1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1MarkSweep.hpp"
  36 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  37 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  38 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  39 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  40 #include "gc_implementation/g1/vm_operations_g1.hpp"
  41 #include "gc_implementation/shared/isGCActiveMark.hpp"
  42 #include "memory/gcLocker.inline.hpp"
  43 #include "memory/genOopClosures.inline.hpp"
  44 #include "memory/generationSpec.hpp"
  45 #include "memory/referenceProcessor.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "oops/oop.pcgc.inline.hpp"
  48 #include "runtime/aprofiler.hpp"
  49 #include "runtime/vmThread.hpp"
  50 
  51 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  52 
  53 // turn it on so that the contents of the young list (scan-only /
  54 // to-be-collected) are printed at "strategic" points before / during
  55 // / after the collection --- this is useful for debugging
  56 #define YOUNG_LIST_VERBOSE 0
  57 // CURRENT STATUS
  58 // This file is under construction.  Search for "FIXME".
  59 
  60 // INVARIANTS/NOTES
  61 //
  62 // All allocation activity covered by the G1CollectedHeap interface is
  63 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  64 // and allocate_new_tlab, which are the "entry" points to the
  65 // allocation code from the rest of the JVM.  (Note that this does not
  66 // apply to TLAB allocation, which is not part of this interface: it
  67 // is done by clients of this interface.)
  68 
  69 // Notes on implementation of parallelism in different tasks.
  70 //
  71 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  72 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  73 // It does use run_task() which sets _n_workers in the task.
  74 // G1ParTask executes g1_process_strong_roots() ->
  75 // SharedHeap::process_strong_roots() which calls eventuall to
  76 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  77 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  78 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  79 //
  80 
  81 // Local to this file.
  82 
  83 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  84   SuspendibleThreadSet* _sts;
  85   G1RemSet* _g1rs;
  86   ConcurrentG1Refine* _cg1r;
  87   bool _concurrent;
  88 public:
  89   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  90                               G1RemSet* g1rs,
  91                               ConcurrentG1Refine* cg1r) :
  92     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  93   {}
  94   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  95     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && _sts->should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108   void set_concurrent(bool b) { _concurrent = b; }
 109 };
 110 
 111 
 112 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 113   int _calls;
 114   G1CollectedHeap* _g1h;
 115   CardTableModRefBS* _ctbs;
 116   int _histo[256];
 117 public:
 118   ClearLoggedCardTableEntryClosure() :
 119     _calls(0)
 120   {
 121     _g1h = G1CollectedHeap::heap();
 122     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 123     for (int i = 0; i < 256; i++) _histo[i] = 0;
 124   }
 125   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 126     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 127       _calls++;
 128       unsigned char* ujb = (unsigned char*)card_ptr;
 129       int ind = (int)(*ujb);
 130       _histo[ind]++;
 131       *card_ptr = -1;
 132     }
 133     return true;
 134   }
 135   int calls() { return _calls; }
 136   void print_histo() {
 137     gclog_or_tty->print_cr("Card table value histogram:");
 138     for (int i = 0; i < 256; i++) {
 139       if (_histo[i] != 0) {
 140         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 141       }
 142     }
 143   }
 144 };
 145 
 146 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 147   int _calls;
 148   G1CollectedHeap* _g1h;
 149   CardTableModRefBS* _ctbs;
 150 public:
 151   RedirtyLoggedCardTableEntryClosure() :
 152     _calls(0)
 153   {
 154     _g1h = G1CollectedHeap::heap();
 155     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 156   }
 157   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 158     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 159       _calls++;
 160       *card_ptr = 0;
 161     }
 162     return true;
 163   }
 164   int calls() { return _calls; }
 165 };
 166 
 167 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 168 public:
 169   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 170     *card_ptr = CardTableModRefBS::dirty_card_val();
 171     return true;
 172   }
 173 };
 174 
 175 YoungList::YoungList(G1CollectedHeap* g1h)
 176   : _g1h(g1h), _head(NULL),
 177     _length(0),
 178     _last_sampled_rs_lengths(0),
 179     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
 180 {
 181   guarantee( check_list_empty(false), "just making sure..." );
 182 }
 183 
 184 void YoungList::push_region(HeapRegion *hr) {
 185   assert(!hr->is_young(), "should not already be young");
 186   assert(hr->get_next_young_region() == NULL, "cause it should!");
 187 
 188   hr->set_next_young_region(_head);
 189   _head = hr;
 190 
 191   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 192   ++_length;
 193 }
 194 
 195 void YoungList::add_survivor_region(HeapRegion* hr) {
 196   assert(hr->is_survivor(), "should be flagged as survivor region");
 197   assert(hr->get_next_young_region() == NULL, "cause it should!");
 198 
 199   hr->set_next_young_region(_survivor_head);
 200   if (_survivor_head == NULL) {
 201     _survivor_tail = hr;
 202   }
 203   _survivor_head = hr;
 204   ++_survivor_length;
 205 }
 206 
 207 void YoungList::empty_list(HeapRegion* list) {
 208   while (list != NULL) {
 209     HeapRegion* next = list->get_next_young_region();
 210     list->set_next_young_region(NULL);
 211     list->uninstall_surv_rate_group();
 212     list->set_not_young();
 213     list = next;
 214   }
 215 }
 216 
 217 void YoungList::empty_list() {
 218   assert(check_list_well_formed(), "young list should be well formed");
 219 
 220   empty_list(_head);
 221   _head = NULL;
 222   _length = 0;
 223 
 224   empty_list(_survivor_head);
 225   _survivor_head = NULL;
 226   _survivor_tail = NULL;
 227   _survivor_length = 0;
 228 
 229   _last_sampled_rs_lengths = 0;
 230 
 231   assert(check_list_empty(false), "just making sure...");
 232 }
 233 
 234 bool YoungList::check_list_well_formed() {
 235   bool ret = true;
 236 
 237   size_t length = 0;
 238   HeapRegion* curr = _head;
 239   HeapRegion* last = NULL;
 240   while (curr != NULL) {
 241     if (!curr->is_young()) {
 242       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 243                              "incorrectly tagged (y: %d, surv: %d)",
 244                              curr->bottom(), curr->end(),
 245                              curr->is_young(), curr->is_survivor());
 246       ret = false;
 247     }
 248     ++length;
 249     last = curr;
 250     curr = curr->get_next_young_region();
 251   }
 252   ret = ret && (length == _length);
 253 
 254   if (!ret) {
 255     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 256     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
 257                            length, _length);
 258   }
 259 
 260   return ret;
 261 }
 262 
 263 bool YoungList::check_list_empty(bool check_sample) {
 264   bool ret = true;
 265 
 266   if (_length != 0) {
 267     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
 268                   _length);
 269     ret = false;
 270   }
 271   if (check_sample && _last_sampled_rs_lengths != 0) {
 272     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 273     ret = false;
 274   }
 275   if (_head != NULL) {
 276     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 277     ret = false;
 278   }
 279   if (!ret) {
 280     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 281   }
 282 
 283   return ret;
 284 }
 285 
 286 void
 287 YoungList::rs_length_sampling_init() {
 288   _sampled_rs_lengths = 0;
 289   _curr               = _head;
 290 }
 291 
 292 bool
 293 YoungList::rs_length_sampling_more() {
 294   return _curr != NULL;
 295 }
 296 
 297 void
 298 YoungList::rs_length_sampling_next() {
 299   assert( _curr != NULL, "invariant" );
 300   size_t rs_length = _curr->rem_set()->occupied();
 301 
 302   _sampled_rs_lengths += rs_length;
 303 
 304   // The current region may not yet have been added to the
 305   // incremental collection set (it gets added when it is
 306   // retired as the current allocation region).
 307   if (_curr->in_collection_set()) {
 308     // Update the collection set policy information for this region
 309     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 310   }
 311 
 312   _curr = _curr->get_next_young_region();
 313   if (_curr == NULL) {
 314     _last_sampled_rs_lengths = _sampled_rs_lengths;
 315     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 316   }
 317 }
 318 
 319 void
 320 YoungList::reset_auxilary_lists() {
 321   guarantee( is_empty(), "young list should be empty" );
 322   assert(check_list_well_formed(), "young list should be well formed");
 323 
 324   // Add survivor regions to SurvRateGroup.
 325   _g1h->g1_policy()->note_start_adding_survivor_regions();
 326   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 327 
 328   int young_index_in_cset = 0;
 329   for (HeapRegion* curr = _survivor_head;
 330        curr != NULL;
 331        curr = curr->get_next_young_region()) {
 332     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 333 
 334     // The region is a non-empty survivor so let's add it to
 335     // the incremental collection set for the next evacuation
 336     // pause.
 337     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 338     young_index_in_cset += 1;
 339   }
 340   assert((size_t) young_index_in_cset == _survivor_length,
 341          "post-condition");
 342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 343 
 344   _head   = _survivor_head;
 345   _length = _survivor_length;
 346   if (_survivor_head != NULL) {
 347     assert(_survivor_tail != NULL, "cause it shouldn't be");
 348     assert(_survivor_length > 0, "invariant");
 349     _survivor_tail->set_next_young_region(NULL);
 350   }
 351 
 352   // Don't clear the survivor list handles until the start of
 353   // the next evacuation pause - we need it in order to re-tag
 354   // the survivor regions from this evacuation pause as 'young'
 355   // at the start of the next.
 356 
 357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 358 
 359   assert(check_list_well_formed(), "young list should be well formed");
 360 }
 361 
 362 void YoungList::print() {
 363   HeapRegion* lists[] = {_head,   _survivor_head};
 364   const char* names[] = {"YOUNG", "SURVIVOR"};
 365 
 366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 368     HeapRegion *curr = lists[list];
 369     if (curr == NULL)
 370       gclog_or_tty->print_cr("  empty");
 371     while (curr != NULL) {
 372       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
 373                              "age: %4d, y: %d, surv: %d",
 374                              curr->bottom(), curr->end(),
 375                              curr->top(),
 376                              curr->prev_top_at_mark_start(),
 377                              curr->next_top_at_mark_start(),
 378                              curr->top_at_conc_mark_count(),
 379                              curr->age_in_surv_rate_group_cond(),
 380                              curr->is_young(),
 381                              curr->is_survivor());
 382       curr = curr->get_next_young_region();
 383     }
 384   }
 385 
 386   gclog_or_tty->print_cr("");
 387 }
 388 
 389 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 390 {
 391   // Claim the right to put the region on the dirty cards region list
 392   // by installing a self pointer.
 393   HeapRegion* next = hr->get_next_dirty_cards_region();
 394   if (next == NULL) {
 395     HeapRegion* res = (HeapRegion*)
 396       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 397                           NULL);
 398     if (res == NULL) {
 399       HeapRegion* head;
 400       do {
 401         // Put the region to the dirty cards region list.
 402         head = _dirty_cards_region_list;
 403         next = (HeapRegion*)
 404           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 405         if (next == head) {
 406           assert(hr->get_next_dirty_cards_region() == hr,
 407                  "hr->get_next_dirty_cards_region() != hr");
 408           if (next == NULL) {
 409             // The last region in the list points to itself.
 410             hr->set_next_dirty_cards_region(hr);
 411           } else {
 412             hr->set_next_dirty_cards_region(next);
 413           }
 414         }
 415       } while (next != head);
 416     }
 417   }
 418 }
 419 
 420 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 421 {
 422   HeapRegion* head;
 423   HeapRegion* hr;
 424   do {
 425     head = _dirty_cards_region_list;
 426     if (head == NULL) {
 427       return NULL;
 428     }
 429     HeapRegion* new_head = head->get_next_dirty_cards_region();
 430     if (head == new_head) {
 431       // The last region.
 432       new_head = NULL;
 433     }
 434     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 435                                           head);
 436   } while (hr != head);
 437   assert(hr != NULL, "invariant");
 438   hr->set_next_dirty_cards_region(NULL);
 439   return hr;
 440 }
 441 
 442 void G1CollectedHeap::stop_conc_gc_threads() {
 443   _cg1r->stop();
 444   _cmThread->stop();
 445 }
 446 
 447 #ifdef ASSERT
 448 // A region is added to the collection set as it is retired
 449 // so an address p can point to a region which will be in the
 450 // collection set but has not yet been retired.  This method
 451 // therefore is only accurate during a GC pause after all
 452 // regions have been retired.  It is used for debugging
 453 // to check if an nmethod has references to objects that can
 454 // be move during a partial collection.  Though it can be
 455 // inaccurate, it is sufficient for G1 because the conservative
 456 // implementation of is_scavengable() for G1 will indicate that
 457 // all nmethods must be scanned during a partial collection.
 458 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 459   HeapRegion* hr = heap_region_containing(p);
 460   return hr != NULL && hr->in_collection_set();
 461 }
 462 #endif
 463 
 464 // Returns true if the reference points to an object that
 465 // can move in an incremental collecction.
 466 bool G1CollectedHeap::is_scavengable(const void* p) {
 467   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 468   G1CollectorPolicy* g1p = g1h->g1_policy();
 469   HeapRegion* hr = heap_region_containing(p);
 470   if (hr == NULL) {
 471      // perm gen (or null)
 472      return false;
 473   } else {
 474     return !hr->isHumongous();
 475   }
 476 }
 477 
 478 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 479   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 480   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 481 
 482   // Count the dirty cards at the start.
 483   CountNonCleanMemRegionClosure count1(this);
 484   ct_bs->mod_card_iterate(&count1);
 485   int orig_count = count1.n();
 486 
 487   // First clear the logged cards.
 488   ClearLoggedCardTableEntryClosure clear;
 489   dcqs.set_closure(&clear);
 490   dcqs.apply_closure_to_all_completed_buffers();
 491   dcqs.iterate_closure_all_threads(false);
 492   clear.print_histo();
 493 
 494   // Now ensure that there's no dirty cards.
 495   CountNonCleanMemRegionClosure count2(this);
 496   ct_bs->mod_card_iterate(&count2);
 497   if (count2.n() != 0) {
 498     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 499                            count2.n(), orig_count);
 500   }
 501   guarantee(count2.n() == 0, "Card table should be clean.");
 502 
 503   RedirtyLoggedCardTableEntryClosure redirty;
 504   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 505   dcqs.apply_closure_to_all_completed_buffers();
 506   dcqs.iterate_closure_all_threads(false);
 507   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 508                          clear.calls(), orig_count);
 509   guarantee(redirty.calls() == clear.calls(),
 510             "Or else mechanism is broken.");
 511 
 512   CountNonCleanMemRegionClosure count3(this);
 513   ct_bs->mod_card_iterate(&count3);
 514   if (count3.n() != orig_count) {
 515     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 516                            orig_count, count3.n());
 517     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 518   }
 519 
 520   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 521 }
 522 
 523 // Private class members.
 524 
 525 G1CollectedHeap* G1CollectedHeap::_g1h;
 526 
 527 // Private methods.
 528 
 529 HeapRegion*
 530 G1CollectedHeap::new_region_try_secondary_free_list() {
 531   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 532   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 533     if (!_secondary_free_list.is_empty()) {
 534       if (G1ConcRegionFreeingVerbose) {
 535         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 536                                "secondary_free_list has "SIZE_FORMAT" entries",
 537                                _secondary_free_list.length());
 538       }
 539       // It looks as if there are free regions available on the
 540       // secondary_free_list. Let's move them to the free_list and try
 541       // again to allocate from it.
 542       append_secondary_free_list();
 543 
 544       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 545              "empty we should have moved at least one entry to the free_list");
 546       HeapRegion* res = _free_list.remove_head();
 547       if (G1ConcRegionFreeingVerbose) {
 548         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 549                                "allocated "HR_FORMAT" from secondary_free_list",
 550                                HR_FORMAT_PARAMS(res));
 551       }
 552       return res;
 553     }
 554 
 555     // Wait here until we get notifed either when (a) there are no
 556     // more free regions coming or (b) some regions have been moved on
 557     // the secondary_free_list.
 558     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 559   }
 560 
 561   if (G1ConcRegionFreeingVerbose) {
 562     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 563                            "could not allocate from secondary_free_list");
 564   }
 565   return NULL;
 566 }
 567 
 568 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 569   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 570          "the only time we use this to allocate a humongous region is "
 571          "when we are allocating a single humongous region");
 572 
 573   HeapRegion* res;
 574   if (G1StressConcRegionFreeing) {
 575     if (!_secondary_free_list.is_empty()) {
 576       if (G1ConcRegionFreeingVerbose) {
 577         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 578                                "forced to look at the secondary_free_list");
 579       }
 580       res = new_region_try_secondary_free_list();
 581       if (res != NULL) {
 582         return res;
 583       }
 584     }
 585   }
 586   res = _free_list.remove_head_or_null();
 587   if (res == NULL) {
 588     if (G1ConcRegionFreeingVerbose) {
 589       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 590                              "res == NULL, trying the secondary_free_list");
 591     }
 592     res = new_region_try_secondary_free_list();
 593   }
 594   if (res == NULL && do_expand) {
 595     ergo_verbose1(ErgoHeapSizing,
 596                   "attempt heap expansion",
 597                   ergo_format_reason("region allocation request failed")
 598                   ergo_format_byte("allocation request"),
 599                   word_size * HeapWordSize);
 600     if (expand(word_size * HeapWordSize)) {
 601       // Even though the heap was expanded, it might not have reached
 602       // the desired size. So, we cannot assume that the allocation
 603       // will succeed.
 604       res = _free_list.remove_head_or_null();
 605     }
 606   }
 607   return res;
 608 }
 609 
 610 size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
 611                                                           size_t word_size) {
 612   assert(isHumongous(word_size), "word_size should be humongous");
 613   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 614 
 615   size_t first = G1_NULL_HRS_INDEX;
 616   if (num_regions == 1) {
 617     // Only one region to allocate, no need to go through the slower
 618     // path. The caller will attempt the expasion if this fails, so
 619     // let's not try to expand here too.
 620     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 621     if (hr != NULL) {
 622       first = hr->hrs_index();
 623     } else {
 624       first = G1_NULL_HRS_INDEX;
 625     }
 626   } else {
 627     // We can't allocate humongous regions while cleanupComplete() is
 628     // running, since some of the regions we find to be empty might not
 629     // yet be added to the free list and it is not straightforward to
 630     // know which list they are on so that we can remove them. Note
 631     // that we only need to do this if we need to allocate more than
 632     // one region to satisfy the current humongous allocation
 633     // request. If we are only allocating one region we use the common
 634     // region allocation code (see above).
 635     wait_while_free_regions_coming();
 636     append_secondary_free_list_if_not_empty_with_lock();
 637 
 638     if (free_regions() >= num_regions) {
 639       first = _hrs.find_contiguous(num_regions);
 640       if (first != G1_NULL_HRS_INDEX) {
 641         for (size_t i = first; i < first + num_regions; ++i) {
 642           HeapRegion* hr = region_at(i);
 643           assert(hr->is_empty(), "sanity");
 644           assert(is_on_master_free_list(hr), "sanity");
 645           hr->set_pending_removal(true);
 646         }
 647         _free_list.remove_all_pending(num_regions);
 648       }
 649     }
 650   }
 651   return first;
 652 }
 653 
 654 HeapWord*
 655 G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
 656                                                            size_t num_regions,
 657                                                            size_t word_size) {
 658   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 659   assert(isHumongous(word_size), "word_size should be humongous");
 660   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 661 
 662   // Index of last region in the series + 1.
 663   size_t last = first + num_regions;
 664 
 665   // We need to initialize the region(s) we just discovered. This is
 666   // a bit tricky given that it can happen concurrently with
 667   // refinement threads refining cards on these regions and
 668   // potentially wanting to refine the BOT as they are scanning
 669   // those cards (this can happen shortly after a cleanup; see CR
 670   // 6991377). So we have to set up the region(s) carefully and in
 671   // a specific order.
 672 
 673   // The word size sum of all the regions we will allocate.
 674   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
 675   assert(word_size <= word_size_sum, "sanity");
 676 
 677   // This will be the "starts humongous" region.
 678   HeapRegion* first_hr = region_at(first);
 679   // The header of the new object will be placed at the bottom of
 680   // the first region.
 681   HeapWord* new_obj = first_hr->bottom();
 682   // This will be the new end of the first region in the series that
 683   // should also match the end of the last region in the seriers.
 684   HeapWord* new_end = new_obj + word_size_sum;
 685   // This will be the new top of the first region that will reflect
 686   // this allocation.
 687   HeapWord* new_top = new_obj + word_size;
 688 
 689   // First, we need to zero the header of the space that we will be
 690   // allocating. When we update top further down, some refinement
 691   // threads might try to scan the region. By zeroing the header we
 692   // ensure that any thread that will try to scan the region will
 693   // come across the zero klass word and bail out.
 694   //
 695   // NOTE: It would not have been correct to have used
 696   // CollectedHeap::fill_with_object() and make the space look like
 697   // an int array. The thread that is doing the allocation will
 698   // later update the object header to a potentially different array
 699   // type and, for a very short period of time, the klass and length
 700   // fields will be inconsistent. This could cause a refinement
 701   // thread to calculate the object size incorrectly.
 702   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 703 
 704   // We will set up the first region as "starts humongous". This
 705   // will also update the BOT covering all the regions to reflect
 706   // that there is a single object that starts at the bottom of the
 707   // first region.
 708   first_hr->set_startsHumongous(new_top, new_end);
 709 
 710   // Then, if there are any, we will set up the "continues
 711   // humongous" regions.
 712   HeapRegion* hr = NULL;
 713   for (size_t i = first + 1; i < last; ++i) {
 714     hr = region_at(i);
 715     hr->set_continuesHumongous(first_hr);
 716   }
 717   // If we have "continues humongous" regions (hr != NULL), then the
 718   // end of the last one should match new_end.
 719   assert(hr == NULL || hr->end() == new_end, "sanity");
 720 
 721   // Up to this point no concurrent thread would have been able to
 722   // do any scanning on any region in this series. All the top
 723   // fields still point to bottom, so the intersection between
 724   // [bottom,top] and [card_start,card_end] will be empty. Before we
 725   // update the top fields, we'll do a storestore to make sure that
 726   // no thread sees the update to top before the zeroing of the
 727   // object header and the BOT initialization.
 728   OrderAccess::storestore();
 729 
 730   // Now that the BOT and the object header have been initialized,
 731   // we can update top of the "starts humongous" region.
 732   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 733          "new_top should be in this region");
 734   first_hr->set_top(new_top);
 735   if (_hr_printer.is_active()) {
 736     HeapWord* bottom = first_hr->bottom();
 737     HeapWord* end = first_hr->orig_end();
 738     if ((first + 1) == last) {
 739       // the series has a single humongous region
 740       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 741     } else {
 742       // the series has more than one humongous regions
 743       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 744     }
 745   }
 746 
 747   // Now, we will update the top fields of the "continues humongous"
 748   // regions. The reason we need to do this is that, otherwise,
 749   // these regions would look empty and this will confuse parts of
 750   // G1. For example, the code that looks for a consecutive number
 751   // of empty regions will consider them empty and try to
 752   // re-allocate them. We can extend is_empty() to also include
 753   // !continuesHumongous(), but it is easier to just update the top
 754   // fields here. The way we set top for all regions (i.e., top ==
 755   // end for all regions but the last one, top == new_top for the
 756   // last one) is actually used when we will free up the humongous
 757   // region in free_humongous_region().
 758   hr = NULL;
 759   for (size_t i = first + 1; i < last; ++i) {
 760     hr = region_at(i);
 761     if ((i + 1) == last) {
 762       // last continues humongous region
 763       assert(hr->bottom() < new_top && new_top <= hr->end(),
 764              "new_top should fall on this region");
 765       hr->set_top(new_top);
 766       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 767     } else {
 768       // not last one
 769       assert(new_top > hr->end(), "new_top should be above this region");
 770       hr->set_top(hr->end());
 771       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 772     }
 773   }
 774   // If we have continues humongous regions (hr != NULL), then the
 775   // end of the last one should match new_end and its top should
 776   // match new_top.
 777   assert(hr == NULL ||
 778          (hr->end() == new_end && hr->top() == new_top), "sanity");
 779 
 780   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 781   _summary_bytes_used += first_hr->used();
 782   _humongous_set.add(first_hr);
 783 
 784   return new_obj;
 785 }
 786 
 787 // If could fit into free regions w/o expansion, try.
 788 // Otherwise, if can expand, do so.
 789 // Otherwise, if using ex regions might help, try with ex given back.
 790 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 791   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 792 
 793   verify_region_sets_optional();
 794 
 795   size_t num_regions =
 796          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 797   size_t x_size = expansion_regions();
 798   size_t fs = _hrs.free_suffix();
 799   size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
 800   if (first == G1_NULL_HRS_INDEX) {
 801     // The only thing we can do now is attempt expansion.
 802     if (fs + x_size >= num_regions) {
 803       // If the number of regions we're trying to allocate for this
 804       // object is at most the number of regions in the free suffix,
 805       // then the call to humongous_obj_allocate_find_first() above
 806       // should have succeeded and we wouldn't be here.
 807       //
 808       // We should only be trying to expand when the free suffix is
 809       // not sufficient for the object _and_ we have some expansion
 810       // room available.
 811       assert(num_regions > fs, "earlier allocation should have succeeded");
 812 
 813       ergo_verbose1(ErgoHeapSizing,
 814                     "attempt heap expansion",
 815                     ergo_format_reason("humongous allocation request failed")
 816                     ergo_format_byte("allocation request"),
 817                     word_size * HeapWordSize);
 818       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 819         // Even though the heap was expanded, it might not have
 820         // reached the desired size. So, we cannot assume that the
 821         // allocation will succeed.
 822         first = humongous_obj_allocate_find_first(num_regions, word_size);
 823       }
 824     }
 825   }
 826 
 827   HeapWord* result = NULL;
 828   if (first != G1_NULL_HRS_INDEX) {
 829     result =
 830       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 831     assert(result != NULL, "it should always return a valid result");
 832 
 833     // A successful humongous object allocation changes the used space
 834     // information of the old generation so we need to recalculate the
 835     // sizes and update the jstat counters here.
 836     g1mm()->update_sizes();
 837   }
 838 
 839   verify_region_sets_optional();
 840 
 841   return result;
 842 }
 843 
 844 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 845   assert_heap_not_locked_and_not_at_safepoint();
 846   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 847 
 848   unsigned int dummy_gc_count_before;
 849   return attempt_allocation(word_size, &dummy_gc_count_before);
 850 }
 851 
 852 HeapWord*
 853 G1CollectedHeap::mem_allocate(size_t word_size,
 854                               bool*  gc_overhead_limit_was_exceeded) {
 855   assert_heap_not_locked_and_not_at_safepoint();
 856 
 857   // Loop until the allocation is satisified, or unsatisfied after GC.
 858   for (int try_count = 1; /* we'll return */; try_count += 1) {
 859     unsigned int gc_count_before;
 860 
 861     HeapWord* result = NULL;
 862     if (!isHumongous(word_size)) {
 863       result = attempt_allocation(word_size, &gc_count_before);
 864     } else {
 865       result = attempt_allocation_humongous(word_size, &gc_count_before);
 866     }
 867     if (result != NULL) {
 868       return result;
 869     }
 870 
 871     // Create the garbage collection operation...
 872     VM_G1CollectForAllocation op(gc_count_before, word_size);
 873     // ...and get the VM thread to execute it.
 874     VMThread::execute(&op);
 875 
 876     if (op.prologue_succeeded() && op.pause_succeeded()) {
 877       // If the operation was successful we'll return the result even
 878       // if it is NULL. If the allocation attempt failed immediately
 879       // after a Full GC, it's unlikely we'll be able to allocate now.
 880       HeapWord* result = op.result();
 881       if (result != NULL && !isHumongous(word_size)) {
 882         // Allocations that take place on VM operations do not do any
 883         // card dirtying and we have to do it here. We only have to do
 884         // this for non-humongous allocations, though.
 885         dirty_young_block(result, word_size);
 886       }
 887       return result;
 888     } else {
 889       assert(op.result() == NULL,
 890              "the result should be NULL if the VM op did not succeed");
 891     }
 892 
 893     // Give a warning if we seem to be looping forever.
 894     if ((QueuedAllocationWarningCount > 0) &&
 895         (try_count % QueuedAllocationWarningCount == 0)) {
 896       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 897     }
 898   }
 899 
 900   ShouldNotReachHere();
 901   return NULL;
 902 }
 903 
 904 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 905                                            unsigned int *gc_count_before_ret) {
 906   // Make sure you read the note in attempt_allocation_humongous().
 907 
 908   assert_heap_not_locked_and_not_at_safepoint();
 909   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 910          "be called for humongous allocation requests");
 911 
 912   // We should only get here after the first-level allocation attempt
 913   // (attempt_allocation()) failed to allocate.
 914 
 915   // We will loop until a) we manage to successfully perform the
 916   // allocation or b) we successfully schedule a collection which
 917   // fails to perform the allocation. b) is the only case when we'll
 918   // return NULL.
 919   HeapWord* result = NULL;
 920   for (int try_count = 1; /* we'll return */; try_count += 1) {
 921     bool should_try_gc;
 922     unsigned int gc_count_before;
 923 
 924     {
 925       MutexLockerEx x(Heap_lock);
 926 
 927       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 928                                                       false /* bot_updates */);
 929       if (result != NULL) {
 930         return result;
 931       }
 932 
 933       // If we reach here, attempt_allocation_locked() above failed to
 934       // allocate a new region. So the mutator alloc region should be NULL.
 935       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 936 
 937       if (GC_locker::is_active_and_needs_gc()) {
 938         if (g1_policy()->can_expand_young_list()) {
 939           // No need for an ergo verbose message here,
 940           // can_expand_young_list() does this when it returns true.
 941           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 942                                                       false /* bot_updates */);
 943           if (result != NULL) {
 944             return result;
 945           }
 946         }
 947         should_try_gc = false;
 948       } else {
 949         // Read the GC count while still holding the Heap_lock.
 950         gc_count_before = SharedHeap::heap()->total_collections();
 951         should_try_gc = true;
 952       }
 953     }
 954 
 955     if (should_try_gc) {
 956       bool succeeded;
 957       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 958       if (result != NULL) {
 959         assert(succeeded, "only way to get back a non-NULL result");
 960         return result;
 961       }
 962 
 963       if (succeeded) {
 964         // If we get here we successfully scheduled a collection which
 965         // failed to allocate. No point in trying to allocate
 966         // further. We'll just return NULL.
 967         MutexLockerEx x(Heap_lock);
 968         *gc_count_before_ret = SharedHeap::heap()->total_collections();
 969         return NULL;
 970       }
 971     } else {
 972       GC_locker::stall_until_clear();
 973     }
 974 
 975     // We can reach here if we were unsuccessul in scheduling a
 976     // collection (because another thread beat us to it) or if we were
 977     // stalled due to the GC locker. In either can we should retry the
 978     // allocation attempt in case another thread successfully
 979     // performed a collection and reclaimed enough space. We do the
 980     // first attempt (without holding the Heap_lock) here and the
 981     // follow-on attempt will be at the start of the next loop
 982     // iteration (after taking the Heap_lock).
 983     result = _mutator_alloc_region.attempt_allocation(word_size,
 984                                                       false /* bot_updates */);
 985     if (result != NULL ){
 986       return result;
 987     }
 988 
 989     // Give a warning if we seem to be looping forever.
 990     if ((QueuedAllocationWarningCount > 0) &&
 991         (try_count % QueuedAllocationWarningCount == 0)) {
 992       warning("G1CollectedHeap::attempt_allocation_slow() "
 993               "retries %d times", try_count);
 994     }
 995   }
 996 
 997   ShouldNotReachHere();
 998   return NULL;
 999 }
1000 
1001 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1002                                           unsigned int * gc_count_before_ret) {
1003   // The structure of this method has a lot of similarities to
1004   // attempt_allocation_slow(). The reason these two were not merged
1005   // into a single one is that such a method would require several "if
1006   // allocation is not humongous do this, otherwise do that"
1007   // conditional paths which would obscure its flow. In fact, an early
1008   // version of this code did use a unified method which was harder to
1009   // follow and, as a result, it had subtle bugs that were hard to
1010   // track down. So keeping these two methods separate allows each to
1011   // be more readable. It will be good to keep these two in sync as
1012   // much as possible.
1013 
1014   assert_heap_not_locked_and_not_at_safepoint();
1015   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1016          "should only be called for humongous allocations");
1017 
1018   // We will loop until a) we manage to successfully perform the
1019   // allocation or b) we successfully schedule a collection which
1020   // fails to perform the allocation. b) is the only case when we'll
1021   // return NULL.
1022   HeapWord* result = NULL;
1023   for (int try_count = 1; /* we'll return */; try_count += 1) {
1024     bool should_try_gc;
1025     unsigned int gc_count_before;
1026 
1027     {
1028       MutexLockerEx x(Heap_lock);
1029 
1030       // Given that humongous objects are not allocated in young
1031       // regions, we'll first try to do the allocation without doing a
1032       // collection hoping that there's enough space in the heap.
1033       result = humongous_obj_allocate(word_size);
1034       if (result != NULL) {
1035         return result;
1036       }
1037 
1038       if (GC_locker::is_active_and_needs_gc()) {
1039         should_try_gc = false;
1040       } else {
1041         // Read the GC count while still holding the Heap_lock.
1042         gc_count_before = SharedHeap::heap()->total_collections();
1043         should_try_gc = true;
1044       }
1045     }
1046 
1047     if (should_try_gc) {
1048       // If we failed to allocate the humongous object, we should try to
1049       // do a collection pause (if we're allowed) in case it reclaims
1050       // enough space for the allocation to succeed after the pause.
1051 
1052       bool succeeded;
1053       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1054       if (result != NULL) {
1055         assert(succeeded, "only way to get back a non-NULL result");
1056         return result;
1057       }
1058 
1059       if (succeeded) {
1060         // If we get here we successfully scheduled a collection which
1061         // failed to allocate. No point in trying to allocate
1062         // further. We'll just return NULL.
1063         MutexLockerEx x(Heap_lock);
1064         *gc_count_before_ret = SharedHeap::heap()->total_collections();
1065         return NULL;
1066       }
1067     } else {
1068       GC_locker::stall_until_clear();
1069     }
1070 
1071     // We can reach here if we were unsuccessul in scheduling a
1072     // collection (because another thread beat us to it) or if we were
1073     // stalled due to the GC locker. In either can we should retry the
1074     // allocation attempt in case another thread successfully
1075     // performed a collection and reclaimed enough space.  Give a
1076     // warning if we seem to be looping forever.
1077 
1078     if ((QueuedAllocationWarningCount > 0) &&
1079         (try_count % QueuedAllocationWarningCount == 0)) {
1080       warning("G1CollectedHeap::attempt_allocation_humongous() "
1081               "retries %d times", try_count);
1082     }
1083   }
1084 
1085   ShouldNotReachHere();
1086   return NULL;
1087 }
1088 
1089 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1090                                        bool expect_null_mutator_alloc_region) {
1091   assert_at_safepoint(true /* should_be_vm_thread */);
1092   assert(_mutator_alloc_region.get() == NULL ||
1093                                              !expect_null_mutator_alloc_region,
1094          "the current alloc region was unexpectedly found to be non-NULL");
1095 
1096   if (!isHumongous(word_size)) {
1097     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1098                                                       false /* bot_updates */);
1099   } else {
1100     return humongous_obj_allocate(word_size);
1101   }
1102 
1103   ShouldNotReachHere();
1104 }
1105 
1106 class PostMCRemSetClearClosure: public HeapRegionClosure {
1107   ModRefBarrierSet* _mr_bs;
1108 public:
1109   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1110   bool doHeapRegion(HeapRegion* r) {
1111     r->reset_gc_time_stamp();
1112     if (r->continuesHumongous())
1113       return false;
1114     HeapRegionRemSet* hrrs = r->rem_set();
1115     if (hrrs != NULL) hrrs->clear();
1116     // You might think here that we could clear just the cards
1117     // corresponding to the used region.  But no: if we leave a dirty card
1118     // in a region we might allocate into, then it would prevent that card
1119     // from being enqueued, and cause it to be missed.
1120     // Re: the performance cost: we shouldn't be doing full GC anyway!
1121     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1122     return false;
1123   }
1124 };
1125 
1126 
1127 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
1128   ModRefBarrierSet* _mr_bs;
1129 public:
1130   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1131   bool doHeapRegion(HeapRegion* r) {
1132     if (r->continuesHumongous()) return false;
1133     if (r->used_region().word_size() != 0) {
1134       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
1135     }
1136     return false;
1137   }
1138 };
1139 
1140 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1141   G1CollectedHeap*   _g1h;
1142   UpdateRSOopClosure _cl;
1143   int                _worker_i;
1144 public:
1145   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1146     _cl(g1->g1_rem_set(), worker_i),
1147     _worker_i(worker_i),
1148     _g1h(g1)
1149   { }
1150 
1151   bool doHeapRegion(HeapRegion* r) {
1152     if (!r->continuesHumongous()) {
1153       _cl.set_from(r);
1154       r->oop_iterate(&_cl);
1155     }
1156     return false;
1157   }
1158 };
1159 
1160 class ParRebuildRSTask: public AbstractGangTask {
1161   G1CollectedHeap* _g1;
1162 public:
1163   ParRebuildRSTask(G1CollectedHeap* g1)
1164     : AbstractGangTask("ParRebuildRSTask"),
1165       _g1(g1)
1166   { }
1167 
1168   void work(int i) {
1169     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
1170     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
1171                                           _g1->workers()->active_workers(),
1172                                          HeapRegion::RebuildRSClaimValue);
1173   }
1174 };
1175 
1176 class PostCompactionPrinterClosure: public HeapRegionClosure {
1177 private:
1178   G1HRPrinter* _hr_printer;
1179 public:
1180   bool doHeapRegion(HeapRegion* hr) {
1181     assert(!hr->is_young(), "not expecting to find young regions");
1182     // We only generate output for non-empty regions.
1183     if (!hr->is_empty()) {
1184       if (!hr->isHumongous()) {
1185         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1186       } else if (hr->startsHumongous()) {
1187         if (hr->capacity() == HeapRegion::GrainBytes) {
1188           // single humongous region
1189           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1190         } else {
1191           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1192         }
1193       } else {
1194         assert(hr->continuesHumongous(), "only way to get here");
1195         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1196       }
1197     }
1198     return false;
1199   }
1200 
1201   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1202     : _hr_printer(hr_printer) { }
1203 };
1204 
1205 bool G1CollectedHeap::do_collection(bool explicit_gc,
1206                                     bool clear_all_soft_refs,
1207                                     size_t word_size) {
1208   assert_at_safepoint(true /* should_be_vm_thread */);
1209 
1210   if (GC_locker::check_active_before_gc()) {
1211     return false;
1212   }
1213 
1214   SvcGCMarker sgcm(SvcGCMarker::FULL);
1215   ResourceMark rm;
1216 
1217   if (PrintHeapAtGC) {
1218     Universe::print_heap_before_gc();
1219   }
1220 
1221   HRSPhaseSetter x(HRSPhaseFullGC);
1222   verify_region_sets_optional();
1223 
1224   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1225                            collector_policy()->should_clear_all_soft_refs();
1226 
1227   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1228 
1229   {
1230     IsGCActiveMark x;
1231 
1232     // Timing
1233     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
1234     assert(!system_gc || explicit_gc, "invariant");
1235     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
1236     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1237     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1238                 PrintGC, true, gclog_or_tty);
1239 
1240     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1241     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1242 
1243     double start = os::elapsedTime();
1244     g1_policy()->record_full_collection_start();
1245 
1246     wait_while_free_regions_coming();
1247     append_secondary_free_list_if_not_empty_with_lock();
1248 
1249     gc_prologue(true);
1250     increment_total_collections(true /* full gc */);
1251 
1252     size_t g1h_prev_used = used();
1253     assert(used() == recalculate_used(), "Should be equal");
1254 
1255     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
1256       HandleMark hm;  // Discard invalid handles created during verification
1257       gclog_or_tty->print(" VerifyBeforeGC:");
1258       prepare_for_verify();
1259       Universe::verify(/* allow dirty */ true,
1260                        /* silent      */ false,
1261                        /* option      */ VerifyOption_G1UsePrevMarking);
1262 
1263     }
1264     pre_full_gc_dump();
1265 
1266     COMPILER2_PRESENT(DerivedPointerTable::clear());
1267 
1268     // Disable discovery and empty the discovered lists
1269     // for the CM ref processor.
1270     ref_processor_cm()->disable_discovery();
1271     ref_processor_cm()->abandon_partial_discovery();
1272     ref_processor_cm()->verify_no_references_recorded();
1273 
1274     // Abandon current iterations of concurrent marking and concurrent
1275     // refinement, if any are in progress.
1276     concurrent_mark()->abort();
1277 
1278     // Make sure we'll choose a new allocation region afterwards.
1279     release_mutator_alloc_region();
1280     abandon_gc_alloc_regions();
1281     g1_rem_set()->cleanupHRRS();
1282 
1283     // We should call this after we retire any currently active alloc
1284     // regions so that all the ALLOC / RETIRE events are generated
1285     // before the start GC event.
1286     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1287 
1288     // We may have added regions to the current incremental collection
1289     // set between the last GC or pause and now. We need to clear the
1290     // incremental collection set and then start rebuilding it afresh
1291     // after this full GC.
1292     abandon_collection_set(g1_policy()->inc_cset_head());
1293     g1_policy()->clear_incremental_cset();
1294     g1_policy()->stop_incremental_cset_building();
1295 
1296     tear_down_region_sets(false /* free_list_only */);
1297     g1_policy()->set_full_young_gcs(true);
1298 
1299     // See the comments in g1CollectedHeap.hpp and
1300     // G1CollectedHeap::ref_processing_init() about
1301     // how reference processing currently works in G1.
1302 
1303     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1304     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1305 
1306     // Temporarily clear the STW ref processor's _is_alive_non_header field.
1307     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1308 
1309     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1310     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1311 
1312     // Do collection work
1313     {
1314       HandleMark hm;  // Discard invalid handles created during gc
1315       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1316     }
1317 
1318     assert(free_regions() == 0, "we should not have added any free regions");
1319     rebuild_region_sets(false /* free_list_only */);
1320 
1321     // Enqueue any discovered reference objects that have
1322     // not been removed from the discovered lists.
1323     ref_processor_stw()->enqueue_discovered_references();
1324 
1325     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1326 
1327     MemoryService::track_memory_usage();
1328 
1329     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
1330       HandleMark hm;  // Discard invalid handles created during verification
1331       gclog_or_tty->print(" VerifyAfterGC:");
1332       prepare_for_verify();
1333       Universe::verify(/* allow dirty */ false,
1334                        /* silent      */ false,
1335                        /* option      */ VerifyOption_G1UsePrevMarking);
1336 
1337     }
1338 
1339     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1340     ref_processor_stw()->verify_no_references_recorded();
1341 
1342     // Note: since we've just done a full GC, concurrent
1343     // marking is no longer active. Therefore we need not
1344     // re-enable reference discovery for the CM ref processor.
1345     // That will be done at the start of the next marking cycle.
1346     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1347     ref_processor_cm()->verify_no_references_recorded();
1348 
1349     reset_gc_time_stamp();
1350     // Since everything potentially moved, we will clear all remembered
1351     // sets, and clear all cards.  Later we will rebuild remebered
1352     // sets. We will also reset the GC time stamps of the regions.
1353     PostMCRemSetClearClosure rs_clear(mr_bs());
1354     heap_region_iterate(&rs_clear);
1355 
1356     // Resize the heap if necessary.
1357     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1358 
1359     if (_hr_printer.is_active()) {
1360       // We should do this after we potentially resize the heap so
1361       // that all the COMMIT / UNCOMMIT events are generated before
1362       // the end GC event.
1363 
1364       PostCompactionPrinterClosure cl(hr_printer());
1365       heap_region_iterate(&cl);
1366 
1367       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1368     }
1369 
1370     if (_cg1r->use_cache()) {
1371       _cg1r->clear_and_record_card_counts();
1372       _cg1r->clear_hot_cache();
1373     }
1374 
1375     // Rebuild remembered sets of all regions.
1376     if (G1CollectedHeap::use_parallel_gc_threads()) {
1377       int n_workers =
1378         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1379                                        workers()->active_workers(),
1380                                        Threads::number_of_non_daemon_threads());
1381       assert(UseDynamicNumberOfGCThreads ||
1382              n_workers == workers()->total_workers(),
1383              "If not dynamic should be using all the  workers");
1384       workers()->set_active_workers(n_workers);
1385       // Set parallel threads in the heap (_n_par_threads) only
1386       // before a parallel phase and always reset it to 0 after
1387       // the phase so that the number of parallel threads does
1388       // no get carried forward to a serial phase where there
1389       // may be code that is "possibly_parallel".
1390       set_par_threads(n_workers);
1391 
1392       ParRebuildRSTask rebuild_rs_task(this);
1393       assert(check_heap_region_claim_values(
1394              HeapRegion::InitialClaimValue), "sanity check");
1395       assert(UseDynamicNumberOfGCThreads ||
1396              workers()->active_workers() == workers()->total_workers(),
1397         "Unless dynamic should use total workers");
1398       // Use the most recent number of  active workers
1399       assert(workers()->active_workers() > 0,
1400         "Active workers not properly set");
1401       set_par_threads(workers()->active_workers());
1402       workers()->run_task(&rebuild_rs_task);
1403       set_par_threads(0);
1404       assert(check_heap_region_claim_values(
1405              HeapRegion::RebuildRSClaimValue), "sanity check");
1406       reset_heap_region_claim_values();
1407     } else {
1408       RebuildRSOutOfRegionClosure rebuild_rs(this);
1409       heap_region_iterate(&rebuild_rs);
1410     }
1411 
1412     if (PrintGC) {
1413       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1414     }
1415 
1416     if (true) { // FIXME
1417       // Ask the permanent generation to adjust size for full collections
1418       perm()->compute_new_size();
1419     }
1420 
1421     // Start a new incremental collection set for the next pause
1422     assert(g1_policy()->collection_set() == NULL, "must be");
1423     g1_policy()->start_incremental_cset_building();
1424 
1425     // Clear the _cset_fast_test bitmap in anticipation of adding
1426     // regions to the incremental collection set for the next
1427     // evacuation pause.
1428     clear_cset_fast_test();
1429 
1430     init_mutator_alloc_region();
1431 
1432     double end = os::elapsedTime();
1433     g1_policy()->record_full_collection_end();
1434 
1435 #ifdef TRACESPINNING
1436     ParallelTaskTerminator::print_termination_counts();
1437 #endif
1438 
1439     gc_epilogue(true);
1440 
1441     // Discard all rset updates
1442     JavaThread::dirty_card_queue_set().abandon_logs();
1443     assert(!G1DeferredRSUpdate
1444            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1445   }
1446 
1447   _young_list->reset_sampled_info();
1448   // At this point there should be no regions in the
1449   // entire heap tagged as young.
1450   assert( check_young_list_empty(true /* check_heap */),
1451     "young list should be empty at this point");
1452 
1453   // Update the number of full collections that have been completed.
1454   increment_full_collections_completed(false /* concurrent */);
1455 
1456   _hrs.verify_optional();
1457   verify_region_sets_optional();
1458 
1459   if (PrintHeapAtGC) {
1460     Universe::print_heap_after_gc();
1461   }
1462   g1mm()->update_sizes();
1463   post_full_gc_dump();
1464 
1465   return true;
1466 }
1467 
1468 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1469   // do_collection() will return whether it succeeded in performing
1470   // the GC. Currently, there is no facility on the
1471   // do_full_collection() API to notify the caller than the collection
1472   // did not succeed (e.g., because it was locked out by the GC
1473   // locker). So, right now, we'll ignore the return value.
1474   bool dummy = do_collection(true,                /* explicit_gc */
1475                              clear_all_soft_refs,
1476                              0                    /* word_size */);
1477 }
1478 
1479 // This code is mostly copied from TenuredGeneration.
1480 void
1481 G1CollectedHeap::
1482 resize_if_necessary_after_full_collection(size_t word_size) {
1483   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1484 
1485   // Include the current allocation, if any, and bytes that will be
1486   // pre-allocated to support collections, as "used".
1487   const size_t used_after_gc = used();
1488   const size_t capacity_after_gc = capacity();
1489   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1490 
1491   // This is enforced in arguments.cpp.
1492   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1493          "otherwise the code below doesn't make sense");
1494 
1495   // We don't have floating point command-line arguments
1496   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1497   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1498   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1499   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1500 
1501   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1502   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1503 
1504   // We have to be careful here as these two calculations can overflow
1505   // 32-bit size_t's.
1506   double used_after_gc_d = (double) used_after_gc;
1507   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1508   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1509 
1510   // Let's make sure that they are both under the max heap size, which
1511   // by default will make them fit into a size_t.
1512   double desired_capacity_upper_bound = (double) max_heap_size;
1513   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1514                                     desired_capacity_upper_bound);
1515   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1516                                     desired_capacity_upper_bound);
1517 
1518   // We can now safely turn them into size_t's.
1519   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1520   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1521 
1522   // This assert only makes sense here, before we adjust them
1523   // with respect to the min and max heap size.
1524   assert(minimum_desired_capacity <= maximum_desired_capacity,
1525          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1526                  "maximum_desired_capacity = "SIZE_FORMAT,
1527                  minimum_desired_capacity, maximum_desired_capacity));
1528 
1529   // Should not be greater than the heap max size. No need to adjust
1530   // it with respect to the heap min size as it's a lower bound (i.e.,
1531   // we'll try to make the capacity larger than it, not smaller).
1532   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1533   // Should not be less than the heap min size. No need to adjust it
1534   // with respect to the heap max size as it's an upper bound (i.e.,
1535   // we'll try to make the capacity smaller than it, not greater).
1536   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1537 
1538   if (capacity_after_gc < minimum_desired_capacity) {
1539     // Don't expand unless it's significant
1540     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1541     ergo_verbose4(ErgoHeapSizing,
1542                   "attempt heap expansion",
1543                   ergo_format_reason("capacity lower than "
1544                                      "min desired capacity after Full GC")
1545                   ergo_format_byte("capacity")
1546                   ergo_format_byte("occupancy")
1547                   ergo_format_byte_perc("min desired capacity"),
1548                   capacity_after_gc, used_after_gc,
1549                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1550     expand(expand_bytes);
1551 
1552     // No expansion, now see if we want to shrink
1553   } else if (capacity_after_gc > maximum_desired_capacity) {
1554     // Capacity too large, compute shrinking size
1555     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1556     ergo_verbose4(ErgoHeapSizing,
1557                   "attempt heap shrinking",
1558                   ergo_format_reason("capacity higher than "
1559                                      "max desired capacity after Full GC")
1560                   ergo_format_byte("capacity")
1561                   ergo_format_byte("occupancy")
1562                   ergo_format_byte_perc("max desired capacity"),
1563                   capacity_after_gc, used_after_gc,
1564                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1565     shrink(shrink_bytes);
1566   }
1567 }
1568 
1569 
1570 HeapWord*
1571 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1572                                            bool* succeeded) {
1573   assert_at_safepoint(true /* should_be_vm_thread */);
1574 
1575   *succeeded = true;
1576   // Let's attempt the allocation first.
1577   HeapWord* result =
1578     attempt_allocation_at_safepoint(word_size,
1579                                  false /* expect_null_mutator_alloc_region */);
1580   if (result != NULL) {
1581     assert(*succeeded, "sanity");
1582     return result;
1583   }
1584 
1585   // In a G1 heap, we're supposed to keep allocation from failing by
1586   // incremental pauses.  Therefore, at least for now, we'll favor
1587   // expansion over collection.  (This might change in the future if we can
1588   // do something smarter than full collection to satisfy a failed alloc.)
1589   result = expand_and_allocate(word_size);
1590   if (result != NULL) {
1591     assert(*succeeded, "sanity");
1592     return result;
1593   }
1594 
1595   // Expansion didn't work, we'll try to do a Full GC.
1596   bool gc_succeeded = do_collection(false, /* explicit_gc */
1597                                     false, /* clear_all_soft_refs */
1598                                     word_size);
1599   if (!gc_succeeded) {
1600     *succeeded = false;
1601     return NULL;
1602   }
1603 
1604   // Retry the allocation
1605   result = attempt_allocation_at_safepoint(word_size,
1606                                   true /* expect_null_mutator_alloc_region */);
1607   if (result != NULL) {
1608     assert(*succeeded, "sanity");
1609     return result;
1610   }
1611 
1612   // Then, try a Full GC that will collect all soft references.
1613   gc_succeeded = do_collection(false, /* explicit_gc */
1614                                true,  /* clear_all_soft_refs */
1615                                word_size);
1616   if (!gc_succeeded) {
1617     *succeeded = false;
1618     return NULL;
1619   }
1620 
1621   // Retry the allocation once more
1622   result = attempt_allocation_at_safepoint(word_size,
1623                                   true /* expect_null_mutator_alloc_region */);
1624   if (result != NULL) {
1625     assert(*succeeded, "sanity");
1626     return result;
1627   }
1628 
1629   assert(!collector_policy()->should_clear_all_soft_refs(),
1630          "Flag should have been handled and cleared prior to this point");
1631 
1632   // What else?  We might try synchronous finalization later.  If the total
1633   // space available is large enough for the allocation, then a more
1634   // complete compaction phase than we've tried so far might be
1635   // appropriate.
1636   assert(*succeeded, "sanity");
1637   return NULL;
1638 }
1639 
1640 // Attempting to expand the heap sufficiently
1641 // to support an allocation of the given "word_size".  If
1642 // successful, perform the allocation and return the address of the
1643 // allocated block, or else "NULL".
1644 
1645 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1646   assert_at_safepoint(true /* should_be_vm_thread */);
1647 
1648   verify_region_sets_optional();
1649 
1650   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1651   ergo_verbose1(ErgoHeapSizing,
1652                 "attempt heap expansion",
1653                 ergo_format_reason("allocation request failed")
1654                 ergo_format_byte("allocation request"),
1655                 word_size * HeapWordSize);
1656   if (expand(expand_bytes)) {
1657     _hrs.verify_optional();
1658     verify_region_sets_optional();
1659     return attempt_allocation_at_safepoint(word_size,
1660                                  false /* expect_null_mutator_alloc_region */);
1661   }
1662   return NULL;
1663 }
1664 
1665 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1666                                              HeapWord* new_end) {
1667   assert(old_end != new_end, "don't call this otherwise");
1668   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1669 
1670   // Update the committed mem region.
1671   _g1_committed.set_end(new_end);
1672   // Tell the card table about the update.
1673   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1674   // Tell the BOT about the update.
1675   _bot_shared->resize(_g1_committed.word_size());
1676 }
1677 
1678 bool G1CollectedHeap::expand(size_t expand_bytes) {
1679   size_t old_mem_size = _g1_storage.committed_size();
1680   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1681   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1682                                        HeapRegion::GrainBytes);
1683   ergo_verbose2(ErgoHeapSizing,
1684                 "expand the heap",
1685                 ergo_format_byte("requested expansion amount")
1686                 ergo_format_byte("attempted expansion amount"),
1687                 expand_bytes, aligned_expand_bytes);
1688 
1689   // First commit the memory.
1690   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1691   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1692   if (successful) {
1693     // Then propagate this update to the necessary data structures.
1694     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1695     update_committed_space(old_end, new_end);
1696 
1697     FreeRegionList expansion_list("Local Expansion List");
1698     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1699     assert(mr.start() == old_end, "post-condition");
1700     // mr might be a smaller region than what was requested if
1701     // expand_by() was unable to allocate the HeapRegion instances
1702     assert(mr.end() <= new_end, "post-condition");
1703 
1704     size_t actual_expand_bytes = mr.byte_size();
1705     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1706     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1707            "post-condition");
1708     if (actual_expand_bytes < aligned_expand_bytes) {
1709       // We could not expand _hrs to the desired size. In this case we
1710       // need to shrink the committed space accordingly.
1711       assert(mr.end() < new_end, "invariant");
1712 
1713       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1714       // First uncommit the memory.
1715       _g1_storage.shrink_by(diff_bytes);
1716       // Then propagate this update to the necessary data structures.
1717       update_committed_space(new_end, mr.end());
1718     }
1719     _free_list.add_as_tail(&expansion_list);
1720 
1721     if (_hr_printer.is_active()) {
1722       HeapWord* curr = mr.start();
1723       while (curr < mr.end()) {
1724         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1725         _hr_printer.commit(curr, curr_end);
1726         curr = curr_end;
1727       }
1728       assert(curr == mr.end(), "post-condition");
1729     }
1730     g1_policy()->record_new_heap_size(n_regions());
1731   } else {
1732     ergo_verbose0(ErgoHeapSizing,
1733                   "did not expand the heap",
1734                   ergo_format_reason("heap expansion operation failed"));
1735     // The expansion of the virtual storage space was unsuccessful.
1736     // Let's see if it was because we ran out of swap.
1737     if (G1ExitOnExpansionFailure &&
1738         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1739       // We had head room...
1740       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1741     }
1742   }
1743   return successful;
1744 }
1745 
1746 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1747   size_t old_mem_size = _g1_storage.committed_size();
1748   size_t aligned_shrink_bytes =
1749     ReservedSpace::page_align_size_down(shrink_bytes);
1750   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1751                                          HeapRegion::GrainBytes);
1752   size_t num_regions_deleted = 0;
1753   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1754   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1755   assert(mr.end() == old_end, "post-condition");
1756 
1757   ergo_verbose3(ErgoHeapSizing,
1758                 "shrink the heap",
1759                 ergo_format_byte("requested shrinking amount")
1760                 ergo_format_byte("aligned shrinking amount")
1761                 ergo_format_byte("attempted shrinking amount"),
1762                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1763   if (mr.byte_size() > 0) {
1764     if (_hr_printer.is_active()) {
1765       HeapWord* curr = mr.end();
1766       while (curr > mr.start()) {
1767         HeapWord* curr_end = curr;
1768         curr -= HeapRegion::GrainWords;
1769         _hr_printer.uncommit(curr, curr_end);
1770       }
1771       assert(curr == mr.start(), "post-condition");
1772     }
1773 
1774     _g1_storage.shrink_by(mr.byte_size());
1775     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1776     assert(mr.start() == new_end, "post-condition");
1777 
1778     _expansion_regions += num_regions_deleted;
1779     update_committed_space(old_end, new_end);
1780     HeapRegionRemSet::shrink_heap(n_regions());
1781     g1_policy()->record_new_heap_size(n_regions());
1782   } else {
1783     ergo_verbose0(ErgoHeapSizing,
1784                   "did not shrink the heap",
1785                   ergo_format_reason("heap shrinking operation failed"));
1786   }
1787 }
1788 
1789 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1790   verify_region_sets_optional();
1791 
1792   // We should only reach here at the end of a Full GC which means we
1793   // should not not be holding to any GC alloc regions. The method
1794   // below will make sure of that and do any remaining clean up.
1795   abandon_gc_alloc_regions();
1796 
1797   // Instead of tearing down / rebuilding the free lists here, we
1798   // could instead use the remove_all_pending() method on free_list to
1799   // remove only the ones that we need to remove.
1800   tear_down_region_sets(true /* free_list_only */);
1801   shrink_helper(shrink_bytes);
1802   rebuild_region_sets(true /* free_list_only */);
1803 
1804   _hrs.verify_optional();
1805   verify_region_sets_optional();
1806 }
1807 
1808 // Public methods.
1809 
1810 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1811 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1812 #endif // _MSC_VER
1813 
1814 
1815 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1816   SharedHeap(policy_),
1817   _g1_policy(policy_),
1818   _dirty_card_queue_set(false),
1819   _into_cset_dirty_card_queue_set(false),
1820   _is_alive_closure_cm(this),
1821   _is_alive_closure_stw(this),
1822   _ref_processor_cm(NULL),
1823   _ref_processor_stw(NULL),
1824   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1825   _bot_shared(NULL),
1826   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1827   _evac_failure_scan_stack(NULL) ,
1828   _mark_in_progress(false),
1829   _cg1r(NULL), _summary_bytes_used(0),
1830   _g1mm(NULL),
1831   _refine_cte_cl(NULL),
1832   _full_collection(false),
1833   _free_list("Master Free List"),
1834   _secondary_free_list("Secondary Free List"),
1835   _old_set("Old Set"),
1836   _humongous_set("Master Humongous Set"),
1837   _free_regions_coming(false),
1838   _young_list(new YoungList(this)),
1839   _gc_time_stamp(0),
1840   _retained_old_gc_alloc_region(NULL),
1841   _surviving_young_words(NULL),
1842   _full_collections_completed(0),
1843   _in_cset_fast_test(NULL),
1844   _in_cset_fast_test_base(NULL),
1845   _dirty_cards_region_list(NULL),
1846   _worker_cset_start_region(NULL),
1847   _worker_cset_start_region_stamp(NULL) {
1848   _g1h = this; // To catch bugs.
1849   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1850     vm_exit_during_initialization("Failed necessary allocation.");
1851   }
1852 
1853   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1854 
1855   int n_queues = MAX2((int)ParallelGCThreads, 1);
1856   _task_queues = new RefToScanQueueSet(n_queues);
1857 
1858   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1859   assert(n_rem_sets > 0, "Invariant.");
1860 
1861   HeapRegionRemSetIterator** iter_arr =
1862     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1863   for (int i = 0; i < n_queues; i++) {
1864     iter_arr[i] = new HeapRegionRemSetIterator();
1865   }
1866   _rem_set_iterator = iter_arr;
1867 
1868   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues);
1869   _worker_cset_start_region_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues);
1870 
1871   for (int i = 0; i < n_queues; i++) {
1872     RefToScanQueue* q = new RefToScanQueue();
1873     q->initialize();
1874     _task_queues->register_queue(i, q);
1875     
1876     _worker_cset_start_region[i] = NULL;
1877     _worker_cset_start_region_stamp[i] = 0;
1878   }
1879 
1880   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1881 }
1882 
1883 jint G1CollectedHeap::initialize() {
1884   CollectedHeap::pre_initialize();
1885   os::enable_vtime();
1886 
1887   // Necessary to satisfy locking discipline assertions.
1888 
1889   MutexLocker x(Heap_lock);
1890 
1891   // We have to initialize the printer before committing the heap, as
1892   // it will be used then.
1893   _hr_printer.set_active(G1PrintHeapRegions);
1894 
1895   // While there are no constraints in the GC code that HeapWordSize
1896   // be any particular value, there are multiple other areas in the
1897   // system which believe this to be true (e.g. oop->object_size in some
1898   // cases incorrectly returns the size in wordSize units rather than
1899   // HeapWordSize).
1900   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1901 
1902   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1903   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1904 
1905   // Ensure that the sizes are properly aligned.
1906   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1907   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1908 
1909   _cg1r = new ConcurrentG1Refine();
1910 
1911   // Reserve the maximum.
1912   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1913   // Includes the perm-gen.
1914 
1915   // When compressed oops are enabled, the preferred heap base
1916   // is calculated by subtracting the requested size from the
1917   // 32Gb boundary and using the result as the base address for
1918   // heap reservation. If the requested size is not aligned to
1919   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1920   // into the ReservedHeapSpace constructor) then the actual
1921   // base of the reserved heap may end up differing from the
1922   // address that was requested (i.e. the preferred heap base).
1923   // If this happens then we could end up using a non-optimal
1924   // compressed oops mode.
1925 
1926   // Since max_byte_size is aligned to the size of a heap region (checked
1927   // above), we also need to align the perm gen size as it might not be.
1928   const size_t total_reserved = max_byte_size +
1929                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
1930   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
1931 
1932   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1933 
1934   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
1935                             UseLargePages, addr);
1936 
1937   if (UseCompressedOops) {
1938     if (addr != NULL && !heap_rs.is_reserved()) {
1939       // Failed to reserve at specified address - the requested memory
1940       // region is taken already, for example, by 'java' launcher.
1941       // Try again to reserver heap higher.
1942       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1943 
1944       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
1945                                  UseLargePages, addr);
1946 
1947       if (addr != NULL && !heap_rs0.is_reserved()) {
1948         // Failed to reserve at specified address again - give up.
1949         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
1950         assert(addr == NULL, "");
1951 
1952         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
1953                                    UseLargePages, addr);
1954         heap_rs = heap_rs1;
1955       } else {
1956         heap_rs = heap_rs0;
1957       }
1958     }
1959   }
1960 
1961   if (!heap_rs.is_reserved()) {
1962     vm_exit_during_initialization("Could not reserve enough space for object heap");
1963     return JNI_ENOMEM;
1964   }
1965 
1966   // It is important to do this in a way such that concurrent readers can't
1967   // temporarily think somethings in the heap.  (I've actually seen this
1968   // happen in asserts: DLD.)
1969   _reserved.set_word_size(0);
1970   _reserved.set_start((HeapWord*)heap_rs.base());
1971   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1972 
1973   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
1974 
1975   // Create the gen rem set (and barrier set) for the entire reserved region.
1976   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1977   set_barrier_set(rem_set()->bs());
1978   if (barrier_set()->is_a(BarrierSet::ModRef)) {
1979     _mr_bs = (ModRefBarrierSet*)_barrier_set;
1980   } else {
1981     vm_exit_during_initialization("G1 requires a mod ref bs.");
1982     return JNI_ENOMEM;
1983   }
1984 
1985   // Also create a G1 rem set.
1986   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
1987     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1988   } else {
1989     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
1990     return JNI_ENOMEM;
1991   }
1992 
1993   // Carve out the G1 part of the heap.
1994 
1995   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
1996   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
1997                            g1_rs.size()/HeapWordSize);
1998   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
1999 
2000   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
2001 
2002   _g1_storage.initialize(g1_rs, 0);
2003   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2004   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2005                   (HeapWord*) _g1_reserved.end(),
2006                   _expansion_regions);
2007 
2008   // 6843694 - ensure that the maximum region index can fit
2009   // in the remembered set structures.
2010   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2011   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2012 
2013   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2014   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2015   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2016             "too many cards per region");
2017 
2018   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2019 
2020   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2021                                              heap_word_size(init_byte_size));
2022 
2023   _g1h = this;
2024 
2025    _in_cset_fast_test_length = max_regions();
2026    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
2027 
2028    // We're biasing _in_cset_fast_test to avoid subtracting the
2029    // beginning of the heap every time we want to index; basically
2030    // it's the same with what we do with the card table.
2031    _in_cset_fast_test = _in_cset_fast_test_base -
2032                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2033 
2034    // Clear the _cset_fast_test bitmap in anticipation of adding
2035    // regions to the incremental collection set for the first
2036    // evacuation pause.
2037    clear_cset_fast_test();
2038 
2039   // Create the ConcurrentMark data structure and thread.
2040   // (Must do this late, so that "max_regions" is defined.)
2041   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
2042   _cmThread = _cm->cmThread();
2043 
2044   // Initialize the from_card cache structure of HeapRegionRemSet.
2045   HeapRegionRemSet::init_heap(max_regions());
2046 
2047   // Now expand into the initial heap size.
2048   if (!expand(init_byte_size)) {
2049     vm_exit_during_initialization("Failed to allocate initial heap.");
2050     return JNI_ENOMEM;
2051   }
2052 
2053   // Perform any initialization actions delegated to the policy.
2054   g1_policy()->init();
2055 
2056   _refine_cte_cl =
2057     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2058                                     g1_rem_set(),
2059                                     concurrent_g1_refine());
2060   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2061 
2062   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2063                                                SATB_Q_FL_lock,
2064                                                G1SATBProcessCompletedThreshold,
2065                                                Shared_SATB_Q_lock);
2066 
2067   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2068                                                 DirtyCardQ_FL_lock,
2069                                                 concurrent_g1_refine()->yellow_zone(),
2070                                                 concurrent_g1_refine()->red_zone(),
2071                                                 Shared_DirtyCardQ_lock);
2072 
2073   if (G1DeferredRSUpdate) {
2074     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2075                                       DirtyCardQ_FL_lock,
2076                                       -1, // never trigger processing
2077                                       -1, // no limit on length
2078                                       Shared_DirtyCardQ_lock,
2079                                       &JavaThread::dirty_card_queue_set());
2080   }
2081 
2082   // Initialize the card queue set used to hold cards containing
2083   // references into the collection set.
2084   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2085                                              DirtyCardQ_FL_lock,
2086                                              -1, // never trigger processing
2087                                              -1, // no limit on length
2088                                              Shared_DirtyCardQ_lock,
2089                                              &JavaThread::dirty_card_queue_set());
2090 
2091   // In case we're keeping closure specialization stats, initialize those
2092   // counts and that mechanism.
2093   SpecializationStats::clear();
2094 
2095   // Do later initialization work for concurrent refinement.
2096   _cg1r->init();
2097 
2098   // Here we allocate the dummy full region that is required by the
2099   // G1AllocRegion class. If we don't pass an address in the reserved
2100   // space here, lots of asserts fire.
2101 
2102   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2103                                              _g1_reserved.start());
2104   // We'll re-use the same region whether the alloc region will
2105   // require BOT updates or not and, if it doesn't, then a non-young
2106   // region will complain that it cannot support allocations without
2107   // BOT updates. So we'll tag the dummy region as young to avoid that.
2108   dummy_region->set_young();
2109   // Make sure it's full.
2110   dummy_region->set_top(dummy_region->end());
2111   G1AllocRegion::setup(this, dummy_region);
2112 
2113   init_mutator_alloc_region();
2114 
2115   // Do create of the monitoring and management support so that
2116   // values in the heap have been properly initialized.
2117   _g1mm = new G1MonitoringSupport(this);
2118 
2119   return JNI_OK;
2120 }
2121 
2122 void G1CollectedHeap::ref_processing_init() {
2123   // Reference processing in G1 currently works as follows:
2124   //
2125   // * There are two reference processor instances. One is
2126   //   used to record and process discovered references
2127   //   during concurrent marking; the other is used to
2128   //   record and process references during STW pauses
2129   //   (both full and incremental).
2130   // * Both ref processors need to 'span' the entire heap as
2131   //   the regions in the collection set may be dotted around.
2132   //
2133   // * For the concurrent marking ref processor:
2134   //   * Reference discovery is enabled at initial marking.
2135   //   * Reference discovery is disabled and the discovered
2136   //     references processed etc during remarking.
2137   //   * Reference discovery is MT (see below).
2138   //   * Reference discovery requires a barrier (see below).
2139   //   * Reference processing may or may not be MT
2140   //     (depending on the value of ParallelRefProcEnabled
2141   //     and ParallelGCThreads).
2142   //   * A full GC disables reference discovery by the CM
2143   //     ref processor and abandons any entries on it's
2144   //     discovered lists.
2145   //
2146   // * For the STW processor:
2147   //   * Non MT discovery is enabled at the start of a full GC.
2148   //   * Processing and enqueueing during a full GC is non-MT.
2149   //   * During a full GC, references are processed after marking.
2150   //
2151   //   * Discovery (may or may not be MT) is enabled at the start
2152   //     of an incremental evacuation pause.
2153   //   * References are processed near the end of a STW evacuation pause.
2154   //   * For both types of GC:
2155   //     * Discovery is atomic - i.e. not concurrent.
2156   //     * Reference discovery will not need a barrier.
2157 
2158   SharedHeap::ref_processing_init();
2159   MemRegion mr = reserved_region();
2160 
2161   // Concurrent Mark ref processor
2162   _ref_processor_cm =
2163     new ReferenceProcessor(mr,    // span
2164                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2165                                 // mt processing
2166                            (int) ParallelGCThreads,
2167                                 // degree of mt processing
2168                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2169                                 // mt discovery
2170                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2171                                 // degree of mt discovery
2172                            false,
2173                                 // Reference discovery is not atomic
2174                            &_is_alive_closure_cm,
2175                                 // is alive closure
2176                                 // (for efficiency/performance)
2177                            true);
2178                                 // Setting next fields of discovered
2179                                 // lists requires a barrier.
2180 
2181   // STW ref processor
2182   _ref_processor_stw =
2183     new ReferenceProcessor(mr,    // span
2184                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2185                                 // mt processing
2186                            MAX2((int)ParallelGCThreads, 1),
2187                                 // degree of mt processing
2188                            (ParallelGCThreads > 1),
2189                                 // mt discovery
2190                            MAX2((int)ParallelGCThreads, 1),
2191                                 // degree of mt discovery
2192                            true,
2193                                 // Reference discovery is atomic
2194                            &_is_alive_closure_stw,
2195                                 // is alive closure
2196                                 // (for efficiency/performance)
2197                            false);
2198                                 // Setting next fields of discovered
2199                                 // lists requires a barrier.
2200 }
2201 
2202 size_t G1CollectedHeap::capacity() const {
2203   return _g1_committed.byte_size();
2204 }
2205 
2206 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2207                                                  DirtyCardQueue* into_cset_dcq,
2208                                                  bool concurrent,
2209                                                  int worker_i) {
2210   // Clean cards in the hot card cache
2211   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2212 
2213   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2214   int n_completed_buffers = 0;
2215   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2216     n_completed_buffers++;
2217   }
2218   g1_policy()->record_update_rs_processed_buffers(worker_i,
2219                                                   (double) n_completed_buffers);
2220   dcqs.clear_n_completed_buffers();
2221   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2222 }
2223 
2224 
2225 // Computes the sum of the storage used by the various regions.
2226 
2227 size_t G1CollectedHeap::used() const {
2228   assert(Heap_lock->owner() != NULL,
2229          "Should be owned on this thread's behalf.");
2230   size_t result = _summary_bytes_used;
2231   // Read only once in case it is set to NULL concurrently
2232   HeapRegion* hr = _mutator_alloc_region.get();
2233   if (hr != NULL)
2234     result += hr->used();
2235   return result;
2236 }
2237 
2238 size_t G1CollectedHeap::used_unlocked() const {
2239   size_t result = _summary_bytes_used;
2240   return result;
2241 }
2242 
2243 class SumUsedClosure: public HeapRegionClosure {
2244   size_t _used;
2245 public:
2246   SumUsedClosure() : _used(0) {}
2247   bool doHeapRegion(HeapRegion* r) {
2248     if (!r->continuesHumongous()) {
2249       _used += r->used();
2250     }
2251     return false;
2252   }
2253   size_t result() { return _used; }
2254 };
2255 
2256 size_t G1CollectedHeap::recalculate_used() const {
2257   SumUsedClosure blk;
2258   heap_region_iterate(&blk);
2259   return blk.result();
2260 }
2261 
2262 size_t G1CollectedHeap::unsafe_max_alloc() {
2263   if (free_regions() > 0) return HeapRegion::GrainBytes;
2264   // otherwise, is there space in the current allocation region?
2265 
2266   // We need to store the current allocation region in a local variable
2267   // here. The problem is that this method doesn't take any locks and
2268   // there may be other threads which overwrite the current allocation
2269   // region field. attempt_allocation(), for example, sets it to NULL
2270   // and this can happen *after* the NULL check here but before the call
2271   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2272   // to be a problem in the optimized build, since the two loads of the
2273   // current allocation region field are optimized away.
2274   HeapRegion* hr = _mutator_alloc_region.get();
2275   if (hr == NULL) {
2276     return 0;
2277   }
2278   return hr->free();
2279 }
2280 
2281 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2282   return
2283     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
2284      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
2285 }
2286 
2287 #ifndef PRODUCT
2288 void G1CollectedHeap::allocate_dummy_regions() {
2289   // Let's fill up most of the region
2290   size_t word_size = HeapRegion::GrainWords - 1024;
2291   // And as a result the region we'll allocate will be humongous.
2292   guarantee(isHumongous(word_size), "sanity");
2293 
2294   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2295     // Let's use the existing mechanism for the allocation
2296     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2297     if (dummy_obj != NULL) {
2298       MemRegion mr(dummy_obj, word_size);
2299       CollectedHeap::fill_with_object(mr);
2300     } else {
2301       // If we can't allocate once, we probably cannot allocate
2302       // again. Let's get out of the loop.
2303       break;
2304     }
2305   }
2306 }
2307 #endif // !PRODUCT
2308 
2309 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2310   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2311 
2312   // We assume that if concurrent == true, then the caller is a
2313   // concurrent thread that was joined the Suspendible Thread
2314   // Set. If there's ever a cheap way to check this, we should add an
2315   // assert here.
2316 
2317   // We have already incremented _total_full_collections at the start
2318   // of the GC, so total_full_collections() represents how many full
2319   // collections have been started.
2320   unsigned int full_collections_started = total_full_collections();
2321 
2322   // Given that this method is called at the end of a Full GC or of a
2323   // concurrent cycle, and those can be nested (i.e., a Full GC can
2324   // interrupt a concurrent cycle), the number of full collections
2325   // completed should be either one (in the case where there was no
2326   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2327   // behind the number of full collections started.
2328 
2329   // This is the case for the inner caller, i.e. a Full GC.
2330   assert(concurrent ||
2331          (full_collections_started == _full_collections_completed + 1) ||
2332          (full_collections_started == _full_collections_completed + 2),
2333          err_msg("for inner caller (Full GC): full_collections_started = %u "
2334                  "is inconsistent with _full_collections_completed = %u",
2335                  full_collections_started, _full_collections_completed));
2336 
2337   // This is the case for the outer caller, i.e. the concurrent cycle.
2338   assert(!concurrent ||
2339          (full_collections_started == _full_collections_completed + 1),
2340          err_msg("for outer caller (concurrent cycle): "
2341                  "full_collections_started = %u "
2342                  "is inconsistent with _full_collections_completed = %u",
2343                  full_collections_started, _full_collections_completed));
2344 
2345   _full_collections_completed += 1;
2346 
2347   // We need to clear the "in_progress" flag in the CM thread before
2348   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2349   // is set) so that if a waiter requests another System.gc() it doesn't
2350   // incorrectly see that a marking cyle is still in progress.
