Print this page
rev 2722 : 7095194: G1: HeapRegion::GrainBytes, GrainWords, and CardsPerRegion should be size_t
Summary: Declare GrainBytes, GrainWords, and CardsPerRegion as size_t.
Reviewed-by:
Split |
Close |
Expand all |
Collapse all |
--- old/src/share/vm/gc_implementation/g1/heapRegion.cpp
+++ new/src/share/vm/gc_implementation/g1/heapRegion.cpp
1 1 /*
2 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
3 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 4 *
5 5 * This code is free software; you can redistribute it and/or modify it
6 6 * under the terms of the GNU General Public License version 2 only, as
7 7 * published by the Free Software Foundation.
8 8 *
9 9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 12 * version 2 for more details (a copy is included in the LICENSE file that
13 13 * accompanied this code).
14 14 *
15 15 * You should have received a copy of the GNU General Public License version
16 16 * 2 along with this work; if not, write to the Free Software Foundation,
17 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 18 *
19 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 20 * or visit www.oracle.com if you need additional information or have any
21 21 * questions.
22 22 *
23 23 */
24 24
25 25 #include "precompiled.hpp"
↓ open down ↓ |
25 lines elided |
↑ open up ↑ |
26 26 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
27 27 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
28 28 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
29 29 #include "gc_implementation/g1/heapRegion.inline.hpp"
30 30 #include "gc_implementation/g1/heapRegionRemSet.hpp"
31 31 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
32 32 #include "memory/genOopClosures.inline.hpp"
33 33 #include "memory/iterator.hpp"
34 34 #include "oops/oop.inline.hpp"
35 35
36 -int HeapRegion::LogOfHRGrainBytes = 0;
37 -int HeapRegion::LogOfHRGrainWords = 0;
38 -int HeapRegion::GrainBytes = 0;
39 -int HeapRegion::GrainWords = 0;
40 -int HeapRegion::CardsPerRegion = 0;
36 +int HeapRegion::LogOfHRGrainBytes = 0;
37 +int HeapRegion::LogOfHRGrainWords = 0;
38 +size_t HeapRegion::GrainBytes = 0;
39 +size_t HeapRegion::GrainWords = 0;
40 +size_t HeapRegion::CardsPerRegion = 0;
41 41
42 42 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
43 43 HeapRegion* hr, OopClosure* cl,
44 44 CardTableModRefBS::PrecisionStyle precision,
45 45 FilterKind fk) :
46 46 ContiguousSpaceDCTOC(hr, cl, precision, NULL),
47 47 _hr(hr), _fk(fk), _g1(g1)
48 48 { }
49 49
50 50 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
51 51 OopClosure* oc) :
52 52 _r_bottom(r->bottom()), _r_end(r->end()),
53 53 _oc(oc), _out_of_region(0)
54 54 {}
55 55
56 56 class VerifyLiveClosure: public OopClosure {
57 57 private:
58 58 G1CollectedHeap* _g1h;
59 59 CardTableModRefBS* _bs;
60 60 oop _containing_obj;
61 61 bool _failures;
62 62 int _n_failures;
63 63 VerifyOption _vo;
64 64 public:
65 65 // _vo == UsePrevMarking -> use "prev" marking information,
66 66 // _vo == UseNextMarking -> use "next" marking information,
67 67 // _vo == UseMarkWord -> use mark word from object header.
68 68 VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
69 69 _g1h(g1h), _bs(NULL), _containing_obj(NULL),
70 70 _failures(false), _n_failures(0), _vo(vo)
71 71 {
72 72 BarrierSet* bs = _g1h->barrier_set();
73 73 if (bs->is_a(BarrierSet::CardTableModRef))
74 74 _bs = (CardTableModRefBS*)bs;
75 75 }
76 76
77 77 void set_containing_obj(oop obj) {
78 78 _containing_obj = obj;
79 79 }
80 80
81 81 bool failures() { return _failures; }
82 82 int n_failures() { return _n_failures; }
83 83
84 84 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
85 85 virtual void do_oop( oop* p) { do_oop_work(p); }
86 86
87 87 void print_object(outputStream* out, oop obj) {
88 88 #ifdef PRODUCT
89 89 klassOop k = obj->klass();
90 90 const char* class_name = instanceKlass::cast(k)->external_name();
91 91 out->print_cr("class name %s", class_name);
92 92 #else // PRODUCT
93 93 obj->print_on(out);
94 94 #endif // PRODUCT
95 95 }
96 96
97 97 template <class T> void do_oop_work(T* p) {
98 98 assert(_containing_obj != NULL, "Precondition");
99 99 assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
100 100 "Precondition");
101 101 T heap_oop = oopDesc::load_heap_oop(p);
102 102 if (!oopDesc::is_null(heap_oop)) {
103 103 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
104 104 bool failed = false;
105 105 if (!_g1h->is_in_closed_subset(obj) ||
106 106 _g1h->is_obj_dead_cond(obj, _vo)) {
107 107 if (!_failures) {
108 108 gclog_or_tty->print_cr("");
109 109 gclog_or_tty->print_cr("----------");
110 110 }
111 111 if (!_g1h->is_in_closed_subset(obj)) {
112 112 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
113 113 gclog_or_tty->print_cr("Field "PTR_FORMAT
114 114 " of live obj "PTR_FORMAT" in region "
115 115 "["PTR_FORMAT", "PTR_FORMAT")",
116 116 p, (void*) _containing_obj,
117 117 from->bottom(), from->end());
118 118 print_object(gclog_or_tty, _containing_obj);
119 119 gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
120 120 (void*) obj);
121 121 } else {
122 122 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
123 123 HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj);
124 124 gclog_or_tty->print_cr("Field "PTR_FORMAT
125 125 " of live obj "PTR_FORMAT" in region "
126 126 "["PTR_FORMAT", "PTR_FORMAT")",
127 127 p, (void*) _containing_obj,
128 128 from->bottom(), from->end());
129 129 print_object(gclog_or_tty, _containing_obj);
130 130 gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
131 131 "["PTR_FORMAT", "PTR_FORMAT")",
132 132 (void*) obj, to->bottom(), to->end());
133 133 print_object(gclog_or_tty, obj);
134 134 }
135 135 gclog_or_tty->print_cr("----------");
136 136 _failures = true;
137 137 failed = true;
138 138 _n_failures++;
139 139 }
140 140
141 141 if (!_g1h->full_collection()) {
142 142 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
143 143 HeapRegion* to = _g1h->heap_region_containing(obj);
144 144 if (from != NULL && to != NULL &&
145 145 from != to &&
146 146 !to->isHumongous()) {
147 147 jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
148 148 jbyte cv_field = *_bs->byte_for_const(p);
149 149 const jbyte dirty = CardTableModRefBS::dirty_card_val();
150 150
151 151 bool is_bad = !(from->is_young()
152 152 || to->rem_set()->contains_reference(p)
153 153 || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
154 154 (_containing_obj->is_objArray() ?
155 155 cv_field == dirty
156 156 : cv_obj == dirty || cv_field == dirty));
157 157 if (is_bad) {
158 158 if (!_failures) {
159 159 gclog_or_tty->print_cr("");
160 160 gclog_or_tty->print_cr("----------");
161 161 }
162 162 gclog_or_tty->print_cr("Missing rem set entry:");
163 163 gclog_or_tty->print_cr("Field "PTR_FORMAT" "
164 164 "of obj "PTR_FORMAT", "
165 165 "in region "HR_FORMAT,
166 166 p, (void*) _containing_obj,
167 167 HR_FORMAT_PARAMS(from));
168 168 _containing_obj->print_on(gclog_or_tty);
169 169 gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
170 170 "in region "HR_FORMAT,
171 171 (void*) obj,
172 172 HR_FORMAT_PARAMS(to));
173 173 obj->print_on(gclog_or_tty);
174 174 gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
175 175 cv_obj, cv_field);
176 176 gclog_or_tty->print_cr("----------");
177 177 _failures = true;
178 178 if (!failed) _n_failures++;
179 179 }
180 180 }
181 181 }
182 182 }
183 183 }
184 184 };
185 185
186 186 template<class ClosureType>
187 187 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
188 188 HeapRegion* hr,
189 189 HeapWord* cur, HeapWord* top) {
190 190 oop cur_oop = oop(cur);
191 191 int oop_size = cur_oop->size();
192 192 HeapWord* next_obj = cur + oop_size;
193 193 while (next_obj < top) {
194 194 // Keep filtering the remembered set.
195 195 if (!g1h->is_obj_dead(cur_oop, hr)) {
196 196 // Bottom lies entirely below top, so we can call the
197 197 // non-memRegion version of oop_iterate below.
198 198 cur_oop->oop_iterate(cl);
199 199 }
200 200 cur = next_obj;
201 201 cur_oop = oop(cur);
202 202 oop_size = cur_oop->size();
203 203 next_obj = cur + oop_size;
204 204 }
205 205 return cur;
206 206 }
207 207
208 208 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
209 209 HeapWord* bottom,
210 210 HeapWord* top,
211 211 OopClosure* cl) {
212 212 G1CollectedHeap* g1h = _g1;
213 213
214 214 int oop_size;
215 215
216 216 OopClosure* cl2 = cl;
217 217
218 218 // If we are scanning the remembered sets looking for refs
219 219 // into the collection set during an evacuation pause then
220 220 // we will want to 'discover' reference objects that point
221 221 // to referents in the collection set.
222 222 //
223 223 // Unfortunately it is an instance of FilterIntoCSClosure
224 224 // that is iterated over the reference fields of oops in
225 225 // mr (and not the G1ParPushHeapRSClosure - which is the
226 226 // cl parameter).
227 227 // If we set the _ref_processor field in the FilterIntoCSClosure
228 228 // instance, all the reference objects that are walked
229 229 // (regardless of whether their referent object's are in
230 230 // the cset) will be 'discovered'.
