1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  27 
  28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
  30 #include "gc_implementation/g1/survRateGroup.hpp"
  31 #include "gc_implementation/shared/ageTable.hpp"
  32 #include "gc_implementation/shared/spaceDecorator.hpp"
  33 #include "memory/space.inline.hpp"
  34 #include "memory/watermark.hpp"
  35 
  36 #ifndef SERIALGC
  37 
  38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  39 // can be collected independently.
  40 
  41 // NOTE: Although a HeapRegion is a Space, its
  42 // Space::initDirtyCardClosure method must not be called.
  43 // The problem is that the existence of this method breaks
  44 // the independence of barrier sets from remembered sets.
  45 // The solution is to remove this method from the definition
  46 // of a Space.
  47 
  48 class CompactibleSpace;
  49 class ContiguousSpace;
  50 class HeapRegionRemSet;
  51 class HeapRegionRemSetIterator;
  52 class HeapRegion;
  53 class HeapRegionSetBase;
  54 
  55 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
  56 #define HR_FORMAT_PARAMS(_hr_) \
  57                 (_hr_)->hrs_index(), \
  58                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
  59                 (_hr_)->startsHumongous() ? "HS" : \
  60                 (_hr_)->continuesHumongous() ? "HC" : \
  61                 !(_hr_)->is_empty() ? "O" : "F", \
  62                 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
  63 
  64 // sentinel value for hrs_index
  65 #define G1_NULL_HRS_INDEX ((uint) -1)
  66 
  67 // A dirty card to oop closure for heap regions. It
  68 // knows how to get the G1 heap and how to use the bitmap
  69 // in the concurrent marker used by G1 to filter remembered
  70 // sets.
  71 
  72 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
  73 public:
  74   // Specification of possible DirtyCardToOopClosure filtering.
  75   enum FilterKind {
  76     NoFilterKind,
  77     IntoCSFilterKind,
  78     OutOfRegionFilterKind
  79   };
  80 
  81 protected:
  82   HeapRegion* _hr;
  83   FilterKind _fk;
  84   G1CollectedHeap* _g1;
  85 
  86   void walk_mem_region_with_cl(MemRegion mr,
  87                                HeapWord* bottom, HeapWord* top,
  88                                ExtendedOopClosure* cl);
  89 
  90   // We don't specialize this for FilteringClosure; filtering is handled by
  91   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
  92   // warning.
  93   void walk_mem_region_with_cl(MemRegion mr,
  94                                HeapWord* bottom, HeapWord* top,
  95                                FilteringClosure* cl) {
  96     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
  97                                              (ExtendedOopClosure*)cl);
  98   }
  99 
 100   // Get the actual top of the area on which the closure will
 101   // operate, given where the top is assumed to be (the end of the
 102   // memory region passed to do_MemRegion) and where the object
 103   // at the top is assumed to start. For example, an object may
 104   // start at the top but actually extend past the assumed top,
 105   // in which case the top becomes the end of the object.
 106   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
 107     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
 108   }
 109 
 110   // Walk the given memory region from bottom to (actual) top
 111   // looking for objects and applying the oop closure (_cl) to
 112   // them. The base implementation of this treats the area as
 113   // blocks, where a block may or may not be an object. Sub-
 114   // classes should override this to provide more accurate
 115   // or possibly more efficient walking.
 116   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
 117     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
 118   }
 119 
 120 public:
 121   HeapRegionDCTOC(G1CollectedHeap* g1,
 122                   HeapRegion* hr, ExtendedOopClosure* cl,
 123                   CardTableModRefBS::PrecisionStyle precision,
 124                   FilterKind fk);
 125 };
 126 
 127 // The complicating factor is that BlockOffsetTable diverged
 128 // significantly, and we need functionality that is only in the G1 version.
 129 // So I copied that code, which led to an alternate G1 version of
 130 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
 131 // be reconciled, then G1OffsetTableContigSpace could go away.
 132 
 133 // The idea behind time stamps is the following. Doing a save_marks on
 134 // all regions at every GC pause is time consuming (if I remember
 135 // well, 10ms or so). So, we would like to do that only for regions
 136 // that are GC alloc regions. To achieve this, we use time
 137 // stamps. For every evacuation pause, G1CollectedHeap generates a
 138 // unique time stamp (essentially a counter that gets
 139 // incremented). Every time we want to call save_marks on a region,
 140 // we set the saved_mark_word to top and also copy the current GC
 141 // time stamp to the time stamp field of the space. Reading the
 142 // saved_mark_word involves checking the time stamp of the
 143 // region. If it is the same as the current GC time stamp, then we
 144 // can safely read the saved_mark_word field, as it is valid. If the
 145 // time stamp of the region is not the same as the current GC time
 146 // stamp, then we instead read top, as the saved_mark_word field is
 147 // invalid. Time stamps (on the regions and also on the
 148 // G1CollectedHeap) are reset at every cleanup (we iterate over
 149 // the regions anyway) and at the end of a Full GC. The current scheme
 150 // that uses sequential unsigned ints will fail only if we have 4b
 151 // evacuation pauses between two cleanups, which is _highly_ unlikely.
 152 
 153 class G1OffsetTableContigSpace: public ContiguousSpace {
 154   friend class VMStructs;
 155  protected:
 156   G1BlockOffsetArrayContigSpace _offsets;
 157   Mutex _par_alloc_lock;
 158   volatile unsigned _gc_time_stamp;
 159   // When we need to retire an allocation region, while other threads
 160   // are also concurrently trying to allocate into it, we typically
 161   // allocate a dummy object at the end of the region to ensure that
 162   // no more allocations can take place in it. However, sometimes we
 163   // want to know where the end of the last "real" object we allocated
 164   // into the region was and this is what this keeps track.
 165   HeapWord* _pre_dummy_top;
 166 
 167  public:
 168   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
 169   // assumed to contain zeros.
 170   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 171                            MemRegion mr, bool is_zeroed = false);
 172 
 173   void set_bottom(HeapWord* value);
 174   void set_end(HeapWord* value);
 175 
 176   virtual HeapWord* saved_mark_word() const;
 177   virtual void set_saved_mark();
 178   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 179   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
 180 
 181   // See the comment above in the declaration of _pre_dummy_top for an
 182   // explanation of what it is.
 183   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 184     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 185     _pre_dummy_top = pre_dummy_top;
 186   }
 187   HeapWord* pre_dummy_top() {
 188     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 189   }
 190   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 191 
 192   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 193   virtual void clear(bool mangle_space);
 194 
 195   HeapWord* block_start(const void* p);
 196   HeapWord* block_start_const(const void* p) const;
 197 
 198   // Add offset table update.
 199   virtual HeapWord* allocate(size_t word_size);
 200   HeapWord* par_allocate(size_t word_size);
 201 
 202   // MarkSweep support phase3
 203   virtual HeapWord* initialize_threshold();
 204   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 205 
 206   virtual void print() const;
 207 
 208   void reset_bot() {
 209     _offsets.zero_bottom_entry();
 210     _offsets.initialize_threshold();
 211   }
 212 
 213   void update_bot_for_object(HeapWord* start, size_t word_size) {
 214     _offsets.alloc_block(start, word_size);
 215   }
 216 
 217   void print_bot_on(outputStream* out) {
 218     _offsets.print_on(out);
 219   }
 220 };
 221 
 222 class HeapRegion: public G1OffsetTableContigSpace {
 223   friend class VMStructs;
 224  private:
 225 
 226   enum HumongousType {
 227     NotHumongous = 0,
 228     StartsHumongous,
 229     ContinuesHumongous
 230   };
 231 
 232   // Requires that the region "mr" be dense with objects, and begin and end
 233   // with an object.
 234   void oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl);
 235 
 236   // The remembered set for this region.
 237   // (Might want to make this "inline" later, to avoid some alloc failure
 238   // issues.)
 239   HeapRegionRemSet* _rem_set;
 240 
 241   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
 242 
 243  protected:
 244   // The index of this region in the heap region sequence.
 245   uint  _hrs_index;
 246 
 247   HumongousType _humongous_type;
 248   // For a humongous region, region in which it starts.
 249   HeapRegion* _humongous_start_region;
 250   // For the start region of a humongous sequence, it's original end().
 251   HeapWord* _orig_end;
 252 
 253   // True iff the region is in current collection_set.
 254   bool _in_collection_set;
 255 
 256   // True iff an attempt to evacuate an object in the region failed.
 257   bool _evacuation_failed;
 258 
 259   // A heap region may be a member one of a number of special subsets, each
 260   // represented as linked lists through the field below.  Currently, these
 261   // sets include:
 262   //   The collection set.
 263   //   The set of allocation regions used in a collection pause.
 264   //   Spaces that may contain gray objects.
 265   HeapRegion* _next_in_special_set;
 266 
 267   // next region in the young "generation" region set
 268   HeapRegion* _next_young_region;
 269 
 270   // Next region whose cards need cleaning
 271   HeapRegion* _next_dirty_cards_region;
 272 
 273   // Fields used by the HeapRegionSetBase class and subclasses.
 274   HeapRegion* _next;
 275 #ifdef ASSERT
 276   HeapRegionSetBase* _containing_set;
 277 #endif // ASSERT
 278   bool _pending_removal;
 279 
 280   // For parallel heapRegion traversal.
 281   jint _claimed;
 282 
 283   // We use concurrent marking to determine the amount of live data
 284   // in each heap region.
 285   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 286   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 287 
 288   // The calculated GC efficiency of the region.
 289   double _gc_efficiency;
 290 
 291   enum YoungType {
 292     NotYoung,                   // a region is not young
 293     Young,                      // a region is young
 294     Survivor                    // a region is young and it contains survivors
 295   };
 296 
 297   volatile YoungType _young_type;
 298   int  _young_index_in_cset;
 299   SurvRateGroup* _surv_rate_group;
 300   int  _age_index;
 301 
 302   // The start of the unmarked area. The unmarked area extends from this
 303   // word until the top and/or end of the region, and is the part
 304   // of the region for which no marking was done, i.e. objects may
 305   // have been allocated in this part since the last mark phase.
 306   // "prev" is the top at the start of the last completed marking.
 307   // "next" is the top at the start of the in-progress marking (if any.)
 308   HeapWord* _prev_top_at_mark_start;
 309   HeapWord* _next_top_at_mark_start;
 310   // If a collection pause is in progress, this is the top at the start
 311   // of that pause.
 312 
 313   void init_top_at_mark_start() {
 314     assert(_prev_marked_bytes == 0 &&
 315            _next_marked_bytes == 0,
 316            "Must be called after zero_marked_bytes.");
 317     HeapWord* bot = bottom();
 318     _prev_top_at_mark_start = bot;
 319     _next_top_at_mark_start = bot;
 320   }
 321 
 322   void set_young_type(YoungType new_type) {
 323     //assert(_young_type != new_type, "setting the same type" );
 324     // TODO: add more assertions here
 325     _young_type = new_type;
 326   }
 327 
 328   // Cached attributes used in the collection set policy information
 329 
 330   // The RSet length that was added to the total value
 331   // for the collection set.
 332   size_t _recorded_rs_length;
 333 
 334   // The predicted elapsed time that was added to total value
 335   // for the collection set.
 336   double _predicted_elapsed_time_ms;
 337 
 338   // The predicted number of bytes to copy that was added to
 339   // the total value for the collection set.
 340   size_t _predicted_bytes_to_copy;
 341 
 342  public:
 343   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
 344   HeapRegion(uint hrs_index,
 345              G1BlockOffsetSharedArray* sharedOffsetArray,
 346              MemRegion mr, bool is_zeroed);
 347 
 348   static int    LogOfHRGrainBytes;
 349   static int    LogOfHRGrainWords;
 350 
 351   static size_t GrainBytes;
 352   static size_t GrainWords;
 353   static size_t CardsPerRegion;
 354 
 355   static size_t align_up_to_region_byte_size(size_t sz) {
 356     return (sz + (size_t) GrainBytes - 1) &
 357                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 358   }
 359 
 360   // It sets up the heap region size (GrainBytes / GrainWords), as
 361   // well as other related fields that are based on the heap region
 362   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 363   // CardsPerRegion). All those fields are considered constant
 364   // throughout the JVM's execution, therefore they should only be set
 365   // up once during initialization time.
 366   static void setup_heap_region_size(uintx min_heap_size);
 367 
 368   enum ClaimValues {
 369     InitialClaimValue          = 0,
 370     FinalCountClaimValue       = 1,
 371     NoteEndClaimValue          = 2,
 372     ScrubRemSetClaimValue      = 3,
 373     ParVerifyClaimValue        = 4,
 374     RebuildRSClaimValue        = 5,
 375     ParEvacFailureClaimValue   = 6,
 376     AggregateCountClaimValue   = 7,
 377     VerifyCountClaimValue      = 8
 378   };
 379 
 380   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
 381     assert(is_young(), "we can only skip BOT updates on young regions");
 382     return ContiguousSpace::par_allocate(word_size);
 383   }
 384   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
 385     assert(is_young(), "we can only skip BOT updates on young regions");
 386     return ContiguousSpace::allocate(word_size);
 387   }
 388 
 389   // If this region is a member of a HeapRegionSeq, the index in that
 390   // sequence, otherwise -1.
 391   uint hrs_index() const { return _hrs_index; }
 392 
 393   // The number of bytes marked live in the region in the last marking phase.
 394   size_t marked_bytes()    { return _prev_marked_bytes; }
 395   size_t live_bytes() {
 396     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 397   }
 398 
 399   // The number of bytes counted in the next marking.
 400   size_t next_marked_bytes() { return _next_marked_bytes; }
 401   // The number of bytes live wrt the next marking.
 402   size_t next_live_bytes() {
 403     return
 404       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
 405   }
 406 
 407   // A lower bound on the amount of garbage bytes in the region.
 408   size_t garbage_bytes() {
 409     size_t used_at_mark_start_bytes =
 410       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 411     assert(used_at_mark_start_bytes >= marked_bytes(),
 412            "Can't mark more than we have.");
 413     return used_at_mark_start_bytes - marked_bytes();
 414   }
 415 
 416   // Return the amount of bytes we'll reclaim if we collect this
 417   // region. This includes not only the known garbage bytes in the
 418   // region but also any unallocated space in it, i.e., [top, end),
 419   // since it will also be reclaimed if we collect the region.
 420   size_t reclaimable_bytes() {
 421     size_t known_live_bytes = live_bytes();
 422     assert(known_live_bytes <= capacity(), "sanity");
 423     return capacity() - known_live_bytes;
 424   }
 425 
 426   // An upper bound on the number of live bytes in the region.
 427   size_t max_live_bytes() { return used() - garbage_bytes(); }
 428 
 429   void add_to_marked_bytes(size_t incr_bytes) {
 430     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 431     assert(_next_marked_bytes <= used(), "invariant" );
 432   }
 433 
 434   void zero_marked_bytes()      {
 435     _prev_marked_bytes = _next_marked_bytes = 0;
 436   }
 437 
 438   bool isHumongous() const { return _humongous_type != NotHumongous; }
 439   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
 440   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
 441   // For a humongous region, region in which it starts.
 442   HeapRegion* humongous_start_region() const {
 443     return _humongous_start_region;
 444   }
 445 
 446   // Return the number of distinct regions that are covered by this region:
 447   // 1 if the region is not humongous, >= 1 if the region is humongous.
 448   uint region_num() const {
 449     if (!isHumongous()) {
 450       return 1U;
 451     } else {
 452       assert(startsHumongous(), "doesn't make sense on HC regions");
 453       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
 454       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
 455     }
 456   }
 457 
 458   // Return the index + 1 of the last HC regions that's associated
 459   // with this HS region.
 460   uint last_hc_index() const {
 461     assert(startsHumongous(), "don't call this otherwise");
 462     return hrs_index() + region_num();
 463   }
 464 
 465   // Same as Space::is_in_reserved, but will use the original size of the region.
 466   // The original size is different only for start humongous regions. They get
 467   // their _end set up to be the end of the last continues region of the
 468   // corresponding humongous object.
 469   bool is_in_reserved_raw(const void* p) const {
 470     return _bottom <= p && p < _orig_end;
 471   }
 472 
 473   // Makes the current region be a "starts humongous" region, i.e.,
 474   // the first region in a series of one or more contiguous regions
 475   // that will contain a single "humongous" object. The two parameters
 476   // are as follows:
 477   //
 478   // new_top : The new value of the top field of this region which
 479   // points to the end of the humongous object that's being
 480   // allocated. If there is more than one region in the series, top
 481   // will lie beyond this region's original end field and on the last
 482   // region in the series.
 483   //
 484   // new_end : The new value of the end field of this region which
 485   // points to the end of the last region in the series. If there is
 486   // one region in the series (namely: this one) end will be the same
 487   // as the original end of this region.
 488   //
 489   // Updating top and end as described above makes this region look as
 490   // if it spans the entire space taken up by all the regions in the
 491   // series and an single allocation moved its top to new_top. This
 492   // ensures that the space (capacity / allocated) taken up by all
 493   // humongous regions can be calculated by just looking at the
 494   // "starts humongous" regions and by ignoring the "continues
 495   // humongous" regions.
 496   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
 497 
 498   // Makes the current region be a "continues humongous'
 499   // region. first_hr is the "start humongous" region of the series
 500   // which this region will be part of.
 501   void set_continuesHumongous(HeapRegion* first_hr);
 502 
 503   // Unsets the humongous-related fields on the region.
 504   void set_notHumongous();
 505 
 506   // If the region has a remembered set, return a pointer to it.
 507   HeapRegionRemSet* rem_set() const {
 508     return _rem_set;
 509   }
 510 
 511   // True iff the region is in current collection_set.
 512   bool in_collection_set() const {
 513     return _in_collection_set;
 514   }
 515   void set_in_collection_set(bool b) {
 516     _in_collection_set = b;
 517   }
 518   HeapRegion* next_in_collection_set() {
 519     assert(in_collection_set(), "should only invoke on member of CS.");
 520     assert(_next_in_special_set == NULL ||
 521            _next_in_special_set->in_collection_set(),
 522            "Malformed CS.");
 523     return _next_in_special_set;
 524   }
 525   void set_next_in_collection_set(HeapRegion* r) {
 526     assert(in_collection_set(), "should only invoke on member of CS.");
 527     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
 528     _next_in_special_set = r;
 529   }
 530 
 531   // Methods used by the HeapRegionSetBase class and subclasses.
 532 
 533   // Getter and setter for the next field used to link regions into
 534   // linked lists.
 535   HeapRegion* next()              { return _next; }
 536 
 537   void set_next(HeapRegion* next) { _next = next; }
 538 
 539   // Every region added to a set is tagged with a reference to that
 540   // set. This is used for doing consistency checking to make sure that
 541   // the contents of a set are as they should be and it's only
 542   // available in non-product builds.
 543 #ifdef ASSERT
 544   void set_containing_set(HeapRegionSetBase* containing_set) {
 545     assert((containing_set == NULL && _containing_set != NULL) ||
 546            (containing_set != NULL && _containing_set == NULL),
 547            err_msg("containing_set: "PTR_FORMAT" "
 548                    "_containing_set: "PTR_FORMAT,
 549                    containing_set, _containing_set));
 550 
 551     _containing_set = containing_set;
 552   }
 553 
 554   HeapRegionSetBase* containing_set() { return _containing_set; }
 555 #else // ASSERT
 556   void set_containing_set(HeapRegionSetBase* containing_set) { }
 557 
 558   // containing_set() is only used in asserts so there's no reason
 559   // to provide a dummy version of it.
 560 #endif // ASSERT
 561 
 562   // If we want to remove regions from a list in bulk we can simply tag
 563   // them with the pending_removal tag and call the
 564   // remove_all_pending() method on the list.
 565 
 566   bool pending_removal() { return _pending_removal; }
 567 
 568   void set_pending_removal(bool pending_removal) {
 569     if (pending_removal) {
 570       assert(!_pending_removal && containing_set() != NULL,
 571              "can only set pending removal to true if it's false and "
 572              "the region belongs to a region set");
 573     } else {
 574       assert( _pending_removal && containing_set() == NULL,
 575               "can only set pending removal to false if it's true and "
 576               "the region does not belong to a region set");
 577     }
 578 
 579     _pending_removal = pending_removal;
 580   }
 581 
 582   HeapRegion* get_next_young_region() { return _next_young_region; }
 583   void set_next_young_region(HeapRegion* hr) {
 584     _next_young_region = hr;
 585   }
 586 
 587   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
 588   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
 589   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
 590   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
 591 
 592   HeapWord* orig_end() { return _orig_end; }
 593 
 594   // Allows logical separation between objects allocated before and after.
 595   void save_marks();
 596 
 597   // Reset HR stuff to default values.
 598   void hr_clear(bool par, bool clear_space);
 599   void par_clear();
 600 
 601   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 602 
 603   // Get the start of the unmarked area in this region.
 604   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 605   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 606 
 607   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
 608   // allocated in the current region before the last call to "save_mark".
 609   void oop_before_save_marks_iterate(ExtendedOopClosure* cl);
 610 
 611   // Note the start or end of marking. This tells the heap region
 612   // that the collector is about to start or has finished (concurrently)
 613   // marking the heap.
 614 
 615   // Notify the region that concurrent marking is starting. Initialize
 616   // all fields related to the next marking info.
 617   inline void note_start_of_marking();
 618 
 619   // Notify the region that concurrent marking has finished. Copy the
 620   // (now finalized) next marking info fields into the prev marking
 621   // info fields.
 622   inline void note_end_of_marking();
 623 
 624   // Notify the region that it will be used as to-space during a GC
 625   // and we are about to start copying objects into it.
 626   inline void note_start_of_copying(bool during_initial_mark);
 627 
 628   // Notify the region that it ceases being to-space during a GC and
 629   // we will not copy objects into it any more.
 630   inline void note_end_of_copying(bool during_initial_mark);
 631 
 632   // Notify the region that we are about to start processing
 633   // self-forwarded objects during evac failure handling.
 634   void note_self_forwarding_removal_start(bool during_initial_mark,
 635                                           bool during_conc_mark);
 636 
 637   // Notify the region that we have finished processing self-forwarded
 638   // objects during evac failure handling.
 639   void note_self_forwarding_removal_end(bool during_initial_mark,
 640                                         bool during_conc_mark,
 641                                         size_t marked_bytes);
 642 
 643   // Returns "false" iff no object in the region was allocated when the
 644   // last mark phase ended.
 645   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 646 
 647   void reset_during_compaction() {
 648     assert(isHumongous() && startsHumongous(),
 649            "should only be called for starts humongous regions");
 650 
 651     zero_marked_bytes();
 652     init_top_at_mark_start();
 653   }
 654 
 655   void calc_gc_efficiency(void);
 656   double gc_efficiency() { return _gc_efficiency;}
 657 
 658   bool is_young() const     { return _young_type != NotYoung; }
 659   bool is_survivor() const  { return _young_type == Survivor; }
 660 
 661   int  young_index_in_cset() const { return _young_index_in_cset; }
 662   void set_young_index_in_cset(int index) {
 663     assert( (index == -1) || is_young(), "pre-condition" );
 664     _young_index_in_cset = index;
 665   }
 666 
 667   int age_in_surv_rate_group() {
 668     assert( _surv_rate_group != NULL, "pre-condition" );
 669     assert( _age_index > -1, "pre-condition" );
 670     return _surv_rate_group->age_in_group(_age_index);
 671   }
 672 
 673   void record_surv_words_in_group(size_t words_survived) {
 674     assert( _surv_rate_group != NULL, "pre-condition" );
 675     assert( _age_index > -1, "pre-condition" );
 676     int age_in_group = age_in_surv_rate_group();
 677     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 678   }
 679 
 680   int age_in_surv_rate_group_cond() {
 681     if (_surv_rate_group != NULL)
 682       return age_in_surv_rate_group();
 683     else
 684       return -1;
 685   }
 686 
 687   SurvRateGroup* surv_rate_group() {
 688     return _surv_rate_group;
 689   }
 690 
 691   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 692     assert( surv_rate_group != NULL, "pre-condition" );
 693     assert( _surv_rate_group == NULL, "pre-condition" );
 694     assert( is_young(), "pre-condition" );
 695 
 696     _surv_rate_group = surv_rate_group;
 697     _age_index = surv_rate_group->next_age_index();
 698   }
 699 
 700   void uninstall_surv_rate_group() {
 701     if (_surv_rate_group != NULL) {
 702       assert( _age_index > -1, "pre-condition" );
 703       assert( is_young(), "pre-condition" );
 704 
 705       _surv_rate_group = NULL;
 706       _age_index = -1;
 707     } else {
 708       assert( _age_index == -1, "pre-condition" );
 709     }
 710   }
 711 
 712   void set_young() { set_young_type(Young); }
 713 
 714   void set_survivor() { set_young_type(Survivor); }
 715 
 716   void set_not_young() { set_young_type(NotYoung); }
 717 
 718   // Determine if an object has been allocated since the last
 719   // mark performed by the collector. This returns true iff the object
 720   // is within the unmarked area of the region.
 721   bool obj_allocated_since_prev_marking(oop obj) const {
 722     return (HeapWord *) obj >= prev_top_at_mark_start();
 723   }
 724   bool obj_allocated_since_next_marking(oop obj) const {
 725     return (HeapWord *) obj >= next_top_at_mark_start();
 726   }
 727 
 728   // For parallel heapRegion traversal.
 729   bool claimHeapRegion(int claimValue);
 730   jint claim_value() { return _claimed; }
 731   // Use this carefully: only when you're sure no one is claiming...
 732   void set_claim_value(int claimValue) { _claimed = claimValue; }
 733 
 734   // Returns the "evacuation_failed" property of the region.
 735   bool evacuation_failed() { return _evacuation_failed; }
 736 
 737   // Sets the "evacuation_failed" property of the region.
 738   void set_evacuation_failed(bool b) {
 739     _evacuation_failed = b;
 740 
 741     if (b) {
 742       _next_marked_bytes = 0;
 743     }
 744   }
 745 
 746   // Requires that "mr" be entirely within the region.
 747   // Apply "cl->do_object" to all objects that intersect with "mr".
 748   // If the iteration encounters an unparseable portion of the region,
 749   // or if "cl->abort()" is true after a closure application,
 750   // terminate the iteration and return the address of the start of the
 751   // subregion that isn't done.  (The two can be distinguished by querying
 752   // "cl->abort()".)  Return of "NULL" indicates that the iteration
 753   // completed.
 754   HeapWord*
 755   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
 756 
 757   // filter_young: if true and the region is a young region then we
 758   // skip the iteration.
 759   // card_ptr: if not NULL, and we decide that the card is not young
 760   // and we iterate over it, we'll clean the card before we start the
 761   // iteration.
 762   HeapWord*
 763   oops_on_card_seq_iterate_careful(MemRegion mr,
 764                                    FilterOutOfRegionClosure* cl,
 765                                    bool filter_young,
 766                                    jbyte* card_ptr);
 767 
 768   // A version of block start that is guaranteed to find *some* block
 769   // boundary at or before "p", but does not object iteration, and may
 770   // therefore be used safely when the heap is unparseable.
 771   HeapWord* block_start_careful(const void* p) const {
 772     return _offsets.block_start_careful(p);
 773   }
 774 
 775   // Requires that "addr" is within the region.  Returns the start of the
 776   // first ("careful") block that starts at or after "addr", or else the
 777   // "end" of the region if there is no such block.
 778   HeapWord* next_block_start_careful(HeapWord* addr);
 779 
 780   size_t recorded_rs_length() const        { return _recorded_rs_length; }
 781   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
 782   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
 783 
 784   void set_recorded_rs_length(size_t rs_length) {
 785     _recorded_rs_length = rs_length;
 786   }
 787 
 788   void set_predicted_elapsed_time_ms(double ms) {
 789     _predicted_elapsed_time_ms = ms;
 790   }
 791 
 792   void set_predicted_bytes_to_copy(size_t bytes) {
 793     _predicted_bytes_to_copy = bytes;
 794   }
 795 
 796 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 797   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
 798   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
 799 
 800   virtual CompactibleSpace* next_compaction_space() const;
 801 
 802   virtual void reset_after_compaction();
 803 
 804   void print() const;
 805   void print_on(outputStream* st) const;
 806 
 807   // vo == UsePrevMarking  -> use "prev" marking information,
 808   // vo == UseNextMarking -> use "next" marking information
 809   // vo == UseMarkWord    -> use the mark word in the object header
 810   //
 811   // NOTE: Only the "prev" marking information is guaranteed to be
 812   // consistent most of the time, so most calls to this should use
 813   // vo == UsePrevMarking.
 814   // Currently, there is only one case where this is called with
 815   // vo == UseNextMarking, which is to verify the "next" marking
 816   // information at the end of remark.
 817   // Currently there is only one place where this is called with
 818   // vo == UseMarkWord, which is to verify the marking during a
 819   // full GC.
 820   void verify(VerifyOption vo, bool *failures) const;
 821 
 822   // Override; it uses the "prev" marking information
 823   virtual void verify() const;
 824 };
 825 
 826 // HeapRegionClosure is used for iterating over regions.
 827 // Terminates the iteration when the "doHeapRegion" method returns "true".
 828 class HeapRegionClosure : public StackObj {
 829   friend class HeapRegionSeq;
 830   friend class G1CollectedHeap;
 831 
 832   bool _complete;
 833   void incomplete() { _complete = false; }
 834 
 835  public:
 836   HeapRegionClosure(): _complete(true) {}
 837 
 838   // Typically called on each region until it returns true.
 839   virtual bool doHeapRegion(HeapRegion* r) = 0;
 840 
 841   // True after iteration if the closure was applied to all heap regions
 842   // and returned "false" in all cases.
 843   bool complete() { return _complete; }
 844 };
 845 
 846 #endif // SERIALGC
 847 
 848 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP