1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  27 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  29 #include "gc_implementation/g1/heapRegion.inline.hpp"
  30 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  31 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  32 #include "memory/genOopClosures.inline.hpp"
  33 #include "memory/iterator.hpp"
  34 #include "oops/oop.inline.hpp"
  35 
  36 int    HeapRegion::LogOfHRGrainBytes = 0;
  37 int    HeapRegion::LogOfHRGrainWords = 0;
  38 size_t HeapRegion::GrainBytes        = 0;
  39 size_t HeapRegion::GrainWords        = 0;
  40 size_t HeapRegion::CardsPerRegion    = 0;
  41 
  42 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  43                                  HeapRegion* hr, OopClosure* cl,
  44                                  CardTableModRefBS::PrecisionStyle precision,
  45                                  FilterKind fk) :
  46   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
  47   _hr(hr), _fk(fk), _g1(g1)
  48 { }
  49 
  50 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  51                                                    OopClosure* oc) :
  52   _r_bottom(r->bottom()), _r_end(r->end()),
  53   _oc(oc), _out_of_region(0)
  54 {}
  55 
  56 class VerifyLiveClosure: public OopClosure {
  57 private:
  58   G1CollectedHeap* _g1h;
  59   CardTableModRefBS* _bs;
  60   oop _containing_obj;
  61   bool _failures;
  62   int _n_failures;
  63   VerifyOption _vo;
  64 public:
  65   // _vo == UsePrevMarking -> use "prev" marking information,
  66   // _vo == UseNextMarking -> use "next" marking information,
  67   // _vo == UseMarkWord    -> use mark word from object header.
  68   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
  69     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
  70     _failures(false), _n_failures(0), _vo(vo)
  71   {
  72     BarrierSet* bs = _g1h->barrier_set();
  73     if (bs->is_a(BarrierSet::CardTableModRef))
  74       _bs = (CardTableModRefBS*)bs;
  75   }
  76 
  77   void set_containing_obj(oop obj) {
  78     _containing_obj = obj;
  79   }
  80 
  81   bool failures() { return _failures; }
  82   int n_failures() { return _n_failures; }
  83 
  84   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  85   virtual void do_oop(      oop* p) { do_oop_work(p); }
  86 
  87   void print_object(outputStream* out, oop obj) {
  88 #ifdef PRODUCT
  89     klassOop k = obj->klass();
  90     const char* class_name = instanceKlass::cast(k)->external_name();
  91     out->print_cr("class name %s", class_name);
  92 #else // PRODUCT
  93     obj->print_on(out);
  94 #endif // PRODUCT
  95   }
  96 
  97   template <class T>
  98   void do_oop_work(T* p) {
  99     assert(_containing_obj != NULL, "Precondition");
 100     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 101            "Precondition");
 102     T heap_oop = oopDesc::load_heap_oop(p);
 103     if (!oopDesc::is_null(heap_oop)) {
 104       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 105       bool failed = false;
 106       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 107         MutexLockerEx x(ParGCRareEvent_lock,
 108                         Mutex::_no_safepoint_check_flag);
 109 
 110         if (!_failures) {
 111           gclog_or_tty->print_cr("");
 112           gclog_or_tty->print_cr("----------");
 113         }
 114         if (!_g1h->is_in_closed_subset(obj)) {
 115           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 116           gclog_or_tty->print_cr("Field "PTR_FORMAT
 117                                  " of live obj "PTR_FORMAT" in region "
 118                                  "["PTR_FORMAT", "PTR_FORMAT")",
 119                                  p, (void*) _containing_obj,
 120                                  from->bottom(), from->end());
 121           print_object(gclog_or_tty, _containing_obj);
 122           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 123                                  (void*) obj);
 124         } else {
 125           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 126           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 127           gclog_or_tty->print_cr("Field "PTR_FORMAT
 128                                  " of live obj "PTR_FORMAT" in region "
 129                                  "["PTR_FORMAT", "PTR_FORMAT")",
 130                                  p, (void*) _containing_obj,
 131                                  from->bottom(), from->end());
 132           print_object(gclog_or_tty, _containing_obj);
 133           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 134                                  "["PTR_FORMAT", "PTR_FORMAT")",
 135                                  (void*) obj, to->bottom(), to->end());
 136           print_object(gclog_or_tty, obj);
 137         }
 138         gclog_or_tty->print_cr("----------");
 139         gclog_or_tty->flush();
 140         _failures = true;
 141         failed = true;
 142         _n_failures++;
 143       }
 144 
 145       if (!_g1h->full_collection()) {
 146         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 147         HeapRegion* to   = _g1h->heap_region_containing(obj);
 148         if (from != NULL && to != NULL &&
 149             from != to &&
 150             !to->isHumongous()) {
 151           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 152           jbyte cv_field = *_bs->byte_for_const(p);
 153           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 154 
 155           bool is_bad = !(from->is_young()
 156                           || to->rem_set()->contains_reference(p)
 157                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 158                               (_containing_obj->is_objArray() ?
 159                                   cv_field == dirty
 160                                : cv_obj == dirty || cv_field == dirty));
 161           if (is_bad) {
 162             MutexLockerEx x(ParGCRareEvent_lock,
 163                             Mutex::_no_safepoint_check_flag);
 164 
 165             if (!_failures) {
 166               gclog_or_tty->print_cr("");
 167               gclog_or_tty->print_cr("----------");
 168             }
 169             gclog_or_tty->print_cr("Missing rem set entry:");
 170             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 171                                    "of obj "PTR_FORMAT", "
 172                                    "in region "HR_FORMAT,
 173                                    p, (void*) _containing_obj,
 174                                    HR_FORMAT_PARAMS(from));
 175             _containing_obj->print_on(gclog_or_tty);
 176             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 177                                    "in region "HR_FORMAT,
 178                                    (void*) obj,
 179                                    HR_FORMAT_PARAMS(to));
 180             obj->print_on(gclog_or_tty);
 181             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 182                           cv_obj, cv_field);
 183             gclog_or_tty->print_cr("----------");
 184             gclog_or_tty->flush();
 185             _failures = true;
 186             if (!failed) _n_failures++;
 187           }
 188         }
 189       }
 190     }
 191   }
 192 };
 193 
 194 template<class ClosureType>
 195 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
 196                                HeapRegion* hr,
 197                                HeapWord* cur, HeapWord* top) {
 198   oop cur_oop = oop(cur);
 199   int oop_size = cur_oop->size();
 200   HeapWord* next_obj = cur + oop_size;
 201   while (next_obj < top) {
 202     // Keep filtering the remembered set.
 203     if (!g1h->is_obj_dead(cur_oop, hr)) {
 204       // Bottom lies entirely below top, so we can call the
 205       // non-memRegion version of oop_iterate below.
 206       cur_oop->oop_iterate(cl);
 207     }
 208     cur = next_obj;
 209     cur_oop = oop(cur);
 210     oop_size = cur_oop->size();
 211     next_obj = cur + oop_size;
 212   }
 213   return cur;
 214 }
 215 
 216 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
 217                                               HeapWord* bottom,
 218                                               HeapWord* top,
 219                                               OopClosure* cl) {
 220   G1CollectedHeap* g1h = _g1;
 221   int oop_size;
 222   OopClosure* cl2 = NULL;
 223 
 224   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
 225   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
 226 
 227   switch (_fk) {
 228   case NoFilterKind:          cl2 = cl; break;
 229   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
 230   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
 231   default:                    ShouldNotReachHere();
 232   }
 233 
 234   // Start filtering what we add to the remembered set. If the object is
 235   // not considered dead, either because it is marked (in the mark bitmap)
 236   // or it was allocated after marking finished, then we add it. Otherwise
 237   // we can safely ignore the object.
 238   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 239     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 240   } else {
 241     oop_size = oop(bottom)->size();
 242   }
 243 
 244   bottom += oop_size;
 245 
 246   if (bottom < top) {
 247     // We replicate the loop below for several kinds of possible filters.
 248     switch (_fk) {
 249     case NoFilterKind:
 250       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
 251       break;
 252 
 253     case IntoCSFilterKind: {
 254       FilterIntoCSClosure filt(this, g1h, cl);
 255       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 256       break;
 257     }
 258 
 259     case OutOfRegionFilterKind: {
 260       FilterOutOfRegionClosure filt(_hr, cl);
 261       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 262       break;
 263     }
 264 
 265     default:
 266       ShouldNotReachHere();
 267     }
 268 
 269     // Last object. Need to do dead-obj filtering here too.
 270     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 271       oop(bottom)->oop_iterate(cl2, mr);
 272     }
 273   }
 274 }
 275 
 276 // Minimum region size; we won't go lower than that.
 277 // We might want to decrease this in the future, to deal with small
 278 // heaps a bit more efficiently.
 279 #define MIN_REGION_SIZE  (      1024 * 1024 )
 280 
 281 // Maximum region size; we don't go higher than that. There's a good
 282 // reason for having an upper bound. We don't want regions to get too
 283 // large, otherwise cleanup's effectiveness would decrease as there
 284 // will be fewer opportunities to find totally empty regions after
 285 // marking.
 286 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
 287 
 288 // The automatic region size calculation will try to have around this
 289 // many regions in the heap (based on the min heap size).
 290 #define TARGET_REGION_NUMBER          2048
 291 
 292 void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
 293   // region_size in bytes
 294   uintx region_size = G1HeapRegionSize;
 295   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 296     // We base the automatic calculation on the min heap size. This
 297     // can be problematic if the spread between min and max is quite
 298     // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
 299     // the max size, the region size might be way too large for the
 300     // min size. Either way, some users might have to set the region
 301     // size manually for some -Xms / -Xmx combos.
 302 
 303     region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
 304                        (uintx) MIN_REGION_SIZE);
 305   }
 306 
 307   int region_size_log = log2_long((jlong) region_size);
 308   // Recalculate the region size to make sure it's a power of
 309   // 2. This means that region_size is the largest power of 2 that's
 310   // <= what we've calculated so far.
 311   region_size = ((uintx)1 << region_size_log);
 312 
 313   // Now make sure that we don't go over or under our limits.
 314   if (region_size < MIN_REGION_SIZE) {
 315     region_size = MIN_REGION_SIZE;
 316   } else if (region_size > MAX_REGION_SIZE) {
 317     region_size = MAX_REGION_SIZE;
 318   }
 319 
 320   // And recalculate the log.
 321   region_size_log = log2_long((jlong) region_size);
 322 
 323   // Now, set up the globals.
 324   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 325   LogOfHRGrainBytes = region_size_log;
 326 
 327   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 328   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 329 
 330   guarantee(GrainBytes == 0, "we should only set it once");
 331   // The cast to int is safe, given that we've bounded region_size by
 332   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 333   GrainBytes = (size_t)region_size;
 334 
 335   guarantee(GrainWords == 0, "we should only set it once");
 336   GrainWords = GrainBytes >> LogHeapWordSize;
 337   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 338 
 339   guarantee(CardsPerRegion == 0, "we should only set it once");
 340   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 341 }
 342 
 343 void HeapRegion::reset_after_compaction() {
 344   G1OffsetTableContigSpace::reset_after_compaction();
 345   // After a compaction the mark bitmap is invalid, so we must
 346   // treat all objects as being inside the unmarked area.
 347   zero_marked_bytes();
 348   init_top_at_mark_start();
 349 }
 350 
 351 void HeapRegion::hr_clear(bool par, bool clear_space) {
 352   assert(_humongous_type == NotHumongous,
 353          "we should have already filtered out humongous regions");
 354   assert(_humongous_start_region == NULL,
 355          "we should have already filtered out humongous regions");
 356   assert(_end == _orig_end,
 357          "we should have already filtered out humongous regions");
 358 
 359   _in_collection_set = false;
 360 
 361   set_young_index_in_cset(-1);
 362   uninstall_surv_rate_group();
 363   set_young_type(NotYoung);
 364   reset_pre_dummy_top();
 365 
 366   if (!par) {
 367     // If this is parallel, this will be done later.
 368     HeapRegionRemSet* hrrs = rem_set();
 369     if (hrrs != NULL) hrrs->clear();
 370     _claimed = InitialClaimValue;
 371   }
 372   zero_marked_bytes();
 373 
 374   _offsets.resize(HeapRegion::GrainWords);
 375   init_top_at_mark_start();
 376   if (clear_space) clear(SpaceDecorator::Mangle);
 377 }
 378 
 379 void HeapRegion::par_clear() {
 380   assert(used() == 0, "the region should have been already cleared");
 381   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 382   HeapRegionRemSet* hrrs = rem_set();
 383   hrrs->clear();
 384   CardTableModRefBS* ct_bs =
 385                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 386   ct_bs->clear(MemRegion(bottom(), end()));
 387 }
 388 
 389 void HeapRegion::calc_gc_efficiency() {
 390   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 391   G1CollectorPolicy* g1p = g1h->g1_policy();
 392   _gc_efficiency = (double) reclaimable_bytes() /
 393                             g1p->predict_region_elapsed_time_ms(this, false);
 394 }
 395 
 396 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 397   assert(!isHumongous(), "sanity / pre-condition");
 398   assert(end() == _orig_end,
 399          "Should be normal before the humongous object allocation");
 400   assert(top() == bottom(), "should be empty");
 401   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 402 
 403   _humongous_type = StartsHumongous;
 404   _humongous_start_region = this;
 405 
 406   set_end(new_end);
 407   _offsets.set_for_starts_humongous(new_top);
 408 }
 409 
 410 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 411   assert(!isHumongous(), "sanity / pre-condition");
 412   assert(end() == _orig_end,
 413          "Should be normal before the humongous object allocation");
 414   assert(top() == bottom(), "should be empty");
 415   assert(first_hr->startsHumongous(), "pre-condition");
 416 
 417   _humongous_type = ContinuesHumongous;
 418   _humongous_start_region = first_hr;
 419 }
 420 
 421 void HeapRegion::set_notHumongous() {
 422   assert(isHumongous(), "pre-condition");
 423 
 424   if (startsHumongous()) {
 425     assert(top() <= end(), "pre-condition");
 426     set_end(_orig_end);
 427     if (top() > end()) {
 428       // at least one "continues humongous" region after it
 429       set_top(end());
 430     }
 431   } else {
 432     // continues humongous
 433     assert(end() == _orig_end, "sanity");
 434   }
 435 
 436   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 437   _humongous_type = NotHumongous;
 438   _humongous_start_region = NULL;
 439 }
 440 
 441 bool HeapRegion::claimHeapRegion(jint claimValue) {
 442   jint current = _claimed;
 443   if (current != claimValue) {
 444     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 445     if (res == current) {
 446       return true;
 447     }
 448   }
 449   return false;
 450 }
 451 
 452 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 453   HeapWord* low = addr;
 454   HeapWord* high = end();
 455   while (low < high) {
 456     size_t diff = pointer_delta(high, low);
 457     // Must add one below to bias toward the high amount.  Otherwise, if
 458   // "high" were at the desired value, and "low" were one less, we
 459     // would not converge on "high".  This is not symmetric, because
 460     // we set "high" to a block start, which might be the right one,
 461     // which we don't do for "low".
 462     HeapWord* middle = low + (diff+1)/2;
 463     if (middle == high) return high;
 464     HeapWord* mid_bs = block_start_careful(middle);
 465     if (mid_bs < addr) {
 466       low = middle;
 467     } else {
 468       high = mid_bs;
 469     }
 470   }
 471   assert(low == high && low >= addr, "Didn't work.");
 472   return low;
 473 }
 474 
 475 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 476   G1OffsetTableContigSpace::initialize(mr, false, mangle_space);
 477   hr_clear(false/*par*/, clear_space);
 478 }
 479 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 480 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 481 #endif // _MSC_VER
 482 
 483 
 484 HeapRegion::HeapRegion(uint hrs_index,
 485                        G1BlockOffsetSharedArray* sharedOffsetArray,
 486                        MemRegion mr, bool is_zeroed) :
 487     G1OffsetTableContigSpace(sharedOffsetArray, mr, is_zeroed),
 488     _hrs_index(hrs_index),
 489     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 490     _in_collection_set(false),
 491     _next_in_special_set(NULL), _orig_end(NULL),
 492     _claimed(InitialClaimValue), _evacuation_failed(false),
 493     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 494     _young_type(NotYoung), _next_young_region(NULL),
 495     _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
 496 #ifdef ASSERT
 497     _containing_set(NULL),
 498 #endif // ASSERT
 499      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 500     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 501     _predicted_bytes_to_copy(0)
 502 {
 503   _orig_end = mr.end();
 504   // Note that initialize() will set the start of the unmarked area of the
 505   // region.
 506   this->initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
 507   set_top(bottom());
 508   set_saved_mark();
 509 
 510   _rem_set =  new HeapRegionRemSet(sharedOffsetArray, this);
 511 
 512   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 513 }
 514 
 515 class NextCompactionHeapRegionClosure: public HeapRegionClosure {
 516   const HeapRegion* _target;
 517   bool _target_seen;
 518   HeapRegion* _last;
 519   CompactibleSpace* _res;
 520 public:
 521   NextCompactionHeapRegionClosure(const HeapRegion* target) :
 522     _target(target), _target_seen(false), _res(NULL) {}
 523   bool doHeapRegion(HeapRegion* cur) {
 524     if (_target_seen) {
 525       if (!cur->isHumongous()) {
 526         _res = cur;
 527         return true;
 528       }
 529     } else if (cur == _target) {
 530       _target_seen = true;
 531     }
 532     return false;
 533   }
 534   CompactibleSpace* result() { return _res; }
 535 };
 536 
 537 CompactibleSpace* HeapRegion::next_compaction_space() const {
 538   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 539   // cast away const-ness
 540   HeapRegion* r = (HeapRegion*) this;
 541   NextCompactionHeapRegionClosure blk(r);
 542   g1h->heap_region_iterate_from(r, &blk);
 543   return blk.result();
 544 }
 545 
 546 void HeapRegion::save_marks() {
 547   set_saved_mark();
 548 }
 549 
 550 void HeapRegion::oops_in_mr_iterate(MemRegion mr, OopClosure* cl) {
 551   HeapWord* p = mr.start();
 552   HeapWord* e = mr.end();
 553   oop obj;
 554   while (p < e) {
 555     obj = oop(p);
 556     p += obj->oop_iterate(cl);
 557   }
 558   assert(p == e, "bad memregion: doesn't end on obj boundary");
 559 }
 560 
 561 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 562 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
 563   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
 564 }
 565 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
 566 
 567 
 568 void HeapRegion::oop_before_save_marks_iterate(OopClosure* cl) {
 569   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
 570 }
 571 
 572 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 573                                                     bool during_conc_mark) {
 574   // We always recreate the prev marking info and we'll explicitly
 575   // mark all objects we find to be self-forwarded on the prev
 576   // bitmap. So all objects need to be below PTAMS.
 577   _prev_top_at_mark_start = top();
 578   _prev_marked_bytes = 0;
 579 
 580   if (during_initial_mark) {
 581     // During initial-mark, we'll also explicitly mark all objects
 582     // we find to be self-forwarded on the next bitmap. So all
 583     // objects need to be below NTAMS.
 584     _next_top_at_mark_start = top();
 585     _next_marked_bytes = 0;
 586   } else if (during_conc_mark) {
 587     // During concurrent mark, all objects in the CSet (including
 588     // the ones we find to be self-forwarded) are implicitly live.
 589     // So all objects need to be above NTAMS.
 590     _next_top_at_mark_start = bottom();
 591     _next_marked_bytes = 0;
 592   }
 593 }
 594 
 595 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 596                                                   bool during_conc_mark,
 597                                                   size_t marked_bytes) {
 598   assert(0 <= marked_bytes && marked_bytes <= used(),
 599          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 600                  marked_bytes, used()));
 601   _prev_marked_bytes = marked_bytes;
 602 }
 603 
 604 HeapWord*
 605 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 606                                                  ObjectClosure* cl) {
 607   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 608   // We used to use "block_start_careful" here.  But we're actually happy
 609   // to update the BOT while we do this...
 610   HeapWord* cur = block_start(mr.start());
 611   mr = mr.intersection(used_region());
 612   if (mr.is_empty()) return NULL;
 613   // Otherwise, find the obj that extends onto mr.start().
 614 
 615   assert(cur <= mr.start()
 616          && (oop(cur)->klass_or_null() == NULL ||
 617              cur + oop(cur)->size() > mr.start()),
 618          "postcondition of block_start");
 619   oop obj;
 620   while (cur < mr.end()) {
 621     obj = oop(cur);
 622     if (obj->klass_or_null() == NULL) {
 623       // Ran into an unparseable point.
 624       return cur;
 625     } else if (!g1h->is_obj_dead(obj)) {
 626       cl->do_object(obj);
 627     }
 628     if (cl->abort()) return cur;
 629     // The check above must occur before the operation below, since an
 630     // abort might invalidate the "size" operation.
 631     cur += obj->size();
 632   }
 633   return NULL;
 634 }
 635 
 636 HeapWord*
 637 HeapRegion::
 638 oops_on_card_seq_iterate_careful(MemRegion mr,
 639                                  FilterOutOfRegionClosure* cl,
 640                                  bool filter_young,
 641                                  jbyte* card_ptr) {
 642   // Currently, we should only have to clean the card if filter_young
 643   // is true and vice versa.
 644   if (filter_young) {
 645     assert(card_ptr != NULL, "pre-condition");
 646   } else {
 647     assert(card_ptr == NULL, "pre-condition");
 648   }
 649   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 650 
 651   // If we're within a stop-world GC, then we might look at a card in a
 652   // GC alloc region that extends onto a GC LAB, which may not be
 653   // parseable.  Stop such at the "saved_mark" of the region.
 654   if (g1h->is_gc_active()) {
 655     mr = mr.intersection(used_region_at_save_marks());
 656   } else {
 657     mr = mr.intersection(used_region());
 658   }
 659   if (mr.is_empty()) return NULL;
 660   // Otherwise, find the obj that extends onto mr.start().
 661 
 662   // The intersection of the incoming mr (for the card) and the
 663   // allocated part of the region is non-empty. This implies that
 664   // we have actually allocated into this region. The code in
 665   // G1CollectedHeap.cpp that allocates a new region sets the
 666   // is_young tag on the region before allocating. Thus we
 667   // safely know if this region is young.
 668   if (is_young() && filter_young) {
 669     return NULL;
 670   }
 671 
 672   assert(!is_young(), "check value of filter_young");
 673 
 674   // We can only clean the card here, after we make the decision that
 675   // the card is not young. And we only clean the card if we have been
 676   // asked to (i.e., card_ptr != NULL).
 677   if (card_ptr != NULL) {
 678     *card_ptr = CardTableModRefBS::clean_card_val();
 679     // We must complete this write before we do any of the reads below.
 680     OrderAccess::storeload();
 681   }
 682 
 683   // Cache the boundaries of the memory region in some const locals
 684   HeapWord* const start = mr.start();
 685   HeapWord* const end = mr.end();
 686 
 687   // We used to use "block_start_careful" here.  But we're actually happy
 688   // to update the BOT while we do this...
 689   HeapWord* cur = block_start(start);
 690   assert(cur <= start, "Postcondition");
 691 
 692   oop obj;
 693 
 694   HeapWord* next = cur;
 695   while (next <= start) {
 696     cur = next;
 697     obj = oop(cur);
 698     if (obj->klass_or_null() == NULL) {
 699       // Ran into an unparseable point.
 700       return cur;
 701     }
 702     // Otherwise...
 703     next = (cur + obj->size());
 704   }
 705 
 706   // If we finish the above loop...We have a parseable object that
 707   // begins on or before the start of the memory region, and ends
 708   // inside or spans the entire region.
 709 
 710   assert(obj == oop(cur), "sanity");
 711   assert(cur <= start &&
 712          obj->klass_or_null() != NULL &&
 713          (cur + obj->size()) > start,
 714          "Loop postcondition");
 715 
 716   if (!g1h->is_obj_dead(obj)) {
 717     obj->oop_iterate(cl, mr);
 718   }
 719 
 720   while (cur < end) {
 721     obj = oop(cur);
 722     if (obj->klass_or_null() == NULL) {
 723       // Ran into an unparseable point.
 724       return cur;
 725     };
 726 
 727     // Otherwise:
 728     next = (cur + obj->size());
 729 
 730     if (!g1h->is_obj_dead(obj)) {
 731       if (next < end || !obj->is_objArray()) {
 732         // This object either does not span the MemRegion
 733         // boundary, or if it does it's not an array.
 734         // Apply closure to whole object.
 735         obj->oop_iterate(cl);
 736       } else {
 737         // This obj is an array that spans the boundary.
 738         // Stop at the boundary.
 739         obj->oop_iterate(cl, mr);
 740       }
 741     }
 742     cur = next;
 743   }
 744   return NULL;
 745 }
 746 
 747 void HeapRegion::print() const { print_on(gclog_or_tty); }
 748 void HeapRegion::print_on(outputStream* st) const {
 749   if (isHumongous()) {
 750     if (startsHumongous())
 751       st->print(" HS");
 752     else
 753       st->print(" HC");
 754   } else {
 755     st->print("   ");
 756   }
 757   if (in_collection_set())
 758     st->print(" CS");
 759   else
 760     st->print("   ");
 761   if (is_young())
 762     st->print(is_survivor() ? " SU" : " Y ");
 763   else
 764     st->print("   ");
 765   if (is_empty())
 766     st->print(" F");
 767   else
 768     st->print("  ");
 769   st->print(" TS %5d", _gc_time_stamp);
 770   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 771             prev_top_at_mark_start(), next_top_at_mark_start());
 772   G1OffsetTableContigSpace::print_on(st);
 773 }
 774 
 775 void HeapRegion::verify() const {
 776   bool dummy = false;
 777   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 778 }
 779 
 780 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 781 // We would need a mechanism to make that code skip dead objects.
 782 
 783 void HeapRegion::verify(VerifyOption vo,
 784                         bool* failures) const {
 785   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 786   *failures = false;
 787   HeapWord* p = bottom();
 788   HeapWord* prev_p = NULL;
 789   VerifyLiveClosure vl_cl(g1, vo);
 790   bool is_humongous = isHumongous();
 791   bool do_bot_verify = !is_young();
 792   size_t object_num = 0;
 793   while (p < top()) {
 794     oop obj = oop(p);
 795     size_t obj_size = obj->size();
 796     object_num += 1;
 797 
 798     if (is_humongous != g1->isHumongous(obj_size)) {
 799       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 800                              SIZE_FORMAT" words) in a %shumongous region",
 801                              p, g1->isHumongous(obj_size) ? "" : "non-",
 802                              obj_size, is_humongous ? "" : "non-");
 803        *failures = true;
 804        return;
 805     }
 806 
 807     // If it returns false, verify_for_object() will output the
 808     // appropriate messasge.
 809     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
 810       *failures = true;
 811       return;
 812     }
 813 
 814     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 815       if (obj->is_oop()) {
 816         klassOop klass = obj->klass();
 817         if (!klass->is_perm()) {
 818           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 819                                  "not in perm", klass, obj);
 820           *failures = true;
 821           return;
 822         } else if (!klass->is_klass()) {
 823           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 824                                  "not a klass", klass, obj);
 825           *failures = true;
 826           return;
 827         } else {
 828           vl_cl.set_containing_obj(obj);
 829           obj->oop_iterate(&vl_cl);
 830           if (vl_cl.failures()) {
 831             *failures = true;
 832           }
 833           if (G1MaxVerifyFailures >= 0 &&
 834               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 835             return;
 836           }
 837         }
 838       } else {
 839         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
 840         *failures = true;
 841         return;
 842       }
 843     }
 844     prev_p = p;
 845     p += obj_size;
 846   }
 847 
 848   if (p != top()) {
 849     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 850                            "does not match top "PTR_FORMAT, p, top());
 851     *failures = true;
 852     return;
 853   }
 854 
 855   HeapWord* the_end = end();
 856   assert(p == top(), "it should still hold");
 857   // Do some extra BOT consistency checking for addresses in the
 858   // range [top, end). BOT look-ups in this range should yield
 859   // top. No point in doing that if top == end (there's nothing there).
 860   if (p < the_end) {
 861     // Look up top
 862     HeapWord* addr_1 = p;
 863     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 864     if (b_start_1 != p) {
 865       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 866                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 867                              addr_1, b_start_1, p);
 868       *failures = true;
 869       return;
 870     }
 871 
 872     // Look up top + 1
 873     HeapWord* addr_2 = p + 1;
 874     if (addr_2 < the_end) {
 875       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 876       if (b_start_2 != p) {
 877         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
 878                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 879                                addr_2, b_start_2, p);
 880         *failures = true;
 881         return;
 882       }
 883     }
 884 
 885     // Look up an address between top and end
 886     size_t diff = pointer_delta(the_end, p) / 2;
 887     HeapWord* addr_3 = p + diff;
 888     if (addr_3 < the_end) {
 889       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 890       if (b_start_3 != p) {
 891         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
 892                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 893                                addr_3, b_start_3, p);
 894         *failures = true;
 895         return;
 896       }
 897     }
 898 
 899     // Loook up end - 1
 900     HeapWord* addr_4 = the_end - 1;
 901     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
 902     if (b_start_4 != p) {
 903       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
 904                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 905                              addr_4, b_start_4, p);
 906       *failures = true;
 907       return;
 908     }
 909   }
 910 
 911   if (is_humongous && object_num > 1) {
 912     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
 913                            "but has "SIZE_FORMAT", objects",
 914                            bottom(), end(), object_num);
 915     *failures = true;
 916     return;
 917   }
 918 }
 919 
 920 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 921 // away eventually.
 922 
 923 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 924   // false ==> we'll do the clearing if there's clearing to be done.
 925   ContiguousSpace::initialize(mr, false, mangle_space);
 926   _offsets.zero_bottom_entry();
 927   _offsets.initialize_threshold();
 928   if (clear_space) clear(mangle_space);
 929 }
 930 
 931 void G1OffsetTableContigSpace::clear(bool mangle_space) {
 932   ContiguousSpace::clear(mangle_space);
 933   _offsets.zero_bottom_entry();
 934   _offsets.initialize_threshold();
 935 }
 936 
 937 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 938   Space::set_bottom(new_bottom);
 939   _offsets.set_bottom(new_bottom);
 940 }
 941 
 942 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
 943   Space::set_end(new_end);
 944   _offsets.resize(new_end - bottom());
 945 }
 946 
 947 void G1OffsetTableContigSpace::print() const {
 948   print_short();
 949   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 950                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 951                 bottom(), top(), _offsets.threshold(), end());
 952 }
 953 
 954 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
 955   return _offsets.initialize_threshold();
 956 }
 957 
 958 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
 959                                                     HeapWord* end) {
 960   _offsets.alloc_block(start, end);
 961   return _offsets.threshold();
 962 }
 963 
 964 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
 965   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 966   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
 967   if (_gc_time_stamp < g1h->get_gc_time_stamp())
 968     return top();
 969   else
 970     return ContiguousSpace::saved_mark_word();
 971 }
 972 
 973 void G1OffsetTableContigSpace::set_saved_mark() {
 974   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 975   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
 976 
 977   if (_gc_time_stamp < curr_gc_time_stamp) {
 978     // The order of these is important, as another thread might be
 979     // about to start scanning this region. If it does so after
 980     // set_saved_mark and before _gc_time_stamp = ..., then the latter
 981     // will be false, and it will pick up top() as the high water mark
 982     // of region. If it does so after _gc_time_stamp = ..., then it
 983     // will pick up the right saved_mark_word() as the high water mark
 984     // of the region. Either way, the behaviour will be correct.
 985     ContiguousSpace::set_saved_mark();
 986     OrderAccess::storestore();
 987     _gc_time_stamp = curr_gc_time_stamp;
 988     // No need to do another barrier to flush the writes above. If
 989     // this is called in parallel with other threads trying to
 990     // allocate into the region, the caller should call this while
 991     // holding a lock and when the lock is released the writes will be
 992     // flushed.
 993   }
 994 }
 995 
 996 G1OffsetTableContigSpace::
 997 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 998                          MemRegion mr, bool is_zeroed) :
 999   _offsets(sharedOffsetArray, mr),
1000   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1001   _gc_time_stamp(0)
1002 {
1003   _offsets.set_space(this);
1004   initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
1005 }