231 231 //
232 232 // The G1STWIsAlive closure considers a referent object that
233 233 // is outside the cset as alive. The G1CopyingKeepAliveClosure
234 234 // skips referents that are not in the cset.
235 235 //
236 236 // Therefore reference objects in mr with a referent that is
237 237 // outside the cset should be OK.
238 238
239 239 ReferenceProcessor* rp = _cl->_ref_processor;
240 240 if (rp != NULL) {
241 241 assert(rp == _g1->ref_processor_stw(), "should be stw");
242 242 assert(_fk == IntoCSFilterKind, "should be looking for refs into CS");
243 243 }
244 244
245 245 FilterIntoCSClosure intoCSFilt(this, g1h, cl, rp);
246 246 FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
247 247
248 248 switch (_fk) {
249 249 case IntoCSFilterKind: cl2 = &intoCSFilt; break;
250 250 case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
251 251 }
252 252
253 253 // Start filtering what we add to the remembered set. If the object is
254 254 // not considered dead, either because it is marked (in the mark bitmap)
255 255 // or it was allocated after marking finished, then we add it. Otherwise
256 256 // we can safely ignore the object.
257 257 if (!g1h->is_obj_dead(oop(bottom), _hr)) {
258 258 oop_size = oop(bottom)->oop_iterate(cl2, mr);
259 259 } else {
260 260 oop_size = oop(bottom)->size();
261 261 }
262 262
263 263 bottom += oop_size;
264 264
265 265 if (bottom < top) {
266 266 // We replicate the loop below for several kinds of possible filters.
267 267 switch (_fk) {
268 268 case NoFilterKind:
269 269 bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
270 270 break;
271 271
272 272 case IntoCSFilterKind: {
273 273 FilterIntoCSClosure filt(this, g1h, cl, rp);
274 274 bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
275 275 break;
276 276 }
277 277
278 278 case OutOfRegionFilterKind: {
279 279 FilterOutOfRegionClosure filt(_hr, cl);
280 280 bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
281 281 break;
282 282 }
283 283
284 284 default:
285 285 ShouldNotReachHere();
286 286 }
287 287
288 288 // Last object. Need to do dead-obj filtering here too.
289 289 if (!g1h->is_obj_dead(oop(bottom), _hr)) {
290 290 oop(bottom)->oop_iterate(cl2, mr);
291 291 }
292 292 }
293 293 }
294 294
295 295 // Minimum region size; we won't go lower than that.
296 296 // We might want to decrease this in the future, to deal with small
297 297 // heaps a bit more efficiently.
298 298 #define MIN_REGION_SIZE ( 1024 * 1024 )
299 299
300 300 // Maximum region size; we don't go higher than that. There's a good
301 301 // reason for having an upper bound. We don't want regions to get too
302 302 // large, otherwise cleanup's effectiveness would decrease as there
303 303 // will be fewer opportunities to find totally empty regions after
304 304 // marking.
305 305 #define MAX_REGION_SIZE ( 32 * 1024 * 1024 )
306 306
307 307 // The automatic region size calculation will try to have around this
308 308 // many regions in the heap (based on the min heap size).
309 309 #define TARGET_REGION_NUMBER 2048
310 310
311 311 void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
312 312 // region_size in bytes
313 313 uintx region_size = G1HeapRegionSize;
314 314 if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
315 315 // We base the automatic calculation on the min heap size. This
316 316 // can be problematic if the spread between min and max is quite
317 317 // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
318 318 // the max size, the region size might be way too large for the
319 319 // min size. Either way, some users might have to set the region
320 320 // size manually for some -Xms / -Xmx combos.
321 321
322 322 region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
323 323 (uintx) MIN_REGION_SIZE);
324 324 }
325 325
326 326 int region_size_log = log2_long((jlong) region_size);
327 327 // Recalculate the region size to make sure it's a power of
328 328 // 2. This means that region_size is the largest power of 2 that's
329 329 // <= what we've calculated so far.
330 330 region_size = ((uintx)1 << region_size_log);
331 331
332 332 // Now make sure that we don't go over or under our limits.
333 333 if (region_size < MIN_REGION_SIZE) {
334 334 region_size = MIN_REGION_SIZE;
335 335 } else if (region_size > MAX_REGION_SIZE) {
336 336 region_size = MAX_REGION_SIZE;
337 337 }
338 338
339 339 // And recalculate the log.
340 340 region_size_log = log2_long((jlong) region_size);
341 341
↓ open down ↓ |
291 lines elided |
↑ open up ↑ |
342 342 // Now, set up the globals.
343 343 guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
344 344 LogOfHRGrainBytes = region_size_log;
345 345
346 346 guarantee(LogOfHRGrainWords == 0, "we should only set it once");
347 347 LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
348 348
349 349 guarantee(GrainBytes == 0, "we should only set it once");
350 350 // The cast to int is safe, given that we've bounded region_size by
351 351 // MIN_REGION_SIZE and MAX_REGION_SIZE.
