1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/instanceKlass.hpp"
  39 #include "oops/objArrayOop.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/symbol.hpp"
  42 #include "prims/jvm_misc.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/jvmtiThreadState.hpp"
  45 #include "prims/privilegedStack.hpp"
  46 #include "runtime/aprofiler.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/deoptimization.hpp"
  50 #include "runtime/fprofiler.hpp"
  51 #include "runtime/frame.inline.hpp"
  52 #include "runtime/init.hpp"
  53 #include "runtime/interfaceSupport.hpp"
  54 #include "runtime/java.hpp"
  55 #include "runtime/javaCalls.hpp"
  56 #include "runtime/jniPeriodicChecker.hpp"
  57 #include "runtime/memprofiler.hpp"
  58 #include "runtime/mutexLocker.hpp"
  59 #include "runtime/objectMonitor.hpp"
  60 #include "runtime/osThread.hpp"
  61 #include "runtime/safepoint.hpp"
  62 #include "runtime/sharedRuntime.hpp"
  63 #include "runtime/statSampler.hpp"
  64 #include "runtime/stubRoutines.hpp"
  65 #include "runtime/task.hpp"
  66 #include "runtime/threadCritical.hpp"
  67 #include "runtime/threadLocalStorage.hpp"
  68 #include "runtime/vframe.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "runtime/vframe_hp.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "runtime/vm_operations.hpp"
  73 #include "services/attachListener.hpp"
  74 #include "services/management.hpp"
  75 #include "services/threadService.hpp"
  76 #include "utilities/defaultStream.hpp"
  77 #include "utilities/dtrace.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/preserveException.hpp"
  80 #ifdef TARGET_OS_FAMILY_linux
  81 # include "os_linux.inline.hpp"
  82 # include "thread_linux.inline.hpp"
  83 #endif
  84 #ifdef TARGET_OS_FAMILY_solaris
  85 # include "os_solaris.inline.hpp"
  86 # include "thread_solaris.inline.hpp"
  87 #endif
  88 #ifdef TARGET_OS_FAMILY_windows
  89 # include "os_windows.inline.hpp"
  90 # include "thread_windows.inline.hpp"
  91 #endif
  92 #ifndef SERIALGC
  93 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  94 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  95 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  96 #endif
  97 #ifdef COMPILER1
  98 #include "c1/c1_Compiler.hpp"
  99 #endif
 100 #ifdef COMPILER2
 101 #include "opto/c2compiler.hpp"
 102 #include "opto/idealGraphPrinter.hpp"
 103 #endif
 104 
 105 #ifdef DTRACE_ENABLED
 106 
 107 // Only bother with this argument setup if dtrace is available
 108 
 109 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 110 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 111 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 112   intptr_t, intptr_t, bool);
 113 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 114   intptr_t, intptr_t, bool);
 115 
 116 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 117   {                                                                        \
 118     ResourceMark rm(this);                                                 \
 119     int len = 0;                                                           \
 120     const char* name = (javathread)->get_thread_name();                    \
 121     len = strlen(name);                                                    \
 122     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 123       name, len,                                                           \
 124       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 125       (javathread)->osthread()->thread_id(),                               \
 126       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 127   }
 128 
 129 #else //  ndef DTRACE_ENABLED
 130 
 131 #define DTRACE_THREAD_PROBE(probe, javathread)
 132 
 133 #endif // ndef DTRACE_ENABLED
 134 
 135 // Class hierarchy
 136 // - Thread
 137 //   - VMThread
 138 //   - WatcherThread
 139 //   - ConcurrentMarkSweepThread
 140 //   - JavaThread
 141 //     - CompilerThread
 142 
 143 // ======= Thread ========
 144 
 145 // Support for forcing alignment of thread objects for biased locking
 146 void* Thread::operator new(size_t size) {
 147   if (UseBiasedLocking) {
 148     const int alignment = markOopDesc::biased_lock_alignment;
 149     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 150     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
 151     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 152     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 153            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 154            "JavaThread alignment code overflowed allocated storage");
 155     if (TraceBiasedLocking) {
 156       if (aligned_addr != real_malloc_addr)
 157         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 158                       real_malloc_addr, aligned_addr);
 159     }
 160     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 161     return aligned_addr;
 162   } else {
 163     return CHeapObj::operator new(size);
 164   }
 165 }
 166 
 167 void Thread::operator delete(void* p) {
 168   if (UseBiasedLocking) {
 169     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 170     CHeapObj::operator delete(real_malloc_addr);
 171   } else {
 172     CHeapObj::operator delete(p);
 173   }
 174 }
 175 
 176 
 177 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 178 // JavaThread
 179 
 180 
 181 Thread::Thread() {
 182   // stack and get_thread
 183   set_stack_base(NULL);
 184   set_stack_size(0);
 185   set_self_raw_id(0);
 186   set_lgrp_id(-1);
 187 
 188   // allocated data structures
 189   set_osthread(NULL);
 190   set_resource_area(new ResourceArea());
 191   set_handle_area(new HandleArea(NULL));
 192   set_active_handles(NULL);
 193   set_free_handle_block(NULL);
 194   set_last_handle_mark(NULL);
 195 
 196   // This initial value ==> never claimed.
 197   _oops_do_parity = 0;
 198 
 199   // the handle mark links itself to last_handle_mark
 200   new HandleMark(this);
 201 
 202   // plain initialization
 203   debug_only(_owned_locks = NULL;)
 204   debug_only(_allow_allocation_count = 0;)
 205   NOT_PRODUCT(_allow_safepoint_count = 0;)
 206   NOT_PRODUCT(_skip_gcalot = false;)
 207   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 208   _jvmti_env_iteration_count = 0;
 209   set_allocated_bytes(0);
 210   _vm_operation_started_count = 0;
 211   _vm_operation_completed_count = 0;
 212   _current_pending_monitor = NULL;
 213   _current_pending_monitor_is_from_java = true;
 214   _current_waiting_monitor = NULL;
 215   _num_nested_signal = 0;
 216   omFreeList = NULL ;
 217   omFreeCount = 0 ;
 218   omFreeProvision = 32 ;
 219   omInUseList = NULL ;
 220   omInUseCount = 0 ;
 221 
 222   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 223   _suspend_flags = 0;
 224 
 225   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 226   _hashStateX = os::random() ;
 227   _hashStateY = 842502087 ;
 228   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 229   _hashStateW = 273326509 ;
 230 
 231   _OnTrap   = 0 ;
 232   _schedctl = NULL ;
 233   _Stalled  = 0 ;
 234   _TypeTag  = 0x2BAD ;
 235 
 236   // Many of the following fields are effectively final - immutable
 237   // Note that nascent threads can't use the Native Monitor-Mutex
 238   // construct until the _MutexEvent is initialized ...
 239   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 240   // we might instead use a stack of ParkEvents that we could provision on-demand.
 241   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 242   // and ::Release()
 243   _ParkEvent   = ParkEvent::Allocate (this) ;
 244   _SleepEvent  = ParkEvent::Allocate (this) ;
 245   _MutexEvent  = ParkEvent::Allocate (this) ;
 246   _MuxEvent    = ParkEvent::Allocate (this) ;
 247 
 248 #ifdef CHECK_UNHANDLED_OOPS
 249   if (CheckUnhandledOops) {
 250     _unhandled_oops = new UnhandledOops(this);
 251   }
 252 #endif // CHECK_UNHANDLED_OOPS
 253 #ifdef ASSERT
 254   if (UseBiasedLocking) {
 255     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 256     assert(this == _real_malloc_address ||
 257            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 258            "bug in forced alignment of thread objects");
 259   }
 260 #endif /* ASSERT */
 261 }
 262 
 263 void Thread::initialize_thread_local_storage() {
 264   // Note: Make sure this method only calls
 265   // non-blocking operations. Otherwise, it might not work
 266   // with the thread-startup/safepoint interaction.
 267 
 268   // During Java thread startup, safepoint code should allow this
 269   // method to complete because it may need to allocate memory to
 270   // store information for the new thread.
 271 
 272   // initialize structure dependent on thread local storage
 273   ThreadLocalStorage::set_thread(this);
 274 
 275   // set up any platform-specific state.
 276   os::initialize_thread();
 277 
 278 }
 279 
 280 void Thread::record_stack_base_and_size() {
 281   set_stack_base(os::current_stack_base());
 282   set_stack_size(os::current_stack_size());
 283 }
 284 
 285 
 286 Thread::~Thread() {
 287   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 288   ObjectSynchronizer::omFlush (this) ;
 289 
 290   // deallocate data structures
 291   delete resource_area();
 292   // since the handle marks are using the handle area, we have to deallocated the root
 293   // handle mark before deallocating the thread's handle area,
 294   assert(last_handle_mark() != NULL, "check we have an element");
 295   delete last_handle_mark();
 296   assert(last_handle_mark() == NULL, "check we have reached the end");
 297 
 298   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 299   // We NULL out the fields for good hygiene.
 300   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 301   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 302   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 303   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 304 
 305   delete handle_area();
 306 
 307   // osthread() can be NULL, if creation of thread failed.
 308   if (osthread() != NULL) os::free_thread(osthread());
 309 
 310   delete _SR_lock;
 311 
 312   // clear thread local storage if the Thread is deleting itself
 313   if (this == Thread::current()) {
 314     ThreadLocalStorage::set_thread(NULL);
 315   } else {
 316     // In the case where we're not the current thread, invalidate all the
 317     // caches in case some code tries to get the current thread or the
 318     // thread that was destroyed, and gets stale information.
 319     ThreadLocalStorage::invalidate_all();
 320   }
 321   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 322 }
 323 
 324 // NOTE: dummy function for assertion purpose.
 325 void Thread::run() {
 326   ShouldNotReachHere();
 327 }
 328 
 329 #ifdef ASSERT
 330 // Private method to check for dangling thread pointer
 331 void check_for_dangling_thread_pointer(Thread *thread) {
 332  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 333          "possibility of dangling Thread pointer");
 334 }
 335 #endif
 336 
 337 
 338 #ifndef PRODUCT
 339 // Tracing method for basic thread operations
 340 void Thread::trace(const char* msg, const Thread* const thread) {
 341   if (!TraceThreadEvents) return;
 342   ResourceMark rm;
 343   ThreadCritical tc;
 344   const char *name = "non-Java thread";
 345   int prio = -1;
 346   if (thread->is_Java_thread()
 347       && !thread->is_Compiler_thread()) {
 348     // The Threads_lock must be held to get information about
 349     // this thread but may not be in some situations when
 350     // tracing  thread events.
 351     bool release_Threads_lock = false;
 352     if (!Threads_lock->owned_by_self()) {
 353       Threads_lock->lock();
 354       release_Threads_lock = true;
 355     }
 356     JavaThread* jt = (JavaThread *)thread;
 357     name = (char *)jt->get_thread_name();
 358     oop thread_oop = jt->threadObj();
 359     if (thread_oop != NULL) {
 360       prio = java_lang_Thread::priority(thread_oop);
 361     }
 362     if (release_Threads_lock) {
 363       Threads_lock->unlock();
 364     }
 365   }
 366   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 367 }
 368 #endif
 369 
 370 
 371 ThreadPriority Thread::get_priority(const Thread* const thread) {
 372   trace("get priority", thread);
 373   ThreadPriority priority;
 374   // Can return an error!
 375   (void)os::get_priority(thread, priority);
 376   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 377   return priority;
 378 }
 379 
 380 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 381   trace("set priority", thread);
 382   debug_only(check_for_dangling_thread_pointer(thread);)
 383   // Can return an error!
 384   (void)os::set_priority(thread, priority);
 385 }
 386 
 387 
 388 void Thread::start(Thread* thread) {
 389   trace("start", thread);
 390   // Start is different from resume in that its safety is guaranteed by context or
 391   // being called from a Java method synchronized on the Thread object.
 392   if (!DisableStartThread) {
 393     if (thread->is_Java_thread()) {
 394       // Initialize the thread state to RUNNABLE before starting this thread.
 395       // Can not set it after the thread started because we do not know the
 396       // exact thread state at that time. It could be in MONITOR_WAIT or
 397       // in SLEEPING or some other state.
 398       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 399                                           java_lang_Thread::RUNNABLE);
 400     }
 401     os::start_thread(thread);
 402   }
 403 }
 404 
 405 // Enqueue a VM_Operation to do the job for us - sometime later
 406 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 407   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 408   VMThread::execute(vm_stop);
 409 }
 410 
 411 
 412 //
 413 // Check if an external suspend request has completed (or has been
 414 // cancelled). Returns true if the thread is externally suspended and
 415 // false otherwise.
 416 //
 417 // The bits parameter returns information about the code path through
 418 // the routine. Useful for debugging:
 419 //
 420 // set in is_ext_suspend_completed():
 421 // 0x00000001 - routine was entered
 422 // 0x00000010 - routine return false at end
 423 // 0x00000100 - thread exited (return false)
 424 // 0x00000200 - suspend request cancelled (return false)
 425 // 0x00000400 - thread suspended (return true)
 426 // 0x00001000 - thread is in a suspend equivalent state (return true)
 427 // 0x00002000 - thread is native and walkable (return true)
 428 // 0x00004000 - thread is native_trans and walkable (needed retry)
 429 //
 430 // set in wait_for_ext_suspend_completion():
 431 // 0x00010000 - routine was entered
 432 // 0x00020000 - suspend request cancelled before loop (return false)
 433 // 0x00040000 - thread suspended before loop (return true)
 434 // 0x00080000 - suspend request cancelled in loop (return false)
 435 // 0x00100000 - thread suspended in loop (return true)
 436 // 0x00200000 - suspend not completed during retry loop (return false)
 437 //
 438 
 439 // Helper class for tracing suspend wait debug bits.
 440 //
 441 // 0x00000100 indicates that the target thread exited before it could
 442 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 443 // 0x00080000 each indicate a cancelled suspend request so they don't
 444 // count as wait failures either.
 445 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 446 
 447 class TraceSuspendDebugBits : public StackObj {
 448  private:
 449   JavaThread * jt;
 450   bool         is_wait;
 451   bool         called_by_wait;  // meaningful when !is_wait
 452   uint32_t *   bits;
 453 
 454  public:
 455   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 456                         uint32_t *_bits) {
 457     jt             = _jt;
 458     is_wait        = _is_wait;
 459     called_by_wait = _called_by_wait;
 460     bits           = _bits;
 461   }
 462 
 463   ~TraceSuspendDebugBits() {
 464     if (!is_wait) {
 465 #if 1
 466       // By default, don't trace bits for is_ext_suspend_completed() calls.
 467       // That trace is very chatty.
 468       return;
 469 #else
 470       if (!called_by_wait) {
 471         // If tracing for is_ext_suspend_completed() is enabled, then only
 472         // trace calls to it from wait_for_ext_suspend_completion()
 473         return;
 474       }
 475 #endif
 476     }
 477 
 478     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 479       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 480         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 481         ResourceMark rm;
 482 
 483         tty->print_cr(
 484             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 485             jt->get_thread_name(), *bits);
 486 
 487         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 488       }
 489     }
 490   }
 491 };
 492 #undef DEBUG_FALSE_BITS
 493 
 494 
 495 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 496   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 497 
 498   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 499   bool do_trans_retry;           // flag to force the retry
 500 
 501   *bits |= 0x00000001;
 502 
 503   do {
 504     do_trans_retry = false;
 505 
 506     if (is_exiting()) {
 507       // Thread is in the process of exiting. This is always checked
 508       // first to reduce the risk of dereferencing a freed JavaThread.
 509       *bits |= 0x00000100;
 510       return false;
 511     }
 512 
 513     if (!is_external_suspend()) {
 514       // Suspend request is cancelled. This is always checked before
 515       // is_ext_suspended() to reduce the risk of a rogue resume
 516       // confusing the thread that made the suspend request.
 517       *bits |= 0x00000200;
 518       return false;
 519     }
 520 
 521     if (is_ext_suspended()) {
 522       // thread is suspended
 523       *bits |= 0x00000400;
 524       return true;
 525     }
 526 
 527     // Now that we no longer do hard suspends of threads running
 528     // native code, the target thread can be changing thread state
 529     // while we are in this routine:
 530     //
 531     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 532     //
 533     // We save a copy of the thread state as observed at this moment
 534     // and make our decision about suspend completeness based on the
 535     // copy. This closes the race where the thread state is seen as
 536     // _thread_in_native_trans in the if-thread_blocked check, but is
 537     // seen as _thread_blocked in if-thread_in_native_trans check.
 538     JavaThreadState save_state = thread_state();
 539 
 540     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 541       // If the thread's state is _thread_blocked and this blocking
 542       // condition is known to be equivalent to a suspend, then we can
 543       // consider the thread to be externally suspended. This means that
 544       // the code that sets _thread_blocked has been modified to do
 545       // self-suspension if the blocking condition releases. We also
 546       // used to check for CONDVAR_WAIT here, but that is now covered by
 547       // the _thread_blocked with self-suspension check.
 548       //
 549       // Return true since we wouldn't be here unless there was still an
 550       // external suspend request.
 551       *bits |= 0x00001000;
 552       return true;
 553     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 554       // Threads running native code will self-suspend on native==>VM/Java
 555       // transitions. If its stack is walkable (should always be the case
 556       // unless this function is called before the actual java_suspend()
 557       // call), then the wait is done.
 558       *bits |= 0x00002000;
 559       return true;
 560     } else if (!called_by_wait && !did_trans_retry &&
 561                save_state == _thread_in_native_trans &&
 562                frame_anchor()->walkable()) {
 563       // The thread is transitioning from thread_in_native to another
 564       // thread state. check_safepoint_and_suspend_for_native_trans()
 565       // will force the thread to self-suspend. If it hasn't gotten
 566       // there yet we may have caught the thread in-between the native
 567       // code check above and the self-suspend. Lucky us. If we were
 568       // called by wait_for_ext_suspend_completion(), then it
 569       // will be doing the retries so we don't have to.
 570       //
 571       // Since we use the saved thread state in the if-statement above,
 572       // there is a chance that the thread has already transitioned to
 573       // _thread_blocked by the time we get here. In that case, we will
 574       // make a single unnecessary pass through the logic below. This
 575       // doesn't hurt anything since we still do the trans retry.
 576 
 577       *bits |= 0x00004000;
 578 
 579       // Once the thread leaves thread_in_native_trans for another
 580       // thread state, we break out of this retry loop. We shouldn't
 581       // need this flag to prevent us from getting back here, but
 582       // sometimes paranoia is good.
 583       did_trans_retry = true;
 584 
 585       // We wait for the thread to transition to a more usable state.
 586       for (int i = 1; i <= SuspendRetryCount; i++) {
 587         // We used to do an "os::yield_all(i)" call here with the intention
 588         // that yielding would increase on each retry. However, the parameter
 589         // is ignored on Linux which means the yield didn't scale up. Waiting
 590         // on the SR_lock below provides a much more predictable scale up for
 591         // the delay. It also provides a simple/direct point to check for any
 592         // safepoint requests from the VMThread
 593 
 594         // temporarily drops SR_lock while doing wait with safepoint check
 595         // (if we're a JavaThread - the WatcherThread can also call this)
 596         // and increase delay with each retry
 597         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 598 
 599         // check the actual thread state instead of what we saved above
 600         if (thread_state() != _thread_in_native_trans) {
 601           // the thread has transitioned to another thread state so
 602           // try all the checks (except this one) one more time.
 603           do_trans_retry = true;
 604           break;
 605         }
 606       } // end retry loop
 607 
 608 
 609     }
 610   } while (do_trans_retry);
 611 
 612   *bits |= 0x00000010;
 613   return false;
 614 }
 615 
 616 //
 617 // Wait for an external suspend request to complete (or be cancelled).
 618 // Returns true if the thread is externally suspended and false otherwise.
 619 //
 620 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 621        uint32_t *bits) {
 622   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 623                              false /* !called_by_wait */, bits);
 624 
 625   // local flag copies to minimize SR_lock hold time
 626   bool is_suspended;
 627   bool pending;
 628   uint32_t reset_bits;
 629 
 630   // set a marker so is_ext_suspend_completed() knows we are the caller
 631   *bits |= 0x00010000;
 632 
 633   // We use reset_bits to reinitialize the bits value at the top of
 634   // each retry loop. This allows the caller to make use of any
 635   // unused bits for their own marking purposes.
 636   reset_bits = *bits;
 637 
 638   {
 639     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 640     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 641                                             delay, bits);
 642     pending = is_external_suspend();
 643   }
 644   // must release SR_lock to allow suspension to complete
 645 
 646   if (!pending) {
 647     // A cancelled suspend request is the only false return from
 648     // is_ext_suspend_completed() that keeps us from entering the
 649     // retry loop.
 650     *bits |= 0x00020000;
 651     return false;
 652   }
 653 
 654   if (is_suspended) {
 655     *bits |= 0x00040000;
 656     return true;
 657   }
 658 
 659   for (int i = 1; i <= retries; i++) {
 660     *bits = reset_bits;  // reinit to only track last retry
 661 
 662     // We used to do an "os::yield_all(i)" call here with the intention
 663     // that yielding would increase on each retry. However, the parameter
 664     // is ignored on Linux which means the yield didn't scale up. Waiting
 665     // on the SR_lock below provides a much more predictable scale up for
 666     // the delay. It also provides a simple/direct point to check for any
 667     // safepoint requests from the VMThread
 668 
 669     {
 670       MutexLocker ml(SR_lock());
 671       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 672       // can also call this)  and increase delay with each retry
 673       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 674 
 675       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 676                                               delay, bits);
 677 
 678       // It is possible for the external suspend request to be cancelled
 679       // (by a resume) before the actual suspend operation is completed.
 680       // Refresh our local copy to see if we still need to wait.
 681       pending = is_external_suspend();
 682     }
 683 
 684     if (!pending) {
 685       // A cancelled suspend request is the only false return from
 686       // is_ext_suspend_completed() that keeps us from staying in the
 687       // retry loop.
 688       *bits |= 0x00080000;
 689       return false;
 690     }
 691 
 692     if (is_suspended) {
 693       *bits |= 0x00100000;
 694       return true;
 695     }
 696   } // end retry loop
 697 
 698   // thread did not suspend after all our retries
 699   *bits |= 0x00200000;
 700   return false;
 701 }
 702 
 703 #ifndef PRODUCT
 704 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 705 
 706   // This should not need to be atomic as the only way for simultaneous
 707   // updates is via interrupts. Even then this should be rare or non-existant
 708   // and we don't care that much anyway.
 709 
 710   int index = _jmp_ring_index;
 711   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 712   _jmp_ring[index]._target = (intptr_t) target;
 713   _jmp_ring[index]._instruction = (intptr_t) instr;
 714   _jmp_ring[index]._file = file;
 715   _jmp_ring[index]._line = line;
 716 }
 717 #endif /* PRODUCT */
 718 
 719 // Called by flat profiler
 720 // Callers have already called wait_for_ext_suspend_completion
 721 // The assertion for that is currently too complex to put here:
 722 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 723   bool gotframe = false;
 724   // self suspension saves needed state.
 725   if (has_last_Java_frame() && _anchor.walkable()) {
 726      *_fr = pd_last_frame();
 727      gotframe = true;
 728   }
 729   return gotframe;
 730 }
 731 
 732 void Thread::interrupt(Thread* thread) {
 733   trace("interrupt", thread);
 734   debug_only(check_for_dangling_thread_pointer(thread);)
 735   os::interrupt(thread);
 736 }
 737 
 738 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 739   trace("is_interrupted", thread);
 740   debug_only(check_for_dangling_thread_pointer(thread);)
 741   // Note:  If clear_interrupted==false, this simply fetches and
 742   // returns the value of the field osthread()->interrupted().
 743   return os::is_interrupted(thread, clear_interrupted);
 744 }
 745 
 746 
 747 // GC Support
 748 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 749   jint thread_parity = _oops_do_parity;
 750   if (thread_parity != strong_roots_parity) {
 751     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 752     if (res == thread_parity) {
 753       return true;
 754     } else {
 755       guarantee(res == strong_roots_parity, "Or else what?");
 756       assert(SharedHeap::heap()->n_par_threads() > 0,
 757              "Should only fail when parallel.");
 758       return false;
 759     }
 760   }
 761   assert(SharedHeap::heap()->n_par_threads() > 0,
 762          "Should only fail when parallel.");
 763   return false;
 764 }
 765 
 766 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 767   active_handles()->oops_do(f);
 768   // Do oop for ThreadShadow
 769   f->do_oop((oop*)&_pending_exception);
 770   handle_area()->oops_do(f);
 771 }
 772 
 773 void Thread::nmethods_do(CodeBlobClosure* cf) {
 774   // no nmethods in a generic thread...
 775 }
 776 
 777 void Thread::print_on(outputStream* st) const {
 778   // get_priority assumes osthread initialized
 779   if (osthread() != NULL) {
 780     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 781     osthread()->print_on(st);
 782   }
 783   debug_only(if (WizardMode) print_owned_locks_on(st);)
 784 }
 785 
 786 // Thread::print_on_error() is called by fatal error handler. Don't use
 787 // any lock or allocate memory.
 788 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 789   if      (is_VM_thread())                  st->print("VMThread");
 790   else if (is_Compiler_thread())            st->print("CompilerThread");
 791   else if (is_Java_thread())                st->print("JavaThread");
 792   else if (is_GC_task_thread())             st->print("GCTaskThread");
 793   else if (is_Watcher_thread())             st->print("WatcherThread");
 794   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 795   else st->print("Thread");
 796 
 797   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 798             _stack_base - _stack_size, _stack_base);
 799 
 800   if (osthread()) {
 801     st->print(" [id=%d]", osthread()->thread_id());
 802   }
 803 }
 804 
 805 #ifdef ASSERT
 806 void Thread::print_owned_locks_on(outputStream* st) const {
 807   Monitor *cur = _owned_locks;
 808   if (cur == NULL) {
 809     st->print(" (no locks) ");
 810   } else {
 811     st->print_cr(" Locks owned:");
 812     while(cur) {
 813       cur->print_on(st);
 814       cur = cur->next();
 815     }
 816   }
 817 }
 818 
 819 static int ref_use_count  = 0;
 820 
 821 bool Thread::owns_locks_but_compiled_lock() const {
 822   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 823     if (cur != Compile_lock) return true;
 824   }
 825   return false;
 826 }
 827 
 828 
 829 #endif
 830 
 831 #ifndef PRODUCT
 832 
 833 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 834 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 835 // no threads which allow_vm_block's are held
 836 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 837     // Check if current thread is allowed to block at a safepoint
 838     if (!(_allow_safepoint_count == 0))
 839       fatal("Possible safepoint reached by thread that does not allow it");
 840     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 841       fatal("LEAF method calling lock?");
 842     }
 843 
 844 #ifdef ASSERT
 845     if (potential_vm_operation && is_Java_thread()
 846         && !Universe::is_bootstrapping()) {
 847       // Make sure we do not hold any locks that the VM thread also uses.
 848       // This could potentially lead to deadlocks
 849       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 850         // Threads_lock is special, since the safepoint synchronization will not start before this is
 851         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 852         // since it is used to transfer control between JavaThreads and the VMThread
 853         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 854         if ( (cur->allow_vm_block() &&
 855               cur != Threads_lock &&
 856               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 857               cur != VMOperationRequest_lock &&
 858               cur != VMOperationQueue_lock) ||
 859               cur->rank() == Mutex::special) {
 860           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 861         }
 862       }
 863     }
 864 
 865     if (GCALotAtAllSafepoints) {
 866       // We could enter a safepoint here and thus have a gc
 867       InterfaceSupport::check_gc_alot();
 868     }
 869 #endif
 870 }
 871 #endif
 872 
 873 bool Thread::is_in_stack(address adr) const {
 874   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 875   address end = os::current_stack_pointer();
 876   if (stack_base() >= adr && adr >= end) return true;
 877 
 878   return false;
 879 }
 880 
 881 
 882 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 883 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 884 // used for compilation in the future. If that change is made, the need for these methods
 885 // should be revisited, and they should be removed if possible.
 886 
 887 bool Thread::is_lock_owned(address adr) const {
 888   return on_local_stack(adr);
 889 }
 890 
 891 bool Thread::set_as_starting_thread() {
 892  // NOTE: this must be called inside the main thread.
 893   return os::create_main_thread((JavaThread*)this);
 894 }
 895 
 896 static void initialize_class(Symbol* class_name, TRAPS) {
 897   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 898   instanceKlass::cast(klass)->initialize(CHECK);
 899 }
 900 
 901 
 902 // Creates the initial ThreadGroup
 903 static Handle create_initial_thread_group(TRAPS) {
 904   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 905   instanceKlassHandle klass (THREAD, k);
 906 
 907   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 908   {
 909     JavaValue result(T_VOID);
 910     JavaCalls::call_special(&result,
 911                             system_instance,
 912                             klass,
 913                             vmSymbols::object_initializer_name(),
 914                             vmSymbols::void_method_signature(),
 915                             CHECK_NH);
 916   }
 917   Universe::set_system_thread_group(system_instance());
 918 
 919   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 920   {
 921     JavaValue result(T_VOID);
 922     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 923     JavaCalls::call_special(&result,
 924                             main_instance,
 925                             klass,
 926                             vmSymbols::object_initializer_name(),
 927                             vmSymbols::threadgroup_string_void_signature(),
 928                             system_instance,
 929                             string,
 930                             CHECK_NH);
 931   }
 932   return main_instance;
 933 }
 934 
 935 // Creates the initial Thread
 936 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 937   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 938   instanceKlassHandle klass (THREAD, k);
 939   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 940 
 941   java_lang_Thread::set_thread(thread_oop(), thread);
 942   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 943   thread->set_threadObj(thread_oop());
 944 
 945   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 946 
 947   JavaValue result(T_VOID);
 948   JavaCalls::call_special(&result, thread_oop,
 949                                    klass,
 950                                    vmSymbols::object_initializer_name(),
 951                                    vmSymbols::threadgroup_string_void_signature(),
 952                                    thread_group,
 953                                    string,
 954                                    CHECK_NULL);
 955   return thread_oop();
 956 }
 957 
 958 static void call_initializeSystemClass(TRAPS) {
 959   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 960   instanceKlassHandle klass (THREAD, k);
 961 
 962   JavaValue result(T_VOID);
 963   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
 964                                          vmSymbols::void_method_signature(), CHECK);
 965 }
 966 
 967 // General purpose hook into Java code, run once when the VM is initialized.
 968 // The Java library method itself may be changed independently from the VM.
 969 static void call_postVMInitHook(TRAPS) {
 970   klassOop k = SystemDictionary::sun_misc_PostVMInitHook_klass();
 971   instanceKlassHandle klass (THREAD, k);
 972   if (klass.not_null()) {
 973     JavaValue result(T_VOID);
 974     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
 975                                            vmSymbols::void_method_signature(),
 976                                            CHECK);
 977   }
 978 }
 979 
 980 static void reset_vm_info_property(TRAPS) {
 981   // the vm info string
 982   ResourceMark rm(THREAD);
 983   const char *vm_info = VM_Version::vm_info_string();
 984 
 985   // java.lang.System class
 986   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 987   instanceKlassHandle klass (THREAD, k);
 988 
 989   // setProperty arguments
 990   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
 991   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
 992 
 993   // return value
 994   JavaValue r(T_OBJECT);
 995 
 996   // public static String setProperty(String key, String value);
 997   JavaCalls::call_static(&r,
 998                          klass,
 999                          vmSymbols::setProperty_name(),
1000                          vmSymbols::string_string_string_signature(),
1001                          key_str,
1002                          value_str,
1003                          CHECK);
1004 }
1005 
1006 
1007 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1008   assert(thread_group.not_null(), "thread group should be specified");
1009   assert(threadObj() == NULL, "should only create Java thread object once");
1010 
1011   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1012   instanceKlassHandle klass (THREAD, k);
1013   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1014 
1015   java_lang_Thread::set_thread(thread_oop(), this);
1016   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1017   set_threadObj(thread_oop());
1018 
1019   JavaValue result(T_VOID);
1020   if (thread_name != NULL) {
1021     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1022     // Thread gets assigned specified name and null target
1023     JavaCalls::call_special(&result,
1024                             thread_oop,
1025                             klass,
1026                             vmSymbols::object_initializer_name(),
1027                             vmSymbols::threadgroup_string_void_signature(),
1028                             thread_group, // Argument 1
1029                             name,         // Argument 2
1030                             THREAD);
1031   } else {
1032     // Thread gets assigned name "Thread-nnn" and null target
1033     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1034     JavaCalls::call_special(&result,
1035                             thread_oop,
1036                             klass,
1037                             vmSymbols::object_initializer_name(),
1038                             vmSymbols::threadgroup_runnable_void_signature(),
1039                             thread_group, // Argument 1
1040                             Handle(),     // Argument 2
1041                             THREAD);
1042   }
1043 
1044 
1045   if (daemon) {
1046       java_lang_Thread::set_daemon(thread_oop());
1047   }
1048 
1049   if (HAS_PENDING_EXCEPTION) {
1050     return;
1051   }
1052 
1053   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1054   Handle threadObj(this, this->threadObj());
1055 
1056   JavaCalls::call_special(&result,
1057                          thread_group,
1058                          group,
1059                          vmSymbols::add_method_name(),
1060                          vmSymbols::thread_void_signature(),
1061                          threadObj,          // Arg 1
1062                          THREAD);
1063 
1064 
1065 }
1066 
1067 // NamedThread --  non-JavaThread subclasses with multiple
1068 // uniquely named instances should derive from this.
1069 NamedThread::NamedThread() : Thread() {
1070   _name = NULL;
1071   _processed_thread = NULL;
1072 }
1073 
1074 NamedThread::~NamedThread() {
1075   if (_name != NULL) {
1076     FREE_C_HEAP_ARRAY(char, _name);
1077     _name = NULL;
1078   }
1079 }
1080 
1081 void NamedThread::set_name(const char* format, ...) {
1082   guarantee(_name == NULL, "Only get to set name once.");
1083   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1084   guarantee(_name != NULL, "alloc failure");
1085   va_list ap;
1086   va_start(ap, format);
1087   jio_vsnprintf(_name, max_name_len, format, ap);
1088   va_end(ap);
1089 }
1090 
1091 // ======= WatcherThread ========
1092 
1093 // The watcher thread exists to simulate timer interrupts.  It should
1094 // be replaced by an abstraction over whatever native support for
1095 // timer interrupts exists on the platform.
1096 
1097 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1098 volatile bool  WatcherThread::_should_terminate = false;
1099 
1100 WatcherThread::WatcherThread() : Thread() {
1101   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1102   if (os::create_thread(this, os::watcher_thread)) {
1103     _watcher_thread = this;
1104 
1105     // Set the watcher thread to the highest OS priority which should not be
1106     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1107     // is created. The only normal thread using this priority is the reference
1108     // handler thread, which runs for very short intervals only.
1109     // If the VMThread's priority is not lower than the WatcherThread profiling
1110     // will be inaccurate.
1111     os::set_priority(this, MaxPriority);
1112     if (!DisableStartThread) {
1113       os::start_thread(this);
1114     }
1115   }
1116 }
1117 
1118 void WatcherThread::run() {
1119   assert(this == watcher_thread(), "just checking");
1120 
1121   this->record_stack_base_and_size();
1122   this->initialize_thread_local_storage();
1123   this->set_active_handles(JNIHandleBlock::allocate_block());
1124   while(!_should_terminate) {
1125     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1126     assert(watcher_thread() == this,  "thread consistency check");
1127 
1128     // Calculate how long it'll be until the next PeriodicTask work
1129     // should be done, and sleep that amount of time.
1130     size_t time_to_wait = PeriodicTask::time_to_wait();
1131 
1132     // we expect this to timeout - we only ever get unparked when
1133     // we should terminate
1134     {
1135       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1136 
1137       jlong prev_time = os::javaTimeNanos();
1138       for (;;) {
1139         int res= _SleepEvent->park(time_to_wait);
1140         if (res == OS_TIMEOUT || _should_terminate)
1141           break;
1142         // spurious wakeup of some kind
1143         jlong now = os::javaTimeNanos();
1144         time_to_wait -= (now - prev_time) / 1000000;
1145         if (time_to_wait <= 0)
1146           break;
1147         prev_time = now;
1148       }
1149     }
1150 
1151     if (is_error_reported()) {
1152       // A fatal error has happened, the error handler(VMError::report_and_die)
1153       // should abort JVM after creating an error log file. However in some
1154       // rare cases, the error handler itself might deadlock. Here we try to
1155       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1156       //
1157       // This code is in WatcherThread because WatcherThread wakes up
1158       // periodically so the fatal error handler doesn't need to do anything;
1159       // also because the WatcherThread is less likely to crash than other
1160       // threads.
1161 
1162       for (;;) {
1163         if (!ShowMessageBoxOnError
1164          && (OnError == NULL || OnError[0] == '\0')
1165          && Arguments::abort_hook() == NULL) {
1166              os::sleep(this, 2 * 60 * 1000, false);
1167              fdStream err(defaultStream::output_fd());
1168              err.print_raw_cr("# [ timer expired, abort... ]");
1169              // skip atexit/vm_exit/vm_abort hooks
1170              os::die();
1171         }
1172 
1173         // Wake up 5 seconds later, the fatal handler may reset OnError or
1174         // ShowMessageBoxOnError when it is ready to abort.
1175         os::sleep(this, 5 * 1000, false);
1176       }
1177     }
1178 
1179     PeriodicTask::real_time_tick(time_to_wait);
1180 
1181     // If we have no more tasks left due to dynamic disenrollment,
1182     // shut down the thread since we don't currently support dynamic enrollment
1183     if (PeriodicTask::num_tasks() == 0) {
1184       _should_terminate = true;
1185     }
1186   }
1187 
1188   // Signal that it is terminated
1189   {
1190     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1191     _watcher_thread = NULL;
1192     Terminator_lock->notify();
1193   }
1194 
1195   // Thread destructor usually does this..
1196   ThreadLocalStorage::set_thread(NULL);
1197 }
1198 
1199 void WatcherThread::start() {
1200   if (watcher_thread() == NULL) {
1201     _should_terminate = false;
1202     // Create the single instance of WatcherThread
1203     new WatcherThread();
1204   }
1205 }
1206 
1207 void WatcherThread::stop() {
1208   // it is ok to take late safepoints here, if needed
1209   MutexLocker mu(Terminator_lock);
1210   _should_terminate = true;
1211   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1212 
1213   Thread* watcher = watcher_thread();
1214   if (watcher != NULL)
1215     watcher->_SleepEvent->unpark();
1216 
1217   while(watcher_thread() != NULL) {
1218     // This wait should make safepoint checks, wait without a timeout,
1219     // and wait as a suspend-equivalent condition.
1220     //
1221     // Note: If the FlatProfiler is running, then this thread is waiting
1222     // for the WatcherThread to terminate and the WatcherThread, via the
1223     // FlatProfiler task, is waiting for the external suspend request on
1224     // this thread to complete. wait_for_ext_suspend_completion() will
1225     // eventually timeout, but that takes time. Making this wait a
1226     // suspend-equivalent condition solves that timeout problem.
1227     //
1228     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1229                           Mutex::_as_suspend_equivalent_flag);
1230   }
1231 }
1232 
1233 void WatcherThread::print_on(outputStream* st) const {
1234   st->print("\"%s\" ", name());
1235   Thread::print_on(st);
1236   st->cr();
1237 }
1238 
1239 // ======= JavaThread ========
1240 
1241 // A JavaThread is a normal Java thread
1242 
1243 void JavaThread::initialize() {
1244   // Initialize fields
1245 
1246   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1247   set_claimed_par_id(-1);
1248 
1249   set_saved_exception_pc(NULL);
1250   set_threadObj(NULL);
1251   _anchor.clear();
1252   set_entry_point(NULL);
1253   set_jni_functions(jni_functions());
1254   set_callee_target(NULL);
1255   set_vm_result(NULL);
1256   set_vm_result_2(NULL);
1257   set_vframe_array_head(NULL);
1258   set_vframe_array_last(NULL);
1259   set_deferred_locals(NULL);
1260   set_deopt_mark(NULL);
1261   set_deopt_nmethod(NULL);
1262   clear_must_deopt_id();
1263   set_monitor_chunks(NULL);
1264   set_next(NULL);
1265   set_thread_state(_thread_new);
1266   _terminated = _not_terminated;
1267   _privileged_stack_top = NULL;
1268   _array_for_gc = NULL;
1269   _suspend_equivalent = false;
1270   _in_deopt_handler = 0;
1271   _doing_unsafe_access = false;
1272   _stack_guard_state = stack_guard_unused;
1273   _exception_oop = NULL;
1274   _exception_pc  = 0;
1275   _exception_handler_pc = 0;
1276   _is_method_handle_return = 0;
1277   _jvmti_thread_state= NULL;
1278   _should_post_on_exceptions_flag = JNI_FALSE;
1279   _jvmti_get_loaded_classes_closure = NULL;
1280   _interp_only_mode    = 0;
1281   _special_runtime_exit_condition = _no_async_condition;
1282   _pending_async_exception = NULL;
1283   _is_compiling = false;
1284   _thread_stat = NULL;
1285   _thread_stat = new ThreadStatistics();
1286   _blocked_on_compilation = false;
1287   _jni_active_critical = 0;
1288   _do_not_unlock_if_synchronized = false;
1289   _cached_monitor_info = NULL;
1290   _parker = Parker::Allocate(this) ;
1291 
1292 #ifndef PRODUCT
1293   _jmp_ring_index = 0;
1294   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1295     record_jump(NULL, NULL, NULL, 0);
1296   }
1297 #endif /* PRODUCT */
1298 
1299   set_thread_profiler(NULL);
1300   if (FlatProfiler::is_active()) {
1301     // This is where we would decide to either give each thread it's own profiler
1302     // or use one global one from FlatProfiler,
1303     // or up to some count of the number of profiled threads, etc.
1304     ThreadProfiler* pp = new ThreadProfiler();
1305     pp->engage();
1306     set_thread_profiler(pp);
1307   }
1308 
1309   // Setup safepoint state info for this thread
1310   ThreadSafepointState::create(this);
1311 
1312   debug_only(_java_call_counter = 0);
1313 
1314   // JVMTI PopFrame support
1315   _popframe_condition = popframe_inactive;
1316   _popframe_preserved_args = NULL;
1317   _popframe_preserved_args_size = 0;
1318 
1319   pd_initialize();
1320 }
1321 
1322 #ifndef SERIALGC
1323 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1324 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1325 #endif // !SERIALGC
1326 
1327 JavaThread::JavaThread(bool is_attaching) :
1328   Thread()
1329 #ifndef SERIALGC
1330   , _satb_mark_queue(&_satb_mark_queue_set),
1331   _dirty_card_queue(&_dirty_card_queue_set)
1332 #endif // !SERIALGC
1333 {
1334   initialize();
1335   _is_attaching = is_attaching;
1336   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1337 }
1338 
1339 bool JavaThread::reguard_stack(address cur_sp) {
1340   if (_stack_guard_state != stack_guard_yellow_disabled) {
1341     return true; // Stack already guarded or guard pages not needed.
1342   }
1343 
1344   if (register_stack_overflow()) {
1345     // For those architectures which have separate register and
1346     // memory stacks, we must check the register stack to see if
1347     // it has overflowed.
1348     return false;
1349   }
1350 
1351   // Java code never executes within the yellow zone: the latter is only
1352   // there to provoke an exception during stack banging.  If java code
1353   // is executing there, either StackShadowPages should be larger, or
1354   // some exception code in c1, c2 or the interpreter isn't unwinding
1355   // when it should.
1356   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1357 
1358   enable_stack_yellow_zone();
1359   return true;
1360 }
1361 
1362 bool JavaThread::reguard_stack(void) {
1363   return reguard_stack(os::current_stack_pointer());
1364 }
1365 
1366 
1367 void JavaThread::block_if_vm_exited() {
1368   if (_terminated == _vm_exited) {
1369     // _vm_exited is set at safepoint, and Threads_lock is never released
1370     // we will block here forever
1371     Threads_lock->lock_without_safepoint_check();
1372     ShouldNotReachHere();
1373   }
1374 }
1375 
1376 
1377 // Remove this ifdef when C1 is ported to the compiler interface.
1378 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1379 
1380 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1381   Thread()
1382 #ifndef SERIALGC
1383   , _satb_mark_queue(&_satb_mark_queue_set),
1384   _dirty_card_queue(&_dirty_card_queue_set)
1385 #endif // !SERIALGC
1386 {
1387   if (TraceThreadEvents) {
1388     tty->print_cr("creating thread %p", this);
1389   }
1390   initialize();
1391   _is_attaching = false;
1392   set_entry_point(entry_point);
1393   // Create the native thread itself.
1394   // %note runtime_23
1395   os::ThreadType thr_type = os::java_thread;
1396   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1397                                                      os::java_thread;
1398   os::create_thread(this, thr_type, stack_sz);
1399 
1400   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1401   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1402   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1403   // the exception consists of creating the exception object & initializing it, initialization
1404   // will leave the VM via a JavaCall and then all locks must be unlocked).
1405   //
1406   // The thread is still suspended when we reach here. Thread must be explicit started
1407   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1408   // by calling Threads:add. The reason why this is not done here, is because the thread
1409   // object must be fully initialized (take a look at JVM_Start)
1410 }
1411 
1412 JavaThread::~JavaThread() {
1413   if (TraceThreadEvents) {
1414       tty->print_cr("terminate thread %p", this);
1415   }
1416 
1417   // JSR166 -- return the parker to the free list
1418   Parker::Release(_parker);
1419   _parker = NULL ;
1420 
1421   // Free any remaining  previous UnrollBlock
1422   vframeArray* old_array = vframe_array_last();
1423 
1424   if (old_array != NULL) {
1425     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1426     old_array->set_unroll_block(NULL);
1427     delete old_info;
1428     delete old_array;
1429   }
1430 
1431   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1432   if (deferred != NULL) {
1433     // This can only happen if thread is destroyed before deoptimization occurs.
1434     assert(deferred->length() != 0, "empty array!");
1435     do {
1436       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1437       deferred->remove_at(0);
1438       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1439       delete dlv;
1440     } while (deferred->length() != 0);
1441     delete deferred;
1442   }
1443 
1444   // All Java related clean up happens in exit
1445   ThreadSafepointState::destroy(this);
1446   if (_thread_profiler != NULL) delete _thread_profiler;
1447   if (_thread_stat != NULL) delete _thread_stat;
1448 }
1449 
1450 
1451 // The first routine called by a new Java thread
1452 void JavaThread::run() {
1453   // initialize thread-local alloc buffer related fields
1454   this->initialize_tlab();
1455 
1456   // used to test validitity of stack trace backs
1457   this->record_base_of_stack_pointer();
1458 
1459   // Record real stack base and size.
1460   this->record_stack_base_and_size();
1461 
1462   // Initialize thread local storage; set before calling MutexLocker
1463   this->initialize_thread_local_storage();
1464 
1465   this->create_stack_guard_pages();
1466 
1467   this->cache_global_variables();
1468 
1469   // Thread is now sufficient initialized to be handled by the safepoint code as being
1470   // in the VM. Change thread state from _thread_new to _thread_in_vm
1471   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1472 
1473   assert(JavaThread::current() == this, "sanity check");
1474   assert(!Thread::current()->owns_locks(), "sanity check");
1475 
1476   DTRACE_THREAD_PROBE(start, this);
1477 
1478   // This operation might block. We call that after all safepoint checks for a new thread has
1479   // been completed.
1480   this->set_active_handles(JNIHandleBlock::allocate_block());
1481 
1482   if (JvmtiExport::should_post_thread_life()) {
1483     JvmtiExport::post_thread_start(this);
1484   }
1485 
1486   // We call another function to do the rest so we are sure that the stack addresses used
1487   // from there will be lower than the stack base just computed
1488   thread_main_inner();
1489 
1490   // Note, thread is no longer valid at this point!
1491 }
1492 
1493 
1494 void JavaThread::thread_main_inner() {
1495   assert(JavaThread::current() == this, "sanity check");
1496   assert(this->threadObj() != NULL, "just checking");
1497 
1498   // Execute thread entry point unless this thread has a pending exception
1499   // or has been stopped before starting.
1500   // Note: Due to JVM_StopThread we can have pending exceptions already!
1501   if (!this->has_pending_exception() &&
1502       !java_lang_Thread::is_stillborn(this->threadObj())) {
1503     HandleMark hm(this);
1504     this->entry_point()(this, this);
1505   }
1506 
1507   DTRACE_THREAD_PROBE(stop, this);
1508 
1509   this->exit(false);
1510   delete this;
1511 }
1512 
1513 
1514 static void ensure_join(JavaThread* thread) {
1515   // We do not need to grap the Threads_lock, since we are operating on ourself.
1516   Handle threadObj(thread, thread->threadObj());
1517   assert(threadObj.not_null(), "java thread object must exist");
1518   ObjectLocker lock(threadObj, thread);
1519   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1520   thread->clear_pending_exception();
1521   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1522   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1523   // Clear the native thread instance - this makes isAlive return false and allows the join()
1524   // to complete once we've done the notify_all below
1525   java_lang_Thread::set_thread(threadObj(), NULL);
1526   lock.notify_all(thread);
1527   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1528   thread->clear_pending_exception();
1529 }
1530 
1531 
1532 // For any new cleanup additions, please check to see if they need to be applied to
1533 // cleanup_failed_attach_current_thread as well.
1534 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1535   assert(this == JavaThread::current(),  "thread consistency check");
1536   if (!InitializeJavaLangSystem) return;
1537 
1538   HandleMark hm(this);
1539   Handle uncaught_exception(this, this->pending_exception());
1540   this->clear_pending_exception();
1541   Handle threadObj(this, this->threadObj());
1542   assert(threadObj.not_null(), "Java thread object should be created");
1543 
1544   if (get_thread_profiler() != NULL) {
1545     get_thread_profiler()->disengage();
1546     ResourceMark rm;
1547     get_thread_profiler()->print(get_thread_name());
1548   }
1549 
1550 
1551   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1552   {
1553     EXCEPTION_MARK;
1554 
1555     CLEAR_PENDING_EXCEPTION;
1556   }
1557   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1558   // has to be fixed by a runtime query method
1559   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1560     // JSR-166: change call from from ThreadGroup.uncaughtException to
1561     // java.lang.Thread.dispatchUncaughtException
1562     if (uncaught_exception.not_null()) {
1563       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1564       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1565         (address)uncaught_exception(), (address)threadObj(), (address)group());
1566       {
1567         EXCEPTION_MARK;
1568         // Check if the method Thread.dispatchUncaughtException() exists. If so
1569         // call it.  Otherwise we have an older library without the JSR-166 changes,
1570         // so call ThreadGroup.uncaughtException()
1571         KlassHandle recvrKlass(THREAD, threadObj->klass());
1572         CallInfo callinfo;
1573         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1574         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1575                                            vmSymbols::dispatchUncaughtException_name(),
1576                                            vmSymbols::throwable_void_signature(),
1577                                            KlassHandle(), false, false, THREAD);
1578         CLEAR_PENDING_EXCEPTION;
1579         methodHandle method = callinfo.selected_method();
1580         if (method.not_null()) {
1581           JavaValue result(T_VOID);
1582           JavaCalls::call_virtual(&result,
1583                                   threadObj, thread_klass,
1584                                   vmSymbols::dispatchUncaughtException_name(),
1585                                   vmSymbols::throwable_void_signature(),
1586                                   uncaught_exception,
1587                                   THREAD);
1588         } else {
1589           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1590           JavaValue result(T_VOID);
1591           JavaCalls::call_virtual(&result,
1592                                   group, thread_group,
1593                                   vmSymbols::uncaughtException_name(),
1594                                   vmSymbols::thread_throwable_void_signature(),
1595                                   threadObj,           // Arg 1
1596                                   uncaught_exception,  // Arg 2
1597                                   THREAD);
1598         }
1599         if (HAS_PENDING_EXCEPTION) {
1600           ResourceMark rm(this);
1601           jio_fprintf(defaultStream::error_stream(),
1602                 "\nException: %s thrown from the UncaughtExceptionHandler"
1603                 " in thread \"%s\"\n",
1604                 Klass::cast(pending_exception()->klass())->external_name(),
1605                 get_thread_name());
1606           CLEAR_PENDING_EXCEPTION;
1607         }
1608       }
1609     }
1610 
1611     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1612     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1613     // is deprecated anyhow.
1614     { int count = 3;
1615       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1616         EXCEPTION_MARK;
1617         JavaValue result(T_VOID);
1618         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1619         JavaCalls::call_virtual(&result,
1620                               threadObj, thread_klass,
1621                               vmSymbols::exit_method_name(),
1622                               vmSymbols::void_method_signature(),
1623                               THREAD);
1624         CLEAR_PENDING_EXCEPTION;
1625       }
1626     }
1627 
1628     // notify JVMTI
1629     if (JvmtiExport::should_post_thread_life()) {
1630       JvmtiExport::post_thread_end(this);
1631     }
1632 
1633     // We have notified the agents that we are exiting, before we go on,
1634     // we must check for a pending external suspend request and honor it
1635     // in order to not surprise the thread that made the suspend request.
1636     while (true) {
1637       {
1638         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1639         if (!is_external_suspend()) {
1640           set_terminated(_thread_exiting);
1641           ThreadService::current_thread_exiting(this);
1642           break;
1643         }
1644         // Implied else:
1645         // Things get a little tricky here. We have a pending external
1646         // suspend request, but we are holding the SR_lock so we
1647         // can't just self-suspend. So we temporarily drop the lock
1648         // and then self-suspend.
1649       }
1650 
1651       ThreadBlockInVM tbivm(this);
1652       java_suspend_self();
1653 
1654       // We're done with this suspend request, but we have to loop around
1655       // and check again. Eventually we will get SR_lock without a pending
1656       // external suspend request and will be able to mark ourselves as
1657       // exiting.
1658     }
1659     // no more external suspends are allowed at this point
1660   } else {
1661     // before_exit() has already posted JVMTI THREAD_END events
1662   }
1663 
1664   // Notify waiters on thread object. This has to be done after exit() is called
1665   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1666   // group should have the destroyed bit set before waiters are notified).
1667   ensure_join(this);
1668   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1669 
1670   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1671   // held by this thread must be released.  A detach operation must only
1672   // get here if there are no Java frames on the stack.  Therefore, any
1673   // owned monitors at this point MUST be JNI-acquired monitors which are
1674   // pre-inflated and in the monitor cache.
1675   //
1676   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1677   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1678     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1679     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1680     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1681   }
1682 
1683   // These things needs to be done while we are still a Java Thread. Make sure that thread
1684   // is in a consistent state, in case GC happens
1685   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1686 
1687   if (active_handles() != NULL) {
1688     JNIHandleBlock* block = active_handles();
1689     set_active_handles(NULL);
1690     JNIHandleBlock::release_block(block);
1691   }
1692 
1693   if (free_handle_block() != NULL) {
1694     JNIHandleBlock* block = free_handle_block();
1695     set_free_handle_block(NULL);
1696     JNIHandleBlock::release_block(block);
1697   }
1698 
1699   // These have to be removed while this is still a valid thread.
1700   remove_stack_guard_pages();
1701 
1702   if (UseTLAB) {
1703     tlab().make_parsable(true);  // retire TLAB
1704   }
1705 
1706   if (JvmtiEnv::environments_might_exist()) {
1707     JvmtiExport::cleanup_thread(this);
1708   }
1709 
1710 #ifndef SERIALGC
1711   // We must flush G1-related buffers before removing a thread from
1712   // the list of active threads.
1713   if (UseG1GC) {
1714     flush_barrier_queues();
1715   }
1716 #endif
1717 
1718   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1719   Threads::remove(this);
1720 }
1721 
1722 #ifndef SERIALGC
1723 // Flush G1-related queues.
1724 void JavaThread::flush_barrier_queues() {
1725   satb_mark_queue().flush();
1726   dirty_card_queue().flush();
1727 }
1728 
1729 void JavaThread::initialize_queues() {
1730   assert(!SafepointSynchronize::is_at_safepoint(),
1731          "we should not be at a safepoint");
1732 
1733   ObjPtrQueue& satb_queue = satb_mark_queue();
1734   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1735   // The SATB queue should have been constructed with its active
1736   // field set to false.
1737   assert(!satb_queue.is_active(), "SATB queue should not be active");
1738   assert(satb_queue.is_empty(), "SATB queue should be empty");
1739   // If we are creating the thread during a marking cycle, we should
1740   // set the active field of the SATB queue to true.
1741   if (satb_queue_set.is_active()) {
1742     satb_queue.set_active(true);
1743   }
1744 
1745   DirtyCardQueue& dirty_queue = dirty_card_queue();
1746   // The dirty card queue should have been constructed with its
1747   // active field set to true.
1748   assert(dirty_queue.is_active(), "dirty card queue should be active");
1749 }
1750 #endif // !SERIALGC
1751 
1752 void JavaThread::cleanup_failed_attach_current_thread() {
1753   if (get_thread_profiler() != NULL) {
1754     get_thread_profiler()->disengage();
1755     ResourceMark rm;
1756     get_thread_profiler()->print(get_thread_name());
1757   }
1758 
1759   if (active_handles() != NULL) {
1760     JNIHandleBlock* block = active_handles();
1761     set_active_handles(NULL);
1762     JNIHandleBlock::release_block(block);
1763   }
1764 
1765   if (free_handle_block() != NULL) {
1766     JNIHandleBlock* block = free_handle_block();
1767     set_free_handle_block(NULL);
1768     JNIHandleBlock::release_block(block);
1769   }
1770 
1771   // These have to be removed while this is still a valid thread.
1772   remove_stack_guard_pages();
1773 
1774   if (UseTLAB) {
1775     tlab().make_parsable(true);  // retire TLAB, if any
1776   }
1777 
1778 #ifndef SERIALGC
1779   if (UseG1GC) {
1780     flush_barrier_queues();
1781   }
1782 #endif
1783 
1784   Threads::remove(this);
1785   delete this;
1786 }
1787 
1788 
1789 
1790 
1791 JavaThread* JavaThread::active() {
1792   Thread* thread = ThreadLocalStorage::thread();
1793   assert(thread != NULL, "just checking");
1794   if (thread->is_Java_thread()) {
1795     return (JavaThread*) thread;
1796   } else {
1797     assert(thread->is_VM_thread(), "this must be a vm thread");
1798     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1799     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1800     assert(ret->is_Java_thread(), "must be a Java thread");
1801     return ret;
1802   }
1803 }
1804 
1805 bool JavaThread::is_lock_owned(address adr) const {
1806   if (Thread::is_lock_owned(adr)) return true;
1807 
1808   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1809     if (chunk->contains(adr)) return true;
1810   }
1811 
1812   return false;
1813 }
1814 
1815 
1816 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1817   chunk->set_next(monitor_chunks());
1818   set_monitor_chunks(chunk);
1819 }
1820 
1821 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1822   guarantee(monitor_chunks() != NULL, "must be non empty");
1823   if (monitor_chunks() == chunk) {
1824     set_monitor_chunks(chunk->next());
1825   } else {
1826     MonitorChunk* prev = monitor_chunks();
1827     while (prev->next() != chunk) prev = prev->next();
1828     prev->set_next(chunk->next());
1829   }
1830 }
1831 
1832 // JVM support.
1833 
1834 // Note: this function shouldn't block if it's called in
1835 // _thread_in_native_trans state (such as from
1836 // check_special_condition_for_native_trans()).
1837 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1838 
1839   if (has_last_Java_frame() && has_async_condition()) {
1840     // If we are at a polling page safepoint (not a poll return)
1841     // then we must defer async exception because live registers
1842     // will be clobbered by the exception path. Poll return is
1843     // ok because the call we a returning from already collides
1844     // with exception handling registers and so there is no issue.
1845     // (The exception handling path kills call result registers but
1846     //  this is ok since the exception kills the result anyway).
1847 
1848     if (is_at_poll_safepoint()) {
1849       // if the code we are returning to has deoptimized we must defer
1850       // the exception otherwise live registers get clobbered on the
1851       // exception path before deoptimization is able to retrieve them.
1852       //
1853       RegisterMap map(this, false);
1854       frame caller_fr = last_frame().sender(&map);
1855       assert(caller_fr.is_compiled_frame(), "what?");
1856       if (caller_fr.is_deoptimized_frame()) {
1857         if (TraceExceptions) {
1858           ResourceMark rm;
1859           tty->print_cr("deferred async exception at compiled safepoint");
1860         }
1861         return;
1862       }
1863     }
1864   }
1865 
1866   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1867   if (condition == _no_async_condition) {
1868     // Conditions have changed since has_special_runtime_exit_condition()
1869     // was called:
1870     // - if we were here only because of an external suspend request,
1871     //   then that was taken care of above (or cancelled) so we are done
1872     // - if we were here because of another async request, then it has
1873     //   been cleared between the has_special_runtime_exit_condition()
1874     //   and now so again we are done
1875     return;
1876   }
1877 
1878   // Check for pending async. exception
1879   if (_pending_async_exception != NULL) {
1880     // Only overwrite an already pending exception, if it is not a threadDeath.
1881     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1882 
1883       // We cannot call Exceptions::_throw(...) here because we cannot block
1884       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1885 
1886       if (TraceExceptions) {
1887         ResourceMark rm;
1888         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1889         if (has_last_Java_frame() ) {
1890           frame f = last_frame();
1891           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1892         }
1893         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1894       }
1895       _pending_async_exception = NULL;
1896       clear_has_async_exception();
1897     }
1898   }
1899 
1900   if (check_unsafe_error &&
1901       condition == _async_unsafe_access_error && !has_pending_exception()) {
1902     condition = _no_async_condition;  // done
1903     switch (thread_state()) {
1904     case _thread_in_vm:
1905       {
1906         JavaThread* THREAD = this;
1907         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1908       }
1909     case _thread_in_native:
1910       {
1911         ThreadInVMfromNative tiv(this);
1912         JavaThread* THREAD = this;
1913         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1914       }
1915     case _thread_in_Java:
1916       {
1917         ThreadInVMfromJava tiv(this);
1918         JavaThread* THREAD = this;
1919         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1920       }
1921     default:
1922       ShouldNotReachHere();
1923     }
1924   }
1925 
1926   assert(condition == _no_async_condition || has_pending_exception() ||
1927          (!check_unsafe_error && condition == _async_unsafe_access_error),
1928          "must have handled the async condition, if no exception");
1929 }
1930 
1931 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1932   //
1933   // Check for pending external suspend. Internal suspend requests do
1934   // not use handle_special_runtime_exit_condition().
1935   // If JNIEnv proxies are allowed, don't self-suspend if the target
1936   // thread is not the current thread. In older versions of jdbx, jdbx
1937   // threads could call into the VM with another thread's JNIEnv so we
1938   // can be here operating on behalf of a suspended thread (4432884).
1939   bool do_self_suspend = is_external_suspend_with_lock();
1940   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1941     //
1942     // Because thread is external suspended the safepoint code will count
1943     // thread as at a safepoint. This can be odd because we can be here
1944     // as _thread_in_Java which would normally transition to _thread_blocked
1945     // at a safepoint. We would like to mark the thread as _thread_blocked
1946     // before calling java_suspend_self like all other callers of it but
1947     // we must then observe proper safepoint protocol. (We can't leave
1948     // _thread_blocked with a safepoint in progress). However we can be
1949     // here as _thread_in_native_trans so we can't use a normal transition
1950     // constructor/destructor pair because they assert on that type of
1951     // transition. We could do something like:
1952     //
1953     // JavaThreadState state = thread_state();
1954     // set_thread_state(_thread_in_vm);
1955     // {
1956     //   ThreadBlockInVM tbivm(this);
1957     //   java_suspend_self()
1958     // }
1959     // set_thread_state(_thread_in_vm_trans);
1960     // if (safepoint) block;
1961     // set_thread_state(state);
1962     //
1963     // but that is pretty messy. Instead we just go with the way the
1964     // code has worked before and note that this is the only path to
1965     // java_suspend_self that doesn't put the thread in _thread_blocked
1966     // mode.
1967 
1968     frame_anchor()->make_walkable(this);
1969     java_suspend_self();
1970 
1971     // We might be here for reasons in addition to the self-suspend request
1972     // so check for other async requests.
1973   }
1974 
1975   if (check_asyncs) {
1976     check_and_handle_async_exceptions();
1977   }
1978 }
1979 
1980 void JavaThread::send_thread_stop(oop java_throwable)  {
1981   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1982   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1983   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1984 
1985   // Do not throw asynchronous exceptions against the compiler thread
1986   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1987   if (is_Compiler_thread()) return;
1988 
1989   {
1990     // Actually throw the Throwable against the target Thread - however
1991     // only if there is no thread death exception installed already.
1992     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1993       // If the topmost frame is a runtime stub, then we are calling into
1994       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1995       // must deoptimize the caller before continuing, as the compiled  exception handler table
1996       // may not be valid
1997       if (has_last_Java_frame()) {
1998         frame f = last_frame();
1999         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2000           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2001           RegisterMap reg_map(this, UseBiasedLocking);
2002           frame compiled_frame = f.sender(&reg_map);
2003           if (compiled_frame.can_be_deoptimized()) {
2004             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2005           }
2006         }
2007       }
2008 
2009       // Set async. pending exception in thread.
2010       set_pending_async_exception(java_throwable);
2011 
2012       if (TraceExceptions) {
2013        ResourceMark rm;
2014        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
2015       }
2016       // for AbortVMOnException flag
2017       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
2018     }
2019   }
2020 
2021 
2022   // Interrupt thread so it will wake up from a potential wait()
2023   Thread::interrupt(this);
2024 }
2025 
2026 // External suspension mechanism.
2027 //
2028 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2029 // to any VM_locks and it is at a transition
2030 // Self-suspension will happen on the transition out of the vm.
2031 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2032 //
2033 // Guarantees on return:
2034 //   + Target thread will not execute any new bytecode (that's why we need to
2035 //     force a safepoint)
2036 //   + Target thread will not enter any new monitors
2037 //
2038 void JavaThread::java_suspend() {
2039   { MutexLocker mu(Threads_lock);
2040     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2041        return;
2042     }
2043   }
2044 
2045   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2046     if (!is_external_suspend()) {
2047       // a racing resume has cancelled us; bail out now
2048       return;
2049     }
2050 
2051     // suspend is done
2052     uint32_t debug_bits = 0;
2053     // Warning: is_ext_suspend_completed() may temporarily drop the
2054     // SR_lock to allow the thread to reach a stable thread state if
2055     // it is currently in a transient thread state.
2056     if (is_ext_suspend_completed(false /* !called_by_wait */,
2057                                  SuspendRetryDelay, &debug_bits) ) {
2058       return;
2059     }
2060   }
2061 
2062   VM_ForceSafepoint vm_suspend;
2063   VMThread::execute(&vm_suspend);
2064 }
2065 
2066 // Part II of external suspension.
2067 // A JavaThread self suspends when it detects a pending external suspend
2068 // request. This is usually on transitions. It is also done in places
2069 // where continuing to the next transition would surprise the caller,
2070 // e.g., monitor entry.
2071 //
2072 // Returns the number of times that the thread self-suspended.
2073 //
2074 // Note: DO NOT call java_suspend_self() when you just want to block current
2075 //       thread. java_suspend_self() is the second stage of cooperative
2076 //       suspension for external suspend requests and should only be used
2077 //       to complete an external suspend request.
2078 //
2079 int JavaThread::java_suspend_self() {
2080   int ret = 0;
2081 
2082   // we are in the process of exiting so don't suspend
2083   if (is_exiting()) {
2084      clear_external_suspend();
2085      return ret;
2086   }
2087 
2088   assert(_anchor.walkable() ||
2089     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2090     "must have walkable stack");
2091 
2092   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2093 
2094   assert(!this->is_ext_suspended(),
2095     "a thread trying to self-suspend should not already be suspended");
2096 
2097   if (this->is_suspend_equivalent()) {
2098     // If we are self-suspending as a result of the lifting of a
2099     // suspend equivalent condition, then the suspend_equivalent
2100     // flag is not cleared until we set the ext_suspended flag so
2101     // that wait_for_ext_suspend_completion() returns consistent
2102     // results.
2103     this->clear_suspend_equivalent();
2104   }
2105 
2106   // A racing resume may have cancelled us before we grabbed SR_lock
2107   // above. Or another external suspend request could be waiting for us
2108   // by the time we return from SR_lock()->wait(). The thread
2109   // that requested the suspension may already be trying to walk our
2110   // stack and if we return now, we can change the stack out from under
2111   // it. This would be a "bad thing (TM)" and cause the stack walker
2112   // to crash. We stay self-suspended until there are no more pending
2113   // external suspend requests.
2114   while (is_external_suspend()) {
2115     ret++;
2116     this->set_ext_suspended();
2117 
2118     // _ext_suspended flag is cleared by java_resume()
2119     while (is_ext_suspended()) {
2120       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2121     }
2122   }
2123 
2124   return ret;
2125 }
2126 
2127 #ifdef ASSERT
2128 // verify the JavaThread has not yet been published in the Threads::list, and
2129 // hence doesn't need protection from concurrent access at this stage
2130 void JavaThread::verify_not_published() {
2131   if (!Threads_lock->owned_by_self()) {
2132    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2133    assert( !Threads::includes(this),
2134            "java thread shouldn't have been published yet!");
2135   }
2136   else {
2137    assert( !Threads::includes(this),
2138            "java thread shouldn't have been published yet!");
2139   }
2140 }
2141 #endif
2142 
2143 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2144 // progress or when _suspend_flags is non-zero.
2145 // Current thread needs to self-suspend if there is a suspend request and/or
2146 // block if a safepoint is in progress.
2147 // Async exception ISN'T checked.
2148 // Note only the ThreadInVMfromNative transition can call this function
2149 // directly and when thread state is _thread_in_native_trans
2150 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2151   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2152 
2153   JavaThread *curJT = JavaThread::current();
2154   bool do_self_suspend = thread->is_external_suspend();
2155 
2156   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2157 
2158   // If JNIEnv proxies are allowed, don't self-suspend if the target
2159   // thread is not the current thread. In older versions of jdbx, jdbx
2160   // threads could call into the VM with another thread's JNIEnv so we
2161   // can be here operating on behalf of a suspended thread (4432884).
2162   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2163     JavaThreadState state = thread->thread_state();
2164 
2165     // We mark this thread_blocked state as a suspend-equivalent so
2166     // that a caller to is_ext_suspend_completed() won't be confused.
2167     // The suspend-equivalent state is cleared by java_suspend_self().
2168     thread->set_suspend_equivalent();
2169 
2170     // If the safepoint code sees the _thread_in_native_trans state, it will
2171     // wait until the thread changes to other thread state. There is no
2172     // guarantee on how soon we can obtain the SR_lock and complete the
2173     // self-suspend request. It would be a bad idea to let safepoint wait for
2174     // too long. Temporarily change the state to _thread_blocked to
2175     // let the VM thread know that this thread is ready for GC. The problem
2176     // of changing thread state is that safepoint could happen just after
2177     // java_suspend_self() returns after being resumed, and VM thread will
2178     // see the _thread_blocked state. We must check for safepoint
2179     // after restoring the state and make sure we won't leave while a safepoint
2180     // is in progress.
2181     thread->set_thread_state(_thread_blocked);
2182     thread->java_suspend_self();
2183     thread->set_thread_state(state);
2184     // Make sure new state is seen by VM thread
2185     if (os::is_MP()) {
2186       if (UseMembar) {
2187         // Force a fence between the write above and read below
2188         OrderAccess::fence();
2189       } else {
2190         // Must use this rather than serialization page in particular on Windows
2191         InterfaceSupport::serialize_memory(thread);
2192       }
2193     }
2194   }
2195 
2196   if (SafepointSynchronize::do_call_back()) {
2197     // If we are safepointing, then block the caller which may not be
2198     // the same as the target thread (see above).
2199     SafepointSynchronize::block(curJT);
2200   }
2201 
2202   if (thread->is_deopt_suspend()) {
2203     thread->clear_deopt_suspend();
2204     RegisterMap map(thread, false);
2205     frame f = thread->last_frame();
2206     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2207       f = f.sender(&map);
2208     }
2209     if (f.id() == thread->must_deopt_id()) {
2210       thread->clear_must_deopt_id();
2211       f.deoptimize(thread);
2212     } else {
2213       fatal("missed deoptimization!");
2214     }
2215   }
2216 }
2217 
2218 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2219 // progress or when _suspend_flags is non-zero.
2220 // Current thread needs to self-suspend if there is a suspend request and/or
2221 // block if a safepoint is in progress.
2222 // Also check for pending async exception (not including unsafe access error).
2223 // Note only the native==>VM/Java barriers can call this function and when
2224 // thread state is _thread_in_native_trans.
2225 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2226   check_safepoint_and_suspend_for_native_trans(thread);
2227 
2228   if (thread->has_async_exception()) {
2229     // We are in _thread_in_native_trans state, don't handle unsafe
2230     // access error since that may block.
2231     thread->check_and_handle_async_exceptions(false);
2232   }
2233 }
2234 
2235 // We need to guarantee the Threads_lock here, since resumes are not
2236 // allowed during safepoint synchronization
2237 // Can only resume from an external suspension
2238 void JavaThread::java_resume() {
2239   assert_locked_or_safepoint(Threads_lock);
2240 
2241   // Sanity check: thread is gone, has started exiting or the thread
2242   // was not externally suspended.
2243   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2244     return;
2245   }
2246 
2247   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2248 
2249   clear_external_suspend();
2250 
2251   if (is_ext_suspended()) {
2252     clear_ext_suspended();
2253     SR_lock()->notify_all();
2254   }
2255 }
2256 
2257 void JavaThread::create_stack_guard_pages() {
2258   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2259   address low_addr = stack_base() - stack_size();
2260   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2261 
2262   int allocate = os::allocate_stack_guard_pages();
2263   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2264 
2265   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2266     warning("Attempt to allocate stack guard pages failed.");
2267     return;
2268   }
2269 
2270   if (os::guard_memory((char *) low_addr, len)) {
2271     _stack_guard_state = stack_guard_enabled;
2272   } else {
2273     warning("Attempt to protect stack guard pages failed.");
2274     if (os::uncommit_memory((char *) low_addr, len)) {
2275       warning("Attempt to deallocate stack guard pages failed.");
2276     }
2277   }
2278 }
2279 
2280 void JavaThread::remove_stack_guard_pages() {
2281   if (_stack_guard_state == stack_guard_unused) return;
2282   address low_addr = stack_base() - stack_size();
2283   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2284 
2285   if (os::allocate_stack_guard_pages()) {
2286     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2287       _stack_guard_state = stack_guard_unused;
2288     } else {
2289       warning("Attempt to deallocate stack guard pages failed.");
2290     }
2291   } else {
2292     if (_stack_guard_state == stack_guard_unused) return;
2293     if (os::unguard_memory((char *) low_addr, len)) {
2294       _stack_guard_state = stack_guard_unused;
2295     } else {
2296         warning("Attempt to unprotect stack guard pages failed.");
2297     }
2298   }
2299 }
2300 
2301 void JavaThread::enable_stack_yellow_zone() {
2302   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2303   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2304 
2305   // The base notation is from the stacks point of view, growing downward.
2306   // We need to adjust it to work correctly with guard_memory()
2307   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2308 
2309   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2310   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2311 
2312   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2313     _stack_guard_state = stack_guard_enabled;
2314   } else {
2315     warning("Attempt to guard stack yellow zone failed.");
2316   }
2317   enable_register_stack_guard();
2318 }
2319 
2320 void JavaThread::disable_stack_yellow_zone() {
2321   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2322   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2323 
2324   // Simply return if called for a thread that does not use guard pages.
2325   if (_stack_guard_state == stack_guard_unused) return;
2326 
2327   // The base notation is from the stacks point of view, growing downward.
2328   // We need to adjust it to work correctly with guard_memory()
2329   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2330 
2331   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2332     _stack_guard_state = stack_guard_yellow_disabled;
2333   } else {
2334     warning("Attempt to unguard stack yellow zone failed.");
2335   }
2336   disable_register_stack_guard();
2337 }
2338 
2339 void JavaThread::enable_stack_red_zone() {
2340   // The base notation is from the stacks point of view, growing downward.
2341   // We need to adjust it to work correctly with guard_memory()
2342   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2343   address base = stack_red_zone_base() - stack_red_zone_size();
2344 
2345   guarantee(base < stack_base(),"Error calculating stack red zone");
2346   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2347 
2348   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2349     warning("Attempt to guard stack red zone failed.");
2350   }
2351 }
2352 
2353 void JavaThread::disable_stack_red_zone() {
2354   // The base notation is from the stacks point of view, growing downward.
2355   // We need to adjust it to work correctly with guard_memory()
2356   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2357   address base = stack_red_zone_base() - stack_red_zone_size();
2358   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2359     warning("Attempt to unguard stack red zone failed.");
2360   }
2361 }
2362 
2363 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2364   // ignore is there is no stack
2365   if (!has_last_Java_frame()) return;
2366   // traverse the stack frames. Starts from top frame.
2367   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2368     frame* fr = fst.current();
2369     f(fr, fst.register_map());
2370   }
2371 }
2372 
2373 
2374 #ifndef PRODUCT
2375 // Deoptimization
2376 // Function for testing deoptimization
2377 void JavaThread::deoptimize() {
2378   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2379   StackFrameStream fst(this, UseBiasedLocking);
2380   bool deopt = false;           // Dump stack only if a deopt actually happens.
2381   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2382   // Iterate over all frames in the thread and deoptimize
2383   for(; !fst.is_done(); fst.next()) {
2384     if(fst.current()->can_be_deoptimized()) {
2385 
2386       if (only_at) {
2387         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2388         // consists of comma or carriage return separated numbers so
2389         // search for the current bci in that string.
2390         address pc = fst.current()->pc();
2391         nmethod* nm =  (nmethod*) fst.current()->cb();
2392         ScopeDesc* sd = nm->scope_desc_at( pc);
2393         char buffer[8];
2394         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2395         size_t len = strlen(buffer);
2396         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2397         while (found != NULL) {
2398           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2399               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2400             // Check that the bci found is bracketed by terminators.
2401             break;
2402           }
2403           found = strstr(found + 1, buffer);
2404         }
2405         if (!found) {
2406           continue;
2407         }
2408       }
2409 
2410       if (DebugDeoptimization && !deopt) {
2411         deopt = true; // One-time only print before deopt
2412         tty->print_cr("[BEFORE Deoptimization]");
2413         trace_frames();
2414         trace_stack();
2415       }
2416       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2417     }
2418   }
2419 
2420   if (DebugDeoptimization && deopt) {
2421     tty->print_cr("[AFTER Deoptimization]");
2422     trace_frames();
2423   }
2424 }
2425 
2426 
2427 // Make zombies
2428 void JavaThread::make_zombies() {
2429   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2430     if (fst.current()->can_be_deoptimized()) {
2431       // it is a Java nmethod
2432       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2433       nm->make_not_entrant();
2434     }
2435   }
2436 }
2437 #endif // PRODUCT
2438 
2439 
2440 void JavaThread::deoptimized_wrt_marked_nmethods() {
2441   if (!has_last_Java_frame()) return;
2442   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2443   StackFrameStream fst(this, UseBiasedLocking);
2444   for(; !fst.is_done(); fst.next()) {
2445     if (fst.current()->should_be_deoptimized()) {
2446       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2447     }
2448   }
2449 }
2450 
2451 
2452 // GC support
2453 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2454 
2455 void JavaThread::gc_epilogue() {
2456   frames_do(frame_gc_epilogue);
2457 }
2458 
2459 
2460 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2461 
2462 void JavaThread::gc_prologue() {
2463   frames_do(frame_gc_prologue);
2464 }
2465 
2466 // If the caller is a NamedThread, then remember, in the current scope,
2467 // the given JavaThread in its _processed_thread field.
2468 class RememberProcessedThread: public StackObj {
2469   NamedThread* _cur_thr;
2470 public:
2471   RememberProcessedThread(JavaThread* jthr) {
2472     Thread* thread = Thread::current();
2473     if (thread->is_Named_thread()) {
2474       _cur_thr = (NamedThread *)thread;
2475       _cur_thr->set_processed_thread(jthr);
2476     } else {
2477       _cur_thr = NULL;
2478     }
2479   }
2480 
2481   ~RememberProcessedThread() {
2482     if (_cur_thr) {
2483       _cur_thr->set_processed_thread(NULL);
2484     }
2485   }
2486 };
2487 
2488 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2489   // Verify that the deferred card marks have been flushed.
2490   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2491 
2492   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2493   // since there may be more than one thread using each ThreadProfiler.
2494 
2495   // Traverse the GCHandles
2496   Thread::oops_do(f, cf);
2497 
2498   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2499           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2500 
2501   if (has_last_Java_frame()) {
2502     // Record JavaThread to GC thread
2503     RememberProcessedThread rpt(this);
2504 
2505     // Traverse the privileged stack
2506     if (_privileged_stack_top != NULL) {
2507       _privileged_stack_top->oops_do(f);
2508     }
2509 
2510     // traverse the registered growable array
2511     if (_array_for_gc != NULL) {
2512       for (int index = 0; index < _array_for_gc->length(); index++) {
2513         f->do_oop(_array_for_gc->adr_at(index));
2514       }
2515     }
2516 
2517     // Traverse the monitor chunks
2518     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2519       chunk->oops_do(f);
2520     }
2521 
2522     // Traverse the execution stack
2523     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2524       fst.current()->oops_do(f, cf, fst.register_map());
2525     }
2526   }
2527 
2528   // callee_target is never live across a gc point so NULL it here should
2529   // it still contain a methdOop.
2530 
2531   set_callee_target(NULL);
2532 
2533   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2534   // If we have deferred set_locals there might be oops waiting to be
2535   // written
2536   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2537   if (list != NULL) {
2538     for (int i = 0; i < list->length(); i++) {
2539       list->at(i)->oops_do(f);
2540     }
2541   }
2542 
2543   // Traverse instance variables at the end since the GC may be moving things
2544   // around using this function
2545   f->do_oop((oop*) &_threadObj);
2546   f->do_oop((oop*) &_vm_result);
2547   f->do_oop((oop*) &_vm_result_2);
2548   f->do_oop((oop*) &_exception_oop);
2549   f->do_oop((oop*) &_pending_async_exception);
2550 
2551   if (jvmti_thread_state() != NULL) {
2552     jvmti_thread_state()->oops_do(f);
2553   }
2554 }
2555 
2556 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2557   Thread::nmethods_do(cf);  // (super method is a no-op)
2558 
2559   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2560           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2561 
2562   if (has_last_Java_frame()) {
2563     // Traverse the execution stack
2564     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2565       fst.current()->nmethods_do(cf);
2566     }
2567   }
2568 }
2569 
2570 // Printing
2571 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2572   switch (_thread_state) {
2573   case _thread_uninitialized:     return "_thread_uninitialized";
2574   case _thread_new:               return "_thread_new";
2575   case _thread_new_trans:         return "_thread_new_trans";
2576   case _thread_in_native:         return "_thread_in_native";
2577   case _thread_in_native_trans:   return "_thread_in_native_trans";
2578   case _thread_in_vm:             return "_thread_in_vm";
2579   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2580   case _thread_in_Java:           return "_thread_in_Java";
2581   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2582   case _thread_blocked:           return "_thread_blocked";
2583   case _thread_blocked_trans:     return "_thread_blocked_trans";
2584   default:                        return "unknown thread state";
2585   }
2586 }
2587 
2588 #ifndef PRODUCT
2589 void JavaThread::print_thread_state_on(outputStream *st) const {
2590   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2591 };
2592 void JavaThread::print_thread_state() const {
2593   print_thread_state_on(tty);
2594 };
2595 #endif // PRODUCT
2596 
2597 // Called by Threads::print() for VM_PrintThreads operation
2598 void JavaThread::print_on(outputStream *st) const {
2599   st->print("\"%s\" ", get_thread_name());
2600   oop thread_oop = threadObj();
2601   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2602   Thread::print_on(st);
2603   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2604   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2605   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2606     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2607   }
2608 #ifndef PRODUCT
2609   print_thread_state_on(st);
2610   _safepoint_state->print_on(st);
2611 #endif // PRODUCT
2612 }
2613 
2614 // Called by fatal error handler. The difference between this and
2615 // JavaThread::print() is that we can't grab lock or allocate memory.
2616 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2617   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2618   oop thread_obj = threadObj();
2619   if (thread_obj != NULL) {
2620      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2621   }
2622   st->print(" [");
2623   st->print("%s", _get_thread_state_name(_thread_state));
2624   if (osthread()) {
2625     st->print(", id=%d", osthread()->thread_id());
2626   }
2627   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2628             _stack_base - _stack_size, _stack_base);
2629   st->print("]");
2630   return;
2631 }
2632 
2633 // Verification
2634 
2635 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2636 
2637 void JavaThread::verify() {
2638   // Verify oops in the thread.
2639   oops_do(&VerifyOopClosure::verify_oop, NULL);
2640 
2641   // Verify the stack frames.
2642   frames_do(frame_verify);
2643 }
2644 
2645 // CR 6300358 (sub-CR 2137150)
2646 // Most callers of this method assume that it can't return NULL but a
2647 // thread may not have a name whilst it is in the process of attaching to
2648 // the VM - see CR 6412693, and there are places where a JavaThread can be
2649 // seen prior to having it's threadObj set (eg JNI attaching threads and
2650 // if vm exit occurs during initialization). These cases can all be accounted
2651 // for such that this method never returns NULL.
2652 const char* JavaThread::get_thread_name() const {
2653 #ifdef ASSERT
2654   // early safepoints can hit while current thread does not yet have TLS
2655   if (!SafepointSynchronize::is_at_safepoint()) {
2656     Thread *cur = Thread::current();
2657     if (!(cur->is_Java_thread() && cur == this)) {
2658       // Current JavaThreads are allowed to get their own name without
2659       // the Threads_lock.
2660       assert_locked_or_safepoint(Threads_lock);
2661     }
2662   }
2663 #endif // ASSERT
2664     return get_thread_name_string();
2665 }
2666 
2667 // Returns a non-NULL representation of this thread's name, or a suitable
2668 // descriptive string if there is no set name
2669 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2670   const char* name_str;
2671   oop thread_obj = threadObj();
2672   if (thread_obj != NULL) {
2673     typeArrayOop name = java_lang_Thread::name(thread_obj);
2674     if (name != NULL) {
2675       if (buf == NULL) {
2676         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2677       }
2678       else {
2679         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2680       }
2681     }
2682     else if (is_attaching()) { // workaround for 6412693 - see 6404306
2683       name_str = "<no-name - thread is attaching>";
2684     }
2685     else {
2686       name_str = Thread::name();
2687     }
2688   }
2689   else {
2690     name_str = Thread::name();
2691   }
2692   assert(name_str != NULL, "unexpected NULL thread name");
2693   return name_str;
2694 }
2695 
2696 
2697 const char* JavaThread::get_threadgroup_name() const {
2698   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2699   oop thread_obj = threadObj();
2700   if (thread_obj != NULL) {
2701     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2702     if (thread_group != NULL) {
2703       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2704       // ThreadGroup.name can be null
2705       if (name != NULL) {
2706         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2707         return str;
2708       }
2709     }
2710   }
2711   return NULL;
2712 }
2713 
2714 const char* JavaThread::get_parent_name() const {
2715   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2716   oop thread_obj = threadObj();
2717   if (thread_obj != NULL) {
2718     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2719     if (thread_group != NULL) {
2720       oop parent = java_lang_ThreadGroup::parent(thread_group);
2721       if (parent != NULL) {
2722         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2723         // ThreadGroup.name can be null
2724         if (name != NULL) {
2725           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2726           return str;
2727         }
2728       }
2729     }
2730   }
2731   return NULL;
2732 }
2733 
2734 ThreadPriority JavaThread::java_priority() const {
2735   oop thr_oop = threadObj();
2736   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2737   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2738   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2739   return priority;
2740 }
2741 
2742 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2743 
2744   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2745   // Link Java Thread object <-> C++ Thread
2746 
2747   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2748   // and put it into a new Handle.  The Handle "thread_oop" can then
2749   // be used to pass the C++ thread object to other methods.
2750 
2751   // Set the Java level thread object (jthread) field of the
2752   // new thread (a JavaThread *) to C++ thread object using the
2753   // "thread_oop" handle.
2754 
2755   // Set the thread field (a JavaThread *) of the
2756   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2757 
2758   Handle thread_oop(Thread::current(),
2759                     JNIHandles::resolve_non_null(jni_thread));
2760   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2761     "must be initialized");
2762   set_threadObj(thread_oop());
2763   java_lang_Thread::set_thread(thread_oop(), this);
2764 
2765   if (prio == NoPriority) {
2766     prio = java_lang_Thread::priority(thread_oop());
2767     assert(prio != NoPriority, "A valid priority should be present");
2768   }
2769 
2770   // Push the Java priority down to the native thread; needs Threads_lock
2771   Thread::set_priority(this, prio);
2772 
2773   // Add the new thread to the Threads list and set it in motion.
2774   // We must have threads lock in order to call Threads::add.
2775   // It is crucial that we do not block before the thread is
2776   // added to the Threads list for if a GC happens, then the java_thread oop
2777   // will not be visited by GC.
2778   Threads::add(this);
2779 }
2780 
2781 oop JavaThread::current_park_blocker() {
2782   // Support for JSR-166 locks
2783   oop thread_oop = threadObj();
2784   if (thread_oop != NULL &&
2785       JDK_Version::current().supports_thread_park_blocker()) {
2786     return java_lang_Thread::park_blocker(thread_oop);
2787   }
2788   return NULL;
2789 }
2790 
2791 
2792 void JavaThread::print_stack_on(outputStream* st) {
2793   if (!has_last_Java_frame()) return;
2794   ResourceMark rm;
2795   HandleMark   hm;
2796 
2797   RegisterMap reg_map(this);
2798   vframe* start_vf = last_java_vframe(&reg_map);
2799   int count = 0;
2800   for (vframe* f = start_vf; f; f = f->sender() ) {
2801     if (f->is_java_frame()) {
2802       javaVFrame* jvf = javaVFrame::cast(f);
2803       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2804 
2805       // Print out lock information
2806       if (JavaMonitorsInStackTrace) {
2807         jvf->print_lock_info_on(st, count);
2808       }
2809     } else {
2810       // Ignore non-Java frames
2811     }
2812 
2813     // Bail-out case for too deep stacks
2814     count++;
2815     if (MaxJavaStackTraceDepth == count) return;
2816   }
2817 }
2818 
2819 
2820 // JVMTI PopFrame support
2821 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2822   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2823   if (in_bytes(size_in_bytes) != 0) {
2824     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2825     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2826     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2827   }
2828 }
2829 
2830 void* JavaThread::popframe_preserved_args() {
2831   return _popframe_preserved_args;
2832 }
2833 
2834 ByteSize JavaThread::popframe_preserved_args_size() {
2835   return in_ByteSize(_popframe_preserved_args_size);
2836 }
2837 
2838 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2839   int sz = in_bytes(popframe_preserved_args_size());
2840   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2841   return in_WordSize(sz / wordSize);
2842 }
2843 
2844 void JavaThread::popframe_free_preserved_args() {
2845   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2846   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2847   _popframe_preserved_args = NULL;
2848   _popframe_preserved_args_size = 0;
2849 }
2850 
2851 #ifndef PRODUCT
2852 
2853 void JavaThread::trace_frames() {
2854   tty->print_cr("[Describe stack]");
2855   int frame_no = 1;
2856   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2857     tty->print("  %d. ", frame_no++);
2858     fst.current()->print_value_on(tty,this);
2859     tty->cr();
2860   }
2861 }
2862 
2863 class PrintAndVerifyOopClosure: public OopClosure {
2864  protected:
2865   template <class T> inline void do_oop_work(T* p) {
2866     oop obj = oopDesc::load_decode_heap_oop(p);
2867     if (obj == NULL) return;
2868     tty->print(INTPTR_FORMAT ": ", p);
2869     if (obj->is_oop_or_null()) {
2870       if (obj->is_objArray()) {
2871         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
2872       } else {
2873         obj->print();
2874       }
2875     } else {
2876       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
2877     }
2878     tty->cr();
2879   }
2880  public:
2881   virtual void do_oop(oop* p) { do_oop_work(p); }
2882   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
2883 };
2884 
2885 
2886 static void oops_print(frame* f, const RegisterMap *map) {
2887   PrintAndVerifyOopClosure print;
2888   f->print_value();
2889   f->oops_do(&print, NULL, (RegisterMap*)map);
2890 }
2891 
2892 // Print our all the locations that contain oops and whether they are
2893 // valid or not.  This useful when trying to find the oldest frame
2894 // where an oop has gone bad since the frame walk is from youngest to
2895 // oldest.
2896 void JavaThread::trace_oops() {
2897   tty->print_cr("[Trace oops]");
2898   frames_do(oops_print);
2899 }
2900 
2901 
2902 #ifdef ASSERT
2903 // Print or validate the layout of stack frames
2904 void JavaThread::print_frame_layout(int depth, bool validate_only) {
2905   ResourceMark rm;
2906   PRESERVE_EXCEPTION_MARK;
2907   FrameValues values;
2908   int frame_no = 0;
2909   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
2910     fst.current()->describe(values, ++frame_no);
2911     if (depth == frame_no) break;
2912   }
2913   if (validate_only) {
2914     values.validate();
2915   } else {
2916     tty->print_cr("[Describe stack layout]");
2917     values.print();
2918   }
2919 }
2920 #endif
2921 
2922 void JavaThread::trace_stack_from(vframe* start_vf) {
2923   ResourceMark rm;
2924   int vframe_no = 1;
2925   for (vframe* f = start_vf; f; f = f->sender() ) {
2926     if (f->is_java_frame()) {
2927       javaVFrame::cast(f)->print_activation(vframe_no++);
2928     } else {
2929       f->print();
2930     }
2931     if (vframe_no > StackPrintLimit) {
2932       tty->print_cr("...<more frames>...");
2933       return;
2934     }
2935   }
2936 }
2937 
2938 
2939 void JavaThread::trace_stack() {
2940   if (!has_last_Java_frame()) return;
2941   ResourceMark rm;
2942   HandleMark   hm;
2943   RegisterMap reg_map(this);
2944   trace_stack_from(last_java_vframe(&reg_map));
2945 }
2946 
2947 
2948 #endif // PRODUCT
2949 
2950 
2951 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2952   assert(reg_map != NULL, "a map must be given");
2953   frame f = last_frame();
2954   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2955     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2956   }
2957   return NULL;
2958 }
2959 
2960 
2961 klassOop JavaThread::security_get_caller_class(int depth) {
2962   vframeStream vfst(this);
2963   vfst.security_get_caller_frame(depth);
2964   if (!vfst.at_end()) {
2965     return vfst.method()->method_holder();
2966   }
2967   return NULL;
2968 }
2969 
2970 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2971   assert(thread->is_Compiler_thread(), "must be compiler thread");
2972   CompileBroker::compiler_thread_loop();
2973 }
2974 
2975 // Create a CompilerThread
2976 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2977 : JavaThread(&compiler_thread_entry) {
2978   _env   = NULL;
2979   _log   = NULL;
2980   _task  = NULL;
2981   _queue = queue;
2982   _counters = counters;
2983   _buffer_blob = NULL;
2984   _scanned_nmethod = NULL;
2985 
2986 #ifndef PRODUCT
2987   _ideal_graph_printer = NULL;
2988 #endif
2989 }
2990 
2991 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2992   JavaThread::oops_do(f, cf);
2993   if (_scanned_nmethod != NULL && cf != NULL) {
2994     // Safepoints can occur when the sweeper is scanning an nmethod so
2995     // process it here to make sure it isn't unloaded in the middle of
2996     // a scan.
2997     cf->do_code_blob(_scanned_nmethod);
2998   }
2999 }
3000 
3001 // ======= Threads ========
3002 
3003 // The Threads class links together all active threads, and provides
3004 // operations over all threads.  It is protected by its own Mutex
3005 // lock, which is also used in other contexts to protect thread
3006 // operations from having the thread being operated on from exiting
3007 // and going away unexpectedly (e.g., safepoint synchronization)
3008 
3009 JavaThread* Threads::_thread_list = NULL;
3010 int         Threads::_number_of_threads = 0;
3011 int         Threads::_number_of_non_daemon_threads = 0;
3012 int         Threads::_return_code = 0;
3013 size_t      JavaThread::_stack_size_at_create = 0;
3014 
3015 // All JavaThreads
3016 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3017 
3018 void os_stream();
3019 
3020 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3021 void Threads::threads_do(ThreadClosure* tc) {
3022   assert_locked_or_safepoint(Threads_lock);
3023   // ALL_JAVA_THREADS iterates through all JavaThreads
3024   ALL_JAVA_THREADS(p) {
3025     tc->do_thread(p);
3026   }
3027   // Someday we could have a table or list of all non-JavaThreads.
3028   // For now, just manually iterate through them.
3029   tc->do_thread(VMThread::vm_thread());
3030   Universe::heap()->gc_threads_do(tc);
3031   WatcherThread *wt = WatcherThread::watcher_thread();
3032   // Strictly speaking, the following NULL check isn't sufficient to make sure
3033   // the data for WatcherThread is still valid upon being examined. However,
3034   // considering that WatchThread terminates when the VM is on the way to
3035   // exit at safepoint, the chance of the above is extremely small. The right
3036   // way to prevent termination of WatcherThread would be to acquire
3037   // Terminator_lock, but we can't do that without violating the lock rank
3038   // checking in some cases.
3039   if (wt != NULL)
3040     tc->do_thread(wt);
3041 
3042   // If CompilerThreads ever become non-JavaThreads, add them here
3043 }
3044 
3045 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3046 
3047   extern void JDK_Version_init();
3048 
3049   // Check version
3050   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3051 
3052   // Initialize the output stream module
3053   ostream_init();
3054 
3055   // Process java launcher properties.
3056   Arguments::process_sun_java_launcher_properties(args);
3057 
3058   // Initialize the os module before using TLS
3059   os::init();
3060 
3061   // Initialize system properties.
3062   Arguments::init_system_properties();
3063 
3064   // So that JDK version can be used as a discrimintor when parsing arguments
3065   JDK_Version_init();
3066 
3067   // Update/Initialize System properties after JDK version number is known
3068   Arguments::init_version_specific_system_properties();
3069 
3070   // Parse arguments
3071   jint parse_result = Arguments::parse(args);
3072   if (parse_result != JNI_OK) return parse_result;
3073 
3074   if (PauseAtStartup) {
3075     os::pause();
3076   }
3077 
3078   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3079 
3080   // Record VM creation timing statistics
3081   TraceVmCreationTime create_vm_timer;
3082   create_vm_timer.start();
3083 
3084   // Timing (must come after argument parsing)
3085   TraceTime timer("Create VM", TraceStartupTime);
3086 
3087   // Initialize the os module after parsing the args
3088   jint os_init_2_result = os::init_2();
3089   if (os_init_2_result != JNI_OK) return os_init_2_result;
3090 
3091   // Initialize output stream logging
3092   ostream_init_log();
3093 
3094   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3095   // Must be before create_vm_init_agents()
3096   if (Arguments::init_libraries_at_startup()) {
3097     convert_vm_init_libraries_to_agents();
3098   }
3099 
3100   // Launch -agentlib/-agentpath and converted -Xrun agents
3101   if (Arguments::init_agents_at_startup()) {
3102     create_vm_init_agents();
3103   }
3104 
3105   // Initialize Threads state
3106   _thread_list = NULL;
3107   _number_of_threads = 0;
3108   _number_of_non_daemon_threads = 0;
3109 
3110   // Initialize TLS
3111   ThreadLocalStorage::init();
3112 
3113   // Initialize global data structures and create system classes in heap
3114   vm_init_globals();
3115 
3116   // Attach the main thread to this os thread
3117   JavaThread* main_thread = new JavaThread();
3118   main_thread->set_thread_state(_thread_in_vm);
3119   // must do this before set_active_handles and initialize_thread_local_storage
3120   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3121   // change the stack size recorded here to one based on the java thread
3122   // stacksize. This adjusted size is what is used to figure the placement
3123   // of the guard pages.
3124   main_thread->record_stack_base_and_size();
3125   main_thread->initialize_thread_local_storage();
3126 
3127   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3128 
3129   if (!main_thread->set_as_starting_thread()) {
3130     vm_shutdown_during_initialization(
3131       "Failed necessary internal allocation. Out of swap space");
3132     delete main_thread;
3133     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3134     return JNI_ENOMEM;
3135   }
3136 
3137   // Enable guard page *after* os::create_main_thread(), otherwise it would
3138   // crash Linux VM, see notes in os_linux.cpp.
3139   main_thread->create_stack_guard_pages();
3140 
3141   // Initialize Java-Level synchronization subsystem
3142   ObjectMonitor::Initialize() ;
3143 
3144   // Initialize global modules
3145   jint status = init_globals();
3146   if (status != JNI_OK) {
3147     delete main_thread;
3148     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3149     return status;
3150   }
3151 
3152   // Should be done after the heap is fully created
3153   main_thread->cache_global_variables();
3154 
3155   HandleMark hm;
3156 
3157   { MutexLocker mu(Threads_lock);
3158     Threads::add(main_thread);
3159   }
3160 
3161   // Any JVMTI raw monitors entered in onload will transition into
3162   // real raw monitor. VM is setup enough here for raw monitor enter.
3163   JvmtiExport::transition_pending_onload_raw_monitors();
3164 
3165   if (VerifyBeforeGC &&
3166       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3167     Universe::heap()->prepare_for_verify();
3168     Universe::verify();   // make sure we're starting with a clean slate
3169   }
3170 
3171   // Create the VMThread
3172   { TraceTime timer("Start VMThread", TraceStartupTime);
3173     VMThread::create();
3174     Thread* vmthread = VMThread::vm_thread();
3175 
3176     if (!os::create_thread(vmthread, os::vm_thread))
3177       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3178 
3179     // Wait for the VM thread to become ready, and VMThread::run to initialize
3180     // Monitors can have spurious returns, must always check another state flag
3181     {
3182       MutexLocker ml(Notify_lock);
3183       os::start_thread(vmthread);
3184       while (vmthread->active_handles() == NULL) {
3185         Notify_lock->wait();
3186       }
3187     }
3188   }
3189 
3190   assert (Universe::is_fully_initialized(), "not initialized");
3191   EXCEPTION_MARK;
3192 
3193   // At this point, the Universe is initialized, but we have not executed
3194   // any byte code.  Now is a good time (the only time) to dump out the
3195   // internal state of the JVM for sharing.
3196 
3197   if (DumpSharedSpaces) {
3198     Universe::heap()->preload_and_dump(CHECK_0);
3199     ShouldNotReachHere();
3200   }
3201 
3202   // Always call even when there are not JVMTI environments yet, since environments
3203   // may be attached late and JVMTI must track phases of VM execution
3204   JvmtiExport::enter_start_phase();
3205 
3206   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3207   JvmtiExport::post_vm_start();
3208 
3209   {
3210     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3211 
3212     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3213       create_vm_init_libraries();
3214     }
3215 
3216     if (InitializeJavaLangString) {
3217       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3218     } else {
3219       warning("java.lang.String not initialized");
3220     }
3221 
3222     if (AggressiveOpts) {
3223       {
3224         // Forcibly initialize java/util/HashMap and mutate the private
3225         // static final "frontCacheEnabled" field before we start creating instances
3226 #ifdef ASSERT
3227         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3228         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3229 #endif
3230         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3231         KlassHandle k = KlassHandle(THREAD, k_o);
3232         guarantee(k.not_null(), "Must find java/util/HashMap");
3233         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3234         ik->initialize(CHECK_0);
3235         fieldDescriptor fd;
3236         // Possible we might not find this field; if so, don't break
3237         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3238           k()->java_mirror()->bool_field_put(fd.offset(), true);
3239         }
3240       }
3241 
3242       if (UseStringCache) {
3243         // Forcibly initialize java/lang/StringValue and mutate the private
3244         // static final "stringCacheEnabled" field before we start creating instances
3245         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3246         // Possible that StringValue isn't present: if so, silently don't break
3247         if (k_o != NULL) {
3248           KlassHandle k = KlassHandle(THREAD, k_o);
3249           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3250           ik->initialize(CHECK_0);
3251           fieldDescriptor fd;
3252           // Possible we might not find this field: if so, silently don't break
3253           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3254             k()->java_mirror()->bool_field_put(fd.offset(), true);
3255           }
3256         }
3257       }
3258     }
3259 
3260     // Initialize java_lang.System (needed before creating the thread)
3261     if (InitializeJavaLangSystem) {
3262       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3263       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3264       Handle thread_group = create_initial_thread_group(CHECK_0);
3265       Universe::set_main_thread_group(thread_group());
3266       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3267       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3268       main_thread->set_threadObj(thread_object);
3269       // Set thread status to running since main thread has
3270       // been started and running.
3271       java_lang_Thread::set_thread_status(thread_object,
3272                                           java_lang_Thread::RUNNABLE);
3273 
3274       // The VM preresolve methods to these classes. Make sure that get initialized
3275       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3276       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3277       // The VM creates & returns objects of this class. Make sure it's initialized.
3278       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3279       call_initializeSystemClass(CHECK_0);
3280     } else {
3281       warning("java.lang.System not initialized");
3282     }
3283 
3284     // an instance of OutOfMemory exception has been allocated earlier
3285     if (InitializeJavaLangExceptionsErrors) {
3286       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3287       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3288       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3289       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3290       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3291       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3292       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3293     } else {
3294       warning("java.lang.OutOfMemoryError has not been initialized");
3295       warning("java.lang.NullPointerException has not been initialized");
3296       warning("java.lang.ClassCastException has not been initialized");
3297       warning("java.lang.ArrayStoreException has not been initialized");
3298       warning("java.lang.ArithmeticException has not been initialized");
3299       warning("java.lang.StackOverflowError has not been initialized");
3300     }
3301   }
3302 
3303   // See        : bugid 4211085.
3304   // Background : the static initializer of java.lang.Compiler tries to read
3305   //              property"java.compiler" and read & write property "java.vm.info".
3306   //              When a security manager is installed through the command line
3307   //              option "-Djava.security.manager", the above properties are not
3308   //              readable and the static initializer for java.lang.Compiler fails
3309   //              resulting in a NoClassDefFoundError.  This can happen in any
3310   //              user code which calls methods in java.lang.Compiler.
3311   // Hack :       the hack is to pre-load and initialize this class, so that only
3312   //              system domains are on the stack when the properties are read.
3313   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3314   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3315   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3316   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3317   //              Once that is done, we should remove this hack.
3318   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3319 
3320   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3321   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3322   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3323   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3324   // This should also be taken out as soon as 4211383 gets fixed.
3325   reset_vm_info_property(CHECK_0);
3326 
3327   quicken_jni_functions();
3328 
3329   // Set flag that basic initialization has completed. Used by exceptions and various
3330   // debug stuff, that does not work until all basic classes have been initialized.
3331   set_init_completed();
3332 
3333   HS_DTRACE_PROBE(hotspot, vm__init__end);
3334 
3335   // record VM initialization completion time
3336   Management::record_vm_init_completed();
3337 
3338   // Compute system loader. Note that this has to occur after set_init_completed, since
3339   // valid exceptions may be thrown in the process.
3340   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3341   // set_init_completed has just been called, causing exceptions not to be shortcut
3342   // anymore. We call vm_exit_during_initialization directly instead.
3343   SystemDictionary::compute_java_system_loader(THREAD);
3344   if (HAS_PENDING_EXCEPTION) {
3345     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3346   }
3347 
3348 #ifndef SERIALGC
3349   // Support for ConcurrentMarkSweep. This should be cleaned up
3350   // and better encapsulated. The ugly nested if test would go away
3351   // once things are properly refactored. XXX YSR
3352   if (UseConcMarkSweepGC || UseG1GC) {
3353     if (UseConcMarkSweepGC) {
3354       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3355     } else {
3356       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3357     }
3358     if (HAS_PENDING_EXCEPTION) {
3359       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3360     }
3361   }
3362 #endif // SERIALGC
3363 
3364   // Always call even when there are not JVMTI environments yet, since environments
3365   // may be attached late and JVMTI must track phases of VM execution
3366   JvmtiExport::enter_live_phase();
3367 
3368   // Signal Dispatcher needs to be started before VMInit event is posted
3369   os::signal_init();
3370 
3371   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3372   if (!DisableAttachMechanism) {
3373     if (StartAttachListener || AttachListener::init_at_startup()) {
3374       AttachListener::init();
3375     }
3376   }
3377 
3378   // Launch -Xrun agents
3379   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3380   // back-end can launch with -Xdebug -Xrunjdwp.
3381   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3382     create_vm_init_libraries();
3383   }
3384 
3385   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3386   JvmtiExport::post_vm_initialized();
3387 
3388   if (CleanChunkPoolAsync) {
3389     Chunk::start_chunk_pool_cleaner_task();
3390   }
3391 
3392   // initialize compiler(s)
3393   CompileBroker::compilation_init();
3394 
3395   Management::initialize(THREAD);
3396   if (HAS_PENDING_EXCEPTION) {
3397     // management agent fails to start possibly due to
3398     // configuration problem and is responsible for printing
3399     // stack trace if appropriate. Simply exit VM.
3400     vm_exit(1);
3401   }
3402 
3403   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3404   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3405   if (MemProfiling)                   MemProfiler::engage();
3406   StatSampler::engage();
3407   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3408 
3409   BiasedLocking::init();
3410 
3411   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3412     call_postVMInitHook(THREAD);
3413     // The Java side of PostVMInitHook.run must deal with all
3414     // exceptions and provide means of diagnosis.
3415     if (HAS_PENDING_EXCEPTION) {
3416       CLEAR_PENDING_EXCEPTION;
3417     }
3418   }
3419 
3420   // Start up the WatcherThread if there are any periodic tasks
3421   // NOTE:  All PeriodicTasks should be registered by now. If they
3422   //   aren't, late joiners might appear to start slowly (we might
3423   //   take a while to process their first tick).
3424   if (PeriodicTask::num_tasks() > 0) {
3425     WatcherThread::start();
3426   }
3427 
3428   // Give os specific code one last chance to start
3429   os::init_3();
3430 
3431   create_vm_timer.end();
3432   return JNI_OK;
3433 }
3434 
3435 // type for the Agent_OnLoad and JVM_OnLoad entry points
3436 extern "C" {
3437   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3438 }
3439 // Find a command line agent library and return its entry point for
3440 //         -agentlib:  -agentpath:   -Xrun
3441 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3442 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3443   OnLoadEntry_t on_load_entry = NULL;
3444   void *library = agent->os_lib();  // check if we have looked it up before
3445 
3446   if (library == NULL) {
3447     char buffer[JVM_MAXPATHLEN];
3448     char ebuf[1024];
3449     const char *name = agent->name();
3450     const char *msg = "Could not find agent library ";
3451 
3452     if (agent->is_absolute_path()) {
3453       library = os::dll_load(name, ebuf, sizeof ebuf);
3454       if (library == NULL) {
3455         const char *sub_msg = " in absolute path, with error: ";
3456         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3457         char *buf = NEW_C_HEAP_ARRAY(char, len);
3458         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3459         // If we can't find the agent, exit.
3460         vm_exit_during_initialization(buf, NULL);
3461         FREE_C_HEAP_ARRAY(char, buf);
3462       }
3463     } else {
3464       // Try to load the agent from the standard dll directory
3465       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3466       library = os::dll_load(buffer, ebuf, sizeof ebuf);
3467 #ifdef KERNEL
3468       // Download instrument dll
3469       if (library == NULL && strcmp(name, "instrument") == 0) {
3470         char *props = Arguments::get_kernel_properties();
3471         char *home  = Arguments::get_java_home();
3472         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3473                       " sun.jkernel.DownloadManager -download client_jvm";
3474         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3475         char *cmd = NEW_C_HEAP_ARRAY(char, length);
3476         jio_snprintf(cmd, length, fmt, home, props);
3477         int status = os::fork_and_exec(cmd);
3478         FreeHeap(props);
3479         if (status == -1) {
3480           warning(cmd);
3481           vm_exit_during_initialization("fork_and_exec failed: %s",
3482                                          strerror(errno));
3483         }
3484         FREE_C_HEAP_ARRAY(char, cmd);
3485         // when this comes back the instrument.dll should be where it belongs.
3486         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3487       }
3488 #endif // KERNEL
3489       if (library == NULL) { // Try the local directory
3490         char ns[1] = {0};
3491         os::dll_build_name(buffer, sizeof(buffer), ns, name);
3492         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3493         if (library == NULL) {
3494           const char *sub_msg = " on the library path, with error: ";
3495           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3496           char *buf = NEW_C_HEAP_ARRAY(char, len);
3497           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3498           // If we can't find the agent, exit.
3499           vm_exit_during_initialization(buf, NULL);
3500           FREE_C_HEAP_ARRAY(char, buf);
3501         }
3502       }
3503     }
3504     agent->set_os_lib(library);
3505   }
3506 
3507   // Find the OnLoad function.
3508   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3509     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3510     if (on_load_entry != NULL) break;
3511   }
3512   return on_load_entry;
3513 }
3514 
3515 // Find the JVM_OnLoad entry point
3516 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3517   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3518   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3519 }
3520 
3521 // Find the Agent_OnLoad entry point
3522 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3523   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3524   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3525 }
3526 
3527 // For backwards compatibility with -Xrun
3528 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3529 // treated like -agentpath:
3530 // Must be called before agent libraries are created
3531 void Threads::convert_vm_init_libraries_to_agents() {
3532   AgentLibrary* agent;
3533   AgentLibrary* next;
3534 
3535   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3536     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3537     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3538 
3539     // If there is an JVM_OnLoad function it will get called later,
3540     // otherwise see if there is an Agent_OnLoad
3541     if (on_load_entry == NULL) {
3542       on_load_entry = lookup_agent_on_load(agent);
3543       if (on_load_entry != NULL) {
3544         // switch it to the agent list -- so that Agent_OnLoad will be called,
3545         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3546         Arguments::convert_library_to_agent(agent);
3547       } else {
3548         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3549       }
3550     }
3551   }
3552 }
3553 
3554 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3555 // Invokes Agent_OnLoad
3556 // Called very early -- before JavaThreads exist
3557 void Threads::create_vm_init_agents() {
3558   extern struct JavaVM_ main_vm;
3559   AgentLibrary* agent;
3560 
3561   JvmtiExport::enter_onload_phase();
3562   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3563     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3564 
3565     if (on_load_entry != NULL) {
3566       // Invoke the Agent_OnLoad function
3567       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3568       if (err != JNI_OK) {
3569         vm_exit_during_initialization("agent library failed to init", agent->name());
3570       }
3571     } else {
3572       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3573     }
3574   }
3575   JvmtiExport::enter_primordial_phase();
3576 }
3577 
3578 extern "C" {
3579   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3580 }
3581 
3582 void Threads::shutdown_vm_agents() {
3583   // Send any Agent_OnUnload notifications
3584   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3585   extern struct JavaVM_ main_vm;
3586   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3587 
3588     // Find the Agent_OnUnload function.
3589     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3590       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3591                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3592 
3593       // Invoke the Agent_OnUnload function
3594       if (unload_entry != NULL) {
3595         JavaThread* thread = JavaThread::current();
3596         ThreadToNativeFromVM ttn(thread);
3597         HandleMark hm(thread);
3598         (*unload_entry)(&main_vm);
3599         break;
3600       }
3601     }
3602   }
3603 }
3604 
3605 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3606 // Invokes JVM_OnLoad
3607 void Threads::create_vm_init_libraries() {
3608   extern struct JavaVM_ main_vm;
3609   AgentLibrary* agent;
3610 
3611   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3612     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3613 
3614     if (on_load_entry != NULL) {
3615       // Invoke the JVM_OnLoad function
3616       JavaThread* thread = JavaThread::current();
3617       ThreadToNativeFromVM ttn(thread);
3618       HandleMark hm(thread);
3619       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3620       if (err != JNI_OK) {
3621         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3622       }
3623     } else {
3624       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3625     }
3626   }
3627 }
3628 
3629 // Last thread running calls java.lang.Shutdown.shutdown()
3630 void JavaThread::invoke_shutdown_hooks() {
3631   HandleMark hm(this);
3632 
3633   // We could get here with a pending exception, if so clear it now.
3634   if (this->has_pending_exception()) {
3635     this->clear_pending_exception();
3636   }
3637 
3638   EXCEPTION_MARK;
3639   klassOop k =
3640     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3641                                       THREAD);
3642   if (k != NULL) {
3643     // SystemDictionary::resolve_or_null will return null if there was
3644     // an exception.  If we cannot load the Shutdown class, just don't
3645     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3646     // and finalizers (if runFinalizersOnExit is set) won't be run.
3647     // Note that if a shutdown hook was registered or runFinalizersOnExit
3648     // was called, the Shutdown class would have already been loaded
3649     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3650     instanceKlassHandle shutdown_klass (THREAD, k);
3651     JavaValue result(T_VOID);
3652     JavaCalls::call_static(&result,
3653                            shutdown_klass,
3654                            vmSymbols::shutdown_method_name(),
3655                            vmSymbols::void_method_signature(),
3656                            THREAD);
3657   }
3658   CLEAR_PENDING_EXCEPTION;
3659 }
3660 
3661 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3662 // the program falls off the end of main(). Another VM exit path is through
3663 // vm_exit() when the program calls System.exit() to return a value or when
3664 // there is a serious error in VM. The two shutdown paths are not exactly
3665 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3666 // and VM_Exit op at VM level.
3667 //
3668 // Shutdown sequence:
3669 //   + Wait until we are the last non-daemon thread to execute
3670 //     <-- every thing is still working at this moment -->
3671 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3672 //        shutdown hooks, run finalizers if finalization-on-exit
3673 //   + Call before_exit(), prepare for VM exit
3674 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3675 //        currently the only user of this mechanism is File.deleteOnExit())
3676 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3677 //        post thread end and vm death events to JVMTI,
3678 //        stop signal thread
3679 //   + Call JavaThread::exit(), it will:
3680 //      > release JNI handle blocks, remove stack guard pages
3681 //      > remove this thread from Threads list
3682 //     <-- no more Java code from this thread after this point -->
3683 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3684 //     the compiler threads at safepoint
3685 //     <-- do not use anything that could get blocked by Safepoint -->
3686 //   + Disable tracing at JNI/JVM barriers
3687 //   + Set _vm_exited flag for threads that are still running native code
3688 //   + Delete this thread
3689 //   + Call exit_globals()
3690 //      > deletes tty
3691 //      > deletes PerfMemory resources
3692 //   + Return to caller
3693 
3694 bool Threads::destroy_vm() {
3695   JavaThread* thread = JavaThread::current();
3696 
3697   // Wait until we are the last non-daemon thread to execute
3698   { MutexLocker nu(Threads_lock);
3699     while (Threads::number_of_non_daemon_threads() > 1 )
3700       // This wait should make safepoint checks, wait without a timeout,
3701       // and wait as a suspend-equivalent condition.
3702       //
3703       // Note: If the FlatProfiler is running and this thread is waiting
3704       // for another non-daemon thread to finish, then the FlatProfiler
3705       // is waiting for the external suspend request on this thread to
3706       // complete. wait_for_ext_suspend_completion() will eventually
3707       // timeout, but that takes time. Making this wait a suspend-
3708       // equivalent condition solves that timeout problem.
3709       //
3710       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3711                          Mutex::_as_suspend_equivalent_flag);
3712   }
3713 
3714   // Hang forever on exit if we are reporting an error.
3715   if (ShowMessageBoxOnError && is_error_reported()) {
3716     os::infinite_sleep();
3717   }
3718   os::wait_for_keypress_at_exit();
3719 
3720   if (JDK_Version::is_jdk12x_version()) {
3721     // We are the last thread running, so check if finalizers should be run.
3722     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3723     HandleMark rm(thread);
3724     Universe::run_finalizers_on_exit();
3725   } else {
3726     // run Java level shutdown hooks
3727     thread->invoke_shutdown_hooks();
3728   }
3729 
3730   before_exit(thread);
3731 
3732   thread->exit(true);
3733 
3734   // Stop VM thread.
3735   {
3736     // 4945125 The vm thread comes to a safepoint during exit.
3737     // GC vm_operations can get caught at the safepoint, and the
3738     // heap is unparseable if they are caught. Grab the Heap_lock
3739     // to prevent this. The GC vm_operations will not be able to
3740     // queue until after the vm thread is dead.
3741     // After this point, we'll never emerge out of the safepoint before
3742     // the VM exits, so concurrent GC threads do not need to be explicitly
3743     // stopped; they remain inactive until the process exits.
3744     // Note: some concurrent G1 threads may be running during a safepoint,
3745     // but these will not be accessing the heap, just some G1-specific side
3746     // data structures that are not accessed by any other threads but them
3747     // after this point in a terminal safepoint.
3748 
3749     MutexLocker ml(Heap_lock);
3750 
3751     VMThread::wait_for_vm_thread_exit();
3752     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3753     VMThread::destroy();
3754   }
3755 
3756   // clean up ideal graph printers
3757 #if defined(COMPILER2) && !defined(PRODUCT)
3758   IdealGraphPrinter::clean_up();
3759 #endif
3760 
3761   // Now, all Java threads are gone except daemon threads. Daemon threads
3762   // running Java code or in VM are stopped by the Safepoint. However,
3763   // daemon threads executing native code are still running.  But they
3764   // will be stopped at native=>Java/VM barriers. Note that we can't
3765   // simply kill or suspend them, as it is inherently deadlock-prone.
3766 
3767 #ifndef PRODUCT
3768   // disable function tracing at JNI/JVM barriers
3769   TraceJNICalls = false;
3770   TraceJVMCalls = false;
3771   TraceRuntimeCalls = false;
3772 #endif
3773 
3774   VM_Exit::set_vm_exited();
3775 
3776   notify_vm_shutdown();
3777 
3778   delete thread;
3779 
3780   // exit_globals() will delete tty
3781   exit_globals();
3782 
3783   return true;
3784 }
3785 
3786 
3787 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3788   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3789   return is_supported_jni_version(version);
3790 }
3791 
3792 
3793 jboolean Threads::is_supported_jni_version(jint version) {
3794   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3795   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3796   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3797   return JNI_FALSE;
3798 }
3799 
3800 
3801 void Threads::add(JavaThread* p, bool force_daemon) {
3802   // The threads lock must be owned at this point
3803   assert_locked_or_safepoint(Threads_lock);
3804 
3805   // See the comment for this method in thread.hpp for its purpose and
3806   // why it is called here.
3807   p->initialize_queues();
3808   p->set_next(_thread_list);
3809   _thread_list = p;
3810   _number_of_threads++;
3811   oop threadObj = p->threadObj();
3812   bool daemon = true;
3813   // Bootstrapping problem: threadObj can be null for initial
3814   // JavaThread (or for threads attached via JNI)
3815   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3816     _number_of_non_daemon_threads++;
3817     daemon = false;
3818   }
3819 
3820   ThreadService::add_thread(p, daemon);
3821 
3822   // Possible GC point.
3823   Events::log("Thread added: " INTPTR_FORMAT, p);
3824 }
3825 
3826 void Threads::remove(JavaThread* p) {
3827   // Extra scope needed for Thread_lock, so we can check
3828   // that we do not remove thread without safepoint code notice
3829   { MutexLocker ml(Threads_lock);
3830 
3831     assert(includes(p), "p must be present");
3832 
3833     JavaThread* current = _thread_list;
3834     JavaThread* prev    = NULL;
3835 
3836     while (current != p) {
3837       prev    = current;
3838       current = current->next();
3839     }
3840 
3841     if (prev) {
3842       prev->set_next(current->next());
3843     } else {
3844       _thread_list = p->next();
3845     }
3846     _number_of_threads--;
3847     oop threadObj = p->threadObj();
3848     bool daemon = true;
3849     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3850       _number_of_non_daemon_threads--;
3851       daemon = false;
3852 
3853       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3854       // on destroy_vm will wake up.
3855       if (number_of_non_daemon_threads() == 1)
3856         Threads_lock->notify_all();
3857     }
3858     ThreadService::remove_thread(p, daemon);
3859 
3860     // Make sure that safepoint code disregard this thread. This is needed since
3861     // the thread might mess around with locks after this point. This can cause it
3862     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3863     // of this thread since it is removed from the queue.
3864     p->set_terminated_value();
3865   } // unlock Threads_lock
3866 
3867   // Since Events::log uses a lock, we grab it outside the Threads_lock
3868   Events::log("Thread exited: " INTPTR_FORMAT, p);
3869 }
3870 
3871 // Threads_lock must be held when this is called (or must be called during a safepoint)
3872 bool Threads::includes(JavaThread* p) {
3873   assert(Threads_lock->is_locked(), "sanity check");
3874   ALL_JAVA_THREADS(q) {
3875     if (q == p ) {
3876       return true;
3877     }
3878   }
3879   return false;
3880 }
3881 
3882 // Operations on the Threads list for GC.  These are not explicitly locked,
3883 // but the garbage collector must provide a safe context for them to run.
3884 // In particular, these things should never be called when the Threads_lock
3885 // is held by some other thread. (Note: the Safepoint abstraction also
3886 // uses the Threads_lock to gurantee this property. It also makes sure that
3887 // all threads gets blocked when exiting or starting).
3888 
3889 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3890   ALL_JAVA_THREADS(p) {
3891     p->oops_do(f, cf);
3892   }
3893   VMThread::vm_thread()->oops_do(f, cf);
3894 }
3895 
3896 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3897   // Introduce a mechanism allowing parallel threads to claim threads as
3898   // root groups.  Overhead should be small enough to use all the time,
3899   // even in sequential code.
3900   SharedHeap* sh = SharedHeap::heap();
3901   bool is_par = (sh->n_par_threads() > 0);
3902   int cp = SharedHeap::heap()->strong_roots_parity();
3903   ALL_JAVA_THREADS(p) {
3904     if (p->claim_oops_do(is_par, cp)) {
3905       p->oops_do(f, cf);
3906     }
3907   }
3908   VMThread* vmt = VMThread::vm_thread();
3909   if (vmt->claim_oops_do(is_par, cp)) {
3910     vmt->oops_do(f, cf);
3911   }
3912 }
3913 
3914 #ifndef SERIALGC
3915 // Used by ParallelScavenge
3916 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3917   ALL_JAVA_THREADS(p) {
3918     q->enqueue(new ThreadRootsTask(p));
3919   }
3920   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3921 }
3922 
3923 // Used by Parallel Old
3924 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3925   ALL_JAVA_THREADS(p) {
3926     q->enqueue(new ThreadRootsMarkingTask(p));
3927   }
3928   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3929 }
3930 #endif // SERIALGC
3931 
3932 void Threads::nmethods_do(CodeBlobClosure* cf) {
3933   ALL_JAVA_THREADS(p) {
3934     p->nmethods_do(cf);
3935   }
3936   VMThread::vm_thread()->nmethods_do(cf);
3937 }
3938 
3939 void Threads::gc_epilogue() {
3940   ALL_JAVA_THREADS(p) {
3941     p->gc_epilogue();
3942   }
3943 }
3944 
3945 void Threads::gc_prologue() {
3946   ALL_JAVA_THREADS(p) {
3947     p->gc_prologue();
3948   }
3949 }
3950 
3951 void Threads::deoptimized_wrt_marked_nmethods() {
3952   ALL_JAVA_THREADS(p) {
3953     p->deoptimized_wrt_marked_nmethods();
3954   }
3955 }
3956 
3957 
3958 // Get count Java threads that are waiting to enter the specified monitor.
3959 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3960   address monitor, bool doLock) {
3961   assert(doLock || SafepointSynchronize::is_at_safepoint(),
3962     "must grab Threads_lock or be at safepoint");
3963   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3964 
3965   int i = 0;
3966   {
3967     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3968     ALL_JAVA_THREADS(p) {
3969       if (p->is_Compiler_thread()) continue;
3970 
3971       address pending = (address)p->current_pending_monitor();
3972       if (pending == monitor) {             // found a match
3973         if (i < count) result->append(p);   // save the first count matches
3974         i++;
3975       }
3976     }
3977   }
3978   return result;
3979 }
3980 
3981 
3982 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3983   assert(doLock ||
3984          Threads_lock->owned_by_self() ||
3985          SafepointSynchronize::is_at_safepoint(),
3986          "must grab Threads_lock or be at safepoint");
3987 
3988   // NULL owner means not locked so we can skip the search
3989   if (owner == NULL) return NULL;
3990 
3991   {
3992     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3993     ALL_JAVA_THREADS(p) {
3994       // first, see if owner is the address of a Java thread
3995       if (owner == (address)p) return p;
3996     }
3997   }
3998   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3999   if (UseHeavyMonitors) return NULL;
4000 
4001   //
4002   // If we didn't find a matching Java thread and we didn't force use of
4003   // heavyweight monitors, then the owner is the stack address of the
4004   // Lock Word in the owning Java thread's stack.
4005   //
4006   JavaThread* the_owner = NULL;
4007   {
4008     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4009     ALL_JAVA_THREADS(q) {
4010       if (q->is_lock_owned(owner)) {
4011         the_owner = q;
4012         break;
4013       }
4014     }
4015   }
4016   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
4017   return the_owner;
4018 }
4019 
4020 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4021 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4022   char buf[32];
4023   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4024 
4025   st->print_cr("Full thread dump %s (%s %s):",
4026                 Abstract_VM_Version::vm_name(),
4027                 Abstract_VM_Version::vm_release(),
4028                 Abstract_VM_Version::vm_info_string()
4029                );
4030   st->cr();
4031 
4032 #ifndef SERIALGC
4033   // Dump concurrent locks
4034   ConcurrentLocksDump concurrent_locks;
4035   if (print_concurrent_locks) {
4036     concurrent_locks.dump_at_safepoint();
4037   }
4038 #endif // SERIALGC
4039 
4040   ALL_JAVA_THREADS(p) {
4041     ResourceMark rm;
4042     p->print_on(st);
4043     if (print_stacks) {
4044       if (internal_format) {
4045         p->trace_stack();
4046       } else {
4047         p->print_stack_on(st);
4048       }
4049     }
4050     st->cr();
4051 #ifndef SERIALGC
4052     if (print_concurrent_locks) {
4053       concurrent_locks.print_locks_on(p, st);
4054     }
4055 #endif // SERIALGC
4056   }
4057 
4058   VMThread::vm_thread()->print_on(st);
4059   st->cr();
4060   Universe::heap()->print_gc_threads_on(st);
4061   WatcherThread* wt = WatcherThread::watcher_thread();
4062   if (wt != NULL) wt->print_on(st);
4063   st->cr();
4064   CompileBroker::print_compiler_threads_on(st);
4065   st->flush();
4066 }
4067 
4068 // Threads::print_on_error() is called by fatal error handler. It's possible
4069 // that VM is not at safepoint and/or current thread is inside signal handler.
4070 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4071 // memory (even in resource area), it might deadlock the error handler.
4072 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4073   bool found_current = false;
4074   st->print_cr("Java Threads: ( => current thread )");
4075   ALL_JAVA_THREADS(thread) {
4076     bool is_current = (current == thread);
4077     found_current = found_current || is_current;
4078 
4079     st->print("%s", is_current ? "=>" : "  ");
4080 
4081     st->print(PTR_FORMAT, thread);
4082     st->print(" ");
4083     thread->print_on_error(st, buf, buflen);
4084     st->cr();
4085   }
4086   st->cr();
4087 
4088   st->print_cr("Other Threads:");
4089   if (VMThread::vm_thread()) {
4090     bool is_current = (current == VMThread::vm_thread());
4091     found_current = found_current || is_current;
4092     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4093 
4094     st->print(PTR_FORMAT, VMThread::vm_thread());
4095     st->print(" ");
4096     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4097     st->cr();
4098   }
4099   WatcherThread* wt = WatcherThread::watcher_thread();
4100   if (wt != NULL) {
4101     bool is_current = (current == wt);
4102     found_current = found_current || is_current;
4103     st->print("%s", is_current ? "=>" : "  ");
4104 
4105     st->print(PTR_FORMAT, wt);
4106     st->print(" ");
4107     wt->print_on_error(st, buf, buflen);
4108     st->cr();
4109   }
4110   if (!found_current) {
4111     st->cr();
4112     st->print("=>" PTR_FORMAT " (exited) ", current);
4113     current->print_on_error(st, buf, buflen);
4114     st->cr();
4115   }
4116 }
4117 
4118 // Internal SpinLock and Mutex
4119 // Based on ParkEvent
4120 
4121 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4122 //
4123 // We employ SpinLocks _only for low-contention, fixed-length
4124 // short-duration critical sections where we're concerned
4125 // about native mutex_t or HotSpot Mutex:: latency.
4126 // The mux construct provides a spin-then-block mutual exclusion
4127 // mechanism.
4128 //
4129 // Testing has shown that contention on the ListLock guarding gFreeList
4130 // is common.  If we implement ListLock as a simple SpinLock it's common
4131 // for the JVM to devolve to yielding with little progress.  This is true
4132 // despite the fact that the critical sections protected by ListLock are
4133 // extremely short.
4134 //
4135 // TODO-FIXME: ListLock should be of type SpinLock.
4136 // We should make this a 1st-class type, integrated into the lock
4137 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4138 // should have sufficient padding to avoid false-sharing and excessive
4139 // cache-coherency traffic.
4140 
4141 
4142 typedef volatile int SpinLockT ;
4143 
4144 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4145   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4146      return ;   // normal fast-path return
4147   }
4148 
4149   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4150   TEVENT (SpinAcquire - ctx) ;
4151   int ctr = 0 ;
4152   int Yields = 0 ;
4153   for (;;) {
4154      while (*adr != 0) {
4155         ++ctr ;
4156         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4157            if (Yields > 5) {
4158              // Consider using a simple NakedSleep() instead.
4159              // Then SpinAcquire could be called by non-JVM threads
4160              Thread::current()->_ParkEvent->park(1) ;
4161            } else {
4162              os::NakedYield() ;
4163              ++Yields ;
4164            }
4165         } else {
4166            SpinPause() ;
4167         }
4168      }
4169      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4170   }
4171 }
4172 
4173 void Thread::SpinRelease (volatile int * adr) {
4174   assert (*adr != 0, "invariant") ;
4175   OrderAccess::fence() ;      // guarantee at least release consistency.
4176   // Roach-motel semantics.
4177   // It's safe if subsequent LDs and STs float "up" into the critical section,
4178   // but prior LDs and STs within the critical section can't be allowed
4179   // to reorder or float past the ST that releases the lock.
4180   *adr = 0 ;
4181 }
4182 
4183 // muxAcquire and muxRelease:
4184 //
4185 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4186 //    The LSB of the word is set IFF the lock is held.
4187 //    The remainder of the word points to the head of a singly-linked list
4188 //    of threads blocked on the lock.
4189 //
4190 // *  The current implementation of muxAcquire-muxRelease uses its own
4191 //    dedicated Thread._MuxEvent instance.  If we're interested in
4192 //    minimizing the peak number of extant ParkEvent instances then
4193 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4194 //    as certain invariants were satisfied.  Specifically, care would need
4195 //    to be taken with regards to consuming unpark() "permits".
4196 //    A safe rule of thumb is that a thread would never call muxAcquire()
4197 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4198 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4199 //    consume an unpark() permit intended for monitorenter, for instance.
4200 //    One way around this would be to widen the restricted-range semaphore
4201 //    implemented in park().  Another alternative would be to provide
4202 //    multiple instances of the PlatformEvent() for each thread.  One
4203 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4204 //
4205 // *  Usage:
4206 //    -- Only as leaf locks
4207 //    -- for short-term locking only as muxAcquire does not perform
4208 //       thread state transitions.
4209 //
4210 // Alternatives:
4211 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4212 //    but with parking or spin-then-park instead of pure spinning.
4213 // *  Use Taura-Oyama-Yonenzawa locks.
4214 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4215 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4216 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4217 //    acquiring threads use timers (ParkTimed) to detect and recover from
4218 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4219 //    boundaries by using placement-new.
4220 // *  Augment MCS with advisory back-link fields maintained with CAS().
4221 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4222 //    The validity of the backlinks must be ratified before we trust the value.
4223 //    If the backlinks are invalid the exiting thread must back-track through the
4224 //    the forward links, which are always trustworthy.
4225 // *  Add a successor indication.  The LockWord is currently encoded as
4226 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4227 //    to provide the usual futile-wakeup optimization.
4228 //    See RTStt for details.
4229 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4230 //
4231 
4232 
4233 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4234 enum MuxBits { LOCKBIT = 1 } ;
4235 
4236 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4237   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4238   if (w == 0) return ;
4239   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4240      return ;
4241   }
4242 
4243   TEVENT (muxAcquire - Contention) ;
4244   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4245   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4246   for (;;) {
4247      int its = (os::is_MP() ? 100 : 0) + 1 ;
4248 
4249      // Optional spin phase: spin-then-park strategy
4250      while (--its >= 0) {
4251        w = *Lock ;
4252        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4253           return ;
4254        }
4255      }
4256 
4257      Self->reset() ;
4258      Self->OnList = intptr_t(Lock) ;
4259      // The following fence() isn't _strictly necessary as the subsequent
4260      // CAS() both serializes execution and ratifies the fetched *Lock value.
4261      OrderAccess::fence();
4262      for (;;) {
4263         w = *Lock ;
4264         if ((w & LOCKBIT) == 0) {
4265             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4266                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4267                 return ;
4268             }
4269             continue ;      // Interference -- *Lock changed -- Just retry
4270         }
4271         assert (w & LOCKBIT, "invariant") ;
4272         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4273         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4274      }
4275 
4276      while (Self->OnList != 0) {
4277         Self->park() ;
4278      }
4279   }
4280 }
4281 
4282 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4283   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4284   if (w == 0) return ;
4285   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4286     return ;
4287   }
4288 
4289   TEVENT (muxAcquire - Contention) ;
4290   ParkEvent * ReleaseAfter = NULL ;
4291   if (ev == NULL) {
4292     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4293   }
4294   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4295   for (;;) {
4296     guarantee (ev->OnList == 0, "invariant") ;
4297     int its = (os::is_MP() ? 100 : 0) + 1 ;
4298 
4299     // Optional spin phase: spin-then-park strategy
4300     while (--its >= 0) {
4301       w = *Lock ;
4302       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4303         if (ReleaseAfter != NULL) {
4304           ParkEvent::Release (ReleaseAfter) ;
4305         }
4306         return ;
4307       }
4308     }
4309 
4310     ev->reset() ;
4311     ev->OnList = intptr_t(Lock) ;
4312     // The following fence() isn't _strictly necessary as the subsequent
4313     // CAS() both serializes execution and ratifies the fetched *Lock value.
4314     OrderAccess::fence();
4315     for (;;) {
4316       w = *Lock ;
4317       if ((w & LOCKBIT) == 0) {
4318         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4319           ev->OnList = 0 ;
4320           // We call ::Release while holding the outer lock, thus
4321           // artificially lengthening the critical section.
4322           // Consider deferring the ::Release() until the subsequent unlock(),
4323           // after we've dropped the outer lock.
4324           if (ReleaseAfter != NULL) {
4325             ParkEvent::Release (ReleaseAfter) ;
4326           }
4327           return ;
4328         }
4329         continue ;      // Interference -- *Lock changed -- Just retry
4330       }
4331       assert (w & LOCKBIT, "invariant") ;
4332       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4333       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4334     }
4335 
4336     while (ev->OnList != 0) {
4337       ev->park() ;
4338     }
4339   }
4340 }
4341 
4342 // Release() must extract a successor from the list and then wake that thread.
4343 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4344 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4345 // Release() would :
4346 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4347 // (B) Extract a successor from the private list "in-hand"
4348 // (C) attempt to CAS() the residual back into *Lock over null.
4349 //     If there were any newly arrived threads and the CAS() would fail.
4350 //     In that case Release() would detach the RATs, re-merge the list in-hand
4351 //     with the RATs and repeat as needed.  Alternately, Release() might
4352 //     detach and extract a successor, but then pass the residual list to the wakee.
4353 //     The wakee would be responsible for reattaching and remerging before it
4354 //     competed for the lock.
4355 //
4356 // Both "pop" and DMR are immune from ABA corruption -- there can be
4357 // multiple concurrent pushers, but only one popper or detacher.
4358 // This implementation pops from the head of the list.  This is unfair,
4359 // but tends to provide excellent throughput as hot threads remain hot.
4360 // (We wake recently run threads first).
4361 
4362 void Thread::muxRelease (volatile intptr_t * Lock)  {
4363   for (;;) {
4364     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4365     assert (w & LOCKBIT, "invariant") ;
4366     if (w == LOCKBIT) return ;
4367     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4368     assert (List != NULL, "invariant") ;
4369     assert (List->OnList == intptr_t(Lock), "invariant") ;
4370     ParkEvent * nxt = List->ListNext ;
4371 
4372     // The following CAS() releases the lock and pops the head element.
4373     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4374       continue ;
4375     }
4376     List->OnList = 0 ;
4377     OrderAccess::fence() ;
4378     List->unpark () ;
4379     return ;
4380   }
4381 }
4382 
4383 
4384 void Threads::verify() {
4385   ALL_JAVA_THREADS(p) {
4386     p->verify();
4387   }
4388   VMThread* thread = VMThread::vm_thread();
4389   if (thread != NULL) thread->verify();
4390 }