1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1Log.hpp"
  37 #include "gc_implementation/g1/g1MarkSweep.hpp"
  38 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  39 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  40 #include "gc_implementation/g1/heapRegion.inline.hpp"
  41 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  42 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  43 #include "gc_implementation/g1/vm_operations_g1.hpp"
  44 #include "gc_implementation/shared/isGCActiveMark.hpp"
  45 #include "memory/gcLocker.inline.hpp"
  46 #include "memory/genOopClosures.inline.hpp"
  47 #include "memory/generationSpec.hpp"
  48 #include "memory/referenceProcessor.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/oop.pcgc.inline.hpp"
  51 #include "runtime/aprofiler.hpp"
  52 #include "runtime/vmThread.hpp"
  53 
  54 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  55 
  56 // turn it on so that the contents of the young list (scan-only /
  57 // to-be-collected) are printed at "strategic" points before / during
  58 // / after the collection --- this is useful for debugging
  59 #define YOUNG_LIST_VERBOSE 0
  60 // CURRENT STATUS
  61 // This file is under construction.  Search for "FIXME".
  62 
  63 // INVARIANTS/NOTES
  64 //
  65 // All allocation activity covered by the G1CollectedHeap interface is
  66 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  67 // and allocate_new_tlab, which are the "entry" points to the
  68 // allocation code from the rest of the JVM.  (Note that this does not
  69 // apply to TLAB allocation, which is not part of this interface: it
  70 // is done by clients of this interface.)
  71 
  72 // Notes on implementation of parallelism in different tasks.
  73 //
  74 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  75 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  76 // It does use run_task() which sets _n_workers in the task.
  77 // G1ParTask executes g1_process_strong_roots() ->
  78 // SharedHeap::process_strong_roots() which calls eventuall to
  79 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  80 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  81 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  82 //
  83 
  84 // Local to this file.
  85 
  86 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  87   SuspendibleThreadSet* _sts;
  88   G1RemSet* _g1rs;
  89   ConcurrentG1Refine* _cg1r;
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  93                               G1RemSet* g1rs,
  94                               ConcurrentG1Refine* cg1r) :
  95     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  96   {}
  97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  98     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
  99     // This path is executed by the concurrent refine or mutator threads,
 100     // concurrently, and so we do not care if card_ptr contains references
 101     // that point into the collection set.
 102     assert(!oops_into_cset, "should be");
 103 
 104     if (_concurrent && _sts->should_yield()) {
 105       // Caller will actually yield.
 106       return false;
 107     }
 108     // Otherwise, we finished successfully; return true.
 109     return true;
 110   }
 111   void set_concurrent(bool b) { _concurrent = b; }
 112 };
 113 
 114 
 115 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 116   int _calls;
 117   G1CollectedHeap* _g1h;
 118   CardTableModRefBS* _ctbs;
 119   int _histo[256];
 120 public:
 121   ClearLoggedCardTableEntryClosure() :
 122     _calls(0)
 123   {
 124     _g1h = G1CollectedHeap::heap();
 125     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 126     for (int i = 0; i < 256; i++) _histo[i] = 0;
 127   }
 128   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 129     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 130       _calls++;
 131       unsigned char* ujb = (unsigned char*)card_ptr;
 132       int ind = (int)(*ujb);
 133       _histo[ind]++;
 134       *card_ptr = -1;
 135     }
 136     return true;
 137   }
 138   int calls() { return _calls; }
 139   void print_histo() {
 140     gclog_or_tty->print_cr("Card table value histogram:");
 141     for (int i = 0; i < 256; i++) {
 142       if (_histo[i] != 0) {
 143         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 144       }
 145     }
 146   }
 147 };
 148 
 149 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 150   int _calls;
 151   G1CollectedHeap* _g1h;
 152   CardTableModRefBS* _ctbs;
 153 public:
 154   RedirtyLoggedCardTableEntryClosure() :
 155     _calls(0)
 156   {
 157     _g1h = G1CollectedHeap::heap();
 158     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 159   }
 160   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 161     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 162       _calls++;
 163       *card_ptr = 0;
 164     }
 165     return true;
 166   }
 167   int calls() { return _calls; }
 168 };
 169 
 170 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 171 public:
 172   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 173     *card_ptr = CardTableModRefBS::dirty_card_val();
 174     return true;
 175   }
 176 };
 177 
 178 YoungList::YoungList(G1CollectedHeap* g1h) :
 179     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 180     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 181   guarantee(check_list_empty(false), "just making sure...");
 182 }
 183 
 184 void YoungList::push_region(HeapRegion *hr) {
 185   assert(!hr->is_young(), "should not already be young");
 186   assert(hr->get_next_young_region() == NULL, "cause it should!");
 187 
 188   hr->set_next_young_region(_head);
 189   _head = hr;
 190 
 191   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 192   ++_length;
 193 }
 194 
 195 void YoungList::add_survivor_region(HeapRegion* hr) {
 196   assert(hr->is_survivor(), "should be flagged as survivor region");
 197   assert(hr->get_next_young_region() == NULL, "cause it should!");
 198 
 199   hr->set_next_young_region(_survivor_head);
 200   if (_survivor_head == NULL) {
 201     _survivor_tail = hr;
 202   }
 203   _survivor_head = hr;
 204   ++_survivor_length;
 205 }
 206 
 207 void YoungList::empty_list(HeapRegion* list) {
 208   while (list != NULL) {
 209     HeapRegion* next = list->get_next_young_region();
 210     list->set_next_young_region(NULL);
 211     list->uninstall_surv_rate_group();
 212     list->set_not_young();
 213     list = next;
 214   }
 215 }
 216 
 217 void YoungList::empty_list() {
 218   assert(check_list_well_formed(), "young list should be well formed");
 219 
 220   empty_list(_head);
 221   _head = NULL;
 222   _length = 0;
 223 
 224   empty_list(_survivor_head);
 225   _survivor_head = NULL;
 226   _survivor_tail = NULL;
 227   _survivor_length = 0;
 228 
 229   _last_sampled_rs_lengths = 0;
 230 
 231   assert(check_list_empty(false), "just making sure...");
 232 }
 233 
 234 bool YoungList::check_list_well_formed() {
 235   bool ret = true;
 236 
 237   uint length = 0;
 238   HeapRegion* curr = _head;
 239   HeapRegion* last = NULL;
 240   while (curr != NULL) {
 241     if (!curr->is_young()) {
 242       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 243                              "incorrectly tagged (y: %d, surv: %d)",
 244                              curr->bottom(), curr->end(),
 245                              curr->is_young(), curr->is_survivor());
 246       ret = false;
 247     }
 248     ++length;
 249     last = curr;
 250     curr = curr->get_next_young_region();
 251   }
 252   ret = ret && (length == _length);
 253 
 254   if (!ret) {
 255     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 256     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 257                            length, _length);
 258   }
 259 
 260   return ret;
 261 }
 262 
 263 bool YoungList::check_list_empty(bool check_sample) {
 264   bool ret = true;
 265 
 266   if (_length != 0) {
 267     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 268                   _length);
 269     ret = false;
 270   }
 271   if (check_sample && _last_sampled_rs_lengths != 0) {
 272     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 273     ret = false;
 274   }
 275   if (_head != NULL) {
 276     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 277     ret = false;
 278   }
 279   if (!ret) {
 280     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 281   }
 282 
 283   return ret;
 284 }
 285 
 286 void
 287 YoungList::rs_length_sampling_init() {
 288   _sampled_rs_lengths = 0;
 289   _curr               = _head;
 290 }
 291 
 292 bool
 293 YoungList::rs_length_sampling_more() {
 294   return _curr != NULL;
 295 }
 296 
 297 void
 298 YoungList::rs_length_sampling_next() {
 299   assert( _curr != NULL, "invariant" );
 300   size_t rs_length = _curr->rem_set()->occupied();
 301 
 302   _sampled_rs_lengths += rs_length;
 303 
 304   // The current region may not yet have been added to the
 305   // incremental collection set (it gets added when it is
 306   // retired as the current allocation region).
 307   if (_curr->in_collection_set()) {
 308     // Update the collection set policy information for this region
 309     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 310   }
 311 
 312   _curr = _curr->get_next_young_region();
 313   if (_curr == NULL) {
 314     _last_sampled_rs_lengths = _sampled_rs_lengths;
 315     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 316   }
 317 }
 318 
 319 void
 320 YoungList::reset_auxilary_lists() {
 321   guarantee( is_empty(), "young list should be empty" );
 322   assert(check_list_well_formed(), "young list should be well formed");
 323 
 324   // Add survivor regions to SurvRateGroup.
 325   _g1h->g1_policy()->note_start_adding_survivor_regions();
 326   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 327 
 328   int young_index_in_cset = 0;
 329   for (HeapRegion* curr = _survivor_head;
 330        curr != NULL;
 331        curr = curr->get_next_young_region()) {
 332     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 333 
 334     // The region is a non-empty survivor so let's add it to
 335     // the incremental collection set for the next evacuation
 336     // pause.
 337     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 338     young_index_in_cset += 1;
 339   }
 340   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 341   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 342 
 343   _head   = _survivor_head;
 344   _length = _survivor_length;
 345   if (_survivor_head != NULL) {
 346     assert(_survivor_tail != NULL, "cause it shouldn't be");
 347     assert(_survivor_length > 0, "invariant");
 348     _survivor_tail->set_next_young_region(NULL);
 349   }
 350 
 351   // Don't clear the survivor list handles until the start of
 352   // the next evacuation pause - we need it in order to re-tag
 353   // the survivor regions from this evacuation pause as 'young'
 354   // at the start of the next.
 355 
 356   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 357 
 358   assert(check_list_well_formed(), "young list should be well formed");
 359 }
 360 
 361 void YoungList::print() {
 362   HeapRegion* lists[] = {_head,   _survivor_head};
 363   const char* names[] = {"YOUNG", "SURVIVOR"};
 364 
 365   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 366     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 367     HeapRegion *curr = lists[list];
 368     if (curr == NULL)
 369       gclog_or_tty->print_cr("  empty");
 370     while (curr != NULL) {
 371       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 372                              HR_FORMAT_PARAMS(curr),
 373                              curr->prev_top_at_mark_start(),
 374                              curr->next_top_at_mark_start(),
 375                              curr->age_in_surv_rate_group_cond());
 376       curr = curr->get_next_young_region();
 377     }
 378   }
 379 
 380   gclog_or_tty->print_cr("");
 381 }
 382 
 383 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 384 {
 385   // Claim the right to put the region on the dirty cards region list
 386   // by installing a self pointer.
 387   HeapRegion* next = hr->get_next_dirty_cards_region();
 388   if (next == NULL) {
 389     HeapRegion* res = (HeapRegion*)
 390       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 391                           NULL);
 392     if (res == NULL) {
 393       HeapRegion* head;
 394       do {
 395         // Put the region to the dirty cards region list.
 396         head = _dirty_cards_region_list;
 397         next = (HeapRegion*)
 398           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 399         if (next == head) {
 400           assert(hr->get_next_dirty_cards_region() == hr,
 401                  "hr->get_next_dirty_cards_region() != hr");
 402           if (next == NULL) {
 403             // The last region in the list points to itself.
 404             hr->set_next_dirty_cards_region(hr);
 405           } else {
 406             hr->set_next_dirty_cards_region(next);
 407           }
 408         }
 409       } while (next != head);
 410     }
 411   }
 412 }
 413 
 414 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 415 {
 416   HeapRegion* head;
 417   HeapRegion* hr;
 418   do {
 419     head = _dirty_cards_region_list;
 420     if (head == NULL) {
 421       return NULL;
 422     }
 423     HeapRegion* new_head = head->get_next_dirty_cards_region();
 424     if (head == new_head) {
 425       // The last region.
 426       new_head = NULL;
 427     }
 428     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 429                                           head);
 430   } while (hr != head);
 431   assert(hr != NULL, "invariant");
 432   hr->set_next_dirty_cards_region(NULL);
 433   return hr;
 434 }
 435 
 436 void G1CollectedHeap::stop_conc_gc_threads() {
 437   _cg1r->stop();
 438   _cmThread->stop();
 439 }
 440 
 441 #ifdef ASSERT
 442 // A region is added to the collection set as it is retired
 443 // so an address p can point to a region which will be in the
 444 // collection set but has not yet been retired.  This method
 445 // therefore is only accurate during a GC pause after all
 446 // regions have been retired.  It is used for debugging
 447 // to check if an nmethod has references to objects that can
 448 // be move during a partial collection.  Though it can be
 449 // inaccurate, it is sufficient for G1 because the conservative
 450 // implementation of is_scavengable() for G1 will indicate that
 451 // all nmethods must be scanned during a partial collection.
 452 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 453   HeapRegion* hr = heap_region_containing(p);
 454   return hr != NULL && hr->in_collection_set();
 455 }
 456 #endif
 457 
 458 // Returns true if the reference points to an object that
 459 // can move in an incremental collecction.
 460 bool G1CollectedHeap::is_scavengable(const void* p) {
 461   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 462   G1CollectorPolicy* g1p = g1h->g1_policy();
 463   HeapRegion* hr = heap_region_containing(p);
 464   if (hr == NULL) {
 465      // perm gen (or null)
 466      return false;
 467   } else {
 468     return !hr->isHumongous();
 469   }
 470 }
 471 
 472 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 473   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 474   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 475 
 476   // Count the dirty cards at the start.
 477   CountNonCleanMemRegionClosure count1(this);
 478   ct_bs->mod_card_iterate(&count1);
 479   int orig_count = count1.n();
 480 
 481   // First clear the logged cards.
 482   ClearLoggedCardTableEntryClosure clear;
 483   dcqs.set_closure(&clear);
 484   dcqs.apply_closure_to_all_completed_buffers();
 485   dcqs.iterate_closure_all_threads(false);
 486   clear.print_histo();
 487 
 488   // Now ensure that there's no dirty cards.
 489   CountNonCleanMemRegionClosure count2(this);
 490   ct_bs->mod_card_iterate(&count2);
 491   if (count2.n() != 0) {
 492     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 493                            count2.n(), orig_count);
 494   }
 495   guarantee(count2.n() == 0, "Card table should be clean.");
 496 
 497   RedirtyLoggedCardTableEntryClosure redirty;
 498   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 499   dcqs.apply_closure_to_all_completed_buffers();
 500   dcqs.iterate_closure_all_threads(false);
 501   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 502                          clear.calls(), orig_count);
 503   guarantee(redirty.calls() == clear.calls(),
 504             "Or else mechanism is broken.");
 505 
 506   CountNonCleanMemRegionClosure count3(this);
 507   ct_bs->mod_card_iterate(&count3);
 508   if (count3.n() != orig_count) {
 509     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 510                            orig_count, count3.n());
 511     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 512   }
 513 
 514   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 515 }
 516 
 517 // Private class members.
 518 
 519 G1CollectedHeap* G1CollectedHeap::_g1h;
 520 
 521 // Private methods.
 522 
 523 HeapRegion*
 524 G1CollectedHeap::new_region_try_secondary_free_list() {
 525   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 526   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 527     if (!_secondary_free_list.is_empty()) {
 528       if (G1ConcRegionFreeingVerbose) {
 529         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 530                                "secondary_free_list has %u entries",
 531                                _secondary_free_list.length());
 532       }
 533       // It looks as if there are free regions available on the
 534       // secondary_free_list. Let's move them to the free_list and try
 535       // again to allocate from it.
 536       append_secondary_free_list();
 537 
 538       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 539              "empty we should have moved at least one entry to the free_list");
 540       HeapRegion* res = _free_list.remove_head();
 541       if (G1ConcRegionFreeingVerbose) {
 542         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 543                                "allocated "HR_FORMAT" from secondary_free_list",
 544                                HR_FORMAT_PARAMS(res));
 545       }
 546       return res;
 547     }
 548 
 549     // Wait here until we get notifed either when (a) there are no
 550     // more free regions coming or (b) some regions have been moved on
 551     // the secondary_free_list.
 552     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 553   }
 554 
 555   if (G1ConcRegionFreeingVerbose) {
 556     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 557                            "could not allocate from secondary_free_list");
 558   }
 559   return NULL;
 560 }
 561 
 562 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 563   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 564          "the only time we use this to allocate a humongous region is "
 565          "when we are allocating a single humongous region");
 566 
 567   HeapRegion* res;
 568   if (G1StressConcRegionFreeing) {
 569     if (!_secondary_free_list.is_empty()) {
 570       if (G1ConcRegionFreeingVerbose) {
 571         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 572                                "forced to look at the secondary_free_list");
 573       }
 574       res = new_region_try_secondary_free_list();
 575       if (res != NULL) {
 576         return res;
 577       }
 578     }
 579   }
 580   res = _free_list.remove_head_or_null();
 581   if (res == NULL) {
 582     if (G1ConcRegionFreeingVerbose) {
 583       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 584                              "res == NULL, trying the secondary_free_list");
 585     }
 586     res = new_region_try_secondary_free_list();
 587   }
 588   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 589     // Currently, only attempts to allocate GC alloc regions set
 590     // do_expand to true. So, we should only reach here during a
 591     // safepoint. If this assumption changes we might have to
 592     // reconsider the use of _expand_heap_after_alloc_failure.
 593     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 594 
 595     ergo_verbose1(ErgoHeapSizing,
 596                   "attempt heap expansion",
 597                   ergo_format_reason("region allocation request failed")
 598                   ergo_format_byte("allocation request"),
 599                   word_size * HeapWordSize);
 600     if (expand(word_size * HeapWordSize)) {
 601       // Given that expand() succeeded in expanding the heap, and we
 602       // always expand the heap by an amount aligned to the heap
 603       // region size, the free list should in theory not be empty. So
 604       // it would probably be OK to use remove_head(). But the extra
 605       // check for NULL is unlikely to be a performance issue here (we
 606       // just expanded the heap!) so let's just be conservative and
 607       // use remove_head_or_null().
 608       res = _free_list.remove_head_or_null();
 609     } else {
 610       _expand_heap_after_alloc_failure = false;
 611     }
 612   }
 613   return res;
 614 }
 615 
 616 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 617                                                         size_t word_size) {
 618   assert(isHumongous(word_size), "word_size should be humongous");
 619   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 620 
 621   uint first = G1_NULL_HRS_INDEX;
 622   if (num_regions == 1) {
 623     // Only one region to allocate, no need to go through the slower
 624     // path. The caller will attempt the expasion if this fails, so
 625     // let's not try to expand here too.
 626     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 627     if (hr != NULL) {
 628       first = hr->hrs_index();
 629     } else {
 630       first = G1_NULL_HRS_INDEX;
 631     }
 632   } else {
 633     // We can't allocate humongous regions while cleanupComplete() is
 634     // running, since some of the regions we find to be empty might not
 635     // yet be added to the free list and it is not straightforward to
 636     // know which list they are on so that we can remove them. Note
 637     // that we only need to do this if we need to allocate more than
 638     // one region to satisfy the current humongous allocation
 639     // request. If we are only allocating one region we use the common
 640     // region allocation code (see above).
 641     wait_while_free_regions_coming();
 642     append_secondary_free_list_if_not_empty_with_lock();
 643 
 644     if (free_regions() >= num_regions) {
 645       first = _hrs.find_contiguous(num_regions);
 646       if (first != G1_NULL_HRS_INDEX) {
 647         for (uint i = first; i < first + num_regions; ++i) {
 648           HeapRegion* hr = region_at(i);
 649           assert(hr->is_empty(), "sanity");
 650           assert(is_on_master_free_list(hr), "sanity");
 651           hr->set_pending_removal(true);
 652         }
 653         _free_list.remove_all_pending(num_regions);
 654       }
 655     }
 656   }
 657   return first;
 658 }
 659 
 660 HeapWord*
 661 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 662                                                            uint num_regions,
 663                                                            size_t word_size) {
 664   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 665   assert(isHumongous(word_size), "word_size should be humongous");
 666   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 667 
 668   // Index of last region in the series + 1.
 669   uint last = first + num_regions;
 670 
 671   // We need to initialize the region(s) we just discovered. This is
 672   // a bit tricky given that it can happen concurrently with
 673   // refinement threads refining cards on these regions and
 674   // potentially wanting to refine the BOT as they are scanning
 675   // those cards (this can happen shortly after a cleanup; see CR
 676   // 6991377). So we have to set up the region(s) carefully and in
 677   // a specific order.
 678 
 679   // The word size sum of all the regions we will allocate.
 680   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 681   assert(word_size <= word_size_sum, "sanity");
 682 
 683   // This will be the "starts humongous" region.
 684   HeapRegion* first_hr = region_at(first);
 685   // The header of the new object will be placed at the bottom of
 686   // the first region.
 687   HeapWord* new_obj = first_hr->bottom();
 688   // This will be the new end of the first region in the series that
 689   // should also match the end of the last region in the seriers.
 690   HeapWord* new_end = new_obj + word_size_sum;
 691   // This will be the new top of the first region that will reflect
 692   // this allocation.
 693   HeapWord* new_top = new_obj + word_size;
 694 
 695   // First, we need to zero the header of the space that we will be
 696   // allocating. When we update top further down, some refinement
 697   // threads might try to scan the region. By zeroing the header we
 698   // ensure that any thread that will try to scan the region will
 699   // come across the zero klass word and bail out.
 700   //
 701   // NOTE: It would not have been correct to have used
 702   // CollectedHeap::fill_with_object() and make the space look like
 703   // an int array. The thread that is doing the allocation will
 704   // later update the object header to a potentially different array
 705   // type and, for a very short period of time, the klass and length
 706   // fields will be inconsistent. This could cause a refinement
 707   // thread to calculate the object size incorrectly.
 708   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 709 
 710   // We will set up the first region as "starts humongous". This
 711   // will also update the BOT covering all the regions to reflect
 712   // that there is a single object that starts at the bottom of the
 713   // first region.
 714   first_hr->set_startsHumongous(new_top, new_end);
 715 
 716   // Then, if there are any, we will set up the "continues
 717   // humongous" regions.
 718   HeapRegion* hr = NULL;
 719   for (uint i = first + 1; i < last; ++i) {
 720     hr = region_at(i);
 721     hr->set_continuesHumongous(first_hr);
 722   }
 723   // If we have "continues humongous" regions (hr != NULL), then the
 724   // end of the last one should match new_end.
 725   assert(hr == NULL || hr->end() == new_end, "sanity");
 726 
 727   // Up to this point no concurrent thread would have been able to
 728   // do any scanning on any region in this series. All the top
 729   // fields still point to bottom, so the intersection between
 730   // [bottom,top] and [card_start,card_end] will be empty. Before we
 731   // update the top fields, we'll do a storestore to make sure that
 732   // no thread sees the update to top before the zeroing of the
 733   // object header and the BOT initialization.
 734   OrderAccess::storestore();
 735 
 736   // Now that the BOT and the object header have been initialized,
 737   // we can update top of the "starts humongous" region.
 738   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 739          "new_top should be in this region");
 740   first_hr->set_top(new_top);
 741   if (_hr_printer.is_active()) {
 742     HeapWord* bottom = first_hr->bottom();
 743     HeapWord* end = first_hr->orig_end();
 744     if ((first + 1) == last) {
 745       // the series has a single humongous region
 746       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 747     } else {
 748       // the series has more than one humongous regions
 749       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 750     }
 751   }
 752 
 753   // Now, we will update the top fields of the "continues humongous"
 754   // regions. The reason we need to do this is that, otherwise,
 755   // these regions would look empty and this will confuse parts of
 756   // G1. For example, the code that looks for a consecutive number
 757   // of empty regions will consider them empty and try to
 758   // re-allocate them. We can extend is_empty() to also include
 759   // !continuesHumongous(), but it is easier to just update the top
 760   // fields here. The way we set top for all regions (i.e., top ==
 761   // end for all regions but the last one, top == new_top for the
 762   // last one) is actually used when we will free up the humongous
 763   // region in free_humongous_region().
 764   hr = NULL;
 765   for (uint i = first + 1; i < last; ++i) {
 766     hr = region_at(i);
 767     if ((i + 1) == last) {
 768       // last continues humongous region
 769       assert(hr->bottom() < new_top && new_top <= hr->end(),
 770              "new_top should fall on this region");
 771       hr->set_top(new_top);
 772       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 773     } else {
 774       // not last one
 775       assert(new_top > hr->end(), "new_top should be above this region");
 776       hr->set_top(hr->end());
 777       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 778     }
 779   }
 780   // If we have continues humongous regions (hr != NULL), then the
 781   // end of the last one should match new_end and its top should
 782   // match new_top.
 783   assert(hr == NULL ||
 784          (hr->end() == new_end && hr->top() == new_top), "sanity");
 785 
 786   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 787   _summary_bytes_used += first_hr->used();
 788   _humongous_set.add(first_hr);
 789 
 790   return new_obj;
 791 }
 792 
 793 // If could fit into free regions w/o expansion, try.
 794 // Otherwise, if can expand, do so.
 795 // Otherwise, if using ex regions might help, try with ex given back.
 796 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 797   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 798 
 799   verify_region_sets_optional();
 800 
 801   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 802   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 803   uint x_num = expansion_regions();
 804   uint fs = _hrs.free_suffix();
 805   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 806   if (first == G1_NULL_HRS_INDEX) {
 807     // The only thing we can do now is attempt expansion.
 808     if (fs + x_num >= num_regions) {
 809       // If the number of regions we're trying to allocate for this
 810       // object is at most the number of regions in the free suffix,
 811       // then the call to humongous_obj_allocate_find_first() above
 812       // should have succeeded and we wouldn't be here.
 813       //
 814       // We should only be trying to expand when the free suffix is
 815       // not sufficient for the object _and_ we have some expansion
 816       // room available.
 817       assert(num_regions > fs, "earlier allocation should have succeeded");
 818 
 819       ergo_verbose1(ErgoHeapSizing,
 820                     "attempt heap expansion",
 821                     ergo_format_reason("humongous allocation request failed")
 822                     ergo_format_byte("allocation request"),
 823                     word_size * HeapWordSize);
 824       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 825         // Even though the heap was expanded, it might not have
 826         // reached the desired size. So, we cannot assume that the
 827         // allocation will succeed.
 828         first = humongous_obj_allocate_find_first(num_regions, word_size);
 829       }
 830     }
 831   }
 832 
 833   HeapWord* result = NULL;
 834   if (first != G1_NULL_HRS_INDEX) {
 835     result =
 836       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 837     assert(result != NULL, "it should always return a valid result");
 838 
 839     // A successful humongous object allocation changes the used space
 840     // information of the old generation so we need to recalculate the
 841     // sizes and update the jstat counters here.
 842     g1mm()->update_sizes();
 843   }
 844 
 845   verify_region_sets_optional();
 846 
 847   return result;
 848 }
 849 
 850 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 851   assert_heap_not_locked_and_not_at_safepoint();
 852   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 853 
 854   unsigned int dummy_gc_count_before;
 855   return attempt_allocation(word_size, &dummy_gc_count_before);
 856 }
 857 
 858 HeapWord*
 859 G1CollectedHeap::mem_allocate(size_t word_size,
 860                               bool*  gc_overhead_limit_was_exceeded) {
 861   assert_heap_not_locked_and_not_at_safepoint();
 862 
 863   // Loop until the allocation is satisified, or unsatisfied after GC.
 864   for (int try_count = 1; /* we'll return */; try_count += 1) {
 865     unsigned int gc_count_before;
 866 
 867     HeapWord* result = NULL;
 868     if (!isHumongous(word_size)) {
 869       result = attempt_allocation(word_size, &gc_count_before);
 870     } else {
 871       result = attempt_allocation_humongous(word_size, &gc_count_before);
 872     }
 873     if (result != NULL) {
 874       return result;
 875     }
 876 
 877     // Create the garbage collection operation...
 878     VM_G1CollectForAllocation op(gc_count_before, word_size);
 879     // ...and get the VM thread to execute it.
 880     VMThread::execute(&op);
 881 
 882     if (op.prologue_succeeded() && op.pause_succeeded()) {
 883       // If the operation was successful we'll return the result even
 884       // if it is NULL. If the allocation attempt failed immediately
 885       // after a Full GC, it's unlikely we'll be able to allocate now.
 886       HeapWord* result = op.result();
 887       if (result != NULL && !isHumongous(word_size)) {
 888         // Allocations that take place on VM operations do not do any
 889         // card dirtying and we have to do it here. We only have to do
 890         // this for non-humongous allocations, though.
 891         dirty_young_block(result, word_size);
 892       }
 893       return result;
 894     } else {
 895       assert(op.result() == NULL,
 896              "the result should be NULL if the VM op did not succeed");
 897     }
 898 
 899     // Give a warning if we seem to be looping forever.
 900     if ((QueuedAllocationWarningCount > 0) &&
 901         (try_count % QueuedAllocationWarningCount == 0)) {
 902       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 903     }
 904   }
 905 
 906   ShouldNotReachHere();
 907   return NULL;
 908 }
 909 
 910 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 911                                            unsigned int *gc_count_before_ret) {
 912   // Make sure you read the note in attempt_allocation_humongous().
 913 
 914   assert_heap_not_locked_and_not_at_safepoint();
 915   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 916          "be called for humongous allocation requests");
 917 
 918   // We should only get here after the first-level allocation attempt
 919   // (attempt_allocation()) failed to allocate.
 920 
 921   // We will loop until a) we manage to successfully perform the
 922   // allocation or b) we successfully schedule a collection which
 923   // fails to perform the allocation. b) is the only case when we'll
 924   // return NULL.
 925   HeapWord* result = NULL;
 926   for (int try_count = 1; /* we'll return */; try_count += 1) {
 927     bool should_try_gc;
 928     unsigned int gc_count_before;
 929 
 930     {
 931       MutexLockerEx x(Heap_lock);
 932 
 933       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 934                                                       false /* bot_updates */);
 935       if (result != NULL) {
 936         return result;
 937       }
 938 
 939       // If we reach here, attempt_allocation_locked() above failed to
 940       // allocate a new region. So the mutator alloc region should be NULL.
 941       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 942 
 943       if (GC_locker::is_active_and_needs_gc()) {
 944         if (g1_policy()->can_expand_young_list()) {
 945           // No need for an ergo verbose message here,
 946           // can_expand_young_list() does this when it returns true.
 947           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 948                                                       false /* bot_updates */);
 949           if (result != NULL) {
 950             return result;
 951           }
 952         }
 953         should_try_gc = false;
 954       } else {
 955         // The GCLocker may not be active but the GCLocker initiated
 956         // GC may not yet have been performed (GCLocker::needs_gc()
 957         // returns true). In this case we do not try this GC and
 958         // wait until the GCLocker initiated GC is performed, and
 959         // then retry the allocation.
 960         if (GC_locker::needs_gc()) {
 961           should_try_gc = false;
 962         } else {
 963           // Read the GC count while still holding the Heap_lock.
 964           gc_count_before = total_collections();
 965           should_try_gc = true;
 966         }
 967       }
 968     }
 969 
 970     if (should_try_gc) {
 971       bool succeeded;
 972       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 973       if (result != NULL) {
 974         assert(succeeded, "only way to get back a non-NULL result");
 975         return result;
 976       }
 977 
 978       if (succeeded) {
 979         // If we get here we successfully scheduled a collection which
 980         // failed to allocate. No point in trying to allocate
 981         // further. We'll just return NULL.
 982         MutexLockerEx x(Heap_lock);
 983         *gc_count_before_ret = total_collections();
 984         return NULL;
 985       }
 986     } else {
 987       // The GCLocker is either active or the GCLocker initiated
 988       // GC has not yet been performed. Stall until it is and
 989       // then retry the allocation.
 990       GC_locker::stall_until_clear();
 991     }
 992 
 993     // We can reach here if we were unsuccessul in scheduling a
 994     // collection (because another thread beat us to it) or if we were
 995     // stalled due to the GC locker. In either can we should retry the
 996     // allocation attempt in case another thread successfully
 997     // performed a collection and reclaimed enough space. We do the
 998     // first attempt (without holding the Heap_lock) here and the
 999     // follow-on attempt will be at the start of the next loop
1000     // iteration (after taking the Heap_lock).
1001     result = _mutator_alloc_region.attempt_allocation(word_size,
1002                                                       false /* bot_updates */);
1003     if (result != NULL) {
1004       return result;
1005     }
1006 
1007     // Give a warning if we seem to be looping forever.
1008     if ((QueuedAllocationWarningCount > 0) &&
1009         (try_count % QueuedAllocationWarningCount == 0)) {
1010       warning("G1CollectedHeap::attempt_allocation_slow() "
1011               "retries %d times", try_count);
1012     }
1013   }
1014 
1015   ShouldNotReachHere();
1016   return NULL;
1017 }
1018 
1019 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1020                                           unsigned int * gc_count_before_ret) {
1021   // The structure of this method has a lot of similarities to
1022   // attempt_allocation_slow(). The reason these two were not merged
1023   // into a single one is that such a method would require several "if
1024   // allocation is not humongous do this, otherwise do that"
1025   // conditional paths which would obscure its flow. In fact, an early
1026   // version of this code did use a unified method which was harder to
1027   // follow and, as a result, it had subtle bugs that were hard to
1028   // track down. So keeping these two methods separate allows each to
1029   // be more readable. It will be good to keep these two in sync as
1030   // much as possible.
1031 
1032   assert_heap_not_locked_and_not_at_safepoint();
1033   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1034          "should only be called for humongous allocations");
1035 
1036   // Humongous objects can exhaust the heap quickly, so we should check if we
1037   // need to start a marking cycle at each humongous object allocation. We do
1038   // the check before we do the actual allocation. The reason for doing it
1039   // before the allocation is that we avoid having to keep track of the newly
1040   // allocated memory while we do a GC.
1041   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1042                                            word_size)) {
1043     collect(GCCause::_g1_humongous_allocation);
1044   }
1045 
1046   // We will loop until a) we manage to successfully perform the
1047   // allocation or b) we successfully schedule a collection which
1048   // fails to perform the allocation. b) is the only case when we'll
1049   // return NULL.
1050   HeapWord* result = NULL;
1051   for (int try_count = 1; /* we'll return */; try_count += 1) {
1052     bool should_try_gc;
1053     unsigned int gc_count_before;
1054 
1055     {
1056       MutexLockerEx x(Heap_lock);
1057 
1058       // Given that humongous objects are not allocated in young
1059       // regions, we'll first try to do the allocation without doing a
1060       // collection hoping that there's enough space in the heap.
1061       result = humongous_obj_allocate(word_size);
1062       if (result != NULL) {
1063         return result;
1064       }
1065 
1066       if (GC_locker::is_active_and_needs_gc()) {
1067         should_try_gc = false;
1068       } else {
1069          // The GCLocker may not be active but the GCLocker initiated
1070         // GC may not yet have been performed (GCLocker::needs_gc()
1071         // returns true). In this case we do not try this GC and
1072         // wait until the GCLocker initiated GC is performed, and
1073         // then retry the allocation.
1074         if (GC_locker::needs_gc()) {
1075           should_try_gc = false;
1076         } else {
1077           // Read the GC count while still holding the Heap_lock.
1078           gc_count_before = total_collections();
1079           should_try_gc = true;
1080         }
1081       }
1082     }
1083 
1084     if (should_try_gc) {
1085       // If we failed to allocate the humongous object, we should try to
1086       // do a collection pause (if we're allowed) in case it reclaims
1087       // enough space for the allocation to succeed after the pause.
1088 
1089       bool succeeded;
1090       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1091       if (result != NULL) {
1092         assert(succeeded, "only way to get back a non-NULL result");
1093         return result;
1094       }
1095 
1096       if (succeeded) {
1097         // If we get here we successfully scheduled a collection which
1098         // failed to allocate. No point in trying to allocate
1099         // further. We'll just return NULL.
1100         MutexLockerEx x(Heap_lock);
1101         *gc_count_before_ret = total_collections();
1102         return NULL;
1103       }
1104     } else {
1105       // The GCLocker is either active or the GCLocker initiated
1106       // GC has not yet been performed. Stall until it is and
1107       // then retry the allocation.
1108       GC_locker::stall_until_clear();
1109     }
1110 
1111     // We can reach here if we were unsuccessul in scheduling a
1112     // collection (because another thread beat us to it) or if we were
1113     // stalled due to the GC locker. In either can we should retry the
1114     // allocation attempt in case another thread successfully
1115     // performed a collection and reclaimed enough space.  Give a
1116     // warning if we seem to be looping forever.
1117 
1118     if ((QueuedAllocationWarningCount > 0) &&
1119         (try_count % QueuedAllocationWarningCount == 0)) {
1120       warning("G1CollectedHeap::attempt_allocation_humongous() "
1121               "retries %d times", try_count);
1122     }
1123   }
1124 
1125   ShouldNotReachHere();
1126   return NULL;
1127 }
1128 
1129 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1130                                        bool expect_null_mutator_alloc_region) {
1131   assert_at_safepoint(true /* should_be_vm_thread */);
1132   assert(_mutator_alloc_region.get() == NULL ||
1133                                              !expect_null_mutator_alloc_region,
1134          "the current alloc region was unexpectedly found to be non-NULL");
1135 
1136   if (!isHumongous(word_size)) {
1137     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1138                                                       false /* bot_updates */);
1139   } else {
1140     HeapWord* result = humongous_obj_allocate(word_size);
1141     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1142       g1_policy()->set_initiate_conc_mark_if_possible();
1143     }
1144     return result;
1145   }
1146 
1147   ShouldNotReachHere();
1148 }
1149 
1150 class PostMCRemSetClearClosure: public HeapRegionClosure {
1151   G1CollectedHeap* _g1h;
1152   ModRefBarrierSet* _mr_bs;
1153 public:
1154   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1155     _g1h(g1h), _mr_bs(mr_bs) { }
1156   bool doHeapRegion(HeapRegion* r) {
1157     if (r->continuesHumongous()) {
1158       return false;
1159     }
1160     _g1h->reset_gc_time_stamps(r);
1161     HeapRegionRemSet* hrrs = r->rem_set();
1162     if (hrrs != NULL) hrrs->clear();
1163     // You might think here that we could clear just the cards
1164     // corresponding to the used region.  But no: if we leave a dirty card
1165     // in a region we might allocate into, then it would prevent that card
1166     // from being enqueued, and cause it to be missed.
1167     // Re: the performance cost: we shouldn't be doing full GC anyway!
1168     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1169     return false;
1170   }
1171 };
1172 
1173 void G1CollectedHeap::clear_rsets_post_compaction() {
1174   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1175   heap_region_iterate(&rs_clear);
1176 }
1177 
1178 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1179   G1CollectedHeap*   _g1h;
1180   UpdateRSOopClosure _cl;
1181   int                _worker_i;
1182 public:
1183   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1184     _cl(g1->g1_rem_set(), worker_i),
1185     _worker_i(worker_i),
1186     _g1h(g1)
1187   { }
1188 
1189   bool doHeapRegion(HeapRegion* r) {
1190     if (!r->continuesHumongous()) {
1191       _cl.set_from(r);
1192       r->oop_iterate(&_cl);
1193     }
1194     return false;
1195   }
1196 };
1197 
1198 class ParRebuildRSTask: public AbstractGangTask {
1199   G1CollectedHeap* _g1;
1200 public:
1201   ParRebuildRSTask(G1CollectedHeap* g1)
1202     : AbstractGangTask("ParRebuildRSTask"),
1203       _g1(g1)
1204   { }
1205 
1206   void work(uint worker_id) {
1207     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1208     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1209                                           _g1->workers()->active_workers(),
1210                                          HeapRegion::RebuildRSClaimValue);
1211   }
1212 };
1213 
1214 class PostCompactionPrinterClosure: public HeapRegionClosure {
1215 private:
1216   G1HRPrinter* _hr_printer;
1217 public:
1218   bool doHeapRegion(HeapRegion* hr) {
1219     assert(!hr->is_young(), "not expecting to find young regions");
1220     // We only generate output for non-empty regions.
1221     if (!hr->is_empty()) {
1222       if (!hr->isHumongous()) {
1223         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1224       } else if (hr->startsHumongous()) {
1225         if (hr->region_num() == 1) {
1226           // single humongous region
1227           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1228         } else {
1229           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1230         }
1231       } else {
1232         assert(hr->continuesHumongous(), "only way to get here");
1233         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1234       }
1235     }
1236     return false;
1237   }
1238 
1239   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1240     : _hr_printer(hr_printer) { }
1241 };
1242 
1243 void G1CollectedHeap::print_hrs_post_compaction() {
1244   PostCompactionPrinterClosure cl(hr_printer());
1245   heap_region_iterate(&cl);
1246 }
1247 
1248 bool G1CollectedHeap::do_collection(bool explicit_gc,
1249                                     bool clear_all_soft_refs,
1250                                     size_t word_size) {
1251   assert_at_safepoint(true /* should_be_vm_thread */);
1252 
1253   if (GC_locker::check_active_before_gc()) {
1254     return false;
1255   }
1256 
1257   SvcGCMarker sgcm(SvcGCMarker::FULL);
1258   ResourceMark rm;
1259 
1260   print_heap_before_gc();
1261 
1262   HRSPhaseSetter x(HRSPhaseFullGC);
1263   verify_region_sets_optional();
1264 
1265   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1266                            collector_policy()->should_clear_all_soft_refs();
1267 
1268   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1269 
1270   {
1271     IsGCActiveMark x;
1272 
1273     // Timing
1274     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1275     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1276     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1277 
1278     TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
1279     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1280     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1281 
1282     double start = os::elapsedTime();
1283     g1_policy()->record_full_collection_start();
1284 
1285     // Note: When we have a more flexible GC logging framework that
1286     // allows us to add optional attributes to a GC log record we
1287     // could consider timing and reporting how long we wait in the
1288     // following two methods.
1289     wait_while_free_regions_coming();
1290     // If we start the compaction before the CM threads finish
1291     // scanning the root regions we might trip them over as we'll
1292     // be moving objects / updating references. So let's wait until
1293     // they are done. By telling them to abort, they should complete
1294     // early.
1295     _cm->root_regions()->abort();
1296     _cm->root_regions()->wait_until_scan_finished();
1297     append_secondary_free_list_if_not_empty_with_lock();
1298 
1299     gc_prologue(true);
1300     increment_total_collections(true /* full gc */);
1301     increment_old_marking_cycles_started();
1302 
1303     size_t g1h_prev_used = used();
1304     assert(used() == recalculate_used(), "Should be equal");
1305 
1306     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
1307       HandleMark hm;  // Discard invalid handles created during verification
1308       gclog_or_tty->print(" VerifyBeforeGC:");
1309       prepare_for_verify();
1310       Universe::verify(/* silent      */ false,
1311                        /* option      */ VerifyOption_G1UsePrevMarking);
1312 
1313     }
1314     pre_full_gc_dump();
1315 
1316     COMPILER2_PRESENT(DerivedPointerTable::clear());
1317 
1318     // Disable discovery and empty the discovered lists
1319     // for the CM ref processor.
1320     ref_processor_cm()->disable_discovery();
1321     ref_processor_cm()->abandon_partial_discovery();
1322     ref_processor_cm()->verify_no_references_recorded();
1323 
1324     // Abandon current iterations of concurrent marking and concurrent
1325     // refinement, if any are in progress. We have to do this before
1326     // wait_until_scan_finished() below.
1327     concurrent_mark()->abort();
1328 
1329     // Make sure we'll choose a new allocation region afterwards.
1330     release_mutator_alloc_region();
1331     abandon_gc_alloc_regions();
1332     g1_rem_set()->cleanupHRRS();
1333 
1334     // We should call this after we retire any currently active alloc
1335     // regions so that all the ALLOC / RETIRE events are generated
1336     // before the start GC event.
1337     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1338 
1339     // We may have added regions to the current incremental collection
1340     // set between the last GC or pause and now. We need to clear the
1341     // incremental collection set and then start rebuilding it afresh
1342     // after this full GC.
1343     abandon_collection_set(g1_policy()->inc_cset_head());
1344     g1_policy()->clear_incremental_cset();
1345     g1_policy()->stop_incremental_cset_building();
1346 
1347     tear_down_region_sets(false /* free_list_only */);
1348     g1_policy()->set_gcs_are_young(true);
1349 
1350     // See the comments in g1CollectedHeap.hpp and
1351     // G1CollectedHeap::ref_processing_init() about
1352     // how reference processing currently works in G1.
1353 
1354     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1355     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1356 
1357     // Temporarily clear the STW ref processor's _is_alive_non_header field.
1358     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1359 
1360     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1361     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1362 
1363     // Do collection work
1364     {
1365       HandleMark hm;  // Discard invalid handles created during gc
1366       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1367     }
1368 
1369     assert(free_regions() == 0, "we should not have added any free regions");
1370     rebuild_region_sets(false /* free_list_only */);
1371 
1372     // Enqueue any discovered reference objects that have
1373     // not been removed from the discovered lists.
1374     ref_processor_stw()->enqueue_discovered_references();
1375 
1376     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1377 
1378     MemoryService::track_memory_usage();
1379 
1380     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
1381       HandleMark hm;  // Discard invalid handles created during verification
1382       gclog_or_tty->print(" VerifyAfterGC:");
1383       prepare_for_verify();
1384       Universe::verify(/* silent      */ false,
1385                        /* option      */ VerifyOption_G1UsePrevMarking);
1386 
1387     }
1388 
1389     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1390     ref_processor_stw()->verify_no_references_recorded();
1391 
1392     // Note: since we've just done a full GC, concurrent
1393     // marking is no longer active. Therefore we need not
1394     // re-enable reference discovery for the CM ref processor.
1395     // That will be done at the start of the next marking cycle.
1396     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1397     ref_processor_cm()->verify_no_references_recorded();
1398 
1399     reset_gc_time_stamp();
1400     // Since everything potentially moved, we will clear all remembered
1401     // sets, and clear all cards.  Later we will rebuild remebered
1402     // sets. We will also reset the GC time stamps of the regions.
1403     clear_rsets_post_compaction();
1404     check_gc_time_stamps();
1405 
1406     // Resize the heap if necessary.
1407     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1408 
1409     if (_hr_printer.is_active()) {
1410       // We should do this after we potentially resize the heap so
1411       // that all the COMMIT / UNCOMMIT events are generated before
1412       // the end GC event.
1413 
1414       print_hrs_post_compaction();
1415       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1416     }
1417 
1418     if (_cg1r->use_cache()) {
1419       _cg1r->clear_and_record_card_counts();
1420       _cg1r->clear_hot_cache();
1421     }
1422 
1423     // Rebuild remembered sets of all regions.
1424     if (G1CollectedHeap::use_parallel_gc_threads()) {
1425       uint n_workers =
1426         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1427                                        workers()->active_workers(),
1428                                        Threads::number_of_non_daemon_threads());
1429       assert(UseDynamicNumberOfGCThreads ||
1430              n_workers == workers()->total_workers(),
1431              "If not dynamic should be using all the  workers");
1432       workers()->set_active_workers(n_workers);
1433       // Set parallel threads in the heap (_n_par_threads) only
1434       // before a parallel phase and always reset it to 0 after
1435       // the phase so that the number of parallel threads does
1436       // no get carried forward to a serial phase where there
1437       // may be code that is "possibly_parallel".
1438       set_par_threads(n_workers);
1439 
1440       ParRebuildRSTask rebuild_rs_task(this);
1441       assert(check_heap_region_claim_values(
1442              HeapRegion::InitialClaimValue), "sanity check");
1443       assert(UseDynamicNumberOfGCThreads ||
1444              workers()->active_workers() == workers()->total_workers(),
1445         "Unless dynamic should use total workers");
1446       // Use the most recent number of  active workers
1447       assert(workers()->active_workers() > 0,
1448         "Active workers not properly set");
1449       set_par_threads(workers()->active_workers());
1450       workers()->run_task(&rebuild_rs_task);
1451       set_par_threads(0);
1452       assert(check_heap_region_claim_values(
1453              HeapRegion::RebuildRSClaimValue), "sanity check");
1454       reset_heap_region_claim_values();
1455     } else {
1456       RebuildRSOutOfRegionClosure rebuild_rs(this);
1457       heap_region_iterate(&rebuild_rs);
1458     }
1459 
1460     if (G1Log::fine()) {
1461       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1462     }
1463 
1464     if (true) { // FIXME
1465       // Ask the permanent generation to adjust size for full collections
1466       perm()->compute_new_size();
1467     }
1468 
1469     // Start a new incremental collection set for the next pause
1470     assert(g1_policy()->collection_set() == NULL, "must be");
1471     g1_policy()->start_incremental_cset_building();
1472 
1473     // Clear the _cset_fast_test bitmap in anticipation of adding
1474     // regions to the incremental collection set for the next
1475     // evacuation pause.
1476     clear_cset_fast_test();
1477 
1478     init_mutator_alloc_region();
1479 
1480     double end = os::elapsedTime();
1481     g1_policy()->record_full_collection_end();
1482 
1483 #ifdef TRACESPINNING
1484     ParallelTaskTerminator::print_termination_counts();
1485 #endif
1486 
1487     gc_epilogue(true);
1488 
1489     // Discard all rset updates
1490     JavaThread::dirty_card_queue_set().abandon_logs();
1491     assert(!G1DeferredRSUpdate
1492            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1493 
1494     _young_list->reset_sampled_info();
1495     // At this point there should be no regions in the
1496     // entire heap tagged as young.
1497     assert( check_young_list_empty(true /* check_heap */),
1498       "young list should be empty at this point");
1499 
1500     // Update the number of full collections that have been completed.
1501     increment_old_marking_cycles_completed(false /* concurrent */);
1502 
1503     _hrs.verify_optional();
1504     verify_region_sets_optional();
1505 
1506     print_heap_after_gc();
1507 
1508     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1509     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1510     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1511     // before any GC notifications are raised.
1512     g1mm()->update_sizes();
1513   }
1514 
1515   post_full_gc_dump();
1516 
1517   return true;
1518 }
1519 
1520 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1521   // do_collection() will return whether it succeeded in performing
1522   // the GC. Currently, there is no facility on the
1523   // do_full_collection() API to notify the caller than the collection
1524   // did not succeed (e.g., because it was locked out by the GC
1525   // locker). So, right now, we'll ignore the return value.
1526   bool dummy = do_collection(true,                /* explicit_gc */
1527                              clear_all_soft_refs,
1528                              0                    /* word_size */);
1529 }
1530 
1531 // This code is mostly copied from TenuredGeneration.
1532 void
1533 G1CollectedHeap::
1534 resize_if_necessary_after_full_collection(size_t word_size) {
1535   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1536 
1537   // Include the current allocation, if any, and bytes that will be
1538   // pre-allocated to support collections, as "used".
1539   const size_t used_after_gc = used();
1540   const size_t capacity_after_gc = capacity();
1541   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1542 
1543   // This is enforced in arguments.cpp.
1544   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1545          "otherwise the code below doesn't make sense");
1546 
1547   // We don't have floating point command-line arguments
1548   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1549   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1550   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1551   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1552 
1553   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1554   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1555 
1556   // We have to be careful here as these two calculations can overflow
1557   // 32-bit size_t's.
1558   double used_after_gc_d = (double) used_after_gc;
1559   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1560   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1561 
1562   // Let's make sure that they are both under the max heap size, which
1563   // by default will make them fit into a size_t.
1564   double desired_capacity_upper_bound = (double) max_heap_size;
1565   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1566                                     desired_capacity_upper_bound);
1567   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1568                                     desired_capacity_upper_bound);
1569 
1570   // We can now safely turn them into size_t's.
1571   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1572   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1573 
1574   // This assert only makes sense here, before we adjust them
1575   // with respect to the min and max heap size.
1576   assert(minimum_desired_capacity <= maximum_desired_capacity,
1577          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1578                  "maximum_desired_capacity = "SIZE_FORMAT,
1579                  minimum_desired_capacity, maximum_desired_capacity));
1580 
1581   // Should not be greater than the heap max size. No need to adjust
1582   // it with respect to the heap min size as it's a lower bound (i.e.,
1583   // we'll try to make the capacity larger than it, not smaller).
1584   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1585   // Should not be less than the heap min size. No need to adjust it
1586   // with respect to the heap max size as it's an upper bound (i.e.,
1587   // we'll try to make the capacity smaller than it, not greater).
1588   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1589 
1590   if (capacity_after_gc < minimum_desired_capacity) {
1591     // Don't expand unless it's significant
1592     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1593     ergo_verbose4(ErgoHeapSizing,
1594                   "attempt heap expansion",
1595                   ergo_format_reason("capacity lower than "
1596                                      "min desired capacity after Full GC")
1597                   ergo_format_byte("capacity")
1598                   ergo_format_byte("occupancy")
1599                   ergo_format_byte_perc("min desired capacity"),
1600                   capacity_after_gc, used_after_gc,
1601                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1602     expand(expand_bytes);
1603 
1604     // No expansion, now see if we want to shrink
1605   } else if (capacity_after_gc > maximum_desired_capacity) {
1606     // Capacity too large, compute shrinking size
1607     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1608     ergo_verbose4(ErgoHeapSizing,
1609                   "attempt heap shrinking",
1610                   ergo_format_reason("capacity higher than "
1611                                      "max desired capacity after Full GC")
1612                   ergo_format_byte("capacity")
1613                   ergo_format_byte("occupancy")
1614                   ergo_format_byte_perc("max desired capacity"),
1615                   capacity_after_gc, used_after_gc,
1616                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1617     shrink(shrink_bytes);
1618   }
1619 }
1620 
1621 
1622 HeapWord*
1623 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1624                                            bool* succeeded) {
1625   assert_at_safepoint(true /* should_be_vm_thread */);
1626 
1627   *succeeded = true;
1628   // Let's attempt the allocation first.
1629   HeapWord* result =
1630     attempt_allocation_at_safepoint(word_size,
1631                                  false /* expect_null_mutator_alloc_region */);
1632   if (result != NULL) {
1633     assert(*succeeded, "sanity");
1634     return result;
1635   }
1636 
1637   // In a G1 heap, we're supposed to keep allocation from failing by
1638   // incremental pauses.  Therefore, at least for now, we'll favor
1639   // expansion over collection.  (This might change in the future if we can
1640   // do something smarter than full collection to satisfy a failed alloc.)
1641   result = expand_and_allocate(word_size);
1642   if (result != NULL) {
1643     assert(*succeeded, "sanity");
1644     return result;
1645   }
1646 
1647   // Expansion didn't work, we'll try to do a Full GC.
1648   bool gc_succeeded = do_collection(false, /* explicit_gc */
1649                                     false, /* clear_all_soft_refs */
1650                                     word_size);
1651   if (!gc_succeeded) {
1652     *succeeded = false;
1653     return NULL;
1654   }
1655 
1656   // Retry the allocation
1657   result = attempt_allocation_at_safepoint(word_size,
1658                                   true /* expect_null_mutator_alloc_region */);
1659   if (result != NULL) {
1660     assert(*succeeded, "sanity");
1661     return result;
1662   }
1663 
1664   // Then, try a Full GC that will collect all soft references.
1665   gc_succeeded = do_collection(false, /* explicit_gc */
1666                                true,  /* clear_all_soft_refs */
1667                                word_size);
1668   if (!gc_succeeded) {
1669     *succeeded = false;
1670     return NULL;
1671   }
1672 
1673   // Retry the allocation once more
1674   result = attempt_allocation_at_safepoint(word_size,
1675                                   true /* expect_null_mutator_alloc_region */);
1676   if (result != NULL) {
1677     assert(*succeeded, "sanity");
1678     return result;
1679   }
1680 
1681   assert(!collector_policy()->should_clear_all_soft_refs(),
1682          "Flag should have been handled and cleared prior to this point");
1683 
1684   // What else?  We might try synchronous finalization later.  If the total
1685   // space available is large enough for the allocation, then a more
1686   // complete compaction phase than we've tried so far might be
1687   // appropriate.
1688   assert(*succeeded, "sanity");
1689   return NULL;
1690 }
1691 
1692 // Attempting to expand the heap sufficiently
1693 // to support an allocation of the given "word_size".  If
1694 // successful, perform the allocation and return the address of the
1695 // allocated block, or else "NULL".
1696 
1697 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1698   assert_at_safepoint(true /* should_be_vm_thread */);
1699 
1700   verify_region_sets_optional();
1701 
1702   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1703   ergo_verbose1(ErgoHeapSizing,
1704                 "attempt heap expansion",
1705                 ergo_format_reason("allocation request failed")
1706                 ergo_format_byte("allocation request"),
1707                 word_size * HeapWordSize);
1708   if (expand(expand_bytes)) {
1709     _hrs.verify_optional();
1710     verify_region_sets_optional();
1711     return attempt_allocation_at_safepoint(word_size,
1712                                  false /* expect_null_mutator_alloc_region */);
1713   }
1714   return NULL;
1715 }
1716 
1717 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1718                                              HeapWord* new_end) {
1719   assert(old_end != new_end, "don't call this otherwise");
1720   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1721 
1722   // Update the committed mem region.
1723   _g1_committed.set_end(new_end);
1724   // Tell the card table about the update.
1725   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1726   // Tell the BOT about the update.
1727   _bot_shared->resize(_g1_committed.word_size());
1728 }
1729 
1730 bool G1CollectedHeap::expand(size_t expand_bytes) {
1731   size_t old_mem_size = _g1_storage.committed_size();
1732   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1733   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1734                                        HeapRegion::GrainBytes);
1735   ergo_verbose2(ErgoHeapSizing,
1736                 "expand the heap",
1737                 ergo_format_byte("requested expansion amount")
1738                 ergo_format_byte("attempted expansion amount"),
1739                 expand_bytes, aligned_expand_bytes);
1740 
1741   // First commit the memory.
1742   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1743   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1744   if (successful) {
1745     // Then propagate this update to the necessary data structures.
1746     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1747     update_committed_space(old_end, new_end);
1748 
1749     FreeRegionList expansion_list("Local Expansion List");
1750     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1751     assert(mr.start() == old_end, "post-condition");
1752     // mr might be a smaller region than what was requested if
1753     // expand_by() was unable to allocate the HeapRegion instances
1754     assert(mr.end() <= new_end, "post-condition");
1755 
1756     size_t actual_expand_bytes = mr.byte_size();
1757     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1758     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1759            "post-condition");
1760     if (actual_expand_bytes < aligned_expand_bytes) {
1761       // We could not expand _hrs to the desired size. In this case we
1762       // need to shrink the committed space accordingly.
1763       assert(mr.end() < new_end, "invariant");
1764 
1765       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1766       // First uncommit the memory.
1767       _g1_storage.shrink_by(diff_bytes);
1768       // Then propagate this update to the necessary data structures.
1769       update_committed_space(new_end, mr.end());
1770     }
1771     _free_list.add_as_tail(&expansion_list);
1772 
1773     if (_hr_printer.is_active()) {
1774       HeapWord* curr = mr.start();
1775       while (curr < mr.end()) {
1776         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1777         _hr_printer.commit(curr, curr_end);
1778         curr = curr_end;
1779       }
1780       assert(curr == mr.end(), "post-condition");
1781     }
1782     g1_policy()->record_new_heap_size(n_regions());
1783   } else {
1784     ergo_verbose0(ErgoHeapSizing,
1785                   "did not expand the heap",
1786                   ergo_format_reason("heap expansion operation failed"));
1787     // The expansion of the virtual storage space was unsuccessful.
1788     // Let's see if it was because we ran out of swap.
1789     if (G1ExitOnExpansionFailure &&
1790         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1791       // We had head room...
1792       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1793     }
1794   }
1795   return successful;
1796 }
1797 
1798 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1799   size_t old_mem_size = _g1_storage.committed_size();
1800   size_t aligned_shrink_bytes =
1801     ReservedSpace::page_align_size_down(shrink_bytes);
1802   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1803                                          HeapRegion::GrainBytes);
1804   uint num_regions_deleted = 0;
1805   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1806   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1807   assert(mr.end() == old_end, "post-condition");
1808 
1809   ergo_verbose3(ErgoHeapSizing,
1810                 "shrink the heap",
1811                 ergo_format_byte("requested shrinking amount")
1812                 ergo_format_byte("aligned shrinking amount")
1813                 ergo_format_byte("attempted shrinking amount"),
1814                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1815   if (mr.byte_size() > 0) {
1816     if (_hr_printer.is_active()) {
1817       HeapWord* curr = mr.end();
1818       while (curr > mr.start()) {
1819         HeapWord* curr_end = curr;
1820         curr -= HeapRegion::GrainWords;
1821         _hr_printer.uncommit(curr, curr_end);
1822       }
1823       assert(curr == mr.start(), "post-condition");
1824     }
1825 
1826     _g1_storage.shrink_by(mr.byte_size());
1827     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1828     assert(mr.start() == new_end, "post-condition");
1829 
1830     _expansion_regions += num_regions_deleted;
1831     update_committed_space(old_end, new_end);
1832     HeapRegionRemSet::shrink_heap(n_regions());
1833     g1_policy()->record_new_heap_size(n_regions());
1834   } else {
1835     ergo_verbose0(ErgoHeapSizing,
1836                   "did not shrink the heap",
1837                   ergo_format_reason("heap shrinking operation failed"));
1838   }
1839 }
1840 
1841 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1842   verify_region_sets_optional();
1843 
1844   // We should only reach here at the end of a Full GC which means we
1845   // should not not be holding to any GC alloc regions. The method
1846   // below will make sure of that and do any remaining clean up.
1847   abandon_gc_alloc_regions();
1848 
1849   // Instead of tearing down / rebuilding the free lists here, we
1850   // could instead use the remove_all_pending() method on free_list to
1851   // remove only the ones that we need to remove.
1852   tear_down_region_sets(true /* free_list_only */);
1853   shrink_helper(shrink_bytes);
1854   rebuild_region_sets(true /* free_list_only */);
1855 
1856   _hrs.verify_optional();
1857   verify_region_sets_optional();
1858 }
1859 
1860 // Public methods.
1861 
1862 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1863 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1864 #endif // _MSC_VER
1865 
1866 
1867 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1868   SharedHeap(policy_),
1869   _g1_policy(policy_),
1870   _dirty_card_queue_set(false),
1871   _into_cset_dirty_card_queue_set(false),
1872   _is_alive_closure_cm(this),
1873   _is_alive_closure_stw(this),
1874   _ref_processor_cm(NULL),
1875   _ref_processor_stw(NULL),
1876   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1877   _bot_shared(NULL),
1878   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1879   _evac_failure_scan_stack(NULL) ,
1880   _mark_in_progress(false),
1881   _cg1r(NULL), _summary_bytes_used(0),
1882   _g1mm(NULL),
1883   _refine_cte_cl(NULL),
1884   _full_collection(false),
1885   _free_list("Master Free List"),
1886   _secondary_free_list("Secondary Free List"),
1887   _old_set("Old Set"),
1888   _humongous_set("Master Humongous Set"),
1889   _free_regions_coming(false),
1890   _young_list(new YoungList(this)),
1891   _gc_time_stamp(0),
1892   _retained_old_gc_alloc_region(NULL),
1893   _expand_heap_after_alloc_failure(true),
1894   _surviving_young_words(NULL),
1895   _old_marking_cycles_started(0),
1896   _old_marking_cycles_completed(0),
1897   _in_cset_fast_test(NULL),
1898   _in_cset_fast_test_base(NULL),
1899   _dirty_cards_region_list(NULL),
1900   _worker_cset_start_region(NULL),
1901   _worker_cset_start_region_time_stamp(NULL) {
1902   _g1h = this; // To catch bugs.
1903   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1904     vm_exit_during_initialization("Failed necessary allocation.");
1905   }
1906 
1907   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1908 
1909   int n_queues = MAX2((int)ParallelGCThreads, 1);
1910   _task_queues = new RefToScanQueueSet(n_queues);
1911 
1912   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1913   assert(n_rem_sets > 0, "Invariant.");
1914 
1915   HeapRegionRemSetIterator** iter_arr =
1916     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1917   for (int i = 0; i < n_queues; i++) {
1918     iter_arr[i] = new HeapRegionRemSetIterator();
1919   }
1920   _rem_set_iterator = iter_arr;
1921 
1922   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues);
1923   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues);
1924 
1925   for (int i = 0; i < n_queues; i++) {
1926     RefToScanQueue* q = new RefToScanQueue();
1927     q->initialize();
1928     _task_queues->register_queue(i, q);
1929   }
1930 
1931   clear_cset_start_regions();
1932 
1933   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1934 }
1935 
1936 jint G1CollectedHeap::initialize() {
1937   CollectedHeap::pre_initialize();
1938   os::enable_vtime();
1939 
1940   G1Log::init();
1941 
1942   // Necessary to satisfy locking discipline assertions.
1943 
1944   MutexLocker x(Heap_lock);
1945 
1946   // We have to initialize the printer before committing the heap, as
1947   // it will be used then.
1948   _hr_printer.set_active(G1PrintHeapRegions);
1949 
1950   // While there are no constraints in the GC code that HeapWordSize
1951   // be any particular value, there are multiple other areas in the
1952   // system which believe this to be true (e.g. oop->object_size in some
1953   // cases incorrectly returns the size in wordSize units rather than
1954   // HeapWordSize).
1955   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1956 
1957   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1958   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1959 
1960   // Ensure that the sizes are properly aligned.
1961   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1962   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1963 
1964   _cg1r = new ConcurrentG1Refine();
1965 
1966   // Reserve the maximum.
1967   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1968   // Includes the perm-gen.
1969 
1970   // When compressed oops are enabled, the preferred heap base
1971   // is calculated by subtracting the requested size from the
1972   // 32Gb boundary and using the result as the base address for
1973   // heap reservation. If the requested size is not aligned to
1974   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1975   // into the ReservedHeapSpace constructor) then the actual
1976   // base of the reserved heap may end up differing from the
1977   // address that was requested (i.e. the preferred heap base).
1978   // If this happens then we could end up using a non-optimal
1979   // compressed oops mode.
1980 
1981   // Since max_byte_size is aligned to the size of a heap region (checked
1982   // above), we also need to align the perm gen size as it might not be.
1983   const size_t total_reserved = max_byte_size +
1984                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
1985   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
1986 
1987   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1988 
1989   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
1990                             UseLargePages, addr);
1991 
1992   if (UseCompressedOops) {
1993     if (addr != NULL && !heap_rs.is_reserved()) {
1994       // Failed to reserve at specified address - the requested memory
1995       // region is taken already, for example, by 'java' launcher.
1996       // Try again to reserver heap higher.
1997       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1998 
1999       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
2000                                  UseLargePages, addr);
2001 
2002       if (addr != NULL && !heap_rs0.is_reserved()) {
2003         // Failed to reserve at specified address again - give up.
2004         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
2005         assert(addr == NULL, "");
2006 
2007         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
2008                                    UseLargePages, addr);
2009         heap_rs = heap_rs1;
2010       } else {
2011         heap_rs = heap_rs0;
2012       }
2013     }
2014   }
2015 
2016   if (!heap_rs.is_reserved()) {
2017     vm_exit_during_initialization("Could not reserve enough space for object heap");
2018     return JNI_ENOMEM;
2019   }
2020 
2021   // It is important to do this in a way such that concurrent readers can't
2022   // temporarily think somethings in the heap.  (I've actually seen this
2023   // happen in asserts: DLD.)
2024   _reserved.set_word_size(0);
2025   _reserved.set_start((HeapWord*)heap_rs.base());
2026   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2027 
2028   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2029 
2030   // Create the gen rem set (and barrier set) for the entire reserved region.
2031   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2032   set_barrier_set(rem_set()->bs());
2033   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2034     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2035   } else {
2036     vm_exit_during_initialization("G1 requires a mod ref bs.");
2037     return JNI_ENOMEM;
2038   }
2039 
2040   // Also create a G1 rem set.
2041   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2042     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2043   } else {
2044     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2045     return JNI_ENOMEM;
2046   }
2047 
2048   // Carve out the G1 part of the heap.
2049 
2050   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2051   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2052                            g1_rs.size()/HeapWordSize);
2053   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
2054 
2055   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
2056 
2057   _g1_storage.initialize(g1_rs, 0);
2058   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2059   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2060                   (HeapWord*) _g1_reserved.end(),
2061                   _expansion_regions);
2062 
2063   // 6843694 - ensure that the maximum region index can fit
2064   // in the remembered set structures.
2065   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2066   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2067 
2068   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2069   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2070   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2071             "too many cards per region");
2072 
2073   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2074 
2075   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2076                                              heap_word_size(init_byte_size));
2077 
2078   _g1h = this;
2079 
2080    _in_cset_fast_test_length = max_regions();
2081    _in_cset_fast_test_base =
2082                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length);
2083 
2084    // We're biasing _in_cset_fast_test to avoid subtracting the
2085    // beginning of the heap every time we want to index; basically
2086    // it's the same with what we do with the card table.
2087    _in_cset_fast_test = _in_cset_fast_test_base -
2088                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2089 
2090    // Clear the _cset_fast_test bitmap in anticipation of adding
2091    // regions to the incremental collection set for the first
2092    // evacuation pause.
2093    clear_cset_fast_test();
2094 
2095   // Create the ConcurrentMark data structure and thread.
2096   // (Must do this late, so that "max_regions" is defined.)
2097   _cm       = new ConcurrentMark(heap_rs, max_regions());
2098   _cmThread = _cm->cmThread();
2099 
2100   // Initialize the from_card cache structure of HeapRegionRemSet.
2101   HeapRegionRemSet::init_heap(max_regions());
2102 
2103   // Now expand into the initial heap size.
2104   if (!expand(init_byte_size)) {
2105     vm_exit_during_initialization("Failed to allocate initial heap.");
2106     return JNI_ENOMEM;
2107   }
2108 
2109   // Perform any initialization actions delegated to the policy.
2110   g1_policy()->init();
2111 
2112   _refine_cte_cl =
2113     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2114                                     g1_rem_set(),
2115                                     concurrent_g1_refine());
2116   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2117 
2118   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2119                                                SATB_Q_FL_lock,
2120                                                G1SATBProcessCompletedThreshold,
2121                                                Shared_SATB_Q_lock);
2122 
2123   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2124                                                 DirtyCardQ_FL_lock,
2125                                                 concurrent_g1_refine()->yellow_zone(),
2126                                                 concurrent_g1_refine()->red_zone(),
2127                                                 Shared_DirtyCardQ_lock);
2128 
2129   if (G1DeferredRSUpdate) {
2130     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2131                                       DirtyCardQ_FL_lock,
2132                                       -1, // never trigger processing
2133                                       -1, // no limit on length
2134                                       Shared_DirtyCardQ_lock,
2135                                       &JavaThread::dirty_card_queue_set());
2136   }
2137 
2138   // Initialize the card queue set used to hold cards containing
2139   // references into the collection set.
2140   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2141                                              DirtyCardQ_FL_lock,
2142                                              -1, // never trigger processing
2143                                              -1, // no limit on length
2144                                              Shared_DirtyCardQ_lock,
2145                                              &JavaThread::dirty_card_queue_set());
2146 
2147   // In case we're keeping closure specialization stats, initialize those
2148   // counts and that mechanism.
2149   SpecializationStats::clear();
2150 
2151   // Do later initialization work for concurrent refinement.
2152   _cg1r->init();
2153 
2154   // Here we allocate the dummy full region that is required by the
2155   // G1AllocRegion class. If we don't pass an address in the reserved
2156   // space here, lots of asserts fire.
2157 
2158   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2159                                              _g1_reserved.start());
2160   // We'll re-use the same region whether the alloc region will
2161   // require BOT updates or not and, if it doesn't, then a non-young
2162   // region will complain that it cannot support allocations without
2163   // BOT updates. So we'll tag the dummy region as young to avoid that.
2164   dummy_region->set_young();
2165   // Make sure it's full.
2166   dummy_region->set_top(dummy_region->end());
2167   G1AllocRegion::setup(this, dummy_region);
2168 
2169   init_mutator_alloc_region();
2170 
2171   // Do create of the monitoring and management support so that
2172   // values in the heap have been properly initialized.
2173   _g1mm = new G1MonitoringSupport(this);
2174 
2175   return JNI_OK;
2176 }
2177 
2178 void G1CollectedHeap::ref_processing_init() {
2179   // Reference processing in G1 currently works as follows:
2180   //
2181   // * There are two reference processor instances. One is
2182   //   used to record and process discovered references
2183   //   during concurrent marking; the other is used to
2184   //   record and process references during STW pauses
2185   //   (both full and incremental).
2186   // * Both ref processors need to 'span' the entire heap as
2187   //   the regions in the collection set may be dotted around.
2188   //
2189   // * For the concurrent marking ref processor:
2190   //   * Reference discovery is enabled at initial marking.
2191   //   * Reference discovery is disabled and the discovered
2192   //     references processed etc during remarking.
2193   //   * Reference discovery is MT (see below).
2194   //   * Reference discovery requires a barrier (see below).
2195   //   * Reference processing may or may not be MT
2196   //     (depending on the value of ParallelRefProcEnabled
2197   //     and ParallelGCThreads).
2198   //   * A full GC disables reference discovery by the CM
2199   //     ref processor and abandons any entries on it's
2200   //     discovered lists.
2201   //
2202   // * For the STW processor:
2203   //   * Non MT discovery is enabled at the start of a full GC.
2204   //   * Processing and enqueueing during a full GC is non-MT.
2205   //   * During a full GC, references are processed after marking.
2206   //
2207   //   * Discovery (may or may not be MT) is enabled at the start
2208   //     of an incremental evacuation pause.
2209   //   * References are processed near the end of a STW evacuation pause.
2210   //   * For both types of GC:
2211   //     * Discovery is atomic - i.e. not concurrent.
2212   //     * Reference discovery will not need a barrier.
2213 
2214   SharedHeap::ref_processing_init();
2215   MemRegion mr = reserved_region();
2216 
2217   // Concurrent Mark ref processor
2218   _ref_processor_cm =
2219     new ReferenceProcessor(mr,    // span
2220                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2221                                 // mt processing
2222                            (int) ParallelGCThreads,
2223                                 // degree of mt processing
2224                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2225                                 // mt discovery
2226                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2227                                 // degree of mt discovery
2228                            false,
2229                                 // Reference discovery is not atomic
2230                            &_is_alive_closure_cm,
2231                                 // is alive closure
2232                                 // (for efficiency/performance)
2233                            true);
2234                                 // Setting next fields of discovered
2235                                 // lists requires a barrier.
2236 
2237   // STW ref processor
2238   _ref_processor_stw =
2239     new ReferenceProcessor(mr,    // span
2240                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2241                                 // mt processing
2242                            MAX2((int)ParallelGCThreads, 1),
2243                                 // degree of mt processing
2244                            (ParallelGCThreads > 1),
2245                                 // mt discovery
2246                            MAX2((int)ParallelGCThreads, 1),
2247                                 // degree of mt discovery
2248                            true,
2249                                 // Reference discovery is atomic
2250                            &_is_alive_closure_stw,
2251                                 // is alive closure
2252                                 // (for efficiency/performance)
2253                            false);
2254                                 // Setting next fields of discovered
2255                                 // lists requires a barrier.
2256 }
2257 
2258 size_t G1CollectedHeap::capacity() const {
2259   return _g1_committed.byte_size();
2260 }
2261 
2262 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2263   assert(!hr->continuesHumongous(), "pre-condition");
2264   hr->reset_gc_time_stamp();
2265   if (hr->startsHumongous()) {
2266     uint first_index = hr->hrs_index() + 1;
2267     uint last_index = hr->last_hc_index();
2268     for (uint i = first_index; i < last_index; i += 1) {
2269       HeapRegion* chr = region_at(i);
2270       assert(chr->continuesHumongous(), "sanity");
2271       chr->reset_gc_time_stamp();
2272     }
2273   }
2274 }
2275 
2276 #ifndef PRODUCT
2277 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2278 private:
2279   unsigned _gc_time_stamp;
2280   bool _failures;
2281 
2282 public:
2283   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2284     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2285 
2286   virtual bool doHeapRegion(HeapRegion* hr) {
2287     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2288     if (_gc_time_stamp != region_gc_time_stamp) {
2289       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2290                              "expected %d", HR_FORMAT_PARAMS(hr),
2291                              region_gc_time_stamp, _gc_time_stamp);
2292       _failures = true;
2293     }
2294     return false;
2295   }
2296 
2297   bool failures() { return _failures; }
2298 };
2299 
2300 void G1CollectedHeap::check_gc_time_stamps() {
2301   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2302   heap_region_iterate(&cl);
2303   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2304 }
2305 #endif // PRODUCT
2306 
2307 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2308                                                  DirtyCardQueue* into_cset_dcq,
2309                                                  bool concurrent,
2310                                                  int worker_i) {
2311   // Clean cards in the hot card cache
2312   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2313 
2314   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2315   int n_completed_buffers = 0;
2316   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2317     n_completed_buffers++;
2318   }
2319   g1_policy()->record_update_rs_processed_buffers(worker_i,
2320                                                   (double) n_completed_buffers);
2321   dcqs.clear_n_completed_buffers();
2322   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2323 }
2324 
2325 
2326 // Computes the sum of the storage used by the various regions.
2327 
2328 size_t G1CollectedHeap::used() const {
2329   assert(Heap_lock->owner() != NULL,
2330          "Should be owned on this thread's behalf.");
2331   size_t result = _summary_bytes_used;
2332   // Read only once in case it is set to NULL concurrently
2333   HeapRegion* hr = _mutator_alloc_region.get();
2334   if (hr != NULL)
2335     result += hr->used();
2336   return result;
2337 }
2338 
2339 size_t G1CollectedHeap::used_unlocked() const {
2340   size_t result = _summary_bytes_used;
2341   return result;
2342 }
2343 
2344 class SumUsedClosure: public HeapRegionClosure {
2345   size_t _used;
2346 public:
2347   SumUsedClosure() : _used(0) {}
2348   bool doHeapRegion(HeapRegion* r) {
2349     if (!r->continuesHumongous()) {
2350       _used += r->used();
2351     }
2352     return false;
2353   }
2354   size_t result() { return _used; }
2355 };
2356 
2357 size_t G1CollectedHeap::recalculate_used() const {
2358   SumUsedClosure blk;
2359   heap_region_iterate(&blk);
2360   return blk.result();
2361 }
2362 
2363 size_t G1CollectedHeap::unsafe_max_alloc() {
2364   if (free_regions() > 0) return HeapRegion::GrainBytes;
2365   // otherwise, is there space in the current allocation region?
2366 
2367   // We need to store the current allocation region in a local variable
2368   // here. The problem is that this method doesn't take any locks and
2369   // there may be other threads which overwrite the current allocation
2370   // region field. attempt_allocation(), for example, sets it to NULL
2371   // and this can happen *after* the NULL check here but before the call
2372   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2373   // to be a problem in the optimized build, since the two loads of the
2374   // current allocation region field are optimized away.
2375   HeapRegion* hr = _mutator_alloc_region.get();
2376   if (hr == NULL) {
2377     return 0;
2378   }
2379   return hr->free();
2380 }
2381 
2382 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2383   switch (cause) {
2384     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2385     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2386     case GCCause::_g1_humongous_allocation: return true;
2387     default:                                return false;
2388   }
2389 }
2390 
2391 #ifndef PRODUCT
2392 void G1CollectedHeap::allocate_dummy_regions() {
2393   // Let's fill up most of the region
2394   size_t word_size = HeapRegion::GrainWords - 1024;
2395   // And as a result the region we'll allocate will be humongous.
2396   guarantee(isHumongous(word_size), "sanity");
2397 
2398   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2399     // Let's use the existing mechanism for the allocation
2400     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2401     if (dummy_obj != NULL) {
2402       MemRegion mr(dummy_obj, word_size);
2403       CollectedHeap::fill_with_object(mr);
2404     } else {
2405       // If we can't allocate once, we probably cannot allocate
2406       // again. Let's get out of the loop.
2407       break;
2408     }
2409   }
2410 }
2411 #endif // !PRODUCT
2412 
2413 void G1CollectedHeap::increment_old_marking_cycles_started() {
2414   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2415     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2416     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2417     _old_marking_cycles_started, _old_marking_cycles_completed));
2418 
2419   _old_marking_cycles_started++;
2420 }
2421 
2422 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2423   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2424 
2425   // We assume that if concurrent == true, then the caller is a
2426   // concurrent thread that was joined the Suspendible Thread
2427   // Set. If there's ever a cheap way to check this, we should add an
2428   // assert here.
2429 
2430   // Given that this method is called at the end of a Full GC or of a
2431   // concurrent cycle, and those can be nested (i.e., a Full GC can
2432   // interrupt a concurrent cycle), the number of full collections
2433   // completed should be either one (in the case where there was no
2434   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2435   // behind the number of full collections started.
2436 
2437   // This is the case for the inner caller, i.e. a Full GC.
2438   assert(concurrent ||
2439          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2440          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2441          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2442                  "is inconsistent with _old_marking_cycles_completed = %u",
2443                  _old_marking_cycles_started, _old_marking_cycles_completed));
2444 
2445   // This is the case for the outer caller, i.e. the concurrent cycle.
2446   assert(!concurrent ||
2447          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2448          err_msg("for outer caller (concurrent cycle): "
2449                  "_old_marking_cycles_started = %u "
2450                  "is inconsistent with _old_marking_cycles_completed = %u",
2451                  _old_marking_cycles_started, _old_marking_cycles_completed));
2452 
2453   _old_marking_cycles_completed += 1;
2454 
2455   // We need to clear the "in_progress" flag in the CM thread before
2456   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2457   // is set) so that if a waiter requests another System.gc() it doesn't
2458   // incorrectly see that a marking cyle is still in progress.
2459   if (concurrent) {
2460     _cmThread->clear_in_progress();
2461   }
2462 
2463   // This notify_all() will ensure that a thread that called
2464   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2465   // and it's waiting for a full GC to finish will be woken up. It is
2466   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2467   FullGCCount_lock->notify_all();
2468 }
2469 
2470 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2471   assert_at_safepoint(true /* should_be_vm_thread */);
2472   GCCauseSetter gcs(this, cause);
2473   switch (cause) {
2474     case GCCause::_heap_inspection:
2475     case GCCause::_heap_dump: {
2476       HandleMark hm;
2477       do_full_collection(false);         // don't clear all soft refs
2478       break;
2479     }
2480     default: // XXX FIX ME
2481       ShouldNotReachHere(); // Unexpected use of this function
2482   }
2483 }
2484 
2485 void G1CollectedHeap::collect(GCCause::Cause cause) {
2486   assert_heap_not_locked();
2487 
2488   unsigned int gc_count_before;
2489   unsigned int old_marking_count_before;
2490   bool retry_gc;
2491 
2492   do {
2493     retry_gc = false;
2494 
2495     {
2496       MutexLocker ml(Heap_lock);
2497 
2498       // Read the GC count while holding the Heap_lock
2499       gc_count_before = total_collections();
2500       old_marking_count_before = _old_marking_cycles_started;
2501     }
2502 
2503     if (should_do_concurrent_full_gc(cause)) {
2504       // Schedule an initial-mark evacuation pause that will start a
2505       // concurrent cycle. We're setting word_size to 0 which means that
2506       // we are not requesting a post-GC allocation.
2507       VM_G1IncCollectionPause op(gc_count_before,
2508                                  0,     /* word_size */
2509                                  true,  /* should_initiate_conc_mark */
2510                                  g1_policy()->max_pause_time_ms(),
2511                                  cause);
2512 
2513       VMThread::execute(&op);
2514       if (!op.pause_succeeded()) {
2515         if (old_marking_count_before == _old_marking_cycles_started) {
2516           retry_gc = op.should_retry_gc();
2517         } else {
2518           // A Full GC happened while we were trying to schedule the
2519           // initial-mark GC. No point in starting a new cycle given
2520           // that the whole heap was collected anyway.
2521         }
2522 
2523         if (retry_gc) {
2524           if (GC_locker::is_active_and_needs_gc()) {
2525             GC_locker::stall_until_clear();
2526           }
2527         }
2528       }
2529     } else {
2530       if (cause == GCCause::_gc_locker
2531           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2532 
2533         // Schedule a standard evacuation pause. We're setting word_size
2534         // to 0 which means that we are not requesting a post-GC allocation.
2535         VM_G1IncCollectionPause op(gc_count_before,
2536                                    0,     /* word_size */
2537                                    false, /* should_initiate_conc_mark */
2538                                    g1_policy()->max_pause_time_ms(),
2539                                    cause);
2540         VMThread::execute(&op);
2541       } else {
2542         // Schedule a Full GC.
2543         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2544         VMThread::execute(&op);
2545       }
2546     }
2547   } while (retry_gc);
2548 }
2549 
2550 bool G1CollectedHeap::is_in(const void* p) const {
2551   if (_g1_committed.contains(p)) {
2552     // Given that we know that p is in the committed space,
2553     // heap_region_containing_raw() should successfully
2554     // return the containing region.
2555     HeapRegion* hr = heap_region_containing_raw(p);
2556     return hr->is_in(p);
2557   } else {
2558     return _perm_gen->as_gen()->is_in(p);
2559   }
2560 }
2561 
2562 // Iteration functions.
2563 
2564 // Iterates an OopClosure over all ref-containing fields of objects
2565 // within a HeapRegion.
2566 
2567 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2568   MemRegion _mr;
2569   OopClosure* _cl;
2570 public:
2571   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2572     : _mr(mr), _cl(cl) {}
2573   bool doHeapRegion(HeapRegion* r) {
2574     if (!r->continuesHumongous()) {
2575       r->oop_iterate(_cl);
2576     }
2577     return false;
2578   }
2579 };
2580 
2581 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2582   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2583   heap_region_iterate(&blk);
2584   if (do_perm) {
2585     perm_gen()->oop_iterate(cl);
2586   }
2587 }
2588 
2589 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2590   IterateOopClosureRegionClosure blk(mr, cl);
2591   heap_region_iterate(&blk);
2592   if (do_perm) {
2593     perm_gen()->oop_iterate(cl);
2594   }
2595 }
2596 
2597 // Iterates an ObjectClosure over all objects within a HeapRegion.
2598 
2599 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2600   ObjectClosure* _cl;
2601 public:
2602   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2603   bool doHeapRegion(HeapRegion* r) {
2604     if (! r->continuesHumongous()) {
2605       r->object_iterate(_cl);
2606     }
2607     return false;
2608   }
2609 };
2610 
2611 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2612   IterateObjectClosureRegionClosure blk(cl);
2613   heap_region_iterate(&blk);
2614   if (do_perm) {
2615     perm_gen()->object_iterate(cl);
2616   }
2617 }
2618 
2619 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2620   // FIXME: is this right?
2621   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2622 }
2623 
2624 // Calls a SpaceClosure on a HeapRegion.
2625 
2626 class SpaceClosureRegionClosure: public HeapRegionClosure {
2627   SpaceClosure* _cl;
2628 public:
2629   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2630   bool doHeapRegion(HeapRegion* r) {
2631     _cl->do_space(r);
2632     return false;
2633   }
2634 };
2635 
2636 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2637   SpaceClosureRegionClosure blk(cl);
2638   heap_region_iterate(&blk);
2639 }
2640 
2641 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2642   _hrs.iterate(cl);
2643 }
2644 
2645 void
2646 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2647                                                  uint worker_id,
2648                                                  uint no_of_par_workers,
2649                                                  jint claim_value) {
2650   const uint regions = n_regions();
2651   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2652                              no_of_par_workers :
2653                              1);
2654   assert(UseDynamicNumberOfGCThreads ||
2655          no_of_par_workers == workers()->total_workers(),
2656          "Non dynamic should use fixed number of workers");
2657   // try to spread out the starting points of the workers
2658   const HeapRegion* start_hr =
2659                         start_region_for_worker(worker_id, no_of_par_workers);
2660   const uint start_index = start_hr->hrs_index();
2661 
2662   // each worker will actually look at all regions
2663   for (uint count = 0; count < regions; ++count) {
2664     const uint index = (start_index + count) % regions;
2665     assert(0 <= index && index < regions, "sanity");
2666     HeapRegion* r = region_at(index);
2667     // we'll ignore "continues humongous" regions (we'll process them
2668     // when we come across their corresponding "start humongous"
2669     // region) and regions already claimed
2670     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2671       continue;
2672     }
2673     // OK, try to claim it
2674     if (r->claimHeapRegion(claim_value)) {
2675       // success!
2676       assert(!r->continuesHumongous(), "sanity");
2677       if (r->startsHumongous()) {
2678         // If the region is "starts humongous" we'll iterate over its
2679         // "continues humongous" first; in fact we'll do them
2680         // first. The order is important. In on case, calling the
2681         // closure on the "starts humongous" region might de-allocate
2682         // and clear all its "continues humongous" regions and, as a
2683         // result, we might end up processing them twice. So, we'll do
2684         // them first (notice: most closures will ignore them anyway) and
2685         // then we'll do the "starts humongous" region.
2686         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2687           HeapRegion* chr = region_at(ch_index);
2688 
2689           // if the region has already been claimed or it's not
2690           // "continues humongous" we're done
2691           if (chr->claim_value() == claim_value ||
2692               !chr->continuesHumongous()) {
2693             break;
2694           }
2695 
2696           // Noone should have claimed it directly. We can given
2697           // that we claimed its "starts humongous" region.
2698           assert(chr->claim_value() != claim_value, "sanity");
2699           assert(chr->humongous_start_region() == r, "sanity");
2700 
2701           if (chr->claimHeapRegion(claim_value)) {
2702             // we should always be able to claim it; noone else should
2703             // be trying to claim this region
2704 
2705             bool res2 = cl->doHeapRegion(chr);
2706             assert(!res2, "Should not abort");
2707 
2708             // Right now, this holds (i.e., no closure that actually
2709             // does something with "continues humongous" regions
2710             // clears them). We might have to weaken it in the future,
2711             // but let's leave these two asserts here for extra safety.
2712             assert(chr->continuesHumongous(), "should still be the case");
2713             assert(chr->humongous_start_region() == r, "sanity");
2714           } else {
2715             guarantee(false, "we should not reach here");
2716           }
2717         }
2718       }
2719 
2720       assert(!r->continuesHumongous(), "sanity");
2721       bool res = cl->doHeapRegion(r);
2722       assert(!res, "Should not abort");
2723     }
2724   }
2725 }
2726 
2727 class ResetClaimValuesClosure: public HeapRegionClosure {
2728 public:
2729   bool doHeapRegion(HeapRegion* r) {
2730     r->set_claim_value(HeapRegion::InitialClaimValue);
2731     return false;
2732   }
2733 };
2734 
2735 void G1CollectedHeap::reset_heap_region_claim_values() {
2736   ResetClaimValuesClosure blk;
2737   heap_region_iterate(&blk);
2738 }
2739 
2740 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2741   ResetClaimValuesClosure blk;
2742   collection_set_iterate(&blk);
2743 }
2744 
2745 #ifdef ASSERT
2746 // This checks whether all regions in the heap have the correct claim
2747 // value. I also piggy-backed on this a check to ensure that the
2748 // humongous_start_region() information on "continues humongous"
2749 // regions is correct.
2750 
2751 class CheckClaimValuesClosure : public HeapRegionClosure {
2752 private:
2753   jint _claim_value;
2754   uint _failures;
2755   HeapRegion* _sh_region;
2756 
2757 public:
2758   CheckClaimValuesClosure(jint claim_value) :
2759     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2760   bool doHeapRegion(HeapRegion* r) {
2761     if (r->claim_value() != _claim_value) {
2762       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2763                              "claim value = %d, should be %d",
2764                              HR_FORMAT_PARAMS(r),
2765                              r->claim_value(), _claim_value);
2766       ++_failures;
2767     }
2768     if (!r->isHumongous()) {
2769       _sh_region = NULL;
2770     } else if (r->startsHumongous()) {
2771       _sh_region = r;
2772     } else if (r->continuesHumongous()) {
2773       if (r->humongous_start_region() != _sh_region) {
2774         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2775                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2776                                HR_FORMAT_PARAMS(r),
2777                                r->humongous_start_region(),
2778                                _sh_region);
2779         ++_failures;
2780       }
2781     }
2782     return false;
2783   }
2784   uint failures() { return _failures; }
2785 };
2786 
2787 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2788   CheckClaimValuesClosure cl(claim_value);
2789   heap_region_iterate(&cl);
2790   return cl.failures() == 0;
2791 }
2792 
2793 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2794 private:
2795   jint _claim_value;
2796   uint _failures;
2797 
2798 public:
2799   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2800     _claim_value(claim_value), _failures(0) { }
2801 
2802   uint failures() { return _failures; }
2803 
2804   bool doHeapRegion(HeapRegion* hr) {
2805     assert(hr->in_collection_set(), "how?");
2806     assert(!hr->isHumongous(), "H-region in CSet");
2807     if (hr->claim_value() != _claim_value) {
2808       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2809                              "claim value = %d, should be %d",
2810                              HR_FORMAT_PARAMS(hr),
2811                              hr->claim_value(), _claim_value);
2812       _failures += 1;
2813     }
2814     return false;
2815   }
2816 };
2817 
2818 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2819   CheckClaimValuesInCSetHRClosure cl(claim_value);
2820   collection_set_iterate(&cl);
2821   return cl.failures() == 0;
2822 }
2823 #endif // ASSERT
2824 
2825 // Clear the cached CSet starting regions and (more importantly)
2826 // the time stamps. Called when we reset the GC time stamp.
2827 void G1CollectedHeap::clear_cset_start_regions() {
2828   assert(_worker_cset_start_region != NULL, "sanity");
2829   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2830 
2831   int n_queues = MAX2((int)ParallelGCThreads, 1);
2832   for (int i = 0; i < n_queues; i++) {
2833     _worker_cset_start_region[i] = NULL;
2834     _worker_cset_start_region_time_stamp[i] = 0;
2835   }
2836 }
2837 
2838 // Given the id of a worker, obtain or calculate a suitable
2839 // starting region for iterating over the current collection set.
2840 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2841   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2842 
2843   HeapRegion* result = NULL;
2844   unsigned gc_time_stamp = get_gc_time_stamp();
2845 
2846   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2847     // Cached starting region for current worker was set
2848     // during the current pause - so it's valid.
2849     // Note: the cached starting heap region may be NULL
2850     // (when the collection set is empty).
2851     result = _worker_cset_start_region[worker_i];
2852     assert(result == NULL || result->in_collection_set(), "sanity");
2853     return result;
2854   }
2855 
2856   // The cached entry was not valid so let's calculate
2857   // a suitable starting heap region for this worker.
2858 
2859   // We want the parallel threads to start their collection
2860   // set iteration at different collection set regions to
2861   // avoid contention.
2862   // If we have:
2863   //          n collection set regions
2864   //          p threads
2865   // Then thread t will start at region floor ((t * n) / p)
2866 
2867   result = g1_policy()->collection_set();
2868   if (G1CollectedHeap::use_parallel_gc_threads()) {
2869     uint cs_size = g1_policy()->cset_region_length();
2870     uint active_workers = workers()->active_workers();
2871     assert(UseDynamicNumberOfGCThreads ||
2872              active_workers == workers()->total_workers(),
2873              "Unless dynamic should use total workers");
2874 
2875     uint end_ind   = (cs_size * worker_i) / active_workers;
2876     uint start_ind = 0;
2877 
2878     if (worker_i > 0 &&
2879         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2880       // Previous workers starting region is valid
2881       // so let's iterate from there
2882       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2883       result = _worker_cset_start_region[worker_i - 1];
2884     }
2885 
2886     for (uint i = start_ind; i < end_ind; i++) {
2887       result = result->next_in_collection_set();
2888     }
2889   }
2890 
2891   // Note: the calculated starting heap region may be NULL
2892   // (when the collection set is empty).
2893   assert(result == NULL || result->in_collection_set(), "sanity");
2894   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2895          "should be updated only once per pause");
2896   _worker_cset_start_region[worker_i] = result;
2897   OrderAccess::storestore();
2898   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2899   return result;
2900 }
2901 
2902 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2903                                                      uint no_of_par_workers) {
2904   uint worker_num =
2905            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2906   assert(UseDynamicNumberOfGCThreads ||
2907          no_of_par_workers == workers()->total_workers(),
2908          "Non dynamic should use fixed number of workers");
2909   const uint start_index = n_regions() * worker_i / worker_num;
2910   return region_at(start_index);
2911 }
2912 
2913 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2914   HeapRegion* r = g1_policy()->collection_set();
2915   while (r != NULL) {
2916     HeapRegion* next = r->next_in_collection_set();
2917     if (cl->doHeapRegion(r)) {
2918       cl->incomplete();
2919       return;
2920     }
2921     r = next;
2922   }
2923 }
2924 
2925 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2926                                                   HeapRegionClosure *cl) {
2927   if (r == NULL) {
2928     // The CSet is empty so there's nothing to do.
2929     return;
2930   }
2931 
2932   assert(r->in_collection_set(),
2933          "Start region must be a member of the collection set.");
2934   HeapRegion* cur = r;
2935   while (cur != NULL) {
2936     HeapRegion* next = cur->next_in_collection_set();
2937     if (cl->doHeapRegion(cur) && false) {
2938       cl->incomplete();
2939       return;
2940     }
2941     cur = next;
2942   }
2943   cur = g1_policy()->collection_set();
2944   while (cur != r) {
2945     HeapRegion* next = cur->next_in_collection_set();
2946     if (cl->doHeapRegion(cur) && false) {
2947       cl->incomplete();
2948       return;
2949     }
2950     cur = next;
2951   }
2952 }
2953 
2954 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2955   return n_regions() > 0 ? region_at(0) : NULL;
2956 }
2957 
2958 
2959 Space* G1CollectedHeap::space_containing(const void* addr) const {
2960   Space* res = heap_region_containing(addr);
2961   if (res == NULL)
2962     res = perm_gen()->space_containing(addr);
2963   return res;
2964 }
2965 
2966 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2967   Space* sp = space_containing(addr);
2968   if (sp != NULL) {
2969     return sp->block_start(addr);
2970   }
2971   return NULL;
2972 }
2973 
2974 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2975   Space* sp = space_containing(addr);
2976   assert(sp != NULL, "block_size of address outside of heap");
2977   return sp->block_size(addr);
2978 }
2979 
2980 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2981   Space* sp = space_containing(addr);
2982   return sp->block_is_obj(addr);
2983 }
2984 
2985 bool G1CollectedHeap::supports_tlab_allocation() const {
2986   return true;
2987 }
2988 
2989 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2990   return HeapRegion::GrainBytes;
2991 }
2992 
2993 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2994   // Return the remaining space in the cur alloc region, but not less than
2995   // the min TLAB size.
2996 
2997   // Also, this value can be at most the humongous object threshold,
2998   // since we can't allow tlabs to grow big enough to accomodate
2999   // humongous objects.
3000 
3001   HeapRegion* hr = _mutator_alloc_region.get();
3002   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
3003   if (hr == NULL) {
3004     return max_tlab_size;
3005   } else {
3006     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
3007   }
3008 }
3009 
3010 size_t G1CollectedHeap::max_capacity() const {
3011   return _g1_reserved.byte_size();
3012 }
3013 
3014 jlong G1CollectedHeap::millis_since_last_gc() {
3015   // assert(false, "NYI");
3016   return 0;
3017 }
3018 
3019 void G1CollectedHeap::prepare_for_verify() {
3020   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3021     ensure_parsability(false);
3022   }
3023   g1_rem_set()->prepare_for_verify();
3024 }
3025 
3026 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3027                                               VerifyOption vo) {
3028   switch (vo) {
3029   case VerifyOption_G1UsePrevMarking:
3030     return hr->obj_allocated_since_prev_marking(obj);
3031   case VerifyOption_G1UseNextMarking:
3032     return hr->obj_allocated_since_next_marking(obj);
3033   case VerifyOption_G1UseMarkWord:
3034     return false;
3035   default:
3036     ShouldNotReachHere();
3037   }
3038   return false; // keep some compilers happy
3039 }
3040 
3041 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3042   switch (vo) {
3043   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3044   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3045   case VerifyOption_G1UseMarkWord:    return NULL;
3046   default:                            ShouldNotReachHere();
3047   }
3048   return NULL; // keep some compilers happy
3049 }
3050 
3051 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3052   switch (vo) {
3053   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3054   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3055   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3056   default:                            ShouldNotReachHere();
3057   }
3058   return false; // keep some compilers happy
3059 }
3060 
3061 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3062   switch (vo) {
3063   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3064   case VerifyOption_G1UseNextMarking: return "NTAMS";
3065   case VerifyOption_G1UseMarkWord:    return "NONE";
3066   default:                            ShouldNotReachHere();
3067   }
3068   return NULL; // keep some compilers happy
3069 }
3070 
3071 class VerifyLivenessOopClosure: public OopClosure {
3072   G1CollectedHeap* _g1h;
3073   VerifyOption _vo;
3074 public:
3075   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3076     _g1h(g1h), _vo(vo)
3077   { }
3078   void do_oop(narrowOop *p) { do_oop_work(p); }
3079   void do_oop(      oop *p) { do_oop_work(p); }
3080 
3081   template <class T> void do_oop_work(T *p) {
3082     oop obj = oopDesc::load_decode_heap_oop(p);
3083     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3084               "Dead object referenced by a not dead object");
3085   }
3086 };
3087 
3088 class VerifyObjsInRegionClosure: public ObjectClosure {
3089 private:
3090   G1CollectedHeap* _g1h;
3091   size_t _live_bytes;
3092   HeapRegion *_hr;
3093   VerifyOption _vo;
3094 public:
3095   // _vo == UsePrevMarking -> use "prev" marking information,
3096   // _vo == UseNextMarking -> use "next" marking information,
3097   // _vo == UseMarkWord    -> use mark word from object header.
3098   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3099     : _live_bytes(0), _hr(hr), _vo(vo) {
3100     _g1h = G1CollectedHeap::heap();
3101   }
3102   void do_object(oop o) {
3103     VerifyLivenessOopClosure isLive(_g1h, _vo);
3104     assert(o != NULL, "Huh?");
3105     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3106       // If the object is alive according to the mark word,
3107       // then verify that the marking information agrees.
3108       // Note we can't verify the contra-positive of the
3109       // above: if the object is dead (according to the mark
3110       // word), it may not be marked, or may have been marked
3111       // but has since became dead, or may have been allocated
3112       // since the last marking.
3113       if (_vo == VerifyOption_G1UseMarkWord) {
3114         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3115       }
3116 
3117       o->oop_iterate(&isLive);
3118       if (!_hr->obj_allocated_since_prev_marking(o)) {
3119         size_t obj_size = o->size();    // Make sure we don't overflow
3120         _live_bytes += (obj_size * HeapWordSize);
3121       }
3122     }
3123   }
3124   size_t live_bytes() { return _live_bytes; }
3125 };
3126 
3127 class PrintObjsInRegionClosure : public ObjectClosure {
3128   HeapRegion *_hr;
3129   G1CollectedHeap *_g1;
3130 public:
3131   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3132     _g1 = G1CollectedHeap::heap();
3133   };
3134 
3135   void do_object(oop o) {
3136     if (o != NULL) {
3137       HeapWord *start = (HeapWord *) o;
3138       size_t word_sz = o->size();
3139       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3140                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3141                           (void*) o, word_sz,
3142                           _g1->isMarkedPrev(o),
3143                           _g1->isMarkedNext(o),
3144                           _hr->obj_allocated_since_prev_marking(o));
3145       HeapWord *end = start + word_sz;
3146       HeapWord *cur;
3147       int *val;
3148       for (cur = start; cur < end; cur++) {
3149         val = (int *) cur;
3150         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3151       }
3152     }
3153   }
3154 };
3155 
3156 class VerifyRegionClosure: public HeapRegionClosure {
3157 private:
3158   bool             _par;
3159   VerifyOption     _vo;
3160   bool             _failures;
3161 public:
3162   // _vo == UsePrevMarking -> use "prev" marking information,
3163   // _vo == UseNextMarking -> use "next" marking information,
3164   // _vo == UseMarkWord    -> use mark word from object header.
3165   VerifyRegionClosure(bool par, VerifyOption vo)
3166     : _par(par),
3167       _vo(vo),
3168       _failures(false) {}
3169 
3170   bool failures() {
3171     return _failures;
3172   }
3173 
3174   bool doHeapRegion(HeapRegion* r) {
3175     if (!r->continuesHumongous()) {
3176       bool failures = false;
3177       r->verify(_vo, &failures);
3178       if (failures) {
3179         _failures = true;
3180       } else {
3181         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3182         r->object_iterate(&not_dead_yet_cl);
3183         if (_vo != VerifyOption_G1UseNextMarking) {
3184           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3185             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3186                                    "max_live_bytes "SIZE_FORMAT" "
3187                                    "< calculated "SIZE_FORMAT,
3188                                    r->bottom(), r->end(),
3189                                    r->max_live_bytes(),
3190                                  not_dead_yet_cl.live_bytes());
3191             _failures = true;
3192           }
3193         } else {
3194           // When vo == UseNextMarking we cannot currently do a sanity
3195           // check on the live bytes as the calculation has not been
3196           // finalized yet.