352 - GrainBytes = (int) region_size;
352 + GrainBytes = (size_t)region_size;
353 353
354 354 guarantee(GrainWords == 0, "we should only set it once");
355 355 GrainWords = GrainBytes >> LogHeapWordSize;
356 - guarantee(1 << LogOfHRGrainWords == GrainWords, "sanity");
356 + guarantee((size_t)(1 << LogOfHRGrainWords) == GrainWords, "sanity");
357 357
358 358 guarantee(CardsPerRegion == 0, "we should only set it once");
359 359 CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
360 360 }
361 361
362 362 void HeapRegion::reset_after_compaction() {
363 363 G1OffsetTableContigSpace::reset_after_compaction();
364 364 // After a compaction the mark bitmap is invalid, so we must
365 365 // treat all objects as being inside the unmarked area.
366 366 zero_marked_bytes();
367 367 init_top_at_mark_start();
368 368 }
369 369
370 370 DirtyCardToOopClosure*
371 371 HeapRegion::new_dcto_closure(OopClosure* cl,
372 372 CardTableModRefBS::PrecisionStyle precision,
373 373 HeapRegionDCTOC::FilterKind fk) {
374 374 return new HeapRegionDCTOC(G1CollectedHeap::heap(),
375 375 this, cl, precision, fk);
376 376 }
377 377
378 378 void HeapRegion::hr_clear(bool par, bool clear_space) {
379 379 assert(_humongous_type == NotHumongous,
380 380 "we should have already filtered out humongous regions");
381 381 assert(_humongous_start_region == NULL,
382 382 "we should have already filtered out humongous regions");
383 383 assert(_end == _orig_end,
384 384 "we should have already filtered out humongous regions");
385 385
386 386 _in_collection_set = false;
387 387
388 388 set_young_index_in_cset(-1);
389 389 uninstall_surv_rate_group();
390 390 set_young_type(NotYoung);
391 391 reset_pre_dummy_top();
392 392
393 393 if (!par) {
394 394 // If this is parallel, this will be done later.
395 395 HeapRegionRemSet* hrrs = rem_set();
396 396 if (hrrs != NULL) hrrs->clear();
397 397 _claimed = InitialClaimValue;
398 398 }
↓ open down ↓ |
32 lines elided |
↑ open up ↑ |
399 399 zero_marked_bytes();
400 400 set_sort_index(-1);
401 401
402 402 _offsets.resize(HeapRegion::GrainWords);
403 403 init_top_at_mark_start();
404 404 if (clear_space) clear(SpaceDecorator::Mangle);
405 405 }
406 406
407 407 void HeapRegion::par_clear() {
408 408 assert(used() == 0, "the region should have been already cleared");
409 - assert(capacity() == (size_t) HeapRegion::GrainBytes,
410 - "should be back to normal");
409 + assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
411 410 HeapRegionRemSet* hrrs = rem_set();
412 411 hrrs->clear();
413 412 CardTableModRefBS* ct_bs =
414 413 (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
415 414 ct_bs->clear(MemRegion(bottom(), end()));
416 415 }
417 416
418 417 // <PREDICTION>
419 418 void HeapRegion::calc_gc_efficiency() {
420 419 G1CollectedHeap* g1h = G1CollectedHeap::heap();
421 420 _gc_efficiency = (double) garbage_bytes() /
422 421 g1h->predict_region_elapsed_time_ms(this, false);
423 422 }
424 423 // </PREDICTION>
425 424
426 425 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
427 426 assert(!isHumongous(), "sanity / pre-condition");
428 427 assert(end() == _orig_end,
429 428 "Should be normal before the humongous object allocation");
430 429 assert(top() == bottom(), "should be empty");
431 430 assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
432 431
433 432 _humongous_type = StartsHumongous;
434 433 _humongous_start_region = this;
435 434
436 435 set_end(new_end);
437 436 _offsets.set_for_starts_humongous(new_top);
438 437 }
439 438
440 439 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
441 440 assert(!isHumongous(), "sanity / pre-condition");
442 441 assert(end() == _orig_end,
443 442 "Should be normal before the humongous object allocation");
444 443 assert(top() == bottom(), "should be empty");
445 444 assert(first_hr->startsHumongous(), "pre-condition");
446 445
447 446 _humongous_type = ContinuesHumongous;
448 447 _humongous_start_region = first_hr;
449 448 }
450 449
451 450 void HeapRegion::set_notHumongous() {
452 451 assert(isHumongous(), "pre-condition");
453 452
454 453 if (startsHumongous()) {
455 454 assert(top() <= end(), "pre-condition");
↓ open down ↓ |
35 lines elided |
↑ open up ↑ |
456 455 set_end(_orig_end);
457 456 if (top() > end()) {
458 457 // at least one "continues humongous" region after it
459 458 set_top(end());
460 459 }
461 460 } else {
462 461 // continues humongous
463 462 assert(end() == _orig_end, "sanity");
464 463 }
465 464
466 - assert(capacity() == (size_t) HeapRegion::GrainBytes, "pre-condition");
465 + assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
467 466 _humongous_type = NotHumongous;
468 467 _humongous_start_region = NULL;
469 468 }
470 469
471 470 bool HeapRegion::claimHeapRegion(jint claimValue) {
472 471 jint current = _claimed;
473 472 if (current != claimValue) {
474 473 jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
475 474 if (res == current) {
476 475 return true;
477 476 }
478 477 }
479 478 return false;
480 479 }
481 480
482 481 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
483 482 HeapWord* low = addr;
484 483 HeapWord* high = end();
485 484 while (low < high) {
486 485 size_t diff = pointer_delta(high, low);
487 486 // Must add one below to bias toward the high amount. Otherwise, if
488 487 // "high" were at the desired value, and "low" were one less, we
489 488 // would not converge on "high". This is not symmetric, because
490 489 // we set "high" to a block start, which might be the right one,
491 490 // which we don't do for "low".
