!DisableStartThread) {
1112       os::start_thread(this);
1113     }
1114   }
1115 }
1116 
1117 void WatcherThread::run() {
1118   assert(this == watcher_thread(), "just checking");
1119 
1120   this->record_stack_base_and_size();
1121   this->initialize_thread_local_storage();
1122   this->set_active_handles(JNIHandleBlock::allocate_block());
1123   while(!_should_terminate) {
1124     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1125     assert(watcher_thread() == this,  "thread consistency check");
1126 
1127     // Calculate how long it'll be until the next PeriodicTask work
1128     // should be done, and sleep that amount of time.
1129     size_t time_to_wait = PeriodicTask::time_to_wait();
1130 
1131     // we expect this to timeout - we only ever get unparked when
1132     // we should terminate
1133     {
1134       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1135 
1136       jlong prev_time = os::javaTimeNanos();
1137       for (;;) {
1138         int res= _SleepEvent->park(time_to_wait);
1139         if (res == OS_TIMEOUT || _should_terminate)
1140           break;
1141         // spurious wakeup of some kind
1142         jlong now = os::javaTimeNanos();
1143         time_to_wait -= (now - prev_time) / 1000000;
1144         if (time_to_wait <= 0)
1145           break;
1146         prev_time = now;
1147       }
1148     }
1149 
1150     if (is_error_reported()) {
1151       // A fatal error has happened, the error handler(VMError::report_and_die)
1152       // should abort JVM after creating an error log file. However in some
1153       // rare cases, the error handler itself might deadlock. Here we try to
1154       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1155       //
1156       // This code is in WatcherThread because WatcherThread wakes up
1157       // periodically so the fatal error handler doesn't need to do anything;
1158       // also because the WatcherThread is less likely to crash than other
1159       // threads.
1160 
1161       for (;;) {
1162         if (!ShowMessageBoxOnError
1163          && (OnError == NULL || OnError[0] == '\0')
1164          && Arguments::abort_hook() == NULL) {
1165              os::sleep(this, 2 * 60 * 1000, false);
1166              fdStream err(defaultStream::output_fd());
1167              err.print_raw_cr("# [ timer expired, abort... ]");
1168              // skip atexit/vm_exit/vm_abort hooks
1169              os::die();
1170         }
1171 
1172         // Wake up 5 seconds later, the fatal handler may reset OnError or
1173         // ShowMessageBoxOnError when it is ready to abort.
1174         os::sleep(this, 5 * 1000, false);
1175       }
1176     }
1177 
1178     PeriodicTask::real_time_tick(time_to_wait);
1179 
1180     // If we have no more tasks left due to dynamic disenrollment,
1181     // shut down the thread since we don't currently support dynamic enrollment
1182     if (PeriodicTask::num_tasks() == 0) {
1183       _should_terminate = true;
1184     }
1185   }
1186 
1187   // Signal that it is terminated
1188   {
1189     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1190     _watcher_thread = NULL;
1191     Terminator_lock->notify();
1192   }
1193 
1194   // Thread destructor usually does this..
1195   ThreadLocalStorage::set_thread(NULL);
1196 }
1197 
1198 void WatcherThread::start() {
1199   if (watcher_thread() == NULL) {
1200     _should_terminate = false;
1201     // Create the single instance of WatcherThread
1202     new WatcherThread();
1203   }
1204 }
1205 
1206 void WatcherThread::stop() {
1207   // it is ok to take late safepoints here, if needed
1208   MutexLocker mu(Terminator_lock);
1209   _should_terminate = true;
1210   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1211 
1212   Thread* watcher = watcher_thread();
1213   if (watcher != NULL)
1214     watcher->_SleepEvent->unpark();
1215 
1216   while(watcher_thread() != NULL) {
1217     // This wait should make safepoint checks, wait without a timeout,
1218     // and wait as a suspend-equivalent condition.
1219     //
1220     // Note: If the FlatProfiler is running, then this thread is waiting
1221     // for the WatcherThread to terminate and the WatcherThread, via the
1222     // FlatProfiler task, is waiting for the external suspend request on
1223     // this thread to complete. wait_for_ext_suspend_completion() will
1224     // eventually timeout, but that takes time. Making this wait a
1225     // suspend-equivalent condition solves that timeout problem.
1226     //
1227     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1228                           Mutex::_as_suspend_equivalent_flag);
1229   }
1230 }
1231 
1232 void WatcherThread::print_on(outputStream* st) const {
1233   st->print("\"%s\" ", name());
1234   Thread::print_on(st);
1235   st->cr();
1236 }
1237 
1238 // ======= JavaThread ========
1239 
1240 // A JavaThread is a normal Java thread
1241 
1242 void JavaThread::initialize() {
1243   // Initialize fields
1244 
1245   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1246   set_claimed_par_id(-1);
1247 
1248   set_saved_exception_pc(NULL);
1249   set_threadObj(NULL);
1250   _anchor.clear();
1251   set_entry_point(NULL);
1252   set_jni_functions(jni_functions());
1253   set_callee_target(NULL);
1254   set_vm_result(NULL);
1255   set_vm_result_2(NULL);
1256   set_vframe_array_head(NULL);
1257   set_vframe_array_last(NULL);
1258   set_deferred_locals(NULL);
1259   set_deopt_mark(NULL);
1260   set_deopt_nmethod(NULL);
1261   clear_must_deopt_id();
1262   set_monitor_chunks(NULL);
1263   set_next(NULL);
1264   set_thread_state(_thread_new);
1265   _terminated = _not_terminated;
1266   _privileged_stack_top = NULL;
1267   _array_for_gc = NULL;
1268   _suspend_equivalent = false;
1269   _in_deopt_handler = 0;
1270   _doing_unsafe_access = false;
1271   _stack_guard_state = stack_guard_unused;
1272   _exception_oop = NULL;
1273   _exception_pc  = 0;
1274   _exception_handler_pc = 0;
1275   _is_method_handle_return = 0;
1276   _jvmti_thread_state= NULL;
1277   _should_post_on_exceptions_flag = JNI_FALSE;
1278   _jvmti_get_loaded_classes_closure = NULL;
1279   _interp_only_mode    = 0;
1280   _special_runtime_exit_condition = _no_async_condition;
1281   _pending_async_exception = NULL;
1282   _is_compiling = false;
1283   _thread_stat = NULL;
1284   _thread_stat = new ThreadStatistics();
1285   _blocked_on_compilation = false;
1286   _jni_active_critical = 0;
1287   _do_not_unlock_if_synchronized = false;
1288   _cached_monitor_info = NULL;
1289   _parker = Parker::Allocate(this) ;
1290 
1291 #ifndef PRODUCT
1292   _jmp_ring_index = 0;
1293   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1294     record_jump(NULL, NULL, NULL, 0);
1295   }
1296 #endif /* PRODUCT */
1297 
1298   set_thread_profiler(NULL);
1299   if (FlatProfiler::is_active()) {
1300     // This is where we would decide to either give each thread it's own profiler
1301     // or use one global one from FlatProfiler,
1302     // or up to some count of the number of profiled threads, etc.
1303     ThreadProfiler* pp = new ThreadProfiler();
1304     pp->engage();
1305     set_thread_profiler(pp);
1306   }
1307 
1308   // Setup safepoint state info for this thread
1309   ThreadSafepointState::create(this);
1310 
1311   debug_only(_java_call_counter = 0);
1312 
1313   // JVMTI PopFrame support
1314   _popframe_condition = popframe_inactive;
1315   _popframe_preserved_args = NULL;
1316   _popframe_preserved_args_size = 0;
1317 
1318   pd_initialize();
1319 }
1320 
1321 #ifndef SERIALGC
1322 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1323 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1324 #endif // !SERIALGC
1325 
1326 JavaThread::JavaThread(bool is_attaching) :
1327   Thread()
1328 #ifndef SERIALGC
1329   , _satb_mark_queue(&_satb_mark_queue_set),
1330   _dirty_card_queue(&_dirty_card_queue_set)
1331 #endif // !SERIALGC
1332 {
1333   initialize();
1334   _is_attaching = is_attaching;
1335   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1336 }
1337 
1338 bool JavaThread::reguard_stack(address cur_sp) {
1339   if (_stack_guard_state != stack_guard_yellow_disabled) {
1340     return true; // Stack already guarded or guard pages not needed.
1341   }
1342 
1343   if (register_stack_overflow()) {
1344     // For those architectures which have separate register and
1345     // memory stacks, we must check the register stack to see if
1346     // it has overflowed.
1347     return false;
1348   }
1349 
1350   // Java code never executes within the yellow zone: the latter is only
1351   // there to provoke an exception during stack banging.  If java code
1352   // is executing there, either StackShadowPages should be larger, or
1353   // some exception code in c1, c2 or the interpreter isn't unwinding
1354   // when it should.
1355   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1356 
1357   enable_stack_yellow_zone();
1358   return true;
1359 }
1360 
1361 bool JavaThread::reguard_stack(void) {
1362   return reguard_stack(os::current_stack_pointer());
1363 }
1364 
1365 
1366 void JavaThread::block_if_vm_exited() {
1367   if (_terminated == _vm_exited) {
1368     // _vm_exited is set at safepoint, and Threads_lock is never released
1369     // we will block here forever
1370     Threads_lock->lock_without_safepoint_check();
1371     ShouldNotReachHere();
1372   }
1373 }
1374 
1375 
1376 // Remove this ifdef when C1 is ported to the compiler interface.
1377 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1378 
1379 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1380   Thread()
1381 #ifndef SERIALGC
1382   , _satb_mark_queue(&_satb_mark_queue_set),
1383   _dirty_card_queue(&_dirty_card_queue_set)
1384 #endif // !SERIALGC
1385 {
1386   if (TraceThreadEvents) {
1387     tty->print_cr("creating thread %p", this);
1388   }
1389   initialize();
1390   _is_attaching = false;
1391   set_entry_point(entry_point);
1392   // Create the native thread itself.
1393   // %note runtime_23
1394   os::ThreadType thr_type = os::java_thread;
1395   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1396                                                      os::java_thread;
1397   os::create_thread(this, thr_type, stack_sz);
1398 
1399   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1400   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1401   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1402   // the exception consists of creating the exception object & initializing it, initialization
1403   // will leave the VM via a JavaCall and then all locks must be unlocked).
1404   //
1405   // The thread is still suspended when we reach here. Thread must be explicit started
1406   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1407   // by calling Threads:add. The reason why this is not done here, is because the thread
1408   // object must be fully initialized (take a look at JVM_Start)
1409 }
1410 
1411 JavaThread::~JavaThread() {
1412   if (TraceThreadEvents) {
1413       tty->print_cr("terminate thread %p", this);
1414   }
1415 
1416   // JSR166 -- return the parker to the free list
1417   Parker::Release(_parker);
1418   _parker = NULL ;
1419 
1420   // Free any remaining  previous UnrollBlock
1421   vframeArray* old_array = vframe_array_last();
1422 
1423   if (old_array != NULL) {
1424     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1425     old_array->set_unroll_block(NULL);
1426     delete old_info;
1427     delete old_array;
1428   }
1429 
1430   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1431   if (deferred != NULL) {
1432     // This can only happen if thread is destroyed before deoptimization occurs.
1433     assert(deferred->length() != 0, "empty array!");
1434     do {
1435       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1436       deferred->remove_at(0);
1437       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1438       delete dlv;
1439     } while (deferred->length() != 0);
1440     delete deferred;
1441   }
1442 
1443   // All Java related clean up happens in exit
1444   ThreadSafepointState::destroy(this);
1445   if (_thread_profiler != NULL) delete _thread_profiler;
1446   if (_thread_stat != NULL) delete _thread_stat;
1447 }
1448 
1449 
1450 // The first routine called by a new Java thread
1451 void JavaThread::run() {
1452   // initialize thread-local alloc buffer related fields
1453   this->initialize_tlab();
1454 
1455   // used to test validitity of stack trace backs
1456   this->record_base_of_stack_pointer();
1457 
1458   // Record real stack base and size.
1459   this->record_stack_base_and_size();
1460 
1461   // Initialize thread local storage; set before calling MutexLocker
1462   this->initialize_thread_local_storage();
1463 
1464   this->create_stack_guard_pages();
1465 
1466   this->cache_global_variables();
1467 
1468   // Thread is now sufficient initialized to be handled by the safepoint code as being
1469   // in the VM. Change thread state from _thread_new to _thread_in_vm
1470   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1471 
1472   assert(JavaThread::current() == this, "sanity check");
1473   assert(!Thread::current()->owns_locks(), "sanity check");
1474 
1475   DTRACE_THREAD_PROBE(start, this);
1476 
1477   // This operation might block. We call that after all safepoint checks for a new thread has
1478   // been completed.
1479   this->set_active_handles(JNIHandleBlock::allocate_block());
1480 
1481   if (JvmtiExport::should_post_thread_life()) {
1482     JvmtiExport::post_thread_start(this);
1483   }
1484 
1485   // We call another function to do the rest so we are sure that the stack addresses used
1486   // from there will be lower than the stack base just computed
1487   thread_main_inner();
1488 
1489   // Note, thread is no longer valid at this point!
1490 }
1491 
1492 
1493 void JavaThread::thread_main_inner() {
1494   assert(JavaThread::current() == this, "sanity check");
1495   assert(this->threadObj() != NULL, "just checking");
1496 
1497   // Execute thread entry point unless this thread has a pending exception
1498   // or has been stopped before starting.
1499   // Note: Due to JVM_StopThread we can have pending exceptions already!
1500   if (!this->has_pending_exception() &&
1501       !java_lang_Thread::is_stillborn(this->threadObj())) {
1502     HandleMark hm(this);
1503     this->entry_point()(this, this);
1504   }
1505 
1506   DTRACE_THREAD_PROBE(stop, this);
1507 
1508   this->exit(false);
1509   delete this;
1510 }
1511 
1512 
1513 static void ensure_join(JavaThread* thread) {
1514   // We do not need to grap the Threads_lock, since we are operating on ourself.
1515   Handle threadObj(thread, thread->threadObj());
1516   assert(threadObj.not_null(), "java thread object must exist");
1517   ObjectLocker lock(threadObj, thread);
1518   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1519   thread->clear_pending_exception();
1520   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1521   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1522   // Clear the native thread instance - this makes isAlive return false and allows the join()
1523   // to complete once we've done the notify_all below
1524   java_lang_Thread::set_thread(threadObj(), NULL);
1525   lock.notify_all(thread);
1526   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1527   thread->clear_pending_exception();
1528 }
1529 
1530 
1531 // For any new cleanup additions, please check to see if they need to be applied to
1532 // cleanup_failed_attach_current_thread as well.
1533 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1534   assert(this == JavaThread::current(),  "thread consistency check");
1535   if (!InitializeJavaLangSystem) return;
1536 
1537   HandleMark hm(this);
1538   Handle uncaught_exception(this, this->pending_exception());
1539   this->clear_pending_exception();
1540   Handle threadObj(this, this->threadObj());
1541   assert(threadObj.not_null(), "Java thread object should be created");
1542 
1543   if (get_thread_profiler() != NULL) {
1544     get_thread_profiler()->disengage();
1545     ResourceMark rm;
1546     get_thread_profiler()->print(get_thread_name());
1547   }
1548 
1549 
1550   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1551   {
1552     EXCEPTION_MARK;
1553 
1554     CLEAR_PENDING_EXCEPTION;
1555   }
1556   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1557   // has to be fixed by a runtime query method
1558   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1559     // JSR-166: change call from from ThreadGroup.uncaughtException to
1560     // java.lang.Thread.dispatchUncaughtException
1561     if (uncaught_exception.not_null()) {
1562       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1563       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1564         (address)uncaught_exception(), (address)threadObj(), (address)group());
1565       {
1566         EXCEPTION_MARK;
1567         // Check if the method Thread.dispatchUncaughtException() exists. If so
1568         // call it.  Otherwise we have an older library without the JSR-166 changes,
1569         // so call ThreadGroup.uncaughtException()
1570         KlassHandle recvrKlass(THREAD, threadObj->klass());
1571         CallInfo callinfo;
1572         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1573         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1574                                            vmSymbols::dispatchUncaughtException_name(),
1575                                            vmSymbols::throwable_void_signature(),
1576                                            KlassHandle(), false, false, THREAD);
1577         CLEAR_PENDING_EXCEPTION;
1578         methodHandle method = callinfo.selected_method();
1579         if (method.not_null()) {
1580           JavaValue result(T_VOID);
1581           JavaCalls::call_virtual(&result,
1582                                   threadObj, thread_klass,
1583                                   vmSymbols::dispatchUncaughtException_name(),
1584                                   vmSymbols::throwable_void_signature(),
1585                                   uncaught_exception,
1586                                   THREAD);
1587         } else {
1588           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1589           JavaValue result(T_VOID);
1590           JavaCalls::call_virtual(&result,
1591                                   group, thread_group,
1592                                   vmSymbols::uncaughtException_name(),
1593                                   vmSymbols::thread_throwable_void_signature(),
1594                                   threadObj,           // Arg 1
1595                                   uncaught_exception,  // Arg 2
1596                                   THREAD);
1597         }
1598         if (HAS_PENDING_EXCEPTION) {
1599           ResourceMark rm(this);
1600           jio_fprintf(defaultStream::error_stream(),
1601                 "\nException: %s thrown from the UncaughtExceptionHandler"
1602                 " in thread \"%s\"\n",
1603                 Klass::cast(pending_exception()->klass())->external_name(),
1604                 get_thread_name());
1605           CLEAR_PENDING_EXCEPTION;
1606         }
1607       }
1608     }
1609 
1610     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1611     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1612     // is deprecated anyhow.
1613     { int count = 3;
1614       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1615         EXCEPTION_MARK;
1616         JavaValue result(T_VOID);
1617         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1618         JavaCalls::call_virtual(&result,
1619                               threadObj, thread_klass,
1620                               vmSymbols::exit_method_name(),
1621                               vmSymbols::void_method_signature(),
1622                               THREAD);
1623         CLEAR_PENDING_EXCEPTION;
1624       }
1625     }
1626 
1627     // notify JVMTI
1628     if (JvmtiExport::should_post_thread_life()) {
1629       JvmtiExport::post_thread_end(this);
1630     }
1631 
1632     // We have notified the agents that we are exiting, before we go on,
1633     // we must check for a pending external suspend request and honor it
1634     // in order to not surprise the thread that made the suspend request.
1635     while (true) {
1636       {
1637         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1638         if (!is_external_suspend()) {
1639           set_terminated(_thread_exiting);
1640           ThreadService::current_thread_exiting(this);
1641           break;
1642         }
1643         // Implied else:
1644         // Things get a little tricky here. We have a pending external
1645         // suspend request, but we are holding the SR_lock so we
1646         // can't just self-suspend. So we temporarily drop the lock
1647         // and then self-suspend.
1648       }
1649 
1650       ThreadBlockInVM tbivm(this);
1651       java_suspend_self();
1652 
1653       // We're done with this suspend request, but we have to loop around
1654       // and check again. Eventually we will get SR_lock without a pending
1655       // external suspend request and will be able to mark ourselves as
1656       // exiting.
1657     }
1658     // no more external suspends are allowed at this point
1659   } else {
1660     // before_exit() has already posted JVMTI THREAD_END events
1661   }
1662 
1663   // Notify waiters on thread object. This has to be done after exit() is called
1664   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1665   // group should have the destroyed bit set before waiters are notified).
1666   ensure_join(this);
1667   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1668 
1669   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1670   // held by this thread must be released.  A detach operation must only
1671   // get here if there are no Java frames on the stack.  Therefore, any
1672   // owned monitors at this point MUST be JNI-acquired monitors which are
1673   // pre-inflated and in the monitor cache.
1674   //
1675   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1676   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1677     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1678     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1679     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1680   }
1681 
1682   // These things needs to be done while we are still a Java Thread. Make sure that thread
1683   // is in a consistent state, in case GC happens
1684   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1685 
1686   if (active_handles() != NULL) {
1687     JNIHandleBlock* block = active_handles();
1688     set_active_handles(NULL);
1689     JNIHandleBlock::release_block(block);
1690   }
1691 
1692   if (free_handle_block() != NULL) {
1693     JNIHandleBlock* block = free_handle_block();
1694     set_free_handle_block(NULL);
1695     JNIHandleBlock::release_block(block);
1696   }
1697 
1698   // These have to be removed while this is still a valid thread.
1699   remove_stack_guard_pages();
1700 
1701   if (UseTLAB) {
1702     tlab().make_parsable(true);  // retire TLAB
1703   }
1704 
1705   if (JvmtiEnv::environments_might_exist()) {
1706     JvmtiExport::cleanup_thread(this);
1707   }
1708 
1709 #ifndef SERIALGC
1710   // We must flush G1-related buffers before removing a thread from
1711   // the list of active threads.
1712   if (UseG1GC) {
1713     flush_barrier_queues();
1714   }
1715 #endif
1716 
1717   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1718   Threads::remove(this);
1719 }
1720 
1721 #ifndef SERIALGC
1722 // Flush G1-related queues.
1723 void JavaThread::flush_barrier_queues() {
1724   satb_mark_queue().flush();
1725   dirty_card_queue().flush();
1726 }
1727 
1728 void JavaThread::initialize_queues() {
1729   assert(!SafepointSynchronize::is_at_safepoint(),
1730          "we should not be at a safepoint");
1731 
1732   ObjPtrQueue& satb_queue = satb_mark_queue();
1733   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1734   // The SATB queue should have been constructed with its active
1735   // field set to false.
1736   assert(!satb_queue.is_active(), "SATB queue should not be active");
1737   assert(satb_queue.is_empty(), "SATB queue should be empty");
1738   // If we are creating the thread during a marking cycle, we should
1739   // set the active field of the SATB queue to true.
1740   if (satb_queue_set.is_active()) {
1741     satb_queue.set_active(true);
1742   }
1743 
1744   DirtyCardQueue& dirty_queue = dirty_card_queue();
1745   // The dirty card queue should have been constructed with its
1746   // active field set to true.
1747   assert(dirty_queue.is_active(), "dirty card queue should be active");
1748 }
1749 #endif // !SERIALGC
1750 
1751 void JavaThread::cleanup_failed_attach_current_thread() {
1752   if (get_thread_profiler() != NULL) {
1753     get_thread_profiler()->disengage();
1754     ResourceMark rm;
1755     get_thread_profiler()->print(get_thread_name());
1756   }
1757 
1758   if (active_handles() != NULL) {
1759     JNIHandleBlock* block = active_handles();
1760     set_active_handles(NULL);
1761     JNIHandleBlock::release_block(block);
1762   }
1763 
1764   if (free_handle_block() != NULL) {
1765     JNIHandleBlock* block = free_handle_block();
1766     set_free_handle_block(NULL);
1767     JNIHandleBlock::release_block(block);
1768   }
1769 
1770   // These have to be removed while this is still a valid thread.
1771   remove_stack_guard_pages();
1772 
1773   if (UseTLAB) {
1774     tlab().make_parsable(true);  // retire TLAB, if any
1775   }
1776 
1777 #ifndef SERIALGC
1778   if (UseG1GC) {
1779     flush_barrier_queues();
1780   }
1781 #endif
1782 
1783   Threads::remove(this);
1784   delete this;
1785 }
1786 
1787 
1788 
1789 
1790 JavaThread* JavaThread::active() {
1791   Thread* thread = ThreadLocalStorage::thread();
1792   assert(thread != NULL, "just checking");
1793   if (thread->is_Java_thread()) {
1794     return (JavaThread*) thread;
1795   } else {
1796     assert(thread->is_VM_thread(), "this must be a vm thread");
1797     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1798     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1799     assert(ret->is_Java_thread(), "must be a Java thread");
1800     return ret;
1801   }
1802 }
1803 
1804 bool JavaThread::is_lock_owned(address adr) const {
1805   if (Thread::is_lock_owned(adr)) return true;
1806 
1807   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1808     if (chunk->contains(adr)) return true;
1809   }
1810 
1811   return false;
1812 }
1813 
1814 
1815 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1816   chunk->set_next(monitor_chunks());
1817   set_monitor_chunks(chunk);
1818 }
1819 
1820 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1821   guarantee(monitor_chunks() != NULL, "must be non empty");
1822   if (monitor_chunks() == chunk) {
1823     set_monitor_chunks(chunk->next());
1824   } else {
1825     MonitorChunk* prev = monitor_chunks();
1826     while (prev->next() != chunk) prev = prev->next();
1827     prev->set_next(chunk->next());
1828   }
1829 }
1830 
1831 // JVM support.
1832 
1833 // Note: this function shouldn't block if it's called in
1834 // _thread_in_native_trans state (such as from
1835 // check_special_condition_for_native_trans()).
1836 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1837 
1838   if (has_last_Java_frame() && has_async_condition()) {
1839     // If we are at a polling page safepoint (not a poll return)
1840     // then we must defer async exception because live registers
1841     // will be clobbered by the exception path. Poll return is
1842     // ok because the call we a returning from already collides
1843     // with exception handling registers and so there is no issue.
1844     // (The exception handling path kills call result registers but
1845     //  this is ok since the exception kills the result anyway).
1846 
1847     if (is_at_poll_safepoint()) {
1848       // if the code we are returning to has deoptimized we must defer
1849       // the exception otherwise live registers get clobbered on the
1850       // exception path before deoptimization is able to retrieve them.
1851       //
1852       RegisterMap map(this, false);
1853       frame caller_fr = last_frame().sender(&map);
1854       assert(caller_fr.is_compiled_frame(), "what?");
1855       if (caller_fr.is_deoptimized_frame()) {
1856         if (TraceExceptions) {
1857           ResourceMark rm;
1858           tty->print_cr("deferred async exception at compiled safepoint");
1859         }
1860         return;
1861       }
1862     }
1863   }
1864 
1865   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1866   if (condition == _no_async_condition) {
1867     // Conditions have changed since has_special_runtime_exit_condition()
1868     // was called:
1869     // - if we were here only because of an external suspend request,
1870     //   then that was taken care of above (or cancelled) so we are done
1871     // - if we were here because of another async request, then it has
1872     //   been cleared between the has_special_runtime_exit_condition()
1873     //   and now so again we are done
1874     return;
1875   }
1876 
1877   // Check for pending async. exception
1878   if (_pending_async_exception != NULL) {
1879     // Only overwrite an already pending exception, if it is not a threadDeath.
1880     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1881 
1882       // We cannot call Exceptions::_throw(...) here because we cannot block
1883       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1884 
1885       if (TraceExceptions) {
1886         ResourceMark rm;
1887         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1888         if (has_last_Java_frame() ) {
1889           frame f = last_frame();
1890           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1891         }
1892         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1893       }
1894       _pending_async_exception = NULL;
1895       clear_has_async_exception();
1896     }
1897   }
1898 
1899   if (check_unsafe_error &&
1900       condition == _async_unsafe_access_error && !has_pending_exception()) {
1901     condition = _no_async_condition;  // done
1902     switch (thread_state()) {
1903     case _thread_in_vm:
1904       {
1905         JavaThread* THREAD = this;
1906         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1907       }
1908     case _thread_in_native:
1909       {
1910         ThreadInVMfromNative tiv(this);
1911         JavaThread* THREAD = this;
1912         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1913       }
1914     case _thread_in_Java:
1915       {
1916         ThreadInVMfromJava tiv(this);
1917         JavaThread* THREAD = this;
1918         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1919       }
1920     default:
1921       ShouldNotReachHere();
1922     }
1923   }
1924 
1925   assert(condition == _no_async_condition || has_pending_exception() ||
1926          (!check_unsafe_error && condition == _async_unsafe_access_error),
1927          "must have handled the async condition, if no exception");
1928 }
1929 
1930 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1931   //
1932   // Check for pending external suspend. Internal suspend requests do
1933   // not use handle_special_runtime_exit_condition().
1934   // If JNIEnv proxies are allowed, don't self-suspend if the target
1935   // thread is not the current thread. In older versions of jdbx, jdbx
1936   // threads could call into the VM with another thread's JNIEnv so we
1937   // can be here operating on behalf of a suspended thread (4432884).
1938   bool do_self_suspend = is_external_suspend_with_lock();
1939   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1940     //
1941     // Because thread is external suspended the safepoint code will count
1942     // thread as at a safepoint. This can be odd because we can be here
1943     // as _thread_in_Java which would normally transition to _thread_blocked
1944     // at a safepoint. We would like to mark the thread as _thread_blocked
1945     // before calling java_suspend_self like all other callers of it but
1946     // we must then observe proper safepoint protocol. (We can't leave
1947     // _thread_blocked with a safepoint in progress). However we can be
1948     // here as _thread_in_native_trans so we can't use a normal transition
1949     // constructor/destructor pair because they assert on that type of
1950     // transition. We could do something like:
1951     //
1952     // JavaThreadState state = thread_state();
1953     // set_thread_state(_thread_in_vm);
1954     // {
1955     //   ThreadBlockInVM tbivm(this);
1956     //   java_suspend_self()
1957     // }
1958     // set_thread_state(_thread_in_vm_trans);
1959     // if (safepoint) block;
1960     // set_thread_state(state);
1961     //
1962     // but that is pretty messy. Instead we just go with the way the
1963     // code has worked before and note that this is the only path to
1964     // java_suspend_self that doesn't put the thread in _thread_blocked
1965     // mode.
1966 
1967     frame_anchor()->make_walkable(this);
1968     java_suspend_self();
1969 
1970     // We might be here for reasons in addition to the self-suspend request
1971     // so check for other async requests.
1972   }
1973 
1974   if (check_asyncs) {
1975     check_and_handle_async_exceptions();
1976   }
1977 }
1978 
1979 void JavaThread::send_thread_stop(oop java_throwable)  {
1980   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1981   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1982   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1983 
1984   // Do not throw asynchronous exceptions against the compiler thread
1985   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1986   if (is_Compiler_thread()) return;
1987 
1988   {
1989     // Actually throw the Throwable against the target Thread - however
1990     // only if there is no thread death exception installed already.
1991     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1992       // If the topmost frame is a runtime stub, then we are calling into
1993       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1994       // must deoptimize the caller before continuing, as the compiled  exception handler table
1995       // may not be valid
1996       if (has_last_Java_frame()) {
1997         frame f = last_frame();
1998         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1999           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2000           RegisterMap reg_map(this, UseBiasedLocking);
2001           frame compiled_frame = f.sender(&reg_map);
2002           if (compiled_frame.can_be_deoptimized()) {
2003             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2004           }
2005         }
2006       }
2007 
2008       // Set async. pending exception in thread.
2009       set_pending_async_exception(java_throwable);
2010 
2011       if (TraceExceptions) {
2012        ResourceMark rm;
2013        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
2014       }
2015       // for AbortVMOnException flag
2016       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
2017     }
2018   }
2019 
2020 
2021   // Interrupt thread so it will wake up from a potential wait()
2022   Thread::interrupt(this);
2023 }
2024 
2025 // External suspension mechanism.
2026 //
2027 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2028 // to any VM_locks and it is at a transition
2029 // Self-suspension will happen on the transition out of the vm.
2030 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2031 //
2032 // Guarantees on return:
2033 //   + Target thread will not execute any new bytecode (that's why we need to
2034 //     force a safepoint)
2035 //   + Target thread will not enter any new monitors
2036 //
2037 void JavaThread::java_suspend() {
2038   { MutexLocker mu(Threads_lock);
2039     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2040        return;
2041     }
2042   }
2043 
2044   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2045     if (!is_external_suspend()) {
2046       // a racing resume has cancelled us; bail out now
2047       return;
2048     }
2049 
2050     // suspend is done
2051     uint32_t debug_bits = 0;
2052     // Warning: is_ext_suspend_completed() may temporarily drop the
2053     // SR_lock to allow the thread to reach a stable thread state if
2054     // it is currently in a transient thread state.
2055     if (is_ext_suspend_completed(false /* !called_by_wait */,
2056                                  SuspendRetryDelay, &debug_bits) ) {
2057       return;
2058     }
2059   }
2060 
2061   VM_ForceSafepoint vm_suspend;
2062   VMThread::execute(&vm_suspend);
2063 }
2064 
2065 // Part II of external suspension.
2066 // A JavaThread self suspends when it detects a pending external suspend
2067 // request. This is usually on transitions. It is also done in places
2068 // where continuing to the next transition would surprise the caller,
2069 // e.g., monitor entry.
2070 //
2071 // Returns the number of times that the thread self-suspended.
2072 //
2073 // Note: DO NOT call java_suspend_self() when you just want to block current
2074 //       thread. java_suspend_self() is the second stage of cooperative
2075 //       suspension for external suspend requests and should only be used
2076 //       to complete an external suspend request.
2077 //
2078 int JavaThread::java_suspend_self() {
2079   int ret = 0;
2080 
2081   // we are in the process of exiting so don't suspend
2082   if (is_exiting()) {
2083      clear_external_suspend();
2084      return ret;
2085   }
2086 
2087   assert(_anchor.walkable() ||
2088     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2089     "must have walkable stack");
2090 
2091   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2092 
2093   assert(!this->is_ext_suspended(),
2094     "a thread trying to self-suspend should not already be suspended");
2095 
2096   if (this->is_suspend_equivalent()) {
2097     // If we are self-suspending as a result of the lifting of a
2098     // suspend equivalent condition, then the suspend_equivalent
2099     // flag is not cleared until we set the ext_suspended flag so
2100     // that wait_for_ext_suspend_completion() returns consistent
2101     // results.
2102     this->clear_suspend_equivalent();
2103   }
2104 
2105   // A racing resume may have cancelled us before we grabbed SR_lock
2106   // above. Or another external suspend request could be waiting for us
2107   // by the time we return from SR_lock()->wait(). The thread
2108   // that requested the suspension may already be trying to walk our
2109   // stack and if we return now, we can change the stack out from under
2110   // it. This would be a "bad thing (TM)" and cause the stack walker
2111   // to crash. We stay self-suspended until there are no more pending
2112   // external suspend requests.
2113   while (is_external_suspend()) {
2114     ret++;
2115     this->set_ext_suspended();
2116 
2117     // _ext_suspended flag is cleared by java_resume()
2118     while (is_ext_suspended()) {
2119       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2120     }
2121   }
2122 
2123   return ret;
2124 }
2125 
2126 #ifdef ASSERT
2127 // verify the JavaThread has not yet been published in the Threads::list, and
2128 // hence doesn't need protection from concurrent access at this stage
2129 void JavaThread::verify_not_published() {
2130   if (!Threads_lock->owned_by_self()) {
2131    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2132    assert( !Threads::includes(this),
2133            "java thread shouldn't have been published yet!");
2134   }
2135   else {
2136    assert( !Threads::includes(this),
2137            "java thread shouldn't have been published yet!");
2138   }
2139 }
2140 #endif
2141 
2142 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2143 // progress or when _suspend_flags is non-zero.
2144 // Current thread needs to self-suspend if there is a suspend request and/or
2145 // block if a safepoint is in progress.
2146 // Async exception ISN'T checked.
2147 // Note only the ThreadInVMfromNative transition can call this function
2148 // directly and when thread state is _thread_in_native_trans
2149 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2150   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2151 
2152   JavaThread *curJT = JavaThread::current();
2153   bool do_self_suspend = thread->is_external_suspend();
2154 
2155   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2156 
2157   // If JNIEnv proxies are allowed, don't self-suspend if the target
2158   // thread is not the current thread. In older versions of jdbx, jdbx
2159   // threads could call into the VM with another thread's JNIEnv so we
2160   // can be here operating on behalf of a suspended thread (4432884).
2161   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2162     JavaThreadState state = thread->thread_state();
2163 
2164     // We mark this thread_blocked state as a suspend-equivalent so
2165     // that a caller to is_ext_suspend_completed() won't be confused.
2166     // The suspend-equivalent state is cleared by java_suspend_self().
2167     thread->set_suspend_equivalent();
2168 
2169     // If the safepoint code sees the _thread_in_native_trans state, it will
2170     // wait until the thread changes to other thread state. There is no
2171     // guarantee on how soon we can obtain the SR_lock and complete the
2172     // self-suspend request. It would be a bad idea to let safepoint wait for
2173     // too long. Temporarily change the state to _thread_blocked to
2174     // let the VM thread know that this thread is ready for GC. The problem
2175     // of changing thread state is that safepoint could happen just after
2176     // java_suspend_self() returns after being resumed, and VM thread will
2177     // see the _thread_blocked state. We must check for safepoint
2178     // after restoring the state and make sure we won't leave while a safepoint
2179     // is in progress.
2180     thread->set_thread_state(_thread_blocked);
2181     thread->java_suspend_self();
2182     thread->set_thread_state(state);
2183     // Make sure new state is seen by VM thread
2184     if (os::is_MP()) {
2185       if (UseMembar) {
2186         // Force a fence between the write above and read below
2187         OrderAccess::fence();
2188       } else {
2189         // Must use this rather than serialization page in particular on Windows
2190         InterfaceSupport::serialize_memory(thread);
2191       }
2192     }
2193   }
2194 
2195   if (SafepointSynchronize::do_call_back()) {
2196     // If we are safepointing, then block the caller which may not be
2197     // the same as the target thread (see above).
2198     SafepointSynchronize::block(curJT);
2199   }
2200 
2201   if (thread->is_deopt_suspend()) {
2202     thread->clear_deopt_suspend();
2203     RegisterMap map(thread, false);
2204     frame f = thread->last_frame();
2205     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2206       f = f.sender(&map);
2207     }
2208     if (f.id() == thread->must_deopt_id()) {
2209       thread->clear_must_deopt_id();
2210       f.deoptimize(thread);
2211     } else {
2212       fatal("missed deoptimization!");
2213     }
2214   }
2215 }
2216 
2217 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2218 // progress or when _suspend_flags is non-zero.
2219 // Current thread needs to self-suspend if there is a suspend request and/or
2220 // block if a safepoint is in progress.
2221 // Also check for pending async exception (not including unsafe access error).
2222 // Note only the native==>VM/Java barriers can call this function and when
2223 // thread state is _thread_in_native_trans.
2224 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2225   check_safepoint_and_suspend_for_native_trans(thread);
2226 
2227   if (thread->has_async_exception()) {
2228     // We are in _thread_in_native_trans state, don't handle unsafe
2229     // access error since that may block.
2230     thread->check_and_handle_async_exceptions(false);
2231   }
2232 }
2233 
2234 // We need to guarantee the Threads_lock here, since resumes are not
2235 // allowed during safepoint synchronization
2236 // Can only resume from an external suspension
2237 void JavaThread::java_resume() {
2238   assert_locked_or_safepoint(Threads_lock);
2239 
2240   // Sanity check: thread is gone, has started exiting or the thread
2241   // was not externally suspended.
2242   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2243     return;
2244   }
2245 
2246   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2247 
2248   clear_external_suspend();
2249 
2250   if (is_ext_suspended()) {
2251     clear_ext_suspended();
2252     SR_lock()->notify_all();
2253   }
2254 }
2255 
2256 void JavaThread::create_stack_guard_pages() {
2257   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2258   address low_addr = stack_base() - stack_size();
2259   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2260 
2261   int allocate = os::allocate_stack_guard_pages();
2262   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2263 
2264   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2265     warning("Attempt to allocate stack guard pages failed.");
2266     return;
2267   }
2268 
2269   if (os::guard_memory((char *) low_addr, len)) {
2270     _stack_guard_state = stack_guard_enabled;
2271   } else {
2272     warning("Attempt to protect stack guard pages failed.");
2273     if (os::uncommit_memory((char *) low_addr, len)) {
2274       warning("Attempt to deallocate stack guard pages failed.");
2275     }
2276   }
2277 }
2278 
2279 void JavaThread::remove_stack_guard_pages() {
2280   if (_stack_guard_state == stack_guard_unused) return;
2281   address low_addr = stack_base() - stack_size();
2282   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2283 
2284   if (os::allocate_stack_guard_pages()) {
2285     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2286       _stack_guard_state = stack_guard_unused;
2287     } else {
2288       warning("Attempt to deallocate stack guard pages failed.");
2289     }
2290   } else {
2291     if (_stack_guard_state == stack_guard_unused) return;
2292     if (os::unguard_memory((char *) low_addr, len)) {
2293       _stack_guard_state = stack_guard_unused;
2294     } else {
2295         warning("Attempt to unprotect stack guard pages failed.");
2296     }
2297   }
2298 }
2299 
2300 void JavaThread::enable_stack_yellow_zone() {
2301   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2302   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2303 
2304   // The base notation is from the stacks point of view, growing downward.