3197         }
3198       }
3199     }
3200     return false; // stop the region iteration if we hit a failure
3201   }
3202 };
3203 
3204 class VerifyRootsClosure: public OopsInGenClosure {
3205 private:
3206   G1CollectedHeap* _g1h;
3207   VerifyOption     _vo;
3208   bool             _failures;
3209 public:
3210   // _vo == UsePrevMarking -> use "prev" marking information,
3211   // _vo == UseNextMarking -> use "next" marking information,
3212   // _vo == UseMarkWord    -> use mark word from object header.
3213   VerifyRootsClosure(VerifyOption vo) :
3214     _g1h(G1CollectedHeap::heap()),
3215     _vo(vo),
3216     _failures(false) { }
3217 
3218   bool failures() { return _failures; }
3219 
3220   template <class T> void do_oop_nv(T* p) {
3221     T heap_oop = oopDesc::load_heap_oop(p);
3222     if (!oopDesc::is_null(heap_oop)) {
3223       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3224       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3225         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3226                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3227         if (_vo == VerifyOption_G1UseMarkWord) {
3228           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3229         }
3230         obj->print_on(gclog_or_tty);
3231         _failures = true;
3232       }
3233     }
3234   }
3235 
3236   void do_oop(oop* p)       { do_oop_nv(p); }
3237   void do_oop(narrowOop* p) { do_oop_nv(p); }
3238 };
3239 
3240 // This is the task used for parallel heap verification.
3241 
3242 class G1ParVerifyTask: public AbstractGangTask {
3243 private:
3244   G1CollectedHeap* _g1h;
3245   VerifyOption     _vo;
3246   bool             _failures;
3247 
3248 public:
3249   // _vo == UsePrevMarking -> use "prev" marking information,
3250   // _vo == UseNextMarking -> use "next" marking information,
3251   // _vo == UseMarkWord    -> use mark word from object header.
3252   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3253     AbstractGangTask("Parallel verify task"),
3254     _g1h(g1h),
3255     _vo(vo),
3256     _failures(false) { }
3257 
3258   bool failures() {
3259     return _failures;
3260   }
3261 
3262   void work(uint worker_id) {
3263     HandleMark hm;
3264     VerifyRegionClosure blk(true, _vo);
3265     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3266                                           _g1h->workers()->active_workers(),
3267                                           HeapRegion::ParVerifyClaimValue);
3268     if (blk.failures()) {
3269       _failures = true;
3270     }
3271   }
3272 };
3273 
3274 void G1CollectedHeap::verify(bool silent) {
3275   verify(silent, VerifyOption_G1UsePrevMarking);
3276 }
3277 
3278 void G1CollectedHeap::verify(bool silent,
3279                              VerifyOption vo) {
3280   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3281     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3282     VerifyRootsClosure rootsCl(vo);
3283 
3284     assert(Thread::current()->is_VM_thread(),
3285       "Expected to be executed serially by the VM thread at this point");
3286 
3287     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3288 
3289     // We apply the relevant closures to all the oops in the
3290     // system dictionary, the string table and the code cache.
3291     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3292 
3293     process_strong_roots(true,      // activate StrongRootsScope
3294                          true,      // we set "collecting perm gen" to true,
3295                                     // so we don't reset the dirty cards in the perm gen.
3296                          ScanningOption(so),  // roots scanning options
3297                          &rootsCl,
3298                          &blobsCl,
3299                          &rootsCl);
3300 
3301     // If we're verifying after the marking phase of a Full GC then we can't
3302     // treat the perm gen as roots into the G1 heap. Some of the objects in
3303     // the perm gen may be dead and hence not marked. If one of these dead
3304     // objects is considered to be a root then we may end up with a false
3305     // "Root location <x> points to dead ob <y>" failure.
3306     if (vo != VerifyOption_G1UseMarkWord) {
3307       // Since we used "collecting_perm_gen" == true above, we will not have
3308       // checked the refs from perm into the G1-collected heap. We check those
3309       // references explicitly below. Whether the relevant cards are dirty
3310       // is checked further below in the rem set verification.
3311       if (!silent) { gclog_or_tty->print("Permgen roots "); }
3312       perm_gen()->oop_iterate(&rootsCl);
3313     }
3314     bool failures = rootsCl.failures();
3315 
3316     if (vo != VerifyOption_G1UseMarkWord) {
3317       // If we're verifying during a full GC then the region sets
3318       // will have been torn down at the start of the GC. Therefore
3319       // verifying the region sets will fail. So we only verify
3320       // the region sets when not in a full GC.
3321       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3322       verify_region_sets();
3323     }
3324 
3325     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3326     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3327       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3328              "sanity check");
3329 
3330       G1ParVerifyTask task(this, vo);
3331       assert(UseDynamicNumberOfGCThreads ||
3332         workers()->active_workers() == workers()->total_workers(),
3333         "If not dynamic should be using all the workers");
3334       int n_workers = workers()->active_workers();
3335       set_par_threads(n_workers);
3336       workers()->run_task(&task);
3337       set_par_threads(0);
3338       if (task.failures()) {
3339         failures = true;
3340       }
3341 
3342       // Checks that the expected amount of parallel work was done.
3343       // The implication is that n_workers is > 0.
3344       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3345              "sanity check");
3346 
3347       reset_heap_region_claim_values();
3348 
3349       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3350              "sanity check");
3351     } else {
3352       VerifyRegionClosure blk(false, vo);
3353       heap_region_iterate(&blk);
3354       if (blk.failures()) {
3355         failures = true;
3356       }
3357     }
3358     if (!silent) gclog_or_tty->print("RemSet ");
3359     rem_set()->verify();
3360 
3361     if (failures) {
3362       gclog_or_tty->print_cr("Heap:");
3363       // It helps to have the per-region information in the output to
3364       // help us track down what went wrong. This is why we call
3365       // print_extended_on() instead of print_on().
3366       print_extended_on(gclog_or_tty);
3367       gclog_or_tty->print_cr("");
3368 #ifndef PRODUCT
3369       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3370         concurrent_mark()->print_reachable("at-verification-failure",
3371                                            vo, false /* all */);
3372       }
3373 #endif
3374       gclog_or_tty->flush();
3375     }
3376     guarantee(!failures, "there should not have been any failures");
3377   } else {
3378     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
3379   }
3380 }
3381 
3382 class PrintRegionClosure: public HeapRegionClosure {
3383   outputStream* _st;
3384 public:
3385   PrintRegionClosure(outputStream* st) : _st(st) {}
3386   bool doHeapRegion(HeapRegion* r) {
3387     r->print_on(_st);
3388     return false;
3389   }
3390 };
3391 
3392 void G1CollectedHeap::print_on(outputStream* st) const {
3393   st->print(" %-20s", "garbage-first heap");
3394   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3395             capacity()/K, used_unlocked()/K);
3396   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3397             _g1_storage.low_boundary(),
3398             _g1_storage.high(),
3399             _g1_storage.high_boundary());
3400   st->cr();
3401   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3402   uint young_regions = _young_list->length();
3403   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3404             (size_t) young_regions * HeapRegion::GrainBytes / K);
3405   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3406   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3407             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3408   st->cr();
3409   perm()->as_gen()->print_on(st);
3410 }
3411 
3412 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3413   print_on(st);
3414 
3415   // Print the per-region information.
3416   st->cr();
3417   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3418                "HS=humongous(starts), HC=humongous(continues), "
3419                "CS=collection set, F=free, TS=gc time stamp, "
3420                "PTAMS=previous top-at-mark-start, "
3421                "NTAMS=next top-at-mark-start)");
3422   PrintRegionClosure blk(st);
3423   heap_region_iterate(&blk);
3424 }
3425 
3426 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3427   if (G1CollectedHeap::use_parallel_gc_threads()) {
3428     workers()->print_worker_threads_on(st);
3429   }
3430   _cmThread->print_on(st);
3431   st->cr();
3432   _cm->print_worker_threads_on(st);
3433   _cg1r->print_worker_threads_on(st);
3434   st->cr();
3435 }
3436 
3437 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3438   if (G1CollectedHeap::use_parallel_gc_threads()) {
3439     workers()->threads_do(tc);
3440   }
3441   tc->do_thread(_cmThread);
3442   _cg1r->threads_do(tc);
3443 }
3444 
3445 void G1CollectedHeap::print_tracing_info() const {
3446   // We'll overload this to mean "trace GC pause statistics."
3447   if (TraceGen0Time || TraceGen1Time) {
3448     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3449     // to that.
3450     g1_policy()->print_tracing_info();
3451   }
3452   if (G1SummarizeRSetStats) {
3453     g1_rem_set()->print_summary_info();
3454   }
3455   if (G1SummarizeConcMark) {
3456     concurrent_mark()->print_summary_info();
3457   }
3458   g1_policy()->print_yg_surv_rate_info();
3459   SpecializationStats::print();
3460 }
3461 
3462 #ifndef PRODUCT
3463 // Helpful for debugging RSet issues.
3464 
3465 class PrintRSetsClosure : public HeapRegionClosure {
3466 private:
3467   const char* _msg;
3468   size_t _occupied_sum;
3469 
3470 public:
3471   bool doHeapRegion(HeapRegion* r) {
3472     HeapRegionRemSet* hrrs = r->rem_set();
3473     size_t occupied = hrrs->occupied();
3474     _occupied_sum += occupied;
3475 
3476     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3477                            HR_FORMAT_PARAMS(r));
3478     if (occupied == 0) {
3479       gclog_or_tty->print_cr("  RSet is empty");
3480     } else {
3481       hrrs->print();
3482     }
3483     gclog_or_tty->print_cr("----------");
3484     return false;
3485   }
3486 
3487   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3488     gclog_or_tty->cr();
3489     gclog_or_tty->print_cr("========================================");
3490     gclog_or_tty->print_cr(msg);
3491     gclog_or_tty->cr();
3492   }
3493 
3494   ~PrintRSetsClosure() {
3495     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3496     gclog_or_tty->print_cr("========================================");
3497     gclog_or_tty->cr();
3498   }
3499 };
3500 
3501 void G1CollectedHeap::print_cset_rsets() {
3502   PrintRSetsClosure cl("Printing CSet RSets");
3503   collection_set_iterate(&cl);
3504 }
3505 
3506 void G1CollectedHeap::print_all_rsets() {
3507   PrintRSetsClosure cl("Printing All RSets");;
3508   heap_region_iterate(&cl);
3509 }
3510 #endif // PRODUCT
3511 
3512 G1CollectedHeap* G1CollectedHeap::heap() {
3513   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3514          "not a garbage-first heap");
3515   return _g1h;
3516 }
3517 
3518 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3519   // always_do_update_barrier = false;
3520   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3521   // Call allocation profiler
3522   AllocationProfiler::iterate_since_last_gc();
3523   // Fill TLAB's and such
3524   ensure_parsability(true);
3525 }
3526 
3527 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3528   // FIXME: what is this about?
3529   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3530   // is set.
3531   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3532                         "derived pointer present"));
3533   // always_do_update_barrier = true;
3534 
3535   // We have just completed a GC. Update the soft reference
3536   // policy with the new heap occupancy
3537   Universe::update_heap_info_at_gc();
3538 }
3539 
3540 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3541                                                unsigned int gc_count_before,
3542                                                bool* succeeded) {
3543   assert_heap_not_locked_and_not_at_safepoint();
3544   g1_policy()->record_stop_world_start();
3545   VM_G1IncCollectionPause op(gc_count_before,
3546                              word_size,
3547                              false, /* should_initiate_conc_mark */
3548                              g1_policy()->max_pause_time_ms(),
3549                              GCCause::_g1_inc_collection_pause);
3550   VMThread::execute(&op);
3551 
3552   HeapWord* result = op.result();
3553   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3554   assert(result == NULL || ret_succeeded,
3555          "the result should be NULL if the VM did not succeed");
3556   *succeeded = ret_succeeded;
3557 
3558   assert_heap_not_locked();
3559   return result;
3560 }
3561 
3562 void
3563 G1CollectedHeap::doConcurrentMark() {
3564   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3565   if (!_cmThread->in_progress()) {
3566     _cmThread->set_started();
3567     CGC_lock->notify();
3568   }
3569 }
3570 
3571 size_t G1CollectedHeap::pending_card_num() {
3572   size_t extra_cards = 0;
3573   JavaThread *curr = Threads::first();
3574   while (curr != NULL) {
3575     DirtyCardQueue& dcq = curr->dirty_card_queue();
3576     extra_cards += dcq.size();
3577     curr = curr->next();
3578   }
3579   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3580   size_t buffer_size = dcqs.buffer_size();
3581   size_t buffer_num = dcqs.completed_buffers_num();
3582   return buffer_size * buffer_num + extra_cards;
3583 }
3584 
3585 size_t G1CollectedHeap::max_pending_card_num() {
3586   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3587   size_t buffer_size = dcqs.buffer_size();
3588   size_t buffer_num  = dcqs.completed_buffers_num();
3589   int thread_num  = Threads::number_of_threads();
3590   return (buffer_num + thread_num) * buffer_size;
3591 }
3592 
3593 size_t G1CollectedHeap::cards_scanned() {
3594   return g1_rem_set()->cardsScanned();
3595 }
3596 
3597 void
3598 G1CollectedHeap::setup_surviving_young_words() {
3599   assert(_surviving_young_words == NULL, "pre-condition");
3600   uint array_length = g1_policy()->young_cset_region_length();
3601   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length);
3602   if (_surviving_young_words == NULL) {
3603     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3604                           "Not enough space for young surv words summary.");
3605   }
3606   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3607 #ifdef ASSERT
3608   for (uint i = 0;  i < array_length; ++i) {
3609     assert( _surviving_young_words[i] == 0, "memset above" );
3610   }
3611 #endif // !ASSERT
3612 }
3613 
3614 void
3615 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3616   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3617   uint array_length = g1_policy()->young_cset_region_length();
3618   for (uint i = 0; i < array_length; ++i) {
3619     _surviving_young_words[i] += surv_young_words[i];
3620   }
3621 }
3622 
3623 void
3624 G1CollectedHeap::cleanup_surviving_young_words() {
3625   guarantee( _surviving_young_words != NULL, "pre-condition" );
3626   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3627   _surviving_young_words = NULL;
3628 }
3629 
3630 #ifdef ASSERT
3631 class VerifyCSetClosure: public HeapRegionClosure {
3632 public:
3633   bool doHeapRegion(HeapRegion* hr) {
3634     // Here we check that the CSet region's RSet is ready for parallel
3635     // iteration. The fields that we'll verify are only manipulated
3636     // when the region is part of a CSet and is collected. Afterwards,
3637     // we reset these fields when we clear the region's RSet (when the
3638     // region is freed) so they are ready when the region is
3639     // re-allocated. The only exception to this is if there's an
3640     // evacuation failure and instead of freeing the region we leave
3641     // it in the heap. In that case, we reset these fields during
3642     // evacuation failure handling.
3643     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3644 
3645     // Here's a good place to add any other checks we'd like to
3646     // perform on CSet regions.
3647     return false;
3648   }
3649 };
3650 #endif // ASSERT
3651 
3652 #if TASKQUEUE_STATS
3653 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3654   st->print_raw_cr("GC Task Stats");
3655   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3656   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3657 }
3658 
3659 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3660   print_taskqueue_stats_hdr(st);
3661 
3662   TaskQueueStats totals;
3663   const int n = workers() != NULL ? workers()->total_workers() : 1;
3664   for (int i = 0; i < n; ++i) {
3665     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3666     totals += task_queue(i)->stats;
3667   }
3668   st->print_raw("tot "); totals.print(st); st->cr();
3669 
3670   DEBUG_ONLY(totals.verify());
3671 }
3672 
3673 void G1CollectedHeap::reset_taskqueue_stats() {
3674   const int n = workers() != NULL ? workers()->total_workers() : 1;
3675   for (int i = 0; i < n; ++i) {
3676     task_queue(i)->stats.reset();
3677   }
3678 }
3679 #endif // TASKQUEUE_STATS
3680 
3681 bool
3682 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3683   assert_at_safepoint(true /* should_be_vm_thread */);
3684   guarantee(!is_gc_active(), "collection is not reentrant");
3685 
3686   if (GC_locker::check_active_before_gc()) {
3687     return false;
3688   }
3689 
3690   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3691   ResourceMark rm;
3692 
3693   print_heap_before_gc();
3694 
3695   HRSPhaseSetter x(HRSPhaseEvacuation);
3696   verify_region_sets_optional();
3697   verify_dirty_young_regions();
3698 
3699   // This call will decide whether this pause is an initial-mark
3700   // pause. If it is, during_initial_mark_pause() will return true
3701   // for the duration of this pause.
3702   g1_policy()->decide_on_conc_mark_initiation();
3703 
3704   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3705   assert(!g1_policy()->during_initial_mark_pause() ||
3706           g1_policy()->gcs_are_young(), "sanity");
3707 
3708   // We also do not allow mixed GCs during marking.
3709   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3710 
3711   // Record whether this pause is an initial mark. When the current
3712   // thread has completed its logging output and it's safe to signal
3713   // the CM thread, the flag's value in the policy has been reset.
3714   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3715 
3716   // Inner scope for scope based logging, timers, and stats collection
3717   {
3718     if (g1_policy()->during_initial_mark_pause()) {
3719       // We are about to start a marking cycle, so we increment the
3720       // full collection counter.
3721       increment_old_marking_cycles_started();
3722     }
3723     // if the log level is "finer" is on, we'll print long statistics information
3724     // in the collector policy code, so let's not print this as the output
3725     // is messy if we do.
3726     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
3727     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3728 
3729     GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3730       .append(g1_policy()->gcs_are_young() ? " (young)" : " (mixed)")
3731       .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3732     TraceTime t(gc_cause_str, G1Log::fine() && !G1Log::finer(), true, gclog_or_tty);
3733 
3734     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3735     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3736 
3737     // If the secondary_free_list is not empty, append it to the
3738     // free_list. No need to wait for the cleanup operation to finish;
3739     // the region allocation code will check the secondary_free_list
3740     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3741     // set, skip this step so that the region allocation code has to
3742     // get entries from the secondary_free_list.
3743     if (!G1StressConcRegionFreeing) {
3744       append_secondary_free_list_if_not_empty_with_lock();
3745     }
3746 
3747     assert(check_young_list_well_formed(),
3748       "young list should be well formed");
3749 
3750     // Don't dynamically change the number of GC threads this early.  A value of
3751     // 0 is used to indicate serial work.  When parallel work is done,
3752     // it will be set.
3753 
3754     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3755       IsGCActiveMark x;
3756 
3757       gc_prologue(false);
3758       increment_total_collections(false /* full gc */);
3759       increment_gc_time_stamp();
3760 
3761       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
3762         HandleMark hm;  // Discard invalid handles created during verification
3763         gclog_or_tty->print(" VerifyBeforeGC:");
3764         prepare_for_verify();
3765         Universe::verify(/* silent      */ false,
3766                          /* option      */ VerifyOption_G1UsePrevMarking);
3767       }
3768 
3769       COMPILER2_PRESENT(DerivedPointerTable::clear());
3770 
3771       // Please see comment in g1CollectedHeap.hpp and
3772       // G1CollectedHeap::ref_processing_init() to see how
3773       // reference processing currently works in G1.
3774 
3775       // Enable discovery in the STW reference processor
3776       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3777                                             true /*verify_no_refs*/);
3778 
3779       {
3780         // We want to temporarily turn off discovery by the
3781         // CM ref processor, if necessary, and turn it back on
3782         // on again later if we do. Using a scoped
3783         // NoRefDiscovery object will do this.
3784         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3785 
3786         // Forget the current alloc region (we might even choose it to be part
3787         // of the collection set!).
3788         release_mutator_alloc_region();
3789 
3790         // We should call this after we retire the mutator alloc
3791         // region(s) so that all the ALLOC / RETIRE events are generated
3792         // before the start GC event.
3793         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3794 
3795         // The elapsed time induced by the start time below deliberately elides
3796         // the possible verification above.
3797         double start_time_sec = os::elapsedTime();
3798         size_t start_used_bytes = used();
3799 
3800 #if YOUNG_LIST_VERBOSE
3801         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3802         _young_list->print();
3803         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3804 #endif // YOUNG_LIST_VERBOSE
3805 
3806         g1_policy()->record_collection_pause_start(start_time_sec,
3807                                                    start_used_bytes);
3808 
3809         double scan_wait_start = os::elapsedTime();
3810         // We have to wait until the CM threads finish scanning the
3811         // root regions as it's the only way to ensure that all the
3812         // objects on them have been correctly scanned before we start
3813         // moving them during the GC.
3814         bool waited = _cm->root_regions()->wait_until_scan_finished();
3815         if (waited) {
3816           double scan_wait_end = os::elapsedTime();
3817           double wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3818           g1_policy()->record_root_region_scan_wait_time(wait_time_ms);
3819         }
3820 
3821 #if YOUNG_LIST_VERBOSE
3822         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3823         _young_list->print();
3824 #endif // YOUNG_LIST_VERBOSE
3825 
3826         if (g1_policy()->during_initial_mark_pause()) {
3827           concurrent_mark()->checkpointRootsInitialPre();
3828         }
3829         perm_gen()->save_marks();
3830 
3831 #if YOUNG_LIST_VERBOSE
3832         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3833         _young_list->print();
3834         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3835 #endif // YOUNG_LIST_VERBOSE
3836 
3837         g1_policy()->finalize_cset(target_pause_time_ms);
3838 
3839         _cm->note_start_of_gc();
3840         // We should not verify the per-thread SATB buffers given that
3841         // we have not filtered them yet (we'll do so during the
3842         // GC). We also call this after finalize_cset() to
3843         // ensure that the CSet has been finalized.
3844         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3845                                  true  /* verify_enqueued_buffers */,
3846                                  false /* verify_thread_buffers */,
3847                                  true  /* verify_fingers */);
3848 
3849         if (_hr_printer.is_active()) {
3850           HeapRegion* hr = g1_policy()->collection_set();
3851           while (hr != NULL) {
3852             G1HRPrinter::RegionType type;
3853             if (!hr->is_young()) {
3854               type = G1HRPrinter::Old;
3855             } else if (hr->is_survivor()) {
3856               type = G1HRPrinter::Survivor;
3857             } else {
3858               type = G1HRPrinter::Eden;
3859             }
3860             _hr_printer.cset(hr);
3861             hr = hr->next_in_collection_set();
3862           }
3863         }
3864 
3865 #ifdef ASSERT
3866         VerifyCSetClosure cl;
3867         collection_set_iterate(&cl);
3868 #endif // ASSERT
3869 
3870         setup_surviving_young_words();
3871 
3872         // Initialize the GC alloc regions.
3873         init_gc_alloc_regions();
3874 
3875         // Actually do the work...
3876         evacuate_collection_set();
3877 
3878         // We do this to mainly verify the per-thread SATB buffers
3879         // (which have been filtered by now) since we didn't verify
3880         // them earlier. No point in re-checking the stacks / enqueued
3881         // buffers given that the CSet has not changed since last time
3882         // we checked.
3883         _cm->verify_no_cset_oops(false /* verify_stacks */,
3884                                  false /* verify_enqueued_buffers */,
3885                                  true  /* verify_thread_buffers */,
3886                                  true  /* verify_fingers */);
3887 
3888         free_collection_set(g1_policy()->collection_set());
3889         g1_policy()->clear_collection_set();
3890 
3891         cleanup_surviving_young_words();
3892 
3893         // Start a new incremental collection set for the next pause.
3894         g1_policy()->start_incremental_cset_building();
3895 
3896         // Clear the _cset_fast_test bitmap in anticipation of adding
3897         // regions to the incremental collection set for the next
3898         // evacuation pause.
3899         clear_cset_fast_test();
3900 
3901         _young_list->reset_sampled_info();
3902 
3903         // Don't check the whole heap at this point as the
3904         // GC alloc regions from this pause have been tagged
3905         // as survivors and moved on to the survivor list.
3906         // Survivor regions will fail the !is_young() check.
3907         assert(check_young_list_empty(false /* check_heap */),
3908           "young list should be empty");
3909 
3910 #if YOUNG_LIST_VERBOSE
3911         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3912         _young_list->print();
3913 #endif // YOUNG_LIST_VERBOSE
3914 
3915         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3916                                             _young_list->first_survivor_region(),
3917                                             _young_list->last_survivor_region());
3918 
3919         _young_list->reset_auxilary_lists();
3920 
3921         if (evacuation_failed()) {
3922           _summary_bytes_used = recalculate_used();
3923         } else {
3924           // The "used" of the the collection set have already been subtracted
3925           // when they were freed.  Add in the bytes evacuated.
3926           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3927         }
3928 
3929         if (g1_policy()->during_initial_mark_pause()) {
3930           // We have to do this before we notify the CM threads that
3931           // they can start working to make sure that all the
3932           // appropriate initialization is done on the CM object.
3933           concurrent_mark()->checkpointRootsInitialPost();
3934           set_marking_started();
3935           // Note that we don't actually trigger the CM thread at
3936           // this point. We do that later when we're sure that
3937           // the current thread has completed its logging output.
3938         }
3939 
3940         allocate_dummy_regions();
3941 
3942 #if YOUNG_LIST_VERBOSE
3943         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3944         _young_list->print();
3945         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3946 #endif // YOUNG_LIST_VERBOSE
3947 
3948         init_mutator_alloc_region();
3949 
3950         {
3951           size_t expand_bytes = g1_policy()->expansion_amount();
3952           if (expand_bytes > 0) {
3953             size_t bytes_before = capacity();
3954             // No need for an ergo verbose message here,
3955             // expansion_amount() does this when it returns a value > 0.
3956             if (!expand(expand_bytes)) {
3957               // We failed to expand the heap so let's verify that
3958               // committed/uncommitted amount match the backing store
3959               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3960               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3961             }
3962           }
3963         }
3964 
3965         // We redo the verificaiton but now wrt to the new CSet which
3966         // has just got initialized after the previous CSet was freed.