492 491 HeapWord* middle = low + (diff+1)/2;
493 492 if (middle == high) return high;
494 493 HeapWord* mid_bs = block_start_careful(middle);
495 494 if (mid_bs < addr) {
496 495 low = middle;
497 496 } else {
498 497 high = mid_bs;
499 498 }
500 499 }
501 500 assert(low == high && low >= addr, "Didn't work.");
502 501 return low;
503 502 }
504 503
505 504 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
506 505 G1OffsetTableContigSpace::initialize(mr, false, mangle_space);
507 506 hr_clear(false/*par*/, clear_space);
508 507 }
509 508 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
510 509 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
511 510 #endif // _MSC_VER
512 511
513 512
514 513 HeapRegion::
515 514 HeapRegion(size_t hrs_index, G1BlockOffsetSharedArray* sharedOffsetArray,
516 515 MemRegion mr, bool is_zeroed)
517 516 : G1OffsetTableContigSpace(sharedOffsetArray, mr, is_zeroed),
518 517 _hrs_index(hrs_index),
519 518 _humongous_type(NotHumongous), _humongous_start_region(NULL),
520 519 _in_collection_set(false),
521 520 _next_in_special_set(NULL), _orig_end(NULL),
522 521 _claimed(InitialClaimValue), _evacuation_failed(false),
523 522 _prev_marked_bytes(0), _next_marked_bytes(0), _sort_index(-1),
524 523 _gc_efficiency(0.0),
525 524 _young_type(NotYoung), _next_young_region(NULL),
526 525 _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
527 526 #ifdef ASSERT
528 527 _containing_set(NULL),
529 528 #endif // ASSERT
530 529 _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
531 530 _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
532 531 _predicted_bytes_to_copy(0)
533 532 {
534 533 _orig_end = mr.end();
535 534 // Note that initialize() will set the start of the unmarked area of the
536 535 // region.
537 536 this->initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
538 537 set_top(bottom());
539 538 set_saved_mark();
540 539
541 540 _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
542 541
543 542 assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
544 543 // In case the region is allocated during a pause, note the top.
545 544 // We haven't done any counting on a brand new region.
546 545 _top_at_conc_mark_count = bottom();
547 546 }
548 547
549 548 class NextCompactionHeapRegionClosure: public HeapRegionClosure {
550 549 const HeapRegion* _target;
551 550 bool _target_seen;
552 551 HeapRegion* _last;
553 552 CompactibleSpace* _res;
554 553 public:
555 554 NextCompactionHeapRegionClosure(const HeapRegion* target) :
556 555 _target(target), _target_seen(false), _res(NULL) {}
557 556 bool doHeapRegion(HeapRegion* cur) {
558 557 if (_target_seen) {
559 558 if (!cur->isHumongous()) {
560 559 _res = cur;
561 560 return true;
562 561 }
563 562 } else if (cur == _target) {
564 563 _target_seen = true;
565 564 }
566 565 return false;
567 566 }
568 567 CompactibleSpace* result() { return _res; }
569 568 };
570 569
571 570 CompactibleSpace* HeapRegion::next_compaction_space() const {
572 571 G1CollectedHeap* g1h = G1CollectedHeap::heap();
573 572 // cast away const-ness
574 573 HeapRegion* r = (HeapRegion*) this;
575 574 NextCompactionHeapRegionClosure blk(r);
576 575 g1h->heap_region_iterate_from(r, &blk);
577 576 return blk.result();
578 577 }
579 578
580 579 void HeapRegion::save_marks() {
581 580 set_saved_mark();
582 581 }
583 582
584 583 void HeapRegion::oops_in_mr_iterate(MemRegion mr, OopClosure* cl) {
585 584 HeapWord* p = mr.start();
586 585 HeapWord* e = mr.end();
587 586 oop obj;
588 587 while (p < e) {
589 588 obj = oop(p);
590 589 p += obj->oop_iterate(cl);
591 590 }
592 591 assert(p == e, "bad memregion: doesn't end on obj boundary");
593 592 }
594 593
595 594 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
596 595 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
597 596 ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl); \
598 597 }
599 598 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
600 599
601 600
602 601 void HeapRegion::oop_before_save_marks_iterate(OopClosure* cl) {
603 602 oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
604 603 }
605 604
606 605 HeapWord*
607 606 HeapRegion::object_iterate_mem_careful(MemRegion mr,
608 607 ObjectClosure* cl) {
609 608 G1CollectedHeap* g1h = G1CollectedHeap::heap();
610 609 // We used to use "block_start_careful" here. But we're actually happy
611 610 // to update the BOT while we do this...
612 611 HeapWord* cur = block_start(mr.start());
613 612 mr = mr.intersection(used_region());
614 613 if (mr.is_empty()) return NULL;
615 614 // Otherwise, find the obj that extends onto mr.start().
616 615
617 616 assert(cur <= mr.start()
618 617 && (oop(cur)->klass_or_null() == NULL ||
619 618 cur + oop(cur)->size() > mr.start()),
620 619 "postcondition of block_start");
621 620 oop obj;
622 621 while (cur < mr.end()) {
623 622 obj = oop(cur);
624 623 if (obj->klass_or_null() == NULL) {
625 624 // Ran into an unparseable point.
626 625 return cur;
627 626 } else if (!g1h->is_obj_dead(obj)) {
628 627 cl->do_object(obj);
629 628 }
630 629 if (cl->abort()) return cur;
631 630 // The check above must occur before the operation below, since an
632 631 // abort might invalidate the "size" operation.
633 632 cur += obj->size();
634 633 }
635 634 return NULL;
636 635 }
637 636
638 637 HeapWord*
639 638 HeapRegion::
640 639 oops_on_card_seq_iterate_careful(MemRegion mr,
641 640 FilterOutOfRegionClosure* cl,
642 641 bool filter_young,
643 642 jbyte* card_ptr) {
644 643 // Currently, we should only have to clean the card if filter_young
645 644 // is true and vice versa.
646 645 if (filter_young) {
647 646 assert(card_ptr != NULL, "pre-condition");
648 647 } else {
649 648 assert(card_ptr == NULL, "pre-condition");
650 649 }
651 650 G1CollectedHeap* g1h = G1CollectedHeap::heap();
652 651
653 652 // If we're within a stop-world GC, then we might look at a card in a
654 653 // GC alloc region that extends onto a GC LAB, which may not be
655 654 // parseable. Stop such at the "saved_mark" of the region.
656 655 if (G1CollectedHeap::heap()->is_gc_active()) {
657 656 mr = mr.intersection(used_region_at_save_marks());
658 657 } else {
659 658 mr = mr.intersection(used_region());
660 659 }
661 660 if (mr.is_empty()) return NULL;
662 661 // Otherwise, find the obj that extends onto mr.start().
663 662
664 663 // The intersection of the incoming mr (for the card) and the
665 664 // allocated part of the region is non-empty. This implies that
666 665 // we have actually allocated into this region. The code in
667 666 // G1CollectedHeap.cpp that allocates a new region sets the
668 667 // is_young tag on the region before allocating. Thus we
669 668 // safely know if this region is young.
670 669 if (is_young() && filter_young) {
671 670 return NULL;
672 671 }
673 672
674 673 assert(!is_young(), "check value of filter_young");
675 674
676 675 // We can only clean the card here, after we make the decision that
677 676 // the card is not young. And we only clean the card if we have been
678 677 // asked to (i.e., card_ptr != NULL).
679 678 if (card_ptr != NULL) {
680 679 *card_ptr = CardTableModRefBS::clean_card_val();
681 680 // We must complete this write before we do any of the reads below.
682 681 OrderAccess::storeload();
683 682 }
684 683
685 684 // We used to use "block_start_careful" here. But we're actually happy
686 685 // to update the BOT while we do this...
687 686 HeapWord* cur = block_start(mr.start());
688 687 assert(cur <= mr.start(), "Postcondition");
689 688
690 689 while (cur <= mr.start()) {
691 690 if (oop(cur)->klass_or_null() == NULL) {
692 691 // Ran into an unparseable point.
693 692 return cur;
694 693 }
695 694 // Otherwise...
696 695 int sz = oop(cur)->size();
697 696 if (cur + sz > mr.start()) break;
698 697 // Otherwise, go on.
699 698 cur = cur + sz;
700 699 }
701 700 oop obj;
702 701 obj = oop(cur);
703 702 // If we finish this loop...
704 703 assert(cur <= mr.start()
705 704 && obj->klass_or_null() != NULL
706 705 && cur + obj->size() > mr.start(),
707 706 "Loop postcondition");
708 707 if (!g1h->is_obj_dead(obj)) {
709 708 obj->oop_iterate(cl, mr);
710 709 }
711 710
712 711 HeapWord* next;
713 712 while (cur < mr.end()) {
714 713 obj = oop(cur);
715 714 if (obj->klass_or_null() == NULL) {
716 715 // Ran into an unparseable point.
717 716 return cur;
718 717 };
719 718 // Otherwise:
720 719 next = (cur + obj->size());
721 720 if (!g1h->is_obj_dead(obj)) {
722 721 if (next < mr.end()) {
723 722 obj->oop_iterate(cl);
724 723 } else {
725 724 // this obj spans the boundary. If it's an array, stop at the
726 725 // boundary.
727 726 if (obj->is_objArray()) {
728 727 obj->oop_iterate(cl, mr);
729 728 } else {
730 729 obj->oop_iterate(cl);
731 730 }
732 731 }
733 732 }
734 733 cur = next;
735 734 }
736 735 return NULL;
737 736 }
738 737
739 738 void HeapRegion::print() const { print_on(gclog_or_tty); }
740 739 void HeapRegion::print_on(outputStream* st) const {
741 740 if (isHumongous()) {
742 741 if (startsHumongous())
743 742 st->print(" HS");
744 743 else
745 744 st->print(" HC");
746 745 } else {
747 746 st->print(" ");
748 747 }
749 748 if (in_collection_set())
750 749 st->print(" CS");
751 750 else
752 751 st->print(" ");
753 752 if (is_young())
754 753 st->print(is_survivor() ? " SU" : " Y ");
755 754 else
756 755 st->print(" ");
757 756 if (is_empty())
758 757 st->print(" F");
759 758 else
760 759 st->print(" ");
761 760 st->print(" %5d", _gc_time_stamp);
762 761 st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
763 762 prev_top_at_mark_start(), next_top_at_mark_start());
764 763 G1OffsetTableContigSpace::print_on(st);
765 764 }
766 765
767 766 void HeapRegion::verify(bool allow_dirty) const {
768 767 bool dummy = false;
769 768 verify(allow_dirty, VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
770 769 }
771 770
772 771 // This really ought to be commoned up into OffsetTableContigSpace somehow.
773 772 // We would need a mechanism to make that code skip dead objects.
774 773
775 774 void HeapRegion::verify(bool allow_dirty,
776 775 VerifyOption vo,
777 776 bool* failures) const {
778 777 G1CollectedHeap* g1 = G1CollectedHeap::heap();
779 778 *failures = false;
780 779 HeapWord* p = bottom();
781 780 HeapWord* prev_p = NULL;
782 781 VerifyLiveClosure vl_cl(g1, vo);
783 782 bool is_humongous = isHumongous();
784 783 bool do_bot_verify = !is_young();
785 784 size_t object_num = 0;
786 785 while (p < top()) {
787 786 oop obj = oop(p);
788 787 size_t obj_size = obj->size();
789 788 object_num += 1;
790 789
791 790 if (is_humongous != g1->isHumongous(obj_size)) {
792 791 gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
793 792 SIZE_FORMAT" words) in a %shumongous region",
794 793 p, g1->isHumongous(obj_size) ? "" : "non-",
795 794 obj_size, is_humongous ? "" : "non-");
796 795 *failures = true;
797 796 return;
798 797 }
799 798
800 799 // If it returns false, verify_for_object() will output the
801 800 // appropriate messasge.
802 801 if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
803 802 *failures = true;
804 803 return;
805 804 }
806 805
807 806 if (!g1->is_obj_dead_cond(obj, this, vo)) {
808 807 if (obj->is_oop()) {
809 808 klassOop klass = obj->klass();
810 809 if (!klass->is_perm()) {
811 810 gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
812 811 "not in perm", klass, obj);
813 812 *failures = true;
814 813 return;
815 814 } else if (!klass->is_klass()) {
816 815 gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
817 816 "not a klass", klass, obj);
818 817 *failures = true;
819 818 return;
820 819 } else {
821 820 vl_cl.set_containing_obj(obj);
822 821 obj->oop_iterate(&vl_cl);
823 822 if (vl_cl.failures()) {
824 823 *failures = true;
825 824 }
826 825 if (G1MaxVerifyFailures >= 0 &&
827 826 vl_cl.n_failures() >= G1MaxVerifyFailures) {
828 827 return;
829 828 }
830 829 }
831 830 } else {
832 831 gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
833 832 *failures = true;
834 833 return;
835 834 }
836 835 }
837 836 prev_p = p;
838 837 p += obj_size;
839 838 }
840 839
841 840 if (p != top()) {
842 841 gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
843 842 "does not match top "PTR_FORMAT, p, top());
844 843 *failures = true;
845 844 return;
846 845 }
847 846
848 847 HeapWord* the_end = end();
849 848 assert(p == top(), "it should still hold");
850 849 // Do some extra BOT consistency checking for addresses in the
851 850 // range [top, end). BOT look-ups in this range should yield
852 851 // top. No point in doing that if top == end (there's nothing there).