2305   // We need to adjust it to work correctly with guard_memory()
2306   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2307 
2308   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2309   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2310 
2311   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2312     _stack_guard_state = stack_guard_enabled;
2313   } else {
2314     warning("Attempt to guard stack yellow zone failed.");
2315   }
2316   enable_register_stack_guard();
2317 }
2318 
2319 void JavaThread::disable_stack_yellow_zone() {
2320   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2321   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2322 
2323   // Simply return if called for a thread that does not use guard pages.
2324   if (_stack_guard_state == stack_guard_unused) return;
2325 
2326   // The base notation is from the stacks point of view, growing downward.
2327   // We need to adjust it to work correctly with guard_memory()
2328   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2329 
2330   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2331     _stack_guard_state = stack_guard_yellow_disabled;
2332   } else {
2333     warning("Attempt to unguard stack yellow zone failed.");
2334   }
2335   disable_register_stack_guard();
2336 }
2337 
2338 void JavaThread::enable_stack_red_zone() {
2339   // The base notation is from the stacks point of view, growing downward.
2340   // We need to adjust it to work correctly with guard_memory()
2341   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2342   address base = stack_red_zone_base() - stack_red_zone_size();
2343 
2344   guarantee(base < stack_base(),"Error calculating stack red zone");
2345   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2346 
2347   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2348     warning("Attempt to guard stack red zone failed.");
2349   }
2350 }
2351 
2352 void JavaThread::disable_stack_red_zone() {
2353   // The base notation is from the stacks point of view, growing downward.
2354   // We need to adjust it to work correctly with guard_memory()
2355   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2356   address base = stack_red_zone_base() - stack_red_zone_size();
2357   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2358     warning("Attempt to unguard stack red zone failed.");
2359   }
2360 }
2361 
2362 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2363   // ignore is there is no stack
2364   if (!has_last_Java_frame()) return;
2365   // traverse the stack frames. Starts from top frame.
2366   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2367     frame* fr = fst.current();
2368     f(fr, fst.register_map());
2369   }
2370 }
2371 
2372 
2373 #ifndef PRODUCT
2374 // Deoptimization
2375 // Function for testing deoptimization
2376 void JavaThread::deoptimize() {
2377   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2378   StackFrameStream fst(this, UseBiasedLocking);
2379   bool deopt = false;           // Dump stack only if a deopt actually happens.
2380   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2381   // Iterate over all frames in the thread and deoptimize
2382   for(; !fst.is_done(); fst.next()) {
2383     if(fst.current()->can_be_deoptimized()) {
2384 
2385       if (only_at) {
2386         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2387         // consists of comma or carriage return separated numbers so
2388         // search for the current bci in that string.
2389         address pc = fst.current()->pc();
2390         nmethod* nm =  (nmethod*) fst.current()->cb();
2391         ScopeDesc* sd = nm->scope_desc_at( pc);
2392         char buffer[8];
2393         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2394         size_t len = strlen(buffer);
2395         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2396         while (found != NULL) {
2397           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2398               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2399             // Check that the bci found is bracketed by terminators.
2400             break;
2401           }
2402           found = strstr(found + 1, buffer);
2403         }
2404         if (!found) {
2405           continue;
2406         }
2407       }
2408 
2409       if (DebugDeoptimization && !deopt) {
2410         deopt = true; // One-time only print before deopt
2411         tty->print_cr("[BEFORE Deoptimization]");
2412         trace_frames();
2413         trace_stack();
2414       }
2415       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2416     }
2417   }
2418 
2419   if (DebugDeoptimization && deopt) {
2420     tty->print_cr("[AFTER Deoptimization]");
2421     trace_frames();
2422   }
2423 }
2424 
2425 
2426 // Make zombies
2427 void JavaThread::make_zombies() {
2428   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2429     if (fst.current()->can_be_deoptimized()) {
2430       // it is a Java nmethod
2431       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2432       nm->make_not_entrant();
2433     }
2434   }
2435 }
2436 #endif // PRODUCT
2437 
2438 
2439 void JavaThread::deoptimized_wrt_marked_nmethods() {
2440   if (!has_last_Java_frame()) return;
2441   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2442   StackFrameStream fst(this, UseBiasedLocking);
2443   for(; !fst.is_done(); fst.next()) {
2444     if (fst.current()->should_be_deoptimized()) {
2445       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2446     }
2447   }
2448 }
2449 
2450 
2451 // GC support
2452 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2453 
2454 void JavaThread::gc_epilogue() {
2455   frames_do(frame_gc_epilogue);
2456 }
2457 
2458 
2459 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2460 
2461 void JavaThread::gc_prologue() {
2462   frames_do(frame_gc_prologue);
2463 }
2464 
2465 // If the caller is a NamedThread, then remember, in the current scope,
2466 // the given JavaThread in its _processed_thread field.
2467 class RememberProcessedThread: public StackObj {
2468   NamedThread* _cur_thr;
2469 public:
2470   RememberProcessedThread(JavaThread* jthr) {
2471     Thread* thread = Thread::current();
2472     if (thread->is_Named_thread()) {
2473       _cur_thr = (NamedThread *)thread;
2474       _cur_thr->set_processed_thread(jthr);
2475     } else {
2476       _cur_thr = NULL;
2477     }
2478   }
2479 
2480   ~RememberProcessedThread() {
2481     if (_cur_thr) {
2482       _cur_thr->set_processed_thread(NULL);
2483     }
2484   }
2485 };
2486 
2487 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2488   // Verify that the deferred card marks have been flushed.
2489   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2490 
2491   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2492   // since there may be more than one thread using each ThreadProfiler.
2493 
2494   // Traverse the GCHandles
2495   Thread::oops_do(f, cf);
2496 
2497   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2498           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2499 
2500   if (has_last_Java_frame()) {
2501     // Record JavaThread to GC thread
2502     RememberProcessedThread rpt(this);
2503 
2504     // Traverse the privileged stack
2505     if (_privileged_stack_top != NULL) {
2506       _privileged_stack_top->oops_do(f);
2507     }
2508 
2509     // traverse the registered growable array
2510     if (_array_for_gc != NULL) {
2511       for (int index = 0; index < _array_for_gc->length(); index++) {
2512         f->do_oop(_array_for_gc->adr_at(index));
2513       }
2514     }
2515 
2516     // Traverse the monitor chunks
2517     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2518       chunk->oops_do(f);
2519     }
2520 
2521     // Traverse the execution stack
2522     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2523       fst.current()->oops_do(f, cf, fst.register_map());
2524     }
2525   }
2526 
2527   // callee_target is never live across a gc point so NULL it here should
2528   // it still contain a methdOop.
2529 
2530   set_callee_target(NULL);
2531 
2532   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2533   // If we have deferred set_locals there might be oops waiting to be
2534   // written
2535   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2536   if (list != NULL) {
2537     for (int i = 0; i < list->length(); i++) {
2538       list->at(i)->oops_do(f);
2539     }
2540   }
2541 
2542   // Traverse instance variables at the end since the GC may be moving things
2543   // around using this function
2544   f->do_oop((oop*) &_threadObj);
2545   f->do_oop((oop*) &_vm_result);
2546   f->do_oop((oop*) &_vm_result_2);
2547   f->do_oop((oop*) &_exception_oop);
2548   f->do_oop((oop*) &_pending_async_exception);
2549 
2550   if (jvmti_thread_state() != NULL) {
2551     jvmti_thread_state()->oops_do(f);
2552   }
2553 }
2554 
2555 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2556   Thread::nmethods_do(cf);  // (super method is a no-op)
2557 
2558   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2559           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2560 
2561   if (has_last_Java_frame()) {
2562     // Traverse the execution stack
2563     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2564       fst.current()->nmethods_do(cf);
2565     }
2566   }
2567 }
2568 
2569 // Printing
2570 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2571   switch (_thread_state) {
2572   case _thread_uninitialized:     return "_thread_uninitialized";
2573   case _thread_new:               return "_thread_new";
2574   case _thread_new_trans:         return "_thread_new_trans";
2575   case _thread_in_native:         return "_thread_in_native";
2576   case _thread_in_native_trans:   return "_thread_in_native_trans";
2577   case _thread_in_vm:             return "_thread_in_vm";
2578   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2579   case _thread_in_Java:           return "_thread_in_Java";
2580   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2581   case _thread_blocked:           return "_thread_blocked";
2582   case _thread_blocked_trans:     return "_thread_blocked_trans";
2583   default:                        return "unknown thread state";
2584   }
2585 }
2586 
2587 #ifndef PRODUCT
2588 void JavaThread::print_thread_state_on(outputStream *st) const {
2589   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2590 };
2591 void JavaThread::print_thread_state() const {
2592   print_thread_state_on(tty);
2593 };
2594 #endif // PRODUCT
2595 
2596 // Called by Threads::print() for VM_PrintThreads operation
2597 void JavaThread::print_on(outputStream *st) const {
2598   st->print("\"%s\" ", get_thread_name());
2599   oop thread_oop = threadObj();
2600   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2601   Thread::print_on(st);
2602   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2603   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2604   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2605     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2606   }
2607 #ifndef PRODUCT
2608   print_thread_state_on(st);
2609   _safepoint_state->print_on(st);
2610 #endif // PRODUCT
2611 }
2612 
2613 // Called by fatal error handler. The difference between this and
2614 // JavaThread::print() is that we can't grab lock or allocate memory.
2615 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2616   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2617   oop thread_obj = threadObj();
2618   if (thread_obj != NULL) {
2619      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2620   }
2621   st->print(" [");
2622   st->print("%s", _get_thread_state_name(_thread_state));
2623   if (osthread()) {
2624     st->print(", id=%d", osthread()->thread_id());
2625   }
2626   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2627             _stack_base - _stack_size, _stack_base);
2628   st->print("]");
2629   return;
2630 }
2631 
2632 // Verification
2633 
2634 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2635 
2636 void JavaThread::verify() {
2637   // Verify oops in the thread.
2638   oops_do(&VerifyOopClosure::verify_oop, NULL);
2639 
2640   // Verify the stack frames.
2641   frames_do(frame_verify);
2642 }
2643 
2644 // CR 6300358 (sub-CR 2137150)
2645 // Most callers of this method assume that it can't return NULL but a
2646 // thread may not have a name whilst it is in the process of attaching to
2647 // the VM - see CR 6412693, and there are places where a JavaThread can be
2648 // seen prior to having it's threadObj set (eg JNI attaching threads and
2649 // if vm exit occurs during initialization). These cases can all be accounted
2650 // for such that this method never returns NULL.
2651 const char* JavaThread::get_thread_name() const {
2652 #ifdef ASSERT
2653   // early safepoints can hit while current thread does not yet have TLS
2654   if (!SafepointSynchronize::is_at_safepoint()) {
2655     Thread *cur = Thread::current();
2656     if (!(cur->is_Java_thread() && cur == this)) {
2657       // Current JavaThreads are allowed to get their own name without
2658       // the Threads_lock.
2659       assert_locked_or_safepoint(Threads_lock);
2660     }
2661   }
2662 #endif // ASSERT
2663     return get_thread_name_string();
2664 }
2665 
2666 // Returns a non-NULL representation of this thread's name, or a suitable
2667 // descriptive string if there is no set name
2668 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2669   const char* name_str;
2670   oop thread_obj = threadObj();
2671   if (thread_obj != NULL) {
2672     typeArrayOop name = java_lang_Thread::name(thread_obj);
2673     if (name != NULL) {
2674       if (buf == NULL) {
2675         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2676       }
2677       else {
2678         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2679       }
2680     }
2681     else if (is_attaching()) { // workaround for 6412693 - see 6404306
2682       name_str = "<no-name - thread is attaching>";
2683     }
2684     else {
2685       name_str = Thread::name();
2686     }
2687   }
2688   else {
2689     name_str = Thread::name();
2690   }
2691   assert(name_str != NULL, "unexpected NULL thread name");
2692   return name_str;
2693 }
2694 
2695 
2696 const char* JavaThread::get_threadgroup_name() const {
2697   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2698   oop thread_obj = threadObj();
2699   if (thread_obj != NULL) {
2700     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2701     if (thread_group != NULL) {
2702       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2703       // ThreadGroup.name can be null
2704       if (name != NULL) {
2705         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2706         return str;
2707       }
2708     }
2709   }
2710   return NULL;
2711 }
2712 
2713 const char* JavaThread::get_parent_name() const {
2714   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2715   oop thread_obj = threadObj();
2716   if (thread_obj != NULL) {
2717     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2718     if (thread_group != NULL) {
2719       oop parent = java_lang_ThreadGroup::parent(thread_group);
2720       if (parent != NULL) {
2721         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2722         // ThreadGroup.name can be null
2723         if (name != NULL) {
2724           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2725           return str;
2726         }
2727       }
2728     }
2729   }
2730   return NULL;
2731 }
2732 
2733 ThreadPriority JavaThread::java_priority() const {
2734   oop thr_oop = threadObj();
2735   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2736   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2737   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2738   return priority;
2739 }
2740 
2741 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2742 
2743   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2744   // Link Java Thread object <-> C++ Thread
2745 
2746   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2747   // and put it into a new Handle.  The Handle "thread_oop" can then
2748   // be used to pass the C++ thread object to other methods.
2749 
2750   // Set the Java level thread object (jthread) field of the
2751   // new thread (a JavaThread *) to C++ thread object using the
2752   // "thread_oop" handle.
2753 
2754   // Set the thread field (a JavaThread *) of the
2755   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2756 
2757   Handle thread_oop(Thread::current(),
2758                     JNIHandles::resolve_non_null(jni_thread));
2759   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2760     "must be initialized");
2761   set_threadObj(thread_oop());
2762   java_lang_Thread::set_thread(thread_oop(), this);
2763 
2764   if (prio == NoPriority) {
2765     prio = java_lang_Thread::priority(thread_oop());
2766     assert(prio != NoPriority, "A valid priority should be present");
2767   }
2768 
2769   // Push the Java priority down to the native thread; needs Threads_lock
2770   Thread::set_priority(this, prio);
2771 
2772   // Add the new thread to the Threads list and set it in motion.
2773   // We must have threads lock in order to call Threads::add.
2774   // It is crucial that we do not block before the thread is
2775   // added to the Threads list for if a GC happens, then the java_thread oop
2776   // will not be visited by GC.
2777   Threads::add(this);
2778 }
2779 
2780 oop JavaThread::current_park_blocker() {
2781   // Support for JSR-166 locks
2782   oop thread_oop = threadObj();
2783   if (thread_oop != NULL &&
2784       JDK_Version::current().supports_thread_park_blocker()) {
2785     return java_lang_Thread::park_blocker(thread_oop);
2786   }
2787   return NULL;
2788 }
2789 
2790 
2791 void JavaThread::print_stack_on(outputStream* st) {
2792   if (!has_last_Java_frame()) return;
2793   ResourceMark rm;
2794   HandleMark   hm;
2795 
2796   RegisterMap reg_map(this);
2797   vframe* start_vf = last_java_vframe(&reg_map);
2798   int count = 0;
2799   for (vframe* f = start_vf; f; f = f->sender() ) {
2800     if (f->is_java_frame()) {
2801       javaVFrame* jvf = javaVFrame::cast(f);
2802       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2803 
2804       // Print out lock information
2805       if (JavaMonitorsInStackTrace) {
2806         jvf->print_lock_info_on(st, count);
2807       }
2808     } else {
2809       // Ignore non-Java frames
2810     }
2811 
2812     // Bail-out case for too deep stacks
2813     count++;
2814     if (MaxJavaStackTraceDepth == count) return;
2815   }
2816 }
2817 
2818 
2819 // JVMTI PopFrame support
2820 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2821   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2822   if (in_bytes(size_in_bytes) != 0) {
2823     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2824     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2825     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2826   }
2827 }
2828 
2829 void* JavaThread::popframe_preserved_args() {
2830   return _popframe_preserved_args;
2831 }
2832 
2833 ByteSize JavaThread::popframe_preserved_args_size() {
2834   return in_ByteSize(_popframe_preserved_args_size);
2835 }
2836 
2837 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2838   int sz = in_bytes(popframe_preserved_args_size());
2839   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2840   return in_WordSize(sz / wordSize);
2841 }
2842 
2843 void JavaThread::popframe_free_preserved_args() {
2844   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2845   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2846   _popframe_preserved_args = NULL;
2847   _popframe_preserved_args_size = 0;
2848 }
2849 
2850 #ifndef PRODUCT
2851 
2852 void JavaThread::trace_frames() {
2853   tty->print_cr("[Describe stack]");
2854   int frame_no = 1;
2855   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2856     tty->print("  %d. ", frame_no++);
2857     fst.current()->print_value_on(tty,this);
2858     tty->cr();
2859   }
2860 }
2861 
2862 class PrintAndVerifyOopClosure: public OopClosure {
2863  protected:
2864   template <class T> inline void do_oop_work(T* p) {
2865     oop obj = oopDesc::load_decode_heap_oop(p);
2866     if (obj == NULL) return;
2867     tty->print(INTPTR_FORMAT ": ", p);
2868     if (obj->is_oop_or_null()) {
2869       if (obj->is_objArray()) {
2870         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
2871       } else {
2872         obj->print();
2873       }
2874     } else {
2875       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
2876     }
2877     tty->cr();
2878   }
2879  public:
2880   virtual void do_oop(oop* p) { do_oop_work(p); }
2881   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
2882 };
2883 
2884 
2885 static void oops_print(frame* f, const RegisterMap *map) {
2886   PrintAndVerifyOopClosure print;
2887   f->print_value();
2888   f->oops_do(&print, NULL, (RegisterMap*)map);
2889 }
2890 
2891 // Print our all the locations that contain oops and whether they are
2892 // valid or not.  This useful when trying to find the oldest frame
2893 // where an oop has gone bad since the frame walk is from youngest to
2894 // oldest.
2895 void JavaThread::trace_oops() {
2896   tty->print_cr("[Trace oops]");
2897   frames_do(oops_print);
2898 }
2899 
2900 
2901 #ifdef ASSERT
2902 // Print or validate the layout of stack frames
2903 void JavaThread::print_frame_layout(int depth, bool validate_only) {
2904   ResourceMark rm;
2905   PRESERVE_EXCEPTION_MARK;
2906   FrameValues values;
2907   int frame_no = 0;
2908   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
2909     fst.current()->describe(values, ++frame_no);
2910     if (depth == frame_no) break;
2911   }
2912   if (validate_only) {
2913     values.validate();
2914   } else {
2915     tty->print_cr("[Describe stack layout]");
2916     values.print();
2917   }
2918 }
2919 #endif
2920 
2921 void JavaThread::trace_stack_from(vframe* start_vf) {
2922   ResourceMark rm;
2923   int vframe_no = 1;
2924   for (vframe* f = start_vf; f; f = f->sender() ) {
2925     if (f->is_java_frame()) {
2926       javaVFrame::cast(f)->print_activation(vframe_no++);
2927     } else {
2928       f->print();
2929     }
2930     if (vframe_no > StackPrintLimit) {
2931       tty->print_cr("...<more frames>...");
2932       return;
2933     }
2934   }
2935 }
2936 
2937 
2938 void JavaThread::trace_stack() {
2939   if (!has_last_Java_frame()) return;
2940   ResourceMark rm;
2941   HandleMark   hm;
2942   RegisterMap reg_map(this);
2943   trace_stack_from(last_java_vframe(&reg_map));
2944 }
2945 
2946 
2947 #endif // PRODUCT
2948 
2949 
2950 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2951   assert(reg_map != NULL, "a map must be given");
2952   frame f = last_frame();
2953   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2954     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2955   }
2956   return NULL;
2957 }
2958 
2959 
2960 klassOop JavaThread::security_get_caller_class(int depth) {
2961   vframeStream vfst(this);
2962   vfst.security_get_caller_frame(depth);
2963   if (!vfst.at_end()) {
2964     return vfst.method()->method_holder();
2965   }
2966   return NULL;
2967 }
2968 
2969 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2970   assert(thread->is_Compiler_thread(), "must be compiler thread");
2971   CompileBroker::compiler_thread_loop();
2972 }
2973 
2974 // Create a CompilerThread
2975 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2976 : JavaThread(&compiler_thread_entry) {
2977   _env   = NULL;
2978   _log   = NULL;
2979   _task  = NULL;
2980   _queue = queue;
2981   _counters = counters;
2982   _buffer_blob = NULL;
2983   _scanned_nmethod = NULL;
2984 
2985 #ifndef PRODUCT
2986   _ideal_graph_printer = NULL;
2987 #endif
2988 }
2989 
2990 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2991   JavaThread::oops_do(f, cf);
2992   if (_scanned_nmethod != NULL && cf != NULL) {
2993     // Safepoints can occur when the sweeper is scanning an nmethod so
2994     // process it here to make sure it isn't unloaded in the middle of
2995     // a scan.
2996     cf->do_code_blob(_scanned_nmethod);
2997   }
2998 }
2999 
3000 // ======= Threads ========
3001 
3002 // The Threads class links together all active threads, and provides
3003 // operations over all threads.  It is protected by its own Mutex
3004 // lock, which is also used in other contexts to protect thread
3005 // operations from having the thread being operated on from exiting
3006 // and going away unexpectedly (e.g., safepoint synchronization)
3007 
3008 JavaThread* Threads::_thread_list = NULL;
3009 int         Threads::_number_of_threads = 0;
3010 int         Threads::_number_of_non_daemon_threads = 0;
3011 int         Threads::_return_code = 0;
3012 size_t      JavaThread::_stack_size_at_create = 0;
3013 
3014 // All JavaThreads
3015 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3016 
3017 void os_stream();
3018 
3019 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3020 void Threads::threads_do(ThreadClosure* tc) {
3021   assert_locked_or_safepoint(Threads_lock);
3022   // ALL_JAVA_THREADS iterates through all JavaThreads
3023   ALL_JAVA_THREADS(p) {
3024     tc->do_thread(p);
3025   }
3026   // Someday we could have a table or list of all non-JavaThreads.
3027   // For now, just manually iterate through them.
3028   tc->do_thread(VMThread::vm_thread());
3029   Universe::heap()->gc_threads_do(tc);
3030   WatcherThread *wt = WatcherThread::watcher_thread();
3031   // Strictly speaking, the following NULL check isn't sufficient to make sure
3032   // the data for WatcherThread is still valid upon being examined. However,
3033   // considering that WatchThread terminates when the VM is on the way to
3034   // exit at safepoint, the chance of the above is extremely small. The right
3035   // way to prevent termination of WatcherThread would be to acquire
3036   // Terminator_lock, but we can't do that without violating the lock rank
3037   // checking in some cases.
3038   if (wt != NULL)
3039     tc->do_thread(wt);
3040 
3041   // If CompilerThreads ever become non-JavaThreads, add them here
3042 }
3043 
3044 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3045 
3046   extern void JDK_Version_init();
3047 
3048   // Check version
3049   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3050 
3051   // Initialize the output stream module
3052   ostream_init();
3053 
3054   // Process java launcher properties.
3055   Arguments::process_sun_java_launcher_properties(args);
3056 
3057   // Initialize the os module before using TLS
3058   os::init();
3059 
3060   // Initialize system properties.
3061   Arguments::init_system_properties();
3062 
3063   // So that JDK version can be used as a discrimintor when parsing arguments
3064   JDK_Version_init();
3065 
3066   // Update/Initialize System properties after JDK version number is known
3067   Arguments::init_version_specific_system_properties();
3068 
3069   // Parse arguments
3070   jint parse_result = Arguments::parse(args);
3071   if (parse_result != JNI_OK) return parse_result;
3072 
3073   if (PauseAtStartup) {
3074     os::pause();
3075   }
3076 
3077   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3078 
3079   // Record VM creation timing statistics
3080   TraceVmCreationTime create_vm_timer;
3081   create_vm_timer.start();
3082 
3083   // Timing (must come after argument parsing)
3084   TraceTime timer("Create VM", TraceStartupTime);
3085 
3086   // Initialize the os module after parsing the args
3087   jint os_init_2_result = os::init_2();
3088   if (os_init_2_result != JNI_OK) return os_init_2_result;
3089 
3090   // Initialize output stream logging
3091   ostream_init_log();
3092 
3093   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3094   // Must be before create_vm_init_agents()
3095   if (Arguments::init_libraries_at_startup()) {
3096     convert_vm_init_libraries_to_agents();
3097   }
3098 
3099   // Launch -agentlib/-agentpath and converted -Xrun agents
3100   if (Arguments::init_agents_at_startup()) {
3101     create_vm_init_agents();
3102   }
3103 
3104   // Initialize Threads state
3105   _thread_list = NULL;
3106   _number_of_threads = 0;
3107   _number_of_non_daemon_threads = 0;
3108 
3109   // Initialize TLS
3110   ThreadLocalStorage::init();
3111 
3112   // Initialize global data structures and create system classes in heap
3113   vm_init_globals();
3114 
3115   // Attach the main thread to this os thread
3116   JavaThread* main_thread = new JavaThread();
3117   main_thread->set_thread_state(_thread_in_vm);
3118   // must do this before set_active_handles and initialize_thread_local_storage
3119   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3120   // change the stack size recorded here to one based on the java thread
3121   // stacksize. This adjusted size is what is used to figure the placement
3122   // of the guard pages.
3123   main_thread->record_stack_base_and_size();
3124   main_thread->initialize_thread_local_storage();
3125 
3126   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3127 
3128   if (!main_thread->set_as_starting_thread()) {
3129     vm_shutdown_during_initialization(
3130       "Failed necessary internal allocation. Out of swap space");
3131     delete main_thread;
3132     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3133     return JNI_ENOMEM;
3134   }
3135 
3136   // Enable guard page *after* os::create_main_thread(), otherwise it would
3137   // crash Linux VM, see notes in os_linux.cpp.
3138   main_thread->create_stack_guard_pages();
3139 
3140   // Initialize Java-Level synchronization subsystem
3141   ObjectMonitor::Initialize() ;
3142 
3143   // Initialize global modules
3144   jint status = init_globals();
3145   if (status != JNI_OK) {
3146     delete main_thread;
3147     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3148     return status;
3149   }
3150 
3151   // Should be done after the heap is fully created
3152   main_thread->cache_global_variables();
3153 
3154   HandleMark hm;
3155 
3156   { MutexLocker mu(Threads_lock);
3157     Threads::add(main_thread);
3158   }
3159 
3160   // Any JVMTI raw monitors entered in onload will transition into
3161   // real raw monitor. VM is setup enough here for raw monitor enter.
3162   JvmtiExport::transition_pending_onload_raw_monitors();
3163 
3164   if (VerifyBeforeGC &&
3165       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3166     Universe::heap()->prepare_for_verify();
3167     Universe::verify();   // make sure we're starting with a clean slate
3168   }
3169 
3170   // Create the VMThread
3171   { TraceTime timer("Start VMThread", TraceStartupTime);
3172     VMThread::create();
3173     Thread* vmthread = VMThread::vm_thread();
3174 
3175     if (!os::create_thread(vmthread, os::vm_thread))
3176       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3177 
3178     // Wait for the VM thread to become ready, and VMThread::run to initialize
3179     // Monitors can have spurious returns, must always check another state flag
3180     {
3181       MutexLocker ml(Notify_lock);
3182       os::start_thread(vmthread);
3183       while (vmthread->active_handles() == NULL) {
3184         Notify_lock->wait();
3185       }
3186     }
3187   }
3188 
3189   assert (Universe::is_fully_initialized(), "not initialized");
3190   EXCEPTION_MARK;
3191 
3192   // At this point, the Universe is initialized, but we have not executed
3193   // any byte code.  Now is a good time (the only time) to dump out the
3194   // internal state of the JVM for sharing.
3195 
3196   if (DumpSharedSpaces) {
3197     Universe::heap()->preload_and_dump(CHECK_0);
3198     ShouldNotReachHere();
3199   }
3200 
3201   // Always call even when there are not JVMTI environments yet, since environments
3202   // may be attached late and JVMTI must track phases of VM execution
3203   JvmtiExport::enter_start_phase();
3204 
3205   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3206   JvmtiExport::post_vm_start();
3207 
3208   {
3209     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3210 
3211     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3212       create_vm_init_libraries();
3213     }
3214 
3215     if (InitializeJavaLangString) {
3216       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3217     } else {
3218       warning("java.lang.String not initialized");
3219     }
3220 
3221     if (AggressiveOpts) {
3222       {
3223         // Forcibly initialize java/util/HashMap and mutate the private
3224         // static final "frontCacheEnabled" field before we start creating instances
3225 #ifdef ASSERT
3226         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3227         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3228 #endif
3229         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3230         KlassHandle k = KlassHandle(THREAD, k_o);
3231         guarantee(k.not_null(), "Must find java/util/HashMap");
3232         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3233         ik->initialize(CHECK_0);
3234         fieldDescriptor fd;
3235         // Possible we might not find this field; if so, don't break
3236         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3237           k()->java_mirror()->bool_field_put(fd.offset(), true);
3238         }
3239       }
3240 
3241       if (UseStringCache) {
3242         // Forcibly initialize java/lang/StringValue and mutate the private
3243         // static final "stringCacheEnabled" field before we start creating instances
3244         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3245         // Possible that StringValue isn't present: if so, silently don't break
3246         if (k_o != NULL) {
3247           KlassHandle k = KlassHandle(THREAD, k_o);
3248           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3249           ik->initialize(CHECK_0);
3250           fieldDescriptor fd;
3251           // Possible we might not find this field: if so, silently don't break
3252           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3253             k()->java_mirror()->bool_field_put(fd.offset(), true);
3254           }
3255         }
3256       }
3257     }
3258 
3259     // Initialize java_lang.System (needed before creating the thread)
3260     if (InitializeJavaLangSystem) {
3261       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3262       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3263       Handle thread_group = create_initial_thread_group(CHECK_0);
3264       Universe::set_main_thread_group(thread_group());
3265       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3266       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3267       main_thread->set_threadObj(thread_object);
3268       // Set thread status to running since main thread has
3269       // been started and running.
3270       java_lang_Thread::set_thread_status(thread_object,
3271                                           java_lang_Thread::RUNNABLE);
3272 
3273       // The VM preresolve methods to these classes. Make sure that get initialized
3274       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3275       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3276       // The VM creates & returns objects of this class. Make sure it's initialized.
3277       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3278       call_initializeSystemClass(CHECK_0);
3279     } else {
3280       warning("java.lang.System not initialized");
3281     }
3282 
3283     // an instance of OutOfMemory exception has been allocated earlier
3284     if (InitializeJavaLangExceptionsErrors) {
3285       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3286       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3287       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3288       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3289       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3290       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3291       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3292     } else {
3293       warning("java.lang.OutOfMemoryError has not been initialized");
3294       warning("java.lang.NullPointerException has not been initialized");
3295       warning("java.lang.ClassCastException has not been initialized");
3296       warning("java.lang.ArrayStoreException has not been initialized");
3297       warning("java.lang.ArithmeticException has not been initialized");
3298       warning("java.lang.StackOverflowError has not been initialized");
3299     }
3300   }
3301 
3302   // See        : bugid 4211085.
3303   // Background : the static initializer of java.lang.Compiler tries to read
3304   //              property"java.compiler" and read & write property "java.vm.info".
3305   //              When a security manager is installed through the command line
3306   //              option "-Djava.security.manager", the above properties are not
3307   //              readable and the static initializer for java.lang.Compiler fails
3308   //              resulting in a NoClassDefFoundError.  This can happen in any
3309   //              user code which calls methods in java.lang.Compiler.
3310   // Hack :       the hack is to pre-load and initialize this class, so that only
3311   //              system domains are on the stack when the properties are read.
3312   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3313   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3314   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3315   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3316   //              Once that is done, we should remove this hack.
3317   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3318 
3319   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3320   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3321   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3322   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3323   // This should also be taken out as soon as 4211383 gets fixed.
3324   reset_vm_info_property(CHECK_0);
3325 
3326   quicken_jni_functions();
3327 
3328   // Set flag that basic initialization has completed. Used by exceptions and various
3329   // debug stuff, that does not work until all basic classes have been initialized.
3330   set_init_completed();
3331 
3332   HS_DTRACE_PROBE(hotspot, vm__init__end);
3333 
3334   // record VM initialization completion time
3335   Management::record_vm_init_completed();
3336 
3337   // Compute system loader. Note that this has to occur after set_init_completed, since
3338   // valid exceptions may be thrown in the process.
3339   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3340   // set_init_completed has just been called, causing exceptions not to be shortcut
3341   // anymore. We call vm_exit_during_initialization directly instead.
3342   SystemDictionary::compute_java_system_loader(THREAD);
3343   if (HAS_PENDING_EXCEPTION) {
3344     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3345   }
3346 
3347 #ifndef SERIALGC
3348   // Support for ConcurrentMarkSweep. This should be cleaned up
3349   // and better encapsulated. The ugly nested if test would go away
3350   // once things are properly refactored. XXX YSR
3351   if (UseConcMarkSweepGC || UseG1GC) {
3352     if (UseConcMarkSweepGC) {
3353       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3354     } else {
3355       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3356     }
3357     if (HAS_PENDING_EXCEPTION) {
3358       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3359     }
3360   }
3361 #endif // SERIALGC
3362 
3363   // Always call even when there are not JVMTI environments yet, since environments
3364   // may be attached late and JVMTI must track phases of VM execution
3365   JvmtiExport::enter_live_phase();
3366 
3367   // Signal Dispatcher needs to be started before VMInit event is posted
3368   os::signal_init();
3369 
3370   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3371   if (!DisableAttachMechanism) {
3372     if (StartAttachListener || AttachListener::init_at_startup()) {
3373       AttachListener::init();
3374     }
3375   }
3376 
3377   // Launch -Xrun agents
3378   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3379   // back-end can launch with -Xdebug -Xrunjdwp.
3380   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3381     create_vm_init_libraries();
3382   }
3383 
3384   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3385   JvmtiExport::post_vm_initialized();
3386 
3387   if (CleanChunkPoolAsync) {
3388     Chunk::start_chunk_pool_cleaner_task();
3389   }
3390 
3391   // initialize compiler(s)
3392   CompileBroker::compilation_init();
3393 
3394   Management::initialize(THREAD);
3395   if (HAS_PENDING_EXCEPTION) {
3396     // management agent fails to start possibly due to
3397     // configuration problem and is responsible for printing
3398     // stack trace if appropriate. Simply exit VM.
3399     vm_exit(1);
3400   }
3401 
3402   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3403   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3404   if (MemProfiling)                   MemProfiler::engage();
3405   StatSampler::engage();
3406   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3407 
3408   BiasedLocking::init();
3409 
3410   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3411     call_postVMInitHook(THREAD);
3412     // The Java side of PostVMInitHook.run must deal with all
3413     // exceptions and provide means of diagnosis.
3414     if (HAS_PENDING_EXCEPTION) {
3415       CLEAR_PENDING_EXCEPTION;
3416     }
3417   }
3418 
3419   // Start up the WatcherThread if there are any periodic tasks
3420   // NOTE:  All PeriodicTasks should be registered by now. If they
3421   //   aren't, late joiners might appear to start slowly (we might
3422   //   take a while to process their first tick).
3423   if (PeriodicTask::num_tasks() > 0) {
3424     WatcherThread::start();
3425   }
3426 
3427   // Give os specific code one last chance to start
3428   os::init_3();
3429 
3430   create_vm_timer.end();
3431   return JNI_OK;
3432 }
3433 
3434 // type for the Agent_OnLoad and JVM_OnLoad entry points
3435 extern "C" {
3436   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3437 }
3438 // Find a command line agent library and return its entry point for
3439 //         -agentlib:  -agentpath:   -Xrun
3440 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3441 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3442   OnLoadEntry_t on_load_entry = NULL;
3443   void *library = agent->os_lib();  // check if we have looked it up before
3444 
3445   if (library == NULL) {
3446     char buffer[JVM_MAXPATHLEN];
3447     char ebuf[1024];
3448     const char *name = agent->name();
3449     const char *msg = "Could not find agent library ";
3450 
3451     if (agent->is_absolute_path()) {
3452       library = os::dll_load(name, ebuf, sizeof ebuf);
3453       if (library == NULL) {
3454         const char *sub_msg = " in absolute path, with error: ";
3455         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3456         char *buf = NEW_C_HEAP_ARRAY(char, len);
3457         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3458         // If we can't find the agent, exit.
3459         vm_exit_during_initialization(buf, NULL);
3460         FREE_C_HEAP_ARRAY(char, buf);
3461       }
3462     } else {
3463       // Try to load the agent from the standard dll directory
3464       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3465       library = os::dll_load(buffer, ebuf, sizeof ebuf);
3466 #ifdef KERNEL
3467       // Download instrument dll
3468       if (library == NULL && strcmp(name, "instrument") == 0) {
3469         char *props = Arguments::get_kernel_properties();
3470         char *home  = Arguments::get_java_home();
3471         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3472                       " sun.jkernel.DownloadManager -download client_jvm";
3473         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3474         char *cmd = NEW_C_HEAP_ARRAY(char, length);
3475         jio_snprintf(cmd, length, fmt, home, props);
3476         int status = os::fork_and_exec(cmd);
3477         FreeHeap(props);
3478         if (status == -1) {
3479           warning(cmd);
3480           vm_exit_during_initialization("fork_and_exec failed: %s",
3481                                          strerror(errno));
3482         }
3483         FREE_C_HEAP_ARRAY(char, cmd);
3484         // when this comes back the instrument.dll should be where it belongs.
3485         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3486       }
3487 #endif // KERNEL
3488       if (library == NULL) { // Try the local directory
3489         char ns[1] = {0};
3490         os::dll_build_name(buffer, sizeof(buffer), ns, name);
3491         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3492         if (library == NULL) {
3493           const char *sub_msg = " on the library path, with error: ";
3494           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3495           char *buf = NEW_C_HEAP_ARRAY(char, len);
3496           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3497           // If we can't find the agent, exit.
3498           vm_exit_during_initialization(buf, NULL);
3499           FREE_C_HEAP_ARRAY(char, buf);
3500         }
3501       }
3502     }
3503     agent->set_os_lib(library);
3504   }
3505 
3506   // Find the OnLoad function.
3507   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3508     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3509     if (on_load_entry != NULL) break;
3510   }
3511   return on_load_entry;
3512 }
3513 
3514 // Find the JVM_OnLoad entry point
3515 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3516   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3517   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3518 }
3519 
3520 // Find the Agent_OnLoad entry point
3521 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3522   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3523   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3524 }
3525 
3526 // For backwards compatibility with -Xrun
3527 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3528 // treated like -agentpath:
3529 // Must be called before agent libraries are created
3530 void Threads::convert_vm_init_libraries_to_agents() {
3531   AgentLibrary* agent;
3532   AgentLibrary* next;
3533 
3534   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3535     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3536     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3537 
3538     // If there is an JVM_OnLoad function it will get called later,
3539     // otherwise see if there is an Agent_OnLoad
3540     if (on_load_entry == NULL) {
3541       on_load_entry = lookup_agent_on_load(agent);
3542       if (on_load_entry != NULL) {
3543         // switch it to the agent list -- so that Agent_OnLoad will be called,
3544         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3545         Arguments::convert_library_to_agent(agent);
3546       } else {
3547         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3548       }
3549     }
3550   }
3551 }
3552 
3553 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3554 // Invokes Agent_OnLoad
3555 // Called very early -- before JavaThreads exist
3556 void Threads::create_vm_init_agents() {
3557   extern struct JavaVM_ main_vm;
3558   AgentLibrary* agent;
3559 
3560   JvmtiExport::enter_onload_phase();
3561   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3562     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3563 
3564     if (on_load_entry != NULL) {
3565       // Invoke the Agent_OnLoad function
3566       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3567       if (err != JNI_OK) {
3568         vm_exit_during_initialization("agent library failed to init", agent->name());
3569       }
3570     } else {
3571       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3572     }
3573   }
3574   JvmtiExport::enter_primordial_phase();
3575 }
3576 
3577 extern "C" {
3578   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3579 }
3580 
3581 void Threads::shutdown_vm_agents() {
3582   // Send any Agent_OnUnload notifications
3583   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3584   extern struct JavaVM_ main_vm;
3585   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3586 
3587     // Find the Agent_OnUnload function.
3588     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3589       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3590                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3591 
3592       // Invoke the Agent_OnUnload function
3593       if (unload_entry != NULL) {
3594         JavaThread* thread = JavaThread::current();
3595         ThreadToNativeFromVM ttn(thread);
3596         HandleMark hm(thread);
3597         (*unload_entry)(&main_vm);
3598         break;
3599       }
3600     }
3601   }
3602 }
3603 
3604 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3605 // Invokes JVM_OnLoad
3606 void Threads::create_vm_init_libraries() {
3607   extern struct JavaVM_ main_vm;
3608   AgentLibrary* agent;
3609 
3610   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3611     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3612 
3613     if (on_load_entry != NULL) {
3614       // Invoke the JVM_OnLoad function
3615       JavaThread* thread = JavaThread::current();
3616       ThreadToNativeFromVM ttn(thread);
3617       HandleMark hm(thread);
3618       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3619       if (err != JNI_OK) {
3620         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3621       }
3622     } else {
3623       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3624     }
3625   }
3626 }
3627 
3628 // Last thread running calls java.lang.Shutdown.shutdown()
3629 void JavaThread::invoke_shutdown_hooks() {
3630   HandleMark hm(this);
3631 
3632   // We could get here with a pending exception, if so clear it now.
3633   if (this->has_pending_exception()) {
3634     this->clear_pending_exception();
3635   }
3636 
3637   EXCEPTION_MARK;
3638   klassOop k =
3639     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3640                                       THREAD);
3641   if (k != NULL) {
3642     // SystemDictionary::resolve_or_null will return null if there was
3643     // an exception.  If we cannot load the Shutdown class, just don't
3644     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3645     // and finalizers (if runFinalizersOnExit is set) won't be run.
3646     // Note that if a shutdown hook was registered or runFinalizersOnExit
3647     // was called, the Shutdown class would have already been loaded
3648     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3649     instanceKlassHandle shutdown_klass (THREAD, k);
3650     JavaValue result(T_VOID);
3651     JavaCalls::call_static(&result,
3652                            shutdown_klass,
3653                            vmSymbols::shutdown_method_name(),
3654                            vmSymbols::void_method_signature(),
3655                            THREAD);
3656   }
3657   CLEAR_PENDING_EXCEPTION;
3658 }
3659 
3660 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3661 // the program falls off the end of main(). Another VM exit path is through
3662 // vm_exit() when the program calls System.exit() to return a value or when
3663 // there is a serious error in VM. The two shutdown paths are not exactly
3664 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3665 // and VM_Exit op at VM level.
3666 //
3667 // Shutdown sequence:
3668 //   + Wait until we are the last non-daemon thread to execute
3669 //     <-- every thing is still working at this moment -->
3670 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3671 //        shutdown hooks, run finalizers if finalization-on-exit
3672 //   + Call before_exit(), prepare for VM exit
3673 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3674 //        currently the only user of this mechanism is File.deleteOnExit())
3675 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3676 //        post thread end and vm death events to JVMTI,
3677 //        stop signal thread
3678 //   + Call JavaThread::exit(), it will:
3679 //      > release JNI handle blocks, remove stack guard pages
3680 //      > remove this thread from Threads list
3681 //     <-- no more Java code from this thread after this point -->
3682 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3683 //     the compiler threads at safepoint
3684 //     <-- do not use anything that could get blocked by Safepoint -->
3685 //   + Disable tracing at JNI/JVM barriers
3686 //   + Set _vm_exited flag for threads that are still running native code
3687 //   + Delete this thread
3688 //   + Call exit_globals()
3689 //      > deletes tty
3690 //      > deletes PerfMemory resources
3691 //   + Return to caller
3692 
3693 bool Threads::destroy_vm() {
3694   JavaThread* thread = JavaThread::current();
3695 
3696   // Wait until we are the last non-daemon thread to execute
3697   { MutexLocker nu(Threads_lock);
3698     while (Threads::number_of_non_daemon_threads() > 1 )
3699       // This wait should make safepoint checks, wait without a timeout,
3700       // and wait as a suspend-equivalent condition.
3701       //
3702       // Note: If the FlatProfiler is running and this thread is waiting
3703       // for another non-daemon thread to finish, then the FlatProfiler
3704       // is waiting for the external suspend request on this thread to
3705       // complete. wait_for_ext_suspend_completion() will eventually
3706       // timeout, but that takes time. Making this wait a suspend-
3707       // equivalent condition solves that timeout problem.
3708       //
3709       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3710                          Mutex::_as_suspend_equivalent_flag);
3711   }
3712 
3713   // Hang forever on exit if we are reporting an error.
3714   if (ShowMessageBoxOnError && is_error_reported()) {
3715     os::infinite_sleep();
3716   }
3717   os::wait_for_keypress_at_exit();
3718 
3719   if (JDK_Version::is_jdk12x_version()) {
3720     // We are the last thread running, so check if finalizers should be run.
3721     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3722     HandleMark rm(thread);
3723     Universe::run_finalizers_on_exit();
3724   } else {
3725     // run Java level shutdown hooks
3726     thread->invoke_shutdown_hooks();
3727   }
3728 
3729   before_exit(thread);
3730 
3731   thread->exit(true);
3732 
3733   // Stop VM thread.
3734   {
3735     // 4945125 The vm thread comes to a safepoint during exit.
3736     // GC vm_operations can get caught at the safepoint, and the
3737     // heap is unparseable if they are caught. Grab the Heap_lock
3738     // to prevent this. The GC vm_operations will not be able to
3739     // queue until after the vm thread is dead.
3740     // After this point, we'll never emerge out of the safepoint before
3741     // the VM exits, so concurrent GC threads do not need to be explicitly
3742     // stopped; they remain inactive until the process exits.
3743     // Note: some concurrent G1 threads may be running during a safepoint,
3744     // but these will not be accessing the heap, just some G1-specific side
3745     // data structures that are not accessed by any other threads but them
3746     // after this point in a terminal safepoint.
3747 
3748     MutexLocker ml(Heap_lock);
3749 
3750     VMThread::wait_for_vm_thread_exit();
3751     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3752     VMThread::destroy();
3753   }
3754 
3755   // clean up ideal graph printers
3756 #if defined(COMPILER2) && !defined(PRODUCT)
3757   IdealGraphPrinter::clean_up();
3758 #endif
3759 
3760   // Now, all Java threads are gone except daemon threads. Daemon threads
3761   // running Java code or in VM are stopped by the Safepoint. However,
3762   // daemon threads executing native code are still running.  But they
3763   // will be stopped at native=>Java/VM barriers. Note that we can't
3764   // simply kill or suspend them, as it is inherently deadlock-prone.
3765 
3766 #ifndef PRODUCT
3767   // disable function tracing at JNI/JVM barriers
3768   TraceJNICalls = false;
3769   TraceJVMCalls = false;
3770   TraceRuntimeCalls = false;
3771 #endif
3772 
3773   VM_Exit::set_vm_exited();
3774 
3775   notify_vm_shutdown();
3776 
3777   delete thread;
3778 
3779   // exit_globals() will delete tty
3780   exit_globals();
3781 
3782   return true;
3783 }
3784 
3785 
3786 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3787   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3788   return is_supported_jni_version(version);
3789 }
3790 
3791 
3792 jboolean Threads::is_supported_jni_version(jint version) {
3793   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3794   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3795   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3796   return JNI_FALSE;
3797 }
3798 
3799 
3800 void Threads::add(JavaThread* p, bool force_daemon) {
3801   // The threads lock must be owned at this point
3802   assert_locked_or_safepoint(Threads_lock);
3803 
3804   // See the comment for this method in thread.hpp for its purpose and
3805   // why it is called here.
3806   p->initialize_queues();
3807   p->set_next(_thread_list);
3808   _thread_list = p;
3809   _number_of_threads++;
3810   oop threadObj = p->threadObj();
3811   bool daemon = true;
3812   // Bootstrapping problem: threadObj can be null for initial
3813   // JavaThread (or for threads attached via JNI)
3814   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3815     _number_of_non_daemon_threads++;
3816     daemon = false;
3817   }
3818 
3819   ThreadService::add_thread(p, daemon);
3820 
3821   // Possible GC point.
3822   Events::log("Thread added: " INTPTR_FORMAT, p);
3823 }
3824 
3825 void Threads::remove(JavaThread* p) {
3826   // Extra scope needed for Thread_lock, so we can check
3827   // that we do not remove thread without safepoint code notice
3828   { MutexLocker ml(Threads_lock);
3829 
3830     assert(includes(p), "p must be present");
3831 
3832     JavaThread* current = _thread_list;
3833     JavaThread* prev    = NULL;
3834 
3835     while (current != p) {
3836       prev    = current;
3837       current = current->next();
3838     }
3839 
3840     if (prev) {
3841       prev->set_next(current->next());
3842     } else {
3843       _thread_list = p->next();
3844     }
3845     _number_of_threads--;
3846     oop threadObj = p->threadObj();
3847     bool daemon = true;
3848     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3849       _number_of_non_daemon_threads--;
3850       daemon = false;
3851 
3852       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3853       // on destroy_vm will wake up.
3854       if (number_of_non_daemon_threads() == 1)
3855         Threads_lock->notify_all();
3856     }
3857     ThreadService::remove_thread(p, daemon);
3858 
3859     // Make sure that safepoint code disregard this thread. This is needed since
3860     // the thread might mess around with locks after this point. This can cause it
3861     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3862     // of this thread since it is removed from the queue.
3863     p->set_terminated_value();
3864   } // unlock Threads_lock
3865 
3866   // Since Events::log uses a lock, we grab it outside the Threads_lock
3867   Events::log("Thread exited: " INTPTR_FORMAT, p);
3868 }
3869 
3870 // Threads_lock must be held when this is called (or must be called during a safepoint)
3871 bool Threads::includes(JavaThread* p) {
3872   assert(Threads_lock->is_locked(), "sanity check");
3873   ALL_JAVA_THREADS(q) {
3874     if (q == p ) {
3875       return true;
3876     }
3877   }
3878   return false;
3879 }
3880 
3881 // Operations on the Threads list for GC.  These are not explicitly locked,
3882 // but the garbage collector must provide a safe context for them to run.
3883 // In particular, these things should never be called when the Threads_lock
3884 // is held by some other thread. (Note: the Safepoint abstraction also
3885 // uses the Threads_lock to gurantee this property. It also makes sure that
3886 // all threads gets blocked when exiting or starting).
3887 
3888 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3889   ALL_JAVA_THREADS(p) {
3890     p->oops_do(f, cf);
3891   }
3892   VMThread::vm_thread()->oops_do(f, cf);
3893 }
3894 
3895 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3896   // Introduce a mechanism allowing parallel threads to claim threads as
3897   // root groups.  Overhead should be small enough to use all the time,
3898   // even in sequential code.
3899   SharedHeap* sh = SharedHeap::heap();
3900   bool is_par = (sh->n_par_threads() > 0);
3901   int cp = SharedHeap::heap()->strong_roots_parity();
3902   ALL_JAVA_THREADS(p) {
3903     if (p->claim_oops_do(is_par, cp)) {
3904       p->oops_do(f, cf);
3905     }
3906   }
3907   VMThread* vmt = VMThread::vm_thread();
3908   if (vmt->claim_oops_do(is_par, cp))
3909     vmt->oops_do(f, cf);
3910 }
3911 
3912 #ifndef SERIALGC
3913 // Used by ParallelScavenge
3914 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3915   ALL_JAVA_THREADS(p) {
3916     q->enqueue(new ThreadRootsTask(p));
3917   }
3918   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3919 }
3920 
3921 // Used by Parallel Old
3922 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3923   ALL_JAVA_THREADS(p) {
3924     q->enqueue(new ThreadRootsMarkingTask(p));
3925   }
3926   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3927 }
3928 #endif // SERIALGC
3929 
3930 void Threads::nmethods_do(CodeBlobClosure* cf) {
3931   ALL_JAVA_THREADS(p) {
3932     p->nmethods_do(cf);
3933   }
3934   VMThread::vm_thread()->nmethods_do(cf);
3935 }
3936 
3937 void Threads::gc_epilogue() {
3938   ALL_JAVA_THREADS(p) {
3939     p->gc_epilogue();
3940   }
3941 }
3942 
3943 void Threads::gc_prologue() {
3944   ALL_JAVA_THREADS(p) {
3945     p->gc_prologue();
3946   }
3947 }
3948 
3949 void Threads::deoptimized_wrt_marked_nmethods() {
3950   ALL_JAVA_THREADS(p) {
3951     p->deoptimized_wrt_marked_nmethods();
3952   }
3953 }
3954 
3955 
3956 // Get count Java threads that are waiting to enter the specified monitor.
3957 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3958   address monitor, bool doLock) {
3959   assert(doLock || SafepointSynchronize::is_at_safepoint(),
3960     "must grab Threads_lock or be at safepoint");
3961   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3962 
3963   int i = 0;
3964   {
3965     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3966     ALL_JAVA_THREADS(p) {
3967       if (p->is_Compiler_thread()) continue;
3968 
3969       address pending = (address)p->current_pending_monitor();
3970       if (pending == monitor) {             // found a match
3971         if (i < count) result->append(p);   // save the first count matches
3972         i++;
3973       }
3974     }
3975   }
3976   return result;
3977 }
3978 
3979 
3980 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3981   assert(doLock ||
3982          Threads_lock->owned_by_self() ||
3983          SafepointSynchronize::is_at_safepoint(),
3984          "must grab Threads_lock or be at safepoint");
3985 
3986   // NULL owner means not locked so we can skip the search
3987   if (owner == NULL) return NULL;
3988 
3989   {
3990     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3991     ALL_JAVA_THREADS(p) {
3992       // first, see if owner is the address of a Java thread
3993       if (owner == (address)p) return p;
3994     }
3995   }
3996   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3997   if (UseHeavyMonitors) return NULL;
3998 
3999   //
4000   // If we didn't find a matching Java thread and we didn't force use of
4001   // heavyweight monitors, then the owner is the stack address of the
4002   // Lock Word in the owning Java thread's stack.
4003   //
4004   JavaThread* the_owner = NULL;
4005   {
4006     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4007     ALL_JAVA_THREADS(q) {
4008       if (q->is_lock_owned(owner)) {
4009         the_owner = q;
4010         break;
4011       }
4012     }
4013   }
4014   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
4015   return the_owner;
4016 }
4017 
4018 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4019 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4020   char buf[32];
4021   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4022 
4023   st->print_cr("Full thread dump %s (%s %s):",
4024                 Abstract_VM_Version::vm_name(),
4025                 Abstract_VM_Version::vm_release(),
4026                 Abstract_VM_Version::vm_info_string()
4027                );
4028   st->cr();
4029 
4030 #ifndef SERIALGC
4031   // Dump concurrent locks
4032   ConcurrentLocksDump concurrent_locks;
4033   if (print_concurrent_locks) {
4034     concurrent_locks.dump_at_safepoint();
4035   }
4036 #endif // SERIALGC
4037 
4038   ALL_JAVA_THREADS(p) {
4039     ResourceMark rm;
4040     p->print_on(st);
4041     if (print_stacks) {
4042       if (internal_format) {
4043         p->trace_stack();
4044       } else {
4045         p->print_stack_on(st);
4046       }
4047     }
4048     st->cr();
4049 #ifndef SERIALGC
4050     if (print_concurrent_locks) {
4051       concurrent_locks.print_locks_on(p, st);
4052     }
4053 #endif // SERIALGC
4054   }
4055 
4056   VMThread::vm_thread()->print_on(st);
4057   st->cr();
4058   Universe::heap()->print_gc_threads_on(st);
4059   WatcherThread* wt = WatcherThread::watcher_thread();
4060   if (wt != NULL) wt->print_on(st);
4061   st->cr();
4062   CompileBroker::print_compiler_threads_on(st);
4063   st->flush();
4064 }
4065 
4066 // Threads::print_on_error() is called by fatal error handler. It's possible
4067 // that VM is not at safepoint and/or current thread is inside signal handler.
4068 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4069 // memory (even in resource area), it might deadlock the error handler.
4070 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4071   bool found_current = false;
4072   st->print_cr("Java Threads: ( => current thread )");
4073   ALL_JAVA_THREADS(thread) {
4074     bool is_current = (current == thread);
4075     found_current = found_current || is_current;
4076 
4077     st->print("%s", is_current ? "=>" : "  ");
4078 
4079     st->print(PTR_FORMAT, thread);
4080     st->print(" ");
4081     thread->print_on_error(st, buf, buflen);
4082     st->cr();
4083   }
4084   st->cr();
4085 
4086   st->print_cr("Other Threads:");
4087   if (VMThread::vm_thread()) {
4088     bool is_current = (current == VMThread::vm_thread());
4089     found_current = found_current || is_current;
4090     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4091 
4092     st->print(PTR_FORMAT, VMThread::vm_thread());
4093     st->print(" ");
4094     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4095     st->cr();
4096   }
4097   WatcherThread* wt = WatcherThread::watcher_thread();
4098   if (wt != NULL) {
4099     bool is_current = (current == wt);
4100     found_current = found_current || is_current;
4101     st->print("%s", is_current ? "=>" : "  ");
4102 
4103     st->print(PTR_FORMAT, wt);
4104     st->print(" ");
4105     wt->print_on_error(st, buf, buflen);
4106     st->cr();
4107   }
4108   if (!found_current) {
4109     st->cr();
4110     st->print("=>" PTR_FORMAT " (exited) ", current);
4111     current->print_on_error(st, buf, buflen);
4112     st->cr();
4113   }
4114 }
4115 
4116 // Internal SpinLock and Mutex
4117 // Based on ParkEvent
4118 
4119 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4120 //
4121 // We employ SpinLocks _only for low-contention, fixed-length
4122 // short-duration critical sections where we're concerned
4123 // about native mutex_t or HotSpot Mutex:: latency.
4124 // The mux construct provides a spin-then-block mutual exclusion
4125 // mechanism.
4126 //
4127 // Testing has shown that contention on the ListLock guarding gFreeList
4128 // is common.  If we implement ListLock as a simple SpinLock it's common
4129 // for the JVM to devolve to yielding with little progress.  This is true
4130 // despite the fact that the critical sections protected by ListLock are
4131 // extremely short.
4132 //
4133 // TODO-FIXME: ListLock should be of type SpinLock.
4134 // We should make this a 1st-class type, integrated into the lock
4135 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4136 // should have sufficient padding to avoid false-sharing and excessive
4137 // cache-coherency traffic.
4138 
4139 
4140 typedef volatile int SpinLockT ;
4141 
4142 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4143   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4144      return ;   // normal fast-path return
4145   }
4146 
4147   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4148   TEVENT (SpinAcquire - ctx) ;
4149   int ctr = 0 ;
4150   int Yields = 0 ;
4151   for (;;) {
4152      while (*adr != 0) {
4153         ++ctr ;
4154         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4155            if (Yields > 5) {
4156              // Consider using a simple NakedSleep() instead.
4157              // Then SpinAcquire could be called by non-JVM threads
4158              Thread::current()->_ParkEvent->park(1) ;
4159            } else {
4160              os::NakedYield() ;
4161              ++Yields ;
4162            }
4163         } else {
4164            SpinPause() ;
4165         }
4166      }
4167      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4168   }
4169 }
4170 
4171 void Thread::SpinRelease (volatile int * adr) {
4172   assert (*adr != 0, "invariant") ;
4173   OrderAccess::fence() ;      // guarantee at least release consistency.
4174   // Roach-motel semantics.
4175   // It's safe if subsequent LDs and STs float "up" into the critical section,
4176   // but prior LDs and STs within the critical section can't be allowed
4177   // to reorder or float past the ST that releases the lock.
4178   *adr = 0 ;
4179 }
4180 
4181 // muxAcquire and muxRelease:
4182 //
4183 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4184 //    The LSB of the word is set IFF the lock is held.
4185 //    The remainder of the word points to the head of a singly-linked list
4186 //    of threads blocked on the lock.
4187 //
4188 // *  The current implementation of muxAcquire-muxRelease uses its own
4189 //    dedicated Thread._MuxEvent instance.  If we're interested in
4190 //    minimizing the peak number of extant ParkEvent instances then
4191 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4192 //    as certain invariants were satisfied.  Specifically, care would need
4193 //    to be taken with regards to consuming unpark() "permits".
4194 //    A safe rule of thumb is that a thread would never call muxAcquire()
4195 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4196 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4197 //    consume an unpark() permit intended for monitorenter, for instance.
4198 //    One way around this would be to widen the restricted-range semaphore
4199 //    implemented in park().  Another alternative would be to provide
4200 //    multiple instances of the PlatformEvent() for each thread.  One
4201 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4202 //
4203 // *  Usage:
4204 //    -- Only as leaf locks
4205 //    -- for short-term locking only as muxAcquire does not perform
4206 //       thread state transitions.
4207 //
4208 // Alternatives:
4209 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4210 //    but with parking or spin-then-park instead of pure spinning.
4211 // *  Use Taura-Oyama-Yonenzawa locks.
4212 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4213 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4214 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4215 //    acquiring threads use timers (ParkTimed) to detect and recover from
4216 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4217 //    boundaries by using placement-new.
4218 // *  Augment MCS with advisory back-link fields maintained with CAS().
4219 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4220 //    The validity of the backlinks must be ratified before we trust the value.
4221 //    If the backlinks are invalid the exiting thread must back-track through the
4222 //    the forward links, which are always trustworthy.
4223 // *  Add a successor indication.  The LockWord is currently encoded as
4224 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4225 //    to provide the usual futile-wakeup optimization.
4226 //    See RTStt for details.
4227 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4228 //
4229 
4230 
4231 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4232 enum MuxBits { LOCKBIT = 1 } ;
4233 
4234 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4235   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4236   if (w == 0) return ;
4237   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4238      return ;
4239   }
4240 
4241   TEVENT (muxAcquire - Contention) ;
4242   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4243   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4244   for (;;) {
4245      int its = (os::is_MP() ? 100 : 0) + 1 ;
4246 
4247      // Optional spin phase: spin-then-park strategy
4248      while (--its >= 0) {
4249        w = *Lock ;
4250        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4251           return ;
4252        }
4253      }
4254 
4255      Self->reset() ;
4256      Self->OnList = intptr_t(Lock) ;
4257      // The following fence() isn't _strictly necessary as the subsequent
4258      // CAS() both serializes execution and ratifies the fetched *Lock value.
4259      OrderAccess::fence();
4260      for (;;) {
4261         w = *Lock ;
4262         if ((w & LOCKBIT) == 0) {
4263             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4264                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4265                 return ;
4266             }
4267             continue ;      // Interference -- *Lock changed -- Just retry
4268         }
4269         assert (w & LOCKBIT, "invariant") ;
4270         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4271         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4272      }
4273 
4274      while (Self->OnList != 0) {
4275         Self->park() ;
4276      }
4277   }
4278 }
4279 
4280 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4281   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4282   if (w == 0) return ;
4283   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4284     return ;
4285   }
4286 
4287   TEVENT (muxAcquire - Contention) ;
4288   ParkEvent * ReleaseAfter = NULL ;
4289   if (ev == NULL) {
4290     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4291   }
4292   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4293   for (;;) {
4294     guarantee (ev->OnList == 0, "invariant") ;
4295     int its = (os::is_MP() ? 100 : 0) + 1 ;
4296 
4297     // Optional spin phase: spin-then-park strategy
4298     while (--its >= 0) {
4299       w = *Lock ;
4300       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4301         if (ReleaseAfter != NULL) {
4302           ParkEvent::Release (ReleaseAfter) ;
4303         }
4304         return ;
4305       }
4306     }
4307 
4308     ev->reset() ;
4309     ev->OnList = intptr_t(Lock) ;
4310     // The following fence() isn't _strictly necessary as the subsequent
4311     // CAS() both serializes execution and ratifies the fetched *Lock value.
4312     OrderAccess::fence();
4313     for (;;) {
4314       w = *Lock ;
4315       if ((w & LOCKBIT) == 0) {
4316         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4317           ev->OnList = 0 ;
4318           // We call ::Release while holding the outer lock, thus
4319           // artificially lengthening the critical section.
4320           // Consider deferring the ::Release() until the subsequent unlock(),
4321           // after we've dropped the outer lock.
4322           if (ReleaseAfter != NULL) {
4323             ParkEvent::Release (ReleaseAfter) ;
4324           }
4325           return ;
4326         }
4327         continue ;      // Interference -- *Lock changed -- Just retry
4328       }
4329       assert (w & LOCKBIT, "invariant") ;
4330       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4331       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4332     }
4333 
4334     while (ev->OnList != 0) {
4335       ev->park() ;
4336     }
4337   }
4338 }
4339 
4340 // Release() must extract a successor from the list and then wake that thread.
4341 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4342 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4343 // Release() would :
4344 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4345 // (B) Extract a successor from the private list "in-hand"
4346 // (C) attempt to CAS() the residual back into *Lock over null.
4347 //     If there were any newly arrived threads and the CAS() would fail.
4348 //     In that case Release() would detach the RATs, re-merge the list in-hand
4349 //     with the RATs and repeat as needed.  Alternately, Release() might
4350 //     detach and extract a successor, but then pass the residual list to the wakee.
4351 //     The wakee would be responsible for reattaching and remerging before it
4352 //     competed for the lock.
4353 //
4354 // Both "pop" and DMR are immune from ABA corruption -- there can be
4355 // multiple concurrent pushers, but only one popper or detacher.
4356 // This implementation pops from the head of the list.  This is unfair,
4357 // but tends to provide excellent throughput as hot threads remain hot.
4358 // (We wake recently run threads first).
4359 
4360 void Thread::muxRelease (volatile intptr_t * Lock)  {
4361   for (;;) {
4362     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4363     assert (w & LOCKBIT, "invariant") ;
4364     if (w == LOCKBIT) return ;
4365     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4366     assert (List != NULL, "invariant") ;
4367     assert (List->OnList == intptr_t(Lock), "invariant") ;
4368     ParkEvent * nxt = List->ListNext ;
4369 
4370     // The following CAS() releases the lock and pops the head element.
4371     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4372       continue ;
4373     }
4374     List->OnList = 0 ;
4375     OrderAccess::fence() ;
4376     List->unpark () ;
4377     return ;
4378   }
4379 }
4380 
4381 
4382 void Threads::verify() {
4383   ALL_JAVA_THREADS(p) {
4384     p->verify();
4385   }
4386   VMThread* thread = VMThread::vm_thread();
4387   if (thread != NULL) thread->verify();
4388 }