3967         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3968                                  true  /* verify_enqueued_buffers */,
3969                                  true  /* verify_thread_buffers */,
3970                                  true  /* verify_fingers */);
3971         _cm->note_end_of_gc();
3972 
3973         double end_time_sec = os::elapsedTime();
3974         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
3975         g1_policy()->record_pause_time_ms(pause_time_ms);
3976         int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3977                                 workers()->active_workers() : 1);
3978         g1_policy()->record_collection_pause_end(active_workers);
3979 
3980         MemoryService::track_memory_usage();
3981 
3982         // In prepare_for_verify() below we'll need to scan the deferred
3983         // update buffers to bring the RSets up-to-date if
3984         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3985         // the update buffers we'll probably need to scan cards on the
3986         // regions we just allocated to (i.e., the GC alloc
3987         // regions). However, during the last GC we called
3988         // set_saved_mark() on all the GC alloc regions, so card
3989         // scanning might skip the [saved_mark_word()...top()] area of
3990         // those regions (i.e., the area we allocated objects into
3991         // during the last GC). But it shouldn't. Given that
3992         // saved_mark_word() is conditional on whether the GC time stamp
3993         // on the region is current or not, by incrementing the GC time
3994         // stamp here we invalidate all the GC time stamps on all the
3995         // regions and saved_mark_word() will simply return top() for
3996         // all the regions. This is a nicer way of ensuring this rather
3997         // than iterating over the regions and fixing them. In fact, the
3998         // GC time stamp increment here also ensures that
3999         // saved_mark_word() will return top() between pauses, i.e.,
4000         // during concurrent refinement. So we don't need the
4001         // is_gc_active() check to decided which top to use when
4002         // scanning cards (see CR 7039627).
4003         increment_gc_time_stamp();
4004 
4005         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
4006           HandleMark hm;  // Discard invalid handles created during verification
4007           gclog_or_tty->print(" VerifyAfterGC:");
4008           prepare_for_verify();
4009           Universe::verify(/* silent      */ false,
4010                            /* option      */ VerifyOption_G1UsePrevMarking);
4011         }
4012 
4013         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4014         ref_processor_stw()->verify_no_references_recorded();
4015 
4016         // CM reference discovery will be re-enabled if necessary.
4017       }
4018 
4019       // We should do this after we potentially expand the heap so
4020       // that all the COMMIT events are generated before the end GC
4021       // event, and after we retire the GC alloc regions so that all
4022       // RETIRE events are generated before the end GC event.
4023       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4024 
4025       // We have to do this after we decide whether to expand the heap or not.
4026       g1_policy()->print_heap_transition();
4027 
4028       if (mark_in_progress()) {
4029         concurrent_mark()->update_g1_committed();
4030       }
4031 
4032 #ifdef TRACESPINNING
4033       ParallelTaskTerminator::print_termination_counts();
4034 #endif
4035 
4036       gc_epilogue(false);
4037     }
4038 
4039     // The closing of the inner scope, immediately above, will complete
4040     // logging at the "fine" level. The record_collection_pause_end() call
4041     // above will complete logging at the "finer" level.
4042     //
4043     // It is not yet to safe, however, to tell the concurrent mark to
4044     // start as we have some optional output below. We don't want the
4045     // output from the concurrent mark thread interfering with this
4046     // logging output either.
4047 
4048     _hrs.verify_optional();
4049     verify_region_sets_optional();
4050 
4051     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4052     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4053 
4054     print_heap_after_gc();
4055 
4056     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4057     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4058     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4059     // before any GC notifications are raised.
4060     g1mm()->update_sizes();
4061   }
4062 
4063   if (G1SummarizeRSetStats &&
4064       (G1SummarizeRSetStatsPeriod > 0) &&
4065       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
4066     g1_rem_set()->print_summary_info();
4067   }
4068 
4069   // It should now be safe to tell the concurrent mark thread to start
4070   // without its logging output interfering with the logging output
4071   // that came from the pause.
4072 
4073   if (should_start_conc_mark) {
4074     // CAUTION: after the doConcurrentMark() call below,
4075     // the concurrent marking thread(s) could be running
4076     // concurrently with us. Make sure that anything after
4077     // this point does not assume that we are the only GC thread
4078     // running. Note: of course, the actual marking work will
4079     // not start until the safepoint itself is released in
4080     // ConcurrentGCThread::safepoint_desynchronize().
4081     doConcurrentMark();
4082   }
4083 
4084   return true;
4085 }
4086 
4087 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4088 {
4089   size_t gclab_word_size;
4090   switch (purpose) {
4091     case GCAllocForSurvived:
4092       gclab_word_size = YoungPLABSize;
4093       break;
4094     case GCAllocForTenured:
4095       gclab_word_size = OldPLABSize;
4096       break;
4097     default:
4098       assert(false, "unknown GCAllocPurpose");
4099       gclab_word_size = OldPLABSize;
4100       break;
4101   }
4102   return gclab_word_size;
4103 }
4104 
4105 void G1CollectedHeap::init_mutator_alloc_region() {
4106   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4107   _mutator_alloc_region.init();
4108 }
4109 
4110 void G1CollectedHeap::release_mutator_alloc_region() {
4111   _mutator_alloc_region.release();
4112   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4113 }
4114 
4115 void G1CollectedHeap::init_gc_alloc_regions() {
4116   assert_at_safepoint(true /* should_be_vm_thread */);
4117 
4118   _survivor_gc_alloc_region.init();
4119   _old_gc_alloc_region.init();
4120   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4121   _retained_old_gc_alloc_region = NULL;
4122 
4123   // We will discard the current GC alloc region if:
4124   // a) it's in the collection set (it can happen!),
4125   // b) it's already full (no point in using it),
4126   // c) it's empty (this means that it was emptied during
4127   // a cleanup and it should be on the free list now), or
4128   // d) it's humongous (this means that it was emptied
4129   // during a cleanup and was added to the free list, but
4130   // has been subseqently used to allocate a humongous
4131   // object that may be less than the region size).
4132   if (retained_region != NULL &&
4133       !retained_region->in_collection_set() &&
4134       !(retained_region->top() == retained_region->end()) &&
4135       !retained_region->is_empty() &&
4136       !retained_region->isHumongous()) {
4137     retained_region->set_saved_mark();
4138     // The retained region was added to the old region set when it was
4139     // retired. We have to remove it now, since we don't allow regions
4140     // we allocate to in the region sets. We'll re-add it later, when
4141     // it's retired again.
4142     _old_set.remove(retained_region);
4143     bool during_im = g1_policy()->during_initial_mark_pause();
4144     retained_region->note_start_of_copying(during_im);
4145     _old_gc_alloc_region.set(retained_region);
4146     _hr_printer.reuse(retained_region);
4147   }
4148 }
4149 
4150 void G1CollectedHeap::release_gc_alloc_regions() {
4151   _survivor_gc_alloc_region.release();
4152   // If we have an old GC alloc region to release, we'll save it in
4153   // _retained_old_gc_alloc_region. If we don't
4154   // _retained_old_gc_alloc_region will become NULL. This is what we
4155   // want either way so no reason to check explicitly for either
4156   // condition.
4157   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4158 }
4159 
4160 void G1CollectedHeap::abandon_gc_alloc_regions() {
4161   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4162   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4163   _retained_old_gc_alloc_region = NULL;
4164 }
4165 
4166 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4167   _drain_in_progress = false;
4168   set_evac_failure_closure(cl);
4169   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4170 }
4171 
4172 void G1CollectedHeap::finalize_for_evac_failure() {
4173   assert(_evac_failure_scan_stack != NULL &&
4174          _evac_failure_scan_stack->length() == 0,
4175          "Postcondition");
4176   assert(!_drain_in_progress, "Postcondition");
4177   delete _evac_failure_scan_stack;
4178   _evac_failure_scan_stack = NULL;
4179 }
4180 
4181 void G1CollectedHeap::remove_self_forwarding_pointers() {
4182   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4183 
4184   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4185 
4186   if (G1CollectedHeap::use_parallel_gc_threads()) {
4187     set_par_threads();
4188     workers()->run_task(&rsfp_task);
4189     set_par_threads(0);
4190   } else {
4191     rsfp_task.work(0);
4192   }
4193 
4194   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4195 
4196   // Reset the claim values in the regions in the collection set.
4197   reset_cset_heap_region_claim_values();
4198 
4199   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4200 
4201   // Now restore saved marks, if any.
4202   if (_objs_with_preserved_marks != NULL) {
4203     assert(_preserved_marks_of_objs != NULL, "Both or none.");
4204     guarantee(_objs_with_preserved_marks->length() ==
4205               _preserved_marks_of_objs->length(), "Both or none.");
4206     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
4207       oop obj   = _objs_with_preserved_marks->at(i);
4208       markOop m = _preserved_marks_of_objs->at(i);
4209       obj->set_mark(m);
4210     }
4211 
4212     // Delete the preserved marks growable arrays (allocated on the C heap).
4213     delete _objs_with_preserved_marks;
4214     delete _preserved_marks_of_objs;
4215     _objs_with_preserved_marks = NULL;
4216     _preserved_marks_of_objs = NULL;
4217   }
4218 }
4219 
4220 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4221   _evac_failure_scan_stack->push(obj);
4222 }
4223 
4224 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4225   assert(_evac_failure_scan_stack != NULL, "precondition");
4226 
4227   while (_evac_failure_scan_stack->length() > 0) {
4228      oop obj = _evac_failure_scan_stack->pop();
4229      _evac_failure_closure->set_region(heap_region_containing(obj));
4230      obj->oop_iterate_backwards(_evac_failure_closure);
4231   }
4232 }
4233 
4234 oop
4235 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4236                                                oop old) {
4237   assert(obj_in_cs(old),
4238          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4239                  (HeapWord*) old));
4240   markOop m = old->mark();
4241   oop forward_ptr = old->forward_to_atomic(old);
4242   if (forward_ptr == NULL) {
4243     // Forward-to-self succeeded.
4244 
4245     if (_evac_failure_closure != cl) {
4246       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4247       assert(!_drain_in_progress,
4248              "Should only be true while someone holds the lock.");
4249       // Set the global evac-failure closure to the current thread's.
4250       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4251       set_evac_failure_closure(cl);
4252       // Now do the common part.
4253       handle_evacuation_failure_common(old, m);
4254       // Reset to NULL.
4255       set_evac_failure_closure(NULL);
4256     } else {
4257       // The lock is already held, and this is recursive.
4258       assert(_drain_in_progress, "This should only be the recursive case.");
4259       handle_evacuation_failure_common(old, m);
4260     }
4261     return old;
4262   } else {
4263     // Forward-to-self failed. Either someone else managed to allocate
4264     // space for this object (old != forward_ptr) or they beat us in
4265     // self-forwarding it (old == forward_ptr).
4266     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4267            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4268                    "should not be in the CSet",
4269                    (HeapWord*) old, (HeapWord*) forward_ptr));
4270     return forward_ptr;
4271   }
4272 }
4273 
4274 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4275   set_evacuation_failed(true);
4276 
4277   preserve_mark_if_necessary(old, m);
4278 
4279   HeapRegion* r = heap_region_containing(old);
4280   if (!r->evacuation_failed()) {
4281     r->set_evacuation_failed(true);
4282     _hr_printer.evac_failure(r);
4283   }
4284 
4285   push_on_evac_failure_scan_stack(old);
4286 
4287   if (!_drain_in_progress) {
4288     // prevent recursion in copy_to_survivor_space()
4289     _drain_in_progress = true;
4290     drain_evac_failure_scan_stack();
4291     _drain_in_progress = false;
4292   }
4293 }
4294 
4295 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4296   assert(evacuation_failed(), "Oversaving!");
4297   // We want to call the "for_promotion_failure" version only in the
4298   // case of a promotion failure.
4299   if (m->must_be_preserved_for_promotion_failure(obj)) {
4300     if (_objs_with_preserved_marks == NULL) {
4301       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4302       _objs_with_preserved_marks =
4303         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4304       _preserved_marks_of_objs =
4305         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
4306     }
4307     _objs_with_preserved_marks->push(obj);
4308     _preserved_marks_of_objs->push(m);
4309   }
4310 }
4311 
4312 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4313                                                   size_t word_size) {
4314   if (purpose == GCAllocForSurvived) {
4315     HeapWord* result = survivor_attempt_allocation(word_size);
4316     if (result != NULL) {
4317       return result;
4318     } else {
4319       // Let's try to allocate in the old gen in case we can fit the
4320       // object there.
4321       return old_attempt_allocation(word_size);
4322     }
4323   } else {
4324     assert(purpose ==  GCAllocForTenured, "sanity");
4325     HeapWord* result = old_attempt_allocation(word_size);
4326     if (result != NULL) {
4327       return result;
4328     } else {
4329       // Let's try to allocate in the survivors in case we can fit the
4330       // object there.
4331       return survivor_attempt_allocation(word_size);
4332     }
4333   }
4334 
4335   ShouldNotReachHere();
4336   // Trying to keep some compilers happy.
4337   return NULL;
4338 }
4339 
4340 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4341   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4342 
4343 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4344   : _g1h(g1h),
4345     _refs(g1h->task_queue(queue_num)),
4346     _dcq(&g1h->dirty_card_queue_set()),
4347     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4348     _g1_rem(g1h->g1_rem_set()),
4349     _hash_seed(17), _queue_num(queue_num),
4350     _term_attempts(0),
4351     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4352     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4353     _age_table(false),
4354     _strong_roots_time(0), _term_time(0),
4355     _alloc_buffer_waste(0), _undo_waste(0) {
4356   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4357   // we "sacrifice" entry 0 to keep track of surviving bytes for
4358   // non-young regions (where the age is -1)
4359   // We also add a few elements at the beginning and at the end in
4360   // an attempt to eliminate cache contention
4361   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4362   uint array_length = PADDING_ELEM_NUM +
4363                       real_length +
4364                       PADDING_ELEM_NUM;
4365   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
4366   if (_surviving_young_words_base == NULL)
4367     vm_exit_out_of_memory(array_length * sizeof(size_t),
4368                           "Not enough space for young surv histo.");
4369   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4370   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4371 
4372   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4373   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4374 
4375   _start = os::elapsedTime();
4376 }
4377 
4378 void
4379 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4380 {
4381   st->print_raw_cr("GC Termination Stats");
4382   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4383                    " ------waste (KiB)------");
4384   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4385                    "  total   alloc    undo");
4386   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4387                    " ------- ------- -------");
4388 }
4389 
4390 void
4391 G1ParScanThreadState::print_termination_stats(int i,
4392                                               outputStream* const st) const
4393 {
4394   const double elapsed_ms = elapsed_time() * 1000.0;
4395   const double s_roots_ms = strong_roots_time() * 1000.0;
4396   const double term_ms    = term_time() * 1000.0;
4397   st->print_cr("%3d %9.2f %9.2f %6.2f "
4398                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4399                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4400                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4401                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4402                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4403                alloc_buffer_waste() * HeapWordSize / K,
4404                undo_waste() * HeapWordSize / K);
4405 }
4406 
4407 #ifdef ASSERT
4408 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4409   assert(ref != NULL, "invariant");
4410   assert(UseCompressedOops, "sanity");
4411   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4412   oop p = oopDesc::load_decode_heap_oop(ref);
4413   assert(_g1h->is_in_g1_reserved(p),
4414          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4415   return true;
4416 }
4417 
4418 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4419   assert(ref != NULL, "invariant");
4420   if (has_partial_array_mask(ref)) {
4421     // Must be in the collection set--it's already been copied.
4422     oop p = clear_partial_array_mask(ref);
4423     assert(_g1h->obj_in_cs(p),
4424            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4425   } else {
4426     oop p = oopDesc::load_decode_heap_oop(ref);
4427     assert(_g1h->is_in_g1_reserved(p),
4428            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4429   }
4430   return true;
4431 }
4432 
4433 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4434   if (ref.is_narrow()) {
4435     return verify_ref((narrowOop*) ref);
4436   } else {
4437     return verify_ref((oop*) ref);
4438   }
4439 }
4440 #endif // ASSERT
4441 
4442 void G1ParScanThreadState::trim_queue() {
4443   assert(_evac_cl != NULL, "not set");
4444   assert(_evac_failure_cl != NULL, "not set");
4445   assert(_partial_scan_cl != NULL, "not set");
4446 
4447   StarTask ref;
4448   do {
4449     // Drain the overflow stack first, so other threads can steal.
4450     while (refs()->pop_overflow(ref)) {
4451       deal_with_reference(ref);
4452     }
4453 
4454     while (refs()->pop_local(ref)) {
4455       deal_with_reference(ref);
4456     }
4457   } while (!refs()->is_empty());
4458 }
4459 
4460 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4461                                      G1ParScanThreadState* par_scan_state) :
4462   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4463   _par_scan_state(par_scan_state),
4464   _worker_id(par_scan_state->queue_num()),
4465   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4466   _mark_in_progress(_g1->mark_in_progress()) { }
4467 
4468 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4469 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4470 #ifdef ASSERT
4471   HeapRegion* hr = _g1->heap_region_containing(obj);
4472   assert(hr != NULL, "sanity");
4473   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4474 #endif // ASSERT
4475 
4476   // We know that the object is not moving so it's safe to read its size.
4477   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4478 }
4479 
4480 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4481 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4482   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4483 #ifdef ASSERT
4484   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4485   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4486   assert(from_obj != to_obj, "should not be self-forwarded");
4487 
4488   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4489   assert(from_hr != NULL, "sanity");
4490   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4491 
4492   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4493   assert(to_hr != NULL, "sanity");
4494   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4495 #endif // ASSERT
4496 
4497   // The object might be in the process of being copied by another
4498   // worker so we cannot trust that its to-space image is
4499   // well-formed. So we have to read its size from its from-space
4500   // image which we know should not be changing.
4501   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4502 }
4503 
4504 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4505 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4506   ::copy_to_survivor_space(oop old) {
4507   size_t word_sz = old->size();
4508   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4509   // +1 to make the -1 indexes valid...
4510   int       young_index = from_region->young_index_in_cset()+1;
4511   assert( (from_region->is_young() && young_index >  0) ||
4512          (!from_region->is_young() && young_index == 0), "invariant" );
4513   G1CollectorPolicy* g1p = _g1->g1_policy();
4514   markOop m = old->mark();
4515   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4516                                            : m->age();
4517   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4518                                                              word_sz);
4519   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4520   oop       obj     = oop(obj_ptr);
4521 
4522   if (obj_ptr == NULL) {
4523     // This will either forward-to-self, or detect that someone else has
4524     // installed a forwarding pointer.
4525     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4526     return _g1->handle_evacuation_failure_par(cl, old);
4527   }
4528 
4529   // We're going to allocate linearly, so might as well prefetch ahead.
4530   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4531 
4532   oop forward_ptr = old->forward_to_atomic(obj);
4533   if (forward_ptr == NULL) {
4534     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4535     if (g1p->track_object_age(alloc_purpose)) {
4536       // We could simply do obj->incr_age(). However, this causes a
4537       // performance issue. obj->incr_age() will first check whether
4538       // the object has a displaced mark by checking its mark word;
4539       // getting the mark word from the new location of the object
4540       // stalls. So, given that we already have the mark word and we
4541       // are about to install it anyway, it's better to increase the
4542       // age on the mark word, when the object does not have a
4543       // displaced mark word. We're not expecting many objects to have
4544       // a displaced marked word, so that case is not optimized
4545       // further (it could be...) and we simply call obj->incr_age().
4546 
4547       if (m->has_displaced_mark_helper()) {
4548         // in this case, we have to install the mark word first,
4549         // otherwise obj looks to be forwarded (the old mark word,
4550         // which contains the forward pointer, was copied)
4551         obj->set_mark(m);
4552         obj->incr_age();
4553       } else {
4554         m = m->incr_age();
4555         obj->set_mark(m);
4556       }
4557       _par_scan_state->age_table()->add(obj, word_sz);
4558     } else {
4559       obj->set_mark(m);
4560     }
4561 
4562     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4563     surv_young_words[young_index] += word_sz;
4564 
4565     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4566       // We keep track of the next start index in the length field of
4567       // the to-space object. The actual length can be found in the
4568       // length field of the from-space object.
4569       arrayOop(obj)->set_length(0);
4570       oop* old_p = set_partial_array_mask(old);
4571       _par_scan_state->push_on_queue(old_p);
4572     } else {
4573       // No point in using the slower heap_region_containing() method,
4574       // given that we know obj is in the heap.
4575       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4576       obj->oop_iterate_backwards(&_scanner);
4577     }
4578   } else {
4579     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4580     obj = forward_ptr;
4581   }
4582   return obj;
4583 }
4584 
4585 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4586 template <class T>
4587 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4588 ::do_oop_work(T* p) {
4589   oop obj = oopDesc::load_decode_heap_oop(p);
4590   assert(barrier != G1BarrierRS || obj != NULL,
4591          "Precondition: G1BarrierRS implies obj is non-NULL");
4592 
4593   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4594 
4595   // here the null check is implicit in the cset_fast_test() test
4596   if (_g1->in_cset_fast_test(obj)) {
4597     oop forwardee;
4598     if (obj->is_forwarded()) {
4599       forwardee = obj->forwardee();
4600     } else {
4601       forwardee = copy_to_survivor_space(obj);
4602     }
4603     assert(forwardee != NULL, "forwardee should not be NULL");
4604     oopDesc::encode_store_heap_oop(p, forwardee);
4605     if (do_mark_object && forwardee != obj) {
4606       // If the object is self-forwarded we don't need to explicitly
4607       // mark it, the evacuation failure protocol will do so.
4608       mark_forwarded_object(obj, forwardee);
4609     }
4610 
4611     // When scanning the RS, we only care about objs in CS.
4612     if (barrier == G1BarrierRS) {
4613       _par_scan_state->update_rs(_from, p, _worker_id);
4614     }
4615   } else {
4616     // The object is not in collection set. If we're a root scanning
4617     // closure during an initial mark pause (i.e. do_mark_object will
4618     // be true) then attempt to mark the object.
4619     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4620       mark_object(obj);
4621     }
4622   }
4623 
4624   if (barrier == G1BarrierEvac && obj != NULL) {
4625     _par_scan_state->update_rs(_from, p, _worker_id);
4626   }
4627 
4628   if (do_gen_barrier && obj != NULL) {
4629     par_do_barrier(p);
4630   }
4631 }
4632 
4633 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4634 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4635 
4636 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4637   assert(has_partial_array_mask(p), "invariant");
4638   oop from_obj = clear_partial_array_mask(p);
4639 
4640   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4641   assert(from_obj->is_objArray(), "must be obj array");
4642   objArrayOop from_obj_array = objArrayOop(from_obj);
4643   // The from-space object contains the real length.
4644   int length                 = from_obj_array->length();
4645 
4646   assert(from_obj->is_forwarded(), "must be forwarded");
4647   oop to_obj                 = from_obj->forwardee();
4648   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4649   objArrayOop to_obj_array   = objArrayOop(to_obj);
4650   // We keep track of the next start index in the length field of the
4651   // to-space object.
4652   int next_index             = to_obj_array->length();
4653   assert(0 <= next_index && next_index < length,
4654          err_msg("invariant, next index: %d, length: %d", next_index, length));
4655 
4656   int start                  = next_index;
4657   int end                    = length;
4658   int remainder              = end - start;
4659   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4660   if (remainder > 2 * ParGCArrayScanChunk) {
4661     end = start + ParGCArrayScanChunk;
4662     to_obj_array->set_length(end);
4663     // Push the remainder before we process the range in case another
4664     // worker has run out of things to do and can steal it.
4665     oop* from_obj_p = set_partial_array_mask(from_obj);
4666     _par_scan_state->push_on_queue(from_obj_p);
4667   } else {
4668     assert(length == end, "sanity");
4669     // We'll process the final range for this object. Restore the length
4670     // so that the heap remains parsable in case of evacuation failure.
4671     to_obj_array->set_length(end);
4672   }
4673   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4674   // Process indexes [start,end). It will also process the header
4675   // along with the first chunk (i.e., the chunk with start == 0).
4676   // Note that at this point the length field of to_obj_array is not
4677   // correct given that we are using it to keep track of the next
4678   // start index. oop_iterate_range() (thankfully!) ignores the length
4679   // field and only relies on the start / end parameters.  It does
4680   // however return the size of the object which will be incorrect. So
4681   // we have to ignore it even if we wanted to use it.
4682   to_obj_array->oop_iterate_range(&_scanner, start, end);
4683 }
4684 
4685 class G1ParEvacuateFollowersClosure : public VoidClosure {
4686 protected:
4687   G1CollectedHeap*              _g1h;
4688   G1ParScanThreadState*         _par_scan_state;
4689   RefToScanQueueSet*            _queues;
4690   ParallelTaskTerminator*       _terminator;
4691 
4692   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4693   RefToScanQueueSet*      queues()         { return _queues; }
4694   ParallelTaskTerminator* terminator()     { return _terminator; }
4695 
4696 public:
4697   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4698                                 G1ParScanThreadState* par_scan_state,
4699                                 RefToScanQueueSet* queues,
4700                                 ParallelTaskTerminator* terminator)
4701     : _g1h(g1h), _par_scan_state(par_scan_state),
4702       _queues(queues), _terminator(terminator) {}
4703 
4704   void do_void();
4705 
4706 private:
4707   inline bool offer_termination();
4708 };
4709 
4710 bool G1ParEvacuateFollowersClosure::offer_termination() {
4711   G1ParScanThreadState* const pss = par_scan_state();
4712   pss->start_term_time();
4713   const bool res = terminator()->offer_termination();
4714   pss->end_term_time();
4715   return res;
4716 }
4717 
4718 void G1ParEvacuateFollowersClosure::do_void() {
4719   StarTask stolen_task;
4720   G1ParScanThreadState* const pss = par_scan_state();
4721   pss->trim_queue();
4722 
4723   do {
4724     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4725       assert(pss->verify_task(stolen_task), "sanity");
4726       if (stolen_task.is_narrow()) {
4727         pss->deal_with_reference((narrowOop*) stolen_task);
4728       } else {
4729         pss->deal_with_reference((oop*) stolen_task);
4730       }
4731 
4732       // We've just processed a reference and we might have made
4733       // available new entries on the queues. So we have to make sure
4734       // we drain the queues as necessary.
4735       pss->trim_queue();
4736     }
4737   } while (!offer_termination());
4738 
4739   pss->retire_alloc_buffers();
4740 }
4741 
4742 class G1ParTask : public AbstractGangTask {
4743 protected:
4744   G1CollectedHeap*       _g1h;
4745   RefToScanQueueSet      *_queues;
4746   ParallelTaskTerminator _terminator;
4747   uint _n_workers;
4748 
4749   Mutex _stats_lock;
4750   Mutex* stats_lock() { return &_stats_lock; }
4751 
4752   size_t getNCards() {
4753     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4754       / G1BlockOffsetSharedArray::N_bytes;
4755   }
4756 
4757 public:
4758   G1ParTask(G1CollectedHeap* g1h,
4759             RefToScanQueueSet *task_queues)
4760     : AbstractGangTask("G1 collection"),
4761       _g1h(g1h),
4762       _queues(task_queues),
4763       _terminator(0, _queues),
4764       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4765   {}
4766 
4767   RefToScanQueueSet* queues() { return _queues; }
4768 
4769   RefToScanQueue *work_queue(int i) {
4770     return queues()->queue(i);
4771   }
4772 
4773   ParallelTaskTerminator* terminator() { return &_terminator; }
4774 
4775   virtual void set_for_termination(int active_workers) {
4776     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4777     // in the young space (_par_seq_tasks) in the G1 heap
4778     // for SequentialSubTasksDone.
4779     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4780     // both of which need setting by set_n_termination().
4781     _g1h->SharedHeap::set_n_termination(active_workers);
4782     _g1h->set_n_termination(active_workers);
4783     terminator()->reset_for_reuse(active_workers);
4784     _n_workers = active_workers;
4785   }
4786 
4787   void work(uint worker_id) {
4788     if (worker_id >= _n_workers) return;  // no work needed this round
4789 
4790     double start_time_ms = os::elapsedTime() * 1000.0;
4791     _g1h->g1_policy()->record_gc_worker_start_time(worker_id, start_time_ms);
4792 
4793     {
4794       ResourceMark rm;
4795       HandleMark   hm;
4796 
4797       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4798 
4799       G1ParScanThreadState            pss(_g1h, worker_id);
4800       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4801       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4802       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4803 
4804       pss.set_evac_closure(&scan_evac_cl);
4805       pss.set_evac_failure_closure(&evac_failure_cl);
4806       pss.set_partial_scan_closure(&partial_scan_cl);
4807 
4808       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4809       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4810 
4811       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4812       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4813 
4814       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4815       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4816 
4817       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4818         // We also need to mark copied objects.
4819         scan_root_cl = &scan_mark_root_cl;
4820         scan_perm_cl = &scan_mark_perm_cl;
4821       }
4822 
4823       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4824 
4825       pss.start_strong_roots();
4826       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4827                                     SharedHeap::SO_AllClasses,
4828                                     scan_root_cl,
4829                                     &push_heap_rs_cl,
4830                                     scan_perm_cl,
4831                                     worker_id);
4832       pss.end_strong_roots();
4833 
4834       {
4835         double start = os::elapsedTime();
4836         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4837         evac.do_void();
4838         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4839         double term_ms = pss.term_time()*1000.0;
4840         _g1h->g1_policy()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
4841         _g1h->g1_policy()->record_termination(worker_id, term_ms, pss.term_attempts());
4842       }
4843       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4844       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4845 
4846       if (ParallelGCVerbose) {
4847         MutexLocker x(stats_lock());
4848         pss.print_termination_stats(worker_id);
4849       }
4850 
4851       assert(pss.refs()->is_empty(), "should be empty");
4852 
4853       // Close the inner scope so that the ResourceMark and HandleMark
4854       // destructors are executed here and are included as part of the
4855       // "GC Worker Time".
4856     }
4857 
4858     double end_time_ms = os::elapsedTime() * 1000.0;
4859     _g1h->g1_policy()->record_gc_worker_end_time(worker_id, end_time_ms);
4860   }
4861 };
4862 
4863 // *** Common G1 Evacuation Stuff
4864 
4865 // Closures that support the filtering of CodeBlobs scanned during
4866 // external root scanning.
4867 
4868 // Closure applied to reference fields in code blobs (specifically nmethods)
4869 // to determine whether an nmethod contains references that point into
4870 // the collection set. Used as a predicate when walking code roots so
4871 // that only nmethods that point into the collection set are added to the
4872 // 'marked' list.
4873 
4874 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
4875 
4876   class G1PointsIntoCSOopClosure : public OopClosure {
4877     G1CollectedHeap* _g1;
4878     bool _points_into_cs;
4879   public:
4880     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
4881       _g1(g1), _points_into_cs(false) { }
4882 
4883     bool points_into_cs() const { return _points_into_cs; }
4884 
4885     template <class T>
4886     void do_oop_nv(T* p) {
4887       if (!_points_into_cs) {
4888         T heap_oop = oopDesc::load_heap_oop(p);
4889         if (!oopDesc::is_null(heap_oop) &&
4890             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
4891           _points_into_cs = true;
4892         }
4893       }
4894     }
4895 
4896     virtual void do_oop(oop* p)        { do_oop_nv(p); }
4897     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
4898   };
4899 
4900   G1CollectedHeap* _g1;
4901 
4902 public:
4903   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
4904     CodeBlobToOopClosure(cl, true), _g1(g1) { }
4905 
4906   virtual void do_code_blob(CodeBlob* cb) {
4907     nmethod* nm = cb->as_nmethod_or_null();
4908     if (nm != NULL && !(nm->test_oops_do_mark())) {
4909       G1PointsIntoCSOopClosure predicate_cl(_g1);
4910       nm->oops_do(&predicate_cl);
4911 
4912       if (predicate_cl.points_into_cs()) {
4913         // At least one of the reference fields or the oop relocations
4914         // in the nmethod points into the collection set. We have to
4915         // 'mark' this nmethod.
4916         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
4917         // or MarkingCodeBlobClosure::do_code_blob() change.
4918         if (!nm->test_set_oops_do_mark()) {
4919           do_newly_marked_nmethod(nm);
4920         }
4921       }
4922     }
4923   }
4924 };
4925 
4926 // This method is run in a GC worker.
4927 
4928 void
4929 G1CollectedHeap::
4930 g1_process_strong_roots(bool collecting_perm_gen,
4931                         ScanningOption so,
4932                         OopClosure* scan_non_heap_roots,
4933                         OopsInHeapRegionClosure* scan_rs,
4934                         OopsInGenClosure* scan_perm,
4935                         int worker_i) {
4936 
4937   // First scan the strong roots, including the perm gen.
4938   double ext_roots_start = os::elapsedTime();
4939   double closure_app_time_sec = 0.0;
4940 
4941   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4942   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4943   buf_scan_perm.set_generation(perm_gen());
4944 
4945   // Walk the code cache w/o buffering, because StarTask cannot handle
4946   // unaligned oop locations.
4947   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
4948 
4949   process_strong_roots(false, // no scoping; this is parallel code
4950                        collecting_perm_gen, so,
4951                        &buf_scan_non_heap_roots,
4952                        &eager_scan_code_roots,
4953                        &buf_scan_perm);
4954 
4955   // Now the CM ref_processor roots.
4956   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4957     // We need to treat the discovered reference lists of the
4958     // concurrent mark ref processor as roots and keep entries
4959     // (which are added by the marking threads) on them live
4960     // until they can be processed at the end of marking.
4961     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4962   }
4963 
4964   // Finish up any enqueued closure apps (attributed as object copy time).
4965   buf_scan_non_heap_roots.done();
4966   buf_scan_perm.done();
4967 
4968   double ext_roots_end = os::elapsedTime();
4969 
4970   g1_policy()->reset_obj_copy_time(worker_i);
4971   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
4972                                 buf_scan_non_heap_roots.closure_app_seconds();
4973   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4974 
4975   double ext_root_time_ms =
4976     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4977 
4978   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4979 
4980   // During conc marking we have to filter the per-thread SATB buffers
4981   // to make sure we remove any oops into the CSet (which will show up
4982   // as implicitly live).
4983   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4984     if (mark_in_progress()) {
4985       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4986     }
4987   }
4988   double satb_filtering_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4989   g1_policy()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4990 
4991   // Now scan the complement of the collection set.
4992   if (scan_rs != NULL) {
4993     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4994   }
4995 
4996   _process_strong_tasks->all_tasks_completed();
4997 }
4998 
4999 void
5000 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
5001                                        OopClosure* non_root_closure) {
5002   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5003   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
5004 }
5005 
5006 // Weak Reference Processing support
5007 
5008 // An always "is_alive" closure that is used to preserve referents.
5009 // If the object is non-null then it's alive.  Used in the preservation
5010 // of referent objects that are pointed to by reference objects
5011 // discovered by the CM ref processor.
5012 class G1AlwaysAliveClosure: public BoolObjectClosure {
5013   G1CollectedHeap* _g1;
5014 public:
5015   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5016   void do_object(oop p) { assert(false, "Do not call."); }
5017   bool do_object_b(oop p) {
5018     if (p != NULL) {
5019       return true;
5020     }
5021     return false;
5022   }
5023 };
5024 
5025 bool G1STWIsAliveClosure::do_object_b(oop p) {
5026   // An object is reachable if it is outside the collection set,
5027   // or is inside and copied.
5028   return !_g1->obj_in_cs(p) || p->is_forwarded();
5029 }
5030 
5031 // Non Copying Keep Alive closure
5032 class G1KeepAliveClosure: public OopClosure {
5033   G1CollectedHeap* _g1;
5034 public:
5035   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5036   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5037   void do_oop(      oop* p) {
5038     oop obj = *p;
5039 
5040     if (_g1->obj_in_cs(obj)) {
5041       assert( obj->is_forwarded(), "invariant" );
5042       *p = obj->forwardee();
5043     }
5044   }
5045 };
5046 
5047 // Copying Keep Alive closure - can be called from both
5048 // serial and parallel code as long as different worker
5049 // threads utilize different G1ParScanThreadState instances
5050 // and different queues.
5051 
5052 class G1CopyingKeepAliveClosure: public OopClosure {
5053   G1CollectedHeap*         _g1h;
5054   OopClosure*              _copy_non_heap_obj_cl;
5055   OopsInHeapRegionClosure* _copy_perm_obj_cl;
5056   G1ParScanThreadState*    _par_scan_state;
5057 
5058 public:
5059   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5060                             OopClosure* non_heap_obj_cl,
5061                             OopsInHeapRegionClosure* perm_obj_cl,
5062                             G1ParScanThreadState* pss):
5063     _g1h(g1h),
5064     _copy_non_heap_obj_cl(non_heap_obj_cl),
5065     _copy_perm_obj_cl(perm_obj_cl),
5066     _par_scan_state(pss)
5067   {}
5068 
5069   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5070   virtual void do_oop(      oop* p) { do_oop_work(p); }
5071 
5072   template <class T> void do_oop_work(T* p) {
5073     oop obj = oopDesc::load_decode_heap_oop(p);
5074 
5075     if (_g1h->obj_in_cs(obj)) {
5076       // If the referent object has been forwarded (either copied
5077       // to a new location or to itself in the event of an
5078       // evacuation failure) then we need to update the reference
5079       // field and, if both reference and referent are in the G1
5080       // heap, update the RSet for the referent.
5081       //
5082       // If the referent has not been forwarded then we have to keep
5083       // it alive by policy. Therefore we have copy the referent.
5084       //
5085       // If the reference field is in the G1 heap then we can push
5086       // on the PSS queue. When the queue is drained (after each
5087       // phase of reference processing) the object and it's followers
5088       // will be copied, the reference field set to point to the
5089       // new location, and the RSet updated. Otherwise we need to
5090       // use the the non-heap or perm closures directly to copy
5091       // the refernt object and update the pointer, while avoiding
5092       // updating the RSet.
5093 
5094       if (_g1h->is_in_g1_reserved(p)) {
5095         _par_scan_state->push_on_queue(p);
5096       } else {
5097         // The reference field is not in the G1 heap.
5098         if (_g1h->perm_gen()->is_in(p)) {
5099           _copy_perm_obj_cl->do_oop(p);
5100         } else {
5101           _copy_non_heap_obj_cl->do_oop(p);
5102         }
5103       }
5104     }
5105   }
5106 };
5107 
5108 // Serial drain queue closure. Called as the 'complete_gc'
5109 // closure for each discovered list in some of the
5110 // reference processing phases.
5111 
5112 class G1STWDrainQueueClosure: public VoidClosure {
5113 protected:
5114   G1CollectedHeap* _g1h;
5115   G1ParScanThreadState* _par_scan_state;
5116 
5117   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5118 
5119 public:
5120   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5121     _g1h(g1h),
5122     _par_scan_state(pss)
5123   { }
5124 
5125   void do_void() {
5126     G1ParScanThreadState* const pss = par_scan_state();
5127     pss->trim_queue();
5128   }
5129 };
5130 
5131 // Parallel Reference Processing closures
5132 
5133 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5134 // processing during G1 evacuation pauses.
5135 
5136 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5137 private:
5138   G1CollectedHeap*   _g1h;
5139   RefToScanQueueSet* _queues;
5140   FlexibleWorkGang*  _workers;
5141   int                _active_workers;
5142 
5143 public:
5144   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5145                         FlexibleWorkGang* workers,
5146                         RefToScanQueueSet *task_queues,
5147                         int n_workers) :
5148     _g1h(g1h),
5149     _queues(task_queues),
5150     _workers(workers),
5151     _active_workers(n_workers)
5152   {
5153     assert(n_workers > 0, "shouldn't call this otherwise");
5154   }
5155 
5156   // Executes the given task using concurrent marking worker threads.
5157   virtual void execute(ProcessTask& task);
5158   virtual void execute(EnqueueTask& task);
5159 };
5160 
5161 // Gang task for possibly parallel reference processing
5162 
5163 class G1STWRefProcTaskProxy: public AbstractGangTask {
5164   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5165   ProcessTask&     _proc_task;
5166   G1CollectedHeap* _g1h;
5167   RefToScanQueueSet *_task_queues;
5168   ParallelTaskTerminator* _terminator;
5169 
5170 public:
5171   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5172                      G1CollectedHeap* g1h,
5173                      RefToScanQueueSet *task_queues,
5174                      ParallelTaskTerminator* terminator) :
5175     AbstractGangTask("Process reference objects in parallel"),
5176     _proc_task(proc_task),
5177     _g1h(g1h),
5178     _task_queues(task_queues),
5179     _terminator(terminator)
5180   {}
5181 
5182   virtual void work(uint worker_id) {
5183     // The reference processing task executed by a single worker.
5184     ResourceMark rm;
5185     HandleMark   hm;
5186 
5187     G1STWIsAliveClosure is_alive(_g1h);
5188 
5189     G1ParScanThreadState pss(_g1h, worker_id);
5190 
5191     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5192     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5193     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5194 
5195     pss.set_evac_closure(&scan_evac_cl);
5196     pss.set_evac_failure_closure(&evac_failure_cl);
5197     pss.set_partial_scan_closure(&partial_scan_cl);
5198 
5199     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5200     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5201 
5202     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5203     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5204 
5205     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5206     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5207 
5208     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5209       // We also need to mark copied objects.
5210       copy_non_heap_cl = &copy_mark_non_heap_cl;
5211       copy_perm_cl = &copy_mark_perm_cl;
5212     }
5213 
5214     // Keep alive closure.
5215     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5216 
5217     // Complete GC closure
5218     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5219 
5220     // Call the reference processing task's work routine.
5221     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5222 
5223     // Note we cannot assert that the refs array is empty here as not all
5224     // of the processing tasks (specifically phase2 - pp2_work) execute
5225     // the complete_gc closure (which ordinarily would drain the queue) so
5226     // the queue may not be empty.
5227   }
5228 };
5229 
5230 // Driver routine for parallel reference processing.
5231 // Creates an instance of the ref processing gang
5232 // task and has the worker threads execute it.
5233 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5234   assert(_workers != NULL, "Need parallel worker threads.");
5235 
5236   ParallelTaskTerminator terminator(_active_workers, _queues);
5237   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5238 
5239   _g1h->set_par_threads(_active_workers);
5240   _workers->run_task(&proc_task_proxy);
5241   _g1h->set_par_threads(0);
5242 }
5243 
5244 // Gang task for parallel reference enqueueing.
5245 
5246 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5247   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5248   EnqueueTask& _enq_task;
5249 
5250 public:
5251   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5252     AbstractGangTask("Enqueue reference objects in parallel"),
5253     _enq_task(enq_task)
5254   { }
5255 
5256   virtual void work(uint worker_id) {
5257     _enq_task.work(worker_id);
5258   }
5259 };
5260 
5261 // Driver routine for parallel reference enqueing.
5262 // Creates an instance of the ref enqueueing gang
5263 // task and has the worker threads execute it.
5264 
5265 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5266   assert(_workers != NULL, "Need parallel worker threads.");
5267 
5268   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5269 
5270   _g1h->set_par_threads(_active_workers);
5271   _workers->run_task(&enq_task_proxy);
5272   _g1h->set_par_threads(0);
5273 }
5274 
5275 // End of weak reference support closures
5276 
5277 // Abstract task used to preserve (i.e. copy) any referent objects
5278 // that are in the collection set and are pointed to by reference
5279 // objects discovered by the CM ref processor.
5280 
5281 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5282 protected:
5283   G1CollectedHeap* _g1h;
5284   RefToScanQueueSet      *_queues;
5285   ParallelTaskTerminator _terminator;
5286   uint _n_workers;
5287 
5288 public:
5289   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5290     AbstractGangTask("ParPreserveCMReferents"),
5291     _g1h(g1h),
5292     _queues(task_queues),
5293     _terminator(workers, _queues),
5294     _n_workers(workers)
5295   { }
5296 
5297   void work(uint worker_id) {
5298     ResourceMark rm;
5299     HandleMark   hm;
5300 
5301     G1ParScanThreadState            pss(_g1h, worker_id);
5302     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5303     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5304     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5305 
5306     pss.set_evac_closure(&scan_evac_cl);
5307     pss.set_evac_failure_closure(&evac_failure_cl);
5308     pss.set_partial_scan_closure(&partial_scan_cl);
5309 
5310     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5311 
5312 
5313     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5314     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5315 
5316     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5317     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5318 
5319     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5320     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5321 
5322     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5323       // We also need to mark copied objects.
5324       copy_non_heap_cl = &copy_mark_non_heap_cl;
5325       copy_perm_cl = &copy_mark_perm_cl;
5326     }
5327 
5328     // Is alive closure
5329     G1AlwaysAliveClosure always_alive(_g1h);
5330 
5331     // Copying keep alive closure. Applied to referent objects that need
5332     // to be copied.
5333     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5334 
5335     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5336 
5337     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5338     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5339 
5340     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5341     // So this must be true - but assert just in case someone decides to
5342     // change the worker ids.
5343     assert(0 <= worker_id && worker_id < limit, "sanity");
5344     assert(!rp->discovery_is_atomic(), "check this code");
5345 
5346     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5347     for (uint idx = worker_id; idx < limit; idx += stride) {
5348       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5349 
5350       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5351       while (iter.has_next()) {
5352         // Since discovery is not atomic for the CM ref processor, we
5353         // can see some null referent objects.
5354         iter.load_ptrs(DEBUG_ONLY(true));
5355         oop ref = iter.obj();
5356 
5357         // This will filter nulls.
5358         if (iter.is_referent_alive()) {
5359           iter.make_referent_alive();
5360         }
5361         iter.move_to_next();
5362       }
5363     }
5364 
5365     // Drain the queue - which may cause stealing
5366     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5367     drain_queue.do_void();
5368     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5369     assert(pss.refs()->is_empty(), "should be");
5370   }
5371 };
5372 
5373 // Weak Reference processing during an evacuation pause (part 1).
5374 void G1CollectedHeap::process_discovered_references() {
5375   double ref_proc_start = os::elapsedTime();
5376 
5377   ReferenceProcessor* rp = _ref_processor_stw;
5378   assert(rp->discovery_enabled(), "should have been enabled");
5379 
5380   // Any reference objects, in the collection set, that were 'discovered'
5381   // by the CM ref processor should have already been copied (either by
5382   // applying the external root copy closure to the discovered lists, or
5383   // by following an RSet entry).
5384   //
5385   // But some of the referents, that are in the collection set, that these
5386   // reference objects point to may not have been copied: the STW ref
5387   // processor would have seen that the reference object had already
5388   // been 'discovered' and would have skipped discovering the reference,
5389   // but would not have treated the reference object as a regular oop.
5390   // As a reult the copy closure would not have been applied to the
5391   // referent object.
5392   //
5393   // We need to explicitly copy these referent objects - the references
5394   // will be processed at the end of remarking.
5395   //
5396   // We also need to do this copying before we process the reference
5397   // objects discovered by the STW ref processor in case one of these
5398   // referents points to another object which is also referenced by an
5399   // object discovered by the STW ref processor.
5400 
5401   uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5402                         workers()->active_workers() : 1);
5403 
5404   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5405            active_workers == workers()->active_workers(),
5406            "Need to reset active_workers");
5407 
5408   set_par_threads(active_workers);
5409   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
5410 
5411   if (G1CollectedHeap::use_parallel_gc_threads()) {
5412     workers()->run_task(&keep_cm_referents);
5413   } else {
5414     keep_cm_referents.work(0);
5415   }
5416 
5417   set_par_threads(0);
5418 
5419   // Closure to test whether a referent is alive.
5420   G1STWIsAliveClosure is_alive(this);
5421 
5422   // Even when parallel reference processing is enabled, the processing
5423   // of JNI refs is serial and performed serially by the current thread
5424   // rather than by a worker. The following PSS will be used for processing
5425   // JNI refs.
5426 
5427   // Use only a single queue for this PSS.
5428   G1ParScanThreadState pss(this, 0);
5429 
5430   // We do not embed a reference processor in the copying/scanning
5431   // closures while we're actually processing the discovered
5432   // reference objects.
5433   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5434   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5435   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5436 
5437   pss.set_evac_closure(&scan_evac_cl);
5438   pss.set_evac_failure_closure(&evac_failure_cl);
5439   pss.set_partial_scan_closure(&partial_scan_cl);
5440 
5441   assert(pss.refs()->is_empty(), "pre-condition");
5442 
5443   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5444   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
5445 
5446   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5447   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
5448 
5449   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5450   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5451 
5452   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5453     // We also need to mark copied objects.
5454     copy_non_heap_cl = &copy_mark_non_heap_cl;
5455     copy_perm_cl = &copy_mark_perm_cl;
5456   }
5457 
5458   // Keep alive closure.
5459   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
5460 
5461   // Serial Complete GC closure
5462   G1STWDrainQueueClosure drain_queue(this, &pss);
5463 
5464   // Setup the soft refs policy...
5465   rp->setup_policy(false);
5466 
5467   if (!rp->processing_is_mt()) {
5468     // Serial reference processing...
5469     rp->process_discovered_references(&is_alive,
5470                                       &keep_alive,
5471                                       &drain_queue,
5472                                       NULL);
5473   } else {
5474     // Parallel reference processing
5475     assert(rp->num_q() == active_workers, "sanity");
5476     assert(active_workers <= rp->max_num_q(), "sanity");
5477 
5478     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5479     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
5480   }
5481 
5482   // We have completed copying any necessary live referent objects
5483   // (that were not copied during the actual pause) so we can
5484   // retire any active alloc buffers
5485   pss.retire_alloc_buffers();
5486   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5487 
5488   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5489   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
5490 }
5491 
5492 // Weak Reference processing during an evacuation pause (part 2).
5493 void G1CollectedHeap::enqueue_discovered_references() {
5494   double ref_enq_start = os::elapsedTime();
5495 
5496   ReferenceProcessor* rp = _ref_processor_stw;
5497   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5498 
5499   // Now enqueue any remaining on the discovered lists on to
5500   // the pending list.
5501   if (!rp->processing_is_mt()) {
5502     // Serial reference processing...
5503     rp->enqueue_discovered_references();
5504   } else {
5505     // Parallel reference enqueuing
5506 
5507     uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
5508     assert(active_workers == workers()->active_workers(),
5509            "Need to reset active_workers");
5510     assert(rp->num_q() == active_workers, "sanity");
5511     assert(active_workers <= rp->max_num_q(), "sanity");
5512 
5513     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5514     rp->enqueue_discovered_references(&par_task_executor);
5515   }
5516 
5517   rp->verify_no_references_recorded();
5518   assert(!rp->discovery_enabled(), "should have been disabled");
5519 
5520   // FIXME
5521   // CM's reference processing also cleans up the string and symbol tables.
5522   // Should we do that here also? We could, but it is a serial operation
5523   // and could signicantly increase the pause time.
5524 
5525   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5526   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
5527 }
5528 
5529 void G1CollectedHeap::evacuate_collection_set() {
5530   _expand_heap_after_alloc_failure = true;
5531   set_evacuation_failed(false);
5532 
5533   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5534   concurrent_g1_refine()->set_use_cache(false);
5535   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5536 
5537   uint n_workers;
5538   if (G1CollectedHeap::use_parallel_gc_threads()) {
5539     n_workers =
5540       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5541                                      workers()->active_workers(),
5542                                      Threads::number_of_non_daemon_threads());
5543     assert(UseDynamicNumberOfGCThreads ||
5544            n_workers == workers()->total_workers(),
5545            "If not dynamic should be using all the  workers");
5546     workers()->set_active_workers(n_workers);
5547     set_par_threads(n_workers);
5548   } else {
5549     assert(n_par_threads() == 0,
5550            "Should be the original non-parallel value");
5551     n_workers = 1;
5552   }
5553 
5554   G1ParTask g1_par_task(this, _task_queues);
5555 
5556   init_for_evac_failure(NULL);
5557 
5558   rem_set()->prepare_for_younger_refs_iterate(true);
5559 
5560   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5561   double start_par_time_sec = os::elapsedTime();
5562   double end_par_time_sec;
5563 
5564   {
5565     StrongRootsScope srs(this);
5566 
5567     if (G1CollectedHeap::use_parallel_gc_threads()) {
5568       // The individual threads will set their evac-failure closures.
5569       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5570       // These tasks use ShareHeap::_process_strong_tasks
5571       assert(UseDynamicNumberOfGCThreads ||
5572              workers()->active_workers() == workers()->total_workers(),
5573              "If not dynamic should be using all the  workers");
5574       workers()->run_task(&g1_par_task);
5575     } else {
5576       g1_par_task.set_for_termination(n_workers);
5577       g1_par_task.work(0);
5578     }
5579     end_par_time_sec = os::elapsedTime();
5580 
5581     // Closing the inner scope will execute the destructor
5582     // for the StrongRootsScope object. We record the current
5583     // elapsed time before closing the scope so that time
5584     // taken for the SRS destructor is NOT included in the
5585     // reported parallel time.
5586   }
5587 
5588   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5589   g1_policy()->record_par_time(par_time_ms);
5590 
5591   double code_root_fixup_time_ms =
5592         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5593   g1_policy()->record_code_root_fixup_time(code_root_fixup_time_ms);
5594 
5595   set_par_threads(0);
5596 
5597   // Process any discovered reference objects - we have
5598   // to do this _before_ we retire the GC alloc regions
5599   // as we may have to copy some 'reachable' referent
5600   // objects (and their reachable sub-graphs) that were
5601   // not copied during the pause.
5602   process_discovered_references();
5603 
5604   // Weak root processing.
5605   // Note: when JSR 292 is enabled and code blobs can contain
5606   // non-perm oops then we will need to process the code blobs
5607   // here too.
5608   {
5609     G1STWIsAliveClosure is_alive(this);
5610     G1KeepAliveClosure keep_alive(this);
5611     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5612   }
5613 
5614   release_gc_alloc_regions();
5615   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5616 
5617   concurrent_g1_refine()->clear_hot_cache();
5618   concurrent_g1_refine()->set_use_cache(true);
5619 
5620   finalize_for_evac_failure();
5621 
5622   if (evacuation_failed()) {
5623     remove_self_forwarding_pointers();
5624     if (G1Log::finer()) {
5625       gclog_or_tty->print(" (to-space exhausted)");
5626     } else if (G1Log::fine()) {
5627       gclog_or_tty->print("--");
5628     }
5629   }
5630 
5631   // Enqueue any remaining references remaining on the STW
5632   // reference processor's discovered lists. We need to do
5633   // this after the card table is cleaned (and verified) as
5634   // the act of enqueuing entries on to the pending list
5635   // will log these updates (and dirty their associated
5636   // cards). We need these updates logged to update any
5637   // RSets.
5638   enqueue_discovered_references();
5639 
5640   if (G1DeferredRSUpdate) {
5641     RedirtyLoggedCardTableEntryFastClosure redirty;
5642     dirty_card_queue_set().set_closure(&redirty);
5643     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5644 
5645     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5646     dcq.merge_bufferlists(&dirty_card_queue_set());
5647     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5648   }
5649   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5650 }
5651 
5652 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5653                                      size_t* pre_used,
5654                                      FreeRegionList* free_list,
5655                                      OldRegionSet* old_proxy_set,
5656                                      HumongousRegionSet* humongous_proxy_set,
5657                                      HRRSCleanupTask* hrrs_cleanup_task,
5658                                      bool par) {
5659   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5660     if (hr->isHumongous()) {
5661       assert(hr->startsHumongous(), "we should only see starts humongous");
5662       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5663     } else {
5664       _old_set.remove_with_proxy(hr, old_proxy_set);
5665       free_region(hr, pre_used, free_list, par);
5666     }
5667   } else {
5668     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5669   }
5670 }
5671 
5672 void G1CollectedHeap::free_region(HeapRegion* hr,
5673                                   size_t* pre_used,
5674                                   FreeRegionList* free_list,
5675                                   bool par) {
5676   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5677   assert(!hr->is_empty(), "the region should not be empty");
5678   assert(free_list != NULL, "pre-condition");
5679 
5680   *pre_used += hr->used();
5681   hr->hr_clear(par, true /* clear_space */);
5682   free_list->add_as_head(hr);
5683 }
5684 
5685 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5686                                      size_t* pre_used,
5687                                      FreeRegionList* free_list,
5688                                      HumongousRegionSet* humongous_proxy_set,
5689                                      bool par) {
5690   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5691   assert(free_list != NULL, "pre-condition");
5692   assert(humongous_proxy_set != NULL, "pre-condition");
5693 
5694   size_t hr_used = hr->used();
5695   size_t hr_capacity = hr->capacity();
5696   size_t hr_pre_used = 0;
5697   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5698   // We need to read this before we make the region non-humongous,
5699   // otherwise the information will be gone.
5700   uint last_index = hr->last_hc_index();
5701   hr->set_notHumongous();
5702   free_region(hr, &hr_pre_used, free_list, par);
5703 
5704   uint i = hr->hrs_index() + 1;
5705   while (i < last_index) {
5706     HeapRegion* curr_hr = region_at(i);
5707     assert(curr_hr->continuesHumongous(), "invariant");
5708     curr_hr->set_notHumongous();
5709     free_region(curr_hr, &hr_pre_used, free_list, par);
5710     i += 1;
5711   }
5712   assert(hr_pre_used == hr_used,
5713          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5714                  "should be the same", hr_pre_used, hr_used));
5715   *pre_used += hr_pre_used;
5716 }
5717 
5718 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5719                                        FreeRegionList* free_list,
5720                                        OldRegionSet* old_proxy_set,
5721                                        HumongousRegionSet* humongous_proxy_set,
5722                                        bool par) {
5723   if (pre_used > 0) {
5724     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5725     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5726     assert(_summary_bytes_used >= pre_used,
5727            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5728                    "should be >= pre_used: "SIZE_FORMAT,
5729                    _summary_bytes_used, pre_used));
5730     _summary_bytes_used -= pre_used;
5731   }
5732   if (free_list != NULL && !free_list->is_empty()) {
5733     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5734     _free_list.add_as_head(free_list);
5735   }
5736   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5737     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5738     _old_set.update_from_proxy(old_proxy_set);
5739   }
5740   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5741     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5742     _humongous_set.update_from_proxy(humongous_proxy_set);
5743   }
5744 }
5745 
5746 class G1ParCleanupCTTask : public AbstractGangTask {
5747   CardTableModRefBS* _ct_bs;
5748   G1CollectedHeap* _g1h;
5749   HeapRegion* volatile _su_head;
5750 public:
5751   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5752                      G1CollectedHeap* g1h) :
5753     AbstractGangTask("G1 Par Cleanup CT Task"),
5754     _ct_bs(ct_bs), _g1h(g1h) { }
5755 
5756   void work(uint worker_id) {
5757     HeapRegion* r;
5758     while (r = _g1h->pop_dirty_cards_region()) {
5759       clear_cards(r);
5760     }
5761   }
5762 
5763   void clear_cards(HeapRegion* r) {
5764     // Cards of the survivors should have already been dirtied.
5765     if (!r->is_survivor()) {
5766       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5767     }
5768   }
5769 };
5770 
5771 #ifndef PRODUCT
5772 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5773   G1CollectedHeap* _g1h;
5774   CardTableModRefBS* _ct_bs;
5775 public:
5776   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5777     : _g1h(g1h), _ct_bs(ct_bs) { }
5778   virtual bool doHeapRegion(HeapRegion* r) {
5779     if (r->is_survivor()) {
5780       _g1h->verify_dirty_region(r);
5781     } else {
5782       _g1h->verify_not_dirty_region(r);
5783     }
5784     return false;
5785   }
5786 };
5787 
5788 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5789   // All of the region should be clean.
5790   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5791   MemRegion mr(hr->bottom(), hr->end());
5792   ct_bs->verify_not_dirty_region(mr);
5793 }
5794 
5795 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5796   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5797   // dirty allocated blocks as they allocate them. The thread that
5798   // retires each region and replaces it with a new one will do a
5799   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5800   // not dirty that area (one less thing to have to do while holding
5801   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5802   // is dirty.
5803   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5804   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5805   ct_bs->verify_dirty_region(mr);
5806 }
5807 
5808 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5809   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5810   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5811     verify_dirty_region(hr);
5812   }
5813 }
5814 
5815 void G1CollectedHeap::verify_dirty_young_regions() {
5816   verify_dirty_young_list(_young_list->first_region());
5817 }
5818 #endif
5819 
5820 void G1CollectedHeap::cleanUpCardTable() {
5821   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5822   double start = os::elapsedTime();
5823 
5824   {
5825     // Iterate over the dirty cards region list.
5826     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5827 
5828     if (G1CollectedHeap::use_parallel_gc_threads()) {
5829       set_par_threads();
5830       workers()->run_task(&cleanup_task);
5831       set_par_threads(0);
5832     } else {
5833       while (_dirty_cards_region_list) {
5834         HeapRegion* r = _dirty_cards_region_list;
5835         cleanup_task.clear_cards(r);
5836         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5837         if (_dirty_cards_region_list == r) {
5838           // The last region.
5839           _dirty_cards_region_list = NULL;
5840         }
5841         r->set_next_dirty_cards_region(NULL);
5842       }
5843     }
5844 #ifndef PRODUCT
5845     if (G1VerifyCTCleanup || VerifyAfterGC) {
5846       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5847       heap_region_iterate(&cleanup_verifier);
5848     }
5849 #endif
5850   }
5851 
5852   double elapsed = os::elapsedTime() - start;
5853   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
5854 }
5855 
5856 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5857   size_t pre_used = 0;
5858   FreeRegionList local_free_list("Local List for CSet Freeing");
5859 
5860   double young_time_ms     = 0.0;
5861   double non_young_time_ms = 0.0;
5862 
5863   // Since the collection set is a superset of the the young list,
5864   // all we need to do to clear the young list is clear its
5865   // head and length, and unlink any young regions in the code below
5866   _young_list->clear();
5867 
5868   G1CollectorPolicy* policy = g1_policy();
5869 
5870   double start_sec = os::elapsedTime();
5871   bool non_young = true;
5872 
5873   HeapRegion* cur = cs_head;
5874   int age_bound = -1;
5875   size_t rs_lengths = 0;
5876 
5877   while (cur != NULL) {
5878     assert(!is_on_master_free_list(cur), "sanity");
5879     if (non_young) {
5880       if (cur->is_young()) {
5881         double end_sec = os::elapsedTime();
5882         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5883         non_young_time_ms += elapsed_ms;
5884 
5885         start_sec = os::elapsedTime();
5886         non_young = false;
5887       }
5888     } else {
5889       if (!cur->is_young()) {
5890         double end_sec = os::elapsedTime();
5891         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5892         young_time_ms += elapsed_ms;
5893 
5894         start_sec = os::elapsedTime();
5895         non_young = true;
5896       }
5897     }
5898 
5899     rs_lengths += cur->rem_set()->occupied();
5900 
5901     HeapRegion* next = cur->next_in_collection_set();
5902     assert(cur->in_collection_set(), "bad CS");
5903     cur->set_next_in_collection_set(NULL);
5904     cur->set_in_collection_set(false);
5905 
5906     if (cur->is_young()) {
5907       int index = cur->young_index_in_cset();
5908       assert(index != -1, "invariant");
5909       assert((uint) index < policy->young_cset_region_length(), "invariant");
5910       size_t words_survived = _surviving_young_words[index];
5911       cur->record_surv_words_in_group(words_survived);
5912 
5913       // At this point the we have 'popped' cur from the collection set
5914       // (linked via next_in_collection_set()) but it is still in the
5915       // young list (linked via next_young_region()). Clear the
5916       // _next_young_region field.
5917       cur->set_next_young_region(NULL);
5918     } else {
5919       int index = cur->young_index_in_cset();
5920       assert(index == -1, "invariant");
5921     }
5922 
5923     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5924             (!cur->is_young() && cur->young_index_in_cset() == -1),
5925             "invariant" );
5926 
5927     if (!cur->evacuation_failed()) {
5928       MemRegion used_mr = cur->used_region();
5929 
5930       // And the region is empty.
5931       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5932       free_region(cur, &pre_used, &local_free_list, false /* par */);
5933     } else {
5934       cur->uninstall_surv_rate_group();
5935       if (cur->is_young()) {
5936         cur->set_young_index_in_cset(-1);
5937       }
5938       cur->set_not_young();
5939       cur->set_evacuation_failed(false);
5940       // The region is now considered to be old.
5941       _old_set.add(cur);
5942     }
5943     cur = next;
5944   }
5945 
5946   policy->record_max_rs_lengths(rs_lengths);
5947   policy->cset_regions_freed();
5948 
5949   double end_sec = os::elapsedTime();
5950   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5951 
5952   if (non_young) {
5953     non_young_time_ms += elapsed_ms;
5954   } else {
5955     young_time_ms += elapsed_ms;
5956   }
5957 
5958   update_sets_after_freeing_regions(pre_used, &local_free_list,
5959                                     NULL /* old_proxy_set */,
5960                                     NULL /* humongous_proxy_set */,
5961                                     false /* par */);
5962   policy->record_young_free_cset_time_ms(young_time_ms);
5963   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
5964 }
5965 
5966 // This routine is similar to the above but does not record
5967 // any policy statistics or update free lists; we are abandoning
5968 // the current incremental collection set in preparation of a
5969 // full collection. After the full GC we will start to build up
5970 // the incremental collection set again.
5971 // This is only called when we're doing a full collection
5972 // and is immediately followed by the tearing down of the young list.
5973 
5974 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5975   HeapRegion* cur = cs_head;
5976 
5977   while (cur != NULL) {
5978     HeapRegion* next = cur->next_in_collection_set();
5979     assert(cur->in_collection_set(), "bad CS");
5980     cur->set_next_in_collection_set(NULL);
5981     cur->set_in_collection_set(false);
5982     cur->set_young_index_in_cset(-1);
5983     cur = next;
5984   }
5985 }
5986 
5987 void G1CollectedHeap::set_free_regions_coming() {
5988   if (G1ConcRegionFreeingVerbose) {
5989     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5990                            "setting free regions coming");
5991   }
5992 
5993   assert(!free_regions_coming(), "pre-condition");
5994   _free_regions_coming = true;
5995 }
5996 
5997 void G1CollectedHeap::reset_free_regions_coming() {
5998   assert(free_regions_coming(), "pre-condition");
5999 
6000   {
6001     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6002     _free_regions_coming = false;
6003     SecondaryFreeList_lock->notify_all();
6004   }
6005 
6006   if (G1ConcRegionFreeingVerbose) {
6007     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6008                            "reset free regions coming");
6009   }
6010 }
6011 
6012 void G1CollectedHeap::wait_while_free_regions_coming() {
6013   // Most of the time we won't have to wait, so let's do a quick test
6014   // first before we take the lock.
6015   if (!free_regions_coming()) {
6016     return;
6017   }
6018 
6019   if (G1ConcRegionFreeingVerbose) {
6020     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6021                            "waiting for free regions");
6022   }
6023 
6024   {
6025     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6026     while (free_regions_coming()) {
6027       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6028     }
6029   }
6030 
6031   if (G1ConcRegionFreeingVerbose) {
6032     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6033                            "done waiting for free regions");
6034   }
6035 }
6036 
6037 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6038   assert(heap_lock_held_for_gc(),
6039               "the heap lock should already be held by or for this thread");
6040   _young_list->push_region(hr);
6041 }
6042 
6043 class NoYoungRegionsClosure: public HeapRegionClosure {
6044 private:
6045   bool _success;
6046 public:
6047   NoYoungRegionsClosure() : _success(true) { }
6048   bool doHeapRegion(HeapRegion* r) {
6049     if (r->is_young()) {
6050       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6051                              r->bottom(), r->end());
6052       _success = false;
6053     }
6054     return false;
6055   }
6056   bool success() { return _success; }
6057 };
6058 
6059 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6060   bool ret = _young_list->check_list_empty(check_sample);
6061 
6062   if (check_heap) {
6063     NoYoungRegionsClosure closure;
6064     heap_region_iterate(&closure);
6065     ret = ret && closure.success();
6066   }
6067 
6068   return ret;
6069 }
6070 
6071 class TearDownRegionSetsClosure : public HeapRegionClosure {
6072 private:
6073   OldRegionSet *_old_set;
6074 
6075 public:
6076   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6077 
6078   bool doHeapRegion(HeapRegion* r) {
6079     if (r->is_empty()) {
6080       // We ignore empty regions, we'll empty the free list afterwards
6081     } else if (r->is_young()) {
6082       // We ignore young regions, we'll empty the young list afterwards
6083     } else if (r->isHumongous()) {
6084       // We ignore humongous regions, we're not tearing down the
6085       // humongous region set
6086     } else {
6087       // The rest should be old
6088       _old_set->remove(r);
6089     }
6090     return false;
6091   }
6092 
6093   ~TearDownRegionSetsClosure() {
6094     assert(_old_set->is_empty(), "post-condition");
6095   }
6096 };
6097 
6098 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6099   assert_at_safepoint(true /* should_be_vm_thread */);
6100 
6101   if (!free_list_only) {
6102     TearDownRegionSetsClosure cl(&_old_set);
6103     heap_region_iterate(&cl);
6104 
6105     // Need to do this after the heap iteration to be able to
6106     // recognize the young regions and ignore them during the iteration.
6107     _young_list->empty_list();
6108   }
6109   _free_list.remove_all();
6110 }
6111 
6112 class RebuildRegionSetsClosure : public HeapRegionClosure {
6113 private:
6114   bool            _free_list_only;
6115   OldRegionSet*   _old_set;
6116   FreeRegionList* _free_list;
6117   size_t          _total_used;
6118 
6119 public:
6120   RebuildRegionSetsClosure(bool free_list_only,
6121                            OldRegionSet* old_set, FreeRegionList* free_list) :
6122     _free_list_only(free_list_only),
6123     _old_set(old_set), _free_list(free_list), _total_used(0) {
6124     assert(_free_list->is_empty(), "pre-condition");
6125     if (!free_list_only) {
6126       assert(_old_set->is_empty(), "pre-condition");
6127     }
6128   }
6129 
6130   bool doHeapRegion(HeapRegion* r) {
6131     if (r->continuesHumongous()) {
6132       return false;
6133     }
6134 
6135     if (r->is_empty()) {
6136       // Add free regions to the free list
6137       _free_list->add_as_tail(r);
6138     } else if (!_free_list_only) {
6139       assert(!r->is_young(), "we should not come across young regions");
6140 
6141       if (r->isHumongous()) {
6142         // We ignore humongous regions, we left the humongous set unchanged
6143       } else {
6144         // The rest should be old, add them to the old set
6145         _old_set->add(r);
6146       }
6147       _total_used += r->used();
6148     }
6149 
6150     return false;
6151   }
6152 
6153   size_t total_used() {
6154     return _total_used;
6155   }
6156 };
6157 
6158 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6159   assert_at_safepoint(true /* should_be_vm_thread */);
6160 
6161   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6162   heap_region_iterate(&cl);
6163 
6164   if (!free_list_only) {
6165     _summary_bytes_used = cl.total_used();
6166   }
6167   assert(_summary_bytes_used == recalculate_used(),
6168          err_msg("inconsistent _summary_bytes_used, "
6169                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6170                  _summary_bytes_used, recalculate_used()));
6171 }
6172 
6173 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6174   _refine_cte_cl->set_concurrent(concurrent);
6175 }
6176 
6177 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6178   HeapRegion* hr = heap_region_containing(p);
6179   if (hr == NULL) {
6180     return is_in_permanent(p);
6181   } else {
6182     return hr->is_in(p);
6183   }
6184 }
6185 
6186 // Methods for the mutator alloc region
6187 
6188 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6189                                                       bool force) {
6190   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6191   assert(!force || g1_policy()->can_expand_young_list(),
6192          "if force is true we should be able to expand the young list");
6193   bool young_list_full = g1_policy()->is_young_list_full();
6194   if (force || !young_list_full) {
6195     HeapRegion* new_alloc_region = new_region(word_size,
6196                                               false /* do_expand */);
6197     if (new_alloc_region != NULL) {
6198       set_region_short_lived_locked(new_alloc_region);
6199       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6200       return new_alloc_region;
6201     }
6202   }
6203   return NULL;
6204 }
6205 
6206 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6207                                                   size_t allocated_bytes) {
6208   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6209   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6210 
6211   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6212   _summary_bytes_used += allocated_bytes;
6213   _hr_printer.retire(alloc_region);
6214   // We update the eden sizes here, when the region is retired,
6215   // instead of when it's allocated, since this is the point that its
6216   // used space has been recored in _summary_bytes_used.
6217   g1mm()->update_eden_size();
6218 }
6219 
6220 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6221                                                     bool force) {
6222   return _g1h->new_mutator_alloc_region(word_size, force);
6223 }
6224 
6225 void G1CollectedHeap::set_par_threads() {
6226   // Don't change the number of workers.  Use the value previously set
6227   // in the workgroup.
6228   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6229   uint n_workers = workers()->active_workers();
6230   assert(UseDynamicNumberOfGCThreads ||
6231            n_workers == workers()->total_workers(),
6232       "Otherwise should be using the total number of workers");
6233   if (n_workers == 0) {
6234     assert(false, "Should have been set in prior evacuation pause.");
6235     n_workers = ParallelGCThreads;
6236     workers()->set_active_workers(n_workers);
6237   }
6238   set_par_threads(n_workers);
6239 }
6240 
6241 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6242                                        size_t allocated_bytes) {
6243   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6244 }
6245 
6246 // Methods for the GC alloc regions
6247 
6248 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6249                                                  uint count,
6250                                                  GCAllocPurpose ap) {
6251   assert(FreeList_lock->owned_by_self(), "pre-condition");
6252 
6253   if (count < g1_policy()->max_regions(ap)) {
6254     HeapRegion* new_alloc_region = new_region(word_size,
6255                                               true /* do_expand */);
6256     if (new_alloc_region != NULL) {
6257       // We really only need to do this for old regions given that we
6258       // should never scan survivors. But it doesn't hurt to do it
6259       // for survivors too.
6260       new_alloc_region->set_saved_mark();
6261       if (ap == GCAllocForSurvived) {
6262         new_alloc_region->set_survivor();
6263         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6264       } else {
6265         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6266       }
6267       bool during_im = g1_policy()->during_initial_mark_pause();
6268       new_alloc_region->note_start_of_copying(during_im);
6269       return new_alloc_region;
6270     } else {
6271       g1_policy()->note_alloc_region_limit_reached(ap);
6272     }
6273   }
6274   return NULL;
6275 }
6276 
6277 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6278                                              size_t allocated_bytes,
6279                                              GCAllocPurpose ap) {
6280   bool during_im = g1_policy()->during_initial_mark_pause();
6281   alloc_region->note_end_of_copying(during_im);
6282   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6283   if (ap == GCAllocForSurvived) {
6284     young_list()->add_survivor_region(alloc_region);
6285   } else {
6286     _old_set.add(alloc_region);
6287   }
6288   _hr_printer.retire(alloc_region);
6289 }
6290 
6291 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6292                                                        bool force) {
6293   assert(!force, "not supported for GC alloc regions");
6294   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6295 }
6296 
6297 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6298                                           size_t allocated_bytes) {
6299   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6300                                GCAllocForSurvived);
6301 }
6302 
6303 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6304                                                   bool force) {
6305   assert(!force, "not supported for GC alloc regions");
6306   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6307 }
6308 
6309 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6310                                      size_t allocated_bytes) {
6311   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6312                                GCAllocForTenured);
6313 }
6314 // Heap region set verification
6315 
6316 class VerifyRegionListsClosure : public HeapRegionClosure {
6317 private:
6318   FreeRegionList*     _free_list;
6319   OldRegionSet*       _old_set;
6320   HumongousRegionSet* _humongous_set;
6321   uint                _region_count;
6322 
6323 public:
6324   VerifyRegionListsClosure(OldRegionSet* old_set,
6325                            HumongousRegionSet* humongous_set,
6326                            FreeRegionList* free_list) :
6327     _old_set(old_set), _humongous_set(humongous_set),
6328     _free_list(free_list), _region_count(0) { }
6329 
6330   uint region_count() { return _region_count; }
6331 
6332   bool doHeapRegion(HeapRegion* hr) {
6333     _region_count += 1;
6334 
6335     if (hr->continuesHumongous()) {
6336       return false;
6337     }
6338 
6339     if (hr->is_young()) {
6340       // TODO
6341     } else if (hr->startsHumongous()) {
6342       _humongous_set->verify_next_region(hr);
6343     } else if (hr->is_empty()) {
6344       _free_list->verify_next_region(hr);
6345     } else {
6346       _old_set->verify_next_region(hr);
6347     }
6348     return false;
6349   }
6350 };
6351 
6352 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6353                                              HeapWord* bottom) {
6354   HeapWord* end = bottom + HeapRegion::GrainWords;
6355   MemRegion mr(bottom, end);
6356   assert(_g1_reserved.contains(mr), "invariant");
6357   // This might return NULL if the allocation fails
6358   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
6359 }
6360 
6361 void G1CollectedHeap::verify_region_sets() {
6362   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6363 
6364   // First, check the explicit lists.
6365   _free_list.verify();
6366   {
6367     // Given that a concurrent operation might be adding regions to
6368     // the secondary free list we have to take the lock before
6369     // verifying it.
6370     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6371     _secondary_free_list.verify();
6372   }
6373   _old_set.verify();
6374   _humongous_set.verify();
6375 
6376   // If a concurrent region freeing operation is in progress it will
6377   // be difficult to correctly attributed any free regions we come
6378   // across to the correct free list given that they might belong to
6379   // one of several (free_list, secondary_free_list, any local lists,
6380   // etc.). So, if that's the case we will skip the rest of the
6381   // verification operation. Alternatively, waiting for the concurrent
6382   // operation to complete will have a non-trivial effect on the GC's
6383   // operation (no concurrent operation will last longer than the
6384   // interval between two calls to verification) and it might hide
6385   // any issues that we would like to catch during testing.
6386   if (free_regions_coming()) {
6387     return;
6388   }
6389 
6390   // Make sure we append the secondary_free_list on the free_list so
6391   // that all free regions we will come across can be safely
6392   // attributed to the free_list.
6393   append_secondary_free_list_if_not_empty_with_lock();
6394 
6395   // Finally, make sure that the region accounting in the lists is
6396   // consistent with what we see in the heap.
6397   _old_set.verify_start();
6398   _humongous_set.verify_start();
6399   _free_list.verify_start();
6400 
6401   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6402   heap_region_iterate(&cl);
6403 
6404   _old_set.verify_end();
6405   _humongous_set.verify_end();
6406   _free_list.verify_end();
6407 }