1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENERATION_HPP
  26 #define SHARE_VM_MEMORY_GENERATION_HPP
  27 
  28 #include "gc_implementation/shared/collectorCounters.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "memory/memRegion.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "memory/universe.hpp"
  33 #include "memory/watermark.hpp"
  34 #include "runtime/mutex.hpp"
  35 #include "runtime/perfData.hpp"
  36 #include "runtime/virtualspace.hpp"
  37 
  38 // A Generation models a heap area for similarly-aged objects.
  39 // It will contain one ore more spaces holding the actual objects.
  40 //
  41 // The Generation class hierarchy:
  42 //
  43 // Generation                      - abstract base class
  44 // - DefNewGeneration              - allocation area (copy collected)
  45 //   - ParNewGeneration            - a DefNewGeneration that is collected by
  46 //                                   several threads
  47 // - CardGeneration                 - abstract class adding offset array behavior
  48 //   - OneContigSpaceCardGeneration - abstract class holding a single
  49 //                                    contiguous space with card marking
  50 //     - TenuredGeneration         - tenured (old object) space (markSweepCompact)
  51 //     - CompactingPermGenGen      - reflective object area (klasses, methods, symbols, ...)
  52 //   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
  53 //                                       (Detlefs-Printezis refinement of
  54 //                                       Boehm-Demers-Schenker)
  55 //
  56 // The system configurations currently allowed are:
  57 //
  58 //   DefNewGeneration + TenuredGeneration + PermGeneration
  59 //   DefNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
  60 //
  61 //   ParNewGeneration + TenuredGeneration + PermGeneration
  62 //   ParNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
  63 //
  64 
  65 class DefNewGeneration;
  66 class GenerationSpec;
  67 class CompactibleSpace;
  68 class ContiguousSpace;
  69 class CompactPoint;
  70 class OopsInGenClosure;
  71 class OopClosure;
  72 class ScanClosure;
  73 class FastScanClosure;
  74 class GenCollectedHeap;
  75 class GenRemSet;
  76 class GCStats;
  77 
  78 // A "ScratchBlock" represents a block of memory in one generation usable by
  79 // another.  It represents "num_words" free words, starting at and including
  80 // the address of "this".
  81 struct ScratchBlock {
  82   ScratchBlock* next;
  83   size_t num_words;
  84   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
  85                               // first two fields are word-sized.)
  86 };
  87 
  88 
  89 class Generation: public CHeapObj {
  90   friend class VMStructs;
  91  private:
  92   jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
  93   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
  94                                // used region at some specific point during collection.
  95 
  96  protected:
  97   // Minimum and maximum addresses for memory reserved (not necessarily
  98   // committed) for generation.
  99   // Used by card marking code. Must not overlap with address ranges of
 100   // other generations.
 101   MemRegion _reserved;
 102 
 103   // Memory area reserved for generation
 104   VirtualSpace _virtual_space;
 105 
 106   // Level in the generation hierarchy.
 107   int _level;
 108 
 109   // ("Weak") Reference processing support
 110   ReferenceProcessor* _ref_processor;
 111 
 112   // Performance Counters
 113   CollectorCounters* _gc_counters;
 114 
 115   // Statistics for garbage collection
 116   GCStats* _gc_stats;
 117 
 118   // Returns the next generation in the configuration, or else NULL if this
 119   // is the highest generation.
 120   Generation* next_gen() const;
 121 
 122   // Initialize the generation.
 123   Generation(ReservedSpace rs, size_t initial_byte_size, int level);
 124 
 125   // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
 126   // "sp" that point into younger generations.
 127   // The iteration is only over objects allocated at the start of the
 128   // iterations; objects allocated as a result of applying the closure are
 129   // not included.
 130   void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl);
 131 
 132  public:
 133   // The set of possible generation kinds.
 134   enum Name {
 135     ASParNew,
 136     ASConcurrentMarkSweep,
 137     DefNew,
 138     ParNew,
 139     MarkSweepCompact,
 140     ConcurrentMarkSweep,
 141     Other
 142   };
 143 
 144   enum SomePublicConstants {
 145     // Generations are GenGrain-aligned and have size that are multiples of
 146     // GenGrain.
 147     // Note: on ARM we add 1 bit for card_table_base to be properly aligned
 148     // (we expect its low byte to be zero - see implementation of post_barrier)
 149     LogOfGenGrain = 16 ARM_ONLY(+1),
 150     GenGrain = 1 << LogOfGenGrain
 151   };
 152 
 153   // allocate and initialize ("weak") refs processing support
 154   virtual void ref_processor_init();
 155   void set_ref_processor(ReferenceProcessor* rp) {
 156     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
 157     _ref_processor = rp;
 158   }
 159 
 160   virtual Generation::Name kind() { return Generation::Other; }
 161   GenerationSpec* spec();
 162 
 163   // This properly belongs in the collector, but for now this
 164   // will do.
 165   virtual bool refs_discovery_is_atomic() const { return true;  }
 166   virtual bool refs_discovery_is_mt()     const { return false; }
 167 
 168   // Space enquiries (results in bytes)
 169   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
 170                                         // generation can currently hold.
 171   virtual size_t used() const = 0;      // The number of used bytes in the gen.
 172   virtual size_t free() const = 0;      // The number of free bytes in the gen.
 173 
 174   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
 175   // Returns the total number of bytes  available in a generation
 176   // for the allocation of objects.
 177   virtual size_t max_capacity() const;
 178 
 179   // If this is a young generation, the maximum number of bytes that can be
 180   // allocated in this generation before a GC is triggered.
 181   virtual size_t capacity_before_gc() const { return 0; }
 182 
 183   // The largest number of contiguous free bytes in the generation,
 184   // including expansion  (Assumes called at a safepoint.)
 185   virtual size_t contiguous_available() const = 0;
 186   // The largest number of contiguous free bytes in this or any higher generation.
 187   virtual size_t max_contiguous_available() const;
 188 
 189   // Returns true if promotions of the specified amount are
 190   // likely to succeed without a promotion failure.
 191   // Promotion of the full amount is not guaranteed but
 192   // might be attempted in the worst case.
 193   virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const;
 194 
 195   // For a non-young generation, this interface can be used to inform a
 196   // generation that a promotion attempt into that generation failed.
 197   // Typically used to enable diagnostic output for post-mortem analysis,
 198   // but other uses of the interface are not ruled out.
 199   virtual void promotion_failure_occurred() { /* does nothing */ }
 200 
 201   // Return an estimate of the maximum allocation that could be performed
 202   // in the generation without triggering any collection or expansion
 203   // activity.  It is "unsafe" because no locks are taken; the result
 204   // should be treated as an approximation, not a guarantee, for use in
 205   // heuristic resizing decisions.
 206   virtual size_t unsafe_max_alloc_nogc() const = 0;
 207 
 208   // Returns true if this generation cannot be expanded further
 209   // without a GC. Override as appropriate.
 210   virtual bool is_maximal_no_gc() const {
 211     return _virtual_space.uncommitted_size() == 0;
 212   }
 213 
 214   MemRegion reserved() const { return _reserved; }
 215 
 216   // Returns a region guaranteed to contain all the objects in the
 217   // generation.
 218   virtual MemRegion used_region() const { return _reserved; }
 219 
 220   MemRegion prev_used_region() const { return _prev_used_region; }
 221   virtual void  save_used_region()   { _prev_used_region = used_region(); }
 222 
 223   // Returns "TRUE" iff "p" points into an allocated object in the generation.
 224   // For some kinds of generations, this may be an expensive operation.
 225   // To avoid performance problems stemming from its inadvertent use in
 226   // product jvm's, we restrict its use to assertion checking or
 227   // verification only.
 228   virtual bool is_in(const void* p) const;
 229 
 230   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
 231   bool is_in_reserved(const void* p) const {
 232     return _reserved.contains(p);
 233   }
 234 
 235   // Check that the generation kind is DefNewGeneration or a sub
 236   // class of DefNewGeneration and return a DefNewGeneration*
 237   DefNewGeneration*  as_DefNewGeneration();
 238 
 239   // If some space in the generation contains the given "addr", return a
 240   // pointer to that space, else return "NULL".
 241   virtual Space* space_containing(const void* addr) const;
 242 
 243   // Iteration - do not use for time critical operations
 244   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
 245 
 246   // Returns the first space, if any, in the generation that can participate
 247   // in compaction, or else "NULL".
 248   virtual CompactibleSpace* first_compaction_space() const = 0;
 249 
 250   // Returns "true" iff this generation should be used to allocate an
 251   // object of the given size.  Young generations might
 252   // wish to exclude very large objects, for example, since, if allocated
 253   // often, they would greatly increase the frequency of young-gen
 254   // collection.
 255   virtual bool should_allocate(size_t word_size, bool is_tlab) {
 256     bool result = false;
 257     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
 258     if (!is_tlab || supports_tlab_allocation()) {
 259       result = (word_size > 0) && (word_size < overflow_limit);
 260     }
 261     return result;
 262   }
 263 
 264   // Allocate and returns a block of the requested size, or returns "NULL".
 265   // Assumes the caller has done any necessary locking.
 266   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
 267 
 268   // Like "allocate", but performs any necessary locking internally.
 269   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
 270 
 271   // A 'younger' gen has reached an allocation limit, and uses this to notify
 272   // the next older gen.  The return value is a new limit, or NULL if none.  The
 273   // caller must do the necessary locking.
 274   virtual HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
 275                                              size_t word_size) {
 276     return NULL;
 277   }
 278 
 279   // Some generation may offer a region for shared, contiguous allocation,
 280   // via inlined code (by exporting the address of the top and end fields
 281   // defining the extent of the contiguous allocation region.)
 282 
 283   // This function returns "true" iff the heap supports this kind of
 284   // allocation.  (More precisely, this means the style of allocation that
 285   // increments *top_addr()" with a CAS.) (Default is "no".)
 286   // A generation that supports this allocation style must use lock-free
 287   // allocation for *all* allocation, since there are times when lock free
 288   // allocation will be concurrent with plain "allocate" calls.
 289   virtual bool supports_inline_contig_alloc() const { return false; }
 290 
 291   // These functions return the addresses of the fields that define the
 292   // boundaries of the contiguous allocation area.  (These fields should be
 293   // physicall near to one another.)
 294   virtual HeapWord** top_addr() const { return NULL; }
 295   virtual HeapWord** end_addr() const { return NULL; }
 296 
 297   // Thread-local allocation buffers
 298   virtual bool supports_tlab_allocation() const { return false; }
 299   virtual size_t tlab_capacity() const {
 300     guarantee(false, "Generation doesn't support thread local allocation buffers");
 301     return 0;
 302   }
 303   virtual size_t unsafe_max_tlab_alloc() const {
 304     guarantee(false, "Generation doesn't support thread local allocation buffers");
 305     return 0;
 306   }
 307 
 308   // "obj" is the address of an object in a younger generation.  Allocate space
 309   // for "obj" in the current (or some higher) generation, and copy "obj" into
 310   // the newly allocated space, if possible, returning the result (or NULL if
 311   // the allocation failed).
 312   //
 313   // The "obj_size" argument is just obj->size(), passed along so the caller can
 314   // avoid repeating the virtual call to retrieve it.
 315   virtual oop promote(oop obj, size_t obj_size);
 316 
 317   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
 318   // object "obj", whose original mark word was "m", and whose size is
 319   // "word_sz".  If possible, allocate space for "obj", copy obj into it
 320   // (taking care to copy "m" into the mark word when done, since the mark
 321   // word of "obj" may have been overwritten with a forwarding pointer, and
 322   // also taking care to copy the klass pointer *last*.  Returns the new
 323   // object if successful, or else NULL.
 324   virtual oop par_promote(int thread_num,
 325                           oop obj, markOop m, size_t word_sz);
 326 
 327   // Undo, if possible, the most recent par_promote_alloc allocation by
 328   // "thread_num" ("obj", of "word_sz").
 329   virtual void par_promote_alloc_undo(int thread_num,
 330                                       HeapWord* obj, size_t word_sz);
 331 
 332   // Informs the current generation that all par_promote_alloc's in the
 333   // collection have been completed; any supporting data structures can be
 334   // reset.  Default is to do nothing.
 335   virtual void par_promote_alloc_done(int thread_num) {}
 336 
 337   // Informs the current generation that all oop_since_save_marks_iterates
 338   // performed by "thread_num" in the current collection, if any, have been
 339   // completed; any supporting data structures can be reset.  Default is to
 340   // do nothing.
 341   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
 342 
 343   // This generation will collect all younger generations
 344   // during a full collection.
 345   virtual bool full_collects_younger_generations() const { return false; }
 346 
 347   // This generation does in-place marking, meaning that mark words
 348   // are mutated during the marking phase and presumably reinitialized
 349   // to a canonical value after the GC. This is currently used by the
 350   // biased locking implementation to determine whether additional
 351   // work is required during the GC prologue and epilogue.
 352   virtual bool performs_in_place_marking() const { return true; }
 353 
 354   // Returns "true" iff collect() should subsequently be called on this
 355   // this generation. See comment below.
 356   // This is a generic implementation which can be overridden.
 357   //
 358   // Note: in the current (1.4) implementation, when genCollectedHeap's
 359   // incremental_collection_will_fail flag is set, all allocations are
 360   // slow path (the only fast-path place to allocate is DefNew, which
 361   // will be full if the flag is set).
 362   // Thus, older generations which collect younger generations should
 363   // test this flag and collect if it is set.
 364   virtual bool should_collect(bool   full,
 365                               size_t word_size,
 366                               bool   is_tlab) {
 367     return (full || should_allocate(word_size, is_tlab));
 368   }
 369 
 370   // Returns true if the collection is likely to be safely
 371   // completed. Even if this method returns true, a collection
 372   // may not be guaranteed to succeed, and the system should be
 373   // able to safely unwind and recover from that failure, albeit
 374   // at some additional cost.
 375   virtual bool collection_attempt_is_safe() {
 376     guarantee(false, "Are you sure you want to call this method?");
 377     return true;
 378   }
 379 
 380   // Perform a garbage collection.
 381   // If full is true attempt a full garbage collection of this generation.
 382   // Otherwise, attempting to (at least) free enough space to support an
 383   // allocation of the given "word_size".
 384   virtual void collect(bool   full,
 385                        bool   clear_all_soft_refs,
 386                        size_t word_size,
 387                        bool   is_tlab) = 0;
 388 
 389   // Perform a heap collection, attempting to create (at least) enough
 390   // space to support an allocation of the given "word_size".  If
 391   // successful, perform the allocation and return the resulting
 392   // "oop" (initializing the allocated block). If the allocation is
 393   // still unsuccessful, return "NULL".
 394   virtual HeapWord* expand_and_allocate(size_t word_size,
 395                                         bool is_tlab,
 396                                         bool parallel = false) = 0;
 397 
 398   // Some generations may require some cleanup or preparation actions before
 399   // allowing a collection.  The default is to do nothing.
 400   virtual void gc_prologue(bool full) {};
 401 
 402   // Some generations may require some cleanup actions after a collection.
 403   // The default is to do nothing.
 404   virtual void gc_epilogue(bool full) {};
 405 
 406   // Save the high water marks for the used space in a generation.
 407   virtual void record_spaces_top() {};
 408 
 409   // Some generations may need to be "fixed-up" after some allocation
 410   // activity to make them parsable again. The default is to do nothing.
 411   virtual void ensure_parsability() {};
 412 
 413   // Time (in ms) when we were last collected or now if a collection is
 414   // in progress.
 415   virtual jlong time_of_last_gc(jlong now) {
 416     // XXX See note in genCollectedHeap::millis_since_last_gc()
 417     NOT_PRODUCT(
 418       if (now < _time_of_last_gc) {
 419         warning("time warp: "INT64_FORMAT" to "INT64_FORMAT, _time_of_last_gc, now);
 420       }
 421     )
 422     return _time_of_last_gc;
 423   }
 424 
 425   virtual void update_time_of_last_gc(jlong now)  {
 426     _time_of_last_gc = now;
 427   }
 428 
 429   // Generations may keep statistics about collection.  This
 430   // method updates those statistics.  current_level is
 431   // the level of the collection that has most recently
 432   // occurred.  This allows the generation to decide what
 433   // statistics are valid to collect.  For example, the
 434   // generation can decide to gather the amount of promoted data
 435   // if the collection of the younger generations has completed.
 436   GCStats* gc_stats() const { return _gc_stats; }
 437   virtual void update_gc_stats(int current_level, bool full) {}
 438 
 439   // Mark sweep support phase2
 440   virtual void prepare_for_compaction(CompactPoint* cp);
 441   // Mark sweep support phase3
 442   virtual void pre_adjust_pointers() {ShouldNotReachHere();}
 443   virtual void adjust_pointers();
 444   // Mark sweep support phase4
 445   virtual void compact();
 446   virtual void post_compact() {ShouldNotReachHere();}
 447 
 448   // Support for CMS's rescan. In this general form we return a pointer
 449   // to an abstract object that can be used, based on specific previously
 450   // decided protocols, to exchange information between generations,
 451   // information that may be useful for speeding up certain types of
 452   // garbage collectors. A NULL value indicates to the client that
 453   // no data recording is expected by the provider. The data-recorder is
 454   // expected to be GC worker thread-local, with the worker index
 455   // indicated by "thr_num".
 456   virtual void* get_data_recorder(int thr_num) { return NULL; }
 457 
 458   // Some generations may require some cleanup actions before allowing
 459   // a verification.
 460   virtual void prepare_for_verify() {};
 461 
 462   // Accessing "marks".
 463 
 464   // This function gives a generation a chance to note a point between
 465   // collections.  For example, a contiguous generation might note the
 466   // beginning allocation point post-collection, which might allow some later
 467   // operations to be optimized.
 468   virtual void save_marks() {}
 469 
 470   // This function allows generations to initialize any "saved marks".  That
 471   // is, should only be called when the generation is empty.
 472   virtual void reset_saved_marks() {}
 473 
 474   // This function is "true" iff any no allocations have occurred in the
 475   // generation since the last call to "save_marks".
 476   virtual bool no_allocs_since_save_marks() = 0;
 477 
 478   // Apply "cl->apply" to (the addresses of) all reference fields in objects
 479   // allocated in the current generation since the last call to "save_marks".
 480   // If more objects are allocated in this generation as a result of applying
 481   // the closure, iterates over reference fields in those objects as well.
 482   // Calls "save_marks" at the end of the iteration.
 483   // General signature...
 484   virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
 485   // ...and specializations for de-virtualization.  (The general
 486   // implemention of the _nv versions call the virtual version.
 487   // Note that the _nv suffix is not really semantically necessary,
 488   // but it avoids some not-so-useful warnings on Solaris.)
 489 #define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
 490   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
 491     oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
 492   }
 493   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
 494 
 495 #undef Generation_SINCE_SAVE_MARKS_DECL
 496 
 497   // The "requestor" generation is performing some garbage collection
 498   // action for which it would be useful to have scratch space.  If
 499   // the target is not the requestor, no gc actions will be required
 500   // of the target.  The requestor promises to allocate no more than
 501   // "max_alloc_words" in the target generation (via promotion say,
 502   // if the requestor is a young generation and the target is older).
 503   // If the target generation can provide any scratch space, it adds
 504   // it to "list", leaving "list" pointing to the head of the
 505   // augmented list.  The default is to offer no space.
 506   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
 507                                   size_t max_alloc_words) {}
 508 
 509   // Give each generation an opportunity to do clean up for any
 510   // contributed scratch.
 511   virtual void reset_scratch() {};
 512 
 513   // When an older generation has been collected, and perhaps resized,
 514   // this method will be invoked on all younger generations (from older to
 515   // younger), allowing them to resize themselves as appropriate.
 516   virtual void compute_new_size() = 0;
 517 
 518   // Printing
 519   virtual const char* name() const = 0;
 520   virtual const char* short_name() const = 0;
 521 
 522   int level() const { return _level; }
 523 
 524   // Attributes
 525 
 526   // True iff the given generation may only be the youngest generation.
 527   virtual bool must_be_youngest() const = 0;
 528   // True iff the given generation may only be the oldest generation.
 529   virtual bool must_be_oldest() const = 0;
 530 
 531   // Reference Processing accessor
 532   ReferenceProcessor* const ref_processor() { return _ref_processor; }
 533 
 534   // Iteration.
 535 
 536   // Iterate over all the ref-containing fields of all objects in the
 537   // generation, calling "cl.do_oop" on each.
 538   virtual void oop_iterate(OopClosure* cl);
 539 
 540   // Same as above, restricted to the intersection of a memory region and
 541   // the generation.
 542   virtual void oop_iterate(MemRegion mr, OopClosure* cl);
 543 
 544   // Iterate over all objects in the generation, calling "cl.do_object" on
 545   // each.
 546   virtual void object_iterate(ObjectClosure* cl);
 547 
 548   // Iterate over all safe objects in the generation, calling "cl.do_object" on
 549   // each.  An object is safe if its references point to other objects in
 550   // the heap.  This defaults to object_iterate() unless overridden.
 551   virtual void safe_object_iterate(ObjectClosure* cl);
 552 
 553   // Iterate over all objects allocated in the generation since the last
 554   // collection, calling "cl.do_object" on each.  The generation must have
 555   // been initialized properly to support this function, or else this call
 556   // will fail.
 557   virtual void object_iterate_since_last_GC(ObjectClosure* cl) = 0;
 558 
 559   // Apply "cl->do_oop" to (the address of) all and only all the ref fields
 560   // in the current generation that contain pointers to objects in younger
 561   // generations. Objects allocated since the last "save_marks" call are
 562   // excluded.
 563   virtual void younger_refs_iterate(OopsInGenClosure* cl) = 0;
 564 
 565   // Inform a generation that it longer contains references to objects
 566   // in any younger generation.    [e.g. Because younger gens are empty,
 567   // clear the card table.]
 568   virtual void clear_remembered_set() { }
 569 
 570   // Inform a generation that some of its objects have moved.  [e.g. The
 571   // generation's spaces were compacted, invalidating the card table.]
 572   virtual void invalidate_remembered_set() { }
 573 
 574   // Block abstraction.
 575 
 576   // Returns the address of the start of the "block" that contains the
 577   // address "addr".  We say "blocks" instead of "object" since some heaps
 578   // may not pack objects densely; a chunk may either be an object or a
 579   // non-object.
 580   virtual HeapWord* block_start(const void* addr) const;
 581 
 582   // Requires "addr" to be the start of a chunk, and returns its size.
 583   // "addr + size" is required to be the start of a new chunk, or the end
 584   // of the active area of the heap.
 585   virtual size_t block_size(const HeapWord* addr) const ;
 586 
 587   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 588   // the block is an object.
 589   virtual bool block_is_obj(const HeapWord* addr) const;
 590 
 591 
 592   // PrintGC, PrintGCDetails support
 593   void print_heap_change(size_t prev_used) const;
 594 
 595   // PrintHeapAtGC support
 596   virtual void print() const;
 597   virtual void print_on(outputStream* st) const;
 598 
 599   virtual void verify(bool allow_dirty) = 0;
 600 
 601   struct StatRecord {
 602     int invocations;
 603     elapsedTimer accumulated_time;
 604     StatRecord() :
 605       invocations(0),
 606       accumulated_time(elapsedTimer()) {}
 607   };
 608 private:
 609   StatRecord _stat_record;
 610 public:
 611   StatRecord* stat_record() { return &_stat_record; }
 612 
 613   virtual void print_summary_info();
 614   virtual void print_summary_info_on(outputStream* st);
 615 
 616   // Performance Counter support
 617   virtual void update_counters() = 0;
 618   virtual CollectorCounters* counters() { return _gc_counters; }
 619 };
 620 
 621 // Class CardGeneration is a generation that is covered by a card table,
 622 // and uses a card-size block-offset array to implement block_start.
 623 
 624 // class BlockOffsetArray;
 625 // class BlockOffsetArrayContigSpace;
 626 class BlockOffsetSharedArray;
 627 
 628 class CardGeneration: public Generation {
 629   friend class VMStructs;
 630  protected:
 631   // This is shared with other generations.
 632   GenRemSet* _rs;
 633   // This is local to this generation.
 634   BlockOffsetSharedArray* _bts;
 635 
 636   CardGeneration(ReservedSpace rs, size_t initial_byte_size, int level,
 637                  GenRemSet* remset);
 638 
 639  public:
 640 
 641   // Attempt to expand the generation by "bytes".  Expand by at a
 642   // minimum "expand_bytes".  Return true if some amount (not
 643   // necessarily the full "bytes") was done.
 644   virtual bool expand(size_t bytes, size_t expand_bytes);
 645 
 646   virtual void clear_remembered_set();
 647 
 648   virtual void invalidate_remembered_set();
 649 
 650   virtual void prepare_for_verify();
 651 
 652   // Grow generation with specified size (returns false if unable to grow)
 653   virtual bool grow_by(size_t bytes) = 0;
 654   // Grow generation to reserved size.
 655   virtual bool grow_to_reserved() = 0;
 656 };
 657 
 658 // OneContigSpaceCardGeneration models a heap of old objects contained in a single
 659 // contiguous space.
 660 //
 661 // Garbage collection is performed using mark-compact.
 662 
 663 class OneContigSpaceCardGeneration: public CardGeneration {
 664   friend class VMStructs;
 665   // Abstractly, this is a subtype that gets access to protected fields.
 666   friend class CompactingPermGen;
 667   friend class VM_PopulateDumpSharedSpace;
 668 
 669  protected:
 670   size_t     _min_heap_delta_bytes;   // Minimum amount to expand.
 671   ContiguousSpace*  _the_space;       // actual space holding objects
 672   WaterMark  _last_gc;                // watermark between objects allocated before
 673                                       // and after last GC.
 674 
 675   // Grow generation with specified size (returns false if unable to grow)
 676   virtual bool grow_by(size_t bytes);
 677   // Grow generation to reserved size.
 678   virtual bool grow_to_reserved();
 679   // Shrink generation with specified size (returns false if unable to shrink)
 680   void shrink_by(size_t bytes);
 681 
 682   // Allocation failure
 683   virtual bool expand(size_t bytes, size_t expand_bytes);
 684   void shrink(size_t bytes);
 685 
 686   // Accessing spaces
 687   ContiguousSpace* the_space() const { return _the_space; }
 688 
 689  public:
 690   OneContigSpaceCardGeneration(ReservedSpace rs, size_t initial_byte_size,
 691                                size_t min_heap_delta_bytes,
 692                                int level, GenRemSet* remset,
 693                                ContiguousSpace* space) :
 694     CardGeneration(rs, initial_byte_size, level, remset),
 695     _the_space(space), _min_heap_delta_bytes(min_heap_delta_bytes)
 696   {}
 697 
 698   inline bool is_in(const void* p) const;
 699 
 700   // Space enquiries
 701   size_t capacity() const;
 702   size_t used() const;
 703   size_t free() const;
 704 
 705   MemRegion used_region() const;
 706 
 707   size_t unsafe_max_alloc_nogc() const;
 708   size_t contiguous_available() const;
 709 
 710   // Iteration
 711   void object_iterate(ObjectClosure* blk);
 712   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
 713   void object_iterate_since_last_GC(ObjectClosure* cl);
 714 
 715   void younger_refs_iterate(OopsInGenClosure* blk);
 716 
 717   inline CompactibleSpace* first_compaction_space() const;
 718 
 719   virtual inline HeapWord* allocate(size_t word_size, bool is_tlab);
 720   virtual inline HeapWord* par_allocate(size_t word_size, bool is_tlab);
 721 
 722   // Accessing marks
 723   inline WaterMark top_mark();
 724   inline WaterMark bottom_mark();
 725 
 726 #define OneContig_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)      \
 727   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
 728   OneContig_SINCE_SAVE_MARKS_DECL(OopsInGenClosure,_v)
 729   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_DECL)
 730 
 731   void save_marks();
 732   void reset_saved_marks();
 733   bool no_allocs_since_save_marks();
 734 
 735   inline size_t block_size(const HeapWord* addr) const;
 736 
 737   inline bool block_is_obj(const HeapWord* addr) const;
 738 
 739   virtual void collect(bool full,
 740                        bool clear_all_soft_refs,
 741                        size_t size,
 742                        bool is_tlab);
 743   HeapWord* expand_and_allocate(size_t size,
 744                                 bool is_tlab,
 745                                 bool parallel = false);
 746 
 747   virtual void prepare_for_verify();
 748 
 749   virtual void gc_epilogue(bool full);
 750 
 751   virtual void record_spaces_top();
 752 
 753   virtual void verify(bool allow_dirty);
 754   virtual void print_on(outputStream* st) const;
 755 };
 756 
 757 #endif // SHARE_VM_MEMORY_GENERATION_HPP