2351   if (concurrent) {
2352     _cmThread->clear_in_progress();
2353   }
2354 
2355   // This notify_all() will ensure that a thread that called
2356   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2357   // and it's waiting for a full GC to finish will be woken up. It is
2358   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2359   FullGCCount_lock->notify_all();
2360 }
2361 
2362 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2363   assert_at_safepoint(true /* should_be_vm_thread */);
2364   GCCauseSetter gcs(this, cause);
2365   switch (cause) {
2366     case GCCause::_heap_inspection:
2367     case GCCause::_heap_dump: {
2368       HandleMark hm;
2369       do_full_collection(false);         // don't clear all soft refs
2370       break;
2371     }
2372     default: // XXX FIX ME
2373       ShouldNotReachHere(); // Unexpected use of this function
2374   }
2375 }
2376 
2377 void G1CollectedHeap::collect(GCCause::Cause cause) {
2378   // The caller doesn't have the Heap_lock
2379   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2380 
2381   unsigned int gc_count_before;
2382   unsigned int full_gc_count_before;
2383   {
2384     MutexLocker ml(Heap_lock);
2385 
2386     // Read the GC count while holding the Heap_lock
2387     gc_count_before = SharedHeap::heap()->total_collections();
2388     full_gc_count_before = SharedHeap::heap()->total_full_collections();
2389   }
2390 
2391   if (should_do_concurrent_full_gc(cause)) {
2392     // Schedule an initial-mark evacuation pause that will start a
2393     // concurrent cycle. We're setting word_size to 0 which means that
2394     // we are not requesting a post-GC allocation.
2395     VM_G1IncCollectionPause op(gc_count_before,
2396                                0,     /* word_size */
2397                                true,  /* should_initiate_conc_mark */
2398                                g1_policy()->max_pause_time_ms(),
2399                                cause);
2400     VMThread::execute(&op);
2401   } else {
2402     if (cause == GCCause::_gc_locker
2403         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2404 
2405       // Schedule a standard evacuation pause. We're setting word_size
2406       // to 0 which means that we are not requesting a post-GC allocation.
2407       VM_G1IncCollectionPause op(gc_count_before,
2408                                  0,     /* word_size */
2409                                  false, /* should_initiate_conc_mark */
2410                                  g1_policy()->max_pause_time_ms(),
2411                                  cause);
2412       VMThread::execute(&op);
2413     } else {
2414       // Schedule a Full GC.
2415       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2416       VMThread::execute(&op);
2417     }
2418   }
2419 }
2420 
2421 bool G1CollectedHeap::is_in(const void* p) const {
2422   HeapRegion* hr = _hrs.addr_to_region((HeapWord*) p);
2423   if (hr != NULL) {
2424     return hr->is_in(p);
2425   } else {
2426     return _perm_gen->as_gen()->is_in(p);
2427   }
2428 }
2429 
2430 // Iteration functions.
2431 
2432 // Iterates an OopClosure over all ref-containing fields of objects
2433 // within a HeapRegion.
2434 
2435 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2436   MemRegion _mr;
2437   OopClosure* _cl;
2438 public:
2439   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2440     : _mr(mr), _cl(cl) {}
2441   bool doHeapRegion(HeapRegion* r) {
2442     if (! r->continuesHumongous()) {
2443       r->oop_iterate(_cl);
2444     }
2445     return false;
2446   }
2447 };
2448 
2449 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2450   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2451   heap_region_iterate(&blk);
2452   if (do_perm) {
2453     perm_gen()->oop_iterate(cl);
2454   }
2455 }
2456 
2457 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2458   IterateOopClosureRegionClosure blk(mr, cl);
2459   heap_region_iterate(&blk);
2460   if (do_perm) {
2461     perm_gen()->oop_iterate(cl);
2462   }
2463 }
2464 
2465 // Iterates an ObjectClosure over all objects within a HeapRegion.
2466 
2467 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2468   ObjectClosure* _cl;
2469 public:
2470   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2471   bool doHeapRegion(HeapRegion* r) {
2472     if (! r->continuesHumongous()) {
2473       r->object_iterate(_cl);
2474     }
2475     return false;
2476   }
2477 };
2478 
2479 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2480   IterateObjectClosureRegionClosure blk(cl);
2481   heap_region_iterate(&blk);
2482   if (do_perm) {
2483     perm_gen()->object_iterate(cl);
2484   }
2485 }
2486 
2487 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2488   // FIXME: is this right?
2489   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2490 }
2491 
2492 // Calls a SpaceClosure on a HeapRegion.
2493 
2494 class SpaceClosureRegionClosure: public HeapRegionClosure {
2495   SpaceClosure* _cl;
2496 public:
2497   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2498   bool doHeapRegion(HeapRegion* r) {
2499     _cl->do_space(r);
2500     return false;
2501   }
2502 };
2503 
2504 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2505   SpaceClosureRegionClosure blk(cl);
2506   heap_region_iterate(&blk);
2507 }
2508 
2509 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2510   _hrs.iterate(cl);
2511 }
2512 
2513 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2514                                                HeapRegionClosure* cl) const {
2515   _hrs.iterate_from(r, cl);
2516 }
2517 
2518 void
2519 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2520                                                  int worker,
2521                                                  int no_of_par_workers,
2522                                                  jint claim_value) {
2523   const size_t regions = n_regions();
2524   const size_t max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2525                              no_of_par_workers :
2526                              1);
2527   assert(UseDynamicNumberOfGCThreads ||
2528          no_of_par_workers == workers()->total_workers(),
2529          "Non dynamic should use fixed number of workers");
2530   // try to spread out the starting points of the workers
2531   const size_t start_index = regions / max_workers * (size_t) worker;
2532 
2533   // each worker will actually look at all regions
2534   for (size_t count = 0; count < regions; ++count) {
2535     const size_t index = (start_index + count) % regions;
2536     assert(0 <= index && index < regions, "sanity");
2537     HeapRegion* r = region_at(index);
2538     // we'll ignore "continues humongous" regions (we'll process them
2539     // when we come across their corresponding "start humongous"
2540     // region) and regions already claimed
2541     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2542       continue;
2543     }
2544     // OK, try to claim it
2545     if (r->claimHeapRegion(claim_value)) {
2546       // success!
2547       assert(!r->continuesHumongous(), "sanity");
2548       if (r->startsHumongous()) {
2549         // If the region is "starts humongous" we'll iterate over its
2550         // "continues humongous" first; in fact we'll do them
2551         // first. The order is important. In on case, calling the
2552         // closure on the "starts humongous" region might de-allocate
2553         // and clear all its "continues humongous" regions and, as a
2554         // result, we might end up processing them twice. So, we'll do
2555         // them first (notice: most closures will ignore them anyway) and
2556         // then we'll do the "starts humongous" region.
2557         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
2558           HeapRegion* chr = region_at(ch_index);
2559 
2560           // if the region has already been claimed or it's not
2561           // "continues humongous" we're done
2562           if (chr->claim_value() == claim_value ||
2563               !chr->continuesHumongous()) {
2564             break;
2565           }
2566 
2567           // Noone should have claimed it directly. We can given
2568           // that we claimed its "starts humongous" region.
2569           assert(chr->claim_value() != claim_value, "sanity");
2570           assert(chr->humongous_start_region() == r, "sanity");
2571 
2572           if (chr->claimHeapRegion(claim_value)) {
2573             // we should always be able to claim it; noone else should
2574             // be trying to claim this region
2575 
2576             bool res2 = cl->doHeapRegion(chr);
2577             assert(!res2, "Should not abort");
2578 
2579             // Right now, this holds (i.e., no closure that actually
2580             // does something with "continues humongous" regions
2581             // clears them). We might have to weaken it in the future,
2582             // but let's leave these two asserts here for extra safety.
2583             assert(chr->continuesHumongous(), "should still be the case");
2584             assert(chr->humongous_start_region() == r, "sanity");
2585           } else {
2586             guarantee(false, "we should not reach here");
2587           }
2588         }
2589       }
2590 
2591       assert(!r->continuesHumongous(), "sanity");
2592       bool res = cl->doHeapRegion(r);
2593       assert(!res, "Should not abort");
2594     }
2595   }
2596 }
2597 
2598 class ResetClaimValuesClosure: public HeapRegionClosure {
2599 public:
2600   bool doHeapRegion(HeapRegion* r) {
2601     r->set_claim_value(HeapRegion::InitialClaimValue);
2602     return false;
2603   }
2604 };
2605 
2606 void
2607 G1CollectedHeap::reset_heap_region_claim_values() {
2608   ResetClaimValuesClosure blk;
2609   heap_region_iterate(&blk);
2610 }
2611 
2612 #ifdef ASSERT
2613 // This checks whether all regions in the heap have the correct claim
2614 // value. I also piggy-backed on this a check to ensure that the
2615 // humongous_start_region() information on "continues humongous"
2616 // regions is correct.
2617 
2618 class CheckClaimValuesClosure : public HeapRegionClosure {
2619 private:
2620   jint _claim_value;
2621   size_t _failures;
2622   HeapRegion* _sh_region;
2623 public:
2624   CheckClaimValuesClosure(jint claim_value) :
2625     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2626   bool doHeapRegion(HeapRegion* r) {
2627     if (r->claim_value() != _claim_value) {
2628       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2629                              "claim value = %d, should be %d",
2630                              HR_FORMAT_PARAMS(r),
2631                              r->claim_value(), _claim_value);
2632       ++_failures;
2633     }
2634     if (!r->isHumongous()) {
2635       _sh_region = NULL;
2636     } else if (r->startsHumongous()) {
2637       _sh_region = r;
2638     } else if (r->continuesHumongous()) {
2639       if (r->humongous_start_region() != _sh_region) {
2640         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2641                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2642                                HR_FORMAT_PARAMS(r),
2643                                r->humongous_start_region(),
2644                                _sh_region);
2645         ++_failures;
2646       }
2647     }
2648     return false;
2649   }
2650   size_t failures() {
2651     return _failures;
2652   }
2653 };
2654 
2655 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2656   CheckClaimValuesClosure cl(claim_value);
2657   heap_region_iterate(&cl);
2658   return cl.failures() == 0;
2659 }
2660 
2661 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2662   jint   _claim_value;
2663   size_t _failures;
2664 
2665 public:
2666   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2667     _claim_value(claim_value),
2668     _failures(0) { }
2669 
2670   size_t failures() {
2671     return _failures;
2672   }
2673 
2674   bool doHeapRegion(HeapRegion* hr) {
2675     assert(hr->in_collection_set(), "how?");
2676     assert(!hr->isHumongous(), "H-region in CSet");
2677     if (hr->claim_value() != _claim_value) {
2678       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2679                              "claim value = %d, should be %d",
2680                              HR_FORMAT_PARAMS(hr),
2681                              hr->claim_value(), _claim_value);
2682       _failures += 1;
2683     }
2684     return false;
2685   }
2686 };
2687 
2688 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2689   CheckClaimValuesInCSetHRClosure cl(claim_value);
2690   collection_set_iterate(&cl);
2691   return cl.failures() == 0;
2692 }
2693 #endif // ASSERT
2694 
2695 // Given the id of a worker, obtain or calculate a suitable
2696 // starting region for iterating over the current collection set.
2697 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2698   assert(_worker_cset_start_region != NULL, "sanity");
2699   assert(_worker_cset_start_region_stamp != NULL, "sanity");
2700   assert(total_collections() > 0, "should have been updated by now");
2701 
2702   HeapRegion* result = NULL;
2703 
2704   if (_worker_cset_start_region_stamp[worker_i] == total_collections()) {
2705     // Cached starting region for current worker was set
2706     // during the current pause - so it's valid.
2707     // Note: the cached starting heap region may be NULL
2708     // (when the collection set is empty).
2709     result = _worker_cset_start_region[worker_i];
2710     assert(result == NULL || result->in_collection_set(), "sanity");
2711     return result;
2712   }
2713 
2714   // The cached entry was not valid so let's calculate
2715   // a suitable starting heap region for this worker.
2716 
2717   // We want the parallel threads to start their collection
2718   // set iteration at different collection set regions to
2719   // avoid contention.
2720   // If we have:
2721   //          n collection set regions
2722   //          p threads
2723   // Then thread t will start at region t * floor (n/p)
2724 
2725   result = g1_policy()->collection_set();
2726   if (G1CollectedHeap::use_parallel_gc_threads()) {
2727     size_t cs_size = g1_policy()->cset_region_length();
2728     int n_workers = workers()->total_workers();
2729     size_t cs_spans = cs_size / n_workers;
2730     size_t ind      = cs_spans * worker_i;
2731     for (size_t i = 0; i < ind; i++) {
2732       result = result->next_in_collection_set();
2733     }
2734   }
2735 
2736   // Note: the calculated starting heap region may be NULL
2737   // (when the collection set is empty).
2738   assert(result == NULL || result->in_collection_set(), "sanity");
2739   assert(_worker_cset_start_region_stamp[worker_i] != total_collections(),
2740          "should be updated only once per pause");
2741   _worker_cset_start_region[worker_i] = result;
2742   _worker_cset_start_region_stamp[worker_i] = total_collections();
2743   return result;
2744 }
2745 
2746 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2747   HeapRegion* r = g1_policy()->collection_set();
2748   while (r != NULL) {
2749     HeapRegion* next = r->next_in_collection_set();
2750     if (cl->doHeapRegion(r)) {
2751       cl->incomplete();
2752       return;
2753     }
2754     r = next;
2755   }
2756 }
2757 
2758 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2759                                                   HeapRegionClosure *cl) {
2760   if (r == NULL) {
2761     // The CSet is empty so there's nothing to do.
2762     return;
2763   }
2764 
2765   assert(r->in_collection_set(),
2766          "Start region must be a member of the collection set.");
2767   HeapRegion* cur = r;
2768   while (cur != NULL) {
2769     HeapRegion* next = cur->next_in_collection_set();
2770     if (cl->doHeapRegion(cur) && false) {
2771       cl->incomplete();
2772       return;
2773     }
2774     cur = next;
2775   }
2776   cur = g1_policy()->collection_set();
2777   while (cur != r) {
2778     HeapRegion* next = cur->next_in_collection_set();
2779     if (cl->doHeapRegion(cur) && false) {
2780       cl->incomplete();
2781       return;
2782     }
2783     cur = next;
2784   }
2785 }
2786 
2787 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2788   return n_regions() > 0 ? region_at(0) : NULL;
2789 }
2790 
2791 
2792 Space* G1CollectedHeap::space_containing(const void* addr) const {
2793   Space* res = heap_region_containing(addr);
2794   if (res == NULL)
2795     res = perm_gen()->space_containing(addr);
2796   return res;
2797 }
2798 
2799 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2800   Space* sp = space_containing(addr);
2801   if (sp != NULL) {
2802     return sp->block_start(addr);
2803   }
2804   return NULL;
2805 }
2806 
2807 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2808   Space* sp = space_containing(addr);
2809   assert(sp != NULL, "block_size of address outside of heap");
2810   return sp->block_size(addr);
2811 }
2812 
2813 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2814   Space* sp = space_containing(addr);
2815   return sp->block_is_obj(addr);
2816 }
2817 
2818 bool G1CollectedHeap::supports_tlab_allocation() const {
2819   return true;
2820 }
2821 
2822 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2823   return HeapRegion::GrainBytes;
2824 }
2825 
2826 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2827   // Return the remaining space in the cur alloc region, but not less than
2828   // the min TLAB size.
2829 
2830   // Also, this value can be at most the humongous object threshold,
2831   // since we can't allow tlabs to grow big enough to accomodate
2832   // humongous objects.
2833 
2834   HeapRegion* hr = _mutator_alloc_region.get();
2835   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2836   if (hr == NULL) {
2837     return max_tlab_size;
2838   } else {
2839     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2840   }
2841 }
2842 
2843 size_t G1CollectedHeap::max_capacity() const {
2844   return _g1_reserved.byte_size();
2845 }
2846 
2847 jlong G1CollectedHeap::millis_since_last_gc() {
2848   // assert(false, "NYI");
2849   return 0;
2850 }
2851 
2852 void G1CollectedHeap::prepare_for_verify() {
2853   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2854     ensure_parsability(false);
2855   }
2856   g1_rem_set()->prepare_for_verify();
2857 }
2858 
2859 class VerifyLivenessOopClosure: public OopClosure {
2860   G1CollectedHeap* _g1h;
2861   VerifyOption _vo;
2862 public:
2863   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2864     _g1h(g1h), _vo(vo)
2865   { }
2866   void do_oop(narrowOop *p) { do_oop_work(p); }
2867   void do_oop(      oop *p) { do_oop_work(p); }
2868 
2869   template <class T> void do_oop_work(T *p) {
2870     oop obj = oopDesc::load_decode_heap_oop(p);
2871     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2872               "Dead object referenced by a not dead object");
2873   }
2874 };
2875 
2876 class VerifyObjsInRegionClosure: public ObjectClosure {
2877 private:
2878   G1CollectedHeap* _g1h;
2879   size_t _live_bytes;
2880   HeapRegion *_hr;
2881   VerifyOption _vo;
2882 public:
2883   // _vo == UsePrevMarking -> use "prev" marking information,
2884   // _vo == UseNextMarking -> use "next" marking information,
2885   // _vo == UseMarkWord    -> use mark word from object header.
2886   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2887     : _live_bytes(0), _hr(hr), _vo(vo) {
2888     _g1h = G1CollectedHeap::heap();
2889   }
2890   void do_object(oop o) {
2891     VerifyLivenessOopClosure isLive(_g1h, _vo);
2892     assert(o != NULL, "Huh?");
2893     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2894       // If the object is alive according to the mark word,
2895       // then verify that the marking information agrees.
2896       // Note we can't verify the contra-positive of the
2897       // above: if the object is dead (according to the mark
2898       // word), it may not be marked, or may have been marked
2899       // but has since became dead, or may have been allocated
2900       // since the last marking.
2901       if (_vo == VerifyOption_G1UseMarkWord) {
2902         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2903       }
2904 
2905       o->oop_iterate(&isLive);
2906       if (!_hr->obj_allocated_since_prev_marking(o)) {
2907         size_t obj_size = o->size();    // Make sure we don't overflow
2908         _live_bytes += (obj_size * HeapWordSize);
2909       }
2910     }
2911   }
2912   size_t live_bytes() { return _live_bytes; }
2913 };
2914 
2915 class PrintObjsInRegionClosure : public ObjectClosure {
2916   HeapRegion *_hr;
2917   G1CollectedHeap *_g1;
2918 public:
2919   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2920     _g1 = G1CollectedHeap::heap();
2921   };
2922 
2923   void do_object(oop o) {
2924     if (o != NULL) {
2925       HeapWord *start = (HeapWord *) o;
2926       size_t word_sz = o->size();
2927       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2928                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2929                           (void*) o, word_sz,
2930                           _g1->isMarkedPrev(o),
2931                           _g1->isMarkedNext(o),
2932                           _hr->obj_allocated_since_prev_marking(o));
2933       HeapWord *end = start + word_sz;
2934       HeapWord *cur;
2935       int *val;
2936       for (cur = start; cur < end; cur++) {
2937         val = (int *) cur;
2938         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
2939       }
2940     }
2941   }
2942 };
2943 
2944 class VerifyRegionClosure: public HeapRegionClosure {
2945 private:
2946   bool         _allow_dirty;
2947   bool         _par;
2948   VerifyOption _vo;
2949   bool         _failures;
2950 public:
2951   // _vo == UsePrevMarking -> use "prev" marking information,
2952   // _vo == UseNextMarking -> use "next" marking information,
2953   // _vo == UseMarkWord    -> use mark word from object header.
2954   VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
2955     : _allow_dirty(allow_dirty),
2956       _par(par),
2957       _vo(vo),
2958       _failures(false) {}
2959 
2960   bool failures() {
2961     return _failures;
2962   }
2963 
2964   bool doHeapRegion(HeapRegion* r) {
2965     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
2966               "Should be unclaimed at verify points.");
2967     if (!r->continuesHumongous()) {
2968       bool failures = false;
2969       r->verify(_allow_dirty, _vo, &failures);
2970       if (failures) {
2971         _failures = true;
2972       } else {
2973         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2974         r->object_iterate(&not_dead_yet_cl);
2975         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2976           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2977                                  "max_live_bytes "SIZE_FORMAT" "
2978                                  "< calculated "SIZE_FORMAT,
2979                                  r->bottom(), r->end(),
2980                                  r->max_live_bytes(),
2981                                  not_dead_yet_cl.live_bytes());
2982           _failures = true;
2983         }
2984       }
2985     }
2986     return false; // stop the region iteration if we hit a failure
2987   }
2988 };
2989 
2990 class VerifyRootsClosure: public OopsInGenClosure {
2991 private:
2992   G1CollectedHeap* _g1h;
2993   VerifyOption     _vo;
2994   bool             _failures;
2995 public:
2996   // _vo == UsePrevMarking -> use "prev" marking information,
2997   // _vo == UseNextMarking -> use "next" marking information,
2998   // _vo == UseMarkWord    -> use mark word from object header.
2999   VerifyRootsClosure(VerifyOption vo) :
3000     _g1h(G1CollectedHeap::heap()),
3001     _vo(vo),
3002     _failures(false) { }
3003 
3004   bool failures() { return _failures; }
3005 
3006   template <class T> void do_oop_nv(T* p) {
3007     T heap_oop = oopDesc::load_heap_oop(p);
3008     if (!oopDesc::is_null(heap_oop)) {
3009       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3010       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3011         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3012                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3013         if (_vo == VerifyOption_G1UseMarkWord) {
3014           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3015         }
3016         obj->print_on(gclog_or_tty);
3017         _failures = true;
3018       }
3019     }
3020   }
3021 
3022   void do_oop(oop* p)       { do_oop_nv(p); }
3023   void do_oop(narrowOop* p) { do_oop_nv(p); }
3024 };
3025 
3026 // This is the task used for parallel heap verification.
3027 
3028 class G1ParVerifyTask: public AbstractGangTask {
3029 private:
3030   G1CollectedHeap* _g1h;
3031   bool             _allow_dirty;
3032   VerifyOption     _vo;
3033   bool             _failures;
3034 
3035 public:
3036   // _vo == UsePrevMarking -> use "prev" marking information,
3037   // _vo == UseNextMarking -> use "next" marking information,
3038   // _vo == UseMarkWord    -> use mark word from object header.
3039   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
3040     AbstractGangTask("Parallel verify task"),
3041     _g1h(g1h),
3042     _allow_dirty(allow_dirty),
3043     _vo(vo),
3044     _failures(false) { }
3045 
3046   bool failures() {
3047     return _failures;
3048   }
3049 
3050   void work(int worker_i) {
3051     HandleMark hm;
3052     VerifyRegionClosure blk(_allow_dirty, true, _vo);
3053     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
3054                                           _g1h->workers()->active_workers(),
3055                                           HeapRegion::ParVerifyClaimValue);
3056     if (blk.failures()) {
3057       _failures = true;
3058     }
3059   }
3060 };
3061 
3062 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
3063   verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
3064 }
3065 
3066 void G1CollectedHeap::verify(bool allow_dirty,
3067                              bool silent,
3068                              VerifyOption vo) {
3069   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3070     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3071     VerifyRootsClosure rootsCl(vo);
3072 
3073     assert(Thread::current()->is_VM_thread(),
3074       "Expected to be executed serially by the VM thread at this point");
3075 
3076     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3077 
3078     // We apply the relevant closures to all the oops in the
3079     // system dictionary, the string table and the code cache.
3080     const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3081 
3082     process_strong_roots(true,      // activate StrongRootsScope
3083                          true,      // we set "collecting perm gen" to true,
3084                                     // so we don't reset the dirty cards in the perm gen.
3085                          SharedHeap::ScanningOption(so),  // roots scanning options
3086                          &rootsCl,
3087                          &blobsCl,
3088                          &rootsCl);
3089 
3090     // If we're verifying after the marking phase of a Full GC then we can't
3091     // treat the perm gen as roots into the G1 heap. Some of the objects in
3092     // the perm gen may be dead and hence not marked. If one of these dead
3093     // objects is considered to be a root then we may end up with a false
3094     // "Root location <x> points to dead ob <y>" failure.
3095     if (vo != VerifyOption_G1UseMarkWord) {
3096       // Since we used "collecting_perm_gen" == true above, we will not have
3097       // checked the refs from perm into the G1-collected heap. We check those
3098       // references explicitly below. Whether the relevant cards are dirty
3099       // is checked further below in the rem set verification.
3100       if (!silent) { gclog_or_tty->print("Permgen roots "); }
3101       perm_gen()->oop_iterate(&rootsCl);
3102     }
3103     bool failures = rootsCl.failures();
3104 
3105     if (vo != VerifyOption_G1UseMarkWord) {
3106       // If we're verifying during a full GC then the region sets
3107       // will have been torn down at the start of the GC. Therefore
3108       // verifying the region sets will fail. So we only verify
3109       // the region sets when not in a full GC.
3110       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3111       verify_region_sets();
3112     }
3113 
3114     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3115     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3116       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3117              "sanity check");
3118 
3119       G1ParVerifyTask task(this, allow_dirty, vo);
3120       assert(UseDynamicNumberOfGCThreads ||
3121         workers()->active_workers() == workers()->total_workers(),
3122         "If not dynamic should be using all the workers");
3123       int n_workers = workers()->active_workers();
3124       set_par_threads(n_workers);
3125       workers()->run_task(&task);
3126       set_par_threads(0);
3127       if (task.failures()) {
3128         failures = true;
3129       }
3130 
3131       // Checks that the expected amount of parallel work was done.
3132       // The implication is that n_workers is > 0.
3133       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3134              "sanity check");
3135 
3136       reset_heap_region_claim_values();
3137 
3138       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3139              "sanity check");
3140     } else {
3141       VerifyRegionClosure blk(allow_dirty, false, vo);
3142       heap_region_iterate(&blk);
3143       if (blk.failures()) {
3144         failures = true;
3145       }
3146     }
3147     if (!silent) gclog_or_tty->print("RemSet ");
3148     rem_set()->verify();
3149 
3150     if (failures) {
3151       gclog_or_tty->print_cr("Heap:");
3152       // It helps to have the per-region information in the output to
3153       // help us track down what went wrong. This is why we call
3154       // print_extended_on() instead of print_on().
3155       print_extended_on(gclog_or_tty);
3156       gclog_or_tty->print_cr("");
3157 #ifndef PRODUCT
3158       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3159         concurrent_mark()->print_reachable("at-verification-failure",
3160                                            vo, false /* all */);
3161       }
3162 #endif
3163       gclog_or_tty->flush();
3164     }
3165     guarantee(!failures, "there should not have been any failures");
3166   } else {
3167     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
3168   }
3169 }
3170 
3171 class PrintRegionClosure: public HeapRegionClosure {
3172   outputStream* _st;
3173 public:
3174   PrintRegionClosure(outputStream* st) : _st(st) {}
3175   bool doHeapRegion(HeapRegion* r) {
3176     r->print_on(_st);
3177     return false;
3178   }
3179 };
3180 
3181 void G1CollectedHeap::print_on(outputStream* st) const {
3182   st->print(" %-20s", "garbage-first heap");
3183   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3184             capacity()/K, used_unlocked()/K);
3185   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3186             _g1_storage.low_boundary(),
3187             _g1_storage.high(),
3188             _g1_storage.high_boundary());
3189   st->cr();
3190   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3191   size_t young_regions = _young_list->length();
3192   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
3193             young_regions, young_regions * HeapRegion::GrainBytes / K);
3194   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
3195   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
3196             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
3197   st->cr();
3198   perm()->as_gen()->print_on(st);
3199 }
3200 
3201 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3202   print_on(st);
3203 
3204   // Print the per-region information.
3205   st->cr();
3206   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), HS=humongous(starts), HC=humongous(continues), CS=collection set, F=free, TS=gc time stamp, PTAMS=previous top-at-mark-start, NTAMS=next top-at-mark-start)");
3207   PrintRegionClosure blk(st);
3208   heap_region_iterate(&blk);
3209 }
3210 
3211 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3212   if (G1CollectedHeap::use_parallel_gc_threads()) {
3213     workers()->print_worker_threads_on(st);
3214   }
3215   _cmThread->print_on(st);
3216   st->cr();
3217   _cm->print_worker_threads_on(st);
3218   _cg1r->print_worker_threads_on(st);
3219   st->cr();
3220 }
3221 
3222 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3223   if (G1CollectedHeap::use_parallel_gc_threads()) {
3224     workers()->threads_do(tc);
3225   }
3226   tc->do_thread(_cmThread);
3227   _cg1r->threads_do(tc);
3228 }
3229 
3230 void G1CollectedHeap::print_tracing_info() const {
3231   // We'll overload this to mean "trace GC pause statistics."
3232   if (TraceGen0Time || TraceGen1Time) {
3233     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3234     // to that.
3235     g1_policy()->print_tracing_info();
3236   }
3237   if (G1SummarizeRSetStats) {
3238     g1_rem_set()->print_summary_info();
3239   }
3240   if (G1SummarizeConcMark) {
3241     concurrent_mark()->print_summary_info();
3242   }
3243   g1_policy()->print_yg_surv_rate_info();
3244   SpecializationStats::print();
3245 }
3246 
3247 #ifndef PRODUCT
3248 // Helpful for debugging RSet issues.
3249 
3250 class PrintRSetsClosure : public HeapRegionClosure {
3251 private:
3252   const char* _msg;
3253   size_t _occupied_sum;
3254 
3255 public:
3256   bool doHeapRegion(HeapRegion* r) {
3257     HeapRegionRemSet* hrrs = r->rem_set();
3258     size_t occupied = hrrs->occupied();
3259     _occupied_sum += occupied;
3260 
3261     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3262                            HR_FORMAT_PARAMS(r));
3263     if (occupied == 0) {
3264       gclog_or_tty->print_cr("  RSet is empty");
3265     } else {
3266       hrrs->print();
3267     }
3268     gclog_or_tty->print_cr("----------");
3269     return false;
3270   }
3271 
3272   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3273     gclog_or_tty->cr();
3274     gclog_or_tty->print_cr("========================================");
3275     gclog_or_tty->print_cr(msg);
3276     gclog_or_tty->cr();
3277   }
3278 
3279   ~PrintRSetsClosure() {
3280     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3281     gclog_or_tty->print_cr("========================================");
3282     gclog_or_tty->cr();
3283   }
3284 };
3285 
3286 void G1CollectedHeap::print_cset_rsets() {
3287   PrintRSetsClosure cl("Printing CSet RSets");
3288   collection_set_iterate(&cl);
3289 }
3290 
3291 void G1CollectedHeap::print_all_rsets() {
3292   PrintRSetsClosure cl("Printing All RSets");;
3293   heap_region_iterate(&cl);
3294 }
3295 #endif // PRODUCT
3296 
3297 G1CollectedHeap* G1CollectedHeap::heap() {
3298   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3299          "not a garbage-first heap");
3300   return _g1h;
3301 }
3302 
3303 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3304   // always_do_update_barrier = false;
3305   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3306   // Call allocation profiler
3307   AllocationProfiler::iterate_since_last_gc();
3308   // Fill TLAB's and such
3309   ensure_parsability(true);
3310 }
3311 
3312 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3313   // FIXME: what is this about?
3314   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3315   // is set.
3316   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3317                         "derived pointer present"));
3318   // always_do_update_barrier = true;
3319 
3320   // We have just completed a GC. Update the soft reference
3321   // policy with the new heap occupancy
3322   Universe::update_heap_info_at_gc();
3323 }
3324 
3325 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3326                                                unsigned int gc_count_before,
3327                                                bool* succeeded) {
3328   assert_heap_not_locked_and_not_at_safepoint();
3329   g1_policy()->record_stop_world_start();
3330   VM_G1IncCollectionPause op(gc_count_before,
3331                              word_size,
3332                              false, /* should_initiate_conc_mark */
3333                              g1_policy()->max_pause_time_ms(),
3334                              GCCause::_g1_inc_collection_pause);
3335   VMThread::execute(&op);
3336 
3337   HeapWord* result = op.result();
3338   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3339   assert(result == NULL || ret_succeeded,
3340          "the result should be NULL if the VM did not succeed");
3341   *succeeded = ret_succeeded;
3342 
3343   assert_heap_not_locked();
3344   return result;
3345 }
3346 
3347 void
3348 G1CollectedHeap::doConcurrentMark() {
3349   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3350   if (!_cmThread->in_progress()) {
3351     _cmThread->set_started();
3352     CGC_lock->notify();
3353   }
3354 }
3355 
3356 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
3357                                                        bool young) {
3358   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
3359 }
3360 
3361 void G1CollectedHeap::check_if_region_is_too_expensive(double
3362                                                            predicted_time_ms) {
3363   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
3364 }
3365 
3366 size_t G1CollectedHeap::pending_card_num() {
3367   size_t extra_cards = 0;
3368   JavaThread *curr = Threads::first();
3369   while (curr != NULL) {
3370     DirtyCardQueue& dcq = curr->dirty_card_queue();
3371     extra_cards += dcq.size();
3372     curr = curr->next();
3373   }
3374   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3375   size_t buffer_size = dcqs.buffer_size();
3376   size_t buffer_num = dcqs.completed_buffers_num();
3377   return buffer_size * buffer_num + extra_cards;
3378 }
3379 
3380 size_t G1CollectedHeap::max_pending_card_num() {
3381   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3382   size_t buffer_size = dcqs.buffer_size();
3383   size_t buffer_num  = dcqs.completed_buffers_num();
3384   int thread_num  = Threads::number_of_threads();
3385   return (buffer_num + thread_num) * buffer_size;
3386 }
3387 
3388 size_t G1CollectedHeap::cards_scanned() {
3389   return g1_rem_set()->cardsScanned();
3390 }
3391 
3392 void
3393 G1CollectedHeap::setup_surviving_young_words() {
3394   guarantee( _surviving_young_words == NULL, "pre-condition" );
3395   size_t array_length = g1_policy()->young_cset_region_length();
3396   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
3397   if (_surviving_young_words == NULL) {
3398     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3399                           "Not enough space for young surv words summary.");
3400   }
3401   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3402 #ifdef ASSERT
3403   for (size_t i = 0;  i < array_length; ++i) {
3404     assert( _surviving_young_words[i] == 0, "memset above" );
3405   }
3406 #endif // !ASSERT
3407 }
3408 
3409 void
3410 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3411   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3412   size_t array_length = g1_policy()->young_cset_region_length();
3413   for (size_t i = 0; i < array_length; ++i)
3414     _surviving_young_words[i] += surv_young_words[i];
3415 }
3416 
3417 void
3418 G1CollectedHeap::cleanup_surviving_young_words() {
3419   guarantee( _surviving_young_words != NULL, "pre-condition" );
3420   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3421   _surviving_young_words = NULL;
3422 }
3423 
3424 #ifdef ASSERT
3425 class VerifyCSetClosure: public HeapRegionClosure {
3426 public:
3427   bool doHeapRegion(HeapRegion* hr) {
3428     // Here we check that the CSet region's RSet is ready for parallel
3429     // iteration. The fields that we'll verify are only manipulated
3430     // when the region is part of a CSet and is collected. Afterwards,
3431     // we reset these fields when we clear the region's RSet (when the
3432     // region is freed) so they are ready when the region is
3433     // re-allocated. The only exception to this is if there's an
3434     // evacuation failure and instead of freeing the region we leave
3435     // it in the heap. In that case, we reset these fields during
3436     // evacuation failure handling.
3437     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3438 
3439     // Here's a good place to add any other checks we'd like to
3440     // perform on CSet regions.
3441     return false;
3442   }
3443 };
3444 #endif // ASSERT
3445 
3446 #if TASKQUEUE_STATS
3447 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3448   st->print_raw_cr("GC Task Stats");
3449   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3450   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3451 }
3452 
3453 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3454   print_taskqueue_stats_hdr(st);
3455 
3456   TaskQueueStats totals;
3457   const int n = workers() != NULL ? workers()->total_workers() : 1;
3458   for (int i = 0; i < n; ++i) {
3459     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3460     totals += task_queue(i)->stats;
3461   }
3462   st->print_raw("tot "); totals.print(st); st->cr();
3463 
3464   DEBUG_ONLY(totals.verify());
3465 }
3466 
3467 void G1CollectedHeap::reset_taskqueue_stats() {
3468   const int n = workers() != NULL ? workers()->total_workers() : 1;
3469   for (int i = 0; i < n; ++i) {
3470     task_queue(i)->stats.reset();
3471   }
3472 }
3473 #endif // TASKQUEUE_STATS
3474 
3475 bool
3476 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3477   assert_at_safepoint(true /* should_be_vm_thread */);
3478   guarantee(!is_gc_active(), "collection is not reentrant");
3479 
3480   if (GC_locker::check_active_before_gc()) {
3481     return false;
3482   }
3483 
3484   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3485   ResourceMark rm;
3486 
3487   if (PrintHeapAtGC) {
3488     Universe::print_heap_before_gc();
3489   }
3490 
3491   HRSPhaseSetter x(HRSPhaseEvacuation);
3492   verify_region_sets_optional();
3493   verify_dirty_young_regions();
3494 
3495   {
3496     // This call will decide whether this pause is an initial-mark
3497     // pause. If it is, during_initial_mark_pause() will return true
3498     // for the duration of this pause.
3499     g1_policy()->decide_on_conc_mark_initiation();
3500 
3501     // We do not allow initial-mark to be piggy-backed on a
3502     // partially-young GC.
3503     assert(!g1_policy()->during_initial_mark_pause() ||
3504             g1_policy()->full_young_gcs(), "sanity");
3505 
3506     // We also do not allow partially-young GCs during marking.
3507     assert(!mark_in_progress() || g1_policy()->full_young_gcs(), "sanity");
3508 
3509     char verbose_str[128];
3510     sprintf(verbose_str, "GC pause ");
3511     if (g1_policy()->full_young_gcs()) {
3512       strcat(verbose_str, "(young)");
3513     } else {
3514       strcat(verbose_str, "(partial)");
3515     }
3516     if (g1_policy()->during_initial_mark_pause()) {
3517       strcat(verbose_str, " (initial-mark)");
3518       // We are about to start a marking cycle, so we increment the
3519       // full collection counter.
3520       increment_total_full_collections();
3521     }
3522 
3523     // if PrintGCDetails is on, we'll print long statistics information
3524     // in the collector policy code, so let's not print this as the output
3525     // is messy if we do.
3526     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
3527     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3528     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3529 
3530     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3531     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3532 
3533     // If the secondary_free_list is not empty, append it to the
3534     // free_list. No need to wait for the cleanup operation to finish;
3535     // the region allocation code will check the secondary_free_list
3536     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3537     // set, skip this step so that the region allocation code has to
3538     // get entries from the secondary_free_list.
3539     if (!G1StressConcRegionFreeing) {
3540       append_secondary_free_list_if_not_empty_with_lock();
3541     }
3542 
3543     assert(check_young_list_well_formed(),
3544       "young list should be well formed");
3545 
3546     // Don't dynamically change the number of GC threads this early.  A value of
3547     // 0 is used to indicate serial work.  When parallel work is done,
3548     // it will be set.
3549 
3550     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3551       IsGCActiveMark x;
3552 
3553       gc_prologue(false);
3554       increment_total_collections(false /* full gc */);
3555       increment_gc_time_stamp();
3556 
3557       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
3558         HandleMark hm;  // Discard invalid handles created during verification
3559         gclog_or_tty->print(" VerifyBeforeGC:");
3560         prepare_for_verify();
3561         Universe::verify(/* allow dirty */ false,
3562                          /* silent      */ false,
3563                          /* option      */ VerifyOption_G1UsePrevMarking);
3564 
3565       }
3566 
3567       COMPILER2_PRESENT(DerivedPointerTable::clear());
3568 
3569       // Please see comment in g1CollectedHeap.hpp and
3570       // G1CollectedHeap::ref_processing_init() to see how
3571       // reference processing currently works in G1.
3572       
3573       // Enable discovery in the STW reference processor
3574       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3575                                             true /*verify_no_refs*/);
3576 
3577       {
3578         // We want to temporarily turn off discovery by the
3579         // CM ref processor, if necessary, and turn it back on
3580         // on again later if we do. Using a scoped
3581         // NoRefDiscovery object will do this.
3582         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3583 
3584         // Forget the current alloc region (we might even choose it to be part
3585         // of the collection set!).
3586         release_mutator_alloc_region();
3587 
3588         // We should call this after we retire the mutator alloc
3589         // region(s) so that all the ALLOC / RETIRE events are generated
3590         // before the start GC event.
3591         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3592 
3593         // The elapsed time induced by the start time below deliberately elides
3594         // the possible verification above.
3595         double start_time_sec = os::elapsedTime();
3596         size_t start_used_bytes = used();
3597 
3598 #if YOUNG_LIST_VERBOSE
3599         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3600         _young_list->print();
3601         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3602 #endif // YOUNG_LIST_VERBOSE
3603 
3604         g1_policy()->record_collection_pause_start(start_time_sec,
3605                                                    start_used_bytes);
3606 
3607 #if YOUNG_LIST_VERBOSE
3608         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3609         _young_list->print();
3610 #endif // YOUNG_LIST_VERBOSE
3611 
3612         if (g1_policy()->during_initial_mark_pause()) {
3613           concurrent_mark()->checkpointRootsInitialPre();
3614         }
3615         perm_gen()->save_marks();
3616 
3617         // We must do this before any possible evacuation that should propagate
3618         // marks.
3619         if (mark_in_progress()) {
3620           double start_time_sec = os::elapsedTime();
3621 
3622           _cm->drainAllSATBBuffers();
3623           double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
3624           g1_policy()->record_satb_drain_time(finish_mark_ms);
3625         }
3626         // Record the number of elements currently on the mark stack, so we
3627         // only iterate over these.  (Since evacuation may add to the mark
3628         // stack, doing more exposes race conditions.)  If no mark is in
3629         // progress, this will be zero.
3630         _cm->set_oops_do_bound();
3631 
3632         if (mark_in_progress()) {
3633           concurrent_mark()->newCSet();
3634         }
3635 
3636 #if YOUNG_LIST_VERBOSE
3637         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3638         _young_list->print();
3639         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3640 #endif // YOUNG_LIST_VERBOSE
3641 
3642         g1_policy()->choose_collection_set(target_pause_time_ms);
3643 
3644         if (_hr_printer.is_active()) {
3645           HeapRegion* hr = g1_policy()->collection_set();
3646           while (hr != NULL) {
3647             G1HRPrinter::RegionType type;
3648             if (!hr->is_young()) {
3649               type = G1HRPrinter::Old;
3650             } else if (hr->is_survivor()) {
3651               type = G1HRPrinter::Survivor;
3652             } else {
3653               type = G1HRPrinter::Eden;
3654             }
3655             _hr_printer.cset(hr);
3656             hr = hr->next_in_collection_set();
3657           }
3658         }
3659 
3660         // We have chosen the complete collection set. If marking is
3661         // active then, we clear the region fields of any of the
3662         // concurrent marking tasks whose region fields point into
3663         // the collection set as these values will become stale. This
3664         // will cause the owning marking threads to claim a new region
3665         // when marking restarts.
3666         if (mark_in_progress()) {
3667           concurrent_mark()->reset_active_task_region_fields_in_cset();
3668         }
3669 
3670 #ifdef ASSERT
3671         VerifyCSetClosure cl;
3672         collection_set_iterate(&cl);
3673 #endif // ASSERT
3674 
3675         setup_surviving_young_words();
3676 
3677         // Initialize the GC alloc regions.
3678         init_gc_alloc_regions();
3679 
3680         // Actually do the work...
3681         evacuate_collection_set();
3682 
3683         free_collection_set(g1_policy()->collection_set());
3684         g1_policy()->clear_collection_set();
3685 
3686         cleanup_surviving_young_words();
3687 
3688         // Start a new incremental collection set for the next pause.
3689         g1_policy()->start_incremental_cset_building();
3690 
3691         // Clear the _cset_fast_test bitmap in anticipation of adding
3692         // regions to the incremental collection set for the next
3693         // evacuation pause.
3694         clear_cset_fast_test();
3695 
3696         _young_list->reset_sampled_info();
3697 
3698         // Don't check the whole heap at this point as the
3699         // GC alloc regions from this pause have been tagged
3700         // as survivors and moved on to the survivor list.
3701         // Survivor regions will fail the !is_young() check.
3702         assert(check_young_list_empty(false /* check_heap */),
3703           "young list should be empty");
3704 
3705 #if YOUNG_LIST_VERBOSE
3706         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3707         _young_list->print();
3708 #endif // YOUNG_LIST_VERBOSE
3709 
3710         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3711                                             _young_list->first_survivor_region(),
3712                                             _young_list->last_survivor_region());
3713 
3714         _young_list->reset_auxilary_lists();
3715 
3716         if (evacuation_failed()) {
3717           _summary_bytes_used = recalculate_used();
3718         } else {
3719           // The "used" of the the collection set have already been subtracted
3720           // when they were freed.  Add in the bytes evacuated.
3721           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3722         }
3723 
3724         if (g1_policy()->during_initial_mark_pause()) {
3725           concurrent_mark()->checkpointRootsInitialPost();
3726           set_marking_started();
3727           // CAUTION: after the doConcurrentMark() call below,
3728           // the concurrent marking thread(s) could be running
3729           // concurrently with us. Make sure that anything after
3730           // this point does not assume that we are the only GC thread
3731           // running. Note: of course, the actual marking work will
3732           // not start until the safepoint itself is released in
3733           // ConcurrentGCThread::safepoint_desynchronize().
3734           doConcurrentMark();
3735         }
3736 
3737         allocate_dummy_regions();
3738 
3739 #if YOUNG_LIST_VERBOSE
3740         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3741         _young_list->print();
3742         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3743 #endif // YOUNG_LIST_VERBOSE
3744 
3745         init_mutator_alloc_region();
3746 
3747         {
3748           size_t expand_bytes = g1_policy()->expansion_amount();
3749           if (expand_bytes > 0) {
3750             size_t bytes_before = capacity();
3751             if (!expand(expand_bytes)) {
3752               // We failed to expand the heap so let's verify that
3753               // committed/uncommitted amount match the backing store
3754               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3755               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3756             }
3757           }
3758         }
3759 
3760         double end_time_sec = os::elapsedTime();
3761         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
3762         g1_policy()->record_pause_time_ms(pause_time_ms);
3763         int active_gc_threads = workers()->active_workers();
3764         g1_policy()->record_collection_pause_end(active_gc_threads);
3765 
3766         MemoryService::track_memory_usage();
3767 
3768         // In prepare_for_verify() below we'll need to scan the deferred
3769         // update buffers to bring the RSets up-to-date if
3770         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3771         // the update buffers we'll probably need to scan cards on the
3772         // regions we just allocated to (i.e., the GC alloc
3773         // regions). However, during the last GC we called
3774         // set_saved_mark() on all the GC alloc regions, so card
3775         // scanning might skip the [saved_mark_word()...top()] area of
3776         // those regions (i.e., the area we allocated objects into
3777         // during the last GC). But it shouldn't. Given that
3778         // saved_mark_word() is conditional on whether the GC time stamp
3779         // on the region is current or not, by incrementing the GC time
3780         // stamp here we invalidate all the GC time stamps on all the
3781         // regions and saved_mark_word() will simply return top() for
3782         // all the regions. This is a nicer way of ensuring this rather
3783         // than iterating over the regions and fixing them. In fact, the
3784         // GC time stamp increment here also ensures that
3785         // saved_mark_word() will return top() between pauses, i.e.,
3786         // during concurrent refinement. So we don't need the
3787         // is_gc_active() check to decided which top to use when
3788         // scanning cards (see CR 7039627).
3789         increment_gc_time_stamp();
3790 
3791         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
3792           HandleMark hm;  // Discard invalid handles created during verification
3793           gclog_or_tty->print(" VerifyAfterGC:");
3794           prepare_for_verify();
3795           Universe::verify(/* allow dirty */ true,
3796                            /* silent      */ false,
3797                            /* option      */ VerifyOption_G1UsePrevMarking);
3798         }
3799 
3800         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3801         ref_processor_stw()->verify_no_references_recorded();
3802 
3803         // CM reference discovery will be re-enabled if necessary.
3804       }
3805 
3806       {
3807         size_t expand_bytes = g1_policy()->expansion_amount();
3808         if (expand_bytes > 0) {
3809           size_t bytes_before = capacity();
3810           // No need for an ergo verbose message here,
3811           // expansion_amount() does this when it returns a value > 0.
3812           if (!expand(expand_bytes)) {
3813             // We failed to expand the heap so let's verify that
3814             // committed/uncommitted amount match the backing store
3815             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3816             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3817           }
3818         }
3819       }
3820 
3821       // We should do this after we potentially expand the heap so
3822       // that all the COMMIT events are generated before the end GC
3823       // event, and after we retire the GC alloc regions so that all
3824       // RETIRE events are generated before the end GC event.
3825       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3826 
3827       // We have to do this after we decide whether to expand the heap or not.
3828       g1_policy()->print_heap_transition();
3829 
3830       if (mark_in_progress()) {
3831         concurrent_mark()->update_g1_committed();
3832       }
3833 
3834 #ifdef TRACESPINNING
3835       ParallelTaskTerminator::print_termination_counts();
3836 #endif
3837 
3838       gc_epilogue(false);
3839     }
3840 
3841     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
3842       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
3843       print_tracing_info();
3844       vm_exit(-1);
3845     }
3846   }
3847 
3848   _hrs.verify_optional();
3849   verify_region_sets_optional();
3850 
3851   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
3852   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3853 
3854   if (PrintHeapAtGC) {
3855     Universe::print_heap_after_gc();
3856   }
3857   g1mm()->update_sizes();
3858 
3859   if (G1SummarizeRSetStats &&
3860       (G1SummarizeRSetStatsPeriod > 0) &&
3861       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3862     g1_rem_set()->print_summary_info();
3863   }
3864 
3865   return true;
3866 }
3867 
3868 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
3869 {
3870   size_t gclab_word_size;
3871   switch (purpose) {
3872     case GCAllocForSurvived:
3873       gclab_word_size = YoungPLABSize;
3874       break;
3875     case GCAllocForTenured:
3876       gclab_word_size = OldPLABSize;
3877       break;
3878     default:
3879       assert(false, "unknown GCAllocPurpose");
3880       gclab_word_size = OldPLABSize;
3881       break;
3882   }
3883   return gclab_word_size;
3884 }
3885 
3886 void G1CollectedHeap::init_mutator_alloc_region() {
3887   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
3888   _mutator_alloc_region.init();
3889 }
3890 
3891 void G1CollectedHeap::release_mutator_alloc_region() {
3892   _mutator_alloc_region.release();
3893   assert(_mutator_alloc_region.get() == NULL, "post-condition");
3894 }
3895 
3896 void G1CollectedHeap::init_gc_alloc_regions() {
3897   assert_at_safepoint(true /* should_be_vm_thread */);
3898 
3899   _survivor_gc_alloc_region.init();
3900   _old_gc_alloc_region.init();
3901   HeapRegion* retained_region = _retained_old_gc_alloc_region;
3902   _retained_old_gc_alloc_region = NULL;
3903 
3904   // We will discard the current GC alloc region if:
3905   // a) it's in the collection set (it can happen!),
3906   // b) it's already full (no point in using it),
3907   // c) it's empty (this means that it was emptied during
3908   // a cleanup and it should be on the free list now), or
3909   // d) it's humongous (this means that it was emptied
3910   // during a cleanup and was added to the free list, but
3911   // has been subseqently used to allocate a humongous
3912   // object that may be less than the region size).
3913   if (retained_region != NULL &&
3914       !retained_region->in_collection_set() &&
3915       !(retained_region->top() == retained_region->end()) &&
3916       !retained_region->is_empty() &&
3917       !retained_region->isHumongous()) {
3918     retained_region->set_saved_mark();
3919     // The retained region was added to the old region set when it was
3920     // retired. We have to remove it now, since we don't allow regions
3921     // we allocate to in the region sets. We'll re-add it later, when
3922     // it's retired again.
3923     _old_set.remove(retained_region);
3924     _old_gc_alloc_region.set(retained_region);
3925     _hr_printer.reuse(retained_region);
3926   }
3927 }
3928 
3929 void G1CollectedHeap::release_gc_alloc_regions() {
3930   _survivor_gc_alloc_region.release();
3931   // If we have an old GC alloc region to release, we'll save it in
3932   // _retained_old_gc_alloc_region. If we don't
3933   // _retained_old_gc_alloc_region will become NULL. This is what we
3934   // want either way so no reason to check explicitly for either
3935   // condition.
3936   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
3937 }
3938 
3939 void G1CollectedHeap::abandon_gc_alloc_regions() {
3940   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
3941   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
3942   _retained_old_gc_alloc_region = NULL;
3943 }
3944 
3945 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
3946   _drain_in_progress = false;
3947   set_evac_failure_closure(cl);
3948   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
3949 }
3950 
3951 void G1CollectedHeap::finalize_for_evac_failure() {
3952   assert(_evac_failure_scan_stack != NULL &&
3953          _evac_failure_scan_stack->length() == 0,
3954          "Postcondition");
3955   assert(!_drain_in_progress, "Postcondition");
3956   delete _evac_failure_scan_stack;
3957   _evac_failure_scan_stack = NULL;
3958 }
3959 
3960 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
3961 private:
3962   G1CollectedHeap* _g1;
3963   DirtyCardQueue *_dcq;
3964   CardTableModRefBS* _ct_bs;
3965 
3966 public:
3967   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
3968     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3969 
3970   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3971   virtual void do_oop(      oop* p) { do_oop_work(p); }
3972   template <class T> void do_oop_work(T* p) {
3973     assert(_from->is_in_reserved(p), "paranoia");
3974     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
3975         !_from->is_survivor()) {
3976       size_t card_index = _ct_bs->index_for(p);
3977       if (_ct_bs->mark_card_deferred(card_index)) {
3978         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
3979       }
3980     }
3981   }
3982 };
3983 
3984 class RemoveSelfPointerClosure: public ObjectClosure {
3985 private:
3986   G1CollectedHeap* _g1;
3987   ConcurrentMark* _cm;
3988   HeapRegion* _hr;
3989   size_t _prev_marked_bytes;
3990   size_t _next_marked_bytes;
3991   OopsInHeapRegionClosure *_cl;
3992 public:
3993   RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
3994                            OopsInHeapRegionClosure* cl) :
3995     _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
3996     _next_marked_bytes(0), _cl(cl) {}
3997 
3998   size_t prev_marked_bytes() { return _prev_marked_bytes; }
3999   size_t next_marked_bytes() { return _next_marked_bytes; }
4000 
4001   // <original comment>
4002   // The original idea here was to coalesce evacuated and dead objects.
4003   // However that caused complications with the block offset table (BOT).
4004   // In particular if there were two TLABs, one of them partially refined.
4005   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
4006   // The BOT entries of the unrefined part of TLAB_2 point to the start
4007   // of TLAB_2. If the last object of the TLAB_1 and the first object
4008   // of TLAB_2 are coalesced, then the cards of the unrefined part
4009   // would point into middle of the filler object.
4010   // The current approach is to not coalesce and leave the BOT contents intact.
4011   // </original comment>
4012   //
4013   // We now reset the BOT when we start the object iteration over the
4014   // region and refine its entries for every object we come across. So
4015   // the above comment is not really relevant and we should be able
4016   // to coalesce dead objects if we want to.
4017   void do_object(oop obj) {
4018     HeapWord* obj_addr = (HeapWord*) obj;
4019     assert(_hr->is_in(obj_addr), "sanity");
4020     size_t obj_size = obj->size();
4021     _hr->update_bot_for_object(obj_addr, obj_size);
4022     if (obj->is_forwarded() && obj->forwardee() == obj) {
4023       // The object failed to move.
4024       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
4025       _cm->markPrev(obj);
4026       assert(_cm->isPrevMarked(obj), "Should be marked!");
4027       _prev_marked_bytes += (obj_size * HeapWordSize);
4028       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
4029         _cm->markAndGrayObjectIfNecessary(obj);
4030       }
4031       obj->set_mark(markOopDesc::prototype());
4032       // While we were processing RSet buffers during the
4033       // collection, we actually didn't scan any cards on the
4034       // collection set, since we didn't want to update remebered
4035       // sets with entries that point into the collection set, given
4036       // that live objects fromthe collection set are about to move
4037       // and such entries will be stale very soon. This change also
4038       // dealt with a reliability issue which involved scanning a
4039       // card in the collection set and coming across an array that
4040       // was being chunked and looking malformed. The problem is
4041       // that, if evacuation fails, we might have remembered set
4042       // entries missing given that we skipped cards on the
4043       // collection set. So, we'll recreate such entries now.
4044       obj->oop_iterate(_cl);
4045       assert(_cm->isPrevMarked(obj), "Should be marked!");
4046     } else {
4047       // The object has been either evacuated or is dead. Fill it with a
4048       // dummy object.
4049       MemRegion mr((HeapWord*)obj, obj_size);
4050       CollectedHeap::fill_with_object(mr);
4051       _cm->clearRangeBothMaps(mr);
4052     }
4053   }
4054 };
4055 
4056 void G1CollectedHeap::remove_self_forwarding_pointers() {
4057   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
4058   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
4059   UpdateRSetDeferred deferred_update(_g1h, &dcq);
4060   OopsInHeapRegionClosure *cl;
4061   if (G1DeferredRSUpdate) {
4062     cl = &deferred_update;
4063   } else {
4064     cl = &immediate_update;
4065   }
4066   HeapRegion* cur = g1_policy()->collection_set();
4067   while (cur != NULL) {
4068     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
4069     assert(!cur->isHumongous(), "sanity");
4070 
4071     if (cur->evacuation_failed()) {
4072       assert(cur->in_collection_set(), "bad CS");
4073       RemoveSelfPointerClosure rspc(_g1h, cur, cl);
4074 
4075       // In the common case we make sure that this is done when the
4076       // region is freed so that it is "ready-to-go" when it's
4077       // re-allocated. However, when evacuation failure happens, a
4078       // region will remain in the heap and might ultimately be added
4079       // to a CSet in the future. So we have to be careful here and
4080       // make sure the region's RSet is ready for parallel iteration
4081       // whenever this might be required in the future.
4082       cur->rem_set()->reset_for_par_iteration();
4083       cur->reset_bot();
4084       cl->set_region(cur);
4085       cur->object_iterate(&rspc);
4086 
4087       // A number of manipulations to make the TAMS be the current top,
4088       // and the marked bytes be the ones observed in the iteration.
4089       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
4090         // The comments below are the postconditions achieved by the
4091         // calls.  Note especially the last such condition, which says that
4092         // the count of marked bytes has been properly restored.
4093         cur->note_start_of_marking(false);
4094         // _next_top_at_mark_start == top, _next_marked_bytes == 0
4095         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
4096         // _next_marked_bytes == prev_marked_bytes.
4097         cur->note_end_of_marking();
4098         // _prev_top_at_mark_start == top(),
4099         // _prev_marked_bytes == prev_marked_bytes
4100       }
4101       // If there is no mark in progress, we modified the _next variables
4102       // above needlessly, but harmlessly.
4103       if (_g1h->mark_in_progress()) {
4104         cur->note_start_of_marking(false);
4105         // _next_top_at_mark_start == top, _next_marked_bytes == 0
4106         // _next_marked_bytes == next_marked_bytes.
4107       }
4108     }
4109     cur = cur->next_in_collection_set();
4110   }
4111   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
4112 
4113   // Now restore saved marks, if any.
4114   if (_objs_with_preserved_marks != NULL) {
4115     assert(_preserved_marks_of_objs != NULL, "Both or none.");
4116     guarantee(_objs_with_preserved_marks->length() ==
4117               _preserved_marks_of_objs->length(), "Both or none.");
4118     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
4119       oop obj   = _objs_with_preserved_marks->at(i);
4120       markOop m = _preserved_marks_of_objs->at(i);
4121       obj->set_mark(m);
4122     }
4123     // Delete the preserved marks growable arrays (allocated on the C heap).
4124     delete _objs_with_preserved_marks;
4125     delete _preserved_marks_of_objs;
4126     _objs_with_preserved_marks = NULL;
4127     _preserved_marks_of_objs = NULL;
4128   }
4129 }
4130 
4131 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4132   _evac_failure_scan_stack->push(obj);
4133 }
4134 
4135 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4136   assert(_evac_failure_scan_stack != NULL, "precondition");
4137 
4138   while (_evac_failure_scan_stack->length() > 0) {
4139      oop obj = _evac_failure_scan_stack->pop();
4140      _evac_failure_closure->set_region(heap_region_containing(obj));
4141      obj->oop_iterate_backwards(_evac_failure_closure);
4142   }
4143 }
4144 
4145 oop
4146 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4147                                                oop old,
4148                                                bool should_mark_root) {
4149   assert(obj_in_cs(old),
4150          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4151                  (HeapWord*) old));
4152   markOop m = old->mark();
4153   oop forward_ptr = old->forward_to_atomic(old);
4154   if (forward_ptr == NULL) {
4155     // Forward-to-self succeeded.
4156 
4157     // should_mark_root will be true when this routine is called
4158     // from a root scanning closure during an initial mark pause.
4159     // In this case the thread that succeeds in self-forwarding the
4160     // object is also responsible for marking the object.
4161     if (should_mark_root) {
4162       assert(!oopDesc::is_null(old), "shouldn't be");
4163       _cm->grayRoot(old);
4164     }
4165 
4166     if (_evac_failure_closure != cl) {
4167       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4168       assert(!_drain_in_progress,
4169              "Should only be true while someone holds the lock.");
4170       // Set the global evac-failure closure to the current thread's.
4171       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4172       set_evac_failure_closure(cl);
4173       // Now do the common part.
4174       handle_evacuation_failure_common(old, m);
4175       // Reset to NULL.
4176       set_evac_failure_closure(NULL);
4177     } else {
4178       // The lock is already held, and this is recursive.
4179       assert(_drain_in_progress, "This should only be the recursive case.");
4180       handle_evacuation_failure_common(old, m);
4181     }
4182     return old;
4183   } else {
4184     // Forward-to-self failed. Either someone else managed to allocate
4185     // space for this object (old != forward_ptr) or they beat us in
4186     // self-forwarding it (old == forward_ptr).
4187     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4188            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4189                    "should not be in the CSet",
4190                    (HeapWord*) old, (HeapWord*) forward_ptr));
4191     return forward_ptr;
4192   }
4193 }
4194 
4195 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4196   set_evacuation_failed(true);
4197 
4198   preserve_mark_if_necessary(old, m);
4199 
4200   HeapRegion* r = heap_region_containing(old);
4201   if (!r->evacuation_failed()) {
4202     r->set_evacuation_failed(true);
4203     _hr_printer.evac_failure(r);
4204   }
4205 
4206   push_on_evac_failure_scan_stack(old);
4207 
4208   if (!_drain_in_progress) {
4209     // prevent recursion in copy_to_survivor_space()
4210     _drain_in_progress = true;
4211     drain_evac_failure_scan_stack();
4212     _drain_in_progress = false;
4213   }
4214 }
4215 
4216 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4217   assert(evacuation_failed(), "Oversaving!");
4218   // We want to call the "for_promotion_failure" version only in the
4219   // case of a promotion failure.
4220   if (m->must_be_preserved_for_promotion_failure(obj)) {
4221     if (_objs_with_preserved_marks == NULL) {
4222       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4223       _objs_with_preserved_marks =
4224         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4225       _preserved_marks_of_objs =
4226         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
4227     }
4228     _objs_with_preserved_marks->push(obj);
4229     _preserved_marks_of_objs->push(m);
4230   }
4231 }
4232 
4233 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4234                                                   size_t word_size) {
4235   if (purpose == GCAllocForSurvived) {
4236     HeapWord* result = survivor_attempt_allocation(word_size);
4237     if (result != NULL) {
4238       return result;
4239     } else {
4240       // Let's try to allocate in the old gen in case we can fit the
4241       // object there.
4242       return old_attempt_allocation(word_size);
4243     }
4244   } else {
4245     assert(purpose ==  GCAllocForTenured, "sanity");
4246     HeapWord* result = old_attempt_allocation(word_size);
4247     if (result != NULL) {
4248       return result;
4249     } else {
4250       // Let's try to allocate in the survivors in case we can fit the
4251       // object there.
4252       return survivor_attempt_allocation(word_size);
4253     }
4254   }
4255 
4256   ShouldNotReachHere();
4257   // Trying to keep some compilers happy.
4258   return NULL;
4259 }
4260 
4261 #ifndef PRODUCT
4262 bool GCLabBitMapClosure::do_bit(size_t offset) {
4263   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
4264   guarantee(_cm->isMarked(oop(addr)), "it should be!");
4265   return true;
4266 }
4267 #endif // PRODUCT
4268 
4269 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4270   ParGCAllocBuffer(gclab_word_size),
4271   _should_mark_objects(false),
4272   _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
4273   _retired(false)
4274 {
4275   //_should_mark_objects is set to true when G1ParCopyHelper needs to
4276   // mark the forwarded location of an evacuated object.
4277   // We set _should_mark_objects to true if marking is active, i.e. when we
4278   // need to propagate a mark, or during an initial mark pause, i.e. when we
4279   // need to mark objects immediately reachable by the roots.
4280   if (G1CollectedHeap::heap()->mark_in_progress() ||
4281       G1CollectedHeap::heap()->g1_policy()->during_initial_mark_pause()) {
4282     _should_mark_objects = true;
4283   }
4284 }
4285 
4286 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
4287   : _g1h(g1h),
4288     _refs(g1h->task_queue(queue_num)),
4289     _dcq(&g1h->dirty_card_queue_set()),
4290     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4291     _g1_rem(g1h->g1_rem_set()),
4292     _hash_seed(17), _queue_num(queue_num),
4293     _term_attempts(0),
4294     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4295     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4296     _age_table(false),
4297     _strong_roots_time(0), _term_time(0),
4298     _alloc_buffer_waste(0), _undo_waste(0)
4299 {
4300   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4301   // we "sacrifice" entry 0 to keep track of surviving bytes for
4302   // non-young regions (where the age is -1)
4303   // We also add a few elements at the beginning and at the end in
4304   // an attempt to eliminate cache contention
4305   size_t real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4306   size_t array_length = PADDING_ELEM_NUM +
4307                         real_length +
4308                         PADDING_ELEM_NUM;
4309   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
4310   if (_surviving_young_words_base == NULL)
4311     vm_exit_out_of_memory(array_length * sizeof(size_t),
4312                           "Not enough space for young surv histo.");
4313   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4314   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
4315 
4316   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4317   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4318 
4319   _start = os::elapsedTime();
4320 }
4321 
4322 void
4323 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4324 {
4325   st->print_raw_cr("GC Termination Stats");
4326   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4327                    " ------waste (KiB)------");
4328   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4329                    "  total   alloc    undo");
4330   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4331                    " ------- ------- -------");
4332 }
4333 
4334 void
4335 G1ParScanThreadState::print_termination_stats(int i,
4336                                               outputStream* const st) const
4337 {
4338   const double elapsed_ms = elapsed_time() * 1000.0;
4339   const double s_roots_ms = strong_roots_time() * 1000.0;
4340   const double term_ms    = term_time() * 1000.0;
4341   st->print_cr("%3d %9.2f %9.2f %6.2f "
4342                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4343                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4344                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4345                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4346                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4347                alloc_buffer_waste() * HeapWordSize / K,
4348                undo_waste() * HeapWordSize / K);
4349 }
4350 
4351 #ifdef ASSERT
4352 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4353   assert(ref != NULL, "invariant");
4354   assert(UseCompressedOops, "sanity");
4355   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4356   oop p = oopDesc::load_decode_heap_oop(ref);
4357   assert(_g1h->is_in_g1_reserved(p),
4358          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4359   return true;
4360 }
4361 
4362 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4363   assert(ref != NULL, "invariant");
4364   if (has_partial_array_mask(ref)) {
4365     // Must be in the collection set--it's already been copied.
4366     oop p = clear_partial_array_mask(ref);
4367     assert(_g1h->obj_in_cs(p),
4368            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4369   } else {
4370     oop p = oopDesc::load_decode_heap_oop(ref);
4371     assert(_g1h->is_in_g1_reserved(p),
4372            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4373   }
4374   return true;
4375 }
4376 
4377 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4378   if (ref.is_narrow()) {
4379     return verify_ref((narrowOop*) ref);
4380   } else {
4381     return verify_ref((oop*) ref);
4382   }
4383 }
4384 #endif // ASSERT
4385 
4386 void G1ParScanThreadState::trim_queue() {
4387   assert(_evac_cl != NULL, "not set");
4388   assert(_evac_failure_cl != NULL, "not set");
4389   assert(_partial_scan_cl != NULL, "not set");
4390 
4391   StarTask ref;
4392   do {
4393     // Drain the overflow stack first, so other threads can steal.
4394     while (refs()->pop_overflow(ref)) {
4395       deal_with_reference(ref);
4396     }
4397 
4398     while (refs()->pop_local(ref)) {
4399       deal_with_reference(ref);
4400     }
4401   } while (!refs()->is_empty());
4402 }
4403 
4404 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
4405   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4406   _par_scan_state(par_scan_state),
4407   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4408   _mark_in_progress(_g1->mark_in_progress()) { }
4409 
4410 template <class T> void G1ParCopyHelper::mark_object(T* p) {
4411   // This is called from do_oop_work for objects that are not
4412   // in the collection set. Objects in the collection set
4413   // are marked after they have been evacuated.
4414 
4415   T heap_oop = oopDesc::load_heap_oop(p);
4416   if (!oopDesc::is_null(heap_oop)) {
4417     oop obj = oopDesc::decode_heap_oop(heap_oop);
4418     HeapWord* addr = (HeapWord*)obj;
4419     if (_g1->is_in_g1_reserved(addr)) {
4420       _cm->grayRoot(oop(addr));
4421     }
4422   }
4423 }
4424 
4425 oop G1ParCopyHelper::copy_to_survivor_space(oop old, bool should_mark_root,
4426                                                      bool should_mark_copy) {
4427   size_t    word_sz = old->size();
4428   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4429   // +1 to make the -1 indexes valid...
4430   int       young_index = from_region->young_index_in_cset()+1;
4431   assert( (from_region->is_young() && young_index > 0) ||
4432           (!from_region->is_young() && young_index == 0), "invariant" );
4433   G1CollectorPolicy* g1p = _g1->g1_policy();
4434   markOop m = old->mark();
4435   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4436                                            : m->age();
4437   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4438                                                              word_sz);
4439   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4440   oop       obj     = oop(obj_ptr);
4441 
4442   if (obj_ptr == NULL) {
4443     // This will either forward-to-self, or detect that someone else has
4444     // installed a forwarding pointer.
4445     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4446     return _g1->handle_evacuation_failure_par(cl, old, should_mark_root);
4447   }
4448 
4449   // We're going to allocate linearly, so might as well prefetch ahead.
4450   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4451 
4452   oop forward_ptr = old->forward_to_atomic(obj);
4453   if (forward_ptr == NULL) {
4454     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4455     if (g1p->track_object_age(alloc_purpose)) {
4456       // We could simply do obj->incr_age(). However, this causes a
4457       // performance issue. obj->incr_age() will first check whether
4458       // the object has a displaced mark by checking its mark word;
4459       // getting the mark word from the new location of the object
4460       // stalls. So, given that we already have the mark word and we
4461       // are about to install it anyway, it's better to increase the
4462       // age on the mark word, when the object does not have a
4463       // displaced mark word. We're not expecting many objects to have
4464       // a displaced marked word, so that case is not optimized
4465       // further (it could be...) and we simply call obj->incr_age().
4466 
4467       if (m->has_displaced_mark_helper()) {
4468         // in this case, we have to install the mark word first,
4469         // otherwise obj looks to be forwarded (the old mark word,
4470         // which contains the forward pointer, was copied)
4471         obj->set_mark(m);
4472         obj->incr_age();
4473       } else {
4474         m = m->incr_age();
4475         obj->set_mark(m);
4476       }
4477       _par_scan_state->age_table()->add(obj, word_sz);
4478     } else {
4479       obj->set_mark(m);
4480     }
4481 
4482     // Mark the evacuated object or propagate "next" mark bit
4483     if (should_mark_copy) {
4484       if (!use_local_bitmaps ||
4485           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
4486         // if we couldn't mark it on the local bitmap (this happens when
4487         // the object was not allocated in the GCLab), we have to bite
4488         // the bullet and do the standard parallel mark
4489         _cm->markAndGrayObjectIfNecessary(obj);
4490       }
4491 
4492       if (_g1->isMarkedNext(old)) {
4493         // Unmark the object's old location so that marking
4494         // doesn't think the old object is alive.
4495         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
4496       }
4497     }
4498 
4499     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4500     surv_young_words[young_index] += word_sz;
4501 
4502     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4503       arrayOop(old)->set_length(0);
4504       oop* old_p = set_partial_array_mask(old);
4505       _par_scan_state->push_on_queue(old_p);
4506     } else {
4507       // No point in using the slower heap_region_containing() method,
4508       // given that we know obj is in the heap.
4509       _scanner->set_region(_g1->heap_region_containing_raw(obj));
4510       obj->oop_iterate_backwards(_scanner);
4511     }
4512   } else {
4513     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4514     obj = forward_ptr;
4515   }
4516   return obj;
4517 }
4518 
4519 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4520 template <class T>
4521 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4522 ::do_oop_work(T* p) {
4523   oop obj = oopDesc::load_decode_heap_oop(p);
4524   assert(barrier != G1BarrierRS || obj != NULL,
4525          "Precondition: G1BarrierRS implies obj is nonNull");
4526 
4527   // Marking:
4528   // If the object is in the collection set, then the thread
4529   // that copies the object should mark, or propagate the
4530   // mark to, the evacuated object.
4531   // If the object is not in the collection set then we
4532   // should call the mark_object() method depending on the
4533   // value of the template parameter do_mark_object (which will
4534   // be true for root scanning closures during an initial mark
4535   // pause).
4536   // The mark_object() method first checks whether the object
4537   // is marked and, if not, attempts to mark the object.
4538 
4539   // here the null check is implicit in the cset_fast_test() test
4540   if (_g1->in_cset_fast_test(obj)) {
4541     if (obj->is_forwarded()) {
4542       oopDesc::encode_store_heap_oop(p, obj->forwardee());
4543       // If we are a root scanning closure during an initial
4544       // mark pause (i.e. do_mark_object will be true) then
4545       // we also need to handle marking of roots in the
4546       // event of an evacuation failure. In the event of an
4547       // evacuation failure, the object is forwarded to itself
4548       // and not copied. For root-scanning closures, the
4549       // object would be marked after a successful self-forward
4550       // but an object could be pointed to by both a root and non
4551       // root location and be self-forwarded by a non-root-scanning
4552       // closure. Therefore we also have to attempt to mark the
4553       // self-forwarded root object here.
4554       if (do_mark_object && obj->forwardee() == obj) {
4555         mark_object(p);
4556       }
4557     } else {
4558       // During an initial mark pause, objects that are pointed to
4559       // by the roots need to be marked - even in the event of an
4560       // evacuation failure. We pass the template parameter
4561       // do_mark_object (which is true for root scanning closures
4562       // during an initial mark pause) to copy_to_survivor_space
4563       // which will pass it on to the evacuation failure handling
4564       // code. The thread that successfully self-forwards a root
4565       // object to itself is responsible for marking the object.
4566       bool should_mark_root = do_mark_object;
4567 
4568       // We need to mark the copied object if we're a root scanning
4569       // closure during an initial mark pause (i.e. do_mark_object
4570       // will be true), or the object is already marked and we need
4571       // to propagate the mark to the evacuated copy.
4572       bool should_mark_copy = do_mark_object ||
4573                               _during_initial_mark ||
4574                               (_mark_in_progress && !_g1->is_obj_ill(obj));
4575 
4576       oop copy_oop = copy_to_survivor_space(obj, should_mark_root,
4577                                                  should_mark_copy);
4578       oopDesc::encode_store_heap_oop(p, copy_oop);
4579     }
4580     // When scanning the RS, we only care about objs in CS.
4581     if (barrier == G1BarrierRS) {
4582       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4583     }
4584   } else {
4585     // The object is not in collection set. If we're a root scanning
4586     // closure during an initial mark pause (i.e. do_mark_object will
4587     // be true) then attempt to mark the object.
4588     if (do_mark_object) {
4589       mark_object(p);
4590     }
4591   }
4592 
4593   if (barrier == G1BarrierEvac && obj != NULL) {
4594     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4595   }
4596 
4597   if (do_gen_barrier && obj != NULL) {
4598     par_do_barrier(p);
4599   }
4600 }
4601 
4602 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4603 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4604 
4605 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4606   assert(has_partial_array_mask(p), "invariant");
4607   oop old = clear_partial_array_mask(p);
4608   assert(old->is_objArray(), "must be obj array");
4609   assert(old->is_forwarded(), "must be forwarded");
4610   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
4611 
4612   objArrayOop obj = objArrayOop(old->forwardee());
4613   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
4614   // Process ParGCArrayScanChunk elements now
4615   // and push the remainder back onto queue
4616   int start     = arrayOop(old)->length();
4617   int end       = obj->length();
4618   int remainder = end - start;
4619   assert(start <= end, "just checking");
4620   if (remainder > 2 * ParGCArrayScanChunk) {
4621     // Test above combines last partial chunk with a full chunk
4622     end = start + ParGCArrayScanChunk;
4623     arrayOop(old)->set_length(end);
4624     // Push remainder.
4625     oop* old_p = set_partial_array_mask(old);
4626     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
4627     _par_scan_state->push_on_queue(old_p);
4628   } else {
4629     // Restore length so that the heap remains parsable in
4630     // case of evacuation failure.
4631     arrayOop(old)->set_length(end);
4632   }
4633   _scanner.set_region(_g1->heap_region_containing_raw(obj));
4634   // process our set of indices (include header in first chunk)
4635   obj->oop_iterate_range(&_scanner, start, end);
4636 }
4637 
4638 class G1ParEvacuateFollowersClosure : public VoidClosure {
4639 protected:
4640   G1CollectedHeap*              _g1h;
4641   G1ParScanThreadState*         _par_scan_state;
4642   RefToScanQueueSet*            _queues;
4643   ParallelTaskTerminator*       _terminator;
4644 
4645   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4646   RefToScanQueueSet*      queues()         { return _queues; }
4647   ParallelTaskTerminator* terminator()     { return _terminator; }
4648 
4649 public:
4650   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4651                                 G1ParScanThreadState* par_scan_state,
4652                                 RefToScanQueueSet* queues,
4653                                 ParallelTaskTerminator* terminator)
4654     : _g1h(g1h), _par_scan_state(par_scan_state),
4655       _queues(queues), _terminator(terminator) {}
4656 
4657   void do_void();
4658 
4659 private:
4660   inline bool offer_termination();
4661 };
4662 
4663 bool G1ParEvacuateFollowersClosure::offer_termination() {
4664   G1ParScanThreadState* const pss = par_scan_state();
4665   pss->start_term_time();
4666   const bool res = terminator()->offer_termination();
4667   pss->end_term_time();
4668   return res;
4669 }
4670 
4671 void G1ParEvacuateFollowersClosure::do_void() {
4672   StarTask stolen_task;
4673   G1ParScanThreadState* const pss = par_scan_state();
4674   pss->trim_queue();
4675 
4676   do {
4677     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4678       assert(pss->verify_task(stolen_task), "sanity");
4679       if (stolen_task.is_narrow()) {
4680         pss->deal_with_reference((narrowOop*) stolen_task);
4681       } else {
4682         pss->deal_with_reference((oop*) stolen_task);
4683       }
4684 
4685       // We've just processed a reference and we might have made
4686       // available new entries on the queues. So we have to make sure
4687       // we drain the queues as necessary.
4688       pss->trim_queue();
4689     }
4690   } while (!offer_termination());
4691 
4692   pss->retire_alloc_buffers();
4693 }
4694 
4695 class G1ParTask : public AbstractGangTask {
4696 protected:
4697   G1CollectedHeap*       _g1h;
4698   RefToScanQueueSet      *_queues;
4699   ParallelTaskTerminator _terminator;
4700   int _n_workers;
4701 
4702   Mutex _stats_lock;
4703   Mutex* stats_lock() { return &_stats_lock; }
4704 
4705   size_t getNCards() {
4706     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4707       / G1BlockOffsetSharedArray::N_bytes;
4708   }
4709 
4710 public:
4711   G1ParTask(G1CollectedHeap* g1h,
4712             RefToScanQueueSet *task_queues)
4713     : AbstractGangTask("G1 collection"),
4714       _g1h(g1h),
4715       _queues(task_queues),
4716       _terminator(0, _queues),
4717       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4718   {}
4719 
4720   RefToScanQueueSet* queues() { return _queues; }
4721 
4722   RefToScanQueue *work_queue(int i) {
4723     return queues()->queue(i);
4724   }
4725 
4726   ParallelTaskTerminator* terminator() { return &_terminator; }
4727 
4728   virtual void set_for_termination(int active_workers) {
4729     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4730     // in the young space (_par_seq_tasks) in the G1 heap
4731     // for SequentialSubTasksDone.
4732     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4733     // both of which need setting by set_n_termination().
4734     _g1h->SharedHeap::set_n_termination(active_workers);
4735     _g1h->set_n_termination(active_workers);
4736     terminator()->reset_for_reuse(active_workers);
4737     _n_workers = active_workers;
4738   }
4739 
4740   void work(int i) {
4741     if (i >= _n_workers) return;  // no work needed this round
4742 
4743     double start_time_ms = os::elapsedTime() * 1000.0;
4744     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
4745 
4746     ResourceMark rm;
4747     HandleMark   hm;
4748 
4749     ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4750 
4751     G1ParScanThreadState            pss(_g1h, i);
4752     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4753     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4754     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4755 
4756     pss.set_evac_closure(&scan_evac_cl);
4757     pss.set_evac_failure_closure(&evac_failure_cl);
4758     pss.set_partial_scan_closure(&partial_scan_cl);
4759 
4760     G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4761     G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4762 
4763     G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4764     G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4765 
4766     OopClosure*                    scan_root_cl = &only_scan_root_cl;
4767     OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4768 
4769     if (_g1h->g1_policy()->during_initial_mark_pause()) {
4770       // We also need to mark copied objects.
4771       scan_root_cl = &scan_mark_root_cl;
4772       scan_perm_cl = &scan_mark_perm_cl;
4773     }
4774 
4775     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4776 
4777     pss.start_strong_roots();
4778     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4779                                   SharedHeap::SO_AllClasses,
4780                                   scan_root_cl,
4781                                   &push_heap_rs_cl,
4782                                   scan_perm_cl,
4783                                   i);
4784     pss.end_strong_roots();
4785 
4786     {
4787       double start = os::elapsedTime();
4788       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4789       evac.do_void();
4790       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4791       double term_ms = pss.term_time()*1000.0;
4792       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4793       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4794     }
4795     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4796     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4797 
4798     // Clean up any par-expanded rem sets.
4799     HeapRegionRemSet::par_cleanup();
4800 
4801     if (ParallelGCVerbose) {
4802       MutexLocker x(stats_lock());
4803       pss.print_termination_stats(i);
4804     }
4805 
4806     assert(pss.refs()->is_empty(), "should be empty");
4807     double end_time_ms = os::elapsedTime() * 1000.0;
4808     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4809   }
4810 };
4811 
4812 // *** Common G1 Evacuation Stuff
4813 
4814 // This method is run in a GC worker.
4815 
4816 void
4817 G1CollectedHeap::
4818 g1_process_strong_roots(bool collecting_perm_gen,
4819                         SharedHeap::ScanningOption so,
4820                         OopClosure* scan_non_heap_roots,
4821                         OopsInHeapRegionClosure* scan_rs,
4822                         OopsInGenClosure* scan_perm,
4823                         int worker_i) {
4824 
4825   // First scan the strong roots, including the perm gen.
4826   double ext_roots_start = os::elapsedTime();
4827   double closure_app_time_sec = 0.0;
4828 
4829   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4830   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4831   buf_scan_perm.set_generation(perm_gen());
4832 
4833   // Walk the code cache w/o buffering, because StarTask cannot handle
4834   // unaligned oop locations.
4835   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
4836 
4837   process_strong_roots(false, // no scoping; this is parallel code
4838                        collecting_perm_gen, so,
4839                        &buf_scan_non_heap_roots,
4840                        &eager_scan_code_roots,
4841                        &buf_scan_perm);
4842 
4843   // Now the CM ref_processor roots.
4844   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4845     // We need to treat the discovered reference lists of the
4846     // concurrent mark ref processor as roots and keep entries
4847     // (which are added by the marking threads) on them live
4848     // until they can be processed at the end of marking.
4849     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4850   }
4851 
4852   // Finish up any enqueued closure apps (attributed as object copy time).
4853   buf_scan_non_heap_roots.done();
4854   buf_scan_perm.done();
4855 
4856   double ext_roots_end = os::elapsedTime();
4857 
4858   g1_policy()->reset_obj_copy_time(worker_i);
4859   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
4860                                 buf_scan_non_heap_roots.closure_app_seconds();
4861   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4862 
4863   double ext_root_time_ms =
4864     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4865 
4866   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4867 
4868   // Scan strong roots in mark stack.
4869   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
4870     concurrent_mark()->oops_do(scan_non_heap_roots);
4871   }
4872   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4873   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
4874 
4875   // Now scan the complement of the collection set.
4876   if (scan_rs != NULL) {
4877     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4878   }
4879 
4880   _process_strong_tasks->all_tasks_completed();
4881 }
4882 
4883 void
4884 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4885                                        OopClosure* non_root_closure) {
4886   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
4887   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4888 }
4889 
4890 // Weak Reference Processing support
4891 
4892 // An always "is_alive" closure that is used to preserve referents.
4893 // If the object is non-null then it's alive.  Used in the preservation
4894 // of referent objects that are pointed to by reference objects
4895 // discovered by the CM ref processor.
4896 class G1AlwaysAliveClosure: public BoolObjectClosure {
4897   G1CollectedHeap* _g1;
4898 public:
4899   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4900   void do_object(oop p) { assert(false, "Do not call."); }
4901   bool do_object_b(oop p) {
4902     if (p != NULL) {
4903       return true;
4904     }
4905     return false;
4906   }
4907 };
4908 
4909 bool G1STWIsAliveClosure::do_object_b(oop p) {
4910   // An object is reachable if it is outside the collection set,
4911   // or is inside and copied.
4912   return !_g1->obj_in_cs(p) || p->is_forwarded();
4913 }
4914 
4915 // Non Copying Keep Alive closure
4916 class G1KeepAliveClosure: public OopClosure {
4917   G1CollectedHeap* _g1;
4918 public:
4919   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4920   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4921   void do_oop(      oop* p) {
4922     oop obj = *p;
4923 
4924     if (_g1->obj_in_cs(obj)) {
4925       assert( obj->is_forwarded(), "invariant" );
4926       *p = obj->forwardee();
4927     }
4928   }
4929 };
4930 
4931 // Copying Keep Alive closure - can be called from both
4932 // serial and parallel code as long as different worker
4933 // threads utilize different G1ParScanThreadState instances
4934 // and different queues.
4935 
4936 class G1CopyingKeepAliveClosure: public OopClosure {
4937   G1CollectedHeap*         _g1h;
4938   OopClosure*              _copy_non_heap_obj_cl;
4939   OopsInHeapRegionClosure* _copy_perm_obj_cl;
4940   G1ParScanThreadState*    _par_scan_state;
4941 
4942 public:
4943   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4944                             OopClosure* non_heap_obj_cl,
4945                             OopsInHeapRegionClosure* perm_obj_cl,
4946                             G1ParScanThreadState* pss):
4947     _g1h(g1h),
4948     _copy_non_heap_obj_cl(non_heap_obj_cl),
4949     _copy_perm_obj_cl(perm_obj_cl),
4950     _par_scan_state(pss)
4951   {}
4952 
4953   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4954   virtual void do_oop(      oop* p) { do_oop_work(p); }
4955 
4956   template <class T> void do_oop_work(T* p) {
4957     oop obj = oopDesc::load_decode_heap_oop(p);
4958 
4959     if (_g1h->obj_in_cs(obj)) {
4960       // If the referent object has been forwarded (either copied
4961       // to a new location or to itself in the event of an
4962       // evacuation failure) then we need to update the reference
4963       // field and, if both reference and referent are in the G1
4964       // heap, update the RSet for the referent.
4965       //
4966       // If the referent has not been forwarded then we have to keep
4967       // it alive by policy. Therefore we have copy the referent.
4968       //
4969       // If the reference field is in the G1 heap then we can push
4970       // on the PSS queue. When the queue is drained (after each
4971       // phase of reference processing) the object and it's followers
4972       // will be copied, the reference field set to point to the
4973       // new location, and the RSet updated. Otherwise we need to
4974       // use the the non-heap or perm closures directly to copy
4975       // the refernt object and update the pointer, while avoiding
4976       // updating the RSet.
4977 
4978       if (_g1h->is_in_g1_reserved(p)) {
4979         _par_scan_state->push_on_queue(p);
4980       } else {
4981         // The reference field is not in the G1 heap.
4982         if (_g1h->perm_gen()->is_in(p)) {
4983           _copy_perm_obj_cl->do_oop(p);
4984         } else {
4985           _copy_non_heap_obj_cl->do_oop(p);
4986         }
4987       }
4988     }
4989   }
4990 };
4991 
4992 // Serial drain queue closure. Called as the 'complete_gc'
4993 // closure for each discovered list in some of the
4994 // reference processing phases.
4995 
4996 class G1STWDrainQueueClosure: public VoidClosure {
4997 protected:
4998   G1CollectedHeap* _g1h;
4999   G1ParScanThreadState* _par_scan_state;
5000 
5001   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5002 
5003 public:
5004   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5005     _g1h(g1h),
5006     _par_scan_state(pss)
5007   { }
5008 
5009   void do_void() {
5010     G1ParScanThreadState* const pss = par_scan_state();
5011     pss->trim_queue();
5012   }
5013 };
5014 
5015 // Parallel Reference Processing closures
5016 
5017 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5018 // processing during G1 evacuation pauses.
5019 
5020 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5021 private:
5022   G1CollectedHeap*   _g1h;
5023   RefToScanQueueSet* _queues;
5024   FlexibleWorkGang*  _workers;
5025   int                _active_workers;
5026 
5027 public:
5028   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5029                         FlexibleWorkGang* workers,
5030                         RefToScanQueueSet *task_queues,
5031                         int n_workers) :
5032     _g1h(g1h),
5033     _queues(task_queues),
5034     _workers(workers),
5035     _active_workers(n_workers)
5036   {
5037     assert(n_workers > 0, "shouldn't call this otherwise");
5038   }
5039 
5040   // Executes the given task using concurrent marking worker threads.
5041   virtual void execute(ProcessTask& task);
5042   virtual void execute(EnqueueTask& task);
5043 };
5044 
5045 // Gang task for possibly parallel reference processing
5046 
5047 class G1STWRefProcTaskProxy: public AbstractGangTask {
5048   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5049   ProcessTask&     _proc_task;
5050   G1CollectedHeap* _g1h;
5051   RefToScanQueueSet *_task_queues;
5052   ParallelTaskTerminator* _terminator;
5053 
5054 public:
5055   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5056                      G1CollectedHeap* g1h,
5057                      RefToScanQueueSet *task_queues,
5058                      ParallelTaskTerminator* terminator) :
5059     AbstractGangTask("Process reference objects in parallel"),
5060     _proc_task(proc_task),
5061     _g1h(g1h),
5062     _task_queues(task_queues),
5063     _terminator(terminator)
5064   {}
5065 
5066   virtual void work(int i) {
5067     // The reference processing task executed by a single worker.
5068     ResourceMark rm;
5069     HandleMark   hm;
5070 
5071     G1STWIsAliveClosure is_alive(_g1h);
5072 
5073     G1ParScanThreadState pss(_g1h, i);
5074 
5075     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5076     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5077     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5078 
5079     pss.set_evac_closure(&scan_evac_cl);
5080     pss.set_evac_failure_closure(&evac_failure_cl);
5081     pss.set_partial_scan_closure(&partial_scan_cl);
5082 
5083     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5084     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5085 
5086     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5087     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5088 
5089     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5090     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5091 
5092     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5093       // We also need to mark copied objects.
5094       copy_non_heap_cl = &copy_mark_non_heap_cl;
5095       copy_perm_cl = &copy_mark_perm_cl;
5096     }
5097 
5098     // Keep alive closure.
5099     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5100 
5101     // Complete GC closure
5102     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5103 
5104     // Call the reference processing task's work routine.
5105     _proc_task.work(i, is_alive, keep_alive, drain_queue);
5106 
5107     // Note we cannot assert that the refs array is empty here as not all
5108     // of the processing tasks (specifically phase2 - pp2_work) execute
5109     // the complete_gc closure (which ordinarily would drain the queue) so
5110     // the queue may not be empty.
5111   }
5112 };
5113 
5114 // Driver routine for parallel reference processing.
5115 // Creates an instance of the ref processing gang
5116 // task and has the worker threads execute it.
5117 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5118   assert(_workers != NULL, "Need parallel worker threads.");
5119 
5120   ParallelTaskTerminator terminator(_active_workers, _queues);
5121   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5122 
5123   _g1h->set_par_threads(_active_workers);
5124   _workers->run_task(&proc_task_proxy);
5125   _g1h->set_par_threads(0);
5126 }
5127 
5128 // Gang task for parallel reference enqueueing.
5129 
5130 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5131   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5132   EnqueueTask& _enq_task;
5133 
5134 public:
5135   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5136     AbstractGangTask("Enqueue reference objects in parallel"),
5137     _enq_task(enq_task)
5138   { }
5139 
5140   virtual void work(int i) {
5141     _enq_task.work(i);
5142   }
5143 };
5144 
5145 // Driver routine for parallel reference enqueing.
5146 // Creates an instance of the ref enqueueing gang
5147 // task and has the worker threads execute it.
5148 
5149 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5150   assert(_workers != NULL, "Need parallel worker threads.");
5151 
5152   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5153 
5154   _g1h->set_par_threads(_active_workers);
5155   _workers->run_task(&enq_task_proxy);
5156   _g1h->set_par_threads(0);
5157 }
5158 
5159 // End of weak reference support closures
5160 
5161 // Abstract task used to preserve (i.e. copy) any referent objects
5162 // that are in the collection set and are pointed to by reference
5163 // objects discovered by the CM ref processor.
5164 
5165 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5166 protected:
5167   G1CollectedHeap* _g1h;
5168   RefToScanQueueSet      *_queues;
5169   ParallelTaskTerminator _terminator;
5170   int _n_workers;
5171 
5172 public:
5173   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5174     AbstractGangTask("ParPreserveCMReferents"),
5175     _g1h(g1h),
5176     _queues(task_queues),
5177     _terminator(workers, _queues),
5178     _n_workers(workers)
5179   { }
5180 
5181   void work(int i) {
5182     ResourceMark rm;
5183     HandleMark   hm;
5184 
5185     G1ParScanThreadState            pss(_g1h, i);
5186     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5187     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5188     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5189 
5190     pss.set_evac_closure(&scan_evac_cl);
5191     pss.set_evac_failure_closure(&evac_failure_cl);
5192     pss.set_partial_scan_closure(&partial_scan_cl);
5193 
5194     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5195 
5196 
5197     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5198     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5199 
5200     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5201     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5202 
5203     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5204     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5205 
5206     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5207       // We also need to mark copied objects.
5208       copy_non_heap_cl = &copy_mark_non_heap_cl;
5209       copy_perm_cl = &copy_mark_perm_cl;
5210     }
5211 
5212     // Is alive closure
5213     G1AlwaysAliveClosure always_alive(_g1h);
5214 
5215     // Copying keep alive closure. Applied to referent objects that need
5216     // to be copied.
5217     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5218 
5219     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5220 
5221     int limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5222     int stride = MIN2(MAX2(_n_workers, 1), limit);
5223 
5224     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5225     // So this must be true - but assert just in case someone decides to
5226     // change the worker ids.
5227     assert(0 <= i && i < limit, "sanity");
5228     assert(!rp->discovery_is_atomic(), "check this code");
5229 
5230     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5231     for (int idx = i; idx < limit; idx += stride) {
5232       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5233 
5234       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5235       while (iter.has_next()) {
5236         // Since discovery is not atomic for the CM ref processor, we
5237         // can see some null referent objects.
5238         iter.load_ptrs(DEBUG_ONLY(true));
5239         oop ref = iter.obj();
5240 
5241         // This will filter nulls.
5242         if (iter.is_referent_alive()) {
5243           iter.make_referent_alive();
5244         }
5245         iter.move_to_next();
5246       }
5247     }
5248 
5249     // Drain the queue - which may cause stealing
5250     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5251     drain_queue.do_void();
5252     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5253     assert(pss.refs()->is_empty(), "should be");
5254   }
5255 };
5256 
5257 // Weak Reference processing during an evacuation pause (part 1).
5258 void G1CollectedHeap::process_discovered_references() {
5259   double ref_proc_start = os::elapsedTime();
5260 
5261   ReferenceProcessor* rp = _ref_processor_stw;
5262   assert(rp->discovery_enabled(), "should have been enabled");
5263 
5264   // Any reference objects, in the collection set, that were 'discovered'
5265   // by the CM ref processor should have already been copied (either by
5266   // applying the external root copy closure to the discovered lists, or
5267   // by following an RSet entry).
5268   //
5269   // But some of the referents, that are in the collection set, that these
5270   // reference objects point to may not have been copied: the STW ref
5271   // processor would have seen that the reference object had already
5272   // been 'discovered' and would have skipped discovering the reference,
5273   // but would not have treated the reference object as a regular oop.
5274   // As a reult the copy closure would not have been applied to the
5275   // referent object.
5276   //
5277   // We need to explicitly copy these referent objects - the references
5278   // will be processed at the end of remarking.
5279   //
5280   // We also need to do this copying before we process the reference
5281   // objects discovered by the STW ref processor in case one of these
5282   // referents points to another object which is also referenced by an
5283   // object discovered by the STW ref processor.
5284 
5285   int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5286                         workers()->active_workers() : 1);
5287 
5288   assert(active_workers == workers()->active_workers(),
5289          "Need to reset active_workers");  
5290   set_par_threads(active_workers);
5291   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
5292 
5293   if (G1CollectedHeap::use_parallel_gc_threads()) {
5294     workers()->run_task(&keep_cm_referents);
5295   } else {
5296     keep_cm_referents.work(0);
5297   }
5298 
5299   set_par_threads(0);
5300 
5301   // Closure to test whether a referent is alive.
5302   G1STWIsAliveClosure is_alive(this);
5303 
5304   // Even when parallel reference processing is enabled, the processing
5305   // of JNI refs is serial and performed serially by the current thread
5306   // rather than by a worker. The following PSS will be used for processing
5307   // JNI refs.
5308 
5309   // Use only a single queue for this PSS.
5310   G1ParScanThreadState pss(this, 0);
5311 
5312   // We do not embed a reference processor in the copying/scanning
5313   // closures while we're actually processing the discovered
5314   // reference objects.
5315   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5316   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5317   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5318 
5319   pss.set_evac_closure(&scan_evac_cl);
5320   pss.set_evac_failure_closure(&evac_failure_cl);
5321   pss.set_partial_scan_closure(&partial_scan_cl);
5322 
5323   assert(pss.refs()->is_empty(), "pre-condition");
5324 
5325   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5326   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
5327 
5328   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5329   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
5330 
5331   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5332   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5333 
5334   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5335     // We also need to mark copied objects.
5336     copy_non_heap_cl = &copy_mark_non_heap_cl;
5337     copy_perm_cl = &copy_mark_perm_cl;
5338   }
5339 
5340   // Keep alive closure.
5341   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
5342 
5343   // Serial Complete GC closure
5344   G1STWDrainQueueClosure drain_queue(this, &pss);
5345 
5346   // Setup the soft refs policy...
5347   rp->setup_policy(false);
5348 
5349   if (!rp->processing_is_mt()) {
5350     // Serial reference processing...
5351     rp->process_discovered_references(&is_alive,
5352                                       &keep_alive,
5353                                       &drain_queue,
5354                                       NULL);
5355   } else {
5356     // Parallel reference processing
5357     assert(rp->num_q() == active_workers, "sanity");
5358     assert(active_workers <= rp->max_num_q(), "sanity");
5359 
5360     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5361     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
5362   }
5363 
5364   // We have completed copying any necessary live referent objects
5365   // (that were not copied during the actual pause) so we can
5366   // retire any active alloc buffers
5367   pss.retire_alloc_buffers();
5368   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5369 
5370   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5371   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
5372 }
5373 
5374 // Weak Reference processing during an evacuation pause (part 2).
5375 void G1CollectedHeap::enqueue_discovered_references() {
5376   double ref_enq_start = os::elapsedTime();
5377 
5378   ReferenceProcessor* rp = _ref_processor_stw;
5379   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5380 
5381   // Now enqueue any remaining on the discovered lists on to
5382   // the pending list.
5383   if (!rp->processing_is_mt()) {
5384     // Serial reference processing...
5385     rp->enqueue_discovered_references();
5386   } else {
5387     // Parallel reference enqueuing
5388 
5389     int active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
5390     assert(active_workers == workers()->active_workers(),
5391            "Need to reset active_workers");
5392     assert(rp->num_q() == active_workers, "sanity");
5393     assert(active_workers <= rp->max_num_q(), "sanity");
5394 
5395     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5396     rp->enqueue_discovered_references(&par_task_executor);
5397   }
5398 
5399   rp->verify_no_references_recorded();
5400   assert(!rp->discovery_enabled(), "should have been disabled");
5401 
5402   // FIXME
5403   // CM's reference processing also cleans up the string and symbol tables.
5404   // Should we do that here also? We could, but it is a serial operation
5405   // and could signicantly increase the pause time.
5406 
5407   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5408   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
5409 }
5410 
5411 void G1CollectedHeap::evacuate_collection_set() {
5412   set_evacuation_failed(false);
5413 
5414   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5415   concurrent_g1_refine()->set_use_cache(false);
5416   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5417 
5418   int n_workers;
5419   if (G1CollectedHeap::use_parallel_gc_threads()) {
5420     n_workers =
5421       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5422                                      workers()->active_workers(),
5423                                      Threads::number_of_non_daemon_threads());
5424     assert(UseDynamicNumberOfGCThreads ||
5425            n_workers == workers()->total_workers(),
5426            "If not dynamic should be using all the  workers");
5427     set_par_threads(n_workers);
5428   } else {
5429     assert(n_par_threads() == 0,
5430            "Should be the original non-parallel value");
5431     n_workers = 1;
5432   }
5433   workers()->set_active_workers(n_workers);
5434 
5435   G1ParTask g1_par_task(this, _task_queues);
5436 
5437   init_for_evac_failure(NULL);
5438 
5439   rem_set()->prepare_for_younger_refs_iterate(true);
5440 
5441   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5442   double start_par = os::elapsedTime();
5443 
5444   if (G1CollectedHeap::use_parallel_gc_threads()) {
5445     // The individual threads will set their evac-failure closures.
5446     StrongRootsScope srs(this);
5447     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5448     // These tasks use ShareHeap::_process_strong_tasks
5449     assert(UseDynamicNumberOfGCThreads ||
5450            workers()->active_workers() == workers()->total_workers(),
5451            "If not dynamic should be using all the  workers");
5452     workers()->run_task(&g1_par_task);
5453   } else {
5454     StrongRootsScope srs(this);
5455     g1_par_task.work(0);
5456   }
5457 
5458   double par_time = (os::elapsedTime() - start_par) * 1000.0;
5459   g1_policy()->record_par_time(par_time);
5460 
5461   set_par_threads(0);
5462 
5463   // Process any discovered reference objects - we have
5464   // to do this _before_ we retire the GC alloc regions
5465   // as we may have to copy some 'reachable' referent
5466   // objects (and their reachable sub-graphs) that were
5467   // not copied during the pause.
5468   process_discovered_references();
5469 
5470   // Weak root processing.
5471   // Note: when JSR 292 is enabled and code blobs can contain
5472   // non-perm oops then we will need to process the code blobs
5473   // here too.
5474   {
5475     G1STWIsAliveClosure is_alive(this);
5476     G1KeepAliveClosure keep_alive(this);
5477     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5478   }
5479 
5480   release_gc_alloc_regions();
5481   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5482 
5483   concurrent_g1_refine()->clear_hot_cache();
5484   concurrent_g1_refine()->set_use_cache(true);
5485 
5486   finalize_for_evac_failure();
5487 
5488   // Must do this before clearing the per-region evac-failure flags
5489   // (which is currently done when we free the collection set).
5490   // We also only do this if marking is actually in progress and so
5491   // have to do this before we set the mark_in_progress flag at the
5492   // end of an initial mark pause.
5493   concurrent_mark()->complete_marking_in_collection_set();
5494 
5495   if (evacuation_failed()) {
5496     remove_self_forwarding_pointers();
5497     if (PrintGCDetails) {
5498       gclog_or_tty->print(" (to-space overflow)");
5499     } else if (PrintGC) {
5500       gclog_or_tty->print("--");
5501     }
5502   }
5503 
5504   // Enqueue any remaining references remaining on the STW
5505   // reference processor's discovered lists. We need to do
5506   // this after the card table is cleaned (and verified) as
5507   // the act of enqueuing entries on to the pending list
5508   // will log these updates (and dirty their associated
5509   // cards). We need these updates logged to update any
5510   // RSets.
5511   enqueue_discovered_references();
5512 
5513   if (G1DeferredRSUpdate) {
5514     RedirtyLoggedCardTableEntryFastClosure redirty;
5515     dirty_card_queue_set().set_closure(&redirty);
5516     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5517 
5518     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5519     dcq.merge_bufferlists(&dirty_card_queue_set());
5520     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5521   }
5522   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5523 }
5524 
5525 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5526                                      size_t* pre_used,
5527                                      FreeRegionList* free_list,
5528                                      OldRegionSet* old_proxy_set,
5529                                      HumongousRegionSet* humongous_proxy_set,
5530                                      HRRSCleanupTask* hrrs_cleanup_task,
5531                                      bool par) {
5532   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5533     if (hr->isHumongous()) {
5534       assert(hr->startsHumongous(), "we should only see starts humongous");
5535       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5536     } else {
5537       _old_set.remove_with_proxy(hr, old_proxy_set);
5538       free_region(hr, pre_used, free_list, par);
5539     }
5540   } else {
5541     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5542   }
5543 }
5544 
5545 void G1CollectedHeap::free_region(HeapRegion* hr,
5546                                   size_t* pre_used,
5547                                   FreeRegionList* free_list,
5548                                   bool par) {
5549   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5550   assert(!hr->is_empty(), "the region should not be empty");
5551   assert(free_list != NULL, "pre-condition");
5552 
5553   *pre_used += hr->used();
5554   hr->hr_clear(par, true /* clear_space */);
5555   free_list->add_as_head(hr);
5556 }
5557 
5558 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5559                                      size_t* pre_used,
5560                                      FreeRegionList* free_list,
5561                                      HumongousRegionSet* humongous_proxy_set,
5562                                      bool par) {
5563   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5564   assert(free_list != NULL, "pre-condition");
5565   assert(humongous_proxy_set != NULL, "pre-condition");
5566 
5567   size_t hr_used = hr->used();
5568   size_t hr_capacity = hr->capacity();
5569   size_t hr_pre_used = 0;
5570   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5571   hr->set_notHumongous();
5572   free_region(hr, &hr_pre_used, free_list, par);
5573 
5574   size_t i = hr->hrs_index() + 1;
5575   size_t num = 1;
5576   while (i < n_regions()) {
5577     HeapRegion* curr_hr = region_at(i);
5578     if (!curr_hr->continuesHumongous()) {
5579       break;
5580     }
5581     curr_hr->set_notHumongous();
5582     free_region(curr_hr, &hr_pre_used, free_list, par);
5583     num += 1;
5584     i += 1;
5585   }
5586   assert(hr_pre_used == hr_used,
5587          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5588                  "should be the same", hr_pre_used, hr_used));
5589   *pre_used += hr_pre_used;
5590 }
5591 
5592 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5593                                        FreeRegionList* free_list,
5594                                        OldRegionSet* old_proxy_set,
5595                                        HumongousRegionSet* humongous_proxy_set,
5596                                        bool par) {
5597   if (pre_used > 0) {
5598     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5599     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5600     assert(_summary_bytes_used >= pre_used,
5601            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5602                    "should be >= pre_used: "SIZE_FORMAT,
5603                    _summary_bytes_used, pre_used));
5604     _summary_bytes_used -= pre_used;
5605   }
5606   if (free_list != NULL && !free_list->is_empty()) {
5607     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5608     _free_list.add_as_head(free_list);
5609   }
5610   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5611     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5612     _old_set.update_from_proxy(old_proxy_set);
5613   }
5614   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5615     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5616     _humongous_set.update_from_proxy(humongous_proxy_set);
5617   }
5618 }
5619 
5620 class G1ParCleanupCTTask : public AbstractGangTask {
5621   CardTableModRefBS* _ct_bs;
5622   G1CollectedHeap* _g1h;
5623   HeapRegion* volatile _su_head;
5624 public:
5625   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5626                      G1CollectedHeap* g1h) :
5627     AbstractGangTask("G1 Par Cleanup CT Task"),
5628     _ct_bs(ct_bs), _g1h(g1h) { }
5629 
5630   void work(int i) {
5631     HeapRegion* r;
5632     while (r = _g1h->pop_dirty_cards_region()) {
5633       clear_cards(r);
5634     }
5635   }
5636 
5637   void clear_cards(HeapRegion* r) {
5638     // Cards of the survivors should have already been dirtied.
5639     if (!r->is_survivor()) {
5640       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5641     }
5642   }
5643 };
5644 
5645 #ifndef PRODUCT
5646 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5647   G1CollectedHeap* _g1h;
5648   CardTableModRefBS* _ct_bs;
5649 public:
5650   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5651     : _g1h(g1h), _ct_bs(ct_bs) { }
5652   virtual bool doHeapRegion(HeapRegion* r) {
5653     if (r->is_survivor()) {
5654       _g1h->verify_dirty_region(r);
5655     } else {
5656       _g1h->verify_not_dirty_region(r);
5657     }
5658     return false;
5659   }
5660 };
5661 
5662 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5663   // All of the region should be clean.
5664   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5665   MemRegion mr(hr->bottom(), hr->end());
5666   ct_bs->verify_not_dirty_region(mr);
5667 }
5668 
5669 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5670   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5671   // dirty allocated blocks as they allocate them. The thread that
5672   // retires each region and replaces it with a new one will do a
5673   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5674   // not dirty that area (one less thing to have to do while holding
5675   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5676   // is dirty.
5677   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5678   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5679   ct_bs->verify_dirty_region(mr);
5680 }
5681 
5682 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5683   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5684   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5685     verify_dirty_region(hr);
5686   }
5687 }
5688 
5689 void G1CollectedHeap::verify_dirty_young_regions() {
5690   verify_dirty_young_list(_young_list->first_region());
5691   verify_dirty_young_list(_young_list->first_survivor_region());
5692 }
5693 #endif
5694 
5695 void G1CollectedHeap::cleanUpCardTable() {
5696   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5697   double start = os::elapsedTime();
5698 
5699   {
5700     // Iterate over the dirty cards region list.
5701     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5702 
5703     if (ParallelGCThreads > 0) {
5704       set_par_threads(workers()->total_workers());
5705       workers()->run_task(&cleanup_task);
5706       set_par_threads(0);
5707     } else {
5708       while (_dirty_cards_region_list) {
5709         HeapRegion* r = _dirty_cards_region_list;
5710         cleanup_task.clear_cards(r);
5711         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5712         if (_dirty_cards_region_list == r) {
5713           // The last region.
5714           _dirty_cards_region_list = NULL;
5715         }
5716         r->set_next_dirty_cards_region(NULL);
5717       }
5718     }
5719 #ifndef PRODUCT
5720     if (G1VerifyCTCleanup || VerifyAfterGC) {
5721       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5722       heap_region_iterate(&cleanup_verifier);
5723     }
5724 #endif
5725   }
5726 
5727   double elapsed = os::elapsedTime() - start;
5728   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
5729 }
5730 
5731 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5732   size_t pre_used = 0;
5733   FreeRegionList local_free_list("Local List for CSet Freeing");
5734 
5735   double young_time_ms     = 0.0;
5736   double non_young_time_ms = 0.0;
5737 
5738   // Since the collection set is a superset of the the young list,
5739   // all we need to do to clear the young list is clear its
5740   // head and length, and unlink any young regions in the code below
5741   _young_list->clear();
5742 
5743   G1CollectorPolicy* policy = g1_policy();
5744 
5745   double start_sec = os::elapsedTime();
5746   bool non_young = true;
5747 
5748   HeapRegion* cur = cs_head;
5749   int age_bound = -1;
5750   size_t rs_lengths = 0;
5751 
5752   while (cur != NULL) {
5753     assert(!is_on_master_free_list(cur), "sanity");
5754     if (non_young) {
5755       if (cur->is_young()) {
5756         double end_sec = os::elapsedTime();
5757         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5758         non_young_time_ms += elapsed_ms;
5759 
5760         start_sec = os::elapsedTime();
5761         non_young = false;
5762       }
5763     } else {
5764       if (!cur->is_young()) {
5765         double end_sec = os::elapsedTime();
5766         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5767         young_time_ms += elapsed_ms;
5768 
5769         start_sec = os::elapsedTime();
5770         non_young = true;
5771       }
5772     }
5773 
5774     rs_lengths += cur->rem_set()->occupied();
5775 
5776     HeapRegion* next = cur->next_in_collection_set();
5777     assert(cur->in_collection_set(), "bad CS");
5778     cur->set_next_in_collection_set(NULL);
5779     cur->set_in_collection_set(false);
5780 
5781     if (cur->is_young()) {
5782       int index = cur->young_index_in_cset();
5783       assert(index != -1, "invariant");
5784       assert((size_t) index < policy->young_cset_region_length(), "invariant");
5785       size_t words_survived = _surviving_young_words[index];
5786       cur->record_surv_words_in_group(words_survived);
5787 
5788       // At this point the we have 'popped' cur from the collection set
5789       // (linked via next_in_collection_set()) but it is still in the
5790       // young list (linked via next_young_region()). Clear the
5791       // _next_young_region field.
5792       cur->set_next_young_region(NULL);
5793     } else {
5794       int index = cur->young_index_in_cset();
5795       assert(index == -1, "invariant");
5796     }
5797 
5798     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5799             (!cur->is_young() && cur->young_index_in_cset() == -1),
5800             "invariant" );
5801 
5802     if (!cur->evacuation_failed()) {
5803       MemRegion used_mr = cur->used_region();
5804 
5805       // And the region is empty.
5806       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5807 
5808       // If marking is in progress then clear any objects marked in
5809       // the current region. Note mark_in_progress() returns false,
5810       // even during an initial mark pause, until the set_marking_started()
5811       // call which takes place later in the pause.
5812       if (mark_in_progress()) {
5813         assert(!g1_policy()->during_initial_mark_pause(), "sanity");
5814         _cm->nextMarkBitMap()->clearRange(used_mr);
5815       }
5816 
5817       free_region(cur, &pre_used, &local_free_list, false /* par */);
5818     } else {
5819       cur->uninstall_surv_rate_group();
5820       if (cur->is_young()) {
5821         cur->set_young_index_in_cset(-1);
5822       }
5823       cur->set_not_young();
5824       cur->set_evacuation_failed(false);
5825       // The region is now considered to be old.
5826       _old_set.add(cur);
5827     }
5828     cur = next;
5829   }
5830 
5831   policy->record_max_rs_lengths(rs_lengths);
5832   policy->cset_regions_freed();
5833 
5834   double end_sec = os::elapsedTime();
5835   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5836 
5837   if (non_young) {
5838     non_young_time_ms += elapsed_ms;
5839   } else {
5840     young_time_ms += elapsed_ms;
5841   }
5842 
5843   update_sets_after_freeing_regions(pre_used, &local_free_list,
5844                                     NULL /* old_proxy_set */,
5845                                     NULL /* humongous_proxy_set */,
5846                                     false /* par */);
5847   policy->record_young_free_cset_time_ms(young_time_ms);
5848   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
5849 }
5850 
5851 // This routine is similar to the above but does not record
5852 // any policy statistics or update free lists; we are abandoning
5853 // the current incremental collection set in preparation of a
5854 // full collection. After the full GC we will start to build up
5855 // the incremental collection set again.
5856 // This is only called when we're doing a full collection
5857 // and is immediately followed by the tearing down of the young list.
5858 
5859 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5860   HeapRegion* cur = cs_head;
5861 
5862   while (cur != NULL) {
5863     HeapRegion* next = cur->next_in_collection_set();
5864     assert(cur->in_collection_set(), "bad CS");
5865     cur->set_next_in_collection_set(NULL);
5866     cur->set_in_collection_set(false);
5867     cur->set_young_index_in_cset(-1);
5868     cur = next;
5869   }
5870 }
5871 
5872 void G1CollectedHeap::set_free_regions_coming() {
5873   if (G1ConcRegionFreeingVerbose) {
5874     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5875                            "setting free regions coming");
5876   }
5877 
5878   assert(!free_regions_coming(), "pre-condition");
5879   _free_regions_coming = true;
5880 }
5881 
5882 void G1CollectedHeap::reset_free_regions_coming() {
5883   {
5884     assert(free_regions_coming(), "pre-condition");
5885     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5886     _free_regions_coming = false;
5887     SecondaryFreeList_lock->notify_all();
5888   }
5889 
5890   if (G1ConcRegionFreeingVerbose) {
5891     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5892                            "reset free regions coming");
5893   }
5894 }
5895 
5896 void G1CollectedHeap::wait_while_free_regions_coming() {
5897   // Most of the time we won't have to wait, so let's do a quick test
5898   // first before we take the lock.
5899   if (!free_regions_coming()) {
5900     return;
5901   }
5902 
5903   if (G1ConcRegionFreeingVerbose) {
5904     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5905                            "waiting for free regions");
5906   }
5907 
5908   {
5909     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5910     while (free_regions_coming()) {
5911       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5912     }
5913   }
5914 
5915   if (G1ConcRegionFreeingVerbose) {
5916     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5917                            "done waiting for free regions");
5918   }
5919 }
5920 
5921 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5922   assert(heap_lock_held_for_gc(),
5923               "the heap lock should already be held by or for this thread");
5924   _young_list->push_region(hr);
5925 }
5926 
5927 class NoYoungRegionsClosure: public HeapRegionClosure {
5928 private:
5929   bool _success;
5930 public:
5931   NoYoungRegionsClosure() : _success(true) { }
5932   bool doHeapRegion(HeapRegion* r) {
5933     if (r->is_young()) {
5934       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
5935                              r->bottom(), r->end());
5936       _success = false;
5937     }
5938     return false;
5939   }
5940   bool success() { return _success; }
5941 };
5942 
5943 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5944   bool ret = _young_list->check_list_empty(check_sample);
5945 
5946   if (check_heap) {
5947     NoYoungRegionsClosure closure;
5948     heap_region_iterate(&closure);
5949     ret = ret && closure.success();
5950   }
5951 
5952   return ret;
5953 }
5954 
5955 class TearDownRegionSetsClosure : public HeapRegionClosure {
5956 private:
5957   OldRegionSet *_old_set;
5958 
5959 public:
5960   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
5961 
5962   bool doHeapRegion(HeapRegion* r) {
5963     if (r->is_empty()) {
5964       // We ignore empty regions, we'll empty the free list afterwards
5965     } else if (r->is_young()) {
5966       // We ignore young regions, we'll empty the young list afterwards
5967     } else if (r->isHumongous()) {
5968       // We ignore humongous regions, we're not tearing down the
5969       // humongous region set
5970     } else {
5971       // The rest should be old
5972       _old_set->remove(r);
5973     }
5974     return false;
5975   }
5976 
5977   ~TearDownRegionSetsClosure() {
5978     assert(_old_set->is_empty(), "post-condition");
5979   }
5980 };
5981 
5982 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5983   assert_at_safepoint(true /* should_be_vm_thread */);
5984 
5985   if (!free_list_only) {
5986     TearDownRegionSetsClosure cl(&_old_set);
5987     heap_region_iterate(&cl);
5988 
5989     // Need to do this after the heap iteration to be able to
5990     // recognize the young regions and ignore them during the iteration.
5991     _young_list->empty_list();
5992   }
5993   _free_list.remove_all();
5994 }
5995 
5996 class RebuildRegionSetsClosure : public HeapRegionClosure {
5997 private:
5998   bool            _free_list_only;
5999   OldRegionSet*   _old_set;
6000   FreeRegionList* _free_list;
6001   size_t          _total_used;
6002 
6003 public:
6004   RebuildRegionSetsClosure(bool free_list_only,
6005                            OldRegionSet* old_set, FreeRegionList* free_list) :
6006     _free_list_only(free_list_only),
6007     _old_set(old_set), _free_list(free_list), _total_used(0) {
6008     assert(_free_list->is_empty(), "pre-condition");
6009     if (!free_list_only) {
6010       assert(_old_set->is_empty(), "pre-condition");
6011     }
6012   }
6013 
6014   bool doHeapRegion(HeapRegion* r) {
6015     if (r->continuesHumongous()) {
6016       return false;
6017     }
6018 
6019     if (r->is_empty()) {
6020       // Add free regions to the free list
6021       _free_list->add_as_tail(r);
6022     } else if (!_free_list_only) {
6023       assert(!r->is_young(), "we should not come across young regions");
6024 
6025       if (r->isHumongous()) {
6026         // We ignore humongous regions, we left the humongous set unchanged
6027       } else {
6028         // The rest should be old, add them to the old set
6029         _old_set->add(r);
6030       }
6031       _total_used += r->used();
6032     }
6033 
6034     return false;
6035   }
6036 
6037   size_t total_used() {
6038     return _total_used;
6039   }
6040 };
6041 
6042 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6043   assert_at_safepoint(true /* should_be_vm_thread */);
6044 
6045   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6046   heap_region_iterate(&cl);
6047 
6048   if (!free_list_only) {
6049     _summary_bytes_used = cl.total_used();
6050   }
6051   assert(_summary_bytes_used == recalculate_used(),
6052          err_msg("inconsistent _summary_bytes_used, "
6053                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6054                  _summary_bytes_used, recalculate_used()));
6055 }
6056 
6057 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6058   _refine_cte_cl->set_concurrent(concurrent);
6059 }
6060 
6061 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6062   HeapRegion* hr = heap_region_containing(p);
6063   if (hr == NULL) {
6064     return is_in_permanent(p);
6065   } else {
6066     return hr->is_in(p);
6067   }
6068 }
6069 
6070 // Methods for the mutator alloc region
6071 
6072 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6073                                                       bool force) {
6074   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6075   assert(!force || g1_policy()->can_expand_young_list(),
6076          "if force is true we should be able to expand the young list");
6077   bool young_list_full = g1_policy()->is_young_list_full();
6078   if (force || !young_list_full) {
6079     HeapRegion* new_alloc_region = new_region(word_size,
6080                                               false /* do_expand */);
6081     if (new_alloc_region != NULL) {
6082       set_region_short_lived_locked(new_alloc_region);
6083       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6084       return new_alloc_region;
6085     }
6086   }
6087   return NULL;
6088 }
6089 
6090 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6091                                                   size_t allocated_bytes) {
6092   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6093   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6094 
6095   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6096   _summary_bytes_used += allocated_bytes;
6097   _hr_printer.retire(alloc_region);
6098   // We update the eden sizes here, when the region is retired,
6099   // instead of when it's allocated, since this is the point that its
6100   // used space has been recored in _summary_bytes_used.
6101   g1mm()->update_eden_size();
6102 }
6103 
6104 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6105                                                     bool force) {
6106   return _g1h->new_mutator_alloc_region(word_size, force);
6107 }
6108 
6109 void G1CollectedHeap::set_par_threads() {
6110   // Don't change the number of workers.  Use the value previously set
6111   // in the workgroup.
6112   int n_workers = workers()->active_workers();
6113     assert(UseDynamicNumberOfGCThreads ||
6114            n_workers == workers()->total_workers(),
6115       "Otherwise should be using the total number of workers");
6116   if (n_workers == 0) {
6117     assert(false, "Should have been set in prior evacuation pause.");
6118     n_workers = ParallelGCThreads;
6119     workers()->set_active_workers(n_workers);
6120   }
6121   set_par_threads(n_workers);
6122 }
6123 
6124 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6125                                        size_t allocated_bytes) {
6126   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6127 }
6128 
6129 // Methods for the GC alloc regions
6130 
6131 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6132                                                  size_t count,
6133                                                  GCAllocPurpose ap) {
6134   assert(FreeList_lock->owned_by_self(), "pre-condition");
6135 
6136   if (count < g1_policy()->max_regions(ap)) {
6137     HeapRegion* new_alloc_region = new_region(word_size,
6138                                               true /* do_expand */);
6139     if (new_alloc_region != NULL) {
6140       // We really only need to do this for old regions given that we
6141       // should never scan survivors. But it doesn't hurt to do it
6142       // for survivors too.
6143       new_alloc_region->set_saved_mark();
6144       if (ap == GCAllocForSurvived) {
6145         new_alloc_region->set_survivor();
6146         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6147       } else {
6148         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6149       }
6150       return new_alloc_region;
6151     } else {
6152       g1_policy()->note_alloc_region_limit_reached(ap);
6153     }
6154   }
6155   return NULL;
6156 }
6157 
6158 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6159                                              size_t allocated_bytes,
6160                                              GCAllocPurpose ap) {
6161   alloc_region->note_end_of_copying();
6162   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6163   if (ap == GCAllocForSurvived) {
6164     young_list()->add_survivor_region(alloc_region);
6165   } else {
6166     _old_set.add(alloc_region);
6167   }
6168   _hr_printer.retire(alloc_region);
6169 }
6170 
6171 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6172                                                        bool force) {
6173   assert(!force, "not supported for GC alloc regions");
6174   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6175 }
6176 
6177 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6178                                           size_t allocated_bytes) {
6179   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6180                                GCAllocForSurvived);
6181 }
6182 
6183 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6184                                                   bool force) {
6185   assert(!force, "not supported for GC alloc regions");
6186   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6187 }
6188 
6189 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6190                                      size_t allocated_bytes) {
6191   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6192                                GCAllocForTenured);
6193 }
6194 // Heap region set verification
6195 
6196 class VerifyRegionListsClosure : public HeapRegionClosure {
6197 private:
6198   FreeRegionList*     _free_list;
6199   OldRegionSet*       _old_set;
6200   HumongousRegionSet* _humongous_set;
6201   size_t              _region_count;
6202 
6203 public:
6204   VerifyRegionListsClosure(OldRegionSet* old_set,
6205                            HumongousRegionSet* humongous_set,
6206                            FreeRegionList* free_list) :
6207     _old_set(old_set), _humongous_set(humongous_set),
6208     _free_list(free_list), _region_count(0) { }
6209 
6210   size_t region_count()      { return _region_count;      }
6211 
6212   bool doHeapRegion(HeapRegion* hr) {
6213     _region_count += 1;
6214 
6215     if (hr->continuesHumongous()) {
6216       return false;
6217     }
6218 
6219     if (hr->is_young()) {
6220       // TODO
6221     } else if (hr->startsHumongous()) {
6222       _humongous_set->verify_next_region(hr);
6223     } else if (hr->is_empty()) {
6224       _free_list->verify_next_region(hr);
6225     } else {
6226       _old_set->verify_next_region(hr);
6227     }
6228     return false;
6229   }
6230 };
6231 
6232 HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
6233                                              HeapWord* bottom) {
6234   HeapWord* end = bottom + HeapRegion::GrainWords;
6235   MemRegion mr(bottom, end);
6236   assert(_g1_reserved.contains(mr), "invariant");
6237   // This might return NULL if the allocation fails
6238   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
6239 }
6240 
6241 void G1CollectedHeap::verify_region_sets() {
6242   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6243 
6244   // First, check the explicit lists.
6245   _free_list.verify();
6246   {
6247     // Given that a concurrent operation might be adding regions to
6248     // the secondary free list we have to take the lock before
6249     // verifying it.
6250     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6251     _secondary_free_list.verify();
6252   }
6253   _old_set.verify();
6254   _humongous_set.verify();
6255 
6256   // If a concurrent region freeing operation is in progress it will
6257   // be difficult to correctly attributed any free regions we come
6258   // across to the correct free list given that they might belong to
6259   // one of several (free_list, secondary_free_list, any local lists,
6260   // etc.). So, if that's the case we will skip the rest of the
6261   // verification operation. Alternatively, waiting for the concurrent
6262   // operation to complete will have a non-trivial effect on the GC's
6263   // operation (no concurrent operation will last longer than the
6264   // interval between two calls to verification) and it might hide
6265   // any issues that we would like to catch during testing.
6266   if (free_regions_coming()) {
6267     return;
6268   }
6269 
6270   // Make sure we append the secondary_free_list on the free_list so
6271   // that all free regions we will come across can be safely
6272   // attributed to the free_list.
6273   append_secondary_free_list_if_not_empty_with_lock();
6274 
6275   // Finally, make sure that the region accounting in the lists is
6276   // consistent with what we see in the heap.
6277   _old_set.verify_start();
6278   _humongous_set.verify_start();
6279   _free_list.verify_start();
6280 
6281   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6282   heap_region_iterate(&cl);
6283 
6284   _old_set.verify_end();
6285   _humongous_set.verify_end();
6286   _free_list.verify_end();
6287 }