853 852 if (p < the_end) {
854 853 // Look up top
855 854 HeapWord* addr_1 = p;
856 855 HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
857 856 if (b_start_1 != p) {
858 857 gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
859 858 " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
860 859 addr_1, b_start_1, p);
861 860 *failures = true;
862 861 return;
863 862 }
864 863
865 864 // Look up top + 1
866 865 HeapWord* addr_2 = p + 1;
867 866 if (addr_2 < the_end) {
868 867 HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
869 868 if (b_start_2 != p) {
870 869 gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
871 870 " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
872 871 addr_2, b_start_2, p);
873 872 *failures = true;
874 873 return;
875 874 }
876 875 }
877 876
878 877 // Look up an address between top and end
879 878 size_t diff = pointer_delta(the_end, p) / 2;
880 879 HeapWord* addr_3 = p + diff;
881 880 if (addr_3 < the_end) {
882 881 HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
883 882 if (b_start_3 != p) {
884 883 gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
885 884 " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
886 885 addr_3, b_start_3, p);
887 886 *failures = true;
888 887 return;
889 888 }
890 889 }
891 890
892 891 // Loook up end - 1
893 892 HeapWord* addr_4 = the_end - 1;
894 893 HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
895 894 if (b_start_4 != p) {
896 895 gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
897 896 " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
898 897 addr_4, b_start_4, p);
899 898 *failures = true;
900 899 return;
901 900 }
902 901 }
903 902
904 903 if (is_humongous && object_num > 1) {
905 904 gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
906 905 "but has "SIZE_FORMAT", objects",
907 906 bottom(), end(), object_num);
908 907 *failures = true;
909 908 return;
910 909 }
911 910 }
912 911
913 912 // G1OffsetTableContigSpace code; copied from space.cpp. Hope this can go
914 913 // away eventually.
915 914
916 915 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
917 916 // false ==> we'll do the clearing if there's clearing to be done.
918 917 ContiguousSpace::initialize(mr, false, mangle_space);
919 918 _offsets.zero_bottom_entry();
920 919 _offsets.initialize_threshold();
921 920 if (clear_space) clear(mangle_space);
922 921 }
923 922
924 923 void G1OffsetTableContigSpace::clear(bool mangle_space) {
925 924 ContiguousSpace::clear(mangle_space);
926 925 _offsets.zero_bottom_entry();
927 926 _offsets.initialize_threshold();
928 927 }
929 928
930 929 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
931 930 Space::set_bottom(new_bottom);
932 931 _offsets.set_bottom(new_bottom);
933 932 }
934 933
935 934 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
936 935 Space::set_end(new_end);
937 936 _offsets.resize(new_end - bottom());
938 937 }
939 938
940 939 void G1OffsetTableContigSpace::print() const {
941 940 print_short();
942 941 gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
943 942 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
944 943 bottom(), top(), _offsets.threshold(), end());
945 944 }
946 945
947 946 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
948 947 return _offsets.initialize_threshold();
949 948 }
950 949
951 950 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
952 951 HeapWord* end) {
953 952 _offsets.alloc_block(start, end);
954 953 return _offsets.threshold();
955 954 }
956 955
957 956 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
958 957 G1CollectedHeap* g1h = G1CollectedHeap::heap();
959 958 assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
960 959 if (_gc_time_stamp < g1h->get_gc_time_stamp())
961 960 return top();
962 961 else
963 962 return ContiguousSpace::saved_mark_word();
964 963 }
965 964
966 965 void G1OffsetTableContigSpace::set_saved_mark() {
967 966 G1CollectedHeap* g1h = G1CollectedHeap::heap();
968 967 unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
969 968
970 969 if (_gc_time_stamp < curr_gc_time_stamp) {
971 970 // The order of these is important, as another thread might be
972 971 // about to start scanning this region. If it does so after
973 972 // set_saved_mark and before _gc_time_stamp = ..., then the latter
974 973 // will be false, and it will pick up top() as the high water mark
975 974 // of region. If it does so after _gc_time_stamp = ..., then it
976 975 // will pick up the right saved_mark_word() as the high water mark
977 976 // of the region. Either way, the behaviour will be correct.
978 977 ContiguousSpace::set_saved_mark();
979 978 OrderAccess::storestore();
980 979 _gc_time_stamp = curr_gc_time_stamp;
981 980 // No need to do another barrier to flush the writes above. If
982 981 // this is called in parallel with other threads trying to
983 982 // allocate into the region, the caller should call this while
984 983 // holding a lock and when the lock is released the writes will be
985 984 // flushed.
986 985 }
987 986 }
988 987
989 988 G1OffsetTableContigSpace::
990 989 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
991 990 MemRegion mr, bool is_zeroed) :
992 991 _offsets(sharedOffsetArray, mr),
993 992 _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
994 993 _gc_time_stamp(0)
995 994 {
996 995 _offsets.set_space(this);
997 996 initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
998 997 }
↓ open down ↓ |
522 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX