1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  32 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  33 #include "runtime/arguments.hpp"
  34 #include "runtime/java.hpp"
  35 #include "runtime/mutexLocker.hpp"
  36 #include "utilities/debug.hpp"
  37 
  38 #define PREDICTIONS_VERBOSE 0
  39 
  40 // <NEW PREDICTION>
  41 
  42 // Different defaults for different number of GC threads
  43 // They were chosen by running GCOld and SPECjbb on debris with different
  44 //   numbers of GC threads and choosing them based on the results
  45 
  46 // all the same
  47 static double rs_length_diff_defaults[] = {
  48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  49 };
  50 
  51 static double cost_per_card_ms_defaults[] = {
  52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  53 };
  54 
  55 // all the same
  56 static double fully_young_cards_per_entry_ratio_defaults[] = {
  57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  58 };
  59 
  60 static double cost_per_entry_ms_defaults[] = {
  61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  62 };
  63 
  64 static double cost_per_byte_ms_defaults[] = {
  65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  66 };
  67 
  68 // these should be pretty consistent
  69 static double constant_other_time_ms_defaults[] = {
  70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  71 };
  72 
  73 
  74 static double young_other_cost_per_region_ms_defaults[] = {
  75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  76 };
  77 
  78 static double non_young_other_cost_per_region_ms_defaults[] = {
  79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  80 };
  81 
  82 // </NEW PREDICTION>
  83 
  84 // Help class for avoiding interleaved logging
  85 class LineBuffer: public StackObj {
  86 
  87 private:
  88   static const int BUFFER_LEN = 1024;
  89   static const int INDENT_CHARS = 3;
  90   char _buffer[BUFFER_LEN];
  91   int _indent_level;
  92   int _cur;
  93 
  94   void vappend(const char* format, va_list ap) {
  95     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
  96     if (res != -1) {
  97       _cur += res;
  98     } else {
  99       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
 100       _buffer[BUFFER_LEN -1] = 0;
 101       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
 102     }
 103   }
 104 
 105 public:
 106   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
 107     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
 108       _buffer[_cur] = ' ';
 109     }
 110   }
 111 
 112 #ifndef PRODUCT
 113   ~LineBuffer() {
 114     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
 115   }
 116 #endif
 117 
 118   void append(const char* format, ...) {
 119     va_list ap;
 120     va_start(ap, format);
 121     vappend(format, ap);
 122     va_end(ap);
 123   }
 124 
 125   void append_and_print_cr(const char* format, ...) {
 126     va_list ap;
 127     va_start(ap, format);
 128     vappend(format, ap);
 129     va_end(ap);
 130     gclog_or_tty->print_cr("%s", _buffer);
 131     _cur = _indent_level * INDENT_CHARS;
 132   }
 133 };
 134 
 135 G1CollectorPolicy::G1CollectorPolicy() :
 136   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
 137     ? ParallelGCThreads : 1),
 138 
 139 
 140   _n_pauses(0),
 141   _recent_CH_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 142   _recent_G1_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 143   _recent_evac_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 144   _recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 145   _recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
 146   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 147   _all_pause_times_ms(new NumberSeq()),
 148   _stop_world_start(0.0),
 149   _all_stop_world_times_ms(new NumberSeq()),
 150   _all_yield_times_ms(new NumberSeq()),
 151 
 152   _all_mod_union_times_ms(new NumberSeq()),
 153 
 154   _summary(new Summary()),
 155 
 156 #ifndef PRODUCT
 157   _cur_clear_ct_time_ms(0.0),
 158   _min_clear_cc_time_ms(-1.0),
 159   _max_clear_cc_time_ms(-1.0),
 160   _cur_clear_cc_time_ms(0.0),
 161   _cum_clear_cc_time_ms(0.0),
 162   _num_cc_clears(0L),
 163 #endif
 164 
 165   _region_num_young(0),
 166   _region_num_tenured(0),
 167   _prev_region_num_young(0),
 168   _prev_region_num_tenured(0),
 169 
 170   _aux_num(10),
 171   _all_aux_times_ms(new NumberSeq[_aux_num]),
 172   _cur_aux_start_times_ms(new double[_aux_num]),
 173   _cur_aux_times_ms(new double[_aux_num]),
 174   _cur_aux_times_set(new bool[_aux_num]),
 175 
 176   _concurrent_mark_init_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 177   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 178   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 179 
 180   // <NEW PREDICTION>
 181 
 182   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 183   _prev_collection_pause_end_ms(0.0),
 184   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 185   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 186   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 187   _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 188   _partially_young_cards_per_entry_ratio_seq(
 189                                          new TruncatedSeq(TruncatedSeqLength)),
 190   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 191   _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 192   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 193   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 194   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 195   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 196   _non_young_other_cost_per_region_ms_seq(
 197                                          new TruncatedSeq(TruncatedSeqLength)),
 198 
 199   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 200   _scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 201   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 202 
 203   _pause_time_target_ms((double) MaxGCPauseMillis),
 204 
 205   // </NEW PREDICTION>
 206 
 207   _in_young_gc_mode(false),
 208   _full_young_gcs(true),
 209   _full_young_pause_num(0),
 210   _partial_young_pause_num(0),
 211 
 212   _during_marking(false),
 213   _in_marking_window(false),
 214   _in_marking_window_im(false),
 215 
 216   _known_garbage_ratio(0.0),
 217   _known_garbage_bytes(0),
 218 
 219   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
 220 
 221    _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),
 222 
 223   _recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
 224   _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),
 225 
 226   _recent_avg_pause_time_ratio(0.0),
 227   _num_markings(0),
 228   _n_marks(0),
 229   _n_pauses_at_mark_end(0),
 230 
 231   _all_full_gc_times_ms(new NumberSeq()),
 232 
 233   // G1PausesBtwnConcMark defaults to -1
 234   // so the hack is to do the cast  QQQ FIXME
 235   _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
 236   _n_marks_since_last_pause(0),
 237   _initiate_conc_mark_if_possible(false),
 238   _during_initial_mark_pause(false),
 239   _should_revert_to_full_young_gcs(false),
 240   _last_full_young_gc(false),
 241 
 242   _eden_bytes_before_gc(0),
 243   _survivor_bytes_before_gc(0),
 244   _capacity_before_gc(0),
 245 
 246   _prev_collection_pause_used_at_end_bytes(0),
 247 
 248   _collection_set(NULL),
 249   _collection_set_size(0),
 250   _collection_set_bytes_used_before(0),
 251 
 252   // Incremental CSet attributes
 253   _inc_cset_build_state(Inactive),
 254   _inc_cset_head(NULL),
 255   _inc_cset_tail(NULL),
 256   _inc_cset_size(0),
 257   _inc_cset_young_index(0),
 258   _inc_cset_bytes_used_before(0),
 259   _inc_cset_max_finger(NULL),
 260   _inc_cset_recorded_young_bytes(0),
 261   _inc_cset_recorded_rs_lengths(0),
 262   _inc_cset_predicted_elapsed_time_ms(0.0),
 263   _inc_cset_predicted_bytes_to_copy(0),
 264 
 265 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 266 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 267 #endif // _MSC_VER
 268 
 269   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 270                                                  G1YoungSurvRateNumRegionsSummary)),
 271   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 272                                               G1YoungSurvRateNumRegionsSummary)),
 273   // add here any more surv rate groups
 274   _recorded_survivor_regions(0),
 275   _recorded_survivor_head(NULL),
 276   _recorded_survivor_tail(NULL),
 277   _survivors_age_table(true),
 278 
 279   _gc_overhead_perc(0.0)
 280 
 281 {
 282   // Set up the region size and associated fields. Given that the
 283   // policy is created before the heap, we have to set this up here,
 284   // so it's done as soon as possible.
 285   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
 286   HeapRegionRemSet::setup_remset_size();
 287 
 288   // Verify PLAB sizes
 289   const uint region_size = HeapRegion::GrainWords;
 290   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 291     char buffer[128];
 292     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most %u",
 293                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 294     vm_exit_during_initialization(buffer);
 295   }
 296 
 297   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 298   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 299 
 300   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
 301   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
 302   _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
 303 
 304   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
 305   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
 306 
 307   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
 308 
 309   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
 310 
 311   _par_last_termination_times_ms = new double[_parallel_gc_threads];
 312   _par_last_termination_attempts = new double[_parallel_gc_threads];
 313   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
 314   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
 315 
 316   // start conservatively
 317   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
 318 
 319   // <NEW PREDICTION>
 320 
 321   int index;
 322   if (ParallelGCThreads == 0)
 323     index = 0;
 324   else if (ParallelGCThreads > 8)
 325     index = 7;
 326   else
 327     index = ParallelGCThreads - 1;
 328 
 329   _pending_card_diff_seq->add(0.0);
 330   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 331   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 332   _fully_young_cards_per_entry_ratio_seq->add(
 333                             fully_young_cards_per_entry_ratio_defaults[index]);
 334   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 335   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 336   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 337   _young_other_cost_per_region_ms_seq->add(
 338                                young_other_cost_per_region_ms_defaults[index]);
 339   _non_young_other_cost_per_region_ms_seq->add(
 340                            non_young_other_cost_per_region_ms_defaults[index]);
 341 
 342   // </NEW PREDICTION>
 343 
 344   // Below, we might need to calculate the pause time target based on
 345   // the pause interval. When we do so we are going to give G1 maximum
 346   // flexibility and allow it to do pauses when it needs to. So, we'll
 347   // arrange that the pause interval to be pause time target + 1 to
 348   // ensure that a) the pause time target is maximized with respect to
 349   // the pause interval and b) we maintain the invariant that pause
 350   // time target < pause interval. If the user does not want this
 351   // maximum flexibility, they will have to set the pause interval
 352   // explicitly.
 353 
 354   // First make sure that, if either parameter is set, its value is
 355   // reasonable.
 356   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 357     if (MaxGCPauseMillis < 1) {
 358       vm_exit_during_initialization("MaxGCPauseMillis should be "
 359                                     "greater than 0");
 360     }
 361   }
 362   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 363     if (GCPauseIntervalMillis < 1) {
 364       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 365                                     "greater than 0");
 366     }
 367   }
 368 
 369   // Then, if the pause time target parameter was not set, set it to
 370   // the default value.
 371   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 372     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 373       // The default pause time target in G1 is 200ms
 374       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 375     } else {
 376       // We do not allow the pause interval to be set without the
 377       // pause time target
 378       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 379                                     "without setting MaxGCPauseMillis");
 380     }
 381   }
 382 
 383   // Then, if the interval parameter was not set, set it according to
 384   // the pause time target (this will also deal with the case when the
 385   // pause time target is the default value).
 386   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 387     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 388   }
 389 
 390   // Finally, make sure that the two parameters are consistent.
 391   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 392     char buffer[256];
 393     jio_snprintf(buffer, 256,
 394                  "MaxGCPauseMillis (%u) should be less than "
 395                  "GCPauseIntervalMillis (%u)",
 396                  MaxGCPauseMillis, GCPauseIntervalMillis);
 397     vm_exit_during_initialization(buffer);
 398   }
 399 
 400   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 401   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 402   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 403   _sigma = (double) G1ConfidencePercent / 100.0;
 404 
 405   // start conservatively (around 50ms is about right)
 406   _concurrent_mark_init_times_ms->add(0.05);
 407   _concurrent_mark_remark_times_ms->add(0.05);
 408   _concurrent_mark_cleanup_times_ms->add(0.20);
 409   _tenuring_threshold = MaxTenuringThreshold;
 410 
 411   // if G1FixedSurvivorSpaceSize is 0 which means the size is not
 412   // fixed, then _max_survivor_regions will be calculated at
 413   // calculate_young_list_target_length during initialization
 414   _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
 415 
 416   assert(GCTimeRatio > 0,
 417          "we should have set it to a default value set_g1_gc_flags() "
 418          "if a user set it to 0");
 419   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 420 
 421   initialize_all();
 422 }
 423 
 424 // Increment "i", mod "len"
 425 static void inc_mod(int& i, int len) {
 426   i++; if (i == len) i = 0;
 427 }
 428 
 429 void G1CollectorPolicy::initialize_flags() {
 430   set_min_alignment(HeapRegion::GrainBytes);
 431   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
 432   if (SurvivorRatio < 1) {
 433     vm_exit_during_initialization("Invalid survivor ratio specified");
 434   }
 435   CollectorPolicy::initialize_flags();
 436 }
 437 
 438 // The easiest way to deal with the parsing of the NewSize /
 439 // MaxNewSize / etc. parameteres is to re-use the code in the
 440 // TwoGenerationCollectorPolicy class. This is similar to what
 441 // ParallelScavenge does with its GenerationSizer class (see
 442 // ParallelScavengeHeap::initialize()). We might change this in the
 443 // future, but it's a good start.
 444 class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
 445   size_t size_to_region_num(size_t byte_size) {
 446     return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
 447   }
 448 
 449 public:
 450   G1YoungGenSizer() {
 451     initialize_flags();
 452     initialize_size_info();
 453   }
 454 
 455   size_t min_young_region_num() {
 456     return size_to_region_num(_min_gen0_size);
 457   }
 458   size_t initial_young_region_num() {
 459     return size_to_region_num(_initial_gen0_size);
 460   }
 461   size_t max_young_region_num() {
 462     return size_to_region_num(_max_gen0_size);
 463   }
 464 };
 465 
 466 void G1CollectorPolicy::init() {
 467   // Set aside an initial future to_space.
 468   _g1 = G1CollectedHeap::heap();
 469 
 470   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 471 
 472   initialize_gc_policy_counters();
 473 
 474   if (G1Gen) {
 475     _in_young_gc_mode = true;
 476 
 477     G1YoungGenSizer sizer;
 478     size_t initial_region_num = sizer.initial_young_region_num();
 479 
 480     if (UseAdaptiveSizePolicy) {
 481       set_adaptive_young_list_length(true);
 482       _young_list_fixed_length = 0;
 483     } else {
 484       set_adaptive_young_list_length(false);
 485       _young_list_fixed_length = initial_region_num;
 486     }
 487     _free_regions_at_end_of_collection = _g1->free_regions();
 488     calculate_young_list_min_length();
 489     guarantee( _young_list_min_length == 0, "invariant, not enough info" );
 490     calculate_young_list_target_length();
 491   } else {
 492      _young_list_fixed_length = 0;
 493     _in_young_gc_mode = false;
 494   }
 495 
 496   // We may immediately start allocating regions and placing them on the
 497   // collection set list. Initialize the per-collection set info
 498   start_incremental_cset_building();
 499 }
 500 
 501 // Create the jstat counters for the policy.
 502 void G1CollectorPolicy::initialize_gc_policy_counters()
 503 {
 504   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 2 + G1Gen);
 505 }
 506 
 507 void G1CollectorPolicy::calculate_young_list_min_length() {
 508   _young_list_min_length = 0;
 509 
 510   if (!adaptive_young_list_length())
 511     return;
 512 
 513   if (_alloc_rate_ms_seq->num() > 3) {
 514     double now_sec = os::elapsedTime();
 515     double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 516     double alloc_rate_ms = predict_alloc_rate_ms();
 517     size_t min_regions = (size_t) ceil(alloc_rate_ms * when_ms);
 518     size_t current_region_num = _g1->young_list()->length();
 519     _young_list_min_length = min_regions + current_region_num;
 520   }
 521 }
 522 
 523 void G1CollectorPolicy::calculate_young_list_target_length() {
 524   if (adaptive_young_list_length()) {
 525     size_t rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 526     calculate_young_list_target_length(rs_lengths);
 527   } else {
 528     if (full_young_gcs())
 529       _young_list_target_length = _young_list_fixed_length;
 530     else
 531       _young_list_target_length = _young_list_fixed_length / 2;
 532   }
 533 
 534   // Make sure we allow the application to allocate at least one
 535   // region before we need to do a collection again.
 536   size_t min_length = _g1->young_list()->length() + 1;
 537   _young_list_target_length = MAX2(_young_list_target_length, min_length);
 538   calculate_max_gc_locker_expansion();
 539   calculate_survivors_policy();
 540 }
 541 
 542 void G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths) {
 543   guarantee( adaptive_young_list_length(), "pre-condition" );
 544   guarantee( !_in_marking_window || !_last_full_young_gc, "invariant" );
 545 
 546   double start_time_sec = os::elapsedTime();
 547   size_t min_reserve_perc = MAX2((size_t)2, (size_t)G1ReservePercent);
 548   min_reserve_perc = MIN2((size_t) 50, min_reserve_perc);
 549   size_t reserve_regions =
 550     (size_t) ((double) min_reserve_perc * (double) _g1->n_regions() / 100.0);
 551 
 552   if (full_young_gcs() && _free_regions_at_end_of_collection > 0) {
 553     // we are in fully-young mode and there are free regions in the heap
 554 
 555     double survivor_regions_evac_time =
 556         predict_survivor_regions_evac_time();
 557 
 558     double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 559     size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 560     size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 561     size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 562     double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards)
 563                           + survivor_regions_evac_time;
 564 
 565     // the result
 566     size_t final_young_length = 0;
 567 
 568     size_t init_free_regions =
 569       MAX2((size_t)0, _free_regions_at_end_of_collection - reserve_regions);
 570 
 571     // if we're still under the pause target...
 572     if (base_time_ms <= target_pause_time_ms) {
 573       // We make sure that the shortest young length that makes sense
 574       // fits within the target pause time.
 575       size_t min_young_length = 1;
 576 
 577       if (predict_will_fit(min_young_length, base_time_ms,
 578                                      init_free_regions, target_pause_time_ms)) {
 579         // The shortest young length will fit within the target pause time;
 580         // we'll now check whether the absolute maximum number of young
 581         // regions will fit in the target pause time. If not, we'll do
 582         // a binary search between min_young_length and max_young_length
 583         size_t abs_max_young_length = _free_regions_at_end_of_collection - 1;
 584         size_t max_young_length = abs_max_young_length;
 585 
 586         if (max_young_length > min_young_length) {
 587           // Let's check if the initial max young length will fit within the
 588           // target pause. If so then there is no need to search for a maximal
 589           // young length - we'll return the initial maximum
 590 
 591           if (predict_will_fit(max_young_length, base_time_ms,
 592                                 init_free_regions, target_pause_time_ms)) {
 593             // The maximum young length will satisfy the target pause time.
 594             // We are done so set min young length to this maximum length.
 595             // The code after the loop will then set final_young_length using
 596             // the value cached in the minimum length.
 597             min_young_length = max_young_length;
 598           } else {
 599             // The maximum possible number of young regions will not fit within
 600             // the target pause time so let's search....
 601 
 602             size_t diff = (max_young_length - min_young_length) / 2;
 603             max_young_length = min_young_length + diff;
 604 
 605             while (max_young_length > min_young_length) {
 606               if (predict_will_fit(max_young_length, base_time_ms,
 607                                         init_free_regions, target_pause_time_ms)) {
 608 
 609                 // The current max young length will fit within the target
 610                 // pause time. Note we do not exit the loop here. By setting
 611                 // min = max, and then increasing the max below means that
 612                 // we will continue searching for an upper bound in the
 613                 // range [max..max+diff]
 614                 min_young_length = max_young_length;
 615               }
 616               diff = (max_young_length - min_young_length) / 2;
 617               max_young_length = min_young_length + diff;
 618             }
 619             // the above loop found a maximal young length that will fit
 620             // within the target pause time.
 621           }
 622           assert(min_young_length <= abs_max_young_length, "just checking");
 623         }
 624         final_young_length = min_young_length;
 625       }
 626     }
 627     // and we're done!
 628 
 629     // we should have at least one region in the target young length
 630     _young_list_target_length =
 631                               final_young_length + _recorded_survivor_regions;
 632 
 633     // let's keep an eye of how long we spend on this calculation
 634     // right now, I assume that we'll print it when we need it; we
 635     // should really adde it to the breakdown of a pause
 636     double end_time_sec = os::elapsedTime();
 637     double elapsed_time_ms = (end_time_sec - start_time_sec) * 1000.0;
 638 
 639 #ifdef TRACE_CALC_YOUNG_LENGTH
 640     // leave this in for debugging, just in case
 641     gclog_or_tty->print_cr("target = %1.1lf ms, young = " SIZE_FORMAT ", "
 642                            "elapsed %1.2lf ms, (%s%s) " SIZE_FORMAT SIZE_FORMAT,
 643                            target_pause_time_ms,
 644                            _young_list_target_length
 645                            elapsed_time_ms,
 646                            full_young_gcs() ? "full" : "partial",
 647                            during_initial_mark_pause() ? " i-m" : "",
 648                            _in_marking_window,
 649                            _in_marking_window_im);
 650 #endif // TRACE_CALC_YOUNG_LENGTH
 651 
 652     if (_young_list_target_length < _young_list_min_length) {
 653       // bummer; this means that, if we do a pause when the maximal
 654       // length dictates, we'll violate the pause spacing target (the
 655       // min length was calculate based on the application's current
 656       // alloc rate);
 657 
 658       // so, we have to bite the bullet, and allocate the minimum
 659       // number. We'll violate our target, but we just can't meet it.
 660 
 661 #ifdef TRACE_CALC_YOUNG_LENGTH
 662       // leave this in for debugging, just in case
 663       gclog_or_tty->print_cr("adjusted target length from "
 664                              SIZE_FORMAT " to " SIZE_FORMAT,
 665                              _young_list_target_length, _young_list_min_length);
 666 #endif // TRACE_CALC_YOUNG_LENGTH
 667 
 668       _young_list_target_length = _young_list_min_length;
 669     }
 670   } else {
 671     // we are in a partially-young mode or we've run out of regions (due
 672     // to evacuation failure)
 673 
 674 #ifdef TRACE_CALC_YOUNG_LENGTH
 675     // leave this in for debugging, just in case
 676     gclog_or_tty->print_cr("(partial) setting target to " SIZE_FORMAT
 677                            _young_list_min_length);
 678 #endif // TRACE_CALC_YOUNG_LENGTH
 679     // we'll do the pause as soon as possible by choosing the minimum
 680     _young_list_target_length = _young_list_min_length;
 681   }
 682 
 683   _rs_lengths_prediction = rs_lengths;
 684 }
 685 
 686 // This is used by: calculate_young_list_target_length(rs_length). It
 687 // returns true iff:
 688 //   the predicted pause time for the given young list will not overflow
 689 //   the target pause time
 690 // and:
 691 //   the predicted amount of surviving data will not overflow the
 692 //   the amount of free space available for survivor regions.
 693 //
 694 bool
 695 G1CollectorPolicy::predict_will_fit(size_t young_length,
 696                                     double base_time_ms,
 697                                     size_t init_free_regions,
 698                                     double target_pause_time_ms) {
 699 
 700   if (young_length >= init_free_regions)
 701     // end condition 1: not enough space for the young regions
 702     return false;
 703 
 704   double accum_surv_rate_adj = 0.0;
 705   double accum_surv_rate =
 706     accum_yg_surv_rate_pred((int)(young_length - 1)) - accum_surv_rate_adj;
 707 
 708   size_t bytes_to_copy =
 709     (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 710 
 711   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 712 
 713   double young_other_time_ms =
 714                        predict_young_other_time_ms(young_length);
 715 
 716   double pause_time_ms =
 717                    base_time_ms + copy_time_ms + young_other_time_ms;
 718 
 719   if (pause_time_ms > target_pause_time_ms)
 720     // end condition 2: over the target pause time
 721     return false;
 722 
 723   size_t free_bytes =
 724                  (init_free_regions - young_length) * HeapRegion::GrainBytes;
 725 
 726   if ((2.0 + sigma()) * (double) bytes_to_copy > (double) free_bytes)
 727     // end condition 3: out of to-space (conservatively)
 728     return false;
 729 
 730   // success!
 731   return true;
 732 }
 733 
 734 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 735   double survivor_regions_evac_time = 0.0;
 736   for (HeapRegion * r = _recorded_survivor_head;
 737        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 738        r = r->get_next_young_region()) {
 739     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
 740   }
 741   return survivor_regions_evac_time;
 742 }
 743 
 744 void G1CollectorPolicy::check_prediction_validity() {
 745   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 746 
 747   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 748   if (rs_lengths > _rs_lengths_prediction) {
 749     // add 10% to avoid having to recalculate often
 750     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 751     calculate_young_list_target_length(rs_lengths_prediction);
 752   }
 753 }
 754 
 755 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 756                                                bool is_tlab,
 757                                                bool* gc_overhead_limit_was_exceeded) {
 758   guarantee(false, "Not using this policy feature yet.");
 759   return NULL;
 760 }
 761 
 762 // This method controls how a collector handles one or more
 763 // of its generations being fully allocated.
 764 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 765                                                        bool is_tlab) {
 766   guarantee(false, "Not using this policy feature yet.");
 767   return NULL;
 768 }
 769 
 770 
 771 #ifndef PRODUCT
 772 bool G1CollectorPolicy::verify_young_ages() {
 773   HeapRegion* head = _g1->young_list()->first_region();
 774   return
 775     verify_young_ages(head, _short_lived_surv_rate_group);
 776   // also call verify_young_ages on any additional surv rate groups
 777 }
 778 
 779 bool
 780 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 781                                      SurvRateGroup *surv_rate_group) {
 782   guarantee( surv_rate_group != NULL, "pre-condition" );
 783 
 784   const char* name = surv_rate_group->name();
 785   bool ret = true;
 786   int prev_age = -1;
 787 
 788   for (HeapRegion* curr = head;
 789        curr != NULL;
 790        curr = curr->get_next_young_region()) {
 791     SurvRateGroup* group = curr->surv_rate_group();
 792     if (group == NULL && !curr->is_survivor()) {
 793       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 794       ret = false;
 795     }
 796 
 797     if (surv_rate_group == group) {
 798       int age = curr->age_in_surv_rate_group();
 799 
 800       if (age < 0) {
 801         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 802         ret = false;
 803       }
 804 
 805       if (age <= prev_age) {
 806         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 807                                "(%d, %d)", name, age, prev_age);
 808         ret = false;
 809       }
 810       prev_age = age;
 811     }
 812   }
 813 
 814   return ret;
 815 }
 816 #endif // PRODUCT
 817 
 818 void G1CollectorPolicy::record_full_collection_start() {
 819   _cur_collection_start_sec = os::elapsedTime();
 820   // Release the future to-space so that it is available for compaction into.
 821   _g1->set_full_collection();
 822 }
 823 
 824 void G1CollectorPolicy::record_full_collection_end() {
 825   // Consider this like a collection pause for the purposes of allocation
 826   // since last pause.
 827   double end_sec = os::elapsedTime();
 828   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
 829   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 830 
 831   _all_full_gc_times_ms->add(full_gc_time_ms);
 832 
 833   update_recent_gc_times(end_sec, full_gc_time_ms);
 834 
 835   _g1->clear_full_collection();
 836 
 837   // "Nuke" the heuristics that control the fully/partially young GC
 838   // transitions and make sure we start with fully young GCs after the
 839   // Full GC.
 840   set_full_young_gcs(true);
 841   _last_full_young_gc = false;
 842   _should_revert_to_full_young_gcs = false;
 843   clear_initiate_conc_mark_if_possible();
 844   clear_during_initial_mark_pause();
 845   _known_garbage_bytes = 0;
 846   _known_garbage_ratio = 0.0;
 847   _in_marking_window = false;
 848   _in_marking_window_im = false;
 849 
 850   _short_lived_surv_rate_group->start_adding_regions();
 851   // also call this on any additional surv rate groups
 852 
 853   record_survivor_regions(0, NULL, NULL);
 854 
 855   _prev_region_num_young   = _region_num_young;
 856   _prev_region_num_tenured = _region_num_tenured;
 857 
 858   _free_regions_at_end_of_collection = _g1->free_regions();
 859   // Reset survivors SurvRateGroup.
 860   _survivor_surv_rate_group->reset();
 861   calculate_young_list_min_length();
 862   calculate_young_list_target_length();
 863 }
 864 
 865 void G1CollectorPolicy::record_before_bytes(size_t bytes) {
 866   _bytes_in_to_space_before_gc += bytes;
 867 }
 868 
 869 void G1CollectorPolicy::record_after_bytes(size_t bytes) {
 870   _bytes_in_to_space_after_gc += bytes;
 871 }
 872 
 873 void G1CollectorPolicy::record_stop_world_start() {
 874   _stop_world_start = os::elapsedTime();
 875 }
 876 
 877 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
 878                                                       size_t start_used) {
 879   if (PrintGCDetails) {
 880     gclog_or_tty->stamp(PrintGCTimeStamps);
 881     gclog_or_tty->print("[GC pause");
 882     if (in_young_gc_mode())
 883       gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
 884   }
 885 
 886   assert(_g1->used() == _g1->recalculate_used(),
 887          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 888                  _g1->used(), _g1->recalculate_used()));
 889 
 890   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 891   _all_stop_world_times_ms->add(s_w_t_ms);
 892   _stop_world_start = 0.0;
 893 
 894   _cur_collection_start_sec = start_time_sec;
 895   _cur_collection_pause_used_at_start_bytes = start_used;
 896   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
 897   _pending_cards = _g1->pending_card_num();
 898   _max_pending_cards = _g1->max_pending_card_num();
 899 
 900   _bytes_in_to_space_before_gc = 0;
 901   _bytes_in_to_space_after_gc = 0;
 902   _bytes_in_collection_set_before_gc = 0;
 903 
 904   YoungList* young_list = _g1->young_list();
 905   _eden_bytes_before_gc = young_list->eden_used_bytes();
 906   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
 907   _capacity_before_gc = _g1->capacity();
 908 
 909 #ifdef DEBUG
 910   // initialise these to something well known so that we can spot
 911   // if they are not set properly
 912 
 913   for (int i = 0; i < _parallel_gc_threads; ++i) {
 914     _par_last_gc_worker_start_times_ms[i] = -1234.0;
 915     _par_last_ext_root_scan_times_ms[i] = -1234.0;
 916     _par_last_mark_stack_scan_times_ms[i] = -1234.0;
 917     _par_last_update_rs_times_ms[i] = -1234.0;
 918     _par_last_update_rs_processed_buffers[i] = -1234.0;
 919     _par_last_scan_rs_times_ms[i] = -1234.0;
 920     _par_last_obj_copy_times_ms[i] = -1234.0;
 921     _par_last_termination_times_ms[i] = -1234.0;
 922     _par_last_termination_attempts[i] = -1234.0;
 923     _par_last_gc_worker_end_times_ms[i] = -1234.0;
 924     _par_last_gc_worker_times_ms[i] = -1234.0;
 925   }
 926 #endif
 927 
 928   for (int i = 0; i < _aux_num; ++i) {
 929     _cur_aux_times_ms[i] = 0.0;
 930     _cur_aux_times_set[i] = false;
 931   }
 932 
 933   _satb_drain_time_set = false;
 934   _last_satb_drain_processed_buffers = -1;
 935 
 936   if (in_young_gc_mode())
 937     _last_young_gc_full = false;
 938 
 939   // do that for any other surv rate groups
 940   _short_lived_surv_rate_group->stop_adding_regions();
 941   _survivors_age_table.clear();
 942 
 943   assert( verify_young_ages(), "region age verification" );
 944 }
 945 
 946 void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
 947   _mark_closure_time_ms = mark_closure_time_ms;
 948 }
 949 
 950 void G1CollectorPolicy::record_concurrent_mark_init_start() {
 951   _mark_init_start_sec = os::elapsedTime();
 952   guarantee(!in_young_gc_mode(), "should not do be here in young GC mode");
 953 }
 954 
 955 void G1CollectorPolicy::record_concurrent_mark_init_end_pre(double
 956                                                    mark_init_elapsed_time_ms) {
 957   _during_marking = true;
 958   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 959   clear_during_initial_mark_pause();
 960   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 961 }
 962 
 963 void G1CollectorPolicy::record_concurrent_mark_init_end() {
 964   double end_time_sec = os::elapsedTime();
 965   double elapsed_time_ms = (end_time_sec - _mark_init_start_sec) * 1000.0;
 966   _concurrent_mark_init_times_ms->add(elapsed_time_ms);
 967   record_concurrent_mark_init_end_pre(elapsed_time_ms);
 968 
 969   _mmu_tracker->add_pause(_mark_init_start_sec, end_time_sec, true);
 970 }
 971 
 972 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 973   _mark_remark_start_sec = os::elapsedTime();
 974   _during_marking = false;
 975 }
 976 
 977 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 978   double end_time_sec = os::elapsedTime();
 979   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 980   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 981   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 982   _prev_collection_pause_end_ms += elapsed_time_ms;
 983 
 984   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 985 }
 986 
 987 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 988   _mark_cleanup_start_sec = os::elapsedTime();
 989 }
 990 
 991 void
 992 G1CollectorPolicy::record_concurrent_mark_cleanup_end(size_t freed_bytes,
 993                                                       size_t max_live_bytes) {
 994   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
 995   record_concurrent_mark_cleanup_end_work2();
 996 }
 997 
 998 void
 999 G1CollectorPolicy::
1000 record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
1001                                          size_t max_live_bytes) {
1002   if (_n_marks < 2) _n_marks++;
1003   if (G1PolicyVerbose > 0)
1004     gclog_or_tty->print_cr("At end of marking, max_live is " SIZE_FORMAT " MB "
1005                            " (of " SIZE_FORMAT " MB heap).",
1006                            max_live_bytes/M, _g1->capacity()/M);
1007 }
1008 
1009 // The important thing about this is that it includes "os::elapsedTime".
1010 void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
1011   double end_time_sec = os::elapsedTime();
1012   double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
1013   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1014   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1015   _prev_collection_pause_end_ms += elapsed_time_ms;
1016 
1017   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_time_sec, true);
1018 
1019   _num_markings++;
1020 
1021   // We did a marking, so reset the "since_last_mark" variables.
1022   double considerConcMarkCost = 1.0;
1023   // If there are available processors, concurrent activity is free...
1024   if (Threads::number_of_non_daemon_threads() * 2 <
1025       os::active_processor_count()) {
1026     considerConcMarkCost = 0.0;
1027   }
1028   _n_pauses_at_mark_end = _n_pauses;
1029   _n_marks_since_last_pause++;
1030 }
1031 
1032 void
1033 G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
1034   if (in_young_gc_mode()) {
1035     _should_revert_to_full_young_gcs = false;
1036     _last_full_young_gc = true;
1037     _in_marking_window = false;
1038     if (adaptive_young_list_length())
1039       calculate_young_list_target_length();
1040   }
1041 }
1042 
1043 void G1CollectorPolicy::record_concurrent_pause() {
1044   if (_stop_world_start > 0.0) {
1045     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
1046     _all_yield_times_ms->add(yield_ms);
1047   }
1048 }
1049 
1050 void G1CollectorPolicy::record_concurrent_pause_end() {
1051 }
1052 
1053 void G1CollectorPolicy::record_collection_pause_end_CH_strong_roots() {
1054   _cur_CH_strong_roots_end_sec = os::elapsedTime();
1055   _cur_CH_strong_roots_dur_ms =
1056     (_cur_CH_strong_roots_end_sec - _cur_collection_start_sec) * 1000.0;
1057 }
1058 
1059 void G1CollectorPolicy::record_collection_pause_end_G1_strong_roots() {
1060   _cur_G1_strong_roots_end_sec = os::elapsedTime();
1061   _cur_G1_strong_roots_dur_ms =
1062     (_cur_G1_strong_roots_end_sec - _cur_CH_strong_roots_end_sec) * 1000.0;
1063 }
1064 
1065 template<class T>
1066 T sum_of(T* sum_arr, int start, int n, int N) {
1067   T sum = (T)0;
1068   for (int i = 0; i < n; i++) {
1069     int j = (start + i) % N;
1070     sum += sum_arr[j];
1071   }
1072   return sum;
1073 }
1074 
1075 void G1CollectorPolicy::print_par_stats(int level,
1076                                         const char* str,
1077                                         double* data) {
1078   double min = data[0], max = data[0];
1079   double total = 0.0;
1080   LineBuffer buf(level);
1081   buf.append("[%s (ms):", str);
1082   for (uint i = 0; i < ParallelGCThreads; ++i) {
1083     double val = data[i];
1084     if (val < min)
1085       min = val;
1086     if (val > max)
1087       max = val;
1088     total += val;
1089     buf.append("  %3.1lf", val);
1090   }
1091   buf.append_and_print_cr("");
1092   double avg = total / (double) ParallelGCThreads;
1093   buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
1094     avg, min, max, max - min);
1095 }
1096 
1097 void G1CollectorPolicy::print_par_sizes(int level,
1098                                         const char* str,
1099                                         double* data) {
1100   double min = data[0], max = data[0];
1101   double total = 0.0;
1102   LineBuffer buf(level);
1103   buf.append("[%s :", str);
1104   for (uint i = 0; i < ParallelGCThreads; ++i) {
1105     double val = data[i];
1106     if (val < min)
1107       min = val;
1108     if (val > max)
1109       max = val;
1110     total += val;
1111     buf.append(" %d", (int) val);
1112   }
1113   buf.append_and_print_cr("");
1114   double avg = total / (double) ParallelGCThreads;
1115   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
1116     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
1117 }
1118 
1119 void G1CollectorPolicy::print_stats (int level,
1120                                      const char* str,
1121                                      double value) {
1122   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
1123 }
1124 
1125 void G1CollectorPolicy::print_stats (int level,
1126                                      const char* str,
1127                                      int value) {
1128   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
1129 }
1130 
1131 double G1CollectorPolicy::avg_value (double* data) {
1132   if (G1CollectedHeap::use_parallel_gc_threads()) {
1133     double ret = 0.0;
1134     for (uint i = 0; i < ParallelGCThreads; ++i)
1135       ret += data[i];
1136     return ret / (double) ParallelGCThreads;
1137   } else {
1138     return data[0];
1139   }
1140 }
1141 
1142 double G1CollectorPolicy::max_value (double* data) {
1143   if (G1CollectedHeap::use_parallel_gc_threads()) {
1144     double ret = data[0];
1145     for (uint i = 1; i < ParallelGCThreads; ++i)
1146       if (data[i] > ret)
1147         ret = data[i];
1148     return ret;
1149   } else {
1150     return data[0];
1151   }
1152 }
1153 
1154 double G1CollectorPolicy::sum_of_values (double* data) {
1155   if (G1CollectedHeap::use_parallel_gc_threads()) {
1156     double sum = 0.0;
1157     for (uint i = 0; i < ParallelGCThreads; i++)
1158       sum += data[i];
1159     return sum;
1160   } else {
1161     return data[0];
1162   }
1163 }
1164 
1165 double G1CollectorPolicy::max_sum (double* data1,
1166                                    double* data2) {
1167   double ret = data1[0] + data2[0];
1168 
1169   if (G1CollectedHeap::use_parallel_gc_threads()) {
1170     for (uint i = 1; i < ParallelGCThreads; ++i) {
1171       double data = data1[i] + data2[i];
1172       if (data > ret)
1173         ret = data;
1174     }
1175   }
1176   return ret;
1177 }
1178 
1179 // Anything below that is considered to be zero
1180 #define MIN_TIMER_GRANULARITY 0.0000001
1181 
1182 void G1CollectorPolicy::record_collection_pause_end() {
1183   double end_time_sec = os::elapsedTime();
1184   double elapsed_ms = _last_pause_time_ms;
1185   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1186   double evac_ms = (end_time_sec - _cur_G1_strong_roots_end_sec) * 1000.0;
1187   size_t rs_size =
1188     _cur_collection_pause_used_regions_at_start - collection_set_size();
1189   size_t cur_used_bytes = _g1->used();
1190   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
1191   bool last_pause_included_initial_mark = false;
1192   bool update_stats = !_g1->evacuation_failed();
1193 
1194 #ifndef PRODUCT
1195   if (G1YoungSurvRateVerbose) {
1196     gclog_or_tty->print_cr("");
1197     _short_lived_surv_rate_group->print();
1198     // do that for any other surv rate groups too
1199   }
1200 #endif // PRODUCT
1201 
1202   if (in_young_gc_mode()) {
1203     last_pause_included_initial_mark = during_initial_mark_pause();
1204     if (last_pause_included_initial_mark)
1205       record_concurrent_mark_init_end_pre(0.0);
1206 
1207     size_t min_used_targ =
1208       (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
1209 
1210 
1211     if (!_g1->mark_in_progress() && !_last_full_young_gc) {
1212       assert(!last_pause_included_initial_mark, "invariant");
1213       if (cur_used_bytes > min_used_targ &&
1214           cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
1215         assert(!during_initial_mark_pause(), "we should not see this here");
1216 
1217         // Note: this might have already been set, if during the last
1218         // pause we decided to start a cycle but at the beginning of
1219         // this pause we decided to postpone it. That's OK.
1220         set_initiate_conc_mark_if_possible();
1221       }
1222     }
1223 
1224     _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
1225   }
1226 
1227   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
1228                           end_time_sec, false);
1229 
1230   guarantee(_cur_collection_pause_used_regions_at_start >=
1231             collection_set_size(),
1232             "Negative RS size?");
1233 
1234   // This assert is exempted when we're doing parallel collection pauses,
1235   // because the fragmentation caused by the parallel GC allocation buffers
1236   // can lead to more memory being used during collection than was used
1237   // before. Best leave this out until the fragmentation problem is fixed.
1238   // Pauses in which evacuation failed can also lead to negative
1239   // collections, since no space is reclaimed from a region containing an
1240   // object whose evacuation failed.
1241   // Further, we're now always doing parallel collection.  But I'm still
1242   // leaving this here as a placeholder for a more precise assertion later.
1243   // (DLD, 10/05.)
1244   assert((true || parallel) // Always using GC LABs now.
1245          || _g1->evacuation_failed()
1246          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
1247          "Negative collection");
1248 
1249   size_t freed_bytes =
1250     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
1251   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
1252 
1253   double survival_fraction =
1254     (double)surviving_bytes/
1255     (double)_collection_set_bytes_used_before;
1256 
1257   _n_pauses++;
1258 
1259   if (update_stats) {
1260     _recent_CH_strong_roots_times_ms->add(_cur_CH_strong_roots_dur_ms);
1261     _recent_G1_strong_roots_times_ms->add(_cur_G1_strong_roots_dur_ms);
1262     _recent_evac_times_ms->add(evac_ms);
1263     _recent_pause_times_ms->add(elapsed_ms);
1264 
1265     _recent_rs_sizes->add(rs_size);
1266 
1267     // We exempt parallel collection from this check because Alloc Buffer
1268     // fragmentation can produce negative collections.  Same with evac
1269     // failure.
1270     // Further, we're now always doing parallel collection.  But I'm still
1271     // leaving this here as a placeholder for a more precise assertion later.
1272     // (DLD, 10/05.
1273     assert((true || parallel)
1274            || _g1->evacuation_failed()
1275            || surviving_bytes <= _collection_set_bytes_used_before,
1276            "Or else negative collection!");
1277     _recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
1278     _recent_CS_bytes_surviving->add(surviving_bytes);
1279 
1280     // this is where we update the allocation rate of the application
1281     double app_time_ms =
1282       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
1283     if (app_time_ms < MIN_TIMER_GRANULARITY) {
1284       // This usually happens due to the timer not having the required
1285       // granularity. Some Linuxes are the usual culprits.
1286       // We'll just set it to something (arbitrarily) small.
1287       app_time_ms = 1.0;
1288     }
1289     size_t regions_allocated =
1290       (_region_num_young - _prev_region_num_young) +
1291       (_region_num_tenured - _prev_region_num_tenured);
1292     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1293     _alloc_rate_ms_seq->add(alloc_rate_ms);
1294     _prev_region_num_young   = _region_num_young;
1295     _prev_region_num_tenured = _region_num_tenured;
1296 
1297     double interval_ms =
1298       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1299     update_recent_gc_times(end_time_sec, elapsed_ms);
1300     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1301     if (recent_avg_pause_time_ratio() < 0.0 ||
1302         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1303 #ifndef PRODUCT
1304       // Dump info to allow post-facto debugging
1305       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1306       gclog_or_tty->print_cr("-------------------------------------------");
1307       gclog_or_tty->print_cr("Recent GC Times (ms):");
1308       _recent_gc_times_ms->dump();
1309       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1310       _recent_prev_end_times_for_all_gcs_sec->dump();
1311       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1312                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1313       // In debug mode, terminate the JVM if the user wants to debug at this point.
1314       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1315 #endif  // !PRODUCT
1316       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1317       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1318       if (_recent_avg_pause_time_ratio < 0.0) {
1319         _recent_avg_pause_time_ratio = 0.0;
1320       } else {
1321         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1322         _recent_avg_pause_time_ratio = 1.0;
1323       }
1324     }
1325   }
1326 
1327   if (G1PolicyVerbose > 1) {
1328     gclog_or_tty->print_cr("   Recording collection pause(%d)", _n_pauses);
1329   }
1330 
1331   PauseSummary* summary = _summary;
1332 
1333   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
1334   double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
1335   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
1336   double update_rs_processed_buffers =
1337     sum_of_values(_par_last_update_rs_processed_buffers);
1338   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
1339   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
1340   double termination_time = avg_value(_par_last_termination_times_ms);
1341 
1342   double parallel_other_time = _cur_collection_par_time_ms -
1343     (update_rs_time + ext_root_scan_time + mark_stack_scan_time +
1344      scan_rs_time + obj_copy_time + termination_time);
1345   if (update_stats) {
1346     MainBodySummary* body_summary = summary->main_body_summary();
1347     guarantee(body_summary != NULL, "should not be null!");
1348 
1349     if (_satb_drain_time_set)
1350       body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
1351     else
1352       body_summary->record_satb_drain_time_ms(0.0);
1353     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
1354     body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
1355     body_summary->record_update_rs_time_ms(update_rs_time);
1356     body_summary->record_scan_rs_time_ms(scan_rs_time);
1357     body_summary->record_obj_copy_time_ms(obj_copy_time);
1358     if (parallel) {
1359       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
1360       body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
1361       body_summary->record_termination_time_ms(termination_time);
1362       body_summary->record_parallel_other_time_ms(parallel_other_time);
1363     }
1364     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
1365   }
1366 
1367   if (G1PolicyVerbose > 1) {
1368     gclog_or_tty->print_cr("      ET: %10.6f ms           (avg: %10.6f ms)\n"
1369                            "        CH Strong: %10.6f ms    (avg: %10.6f ms)\n"
1370                            "        G1 Strong: %10.6f ms    (avg: %10.6f ms)\n"
1371                            "        Evac:      %10.6f ms    (avg: %10.6f ms)\n"
1372                            "       ET-RS:  %10.6f ms      (avg: %10.6f ms)\n"
1373                            "      |RS|: " SIZE_FORMAT,
1374                            elapsed_ms, recent_avg_time_for_pauses_ms(),
1375                            _cur_CH_strong_roots_dur_ms, recent_avg_time_for_CH_strong_ms(),
1376                            _cur_G1_strong_roots_dur_ms, recent_avg_time_for_G1_strong_ms(),
1377                            evac_ms, recent_avg_time_for_evac_ms(),
1378                            scan_rs_time,
1379                            recent_avg_time_for_pauses_ms() -
1380                            recent_avg_time_for_G1_strong_ms(),
1381                            rs_size);
1382 
1383     gclog_or_tty->print_cr("       Used at start: " SIZE_FORMAT"K"
1384                            "       At end " SIZE_FORMAT "K\n"
1385                            "       garbage      : " SIZE_FORMAT "K"
1386                            "       of     " SIZE_FORMAT "K\n"
1387                            "       survival     : %6.2f%%  (%6.2f%% avg)",
1388                            _cur_collection_pause_used_at_start_bytes/K,
1389                            _g1->used()/K, freed_bytes/K,
1390                            _collection_set_bytes_used_before/K,
1391                            survival_fraction*100.0,
1392                            recent_avg_survival_fraction()*100.0);
1393     gclog_or_tty->print_cr("       Recent %% gc pause time: %6.2f",
1394                            recent_avg_pause_time_ratio() * 100.0);
1395   }
1396 
1397   double other_time_ms = elapsed_ms;
1398 
1399   if (_satb_drain_time_set) {
1400     other_time_ms -= _cur_satb_drain_time_ms;
1401   }
1402 
1403   if (parallel) {
1404     other_time_ms -= _cur_collection_par_time_ms + _cur_clear_ct_time_ms;
1405   } else {
1406     other_time_ms -=
1407       update_rs_time +
1408       ext_root_scan_time + mark_stack_scan_time +
1409       scan_rs_time + obj_copy_time;
1410   }
1411 
1412   if (PrintGCDetails) {
1413     gclog_or_tty->print_cr("%s, %1.8lf secs]",
1414                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
1415                            elapsed_ms / 1000.0);
1416 
1417     if (_satb_drain_time_set) {
1418       print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
1419     }
1420     if (_last_satb_drain_processed_buffers >= 0) {
1421       print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
1422     }
1423     if (parallel) {
1424       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
1425       print_par_stats(2, "GC Worker Start Time", _par_last_gc_worker_start_times_ms);
1426       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
1427       print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
1428       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
1429       print_par_stats(2, "Mark Stack Scanning", _par_last_mark_stack_scan_times_ms);
1430       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
1431       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
1432       print_par_stats(2, "Termination", _par_last_termination_times_ms);
1433       print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
1434       print_par_stats(2, "GC Worker End Time", _par_last_gc_worker_end_times_ms);
1435 
1436       for (int i = 0; i < _parallel_gc_threads; i++) {
1437         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];
1438       }
1439       print_par_stats(2, "GC Worker Times", _par_last_gc_worker_times_ms);
1440 
1441       print_stats(2, "Other", parallel_other_time);
1442       print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
1443     } else {
1444       print_stats(1, "Update RS", update_rs_time);
1445       print_stats(2, "Processed Buffers",
1446                   (int)update_rs_processed_buffers);
1447       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
1448       print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
1449       print_stats(1, "Scan RS", scan_rs_time);
1450       print_stats(1, "Object Copying", obj_copy_time);
1451     }
1452 #ifndef PRODUCT
1453     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
1454     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
1455     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
1456     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
1457     if (_num_cc_clears > 0) {
1458       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
1459     }
1460 #endif
1461     print_stats(1, "Other", other_time_ms);
1462     print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);
1463 
1464     for (int i = 0; i < _aux_num; ++i) {
1465       if (_cur_aux_times_set[i]) {
1466         char buffer[96];
1467         sprintf(buffer, "Aux%d", i);
1468         print_stats(1, buffer, _cur_aux_times_ms[i]);
1469       }
1470     }
1471   }
1472 
1473   _all_pause_times_ms->add(elapsed_ms);
1474   if (update_stats) {
1475     summary->record_total_time_ms(elapsed_ms);
1476     summary->record_other_time_ms(other_time_ms);
1477   }
1478   for (int i = 0; i < _aux_num; ++i)
1479     if (_cur_aux_times_set[i])
1480       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
1481 
1482   // Reset marks-between-pauses counter.
1483   _n_marks_since_last_pause = 0;
1484 
1485   // Update the efficiency-since-mark vars.
1486   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
1487   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
1488     // This usually happens due to the timer not having the required
1489     // granularity. Some Linuxes are the usual culprits.
1490     // We'll just set it to something (arbitrarily) small.
1491     proc_ms = 1.0;
1492   }
1493   double cur_efficiency = (double) freed_bytes / proc_ms;
1494 
1495   bool new_in_marking_window = _in_marking_window;
1496   bool new_in_marking_window_im = false;
1497   if (during_initial_mark_pause()) {
1498     new_in_marking_window = true;
1499     new_in_marking_window_im = true;
1500   }
1501 
1502   if (in_young_gc_mode()) {
1503     if (_last_full_young_gc) {
1504       set_full_young_gcs(false);
1505       _last_full_young_gc = false;
1506     }
1507 
1508     if ( !_last_young_gc_full ) {
1509       if ( _should_revert_to_full_young_gcs ||
1510            _known_garbage_ratio < 0.05 ||
1511            (adaptive_young_list_length() &&
1512            (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) ) {
1513         set_full_young_gcs(true);
1514       }
1515     }
1516     _should_revert_to_full_young_gcs = false;
1517 
1518     if (_last_young_gc_full && !_during_marking)
1519       _young_gc_eff_seq->add(cur_efficiency);
1520   }
1521 
1522   _short_lived_surv_rate_group->start_adding_regions();
1523   // do that for any other surv rate groupsx
1524 
1525   // <NEW PREDICTION>
1526 
1527   if (update_stats) {
1528     double pause_time_ms = elapsed_ms;
1529 
1530     size_t diff = 0;
1531     if (_max_pending_cards >= _pending_cards)
1532       diff = _max_pending_cards - _pending_cards;
1533     _pending_card_diff_seq->add((double) diff);
1534 
1535     double cost_per_card_ms = 0.0;
1536     if (_pending_cards > 0) {
1537       cost_per_card_ms = update_rs_time / (double) _pending_cards;
1538       _cost_per_card_ms_seq->add(cost_per_card_ms);
1539     }
1540 
1541     size_t cards_scanned = _g1->cards_scanned();
1542 
1543     double cost_per_entry_ms = 0.0;
1544     if (cards_scanned > 10) {
1545       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
1546       if (_last_young_gc_full)
1547         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1548       else
1549         _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1550     }
1551 
1552     if (_max_rs_lengths > 0) {
1553       double cards_per_entry_ratio =
1554         (double) cards_scanned / (double) _max_rs_lengths;
1555       if (_last_young_gc_full)
1556         _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1557       else
1558         _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1559     }
1560 
1561     size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1562     if (rs_length_diff >= 0)
1563       _rs_length_diff_seq->add((double) rs_length_diff);
1564 
1565     size_t copied_bytes = surviving_bytes;
1566     double cost_per_byte_ms = 0.0;
1567     if (copied_bytes > 0) {
1568       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
1569       if (_in_marking_window)
1570         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1571       else
1572         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1573     }
1574 
1575     double all_other_time_ms = pause_time_ms -
1576       (update_rs_time + scan_rs_time + obj_copy_time +
1577        _mark_closure_time_ms + termination_time);
1578 
1579     double young_other_time_ms = 0.0;
1580     if (_recorded_young_regions > 0) {
1581       young_other_time_ms =
1582         _recorded_young_cset_choice_time_ms +
1583         _recorded_young_free_cset_time_ms;
1584       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1585                                              (double) _recorded_young_regions);
1586     }
1587     double non_young_other_time_ms = 0.0;
1588     if (_recorded_non_young_regions > 0) {
1589       non_young_other_time_ms =
1590         _recorded_non_young_cset_choice_time_ms +
1591         _recorded_non_young_free_cset_time_ms;
1592 
1593       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1594                                          (double) _recorded_non_young_regions);
1595     }
1596 
1597     double constant_other_time_ms = all_other_time_ms -
1598       (young_other_time_ms + non_young_other_time_ms);
1599     _constant_other_time_ms_seq->add(constant_other_time_ms);
1600 
1601     double survival_ratio = 0.0;
1602     if (_bytes_in_collection_set_before_gc > 0) {
1603       survival_ratio = (double) bytes_in_to_space_during_gc() /
1604         (double) _bytes_in_collection_set_before_gc;
1605     }
1606 
1607     _pending_cards_seq->add((double) _pending_cards);
1608     _scanned_cards_seq->add((double) cards_scanned);
1609     _rs_lengths_seq->add((double) _max_rs_lengths);
1610 
1611     double expensive_region_limit_ms =
1612       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
1613     if (expensive_region_limit_ms < 0.0) {
1614       // this means that the other time was predicted to be longer than
1615       // than the max pause time
1616       expensive_region_limit_ms = (double) MaxGCPauseMillis;
1617     }
1618     _expensive_region_limit_ms = expensive_region_limit_ms;
1619 
1620     if (PREDICTIONS_VERBOSE) {
1621       gclog_or_tty->print_cr("");
1622       gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
1623                     "REGIONS %d %d %d "
1624                     "PENDING_CARDS %d %d "
1625                     "CARDS_SCANNED %d %d "
1626                     "RS_LENGTHS %d %d "
1627                     "RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
1628                     "SURVIVAL_RATIO %1.6lf %1.6lf "
1629                     "OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
1630                     "OTHER_YOUNG %1.6lf %1.6lf "
1631                     "OTHER_NON_YOUNG %1.6lf %1.6lf "
1632                     "VTIME_DIFF %1.6lf TERMINATION %1.6lf "
1633                     "ELAPSED %1.6lf %1.6lf ",
1634                     _cur_collection_start_sec,
1635                     (!_last_young_gc_full) ? 2 :
1636                     (last_pause_included_initial_mark) ? 1 : 0,
1637                     _recorded_region_num,
1638                     _recorded_young_regions,
1639                     _recorded_non_young_regions,
1640                     _predicted_pending_cards, _pending_cards,
1641                     _predicted_cards_scanned, cards_scanned,
1642                     _predicted_rs_lengths, _max_rs_lengths,
1643                     _predicted_rs_update_time_ms, update_rs_time,
1644                     _predicted_rs_scan_time_ms, scan_rs_time,
1645                     _predicted_survival_ratio, survival_ratio,
1646                     _predicted_object_copy_time_ms, obj_copy_time,
1647                     _predicted_constant_other_time_ms, constant_other_time_ms,
1648                     _predicted_young_other_time_ms, young_other_time_ms,
1649                     _predicted_non_young_other_time_ms,
1650                     non_young_other_time_ms,
1651                     _vtime_diff_ms, termination_time,
1652                     _predicted_pause_time_ms, elapsed_ms);
1653     }
1654 
1655     if (G1PolicyVerbose > 0) {
1656       gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
1657                     _predicted_pause_time_ms,
1658                     (_within_target) ? "within" : "outside",
1659                     elapsed_ms);
1660     }
1661 
1662   }
1663 
1664   _in_marking_window = new_in_marking_window;
1665   _in_marking_window_im = new_in_marking_window_im;
1666   _free_regions_at_end_of_collection = _g1->free_regions();
1667   calculate_young_list_min_length();
1668   calculate_young_list_target_length();
1669 
1670   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1671   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1672   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
1673   // </NEW PREDICTION>
1674 }
1675 
1676 #define EXT_SIZE_FORMAT "%d%s"
1677 #define EXT_SIZE_PARAMS(bytes)                                  \
1678   byte_size_in_proper_unit((bytes)),                            \
1679   proper_unit_for_byte_size((bytes))
1680 
1681 void G1CollectorPolicy::print_heap_transition() {
1682   if (PrintGCDetails) {
1683     YoungList* young_list = _g1->young_list();
1684     size_t eden_bytes = young_list->eden_used_bytes();
1685     size_t survivor_bytes = young_list->survivor_used_bytes();
1686     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
1687     size_t used = _g1->used();
1688     size_t capacity = _g1->capacity();
1689 
1690     gclog_or_tty->print_cr(
1691          "   [Eden: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1692              "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1693              "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1694                      EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1695              EXT_SIZE_PARAMS(_eden_bytes_before_gc),
1696                EXT_SIZE_PARAMS(eden_bytes),
1697              EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
1698                EXT_SIZE_PARAMS(survivor_bytes),
1699              EXT_SIZE_PARAMS(used_before_gc),
1700              EXT_SIZE_PARAMS(_capacity_before_gc),
1701                EXT_SIZE_PARAMS(used),
1702                EXT_SIZE_PARAMS(capacity));
1703   } else if (PrintGC) {
1704     _g1->print_size_transition(gclog_or_tty,
1705                                _cur_collection_pause_used_at_start_bytes,
1706                                _g1->used(), _g1->capacity());
1707   }
1708 }
1709 
1710 // <NEW PREDICTION>
1711 
1712 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1713                                                      double update_rs_processed_buffers,
1714                                                      double goal_ms) {
1715   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1716   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1717 
1718   if (G1UseAdaptiveConcRefinement) {
1719     const int k_gy = 3, k_gr = 6;
1720     const double inc_k = 1.1, dec_k = 0.9;
1721 
1722     int g = cg1r->green_zone();
1723     if (update_rs_time > goal_ms) {
1724       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1725     } else {
1726       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1727         g = (int)MAX2(g * inc_k, g + 1.0);
1728       }
1729     }
1730     // Change the refinement threads params
1731     cg1r->set_green_zone(g);
1732     cg1r->set_yellow_zone(g * k_gy);
1733     cg1r->set_red_zone(g * k_gr);
1734     cg1r->reinitialize_threads();
1735 
1736     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1737     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1738                                     cg1r->yellow_zone());
1739     // Change the barrier params
1740     dcqs.set_process_completed_threshold(processing_threshold);
1741     dcqs.set_max_completed_queue(cg1r->red_zone());
1742   }
1743 
1744   int curr_queue_size = dcqs.completed_buffers_num();
1745   if (curr_queue_size >= cg1r->yellow_zone()) {
1746     dcqs.set_completed_queue_padding(curr_queue_size);
1747   } else {
1748     dcqs.set_completed_queue_padding(0);
1749   }
1750   dcqs.notify_if_necessary();
1751 }
1752 
1753 double
1754 G1CollectorPolicy::
1755 predict_young_collection_elapsed_time_ms(size_t adjustment) {
1756   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
1757 
1758   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1759   size_t young_num = g1h->young_list()->length();
1760   if (young_num == 0)
1761     return 0.0;
1762 
1763   young_num += adjustment;
1764   size_t pending_cards = predict_pending_cards();
1765   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
1766                       predict_rs_length_diff();
1767   size_t card_num;
1768   if (full_young_gcs())
1769     card_num = predict_young_card_num(rs_lengths);
1770   else
1771     card_num = predict_non_young_card_num(rs_lengths);
1772   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
1773   double accum_yg_surv_rate =
1774     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
1775 
1776   size_t bytes_to_copy =
1777     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
1778 
1779   return
1780     predict_rs_update_time_ms(pending_cards) +
1781     predict_rs_scan_time_ms(card_num) +
1782     predict_object_copy_time_ms(bytes_to_copy) +
1783     predict_young_other_time_ms(young_num) +
1784     predict_constant_other_time_ms();
1785 }
1786 
1787 double
1788 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1789   size_t rs_length = predict_rs_length_diff();
1790   size_t card_num;
1791   if (full_young_gcs())
1792     card_num = predict_young_card_num(rs_length);
1793   else
1794     card_num = predict_non_young_card_num(rs_length);
1795   return predict_base_elapsed_time_ms(pending_cards, card_num);
1796 }
1797 
1798 double
1799 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1800                                                 size_t scanned_cards) {
1801   return
1802     predict_rs_update_time_ms(pending_cards) +
1803     predict_rs_scan_time_ms(scanned_cards) +
1804     predict_constant_other_time_ms();
1805 }
1806 
1807 double
1808 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1809                                                   bool young) {
1810   size_t rs_length = hr->rem_set()->occupied();
1811   size_t card_num;
1812   if (full_young_gcs())
1813     card_num = predict_young_card_num(rs_length);
1814   else
1815     card_num = predict_non_young_card_num(rs_length);
1816   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1817 
1818   double region_elapsed_time_ms =
1819     predict_rs_scan_time_ms(card_num) +
1820     predict_object_copy_time_ms(bytes_to_copy);
1821 
1822   if (young)
1823     region_elapsed_time_ms += predict_young_other_time_ms(1);
1824   else
1825     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1826 
1827   return region_elapsed_time_ms;
1828 }
1829 
1830 size_t
1831 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1832   size_t bytes_to_copy;
1833   if (hr->is_marked())
1834     bytes_to_copy = hr->max_live_bytes();
1835   else {
1836     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
1837                "invariant" );
1838     int age = hr->age_in_surv_rate_group();
1839     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1840     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1841   }
1842 
1843   return bytes_to_copy;
1844 }
1845 
1846 void
1847 G1CollectorPolicy::start_recording_regions() {
1848   _recorded_rs_lengths            = 0;
1849   _recorded_young_regions         = 0;
1850   _recorded_non_young_regions     = 0;
1851 
1852 #if PREDICTIONS_VERBOSE
1853   _recorded_marked_bytes          = 0;
1854   _recorded_young_bytes           = 0;
1855   _predicted_bytes_to_copy        = 0;
1856   _predicted_rs_lengths           = 0;
1857   _predicted_cards_scanned        = 0;
1858 #endif // PREDICTIONS_VERBOSE
1859 }
1860 
1861 void
1862 G1CollectorPolicy::record_cset_region_info(HeapRegion* hr, bool young) {
1863 #if PREDICTIONS_VERBOSE
1864   if (!young) {
1865     _recorded_marked_bytes += hr->max_live_bytes();
1866   }
1867   _predicted_bytes_to_copy += predict_bytes_to_copy(hr);
1868 #endif // PREDICTIONS_VERBOSE
1869 
1870   size_t rs_length = hr->rem_set()->occupied();
1871   _recorded_rs_lengths += rs_length;
1872 }
1873 
1874 void
1875 G1CollectorPolicy::record_non_young_cset_region(HeapRegion* hr) {
1876   assert(!hr->is_young(), "should not call this");
1877   ++_recorded_non_young_regions;
1878   record_cset_region_info(hr, false);
1879 }
1880 
1881 void
1882 G1CollectorPolicy::set_recorded_young_regions(size_t n_regions) {
1883   _recorded_young_regions = n_regions;
1884 }
1885 
1886 void G1CollectorPolicy::set_recorded_young_bytes(size_t bytes) {
1887 #if PREDICTIONS_VERBOSE
1888   _recorded_young_bytes = bytes;
1889 #endif // PREDICTIONS_VERBOSE
1890 }
1891 
1892 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1893   _recorded_rs_lengths = rs_lengths;
1894 }
1895 
1896 void G1CollectorPolicy::set_predicted_bytes_to_copy(size_t bytes) {
1897   _predicted_bytes_to_copy = bytes;
1898 }
1899 
1900 void
1901 G1CollectorPolicy::end_recording_regions() {
1902   // The _predicted_pause_time_ms field is referenced in code
1903   // not under PREDICTIONS_VERBOSE. Let's initialize it.
1904   _predicted_pause_time_ms = -1.0;
1905 
1906 #if PREDICTIONS_VERBOSE
1907   _predicted_pending_cards = predict_pending_cards();
1908   _predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
1909   if (full_young_gcs())
1910     _predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
1911   else
1912     _predicted_cards_scanned +=
1913       predict_non_young_card_num(_predicted_rs_lengths);
1914   _recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;
1915 
1916   _predicted_rs_update_time_ms =
1917     predict_rs_update_time_ms(_g1->pending_card_num());
1918   _predicted_rs_scan_time_ms =
1919     predict_rs_scan_time_ms(_predicted_cards_scanned);
1920   _predicted_object_copy_time_ms =
1921     predict_object_copy_time_ms(_predicted_bytes_to_copy);
1922   _predicted_constant_other_time_ms =
1923     predict_constant_other_time_ms();
1924   _predicted_young_other_time_ms =
1925     predict_young_other_time_ms(_recorded_young_regions);
1926   _predicted_non_young_other_time_ms =
1927     predict_non_young_other_time_ms(_recorded_non_young_regions);
1928 
1929   _predicted_pause_time_ms =
1930     _predicted_rs_update_time_ms +
1931     _predicted_rs_scan_time_ms +
1932     _predicted_object_copy_time_ms +
1933     _predicted_constant_other_time_ms +
1934     _predicted_young_other_time_ms +
1935     _predicted_non_young_other_time_ms;
1936 #endif // PREDICTIONS_VERBOSE
1937 }
1938 
1939 void G1CollectorPolicy::check_if_region_is_too_expensive(double
1940                                                            predicted_time_ms) {
1941   // I don't think we need to do this when in young GC mode since
1942   // marking will be initiated next time we hit the soft limit anyway...
1943   if (predicted_time_ms > _expensive_region_limit_ms) {
1944     if (!in_young_gc_mode()) {
1945         set_full_young_gcs(true);
1946         // We might want to do something different here. However,
1947         // right now we don't support the non-generational G1 mode
1948         // (and in fact we are planning to remove the associated code,
1949         // see CR 6814390). So, let's leave it as is and this will be
1950         // removed some time in the future
1951         ShouldNotReachHere();
1952         set_during_initial_mark_pause();
1953     } else
1954       // no point in doing another partial one
1955       _should_revert_to_full_young_gcs = true;
1956   }
1957 }
1958 
1959 // </NEW PREDICTION>
1960 
1961 
1962 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1963                                                double elapsed_ms) {
1964   _recent_gc_times_ms->add(elapsed_ms);
1965   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1966   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1967 }
1968 
1969 double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
1970   if (_recent_pause_times_ms->num() == 0) return (double) MaxGCPauseMillis;
1971   else return _recent_pause_times_ms->avg();
1972 }
1973 
1974 double G1CollectorPolicy::recent_avg_time_for_CH_strong_ms() {
1975   if (_recent_CH_strong_roots_times_ms->num() == 0)
1976     return (double)MaxGCPauseMillis/3.0;
1977   else return _recent_CH_strong_roots_times_ms->avg();
1978 }
1979 
1980 double G1CollectorPolicy::recent_avg_time_for_G1_strong_ms() {
1981   if (_recent_G1_strong_roots_times_ms->num() == 0)
1982     return (double)MaxGCPauseMillis/3.0;
1983   else return _recent_G1_strong_roots_times_ms->avg();
1984 }
1985 
1986 double G1CollectorPolicy::recent_avg_time_for_evac_ms() {
1987   if (_recent_evac_times_ms->num() == 0) return (double)MaxGCPauseMillis/3.0;
1988   else return _recent_evac_times_ms->avg();
1989 }
1990 
1991 int G1CollectorPolicy::number_of_recent_gcs() {
1992   assert(_recent_CH_strong_roots_times_ms->num() ==
1993          _recent_G1_strong_roots_times_ms->num(), "Sequence out of sync");
1994   assert(_recent_G1_strong_roots_times_ms->num() ==
1995          _recent_evac_times_ms->num(), "Sequence out of sync");
1996   assert(_recent_evac_times_ms->num() ==
1997          _recent_pause_times_ms->num(), "Sequence out of sync");
1998   assert(_recent_pause_times_ms->num() ==
1999          _recent_CS_bytes_used_before->num(), "Sequence out of sync");
2000   assert(_recent_CS_bytes_used_before->num() ==
2001          _recent_CS_bytes_surviving->num(), "Sequence out of sync");
2002   return _recent_pause_times_ms->num();
2003 }
2004 
2005 double G1CollectorPolicy::recent_avg_survival_fraction() {
2006   return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
2007                                            _recent_CS_bytes_used_before);
2008 }
2009 
2010 double G1CollectorPolicy::last_survival_fraction() {
2011   return last_survival_fraction_work(_recent_CS_bytes_surviving,
2012                                      _recent_CS_bytes_used_before);
2013 }
2014 
2015 double
2016 G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
2017                                                      TruncatedSeq* before) {
2018   assert(surviving->num() == before->num(), "Sequence out of sync");
2019   if (before->sum() > 0.0) {
2020       double recent_survival_rate = surviving->sum() / before->sum();
2021       // We exempt parallel collection from this check because Alloc Buffer
2022       // fragmentation can produce negative collections.
2023       // Further, we're now always doing parallel collection.  But I'm still
2024       // leaving this here as a placeholder for a more precise assertion later.
2025       // (DLD, 10/05.)
2026       assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
2027              _g1->evacuation_failed() ||
2028              recent_survival_rate <= 1.0, "Or bad frac");
2029       return recent_survival_rate;
2030   } else {
2031     return 1.0; // Be conservative.
2032   }
2033 }
2034 
2035 double
2036 G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
2037                                                TruncatedSeq* before) {
2038   assert(surviving->num() == before->num(), "Sequence out of sync");
2039   if (surviving->num() > 0 && before->last() > 0.0) {
2040     double last_survival_rate = surviving->last() / before->last();
2041     // We exempt parallel collection from this check because Alloc Buffer
2042     // fragmentation can produce negative collections.
2043     // Further, we're now always doing parallel collection.  But I'm still
2044     // leaving this here as a placeholder for a more precise assertion later.
2045     // (DLD, 10/05.)
2046     assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
2047            last_survival_rate <= 1.0, "Or bad frac");
2048     return last_survival_rate;
2049   } else {
2050     return 1.0;
2051   }
2052 }
2053 
2054 static const int survival_min_obs = 5;
2055 static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
2056 static const double min_survival_rate = 0.1;
2057 
2058 double
2059 G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
2060                                                            double latest) {
2061   double res = avg;
2062   if (number_of_recent_gcs() < survival_min_obs) {
2063     res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
2064   }
2065   res = MAX2(res, latest);
2066   res = MAX2(res, min_survival_rate);
2067   // In the parallel case, LAB fragmentation can produce "negative
2068   // collections"; so can evac failure.  Cap at 1.0
2069   res = MIN2(res, 1.0);
2070   return res;
2071 }
2072 
2073 size_t G1CollectorPolicy::expansion_amount() {
2074   if ((recent_avg_pause_time_ratio() * 100.0) > _gc_overhead_perc) {
2075     // We will double the existing space, or take
2076     // G1ExpandByPercentOfAvailable % of the available expansion
2077     // space, whichever is smaller, bounded below by a minimum
2078     // expansion (unless that's all that's left.)
2079     const size_t min_expand_bytes = 1*M;
2080     size_t reserved_bytes = _g1->max_capacity();
2081     size_t committed_bytes = _g1->capacity();
2082     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
2083     size_t expand_bytes;
2084     size_t expand_bytes_via_pct =
2085       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
2086     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
2087     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
2088     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
2089     if (G1PolicyVerbose > 1) {
2090       gclog_or_tty->print("Decided to expand: ratio = %5.2f, "
2091                  "committed = %d%s, uncommited = %d%s, via pct = %d%s.\n"
2092                  "                   Answer = %d.\n",
2093                  recent_avg_pause_time_ratio(),
2094                  byte_size_in_proper_unit(committed_bytes),
2095                  proper_unit_for_byte_size(committed_bytes),
2096                  byte_size_in_proper_unit(uncommitted_bytes),
2097                  proper_unit_for_byte_size(uncommitted_bytes),
2098                  byte_size_in_proper_unit(expand_bytes_via_pct),
2099                  proper_unit_for_byte_size(expand_bytes_via_pct),
2100                  byte_size_in_proper_unit(expand_bytes),
2101                  proper_unit_for_byte_size(expand_bytes));
2102     }
2103     return expand_bytes;
2104   } else {
2105     return 0;
2106   }
2107 }
2108 
2109 void G1CollectorPolicy::note_start_of_mark_thread() {
2110   _mark_thread_startup_sec = os::elapsedTime();
2111 }
2112 
2113 class CountCSClosure: public HeapRegionClosure {
2114   G1CollectorPolicy* _g1_policy;
2115 public:
2116   CountCSClosure(G1CollectorPolicy* g1_policy) :
2117     _g1_policy(g1_policy) {}
2118   bool doHeapRegion(HeapRegion* r) {
2119     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
2120     return false;
2121   }
2122 };
2123 
2124 void G1CollectorPolicy::count_CS_bytes_used() {
2125   CountCSClosure cs_closure(this);
2126   _g1->collection_set_iterate(&cs_closure);
2127 }
2128 
2129 void G1CollectorPolicy::print_summary (int level,
2130                                        const char* str,
2131                                        NumberSeq* seq) const {
2132   double sum = seq->sum();
2133   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
2134                 str, sum / 1000.0, seq->avg());
2135 }
2136 
2137 void G1CollectorPolicy::print_summary_sd (int level,
2138                                           const char* str,
2139                                           NumberSeq* seq) const {
2140   print_summary(level, str, seq);
2141   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2142                 seq->num(), seq->sd(), seq->maximum());
2143 }
2144 
2145 void G1CollectorPolicy::check_other_times(int level,
2146                                         NumberSeq* other_times_ms,
2147                                         NumberSeq* calc_other_times_ms) const {
2148   bool should_print = false;
2149   LineBuffer buf(level + 2);
2150 
2151   double max_sum = MAX2(fabs(other_times_ms->sum()),
2152                         fabs(calc_other_times_ms->sum()));
2153   double min_sum = MIN2(fabs(other_times_ms->sum()),
2154                         fabs(calc_other_times_ms->sum()));
2155   double sum_ratio = max_sum / min_sum;
2156   if (sum_ratio > 1.1) {
2157     should_print = true;
2158     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
2159   }
2160 
2161   double max_avg = MAX2(fabs(other_times_ms->avg()),
2162                         fabs(calc_other_times_ms->avg()));
2163   double min_avg = MIN2(fabs(other_times_ms->avg()),
2164                         fabs(calc_other_times_ms->avg()));
2165   double avg_ratio = max_avg / min_avg;
2166   if (avg_ratio > 1.1) {
2167     should_print = true;
2168     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
2169   }
2170 
2171   if (other_times_ms->sum() < -0.01) {
2172     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
2173   }
2174 
2175   if (other_times_ms->avg() < -0.01) {
2176     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
2177   }
2178 
2179   if (calc_other_times_ms->sum() < -0.01) {
2180     should_print = true;
2181     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
2182   }
2183 
2184   if (calc_other_times_ms->avg() < -0.01) {
2185     should_print = true;
2186     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
2187   }
2188 
2189   if (should_print)
2190     print_summary(level, "Other(Calc)", calc_other_times_ms);
2191 }
2192 
2193 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
2194   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
2195   MainBodySummary*    body_summary = summary->main_body_summary();
2196   if (summary->get_total_seq()->num() > 0) {
2197     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
2198     if (body_summary != NULL) {
2199       print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
2200       if (parallel) {
2201         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
2202         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
2203         print_summary(2, "Ext Root Scanning",
2204                       body_summary->get_ext_root_scan_seq());
2205         print_summary(2, "Mark Stack Scanning",
2206                       body_summary->get_mark_stack_scan_seq());
2207         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
2208         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
2209         print_summary(2, "Termination", body_summary->get_termination_seq());
2210         print_summary(2, "Other", body_summary->get_parallel_other_seq());
2211         {
2212           NumberSeq* other_parts[] = {
2213             body_summary->get_update_rs_seq(),
2214             body_summary->get_ext_root_scan_seq(),
2215             body_summary->get_mark_stack_scan_seq(),
2216             body_summary->get_scan_rs_seq(),
2217             body_summary->get_obj_copy_seq(),
2218             body_summary->get_termination_seq()
2219           };
2220           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
2221                                         6, other_parts);
2222           check_other_times(2, body_summary->get_parallel_other_seq(),
2223                             &calc_other_times_ms);
2224         }
2225         print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
2226         print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
2227       } else {
2228         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
2229         print_summary(1, "Ext Root Scanning",
2230                       body_summary->get_ext_root_scan_seq());
2231         print_summary(1, "Mark Stack Scanning",
2232                       body_summary->get_mark_stack_scan_seq());
2233         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
2234         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
2235       }
2236     }
2237     print_summary(1, "Other", summary->get_other_seq());
2238     {
2239       if (body_summary != NULL) {
2240         NumberSeq calc_other_times_ms;
2241         if (parallel) {
2242           // parallel
2243           NumberSeq* other_parts[] = {
2244             body_summary->get_satb_drain_seq(),
2245             body_summary->get_parallel_seq(),
2246             body_summary->get_clear_ct_seq()
2247           };
2248           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
2249                                                 3, other_parts);
2250         } else {
2251           // serial
2252           NumberSeq* other_parts[] = {
2253             body_summary->get_satb_drain_seq(),
2254             body_summary->get_update_rs_seq(),
2255             body_summary->get_ext_root_scan_seq(),
2256             body_summary->get_mark_stack_scan_seq(),
2257             body_summary->get_scan_rs_seq(),
2258             body_summary->get_obj_copy_seq()
2259           };
2260           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
2261                                                 6, other_parts);
2262         }
2263         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
2264       }
2265     }
2266   } else {
2267     LineBuffer(1).append_and_print_cr("none");
2268   }
2269   LineBuffer(0).append_and_print_cr("");
2270 }
2271 
2272 void G1CollectorPolicy::print_tracing_info() const {
2273   if (TraceGen0Time) {
2274     gclog_or_tty->print_cr("ALL PAUSES");
2275     print_summary_sd(0, "Total", _all_pause_times_ms);
2276     gclog_or_tty->print_cr("");
2277     gclog_or_tty->print_cr("");
2278     gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
2279     gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
2280     gclog_or_tty->print_cr("");
2281 
2282     gclog_or_tty->print_cr("EVACUATION PAUSES");
2283     print_summary(_summary);
2284 
2285     gclog_or_tty->print_cr("MISC");
2286     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
2287     print_summary_sd(0, "Yields", _all_yield_times_ms);
2288     for (int i = 0; i < _aux_num; ++i) {
2289       if (_all_aux_times_ms[i].num() > 0) {
2290         char buffer[96];
2291         sprintf(buffer, "Aux%d", i);
2292         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
2293       }
2294     }
2295 
2296     size_t all_region_num = _region_num_young + _region_num_tenured;
2297     gclog_or_tty->print_cr("   New Regions %8d, Young %8d (%6.2lf%%), "
2298                "Tenured %8d (%6.2lf%%)",
2299                all_region_num,
2300                _region_num_young,
2301                (double) _region_num_young / (double) all_region_num * 100.0,
2302                _region_num_tenured,
2303                (double) _region_num_tenured / (double) all_region_num * 100.0);
2304   }
2305   if (TraceGen1Time) {
2306     if (_all_full_gc_times_ms->num() > 0) {
2307       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2308                  _all_full_gc_times_ms->num(),
2309                  _all_full_gc_times_ms->sum() / 1000.0);
2310       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
2311       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2312                     _all_full_gc_times_ms->sd(),
2313                     _all_full_gc_times_ms->maximum());
2314     }
2315   }
2316 }
2317 
2318 void G1CollectorPolicy::print_yg_surv_rate_info() const {
2319 #ifndef PRODUCT
2320   _short_lived_surv_rate_group->print_surv_rate_summary();
2321   // add this call for any other surv rate groups
2322 #endif // PRODUCT
2323 }
2324 
2325 void
2326 G1CollectorPolicy::update_region_num(bool young) {
2327   if (young) {
2328     ++_region_num_young;
2329   } else {
2330     ++_region_num_tenured;
2331   }
2332 }
2333 
2334 #ifndef PRODUCT
2335 // for debugging, bit of a hack...
2336 static char*
2337 region_num_to_mbs(int length) {
2338   static char buffer[64];
2339   double bytes = (double) (length * HeapRegion::GrainBytes);
2340   double mbs = bytes / (double) (1024 * 1024);
2341   sprintf(buffer, "%7.2lfMB", mbs);
2342   return buffer;
2343 }
2344 #endif // PRODUCT
2345 
2346 size_t G1CollectorPolicy::max_regions(int purpose) {
2347   switch (purpose) {
2348     case GCAllocForSurvived:
2349       return _max_survivor_regions;
2350     case GCAllocForTenured:
2351       return REGIONS_UNLIMITED;
2352     default:
2353       ShouldNotReachHere();
2354       return REGIONS_UNLIMITED;
2355   };
2356 }
2357 
2358 void G1CollectorPolicy::calculate_max_gc_locker_expansion() {
2359   size_t expansion_region_num = 0;
2360   if (GCLockerEdenExpansionPercent > 0) {
2361     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
2362     double expansion_region_num_d = perc * (double) _young_list_target_length;
2363     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
2364     // less than 1.0) we'll get 1.
2365     expansion_region_num = (size_t) ceil(expansion_region_num_d);
2366   } else {
2367     assert(expansion_region_num == 0, "sanity");
2368   }
2369   _young_list_max_length = _young_list_target_length + expansion_region_num;
2370   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
2371 }
2372 
2373 // Calculates survivor space parameters.
2374 void G1CollectorPolicy::calculate_survivors_policy()
2375 {
2376   if (G1FixedSurvivorSpaceSize == 0) {
2377     _max_survivor_regions = _young_list_target_length / SurvivorRatio;
2378   } else {
2379     _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
2380   }
2381 
2382   if (G1FixedTenuringThreshold) {
2383     _tenuring_threshold = MaxTenuringThreshold;
2384   } else {
2385     _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
2386         HeapRegion::GrainWords * _max_survivor_regions);
2387   }
2388 }
2389 
2390 #ifndef PRODUCT
2391 class HRSortIndexIsOKClosure: public HeapRegionClosure {
2392   CollectionSetChooser* _chooser;
2393 public:
2394   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
2395     _chooser(chooser) {}
2396 
2397   bool doHeapRegion(HeapRegion* r) {
2398     if (!r->continuesHumongous()) {
2399       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
2400     }
2401     return false;
2402   }
2403 };
2404 
2405 bool G1CollectorPolicy_BestRegionsFirst::assertMarkedBytesDataOK() {
2406   HRSortIndexIsOKClosure cl(_collectionSetChooser);
2407   _g1->heap_region_iterate(&cl);
2408   return true;
2409 }
2410 #endif
2411 
2412 bool
2413 G1CollectorPolicy::force_initial_mark_if_outside_cycle() {
2414   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2415   if (!during_cycle) {
2416     set_initiate_conc_mark_if_possible();
2417     return true;
2418   } else {
2419     return false;
2420   }
2421 }
2422 
2423 void
2424 G1CollectorPolicy::decide_on_conc_mark_initiation() {
2425   // We are about to decide on whether this pause will be an
2426   // initial-mark pause.
2427 
2428   // First, during_initial_mark_pause() should not be already set. We
2429   // will set it here if we have to. However, it should be cleared by
2430   // the end of the pause (it's only set for the duration of an
2431   // initial-mark pause).
2432   assert(!during_initial_mark_pause(), "pre-condition");
2433 
2434   if (initiate_conc_mark_if_possible()) {
2435     // We had noticed on a previous pause that the heap occupancy has
2436     // gone over the initiating threshold and we should start a
2437     // concurrent marking cycle. So we might initiate one.
2438 
2439     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2440     if (!during_cycle) {
2441       // The concurrent marking thread is not "during a cycle", i.e.,
2442       // it has completed the last one. So we can go ahead and
2443       // initiate a new cycle.
2444 
2445       set_during_initial_mark_pause();
2446 
2447       // And we can now clear initiate_conc_mark_if_possible() as
2448       // we've already acted on it.
2449       clear_initiate_conc_mark_if_possible();
2450     } else {
2451       // The concurrent marking thread is still finishing up the
2452       // previous cycle. If we start one right now the two cycles
2453       // overlap. In particular, the concurrent marking thread might
2454       // be in the process of clearing the next marking bitmap (which
2455       // we will use for the next cycle if we start one). Starting a
2456       // cycle now will be bad given that parts of the marking
2457       // information might get cleared by the marking thread. And we
2458       // cannot wait for the marking thread to finish the cycle as it
2459       // periodically yields while clearing the next marking bitmap
2460       // and, if it's in a yield point, it's waiting for us to
2461       // finish. So, at this point we will not start a cycle and we'll
2462       // let the concurrent marking thread complete the last one.
2463     }
2464   }
2465 }
2466 
2467 void
2468 G1CollectorPolicy_BestRegionsFirst::
2469 record_collection_pause_start(double start_time_sec, size_t start_used) {
2470   G1CollectorPolicy::record_collection_pause_start(start_time_sec, start_used);
2471 }
2472 
2473 class KnownGarbageClosure: public HeapRegionClosure {
2474   CollectionSetChooser* _hrSorted;
2475 
2476 public:
2477   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
2478     _hrSorted(hrSorted)
2479   {}
2480 
2481   bool doHeapRegion(HeapRegion* r) {
2482     // We only include humongous regions in collection
2483     // sets when concurrent mark shows that their contained object is
2484     // unreachable.
2485 
2486     // Do we have any marking information for this region?
2487     if (r->is_marked()) {
2488       // We don't include humongous regions in collection
2489       // sets because we collect them immediately at the end of a marking
2490       // cycle.  We also don't include young regions because we *must*
2491       // include them in the next collection pause.
2492       if (!r->isHumongous() && !r->is_young()) {
2493         _hrSorted->addMarkedHeapRegion(r);
2494       }
2495     }
2496     return false;
2497   }
2498 };
2499 
2500 class ParKnownGarbageHRClosure: public HeapRegionClosure {
2501   CollectionSetChooser* _hrSorted;
2502   jint _marked_regions_added;
2503   jint _chunk_size;
2504   jint _cur_chunk_idx;
2505   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
2506   int _worker;
2507   int _invokes;
2508 
2509   void get_new_chunk() {
2510     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
2511     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
2512   }
2513   void add_region(HeapRegion* r) {
2514     if (_cur_chunk_idx == _cur_chunk_end) {
2515       get_new_chunk();
2516     }
2517     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
2518     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
2519     _marked_regions_added++;
2520     _cur_chunk_idx++;
2521   }
2522 
2523 public:
2524   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
2525                            jint chunk_size,
2526                            int worker) :
2527     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
2528     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
2529     _invokes(0)
2530   {}
2531 
2532   bool doHeapRegion(HeapRegion* r) {
2533     // We only include humongous regions in collection
2534     // sets when concurrent mark shows that their contained object is
2535     // unreachable.
2536     _invokes++;
2537 
2538     // Do we have any marking information for this region?
2539     if (r->is_marked()) {
2540       // We don't include humongous regions in collection
2541       // sets because we collect them immediately at the end of a marking
2542       // cycle.
2543       // We also do not include young regions in collection sets
2544       if (!r->isHumongous() && !r->is_young()) {
2545         add_region(r);
2546       }
2547     }
2548     return false;
2549   }
2550   jint marked_regions_added() { return _marked_regions_added; }
2551   int invokes() { return _invokes; }
2552 };
2553 
2554 class ParKnownGarbageTask: public AbstractGangTask {
2555   CollectionSetChooser* _hrSorted;
2556   jint _chunk_size;
2557   G1CollectedHeap* _g1;
2558 public:
2559   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
2560     AbstractGangTask("ParKnownGarbageTask"),
2561     _hrSorted(hrSorted), _chunk_size(chunk_size),
2562     _g1(G1CollectedHeap::heap())
2563   {}
2564 
2565   void work(int i) {
2566     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
2567     // Back to zero for the claim value.
2568     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
2569                                          HeapRegion::InitialClaimValue);
2570     jint regions_added = parKnownGarbageCl.marked_regions_added();
2571     _hrSorted->incNumMarkedHeapRegions(regions_added);
2572     if (G1PrintParCleanupStats) {
2573       gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
2574                  i, parKnownGarbageCl.invokes(), regions_added);
2575     }
2576   }
2577 };
2578 
2579 void
2580 G1CollectorPolicy_BestRegionsFirst::
2581 record_concurrent_mark_cleanup_end(size_t freed_bytes,
2582                                    size_t max_live_bytes) {
2583   double start;
2584   if (G1PrintParCleanupStats) start = os::elapsedTime();
2585   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
2586 
2587   _collectionSetChooser->clearMarkedHeapRegions();
2588   double clear_marked_end;
2589   if (G1PrintParCleanupStats) {
2590     clear_marked_end = os::elapsedTime();
2591     gclog_or_tty->print_cr("  clear marked regions + work1: %8.3f ms.",
2592                   (clear_marked_end - start)*1000.0);
2593   }
2594   if (G1CollectedHeap::use_parallel_gc_threads()) {
2595     const size_t OverpartitionFactor = 4;
2596     const size_t MinWorkUnit = 8;
2597     const size_t WorkUnit =
2598       MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
2599            MinWorkUnit);
2600     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
2601                                                              WorkUnit);
2602     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
2603                                             (int) WorkUnit);
2604     _g1->workers()->run_task(&parKnownGarbageTask);
2605 
2606     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2607            "sanity check");
2608   } else {
2609     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
2610     _g1->heap_region_iterate(&knownGarbagecl);
2611   }
2612   double known_garbage_end;
2613   if (G1PrintParCleanupStats) {
2614     known_garbage_end = os::elapsedTime();
2615     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
2616                   (known_garbage_end - clear_marked_end)*1000.0);
2617   }
2618   _collectionSetChooser->sortMarkedHeapRegions();
2619   double sort_end;
2620   if (G1PrintParCleanupStats) {
2621     sort_end = os::elapsedTime();
2622     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
2623                   (sort_end - known_garbage_end)*1000.0);
2624   }
2625 
2626   record_concurrent_mark_cleanup_end_work2();
2627   double work2_end;
2628   if (G1PrintParCleanupStats) {
2629     work2_end = os::elapsedTime();
2630     gclog_or_tty->print_cr("  work2: %8.3f ms.",
2631                   (work2_end - sort_end)*1000.0);
2632   }
2633 }
2634 
2635 // Add the heap region at the head of the non-incremental collection set
2636 void G1CollectorPolicy::
2637 add_to_collection_set(HeapRegion* hr) {
2638   assert(_inc_cset_build_state == Active, "Precondition");
2639   assert(!hr->is_young(), "non-incremental add of young region");
2640 
2641   if (_g1->mark_in_progress())
2642     _g1->concurrent_mark()->registerCSetRegion(hr);
2643 
2644   assert(!hr->in_collection_set(), "should not already be in the CSet");
2645   hr->set_in_collection_set(true);
2646   hr->set_next_in_collection_set(_collection_set);
2647   _collection_set = hr;
2648   _collection_set_size++;
2649   _collection_set_bytes_used_before += hr->used();
2650   _g1->register_region_with_in_cset_fast_test(hr);
2651 }
2652 
2653 // Initialize the per-collection-set information
2654 void G1CollectorPolicy::start_incremental_cset_building() {
2655   assert(_inc_cset_build_state == Inactive, "Precondition");
2656 
2657   _inc_cset_head = NULL;
2658   _inc_cset_tail = NULL;
2659   _inc_cset_size = 0;
2660   _inc_cset_bytes_used_before = 0;
2661 
2662   if (in_young_gc_mode()) {
2663     _inc_cset_young_index = 0;
2664   }
2665 
2666   _inc_cset_max_finger = 0;
2667   _inc_cset_recorded_young_bytes = 0;
2668   _inc_cset_recorded_rs_lengths = 0;
2669   _inc_cset_predicted_elapsed_time_ms = 0;
2670   _inc_cset_predicted_bytes_to_copy = 0;
2671   _inc_cset_build_state = Active;
2672 }
2673 
2674 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
2675   // This routine is used when:
2676   // * adding survivor regions to the incremental cset at the end of an
2677   //   evacuation pause,
2678   // * adding the current allocation region to the incremental cset
2679   //   when it is retired, and
2680   // * updating existing policy information for a region in the
2681   //   incremental cset via young list RSet sampling.
2682   // Therefore this routine may be called at a safepoint by the
2683   // VM thread, or in-between safepoints by mutator threads (when
2684   // retiring the current allocation region) or a concurrent
2685   // refine thread (RSet sampling).
2686 
2687   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
2688   size_t used_bytes = hr->used();
2689 
2690   _inc_cset_recorded_rs_lengths += rs_length;
2691   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
2692 
2693   _inc_cset_bytes_used_before += used_bytes;
2694 
2695   // Cache the values we have added to the aggregated informtion
2696   // in the heap region in case we have to remove this region from
2697   // the incremental collection set, or it is updated by the
2698   // rset sampling code
2699   hr->set_recorded_rs_length(rs_length);
2700   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
2701 
2702 #if PREDICTIONS_VERBOSE
2703   size_t bytes_to_copy = predict_bytes_to_copy(hr);
2704   _inc_cset_predicted_bytes_to_copy += bytes_to_copy;
2705 
2706   // Record the number of bytes used in this region
2707   _inc_cset_recorded_young_bytes += used_bytes;
2708 
2709   // Cache the values we have added to the aggregated informtion
2710   // in the heap region in case we have to remove this region from
2711   // the incremental collection set, or it is updated by the
2712   // rset sampling code
2713   hr->set_predicted_bytes_to_copy(bytes_to_copy);
2714 #endif // PREDICTIONS_VERBOSE
2715 }
2716 
2717 void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
2718   // This routine is currently only called as part of the updating of
2719   // existing policy information for regions in the incremental cset that
2720   // is performed by the concurrent refine thread(s) as part of young list
2721   // RSet sampling. Therefore we should not be at a safepoint.
2722 
2723   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
2724   assert(hr->is_young(), "it should be");
2725 
2726   size_t used_bytes = hr->used();
2727   size_t old_rs_length = hr->recorded_rs_length();
2728   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
2729 
2730   // Subtract the old recorded/predicted policy information for
2731   // the given heap region from the collection set info.
2732   _inc_cset_recorded_rs_lengths -= old_rs_length;
2733   _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;
2734 
2735   _inc_cset_bytes_used_before -= used_bytes;
2736 
2737   // Clear the values cached in the heap region
2738   hr->set_recorded_rs_length(0);
2739   hr->set_predicted_elapsed_time_ms(0);
2740 
2741 #if PREDICTIONS_VERBOSE
2742   size_t old_predicted_bytes_to_copy = hr->predicted_bytes_to_copy();
2743   _inc_cset_predicted_bytes_to_copy -= old_predicted_bytes_to_copy;
2744 
2745   // Subtract the number of bytes used in this region
2746   _inc_cset_recorded_young_bytes -= used_bytes;
2747 
2748   // Clear the values cached in the heap region
2749   hr->set_predicted_bytes_to_copy(0);
2750 #endif // PREDICTIONS_VERBOSE
2751 }
2752 
2753 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
2754   // Update the collection set information that is dependent on the new RS length
2755   assert(hr->is_young(), "Precondition");
2756 
2757   remove_from_incremental_cset_info(hr);
2758   add_to_incremental_cset_info(hr, new_rs_length);
2759 }
2760 
2761 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
2762   assert( hr->is_young(), "invariant");
2763   assert( hr->young_index_in_cset() == -1, "invariant" );
2764   assert(_inc_cset_build_state == Active, "Precondition");
2765 
2766   // We need to clear and set the cached recorded/cached collection set
2767   // information in the heap region here (before the region gets added
2768   // to the collection set). An individual heap region's cached values
2769   // are calculated, aggregated with the policy collection set info,
2770   // and cached in the heap region here (initially) and (subsequently)
2771   // by the Young List sampling code.
2772 
2773   size_t rs_length = hr->rem_set()->occupied();
2774   add_to_incremental_cset_info(hr, rs_length);
2775 
2776   HeapWord* hr_end = hr->end();
2777   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
2778 
2779   assert(!hr->in_collection_set(), "invariant");
2780   hr->set_in_collection_set(true);
2781   assert( hr->next_in_collection_set() == NULL, "invariant");
2782 
2783   _inc_cset_size++;
2784   _g1->register_region_with_in_cset_fast_test(hr);
2785 
2786   hr->set_young_index_in_cset((int) _inc_cset_young_index);
2787   ++_inc_cset_young_index;
2788 }
2789 
2790 // Add the region at the RHS of the incremental cset
2791 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
2792   // We should only ever be appending survivors at the end of a pause
2793   assert( hr->is_survivor(), "Logic");
2794 
2795   // Do the 'common' stuff
2796   add_region_to_incremental_cset_common(hr);
2797 
2798   // Now add the region at the right hand side
2799   if (_inc_cset_tail == NULL) {
2800     assert(_inc_cset_head == NULL, "invariant");
2801     _inc_cset_head = hr;
2802   } else {
2803     _inc_cset_tail->set_next_in_collection_set(hr);
2804   }
2805   _inc_cset_tail = hr;
2806 }
2807 
2808 // Add the region to the LHS of the incremental cset
2809 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
2810   // Survivors should be added to the RHS at the end of a pause
2811   assert(!hr->is_survivor(), "Logic");
2812 
2813   // Do the 'common' stuff
2814   add_region_to_incremental_cset_common(hr);
2815 
2816   // Add the region at the left hand side
2817   hr->set_next_in_collection_set(_inc_cset_head);
2818   if (_inc_cset_head == NULL) {
2819     assert(_inc_cset_tail == NULL, "Invariant");
2820     _inc_cset_tail = hr;
2821   }
2822   _inc_cset_head = hr;
2823 }
2824 
2825 #ifndef PRODUCT
2826 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
2827   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
2828 
2829   st->print_cr("\nCollection_set:");
2830   HeapRegion* csr = list_head;
2831   while (csr != NULL) {
2832     HeapRegion* next = csr->next_in_collection_set();
2833     assert(csr->in_collection_set(), "bad CS");
2834     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
2835                  "age: %4d, y: %d, surv: %d",
2836                         csr->bottom(), csr->end(),
2837                         csr->top(),
2838                         csr->prev_top_at_mark_start(),
2839                         csr->next_top_at_mark_start(),
2840                         csr->top_at_conc_mark_count(),
2841                         csr->age_in_surv_rate_group_cond(),
2842                         csr->is_young(),
2843                         csr->is_survivor());
2844     csr = next;
2845   }
2846 }
2847 #endif // !PRODUCT
2848 
2849 void
2850 G1CollectorPolicy_BestRegionsFirst::choose_collection_set(
2851                                                   double target_pause_time_ms) {
2852   // Set this here - in case we're not doing young collections.
2853   double non_young_start_time_sec = os::elapsedTime();
2854 
2855   start_recording_regions();
2856 
2857   guarantee(target_pause_time_ms > 0.0,
2858             err_msg("target_pause_time_ms = %1.6lf should be positive",
2859                     target_pause_time_ms));
2860   guarantee(_collection_set == NULL, "Precondition");
2861 
2862   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2863   double predicted_pause_time_ms = base_time_ms;
2864 
2865   double time_remaining_ms = target_pause_time_ms - base_time_ms;
2866 
2867   // the 10% and 50% values are arbitrary...
2868   if (time_remaining_ms < 0.10 * target_pause_time_ms) {
2869     time_remaining_ms = 0.50 * target_pause_time_ms;
2870     _within_target = false;
2871   } else {
2872     _within_target = true;
2873   }
2874 
2875   // We figure out the number of bytes available for future to-space.
2876   // For new regions without marking information, we must assume the
2877   // worst-case of complete survival.  If we have marking information for a
2878   // region, we can bound the amount of live data.  We can add a number of
2879   // such regions, as long as the sum of the live data bounds does not
2880   // exceed the available evacuation space.
2881   size_t max_live_bytes = _g1->free_regions() * HeapRegion::GrainBytes;
2882 
2883   size_t expansion_bytes =
2884     _g1->expansion_regions() * HeapRegion::GrainBytes;
2885 
2886   _collection_set_bytes_used_before = 0;
2887   _collection_set_size = 0;
2888 
2889   // Adjust for expansion and slop.
2890   max_live_bytes = max_live_bytes + expansion_bytes;
2891 
2892   HeapRegion* hr;
2893   if (in_young_gc_mode()) {
2894     double young_start_time_sec = os::elapsedTime();
2895 
2896     if (G1PolicyVerbose > 0) {
2897       gclog_or_tty->print_cr("Adding %d young regions to the CSet",
2898                     _g1->young_list()->length());
2899     }
2900 
2901     _young_cset_length  = 0;
2902     _last_young_gc_full = full_young_gcs() ? true : false;
2903 
2904     if (_last_young_gc_full)
2905       ++_full_young_pause_num;
2906     else
2907       ++_partial_young_pause_num;
2908 
2909     // The young list is laid with the survivor regions from the previous
2910     // pause are appended to the RHS of the young list, i.e.
2911     //   [Newly Young Regions ++ Survivors from last pause].
2912 
2913     hr = _g1->young_list()->first_survivor_region();
2914     while (hr != NULL) {
2915       assert(hr->is_survivor(), "badly formed young list");
2916       hr->set_young();
2917       hr = hr->get_next_young_region();
2918     }
2919 
2920     // Clear the fields that point to the survivor list - they are
2921     // all young now.
2922     _g1->young_list()->clear_survivors();
2923 
2924     if (_g1->mark_in_progress())
2925       _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
2926 
2927     _young_cset_length = _inc_cset_young_index;
2928     _collection_set = _inc_cset_head;
2929     _collection_set_size = _inc_cset_size;
2930     _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2931 
2932     // For young regions in the collection set, we assume the worst
2933     // case of complete survival
2934     max_live_bytes -= _inc_cset_size * HeapRegion::GrainBytes;
2935 
2936     time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
2937     predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2938 
2939     // The number of recorded young regions is the incremental
2940     // collection set's current size
2941     set_recorded_young_regions(_inc_cset_size);
2942     set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2943     set_recorded_young_bytes(_inc_cset_recorded_young_bytes);
2944 #if PREDICTIONS_VERBOSE
2945     set_predicted_bytes_to_copy(_inc_cset_predicted_bytes_to_copy);
2946 #endif // PREDICTIONS_VERBOSE
2947 
2948     if (G1PolicyVerbose > 0) {
2949       gclog_or_tty->print_cr("  Added " PTR_FORMAT " Young Regions to CS.",
2950                              _inc_cset_size);
2951       gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
2952                             max_live_bytes/K);
2953     }
2954 
2955     assert(_inc_cset_size == _g1->young_list()->length(), "Invariant");
2956 
2957     double young_end_time_sec = os::elapsedTime();
2958     _recorded_young_cset_choice_time_ms =
2959       (young_end_time_sec - young_start_time_sec) * 1000.0;
2960 
2961     // We are doing young collections so reset this.
2962     non_young_start_time_sec = young_end_time_sec;
2963 
2964     // Note we can use either _collection_set_size or
2965     // _young_cset_length here
2966     if (_collection_set_size > 0 && _last_young_gc_full) {
2967       // don't bother adding more regions...
2968       goto choose_collection_set_end;
2969     }
2970   }
2971 
2972   if (!in_young_gc_mode() || !full_young_gcs()) {
2973     bool should_continue = true;
2974     NumberSeq seq;
2975     double avg_prediction = 100000000000000000.0; // something very large
2976 
2977     do {
2978       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
2979                                                       avg_prediction);
2980       if (hr != NULL) {
2981         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
2982         time_remaining_ms -= predicted_time_ms;
2983         predicted_pause_time_ms += predicted_time_ms;
2984         add_to_collection_set(hr);
2985         record_non_young_cset_region(hr);
2986         max_live_bytes -= MIN2(hr->max_live_bytes(), max_live_bytes);
2987         if (G1PolicyVerbose > 0) {
2988           gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
2989                         max_live_bytes/K);
2990         }
2991         seq.add(predicted_time_ms);
2992         avg_prediction = seq.avg() + seq.sd();
2993       }
2994       should_continue =
2995         ( hr != NULL) &&
2996         ( (adaptive_young_list_length()) ? time_remaining_ms > 0.0
2997           : _collection_set_size < _young_list_fixed_length );
2998     } while (should_continue);
2999 
3000     if (!adaptive_young_list_length() &&
3001         _collection_set_size < _young_list_fixed_length)
3002       _should_revert_to_full_young_gcs  = true;
3003   }
3004 
3005 choose_collection_set_end:
3006   stop_incremental_cset_building();
3007 
3008   count_CS_bytes_used();
3009 
3010   end_recording_regions();
3011 
3012   double non_young_end_time_sec = os::elapsedTime();
3013   _recorded_non_young_cset_choice_time_ms =
3014     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
3015 }
3016 
3017 void G1CollectorPolicy_BestRegionsFirst::record_full_collection_end() {
3018   G1CollectorPolicy::record_full_collection_end();
3019   _collectionSetChooser->updateAfterFullCollection();
3020 }
3021 
3022 void G1CollectorPolicy_BestRegionsFirst::
3023 expand_if_possible(size_t numRegions) {
3024   size_t expansion_bytes = numRegions * HeapRegion::GrainBytes;
3025   _g1->expand(expansion_bytes);
3026 }
3027 
3028 void G1CollectorPolicy_BestRegionsFirst::
3029 record_collection_pause_end() {
3030   G1CollectorPolicy::record_collection_pause_end();
3031   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
3032 }