1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1MarkSweep.hpp"
  36 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  37 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  38 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  39 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  40 #include "gc_implementation/g1/vm_operations_g1.hpp"
  41 #include "gc_implementation/shared/isGCActiveMark.hpp"
  42 #include "memory/gcLocker.inline.hpp"
  43 #include "memory/genOopClosures.inline.hpp"
  44 #include "memory/generationSpec.hpp"
  45 #include "memory/referenceProcessor.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "oops/oop.pcgc.inline.hpp"
  48 #include "runtime/aprofiler.hpp"
  49 #include "runtime/vmThread.hpp"
  50 
  51 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  52 
  53 // turn it on so that the contents of the young list (scan-only /
  54 // to-be-collected) are printed at "strategic" points before / during
  55 // / after the collection --- this is useful for debugging
  56 #define YOUNG_LIST_VERBOSE 0
  57 // CURRENT STATUS
  58 // This file is under construction.  Search for "FIXME".
  59 
  60 // INVARIANTS/NOTES
  61 //
  62 // All allocation activity covered by the G1CollectedHeap interface is
  63 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  64 // and allocate_new_tlab, which are the "entry" points to the
  65 // allocation code from the rest of the JVM.  (Note that this does not
  66 // apply to TLAB allocation, which is not part of this interface: it
  67 // is done by clients of this interface.)
  68 
  69 // Notes on implementation of parallelism in different tasks.
  70 //
  71 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  72 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  73 // It does use run_task() which sets _n_workers in the task.
  74 // G1ParTask executes g1_process_strong_roots() ->
  75 // SharedHeap::process_strong_roots() which calls eventuall to
  76 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  77 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  78 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  79 //
  80 
  81 // Local to this file.
  82 
  83 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  84   SuspendibleThreadSet* _sts;
  85   G1RemSet* _g1rs;
  86   ConcurrentG1Refine* _cg1r;
  87   bool _concurrent;
  88 public:
  89   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  90                               G1RemSet* g1rs,
  91                               ConcurrentG1Refine* cg1r) :
  92     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  93   {}
  94   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  95     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && _sts->should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108   void set_concurrent(bool b) { _concurrent = b; }
 109 };
 110 
 111 
 112 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 113   int _calls;
 114   G1CollectedHeap* _g1h;
 115   CardTableModRefBS* _ctbs;
 116   int _histo[256];
 117 public:
 118   ClearLoggedCardTableEntryClosure() :
 119     _calls(0)
 120   {
 121     _g1h = G1CollectedHeap::heap();
 122     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 123     for (int i = 0; i < 256; i++) _histo[i] = 0;
 124   }
 125   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 126     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 127       _calls++;
 128       unsigned char* ujb = (unsigned char*)card_ptr;
 129       int ind = (int)(*ujb);
 130       _histo[ind]++;
 131       *card_ptr = -1;
 132     }
 133     return true;
 134   }
 135   int calls() { return _calls; }
 136   void print_histo() {
 137     gclog_or_tty->print_cr("Card table value histogram:");
 138     for (int i = 0; i < 256; i++) {
 139       if (_histo[i] != 0) {
 140         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 141       }
 142     }
 143   }
 144 };
 145 
 146 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 147   int _calls;
 148   G1CollectedHeap* _g1h;
 149   CardTableModRefBS* _ctbs;
 150 public:
 151   RedirtyLoggedCardTableEntryClosure() :
 152     _calls(0)
 153   {
 154     _g1h = G1CollectedHeap::heap();
 155     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 156   }
 157   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 158     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 159       _calls++;
 160       *card_ptr = 0;
 161     }
 162     return true;
 163   }
 164   int calls() { return _calls; }
 165 };
 166 
 167 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 168 public:
 169   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 170     *card_ptr = CardTableModRefBS::dirty_card_val();
 171     return true;
 172   }
 173 };
 174 
 175 YoungList::YoungList(G1CollectedHeap* g1h)
 176   : _g1h(g1h), _head(NULL),
 177     _length(0),
 178     _last_sampled_rs_lengths(0),
 179     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
 180 {
 181   guarantee( check_list_empty(false), "just making sure..." );
 182 }
 183 
 184 void YoungList::push_region(HeapRegion *hr) {
 185   assert(!hr->is_young(), "should not already be young");
 186   assert(hr->get_next_young_region() == NULL, "cause it should!");
 187 
 188   hr->set_next_young_region(_head);
 189   _head = hr;
 190 
 191   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 192   ++_length;
 193 }
 194 
 195 void YoungList::add_survivor_region(HeapRegion* hr) {
 196   assert(hr->is_survivor(), "should be flagged as survivor region");
 197   assert(hr->get_next_young_region() == NULL, "cause it should!");
 198 
 199   hr->set_next_young_region(_survivor_head);
 200   if (_survivor_head == NULL) {
 201     _survivor_tail = hr;
 202   }
 203   _survivor_head = hr;
 204   ++_survivor_length;
 205 }
 206 
 207 void YoungList::empty_list(HeapRegion* list) {
 208   while (list != NULL) {
 209     HeapRegion* next = list->get_next_young_region();
 210     list->set_next_young_region(NULL);
 211     list->uninstall_surv_rate_group();
 212     list->set_not_young();
 213     list = next;
 214   }
 215 }
 216 
 217 void YoungList::empty_list() {
 218   assert(check_list_well_formed(), "young list should be well formed");
 219 
 220   empty_list(_head);
 221   _head = NULL;
 222   _length = 0;
 223 
 224   empty_list(_survivor_head);
 225   _survivor_head = NULL;
 226   _survivor_tail = NULL;
 227   _survivor_length = 0;
 228 
 229   _last_sampled_rs_lengths = 0;
 230 
 231   assert(check_list_empty(false), "just making sure...");
 232 }
 233 
 234 bool YoungList::check_list_well_formed() {
 235   bool ret = true;
 236 
 237   size_t length = 0;
 238   HeapRegion* curr = _head;
 239   HeapRegion* last = NULL;
 240   while (curr != NULL) {
 241     if (!curr->is_young()) {
 242       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 243                              "incorrectly tagged (y: %d, surv: %d)",
 244                              curr->bottom(), curr->end(),
 245                              curr->is_young(), curr->is_survivor());
 246       ret = false;
 247     }
 248     ++length;
 249     last = curr;
 250     curr = curr->get_next_young_region();
 251   }
 252   ret = ret && (length == _length);
 253 
 254   if (!ret) {
 255     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 256     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
 257                            length, _length);
 258   }
 259 
 260   return ret;
 261 }
 262 
 263 bool YoungList::check_list_empty(bool check_sample) {
 264   bool ret = true;
 265 
 266   if (_length != 0) {
 267     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
 268                   _length);
 269     ret = false;
 270   }
 271   if (check_sample && _last_sampled_rs_lengths != 0) {
 272     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 273     ret = false;
 274   }
 275   if (_head != NULL) {
 276     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 277     ret = false;
 278   }
 279   if (!ret) {
 280     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 281   }
 282 
 283   return ret;
 284 }
 285 
 286 void
 287 YoungList::rs_length_sampling_init() {
 288   _sampled_rs_lengths = 0;
 289   _curr               = _head;
 290 }
 291 
 292 bool
 293 YoungList::rs_length_sampling_more() {
 294   return _curr != NULL;
 295 }
 296 
 297 void
 298 YoungList::rs_length_sampling_next() {
 299   assert( _curr != NULL, "invariant" );
 300   size_t rs_length = _curr->rem_set()->occupied();
 301 
 302   _sampled_rs_lengths += rs_length;
 303 
 304   // The current region may not yet have been added to the
 305   // incremental collection set (it gets added when it is
 306   // retired as the current allocation region).
 307   if (_curr->in_collection_set()) {
 308     // Update the collection set policy information for this region
 309     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 310   }
 311 
 312   _curr = _curr->get_next_young_region();
 313   if (_curr == NULL) {
 314     _last_sampled_rs_lengths = _sampled_rs_lengths;
 315     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 316   }
 317 }
 318 
 319 void
 320 YoungList::reset_auxilary_lists() {
 321   guarantee( is_empty(), "young list should be empty" );
 322   assert(check_list_well_formed(), "young list should be well formed");
 323 
 324   // Add survivor regions to SurvRateGroup.
 325   _g1h->g1_policy()->note_start_adding_survivor_regions();
 326   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 327 
 328   int young_index_in_cset = 0;
 329   for (HeapRegion* curr = _survivor_head;
 330        curr != NULL;
 331        curr = curr->get_next_young_region()) {
 332     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 333 
 334     // The region is a non-empty survivor so let's add it to
 335     // the incremental collection set for the next evacuation
 336     // pause.
 337     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 338     young_index_in_cset += 1;
 339   }
 340   assert((size_t) young_index_in_cset == _survivor_length,
 341          "post-condition");
 342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 343 
 344   _head   = _survivor_head;
 345   _length = _survivor_length;
 346   if (_survivor_head != NULL) {
 347     assert(_survivor_tail != NULL, "cause it shouldn't be");
 348     assert(_survivor_length > 0, "invariant");
 349     _survivor_tail->set_next_young_region(NULL);
 350   }
 351 
 352   // Don't clear the survivor list handles until the start of
 353   // the next evacuation pause - we need it in order to re-tag
 354   // the survivor regions from this evacuation pause as 'young'
 355   // at the start of the next.
 356 
 357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 358 
 359   assert(check_list_well_formed(), "young list should be well formed");
 360 }
 361 
 362 void YoungList::print() {
 363   HeapRegion* lists[] = {_head,   _survivor_head};
 364   const char* names[] = {"YOUNG", "SURVIVOR"};
 365 
 366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 368     HeapRegion *curr = lists[list];
 369     if (curr == NULL)
 370       gclog_or_tty->print_cr("  empty");
 371     while (curr != NULL) {
 372       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
 373                              "age: %4d, y: %d, surv: %d",
 374                              curr->bottom(), curr->end(),
 375                              curr->top(),
 376                              curr->prev_top_at_mark_start(),
 377                              curr->next_top_at_mark_start(),
 378                              curr->top_at_conc_mark_count(),
 379                              curr->age_in_surv_rate_group_cond(),
 380                              curr->is_young(),
 381                              curr->is_survivor());
 382       curr = curr->get_next_young_region();
 383     }
 384   }
 385 
 386   gclog_or_tty->print_cr("");
 387 }
 388 
 389 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 390 {
 391   // Claim the right to put the region on the dirty cards region list
 392   // by installing a self pointer.
 393   HeapRegion* next = hr->get_next_dirty_cards_region();
 394   if (next == NULL) {
 395     HeapRegion* res = (HeapRegion*)
 396       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 397                           NULL);
 398     if (res == NULL) {
 399       HeapRegion* head;
 400       do {
 401         // Put the region to the dirty cards region list.
 402         head = _dirty_cards_region_list;
 403         next = (HeapRegion*)
 404           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 405         if (next == head) {
 406           assert(hr->get_next_dirty_cards_region() == hr,
 407                  "hr->get_next_dirty_cards_region() != hr");
 408           if (next == NULL) {
 409             // The last region in the list points to itself.
 410             hr->set_next_dirty_cards_region(hr);
 411           } else {
 412             hr->set_next_dirty_cards_region(next);
 413           }
 414         }
 415       } while (next != head);
 416     }
 417   }
 418 }
 419 
 420 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 421 {
 422   HeapRegion* head;
 423   HeapRegion* hr;
 424   do {
 425     head = _dirty_cards_region_list;
 426     if (head == NULL) {
 427       return NULL;
 428     }
 429     HeapRegion* new_head = head->get_next_dirty_cards_region();
 430     if (head == new_head) {
 431       // The last region.
 432       new_head = NULL;
 433     }
 434     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 435                                           head);
 436   } while (hr != head);
 437   assert(hr != NULL, "invariant");
 438   hr->set_next_dirty_cards_region(NULL);
 439   return hr;
 440 }
 441 
 442 void G1CollectedHeap::stop_conc_gc_threads() {
 443   _cg1r->stop();
 444   _cmThread->stop();
 445 }
 446 
 447 #ifdef ASSERT
 448 // A region is added to the collection set as it is retired
 449 // so an address p can point to a region which will be in the
 450 // collection set but has not yet been retired.  This method
 451 // therefore is only accurate during a GC pause after all
 452 // regions have been retired.  It is used for debugging
 453 // to check if an nmethod has references to objects that can
 454 // be move during a partial collection.  Though it can be
 455 // inaccurate, it is sufficient for G1 because the conservative
 456 // implementation of is_scavengable() for G1 will indicate that
 457 // all nmethods must be scanned during a partial collection.
 458 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 459   HeapRegion* hr = heap_region_containing(p);
 460   return hr != NULL && hr->in_collection_set();
 461 }
 462 #endif
 463 
 464 // Returns true if the reference points to an object that
 465 // can move in an incremental collecction.
 466 bool G1CollectedHeap::is_scavengable(const void* p) {
 467   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 468   G1CollectorPolicy* g1p = g1h->g1_policy();
 469   HeapRegion* hr = heap_region_containing(p);
 470   if (hr == NULL) {
 471      // perm gen (or null)
 472      return false;
 473   } else {
 474     return !hr->isHumongous();
 475   }
 476 }
 477 
 478 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 479   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 480   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 481 
 482   // Count the dirty cards at the start.
 483   CountNonCleanMemRegionClosure count1(this);
 484   ct_bs->mod_card_iterate(&count1);
 485   int orig_count = count1.n();
 486 
 487   // First clear the logged cards.
 488   ClearLoggedCardTableEntryClosure clear;
 489   dcqs.set_closure(&clear);
 490   dcqs.apply_closure_to_all_completed_buffers();
 491   dcqs.iterate_closure_all_threads(false);
 492   clear.print_histo();
 493 
 494   // Now ensure that there's no dirty cards.
 495   CountNonCleanMemRegionClosure count2(this);
 496   ct_bs->mod_card_iterate(&count2);
 497   if (count2.n() != 0) {
 498     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 499                            count2.n(), orig_count);
 500   }
 501   guarantee(count2.n() == 0, "Card table should be clean.");
 502 
 503   RedirtyLoggedCardTableEntryClosure redirty;
 504   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 505   dcqs.apply_closure_to_all_completed_buffers();
 506   dcqs.iterate_closure_all_threads(false);
 507   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 508                          clear.calls(), orig_count);
 509   guarantee(redirty.calls() == clear.calls(),
 510             "Or else mechanism is broken.");
 511 
 512   CountNonCleanMemRegionClosure count3(this);
 513   ct_bs->mod_card_iterate(&count3);
 514   if (count3.n() != orig_count) {
 515     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 516                            orig_count, count3.n());
 517     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 518   }
 519 
 520   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 521 }
 522 
 523 // Private class members.
 524 
 525 G1CollectedHeap* G1CollectedHeap::_g1h;
 526 
 527 // Private methods.
 528 
 529 HeapRegion*
 530 G1CollectedHeap::new_region_try_secondary_free_list() {
 531   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 532   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 533     if (!_secondary_free_list.is_empty()) {
 534       if (G1ConcRegionFreeingVerbose) {
 535         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 536                                "secondary_free_list has "SIZE_FORMAT" entries",
 537                                _secondary_free_list.length());
 538       }
 539       // It looks as if there are free regions available on the
 540       // secondary_free_list. Let's move them to the free_list and try
 541       // again to allocate from it.
 542       append_secondary_free_list();
 543 
 544       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 545              "empty we should have moved at least one entry to the free_list");
 546       HeapRegion* res = _free_list.remove_head();
 547       if (G1ConcRegionFreeingVerbose) {
 548         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 549                                "allocated "HR_FORMAT" from secondary_free_list",
 550                                HR_FORMAT_PARAMS(res));
 551       }
 552       return res;
 553     }
 554 
 555     // Wait here until we get notifed either when (a) there are no
 556     // more free regions coming or (b) some regions have been moved on
 557     // the secondary_free_list.
 558     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 559   }
 560 
 561   if (G1ConcRegionFreeingVerbose) {
 562     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 563                            "could not allocate from secondary_free_list");
 564   }
 565   return NULL;
 566 }
 567 
 568 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 569   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 570          "the only time we use this to allocate a humongous region is "
 571          "when we are allocating a single humongous region");
 572 
 573   HeapRegion* res;
 574   if (G1StressConcRegionFreeing) {
 575     if (!_secondary_free_list.is_empty()) {
 576       if (G1ConcRegionFreeingVerbose) {
 577         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 578                                "forced to look at the secondary_free_list");
 579       }
 580       res = new_region_try_secondary_free_list();
 581       if (res != NULL) {
 582         return res;
 583       }
 584     }
 585   }
 586   res = _free_list.remove_head_or_null();
 587   if (res == NULL) {
 588     if (G1ConcRegionFreeingVerbose) {
 589       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 590                              "res == NULL, trying the secondary_free_list");
 591     }
 592     res = new_region_try_secondary_free_list();
 593   }
 594   if (res == NULL && do_expand) {
 595     ergo_verbose1(ErgoHeapSizing,
 596                   "attempt heap expansion",
 597                   ergo_format_reason("region allocation request failed")
 598                   ergo_format_byte("allocation request"),
 599                   word_size * HeapWordSize);
 600     if (expand(word_size * HeapWordSize)) {
 601       // Even though the heap was expanded, it might not have reached
 602       // the desired size. So, we cannot assume that the allocation
 603       // will succeed.
 604       res = _free_list.remove_head_or_null();
 605     }
 606   }
 607   return res;
 608 }
 609 
 610 size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
 611                                                           size_t word_size) {
 612   assert(isHumongous(word_size), "word_size should be humongous");
 613   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 614 
 615   size_t first = G1_NULL_HRS_INDEX;
 616   if (num_regions == 1) {
 617     // Only one region to allocate, no need to go through the slower
 618     // path. The caller will attempt the expasion if this fails, so
 619     // let's not try to expand here too.
 620     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 621     if (hr != NULL) {
 622       first = hr->hrs_index();
 623     } else {
 624       first = G1_NULL_HRS_INDEX;
 625     }
 626   } else {
 627     // We can't allocate humongous regions while cleanupComplete() is
 628     // running, since some of the regions we find to be empty might not
 629     // yet be added to the free list and it is not straightforward to
 630     // know which list they are on so that we can remove them. Note
 631     // that we only need to do this if we need to allocate more than
 632     // one region to satisfy the current humongous allocation
 633     // request. If we are only allocating one region we use the common
 634     // region allocation code (see above).
 635     wait_while_free_regions_coming();
 636     append_secondary_free_list_if_not_empty_with_lock();
 637 
 638     if (free_regions() >= num_regions) {
 639       first = _hrs.find_contiguous(num_regions);
 640       if (first != G1_NULL_HRS_INDEX) {
 641         for (size_t i = first; i < first + num_regions; ++i) {
 642           HeapRegion* hr = region_at(i);
 643           assert(hr->is_empty(), "sanity");
 644           assert(is_on_master_free_list(hr), "sanity");
 645           hr->set_pending_removal(true);
 646         }
 647         _free_list.remove_all_pending(num_regions);
 648       }
 649     }
 650   }
 651   return first;
 652 }
 653 
 654 HeapWord*
 655 G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
 656                                                            size_t num_regions,
 657                                                            size_t word_size) {
 658   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 659   assert(isHumongous(word_size), "word_size should be humongous");
 660   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 661 
 662   // Index of last region in the series + 1.
 663   size_t last = first + num_regions;
 664 
 665   // We need to initialize the region(s) we just discovered. This is
 666   // a bit tricky given that it can happen concurrently with
 667   // refinement threads refining cards on these regions and
 668   // potentially wanting to refine the BOT as they are scanning
 669   // those cards (this can happen shortly after a cleanup; see CR
 670   // 6991377). So we have to set up the region(s) carefully and in
 671   // a specific order.
 672 
 673   // The word size sum of all the regions we will allocate.
 674   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
 675   assert(word_size <= word_size_sum, "sanity");
 676 
 677   // This will be the "starts humongous" region.
 678   HeapRegion* first_hr = region_at(first);
 679   // The header of the new object will be placed at the bottom of
 680   // the first region.
 681   HeapWord* new_obj = first_hr->bottom();
 682   // This will be the new end of the first region in the series that
 683   // should also match the end of the last region in the seriers.
 684   HeapWord* new_end = new_obj + word_size_sum;
 685   // This will be the new top of the first region that will reflect
 686   // this allocation.
 687   HeapWord* new_top = new_obj + word_size;
 688 
 689   // First, we need to zero the header of the space that we will be
 690   // allocating. When we update top further down, some refinement
 691   // threads might try to scan the region. By zeroing the header we
 692   // ensure that any thread that will try to scan the region will
 693   // come across the zero klass word and bail out.
 694   //
 695   // NOTE: It would not have been correct to have used
 696   // CollectedHeap::fill_with_object() and make the space look like
 697   // an int array. The thread that is doing the allocation will
 698   // later update the object header to a potentially different array
 699   // type and, for a very short period of time, the klass and length
 700   // fields will be inconsistent. This could cause a refinement
 701   // thread to calculate the object size incorrectly.
 702   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 703 
 704   // We will set up the first region as "starts humongous". This
 705   // will also update the BOT covering all the regions to reflect
 706   // that there is a single object that starts at the bottom of the
 707   // first region.
 708   first_hr->set_startsHumongous(new_top, new_end);
 709 
 710   // Then, if there are any, we will set up the "continues
 711   // humongous" regions.
 712   HeapRegion* hr = NULL;
 713   for (size_t i = first + 1; i < last; ++i) {
 714     hr = region_at(i);
 715     hr->set_continuesHumongous(first_hr);
 716   }
 717   // If we have "continues humongous" regions (hr != NULL), then the
 718   // end of the last one should match new_end.
 719   assert(hr == NULL || hr->end() == new_end, "sanity");
 720 
 721   // Up to this point no concurrent thread would have been able to
 722   // do any scanning on any region in this series. All the top
 723   // fields still point to bottom, so the intersection between
 724   // [bottom,top] and [card_start,card_end] will be empty. Before we
 725   // update the top fields, we'll do a storestore to make sure that
 726   // no thread sees the update to top before the zeroing of the
 727   // object header and the BOT initialization.
 728   OrderAccess::storestore();
 729 
 730   // Now that the BOT and the object header have been initialized,
 731   // we can update top of the "starts humongous" region.
 732   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 733          "new_top should be in this region");
 734   first_hr->set_top(new_top);
 735   if (_hr_printer.is_active()) {
 736     HeapWord* bottom = first_hr->bottom();
 737     HeapWord* end = first_hr->orig_end();
 738     if ((first + 1) == last) {
 739       // the series has a single humongous region
 740       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 741     } else {
 742       // the series has more than one humongous regions
 743       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 744     }
 745   }
 746 
 747   // Now, we will update the top fields of the "continues humongous"
 748   // regions. The reason we need to do this is that, otherwise,
 749   // these regions would look empty and this will confuse parts of
 750   // G1. For example, the code that looks for a consecutive number
 751   // of empty regions will consider them empty and try to
 752   // re-allocate them. We can extend is_empty() to also include
 753   // !continuesHumongous(), but it is easier to just update the top
 754   // fields here. The way we set top for all regions (i.e., top ==
 755   // end for all regions but the last one, top == new_top for the
 756   // last one) is actually used when we will free up the humongous
 757   // region in free_humongous_region().
 758   hr = NULL;
 759   for (size_t i = first + 1; i < last; ++i) {
 760     hr = region_at(i);
 761     if ((i + 1) == last) {
 762       // last continues humongous region
 763       assert(hr->bottom() < new_top && new_top <= hr->end(),
 764              "new_top should fall on this region");
 765       hr->set_top(new_top);
 766       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 767     } else {
 768       // not last one
 769       assert(new_top > hr->end(), "new_top should be above this region");
 770       hr->set_top(hr->end());
 771       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 772     }
 773   }
 774   // If we have continues humongous regions (hr != NULL), then the
 775   // end of the last one should match new_end and its top should
 776   // match new_top.
 777   assert(hr == NULL ||
 778          (hr->end() == new_end && hr->top() == new_top), "sanity");
 779 
 780   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 781   _summary_bytes_used += first_hr->used();
 782   _humongous_set.add(first_hr);
 783 
 784   return new_obj;
 785 }
 786 
 787 // If could fit into free regions w/o expansion, try.
 788 // Otherwise, if can expand, do so.
 789 // Otherwise, if using ex regions might help, try with ex given back.
 790 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 791   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 792 
 793   verify_region_sets_optional();
 794 
 795   size_t num_regions =
 796          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 797   size_t x_size = expansion_regions();
 798   size_t fs = _hrs.free_suffix();
 799   size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
 800   if (first == G1_NULL_HRS_INDEX) {
 801     // The only thing we can do now is attempt expansion.
 802     if (fs + x_size >= num_regions) {
 803       // If the number of regions we're trying to allocate for this
 804       // object is at most the number of regions in the free suffix,
 805       // then the call to humongous_obj_allocate_find_first() above
 806       // should have succeeded and we wouldn't be here.
 807       //
 808       // We should only be trying to expand when the free suffix is
 809       // not sufficient for the object _and_ we have some expansion
 810       // room available.
 811       assert(num_regions > fs, "earlier allocation should have succeeded");
 812 
 813       ergo_verbose1(ErgoHeapSizing,
 814                     "attempt heap expansion",
 815                     ergo_format_reason("humongous allocation request failed")
 816                     ergo_format_byte("allocation request"),
 817                     word_size * HeapWordSize);
 818       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 819         // Even though the heap was expanded, it might not have
 820         // reached the desired size. So, we cannot assume that the
 821         // allocation will succeed.
 822         first = humongous_obj_allocate_find_first(num_regions, word_size);
 823       }
 824     }
 825   }
 826 
 827   HeapWord* result = NULL;
 828   if (first != G1_NULL_HRS_INDEX) {
 829     result =
 830       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 831     assert(result != NULL, "it should always return a valid result");
 832 
 833     // A successful humongous object allocation changes the used space
 834     // information of the old generation so we need to recalculate the
 835     // sizes and update the jstat counters here.
 836     g1mm()->update_sizes();
 837   }
 838 
 839   verify_region_sets_optional();
 840 
 841   return result;
 842 }
 843 
 844 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 845   assert_heap_not_locked_and_not_at_safepoint();
 846   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 847 
 848   unsigned int dummy_gc_count_before;
 849   return attempt_allocation(word_size, &dummy_gc_count_before);
 850 }
 851 
 852 HeapWord*
 853 G1CollectedHeap::mem_allocate(size_t word_size,
 854                               bool*  gc_overhead_limit_was_exceeded) {
 855   assert_heap_not_locked_and_not_at_safepoint();
 856 
 857   // Loop until the allocation is satisified, or unsatisfied after GC.
 858   for (int try_count = 1; /* we'll return */; try_count += 1) {
 859     unsigned int gc_count_before;
 860 
 861     HeapWord* result = NULL;
 862     if (!isHumongous(word_size)) {
 863       result = attempt_allocation(word_size, &gc_count_before);
 864     } else {
 865       result = attempt_allocation_humongous(word_size, &gc_count_before);
 866     }
 867     if (result != NULL) {
 868       return result;
 869     }
 870 
 871     // Create the garbage collection operation...
 872     VM_G1CollectForAllocation op(gc_count_before, word_size);
 873     // ...and get the VM thread to execute it.
 874     VMThread::execute(&op);
 875 
 876     if (op.prologue_succeeded() && op.pause_succeeded()) {
 877       // If the operation was successful we'll return the result even
 878       // if it is NULL. If the allocation attempt failed immediately
 879       // after a Full GC, it's unlikely we'll be able to allocate now.
 880       HeapWord* result = op.result();
 881       if (result != NULL && !isHumongous(word_size)) {
 882         // Allocations that take place on VM operations do not do any
 883         // card dirtying and we have to do it here. We only have to do
 884         // this for non-humongous allocations, though.
 885         dirty_young_block(result, word_size);
 886       }
 887       return result;
 888     } else {
 889       assert(op.result() == NULL,
 890              "the result should be NULL if the VM op did not succeed");
 891     }
 892 
 893     // Give a warning if we seem to be looping forever.
 894     if ((QueuedAllocationWarningCount > 0) &&
 895         (try_count % QueuedAllocationWarningCount == 0)) {
 896       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 897     }
 898   }
 899 
 900   ShouldNotReachHere();
 901   return NULL;
 902 }
 903 
 904 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 905                                            unsigned int *gc_count_before_ret) {
 906   // Make sure you read the note in attempt_allocation_humongous().
 907 
 908   assert_heap_not_locked_and_not_at_safepoint();
 909   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 910          "be called for humongous allocation requests");
 911 
 912   // We should only get here after the first-level allocation attempt
 913   // (attempt_allocation()) failed to allocate.
 914 
 915   // We will loop until a) we manage to successfully perform the
 916   // allocation or b) we successfully schedule a collection which
 917   // fails to perform the allocation. b) is the only case when we'll
 918   // return NULL.
 919   HeapWord* result = NULL;
 920   for (int try_count = 1; /* we'll return */; try_count += 1) {
 921     bool should_try_gc;
 922     unsigned int gc_count_before;
 923 
 924     {
 925       MutexLockerEx x(Heap_lock);
 926 
 927       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 928                                                       false /* bot_updates */);
 929       if (result != NULL) {
 930         return result;
 931       }
 932 
 933       // If we reach here, attempt_allocation_locked() above failed to
 934       // allocate a new region. So the mutator alloc region should be NULL.
 935       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 936 
 937       if (GC_locker::is_active_and_needs_gc()) {
 938         if (g1_policy()->can_expand_young_list()) {
 939           // No need for an ergo verbose message here,
 940           // can_expand_young_list() does this when it returns true.
 941           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 942                                                       false /* bot_updates */);
 943           if (result != NULL) {
 944             return result;
 945           }
 946         }
 947         should_try_gc = false;
 948       } else {
 949         // Read the GC count while still holding the Heap_lock.
 950         gc_count_before = SharedHeap::heap()->total_collections();
 951         should_try_gc = true;
 952       }
 953     }
 954 
 955     if (should_try_gc) {
 956       bool succeeded;
 957       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 958       if (result != NULL) {
 959         assert(succeeded, "only way to get back a non-NULL result");
 960         return result;
 961       }
 962 
 963       if (succeeded) {
 964         // If we get here we successfully scheduled a collection which
 965         // failed to allocate. No point in trying to allocate
 966         // further. We'll just return NULL.
 967         MutexLockerEx x(Heap_lock);
 968         *gc_count_before_ret = SharedHeap::heap()->total_collections();
 969         return NULL;
 970       }
 971     } else {
 972       GC_locker::stall_until_clear();
 973     }
 974 
 975     // We can reach here if we were unsuccessul in scheduling a
 976     // collection (because another thread beat us to it) or if we were
 977     // stalled due to the GC locker. In either can we should retry the
 978     // allocation attempt in case another thread successfully
 979     // performed a collection and reclaimed enough space. We do the
 980     // first attempt (without holding the Heap_lock) here and the
 981     // follow-on attempt will be at the start of the next loop
 982     // iteration (after taking the Heap_lock).
 983     result = _mutator_alloc_region.attempt_allocation(word_size,
 984                                                       false /* bot_updates */);
 985     if (result != NULL ){
 986       return result;
 987     }
 988 
 989     // Give a warning if we seem to be looping forever.
 990     if ((QueuedAllocationWarningCount > 0) &&
 991         (try_count % QueuedAllocationWarningCount == 0)) {
 992       warning("G1CollectedHeap::attempt_allocation_slow() "
 993               "retries %d times", try_count);
 994     }
 995   }
 996 
 997   ShouldNotReachHere();
 998   return NULL;
 999 }
1000 
1001 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1002                                           unsigned int * gc_count_before_ret) {
1003   // The structure of this method has a lot of similarities to
1004   // attempt_allocation_slow(). The reason these two were not merged
1005   // into a single one is that such a method would require several "if
1006   // allocation is not humongous do this, otherwise do that"
1007   // conditional paths which would obscure its flow. In fact, an early
1008   // version of this code did use a unified method which was harder to
1009   // follow and, as a result, it had subtle bugs that were hard to
1010   // track down. So keeping these two methods separate allows each to
1011   // be more readable. It will be good to keep these two in sync as
1012   // much as possible.
1013 
1014   assert_heap_not_locked_and_not_at_safepoint();
1015   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1016          "should only be called for humongous allocations");
1017 
1018   // We will loop until a) we manage to successfully perform the
1019   // allocation or b) we successfully schedule a collection which
1020   // fails to perform the allocation. b) is the only case when we'll
1021   // return NULL.
1022   HeapWord* result = NULL;
1023   for (int try_count = 1; /* we'll return */; try_count += 1) {
1024     bool should_try_gc;
1025     unsigned int gc_count_before;
1026 
1027     {
1028       MutexLockerEx x(Heap_lock);
1029 
1030       // Given that humongous objects are not allocated in young
1031       // regions, we'll first try to do the allocation without doing a
1032       // collection hoping that there's enough space in the heap.
1033       result = humongous_obj_allocate(word_size);
1034       if (result != NULL) {
1035         return result;
1036       }
1037 
1038       if (GC_locker::is_active_and_needs_gc()) {
1039         should_try_gc = false;
1040       } else {
1041         // Read the GC count while still holding the Heap_lock.
1042         gc_count_before = SharedHeap::heap()->total_collections();
1043         should_try_gc = true;
1044       }
1045     }
1046 
1047     if (should_try_gc) {
1048       // If we failed to allocate the humongous object, we should try to
1049       // do a collection pause (if we're allowed) in case it reclaims
1050       // enough space for the allocation to succeed after the pause.
1051 
1052       bool succeeded;
1053       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1054       if (result != NULL) {
1055         assert(succeeded, "only way to get back a non-NULL result");
1056         return result;
1057       }
1058 
1059       if (succeeded) {
1060         // If we get here we successfully scheduled a collection which
1061         // failed to allocate. No point in trying to allocate
1062         // further. We'll just return NULL.
1063         MutexLockerEx x(Heap_lock);
1064         *gc_count_before_ret = SharedHeap::heap()->total_collections();
1065         return NULL;
1066       }
1067     } else {
1068       GC_locker::stall_until_clear();
1069     }
1070 
1071     // We can reach here if we were unsuccessul in scheduling a
1072     // collection (because another thread beat us to it) or if we were
1073     // stalled due to the GC locker. In either can we should retry the
1074     // allocation attempt in case another thread successfully
1075     // performed a collection and reclaimed enough space.  Give a
1076     // warning if we seem to be looping forever.
1077 
1078     if ((QueuedAllocationWarningCount > 0) &&
1079         (try_count % QueuedAllocationWarningCount == 0)) {
1080       warning("G1CollectedHeap::attempt_allocation_humongous() "
1081               "retries %d times", try_count);
1082     }
1083   }
1084 
1085   ShouldNotReachHere();
1086   return NULL;
1087 }
1088 
1089 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1090                                        bool expect_null_mutator_alloc_region) {
1091   assert_at_safepoint(true /* should_be_vm_thread */);
1092   assert(_mutator_alloc_region.get() == NULL ||
1093                                              !expect_null_mutator_alloc_region,
1094          "the current alloc region was unexpectedly found to be non-NULL");
1095 
1096   if (!isHumongous(word_size)) {
1097     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1098                                                       false /* bot_updates */);
1099   } else {
1100     return humongous_obj_allocate(word_size);
1101   }
1102 
1103   ShouldNotReachHere();
1104 }
1105 
1106 class PostMCRemSetClearClosure: public HeapRegionClosure {
1107   ModRefBarrierSet* _mr_bs;
1108 public:
1109   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1110   bool doHeapRegion(HeapRegion* r) {
1111     r->reset_gc_time_stamp();
1112     if (r->continuesHumongous())
1113       return false;
1114     HeapRegionRemSet* hrrs = r->rem_set();
1115     if (hrrs != NULL) hrrs->clear();
1116     // You might think here that we could clear just the cards
1117     // corresponding to the used region.  But no: if we leave a dirty card
1118     // in a region we might allocate into, then it would prevent that card
1119     // from being enqueued, and cause it to be missed.
1120     // Re: the performance cost: we shouldn't be doing full GC anyway!
1121     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1122     return false;
1123   }
1124 };
1125 
1126 
1127 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
1128   ModRefBarrierSet* _mr_bs;
1129 public:
1130   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1131   bool doHeapRegion(HeapRegion* r) {
1132     if (r->continuesHumongous()) return false;
1133     if (r->used_region().word_size() != 0) {
1134       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
1135     }
1136     return false;
1137   }
1138 };
1139 
1140 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1141   G1CollectedHeap*   _g1h;
1142   UpdateRSOopClosure _cl;
1143   int                _worker_i;
1144 public:
1145   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1146     _cl(g1->g1_rem_set(), worker_i),
1147     _worker_i(worker_i),
1148     _g1h(g1)
1149   { }
1150 
1151   bool doHeapRegion(HeapRegion* r) {
1152     if (!r->continuesHumongous()) {
1153       _cl.set_from(r);
1154       r->oop_iterate(&_cl);
1155     }
1156     return false;
1157   }
1158 };
1159 
1160 class ParRebuildRSTask: public AbstractGangTask {
1161   G1CollectedHeap* _g1;
1162 public:
1163   ParRebuildRSTask(G1CollectedHeap* g1)
1164     : AbstractGangTask("ParRebuildRSTask"),
1165       _g1(g1)
1166   { }
1167 
1168   void work(int i) {
1169     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
1170     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
1171                                           _g1->workers()->active_workers(),
1172                                          HeapRegion::RebuildRSClaimValue);
1173   }
1174 };
1175 
1176 class PostCompactionPrinterClosure: public HeapRegionClosure {
1177 private:
1178   G1HRPrinter* _hr_printer;
1179 public:
1180   bool doHeapRegion(HeapRegion* hr) {
1181     assert(!hr->is_young(), "not expecting to find young regions");
1182     // We only generate output for non-empty regions.
1183     if (!hr->is_empty()) {
1184       if (!hr->isHumongous()) {
1185         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1186       } else if (hr->startsHumongous()) {
1187         if (hr->capacity() == HeapRegion::GrainBytes) {
1188           // single humongous region
1189           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1190         } else {
1191           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1192         }
1193       } else {
1194         assert(hr->continuesHumongous(), "only way to get here");
1195         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1196       }
1197     }
1198     return false;
1199   }
1200 
1201   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1202     : _hr_printer(hr_printer) { }
1203 };
1204 
1205 bool G1CollectedHeap::do_collection(bool explicit_gc,
1206                                     bool clear_all_soft_refs,
1207                                     size_t word_size) {
1208   assert_at_safepoint(true /* should_be_vm_thread */);
1209 
1210   if (GC_locker::check_active_before_gc()) {
1211     return false;
1212   }
1213 
1214   SvcGCMarker sgcm(SvcGCMarker::FULL);
1215   ResourceMark rm;
1216 
1217   if (PrintHeapAtGC) {
1218     Universe::print_heap_before_gc();
1219   }
1220 
1221   HRSPhaseSetter x(HRSPhaseFullGC);
1222   verify_region_sets_optional();
1223 
1224   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1225                            collector_policy()->should_clear_all_soft_refs();
1226 
1227   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1228 
1229   {
1230     IsGCActiveMark x;
1231 
1232     // Timing
1233     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
1234     assert(!system_gc || explicit_gc, "invariant");
1235     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
1236     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1237     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1238                 PrintGC, true, gclog_or_tty);
1239 
1240     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1241     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1242 
1243     double start = os::elapsedTime();
1244     g1_policy()->record_full_collection_start();
1245 
1246     wait_while_free_regions_coming();
1247     append_secondary_free_list_if_not_empty_with_lock();
1248 
1249     gc_prologue(true);
1250     increment_total_collections(true /* full gc */);
1251 
1252     size_t g1h_prev_used = used();
1253     assert(used() == recalculate_used(), "Should be equal");
1254 
1255     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
1256       HandleMark hm;  // Discard invalid handles created during verification
1257       gclog_or_tty->print(" VerifyBeforeGC:");
1258       prepare_for_verify();
1259       Universe::verify(/* allow dirty */ true,
1260                        /* silent      */ false,
1261                        /* option      */ VerifyOption_G1UsePrevMarking);
1262 
1263     }
1264     pre_full_gc_dump();
1265 
1266     COMPILER2_PRESENT(DerivedPointerTable::clear());
1267 
1268     // Disable discovery and empty the discovered lists
1269     // for the CM ref processor.
1270     ref_processor_cm()->disable_discovery();
1271     ref_processor_cm()->abandon_partial_discovery();
1272     ref_processor_cm()->verify_no_references_recorded();
1273 
1274     // Abandon current iterations of concurrent marking and concurrent
1275     // refinement, if any are in progress.
1276     concurrent_mark()->abort();
1277 
1278     // Make sure we'll choose a new allocation region afterwards.
1279     release_mutator_alloc_region();
1280     abandon_gc_alloc_regions();
1281     g1_rem_set()->cleanupHRRS();
1282 
1283     // We should call this after we retire any currently active alloc
1284     // regions so that all the ALLOC / RETIRE events are generated
1285     // before the start GC event.
1286     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1287 
1288     // We may have added regions to the current incremental collection
1289     // set between the last GC or pause and now. We need to clear the
1290     // incremental collection set and then start rebuilding it afresh
1291     // after this full GC.
1292     abandon_collection_set(g1_policy()->inc_cset_head());
1293     g1_policy()->clear_incremental_cset();
1294     g1_policy()->stop_incremental_cset_building();
1295 
1296     tear_down_region_sets(false /* free_list_only */);
1297     g1_policy()->set_full_young_gcs(true);
1298 
1299     // See the comments in g1CollectedHeap.hpp and
1300     // G1CollectedHeap::ref_processing_init() about
1301     // how reference processing currently works in G1.
1302 
1303     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1304     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1305 
1306     // Temporarily clear the STW ref processor's _is_alive_non_header field.
1307     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1308 
1309     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1310     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1311 
1312     // Do collection work
1313     {
1314       HandleMark hm;  // Discard invalid handles created during gc
1315       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1316     }
1317 
1318     assert(free_regions() == 0, "we should not have added any free regions");
1319     rebuild_region_sets(false /* free_list_only */);
1320 
1321     // Enqueue any discovered reference objects that have
1322     // not been removed from the discovered lists.
1323     ref_processor_stw()->enqueue_discovered_references();
1324 
1325     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1326 
1327     MemoryService::track_memory_usage();
1328 
1329     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
1330       HandleMark hm;  // Discard invalid handles created during verification
1331       gclog_or_tty->print(" VerifyAfterGC:");
1332       prepare_for_verify();
1333       Universe::verify(/* allow dirty */ false,
1334                        /* silent      */ false,
1335                        /* option      */ VerifyOption_G1UsePrevMarking);
1336 
1337     }
1338 
1339     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1340     ref_processor_stw()->verify_no_references_recorded();
1341 
1342     // Note: since we've just done a full GC, concurrent
1343     // marking is no longer active. Therefore we need not
1344     // re-enable reference discovery for the CM ref processor.
1345     // That will be done at the start of the next marking cycle.
1346     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1347     ref_processor_cm()->verify_no_references_recorded();
1348 
1349     reset_gc_time_stamp();
1350     // Since everything potentially moved, we will clear all remembered
1351     // sets, and clear all cards.  Later we will rebuild remebered
1352     // sets. We will also reset the GC time stamps of the regions.
1353     PostMCRemSetClearClosure rs_clear(mr_bs());
1354     heap_region_iterate(&rs_clear);
1355 
1356     // Resize the heap if necessary.
1357     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1358 
1359     if (_hr_printer.is_active()) {
1360       // We should do this after we potentially resize the heap so
1361       // that all the COMMIT / UNCOMMIT events are generated before
1362       // the end GC event.
1363 
1364       PostCompactionPrinterClosure cl(hr_printer());
1365       heap_region_iterate(&cl);
1366 
1367       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1368     }
1369 
1370     if (_cg1r->use_cache()) {
1371       _cg1r->clear_and_record_card_counts();
1372       _cg1r->clear_hot_cache();
1373     }
1374 
1375     // Rebuild remembered sets of all regions.
1376     if (G1CollectedHeap::use_parallel_gc_threads()) {
1377       int n_workers =
1378         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1379                                        workers()->active_workers(),
1380                                        Threads::number_of_non_daemon_threads());
1381       assert(UseDynamicNumberOfGCThreads ||
1382              n_workers == workers()->total_workers(),
1383              "If not dynamic should be using all the  workers");
1384       workers()->set_active_workers(n_workers);
1385       // Set parallel threads in the heap (_n_par_threads) only
1386       // before a parallel phase and always reset it to 0 after
1387       // the phase so that the number of parallel threads does
1388       // no get carried forward to a serial phase where there
1389       // may be code that is "possibly_parallel".
1390       set_par_threads(n_workers);
1391 
1392       ParRebuildRSTask rebuild_rs_task(this);
1393       assert(check_heap_region_claim_values(
1394              HeapRegion::InitialClaimValue), "sanity check");
1395       assert(UseDynamicNumberOfGCThreads ||
1396              workers()->active_workers() == workers()->total_workers(),
1397         "Unless dynamic should use total workers");
1398       // Use the most recent number of  active workers
1399       assert(workers()->active_workers() > 0,
1400         "Active workers not properly set");
1401       set_par_threads(workers()->active_workers());
1402       workers()->run_task(&rebuild_rs_task);
1403       set_par_threads(0);
1404       assert(check_heap_region_claim_values(
1405              HeapRegion::RebuildRSClaimValue), "sanity check");
1406       reset_heap_region_claim_values();
1407     } else {
1408       RebuildRSOutOfRegionClosure rebuild_rs(this);
1409       heap_region_iterate(&rebuild_rs);
1410     }
1411 
1412     if (PrintGC) {
1413       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1414     }
1415 
1416     if (true) { // FIXME
1417       // Ask the permanent generation to adjust size for full collections
1418       perm()->compute_new_size();
1419     }
1420 
1421     // Start a new incremental collection set for the next pause
1422     assert(g1_policy()->collection_set() == NULL, "must be");
1423     g1_policy()->start_incremental_cset_building();
1424 
1425     // Clear the _cset_fast_test bitmap in anticipation of adding
1426     // regions to the incremental collection set for the next
1427     // evacuation pause.
1428     clear_cset_fast_test();
1429 
1430     init_mutator_alloc_region();
1431 
1432     double end = os::elapsedTime();
1433     g1_policy()->record_full_collection_end();
1434 
1435 #ifdef TRACESPINNING
1436     ParallelTaskTerminator::print_termination_counts();
1437 #endif
1438 
1439     gc_epilogue(true);
1440 
1441     // Discard all rset updates
1442     JavaThread::dirty_card_queue_set().abandon_logs();
1443     assert(!G1DeferredRSUpdate
1444            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1445   }
1446 
1447   _young_list->reset_sampled_info();
1448   // At this point there should be no regions in the
1449   // entire heap tagged as young.
1450   assert( check_young_list_empty(true /* check_heap */),
1451     "young list should be empty at this point");
1452 
1453   // Update the number of full collections that have been completed.
1454   increment_full_collections_completed(false /* concurrent */);
1455 
1456   _hrs.verify_optional();
1457   verify_region_sets_optional();
1458 
1459   if (PrintHeapAtGC) {
1460     Universe::print_heap_after_gc();
1461   }
1462   g1mm()->update_sizes();
1463   post_full_gc_dump();
1464 
1465   return true;
1466 }
1467 
1468 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1469   // do_collection() will return whether it succeeded in performing
1470   // the GC. Currently, there is no facility on the
1471   // do_full_collection() API to notify the caller than the collection
1472   // did not succeed (e.g., because it was locked out by the GC
1473   // locker). So, right now, we'll ignore the return value.
1474   bool dummy = do_collection(true,                /* explicit_gc */
1475                              clear_all_soft_refs,
1476                              0                    /* word_size */);
1477 }
1478 
1479 // This code is mostly copied from TenuredGeneration.
1480 void
1481 G1CollectedHeap::
1482 resize_if_necessary_after_full_collection(size_t word_size) {
1483   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1484 
1485   // Include the current allocation, if any, and bytes that will be
1486   // pre-allocated to support collections, as "used".
1487   const size_t used_after_gc = used();
1488   const size_t capacity_after_gc = capacity();
1489   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1490 
1491   // This is enforced in arguments.cpp.
1492   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1493          "otherwise the code below doesn't make sense");
1494 
1495   // We don't have floating point command-line arguments
1496   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1497   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1498   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1499   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1500 
1501   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1502   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1503 
1504   // We have to be careful here as these two calculations can overflow
1505   // 32-bit size_t's.
1506   double used_after_gc_d = (double) used_after_gc;
1507   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1508   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1509 
1510   // Let's make sure that they are both under the max heap size, which
1511   // by default will make them fit into a size_t.
1512   double desired_capacity_upper_bound = (double) max_heap_size;
1513   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1514                                     desired_capacity_upper_bound);
1515   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1516                                     desired_capacity_upper_bound);
1517 
1518   // We can now safely turn them into size_t's.
1519   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1520   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1521 
1522   // This assert only makes sense here, before we adjust them
1523   // with respect to the min and max heap size.
1524   assert(minimum_desired_capacity <= maximum_desired_capacity,
1525          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1526                  "maximum_desired_capacity = "SIZE_FORMAT,
1527                  minimum_desired_capacity, maximum_desired_capacity));
1528 
1529   // Should not be greater than the heap max size. No need to adjust
1530   // it with respect to the heap min size as it's a lower bound (i.e.,
1531   // we'll try to make the capacity larger than it, not smaller).
1532   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1533   // Should not be less than the heap min size. No need to adjust it
1534   // with respect to the heap max size as it's an upper bound (i.e.,
1535   // we'll try to make the capacity smaller than it, not greater).
1536   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1537 
1538   if (capacity_after_gc < minimum_desired_capacity) {
1539     // Don't expand unless it's significant
1540     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1541     ergo_verbose4(ErgoHeapSizing,
1542                   "attempt heap expansion",
1543                   ergo_format_reason("capacity lower than "
1544                                      "min desired capacity after Full GC")
1545                   ergo_format_byte("capacity")
1546                   ergo_format_byte("occupancy")
1547                   ergo_format_byte_perc("min desired capacity"),
1548                   capacity_after_gc, used_after_gc,
1549                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1550     expand(expand_bytes);
1551 
1552     // No expansion, now see if we want to shrink
1553   } else if (capacity_after_gc > maximum_desired_capacity) {
1554     // Capacity too large, compute shrinking size
1555     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1556     ergo_verbose4(ErgoHeapSizing,
1557                   "attempt heap shrinking",
1558                   ergo_format_reason("capacity higher than "
1559                                      "max desired capacity after Full GC")
1560                   ergo_format_byte("capacity")
1561                   ergo_format_byte("occupancy")
1562                   ergo_format_byte_perc("max desired capacity"),
1563                   capacity_after_gc, used_after_gc,
1564                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1565     shrink(shrink_bytes);
1566   }
1567 }
1568 
1569 
1570 HeapWord*
1571 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1572                                            bool* succeeded) {
1573   assert_at_safepoint(true /* should_be_vm_thread */);
1574 
1575   *succeeded = true;
1576   // Let's attempt the allocation first.
1577   HeapWord* result =
1578     attempt_allocation_at_safepoint(word_size,
1579                                  false /* expect_null_mutator_alloc_region */);
1580   if (result != NULL) {
1581     assert(*succeeded, "sanity");
1582     return result;
1583   }
1584 
1585   // In a G1 heap, we're supposed to keep allocation from failing by
1586   // incremental pauses.  Therefore, at least for now, we'll favor
1587   // expansion over collection.  (This might change in the future if we can
1588   // do something smarter than full collection to satisfy a failed alloc.)
1589   result = expand_and_allocate(word_size);
1590   if (result != NULL) {
1591     assert(*succeeded, "sanity");
1592     return result;
1593   }
1594 
1595   // Expansion didn't work, we'll try to do a Full GC.
1596   bool gc_succeeded = do_collection(false, /* explicit_gc */
1597                                     false, /* clear_all_soft_refs */
1598                                     word_size);
1599   if (!gc_succeeded) {
1600     *succeeded = false;
1601     return NULL;
1602   }
1603 
1604   // Retry the allocation
1605   result = attempt_allocation_at_safepoint(word_size,
1606                                   true /* expect_null_mutator_alloc_region */);
1607   if (result != NULL) {
1608     assert(*succeeded, "sanity");
1609     return result;
1610   }
1611 
1612   // Then, try a Full GC that will collect all soft references.
1613   gc_succeeded = do_collection(false, /* explicit_gc */
1614                                true,  /* clear_all_soft_refs */
1615                                word_size);
1616   if (!gc_succeeded) {
1617     *succeeded = false;
1618     return NULL;
1619   }
1620 
1621   // Retry the allocation once more
1622   result = attempt_allocation_at_safepoint(word_size,
1623                                   true /* expect_null_mutator_alloc_region */);
1624   if (result != NULL) {
1625     assert(*succeeded, "sanity");
1626     return result;
1627   }
1628 
1629   assert(!collector_policy()->should_clear_all_soft_refs(),
1630          "Flag should have been handled and cleared prior to this point");
1631 
1632   // What else?  We might try synchronous finalization later.  If the total
1633   // space available is large enough for the allocation, then a more
1634   // complete compaction phase than we've tried so far might be
1635   // appropriate.
1636   assert(*succeeded, "sanity");
1637   return NULL;
1638 }
1639 
1640 // Attempting to expand the heap sufficiently
1641 // to support an allocation of the given "word_size".  If
1642 // successful, perform the allocation and return the address of the
1643 // allocated block, or else "NULL".
1644 
1645 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1646   assert_at_safepoint(true /* should_be_vm_thread */);
1647 
1648   verify_region_sets_optional();
1649 
1650   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1651   ergo_verbose1(ErgoHeapSizing,
1652                 "attempt heap expansion",
1653                 ergo_format_reason("allocation request failed")
1654                 ergo_format_byte("allocation request"),
1655                 word_size * HeapWordSize);
1656   if (expand(expand_bytes)) {
1657     _hrs.verify_optional();
1658     verify_region_sets_optional();
1659     return attempt_allocation_at_safepoint(word_size,
1660                                  false /* expect_null_mutator_alloc_region */);
1661   }
1662   return NULL;
1663 }
1664 
1665 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1666                                              HeapWord* new_end) {
1667   assert(old_end != new_end, "don't call this otherwise");
1668   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1669 
1670   // Update the committed mem region.
1671   _g1_committed.set_end(new_end);
1672   // Tell the card table about the update.
1673   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1674   // Tell the BOT about the update.
1675   _bot_shared->resize(_g1_committed.word_size());
1676 }
1677 
1678 bool G1CollectedHeap::expand(size_t expand_bytes) {
1679   size_t old_mem_size = _g1_storage.committed_size();
1680   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1681   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1682                                        HeapRegion::GrainBytes);
1683   ergo_verbose2(ErgoHeapSizing,
1684                 "expand the heap",
1685                 ergo_format_byte("requested expansion amount")
1686                 ergo_format_byte("attempted expansion amount"),
1687                 expand_bytes, aligned_expand_bytes);
1688 
1689   // First commit the memory.
1690   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1691   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1692   if (successful) {
1693     // Then propagate this update to the necessary data structures.
1694     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1695     update_committed_space(old_end, new_end);
1696 
1697     FreeRegionList expansion_list("Local Expansion List");
1698     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1699     assert(mr.start() == old_end, "post-condition");
1700     // mr might be a smaller region than what was requested if
1701     // expand_by() was unable to allocate the HeapRegion instances
1702     assert(mr.end() <= new_end, "post-condition");
1703 
1704     size_t actual_expand_bytes = mr.byte_size();
1705     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1706     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1707            "post-condition");
1708     if (actual_expand_bytes < aligned_expand_bytes) {
1709       // We could not expand _hrs to the desired size. In this case we
1710       // need to shrink the committed space accordingly.
1711       assert(mr.end() < new_end, "invariant");
1712 
1713       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1714       // First uncommit the memory.
1715       _g1_storage.shrink_by(diff_bytes);
1716       // Then propagate this update to the necessary data structures.
1717       update_committed_space(new_end, mr.end());
1718     }
1719     _free_list.add_as_tail(&expansion_list);
1720 
1721     if (_hr_printer.is_active()) {
1722       HeapWord* curr = mr.start();
1723       while (curr < mr.end()) {
1724         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1725         _hr_printer.commit(curr, curr_end);
1726         curr = curr_end;
1727       }
1728       assert(curr == mr.end(), "post-condition");
1729     }
1730     g1_policy()->record_new_heap_size(n_regions());
1731   } else {
1732     ergo_verbose0(ErgoHeapSizing,
1733                   "did not expand the heap",
1734                   ergo_format_reason("heap expansion operation failed"));
1735     // The expansion of the virtual storage space was unsuccessful.
1736     // Let's see if it was because we ran out of swap.
1737     if (G1ExitOnExpansionFailure &&
1738         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1739       // We had head room...
1740       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1741     }
1742   }
1743   return successful;
1744 }
1745 
1746 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1747   size_t old_mem_size = _g1_storage.committed_size();
1748   size_t aligned_shrink_bytes =
1749     ReservedSpace::page_align_size_down(shrink_bytes);
1750   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1751                                          HeapRegion::GrainBytes);
1752   size_t num_regions_deleted = 0;
1753   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1754   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1755   assert(mr.end() == old_end, "post-condition");
1756 
1757   ergo_verbose3(ErgoHeapSizing,
1758                 "shrink the heap",
1759                 ergo_format_byte("requested shrinking amount")
1760                 ergo_format_byte("aligned shrinking amount")
1761                 ergo_format_byte("attempted shrinking amount"),
1762                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1763   if (mr.byte_size() > 0) {
1764     if (_hr_printer.is_active()) {
1765       HeapWord* curr = mr.end();
1766       while (curr > mr.start()) {
1767         HeapWord* curr_end = curr;
1768         curr -= HeapRegion::GrainWords;
1769         _hr_printer.uncommit(curr, curr_end);
1770       }
1771       assert(curr == mr.start(), "post-condition");
1772     }
1773 
1774     _g1_storage.shrink_by(mr.byte_size());
1775     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1776     assert(mr.start() == new_end, "post-condition");
1777 
1778     _expansion_regions += num_regions_deleted;
1779     update_committed_space(old_end, new_end);
1780     HeapRegionRemSet::shrink_heap(n_regions());
1781     g1_policy()->record_new_heap_size(n_regions());
1782   } else {
1783     ergo_verbose0(ErgoHeapSizing,
1784                   "did not shrink the heap",
1785                   ergo_format_reason("heap shrinking operation failed"));
1786   }
1787 }
1788 
1789 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1790   verify_region_sets_optional();
1791 
1792   // We should only reach here at the end of a Full GC which means we
1793   // should not not be holding to any GC alloc regions. The method
1794   // below will make sure of that and do any remaining clean up.
1795   abandon_gc_alloc_regions();
1796 
1797   // Instead of tearing down / rebuilding the free lists here, we
1798   // could instead use the remove_all_pending() method on free_list to
1799   // remove only the ones that we need to remove.
1800   tear_down_region_sets(true /* free_list_only */);
1801   shrink_helper(shrink_bytes);
1802   rebuild_region_sets(true /* free_list_only */);
1803 
1804   _hrs.verify_optional();
1805   verify_region_sets_optional();
1806 }
1807 
1808 // Public methods.
1809 
1810 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1811 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1812 #endif // _MSC_VER
1813 
1814 
1815 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1816   SharedHeap(policy_),
1817   _g1_policy(policy_),
1818   _dirty_card_queue_set(false),
1819   _into_cset_dirty_card_queue_set(false),
1820   _is_alive_closure_cm(this),
1821   _is_alive_closure_stw(this),
1822   _ref_processor_cm(NULL),
1823   _ref_processor_stw(NULL),
1824   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1825   _bot_shared(NULL),
1826   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1827   _evac_failure_scan_stack(NULL) ,
1828   _mark_in_progress(false),
1829   _cg1r(NULL), _summary_bytes_used(0),
1830   _g1mm(NULL),
1831   _refine_cte_cl(NULL),
1832   _full_collection(false),
1833   _free_list("Master Free List"),
1834   _secondary_free_list("Secondary Free List"),
1835   _old_set("Old Set"),
1836   _humongous_set("Master Humongous Set"),
1837   _free_regions_coming(false),
1838   _young_list(new YoungList(this)),
1839   _gc_time_stamp(0),
1840   _retained_old_gc_alloc_region(NULL),
1841   _surviving_young_words(NULL),
1842   _full_collections_completed(0),
1843   _in_cset_fast_test(NULL),
1844   _in_cset_fast_test_base(NULL),
1845   _dirty_cards_region_list(NULL),
1846   _worker_cset_start_region(NULL),
1847   _worker_cset_start_region_time_stamp(NULL) {
1848   _g1h = this; // To catch bugs.
1849   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1850     vm_exit_during_initialization("Failed necessary allocation.");
1851   }
1852 
1853   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1854 
1855   int n_queues = MAX2((int)ParallelGCThreads, 1);
1856   _task_queues = new RefToScanQueueSet(n_queues);
1857 
1858   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1859   assert(n_rem_sets > 0, "Invariant.");
1860 
1861   HeapRegionRemSetIterator** iter_arr =
1862     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1863   for (int i = 0; i < n_queues; i++) {
1864     iter_arr[i] = new HeapRegionRemSetIterator();
1865   }
1866   _rem_set_iterator = iter_arr;
1867 
1868   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues);
1869   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues);
1870 
1871   for (int i = 0; i < n_queues; i++) {
1872     RefToScanQueue* q = new RefToScanQueue();
1873     q->initialize();
1874     _task_queues->register_queue(i, q);
1875   }
1876 
1877   clear_cset_start_regions();
1878 
1879   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1880 }
1881 
1882 jint G1CollectedHeap::initialize() {
1883   CollectedHeap::pre_initialize();
1884   os::enable_vtime();
1885 
1886   // Necessary to satisfy locking discipline assertions.
1887 
1888   MutexLocker x(Heap_lock);
1889 
1890   // We have to initialize the printer before committing the heap, as
1891   // it will be used then.
1892   _hr_printer.set_active(G1PrintHeapRegions);
1893 
1894   // While there are no constraints in the GC code that HeapWordSize
1895   // be any particular value, there are multiple other areas in the
1896   // system which believe this to be true (e.g. oop->object_size in some
1897   // cases incorrectly returns the size in wordSize units rather than
1898   // HeapWordSize).
1899   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1900 
1901   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1902   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1903 
1904   // Ensure that the sizes are properly aligned.
1905   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1906   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1907 
1908   _cg1r = new ConcurrentG1Refine();
1909 
1910   // Reserve the maximum.
1911   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1912   // Includes the perm-gen.
1913 
1914   // When compressed oops are enabled, the preferred heap base
1915   // is calculated by subtracting the requested size from the
1916   // 32Gb boundary and using the result as the base address for
1917   // heap reservation. If the requested size is not aligned to
1918   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1919   // into the ReservedHeapSpace constructor) then the actual
1920   // base of the reserved heap may end up differing from the
1921   // address that was requested (i.e. the preferred heap base).
1922   // If this happens then we could end up using a non-optimal
1923   // compressed oops mode.
1924 
1925   // Since max_byte_size is aligned to the size of a heap region (checked
1926   // above), we also need to align the perm gen size as it might not be.
1927   const size_t total_reserved = max_byte_size +
1928                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
1929   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
1930 
1931   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1932 
1933   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
1934                             UseLargePages, addr);
1935 
1936   if (UseCompressedOops) {
1937     if (addr != NULL && !heap_rs.is_reserved()) {
1938       // Failed to reserve at specified address - the requested memory
1939       // region is taken already, for example, by 'java' launcher.
1940       // Try again to reserver heap higher.
1941       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1942 
1943       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
1944                                  UseLargePages, addr);
1945 
1946       if (addr != NULL && !heap_rs0.is_reserved()) {
1947         // Failed to reserve at specified address again - give up.
1948         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
1949         assert(addr == NULL, "");
1950 
1951         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
1952                                    UseLargePages, addr);
1953         heap_rs = heap_rs1;
1954       } else {
1955         heap_rs = heap_rs0;
1956       }
1957     }
1958   }
1959 
1960   if (!heap_rs.is_reserved()) {
1961     vm_exit_during_initialization("Could not reserve enough space for object heap");
1962     return JNI_ENOMEM;
1963   }
1964 
1965   // It is important to do this in a way such that concurrent readers can't
1966   // temporarily think somethings in the heap.  (I've actually seen this
1967   // happen in asserts: DLD.)
1968   _reserved.set_word_size(0);
1969   _reserved.set_start((HeapWord*)heap_rs.base());
1970   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1971 
1972   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
1973 
1974   // Create the gen rem set (and barrier set) for the entire reserved region.
1975   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1976   set_barrier_set(rem_set()->bs());
1977   if (barrier_set()->is_a(BarrierSet::ModRef)) {
1978     _mr_bs = (ModRefBarrierSet*)_barrier_set;
1979   } else {
1980     vm_exit_during_initialization("G1 requires a mod ref bs.");
1981     return JNI_ENOMEM;
1982   }
1983 
1984   // Also create a G1 rem set.
1985   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
1986     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1987   } else {
1988     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
1989     return JNI_ENOMEM;
1990   }
1991 
1992   // Carve out the G1 part of the heap.
1993 
1994   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
1995   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
1996                            g1_rs.size()/HeapWordSize);
1997   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
1998 
1999   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
2000 
2001   _g1_storage.initialize(g1_rs, 0);
2002   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2003   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2004                   (HeapWord*) _g1_reserved.end(),
2005                   _expansion_regions);
2006 
2007   // 6843694 - ensure that the maximum region index can fit
2008   // in the remembered set structures.
2009   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2010   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2011 
2012   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2013   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2014   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2015             "too many cards per region");
2016 
2017   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2018 
2019   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2020                                              heap_word_size(init_byte_size));
2021 
2022   _g1h = this;
2023 
2024    _in_cset_fast_test_length = max_regions();
2025    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
2026 
2027    // We're biasing _in_cset_fast_test to avoid subtracting the
2028    // beginning of the heap every time we want to index; basically
2029    // it's the same with what we do with the card table.
2030    _in_cset_fast_test = _in_cset_fast_test_base -
2031                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2032 
2033    // Clear the _cset_fast_test bitmap in anticipation of adding
2034    // regions to the incremental collection set for the first
2035    // evacuation pause.
2036    clear_cset_fast_test();
2037 
2038   // Create the ConcurrentMark data structure and thread.
2039   // (Must do this late, so that "max_regions" is defined.)
2040   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
2041   _cmThread = _cm->cmThread();
2042 
2043   // Initialize the from_card cache structure of HeapRegionRemSet.
2044   HeapRegionRemSet::init_heap(max_regions());
2045 
2046   // Now expand into the initial heap size.
2047   if (!expand(init_byte_size)) {
2048     vm_exit_during_initialization("Failed to allocate initial heap.");
2049     return JNI_ENOMEM;
2050   }
2051 
2052   // Perform any initialization actions delegated to the policy.
2053   g1_policy()->init();
2054 
2055   _refine_cte_cl =
2056     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2057                                     g1_rem_set(),
2058                                     concurrent_g1_refine());
2059   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2060 
2061   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2062                                                SATB_Q_FL_lock,
2063                                                G1SATBProcessCompletedThreshold,
2064                                                Shared_SATB_Q_lock);
2065 
2066   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2067                                                 DirtyCardQ_FL_lock,
2068                                                 concurrent_g1_refine()->yellow_zone(),
2069                                                 concurrent_g1_refine()->red_zone(),
2070                                                 Shared_DirtyCardQ_lock);
2071 
2072   if (G1DeferredRSUpdate) {
2073     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2074                                       DirtyCardQ_FL_lock,
2075                                       -1, // never trigger processing
2076                                       -1, // no limit on length
2077                                       Shared_DirtyCardQ_lock,
2078                                       &JavaThread::dirty_card_queue_set());
2079   }
2080 
2081   // Initialize the card queue set used to hold cards containing
2082   // references into the collection set.
2083   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2084                                              DirtyCardQ_FL_lock,
2085                                              -1, // never trigger processing
2086                                              -1, // no limit on length
2087                                              Shared_DirtyCardQ_lock,
2088                                              &JavaThread::dirty_card_queue_set());
2089 
2090   // In case we're keeping closure specialization stats, initialize those
2091   // counts and that mechanism.
2092   SpecializationStats::clear();
2093 
2094   // Do later initialization work for concurrent refinement.
2095   _cg1r->init();
2096 
2097   // Here we allocate the dummy full region that is required by the
2098   // G1AllocRegion class. If we don't pass an address in the reserved
2099   // space here, lots of asserts fire.
2100 
2101   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2102                                              _g1_reserved.start());
2103   // We'll re-use the same region whether the alloc region will
2104   // require BOT updates or not and, if it doesn't, then a non-young
2105   // region will complain that it cannot support allocations without
2106   // BOT updates. So we'll tag the dummy region as young to avoid that.
2107   dummy_region->set_young();
2108   // Make sure it's full.
2109   dummy_region->set_top(dummy_region->end());
2110   G1AllocRegion::setup(this, dummy_region);
2111 
2112   init_mutator_alloc_region();
2113 
2114   // Do create of the monitoring and management support so that
2115   // values in the heap have been properly initialized.
2116   _g1mm = new G1MonitoringSupport(this);
2117 
2118   return JNI_OK;
2119 }
2120 
2121 void G1CollectedHeap::ref_processing_init() {
2122   // Reference processing in G1 currently works as follows:
2123   //
2124   // * There are two reference processor instances. One is
2125   //   used to record and process discovered references
2126   //   during concurrent marking; the other is used to
2127   //   record and process references during STW pauses
2128   //   (both full and incremental).
2129   // * Both ref processors need to 'span' the entire heap as
2130   //   the regions in the collection set may be dotted around.
2131   //
2132   // * For the concurrent marking ref processor:
2133   //   * Reference discovery is enabled at initial marking.
2134   //   * Reference discovery is disabled and the discovered
2135   //     references processed etc during remarking.
2136   //   * Reference discovery is MT (see below).
2137   //   * Reference discovery requires a barrier (see below).
2138   //   * Reference processing may or may not be MT
2139   //     (depending on the value of ParallelRefProcEnabled
2140   //     and ParallelGCThreads).
2141   //   * A full GC disables reference discovery by the CM
2142   //     ref processor and abandons any entries on it's
2143   //     discovered lists.
2144   //
2145   // * For the STW processor:
2146   //   * Non MT discovery is enabled at the start of a full GC.
2147   //   * Processing and enqueueing during a full GC is non-MT.
2148   //   * During a full GC, references are processed after marking.
2149   //
2150   //   * Discovery (may or may not be MT) is enabled at the start
2151   //     of an incremental evacuation pause.
2152   //   * References are processed near the end of a STW evacuation pause.
2153   //   * For both types of GC:
2154   //     * Discovery is atomic - i.e. not concurrent.
2155   //     * Reference discovery will not need a barrier.
2156 
2157   SharedHeap::ref_processing_init();
2158   MemRegion mr = reserved_region();
2159 
2160   // Concurrent Mark ref processor
2161   _ref_processor_cm =
2162     new ReferenceProcessor(mr,    // span
2163                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2164                                 // mt processing
2165                            (int) ParallelGCThreads,
2166                                 // degree of mt processing
2167                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2168                                 // mt discovery
2169                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2170                                 // degree of mt discovery
2171                            false,
2172                                 // Reference discovery is not atomic
2173                            &_is_alive_closure_cm,
2174                                 // is alive closure
2175                                 // (for efficiency/performance)
2176                            true);
2177                                 // Setting next fields of discovered
2178                                 // lists requires a barrier.
2179 
2180   // STW ref processor
2181   _ref_processor_stw =
2182     new ReferenceProcessor(mr,    // span
2183                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2184                                 // mt processing
2185                            MAX2((int)ParallelGCThreads, 1),
2186                                 // degree of mt processing
2187                            (ParallelGCThreads > 1),
2188                                 // mt discovery
2189                            MAX2((int)ParallelGCThreads, 1),
2190                                 // degree of mt discovery
2191                            true,
2192                                 // Reference discovery is atomic
2193                            &_is_alive_closure_stw,
2194                                 // is alive closure
2195                                 // (for efficiency/performance)
2196                            false);
2197                                 // Setting next fields of discovered
2198                                 // lists requires a barrier.
2199 }
2200 
2201 size_t G1CollectedHeap::capacity() const {
2202   return _g1_committed.byte_size();
2203 }
2204 
2205 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2206                                                  DirtyCardQueue* into_cset_dcq,
2207                                                  bool concurrent,
2208                                                  int worker_i) {
2209   // Clean cards in the hot card cache
2210   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2211 
2212   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2213   int n_completed_buffers = 0;
2214   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2215     n_completed_buffers++;
2216   }
2217   g1_policy()->record_update_rs_processed_buffers(worker_i,
2218                                                   (double) n_completed_buffers);
2219   dcqs.clear_n_completed_buffers();
2220   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2221 }
2222 
2223 
2224 // Computes the sum of the storage used by the various regions.
2225 
2226 size_t G1CollectedHeap::used() const {
2227   assert(Heap_lock->owner() != NULL,
2228          "Should be owned on this thread's behalf.");
2229   size_t result = _summary_bytes_used;
2230   // Read only once in case it is set to NULL concurrently
2231   HeapRegion* hr = _mutator_alloc_region.get();
2232   if (hr != NULL)
2233     result += hr->used();
2234   return result;
2235 }
2236 
2237 size_t G1CollectedHeap::used_unlocked() const {
2238   size_t result = _summary_bytes_used;
2239   return result;
2240 }
2241 
2242 class SumUsedClosure: public HeapRegionClosure {
2243   size_t _used;
2244 public:
2245   SumUsedClosure() : _used(0) {}
2246   bool doHeapRegion(HeapRegion* r) {
2247     if (!r->continuesHumongous()) {
2248       _used += r->used();
2249     }
2250     return false;
2251   }
2252   size_t result() { return _used; }
2253 };
2254 
2255 size_t G1CollectedHeap::recalculate_used() const {
2256   SumUsedClosure blk;
2257   heap_region_iterate(&blk);
2258   return blk.result();
2259 }
2260 
2261 size_t G1CollectedHeap::unsafe_max_alloc() {
2262   if (free_regions() > 0) return HeapRegion::GrainBytes;
2263   // otherwise, is there space in the current allocation region?
2264 
2265   // We need to store the current allocation region in a local variable
2266   // here. The problem is that this method doesn't take any locks and
2267   // there may be other threads which overwrite the current allocation
2268   // region field. attempt_allocation(), for example, sets it to NULL
2269   // and this can happen *after* the NULL check here but before the call
2270   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2271   // to be a problem in the optimized build, since the two loads of the
2272   // current allocation region field are optimized away.
2273   HeapRegion* hr = _mutator_alloc_region.get();
2274   if (hr == NULL) {
2275     return 0;
2276   }
2277   return hr->free();
2278 }
2279 
2280 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2281   return
2282     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
2283      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
2284 }
2285 
2286 #ifndef PRODUCT
2287 void G1CollectedHeap::allocate_dummy_regions() {
2288   // Let's fill up most of the region
2289   size_t word_size = HeapRegion::GrainWords - 1024;
2290   // And as a result the region we'll allocate will be humongous.
2291   guarantee(isHumongous(word_size), "sanity");
2292 
2293   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2294     // Let's use the existing mechanism for the allocation
2295     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2296     if (dummy_obj != NULL) {
2297       MemRegion mr(dummy_obj, word_size);
2298       CollectedHeap::fill_with_object(mr);
2299     } else {
2300       // If we can't allocate once, we probably cannot allocate
2301       // again. Let's get out of the loop.
2302       break;
2303     }
2304   }
2305 }
2306 #endif // !PRODUCT
2307 
2308 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2309   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2310 
2311   // We assume that if concurrent == true, then the caller is a
2312   // concurrent thread that was joined the Suspendible Thread
2313   // Set. If there's ever a cheap way to check this, we should add an
2314   // assert here.
2315 
2316   // We have already incremented _total_full_collections at the start
2317   // of the GC, so total_full_collections() represents how many full
2318   // collections have been started.
2319   unsigned int full_collections_started = total_full_collections();
2320 
2321   // Given that this method is called at the end of a Full GC or of a
2322   // concurrent cycle, and those can be nested (i.e., a Full GC can
2323   // interrupt a concurrent cycle), the number of full collections
2324   // completed should be either one (in the case where there was no
2325   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2326   // behind the number of full collections started.
2327 
2328   // This is the case for the inner caller, i.e. a Full GC.
2329   assert(concurrent ||
2330          (full_collections_started == _full_collections_completed + 1) ||
2331          (full_collections_started == _full_collections_completed + 2),
2332          err_msg("for inner caller (Full GC): full_collections_started = %u "
2333                  "is inconsistent with _full_collections_completed = %u",
2334                  full_collections_started, _full_collections_completed));
2335 
2336   // This is the case for the outer caller, i.e. the concurrent cycle.
2337   assert(!concurrent ||
2338          (full_collections_started == _full_collections_completed + 1),
2339          err_msg("for outer caller (concurrent cycle): "
2340                  "full_collections_started = %u "
2341                  "is inconsistent with _full_collections_completed = %u",
2342                  full_collections_started, _full_collections_completed));
2343 
2344   _full_collections_completed += 1;
2345 
2346   // We need to clear the "in_progress" flag in the CM thread before
2347   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2348   // is set) so that if a waiter requests another System.gc() it doesn't
2349   // incorrectly see that a marking cyle is still in progress.
2350   if (concurrent) {
2351     _cmThread->clear_in_progress();
2352   }
2353 
2354   // This notify_all() will ensure that a thread that called
2355   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2356   // and it's waiting for a full GC to finish will be woken up. It is
2357   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2358   FullGCCount_lock->notify_all();
2359 }
2360 
2361 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2362   assert_at_safepoint(true /* should_be_vm_thread */);
2363   GCCauseSetter gcs(this, cause);
2364   switch (cause) {
2365     case GCCause::_heap_inspection:
2366     case GCCause::_heap_dump: {
2367       HandleMark hm;
2368       do_full_collection(false);         // don't clear all soft refs
2369       break;
2370     }
2371     default: // XXX FIX ME
2372       ShouldNotReachHere(); // Unexpected use of this function
2373   }
2374 }
2375 
2376 void G1CollectedHeap::collect(GCCause::Cause cause) {
2377   // The caller doesn't have the Heap_lock
2378   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2379 
2380   unsigned int gc_count_before;
2381   unsigned int full_gc_count_before;
2382   {
2383     MutexLocker ml(Heap_lock);
2384 
2385     // Read the GC count while holding the Heap_lock
2386     gc_count_before = SharedHeap::heap()->total_collections();
2387     full_gc_count_before = SharedHeap::heap()->total_full_collections();
2388   }
2389 
2390   if (should_do_concurrent_full_gc(cause)) {
2391     // Schedule an initial-mark evacuation pause that will start a
2392     // concurrent cycle. We're setting word_size to 0 which means that
2393     // we are not requesting a post-GC allocation.
2394     VM_G1IncCollectionPause op(gc_count_before,
2395                                0,     /* word_size */
2396                                true,  /* should_initiate_conc_mark */
2397                                g1_policy()->max_pause_time_ms(),
2398                                cause);
2399     VMThread::execute(&op);
2400   } else {
2401     if (cause == GCCause::_gc_locker
2402         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2403 
2404       // Schedule a standard evacuation pause. We're setting word_size
2405       // to 0 which means that we are not requesting a post-GC allocation.
2406       VM_G1IncCollectionPause op(gc_count_before,
2407                                  0,     /* word_size */
2408                                  false, /* should_initiate_conc_mark */
2409                                  g1_policy()->max_pause_time_ms(),
2410                                  cause);
2411       VMThread::execute(&op);
2412     } else {
2413       // Schedule a Full GC.
2414       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2415       VMThread::execute(&op);
2416     }
2417   }
2418 }
2419 
2420 bool G1CollectedHeap::is_in(const void* p) const {
2421   HeapRegion* hr = _hrs.addr_to_region((HeapWord*) p);
2422   if (hr != NULL) {
2423     return hr->is_in(p);
2424   } else {
2425     return _perm_gen->as_gen()->is_in(p);
2426   }
2427 }
2428 
2429 // Iteration functions.
2430 
2431 // Iterates an OopClosure over all ref-containing fields of objects
2432 // within a HeapRegion.
2433 
2434 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2435   MemRegion _mr;
2436   OopClosure* _cl;
2437 public:
2438   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2439     : _mr(mr), _cl(cl) {}
2440   bool doHeapRegion(HeapRegion* r) {
2441     if (! r->continuesHumongous()) {
2442       r->oop_iterate(_cl);
2443     }
2444     return false;
2445   }
2446 };
2447 
2448 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2449   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2450   heap_region_iterate(&blk);
2451   if (do_perm) {
2452     perm_gen()->oop_iterate(cl);
2453   }
2454 }
2455 
2456 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2457   IterateOopClosureRegionClosure blk(mr, cl);
2458   heap_region_iterate(&blk);
2459   if (do_perm) {
2460     perm_gen()->oop_iterate(cl);
2461   }
2462 }
2463 
2464 // Iterates an ObjectClosure over all objects within a HeapRegion.
2465 
2466 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2467   ObjectClosure* _cl;
2468 public:
2469   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2470   bool doHeapRegion(HeapRegion* r) {
2471     if (! r->continuesHumongous()) {
2472       r->object_iterate(_cl);
2473     }
2474     return false;
2475   }
2476 };
2477 
2478 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2479   IterateObjectClosureRegionClosure blk(cl);
2480   heap_region_iterate(&blk);
2481   if (do_perm) {
2482     perm_gen()->object_iterate(cl);
2483   }
2484 }
2485 
2486 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2487   // FIXME: is this right?
2488   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2489 }
2490 
2491 // Calls a SpaceClosure on a HeapRegion.
2492 
2493 class SpaceClosureRegionClosure: public HeapRegionClosure {
2494   SpaceClosure* _cl;
2495 public:
2496   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2497   bool doHeapRegion(HeapRegion* r) {
2498     _cl->do_space(r);
2499     return false;
2500   }
2501 };
2502 
2503 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2504   SpaceClosureRegionClosure blk(cl);
2505   heap_region_iterate(&blk);
2506 }
2507 
2508 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2509   _hrs.iterate(cl);
2510 }
2511 
2512 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2513                                                HeapRegionClosure* cl) const {
2514   _hrs.iterate_from(r, cl);
2515 }
2516 
2517 void
2518 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2519                                                  int worker,
2520                                                  int no_of_par_workers,
2521                                                  jint claim_value) {
2522   const size_t regions = n_regions();
2523   const size_t max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2524                              no_of_par_workers :
2525                              1);
2526   assert(UseDynamicNumberOfGCThreads ||
2527          no_of_par_workers == workers()->total_workers(),
2528          "Non dynamic should use fixed number of workers");
2529   // try to spread out the starting points of the workers
2530   const size_t start_index = regions / max_workers * (size_t) worker;
2531 
2532   // each worker will actually look at all regions
2533   for (size_t count = 0; count < regions; ++count) {
2534     const size_t index = (start_index + count) % regions;
2535     assert(0 <= index && index < regions, "sanity");
2536     HeapRegion* r = region_at(index);
2537     // we'll ignore "continues humongous" regions (we'll process them
2538     // when we come across their corresponding "start humongous"
2539     // region) and regions already claimed
2540     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2541       continue;
2542     }
2543     // OK, try to claim it
2544     if (r->claimHeapRegion(claim_value)) {
2545       // success!
2546       assert(!r->continuesHumongous(), "sanity");
2547       if (r->startsHumongous()) {
2548         // If the region is "starts humongous" we'll iterate over its
2549         // "continues humongous" first; in fact we'll do them
2550         // first. The order is important. In on case, calling the
2551         // closure on the "starts humongous" region might de-allocate
2552         // and clear all its "continues humongous" regions and, as a
2553         // result, we might end up processing them twice. So, we'll do
2554         // them first (notice: most closures will ignore them anyway) and
2555         // then we'll do the "starts humongous" region.
2556         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
2557           HeapRegion* chr = region_at(ch_index);
2558 
2559           // if the region has already been claimed or it's not
2560           // "continues humongous" we're done
2561           if (chr->claim_value() == claim_value ||
2562               !chr->continuesHumongous()) {
2563             break;
2564           }
2565 
2566           // Noone should have claimed it directly. We can given
2567           // that we claimed its "starts humongous" region.
2568           assert(chr->claim_value() != claim_value, "sanity");
2569           assert(chr->humongous_start_region() == r, "sanity");
2570 
2571           if (chr->claimHeapRegion(claim_value)) {
2572             // we should always be able to claim it; noone else should
2573             // be trying to claim this region
2574 
2575             bool res2 = cl->doHeapRegion(chr);
2576             assert(!res2, "Should not abort");
2577 
2578             // Right now, this holds (i.e., no closure that actually
2579             // does something with "continues humongous" regions
2580             // clears them). We might have to weaken it in the future,
2581             // but let's leave these two asserts here for extra safety.
2582             assert(chr->continuesHumongous(), "should still be the case");
2583             assert(chr->humongous_start_region() == r, "sanity");
2584           } else {
2585             guarantee(false, "we should not reach here");
2586           }
2587         }
2588       }
2589 
2590       assert(!r->continuesHumongous(), "sanity");
2591       bool res = cl->doHeapRegion(r);
2592       assert(!res, "Should not abort");
2593     }
2594   }
2595 }
2596 
2597 class ResetClaimValuesClosure: public HeapRegionClosure {
2598 public:
2599   bool doHeapRegion(HeapRegion* r) {
2600     r->set_claim_value(HeapRegion::InitialClaimValue);
2601     return false;
2602   }
2603 };
2604 
2605 void
2606 G1CollectedHeap::reset_heap_region_claim_values() {
2607   ResetClaimValuesClosure blk;
2608   heap_region_iterate(&blk);
2609 }
2610 
2611 #ifdef ASSERT
2612 // This checks whether all regions in the heap have the correct claim
2613 // value. I also piggy-backed on this a check to ensure that the
2614 // humongous_start_region() information on "continues humongous"
2615 // regions is correct.
2616 
2617 class CheckClaimValuesClosure : public HeapRegionClosure {
2618 private:
2619   jint _claim_value;
2620   size_t _failures;
2621   HeapRegion* _sh_region;
2622 public:
2623   CheckClaimValuesClosure(jint claim_value) :
2624     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2625   bool doHeapRegion(HeapRegion* r) {
2626     if (r->claim_value() != _claim_value) {
2627       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2628                              "claim value = %d, should be %d",
2629                              HR_FORMAT_PARAMS(r),
2630                              r->claim_value(), _claim_value);
2631       ++_failures;
2632     }
2633     if (!r->isHumongous()) {
2634       _sh_region = NULL;
2635     } else if (r->startsHumongous()) {
2636       _sh_region = r;
2637     } else if (r->continuesHumongous()) {
2638       if (r->humongous_start_region() != _sh_region) {
2639         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2640                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2641                                HR_FORMAT_PARAMS(r),
2642                                r->humongous_start_region(),
2643                                _sh_region);
2644         ++_failures;
2645       }
2646     }
2647     return false;
2648   }
2649   size_t failures() {
2650     return _failures;
2651   }
2652 };
2653 
2654 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2655   CheckClaimValuesClosure cl(claim_value);
2656   heap_region_iterate(&cl);
2657   return cl.failures() == 0;
2658 }
2659 
2660 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2661   jint   _claim_value;
2662   size_t _failures;
2663 
2664 public:
2665   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2666     _claim_value(claim_value),
2667     _failures(0) { }
2668 
2669   size_t failures() {
2670     return _failures;
2671   }
2672 
2673   bool doHeapRegion(HeapRegion* hr) {
2674     assert(hr->in_collection_set(), "how?");
2675     assert(!hr->isHumongous(), "H-region in CSet");
2676     if (hr->claim_value() != _claim_value) {
2677       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2678                              "claim value = %d, should be %d",
2679                              HR_FORMAT_PARAMS(hr),
2680                              hr->claim_value(), _claim_value);
2681       _failures += 1;
2682     }
2683     return false;
2684   }
2685 };
2686 
2687 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2688   CheckClaimValuesInCSetHRClosure cl(claim_value);
2689   collection_set_iterate(&cl);
2690   return cl.failures() == 0;
2691 }
2692 #endif // ASSERT
2693 
2694 // Clear the cached CSet starting regions and (more importantly)
2695 // the time stamps. Called when we reset the GC time stamp.
2696 void G1CollectedHeap::clear_cset_start_regions() {
2697   assert(_worker_cset_start_region != NULL, "sanity");
2698   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2699   
2700   int n_queues = MAX2((int)ParallelGCThreads, 1);
2701   for (int i = 0; i < n_queues; i++) {
2702     _worker_cset_start_region[i] = NULL;
2703     _worker_cset_start_region_time_stamp[i] = 0;
2704   }
2705 }
2706 
2707 // Given the id of a worker, obtain or calculate a suitable
2708 // starting region for iterating over the current collection set.
2709 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2710   assert(_worker_cset_start_region != NULL, "sanity");
2711   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2712   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2713 
2714   HeapRegion* result = NULL;
2715   unsigned gc_time_stamp = get_gc_time_stamp();
2716 
2717   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2718     // Cached starting region for current worker was set
2719     // during the current pause - so it's valid.
2720     // Note: the cached starting heap region may be NULL
2721     // (when the collection set is empty).
2722     result = _worker_cset_start_region[worker_i];
2723     assert(result == NULL || result->in_collection_set(), "sanity");
2724     return result;
2725   }
2726 
2727   // The cached entry was not valid so let's calculate
2728   // a suitable starting heap region for this worker.
2729 
2730   // We want the parallel threads to start their collection
2731   // set iteration at different collection set regions to
2732   // avoid contention.
2733   // If we have:
2734   //          n collection set regions
2735   //          p threads
2736   // Then thread t will start at region floor ((t * n) / p)
2737 
2738   result = g1_policy()->collection_set();
2739   if (G1CollectedHeap::use_parallel_gc_threads()) {
2740     size_t cs_size = g1_policy()->cset_region_length();
2741     int active_workers = workers()->active_workers();
2742     assert(UseDynamicNumberOfGCThreads ||
2743              active_workers == workers()->total_workers(),
2744              "Unless dynamic should use total workers");
2745 
2746     size_t end_ind   = (cs_size * worker_i) / active_workers;
2747     size_t start_ind = 0;
2748 
2749     if (worker_i > 0 &&
2750         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2751       // Previous workers starting region is valid
2752       // so let's iterate from there
2753       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2754       result = _worker_cset_start_region[worker_i - 1];
2755     }
2756 
2757     for (size_t i = start_ind; i < end_ind; i++) {
2758       result = result->next_in_collection_set();
2759     }
2760   }
2761 
2762   // Note: the calculated starting heap region may be NULL
2763   // (when the collection set is empty).
2764   assert(result == NULL || result->in_collection_set(), "sanity");
2765   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2766          "should be updated only once per pause");
2767   _worker_cset_start_region[worker_i] = result;
2768   OrderAccess::storestore();
2769   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2770   return result;
2771 }
2772 
2773 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2774   HeapRegion* r = g1_policy()->collection_set();
2775   while (r != NULL) {
2776     HeapRegion* next = r->next_in_collection_set();
2777     if (cl->doHeapRegion(r)) {
2778       cl->incomplete();
2779       return;
2780     }
2781     r = next;
2782   }
2783 }
2784 
2785 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2786                                                   HeapRegionClosure *cl) {
2787   if (r == NULL) {
2788     // The CSet is empty so there's nothing to do.
2789     return;
2790   }
2791 
2792   assert(r->in_collection_set(),
2793          "Start region must be a member of the collection set.");
2794   HeapRegion* cur = r;
2795   while (cur != NULL) {
2796     HeapRegion* next = cur->next_in_collection_set();
2797     if (cl->doHeapRegion(cur) && false) {
2798       cl->incomplete();
2799       return;
2800     }
2801     cur = next;
2802   }
2803   cur = g1_policy()->collection_set();
2804   while (cur != r) {
2805     HeapRegion* next = cur->next_in_collection_set();
2806     if (cl->doHeapRegion(cur) && false) {
2807       cl->incomplete();
2808       return;
2809     }
2810     cur = next;
2811   }
2812 }
2813 
2814 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2815   return n_regions() > 0 ? region_at(0) : NULL;
2816 }
2817 
2818 
2819 Space* G1CollectedHeap::space_containing(const void* addr) const {
2820   Space* res = heap_region_containing(addr);
2821   if (res == NULL)
2822     res = perm_gen()->space_containing(addr);
2823   return res;
2824 }
2825 
2826 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2827   Space* sp = space_containing(addr);
2828   if (sp != NULL) {
2829     return sp->block_start(addr);
2830   }
2831   return NULL;
2832 }
2833 
2834 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2835   Space* sp = space_containing(addr);
2836   assert(sp != NULL, "block_size of address outside of heap");
2837   return sp->block_size(addr);
2838 }
2839 
2840 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2841   Space* sp = space_containing(addr);
2842   return sp->block_is_obj(addr);
2843 }
2844 
2845 bool G1CollectedHeap::supports_tlab_allocation() const {
2846   return true;
2847 }
2848 
2849 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2850   return HeapRegion::GrainBytes;
2851 }
2852 
2853 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2854   // Return the remaining space in the cur alloc region, but not less than
2855   // the min TLAB size.
2856 
2857   // Also, this value can be at most the humongous object threshold,
2858   // since we can't allow tlabs to grow big enough to accomodate
2859   // humongous objects.
2860 
2861   HeapRegion* hr = _mutator_alloc_region.get();
2862   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2863   if (hr == NULL) {
2864     return max_tlab_size;
2865   } else {
2866     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2867   }
2868 }
2869 
2870 size_t G1CollectedHeap::max_capacity() const {
2871   return _g1_reserved.byte_size();
2872 }
2873 
2874 jlong G1CollectedHeap::millis_since_last_gc() {
2875   // assert(false, "NYI");
2876   return 0;
2877 }
2878 
2879 void G1CollectedHeap::prepare_for_verify() {
2880   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2881     ensure_parsability(false);
2882   }
2883   g1_rem_set()->prepare_for_verify();
2884 }
2885 
2886 class VerifyLivenessOopClosure: public OopClosure {
2887   G1CollectedHeap* _g1h;
2888   VerifyOption _vo;
2889 public:
2890   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2891     _g1h(g1h), _vo(vo)
2892   { }
2893   void do_oop(narrowOop *p) { do_oop_work(p); }
2894   void do_oop(      oop *p) { do_oop_work(p); }
2895 
2896   template <class T> void do_oop_work(T *p) {
2897     oop obj = oopDesc::load_decode_heap_oop(p);
2898     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2899               "Dead object referenced by a not dead object");
2900   }
2901 };
2902 
2903 class VerifyObjsInRegionClosure: public ObjectClosure {
2904 private:
2905   G1CollectedHeap* _g1h;
2906   size_t _live_bytes;
2907   HeapRegion *_hr;
2908   VerifyOption _vo;
2909 public:
2910   // _vo == UsePrevMarking -> use "prev" marking information,
2911   // _vo == UseNextMarking -> use "next" marking information,
2912   // _vo == UseMarkWord    -> use mark word from object header.
2913   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2914     : _live_bytes(0), _hr(hr), _vo(vo) {
2915     _g1h = G1CollectedHeap::heap();
2916   }
2917   void do_object(oop o) {
2918     VerifyLivenessOopClosure isLive(_g1h, _vo);
2919     assert(o != NULL, "Huh?");
2920     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2921       // If the object is alive according to the mark word,
2922       // then verify that the marking information agrees.
2923       // Note we can't verify the contra-positive of the
2924       // above: if the object is dead (according to the mark
2925       // word), it may not be marked, or may have been marked
2926       // but has since became dead, or may have been allocated
2927       // since the last marking.
2928       if (_vo == VerifyOption_G1UseMarkWord) {
2929         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2930       }
2931 
2932       o->oop_iterate(&isLive);
2933       if (!_hr->obj_allocated_since_prev_marking(o)) {
2934         size_t obj_size = o->size();    // Make sure we don't overflow
2935         _live_bytes += (obj_size * HeapWordSize);
2936       }
2937     }
2938   }
2939   size_t live_bytes() { return _live_bytes; }
2940 };
2941 
2942 class PrintObjsInRegionClosure : public ObjectClosure {
2943   HeapRegion *_hr;
2944   G1CollectedHeap *_g1;
2945 public:
2946   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2947     _g1 = G1CollectedHeap::heap();
2948   };
2949 
2950   void do_object(oop o) {
2951     if (o != NULL) {
2952       HeapWord *start = (HeapWord *) o;
2953       size_t word_sz = o->size();
2954       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2955                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2956                           (void*) o, word_sz,
2957                           _g1->isMarkedPrev(o),
2958                           _g1->isMarkedNext(o),
2959                           _hr->obj_allocated_since_prev_marking(o));
2960       HeapWord *end = start + word_sz;
2961       HeapWord *cur;
2962       int *val;
2963       for (cur = start; cur < end; cur++) {
2964         val = (int *) cur;
2965         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
2966       }
2967     }
2968   }
2969 };
2970 
2971 class VerifyRegionClosure: public HeapRegionClosure {
2972 private:
2973   bool         _allow_dirty;
2974   bool         _par;
2975   VerifyOption _vo;
2976   bool         _failures;
2977 public:
2978   // _vo == UsePrevMarking -> use "prev" marking information,
2979   // _vo == UseNextMarking -> use "next" marking information,
2980   // _vo == UseMarkWord    -> use mark word from object header.
2981   VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
2982     : _allow_dirty(allow_dirty),
2983       _par(par),
2984       _vo(vo),
2985       _failures(false) {}
2986 
2987   bool failures() {
2988     return _failures;
2989   }
2990 
2991   bool doHeapRegion(HeapRegion* r) {
2992     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
2993               "Should be unclaimed at verify points.");
2994     if (!r->continuesHumongous()) {
2995       bool failures = false;
2996       r->verify(_allow_dirty, _vo, &failures);
2997       if (failures) {
2998         _failures = true;
2999       } else {
3000         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3001         r->object_iterate(&not_dead_yet_cl);
3002         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3003           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3004                                  "max_live_bytes "SIZE_FORMAT" "
3005                                  "< calculated "SIZE_FORMAT,
3006                                  r->bottom(), r->end(),
3007                                  r->max_live_bytes(),
3008                                  not_dead_yet_cl.live_bytes());
3009           _failures = true;
3010         }
3011       }
3012     }
3013     return false; // stop the region iteration if we hit a failure
3014   }
3015 };
3016 
3017 class VerifyRootsClosure: public OopsInGenClosure {
3018 private:
3019   G1CollectedHeap* _g1h;
3020   VerifyOption     _vo;
3021   bool             _failures;
3022 public:
3023   // _vo == UsePrevMarking -> use "prev" marking information,
3024   // _vo == UseNextMarking -> use "next" marking information,
3025   // _vo == UseMarkWord    -> use mark word from object header.
3026   VerifyRootsClosure(VerifyOption vo) :
3027     _g1h(G1CollectedHeap::heap()),
3028     _vo(vo),
3029     _failures(false) { }
3030 
3031   bool failures() { return _failures; }
3032 
3033   template <class T> void do_oop_nv(T* p) {
3034     T heap_oop = oopDesc::load_heap_oop(p);
3035     if (!oopDesc::is_null(heap_oop)) {
3036       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3037       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3038         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3039                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3040         if (_vo == VerifyOption_G1UseMarkWord) {
3041           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3042         }
3043         obj->print_on(gclog_or_tty);
3044         _failures = true;
3045       }
3046     }
3047   }
3048 
3049   void do_oop(oop* p)       { do_oop_nv(p); }
3050   void do_oop(narrowOop* p) { do_oop_nv(p); }
3051 };
3052 
3053 // This is the task used for parallel heap verification.
3054 
3055 class G1ParVerifyTask: public AbstractGangTask {
3056 private:
3057   G1CollectedHeap* _g1h;
3058   bool             _allow_dirty;
3059   VerifyOption     _vo;
3060   bool             _failures;
3061 
3062 public:
3063   // _vo == UsePrevMarking -> use "prev" marking information,
3064   // _vo == UseNextMarking -> use "next" marking information,
3065   // _vo == UseMarkWord    -> use mark word from object header.
3066   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
3067     AbstractGangTask("Parallel verify task"),
3068     _g1h(g1h),
3069     _allow_dirty(allow_dirty),
3070     _vo(vo),
3071     _failures(false) { }
3072 
3073   bool failures() {
3074     return _failures;
3075   }
3076 
3077   void work(int worker_i) {
3078     HandleMark hm;
3079     VerifyRegionClosure blk(_allow_dirty, true, _vo);
3080     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
3081                                           _g1h->workers()->active_workers(),
3082                                           HeapRegion::ParVerifyClaimValue);
3083     if (blk.failures()) {
3084       _failures = true;
3085     }
3086   }
3087 };
3088 
3089 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
3090   verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
3091 }
3092 
3093 void G1CollectedHeap::verify(bool allow_dirty,
3094                              bool silent,
3095                              VerifyOption vo) {
3096   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3097     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3098     VerifyRootsClosure rootsCl(vo);
3099 
3100     assert(Thread::current()->is_VM_thread(),
3101       "Expected to be executed serially by the VM thread at this point");
3102 
3103     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3104 
3105     // We apply the relevant closures to all the oops in the
3106     // system dictionary, the string table and the code cache.
3107     const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3108 
3109     process_strong_roots(true,      // activate StrongRootsScope
3110                          true,      // we set "collecting perm gen" to true,
3111                                     // so we don't reset the dirty cards in the perm gen.
3112                          SharedHeap::ScanningOption(so),  // roots scanning options
3113                          &rootsCl,
3114                          &blobsCl,
3115                          &rootsCl);
3116 
3117     // If we're verifying after the marking phase of a Full GC then we can't
3118     // treat the perm gen as roots into the G1 heap. Some of the objects in
3119     // the perm gen may be dead and hence not marked. If one of these dead
3120     // objects is considered to be a root then we may end up with a false
3121     // "Root location <x> points to dead ob <y>" failure.
3122     if (vo != VerifyOption_G1UseMarkWord) {
3123       // Since we used "collecting_perm_gen" == true above, we will not have
3124       // checked the refs from perm into the G1-collected heap. We check those
3125       // references explicitly below. Whether the relevant cards are dirty
3126       // is checked further below in the rem set verification.
3127       if (!silent) { gclog_or_tty->print("Permgen roots "); }
3128       perm_gen()->oop_iterate(&rootsCl);
3129     }
3130     bool failures = rootsCl.failures();
3131 
3132     if (vo != VerifyOption_G1UseMarkWord) {
3133       // If we're verifying during a full GC then the region sets
3134       // will have been torn down at the start of the GC. Therefore
3135       // verifying the region sets will fail. So we only verify
3136       // the region sets when not in a full GC.
3137       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3138       verify_region_sets();
3139     }
3140 
3141     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3142     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3143       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3144              "sanity check");
3145 
3146       G1ParVerifyTask task(this, allow_dirty, vo);
3147       assert(UseDynamicNumberOfGCThreads ||
3148         workers()->active_workers() == workers()->total_workers(),
3149         "If not dynamic should be using all the workers");
3150       int n_workers = workers()->active_workers();
3151       set_par_threads(n_workers);
3152       workers()->run_task(&task);
3153       set_par_threads(0);
3154       if (task.failures()) {
3155         failures = true;
3156       }
3157 
3158       // Checks that the expected amount of parallel work was done.
3159       // The implication is that n_workers is > 0.
3160       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3161              "sanity check");
3162 
3163       reset_heap_region_claim_values();
3164 
3165       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3166              "sanity check");
3167     } else {
3168       VerifyRegionClosure blk(allow_dirty, false, vo);
3169       heap_region_iterate(&blk);
3170       if (blk.failures()) {
3171         failures = true;
3172       }
3173     }
3174     if (!silent) gclog_or_tty->print("RemSet ");
3175     rem_set()->verify();
3176 
3177     if (failures) {
3178       gclog_or_tty->print_cr("Heap:");
3179       // It helps to have the per-region information in the output to
3180       // help us track down what went wrong. This is why we call
3181       // print_extended_on() instead of print_on().
3182       print_extended_on(gclog_or_tty);
3183       gclog_or_tty->print_cr("");
3184 #ifndef PRODUCT
3185       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3186         concurrent_mark()->print_reachable("at-verification-failure",
3187                                            vo, false /* all */);
3188       }
3189 #endif
3190       gclog_or_tty->flush();
3191     }
3192     guarantee(!failures, "there should not have been any failures");
3193   } else {
3194     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
3195   }
3196 }
3197 
3198 class PrintRegionClosure: public HeapRegionClosure {
3199   outputStream* _st;
3200 public:
3201   PrintRegionClosure(outputStream* st) : _st(st) {}
3202   bool doHeapRegion(HeapRegion* r) {
3203     r->print_on(_st);
3204     return false;
3205   }
3206 };
3207 
3208 void G1CollectedHeap::print_on(outputStream* st) const {
3209   st->print(" %-20s", "garbage-first heap");
3210   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3211             capacity()/K, used_unlocked()/K);
3212   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3213             _g1_storage.low_boundary(),
3214             _g1_storage.high(),
3215             _g1_storage.high_boundary());
3216   st->cr();
3217   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3218   size_t young_regions = _young_list->length();
3219   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
3220             young_regions, young_regions * HeapRegion::GrainBytes / K);
3221   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
3222   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
3223             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
3224   st->cr();
3225   perm()->as_gen()->print_on(st);
3226 }
3227 
3228 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3229   print_on(st);
3230 
3231   // Print the per-region information.
3232   st->cr();
3233   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), HS=humongous(starts), HC=humongous(continues), CS=collection set, F=free, TS=gc time stamp, PTAMS=previous top-at-mark-start, NTAMS=next top-at-mark-start)");
3234   PrintRegionClosure blk(st);
3235   heap_region_iterate(&blk);
3236 }
3237 
3238 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3239   if (G1CollectedHeap::use_parallel_gc_threads()) {
3240     workers()->print_worker_threads_on(st);
3241   }
3242   _cmThread->print_on(st);
3243   st->cr();
3244   _cm->print_worker_threads_on(st);
3245   _cg1r->print_worker_threads_on(st);
3246   st->cr();
3247 }
3248 
3249 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3250   if (G1CollectedHeap::use_parallel_gc_threads()) {
3251     workers()->threads_do(tc);
3252   }
3253   tc->do_thread(_cmThread);
3254   _cg1r->threads_do(tc);
3255 }
3256 
3257 void G1CollectedHeap::print_tracing_info() const {
3258   // We'll overload this to mean "trace GC pause statistics."
3259   if (TraceGen0Time || TraceGen1Time) {
3260     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3261     // to that.
3262     g1_policy()->print_tracing_info();
3263   }
3264   if (G1SummarizeRSetStats) {
3265     g1_rem_set()->print_summary_info();
3266   }
3267   if (G1SummarizeConcMark) {
3268     concurrent_mark()->print_summary_info();
3269   }
3270   g1_policy()->print_yg_surv_rate_info();
3271   SpecializationStats::print();
3272 }
3273 
3274 #ifndef PRODUCT
3275 // Helpful for debugging RSet issues.
3276 
3277 class PrintRSetsClosure : public HeapRegionClosure {
3278 private:
3279   const char* _msg;
3280   size_t _occupied_sum;
3281 
3282 public:
3283   bool doHeapRegion(HeapRegion* r) {
3284     HeapRegionRemSet* hrrs = r->rem_set();
3285     size_t occupied = hrrs->occupied();
3286     _occupied_sum += occupied;
3287 
3288     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3289                            HR_FORMAT_PARAMS(r));
3290     if (occupied == 0) {
3291       gclog_or_tty->print_cr("  RSet is empty");
3292     } else {
3293       hrrs->print();
3294     }
3295     gclog_or_tty->print_cr("----------");
3296     return false;
3297   }
3298 
3299   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3300     gclog_or_tty->cr();
3301     gclog_or_tty->print_cr("========================================");
3302     gclog_or_tty->print_cr(msg);
3303     gclog_or_tty->cr();
3304   }
3305 
3306   ~PrintRSetsClosure() {
3307     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3308     gclog_or_tty->print_cr("========================================");
3309     gclog_or_tty->cr();
3310   }
3311 };
3312 
3313 void G1CollectedHeap::print_cset_rsets() {
3314   PrintRSetsClosure cl("Printing CSet RSets");
3315   collection_set_iterate(&cl);
3316 }
3317 
3318 void G1CollectedHeap::print_all_rsets() {
3319   PrintRSetsClosure cl("Printing All RSets");;
3320   heap_region_iterate(&cl);
3321 }
3322 #endif // PRODUCT
3323 
3324 G1CollectedHeap* G1CollectedHeap::heap() {
3325   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3326          "not a garbage-first heap");
3327   return _g1h;
3328 }
3329 
3330 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3331   // always_do_update_barrier = false;
3332   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3333   // Call allocation profiler
3334   AllocationProfiler::iterate_since_last_gc();
3335   // Fill TLAB's and such
3336   ensure_parsability(true);
3337 }
3338 
3339 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3340   // FIXME: what is this about?
3341   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3342   // is set.
3343   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3344                         "derived pointer present"));
3345   // always_do_update_barrier = true;
3346 
3347   // We have just completed a GC. Update the soft reference
3348   // policy with the new heap occupancy
3349   Universe::update_heap_info_at_gc();
3350 }
3351 
3352 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3353                                                unsigned int gc_count_before,
3354                                                bool* succeeded) {
3355   assert_heap_not_locked_and_not_at_safepoint();
3356   g1_policy()->record_stop_world_start();
3357   VM_G1IncCollectionPause op(gc_count_before,
3358                              word_size,
3359                              false, /* should_initiate_conc_mark */
3360                              g1_policy()->max_pause_time_ms(),
3361                              GCCause::_g1_inc_collection_pause);
3362   VMThread::execute(&op);
3363 
3364   HeapWord* result = op.result();
3365   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3366   assert(result == NULL || ret_succeeded,
3367          "the result should be NULL if the VM did not succeed");
3368   *succeeded = ret_succeeded;
3369 
3370   assert_heap_not_locked();
3371   return result;
3372 }
3373 
3374 void
3375 G1CollectedHeap::doConcurrentMark() {
3376   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3377   if (!_cmThread->in_progress()) {
3378     _cmThread->set_started();
3379     CGC_lock->notify();
3380   }
3381 }
3382 
3383 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
3384                                                        bool young) {
3385   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
3386 }
3387 
3388 void G1CollectedHeap::check_if_region_is_too_expensive(double
3389                                                            predicted_time_ms) {
3390   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
3391 }
3392 
3393 size_t G1CollectedHeap::pending_card_num() {
3394   size_t extra_cards = 0;
3395   JavaThread *curr = Threads::first();
3396   while (curr != NULL) {
3397     DirtyCardQueue& dcq = curr->dirty_card_queue();
3398     extra_cards += dcq.size();
3399     curr = curr->next();
3400   }
3401   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3402   size_t buffer_size = dcqs.buffer_size();
3403   size_t buffer_num = dcqs.completed_buffers_num();
3404   return buffer_size * buffer_num + extra_cards;
3405 }
3406 
3407 size_t G1CollectedHeap::max_pending_card_num() {
3408   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3409   size_t buffer_size = dcqs.buffer_size();
3410   size_t buffer_num  = dcqs.completed_buffers_num();
3411   int thread_num  = Threads::number_of_threads();
3412   return (buffer_num + thread_num) * buffer_size;
3413 }
3414 
3415 size_t G1CollectedHeap::cards_scanned() {
3416   return g1_rem_set()->cardsScanned();
3417 }
3418 
3419 void
3420 G1CollectedHeap::setup_surviving_young_words() {
3421   guarantee( _surviving_young_words == NULL, "pre-condition" );
3422   size_t array_length = g1_policy()->young_cset_region_length();
3423   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
3424   if (_surviving_young_words == NULL) {
3425     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3426                           "Not enough space for young surv words summary.");
3427   }
3428   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3429 #ifdef ASSERT
3430   for (size_t i = 0;  i < array_length; ++i) {
3431     assert( _surviving_young_words[i] == 0, "memset above" );
3432   }
3433 #endif // !ASSERT
3434 }
3435 
3436 void
3437 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3438   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3439   size_t array_length = g1_policy()->young_cset_region_length();
3440   for (size_t i = 0; i < array_length; ++i)
3441     _surviving_young_words[i] += surv_young_words[i];
3442 }
3443 
3444 void
3445 G1CollectedHeap::cleanup_surviving_young_words() {
3446   guarantee( _surviving_young_words != NULL, "pre-condition" );
3447   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3448   _surviving_young_words = NULL;
3449 }
3450 
3451 #ifdef ASSERT
3452 class VerifyCSetClosure: public HeapRegionClosure {
3453 public:
3454   bool doHeapRegion(HeapRegion* hr) {
3455     // Here we check that the CSet region's RSet is ready for parallel
3456     // iteration. The fields that we'll verify are only manipulated
3457     // when the region is part of a CSet and is collected. Afterwards,
3458     // we reset these fields when we clear the region's RSet (when the
3459     // region is freed) so they are ready when the region is
3460     // re-allocated. The only exception to this is if there's an
3461     // evacuation failure and instead of freeing the region we leave
3462     // it in the heap. In that case, we reset these fields during
3463     // evacuation failure handling.
3464     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3465 
3466     // Here's a good place to add any other checks we'd like to
3467     // perform on CSet regions.
3468     return false;
3469   }
3470 };
3471 #endif // ASSERT
3472 
3473 #if TASKQUEUE_STATS
3474 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3475   st->print_raw_cr("GC Task Stats");
3476   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3477   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3478 }
3479 
3480 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3481   print_taskqueue_stats_hdr(st);
3482 
3483   TaskQueueStats totals;
3484   const int n = workers() != NULL ? workers()->total_workers() : 1;
3485   for (int i = 0; i < n; ++i) {
3486     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3487     totals += task_queue(i)->stats;
3488   }
3489   st->print_raw("tot "); totals.print(st); st->cr();
3490 
3491   DEBUG_ONLY(totals.verify());
3492 }
3493 
3494 void G1CollectedHeap::reset_taskqueue_stats() {
3495   const int n = workers() != NULL ? workers()->total_workers() : 1;
3496   for (int i = 0; i < n; ++i) {
3497     task_queue(i)->stats.reset();
3498   }
3499 }
3500 #endif // TASKQUEUE_STATS
3501 
3502 bool
3503 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3504   assert_at_safepoint(true /* should_be_vm_thread */);
3505   guarantee(!is_gc_active(), "collection is not reentrant");
3506 
3507   if (GC_locker::check_active_before_gc()) {
3508     return false;
3509   }
3510 
3511   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3512   ResourceMark rm;
3513 
3514   if (PrintHeapAtGC) {
3515     Universe::print_heap_before_gc();
3516   }
3517 
3518   HRSPhaseSetter x(HRSPhaseEvacuation);
3519   verify_region_sets_optional();
3520   verify_dirty_young_regions();
3521 
3522   {
3523     // This call will decide whether this pause is an initial-mark
3524     // pause. If it is, during_initial_mark_pause() will return true
3525     // for the duration of this pause.
3526     g1_policy()->decide_on_conc_mark_initiation();
3527 
3528     // We do not allow initial-mark to be piggy-backed on a
3529     // partially-young GC.
3530     assert(!g1_policy()->during_initial_mark_pause() ||
3531             g1_policy()->full_young_gcs(), "sanity");
3532 
3533     // We also do not allow partially-young GCs during marking.
3534     assert(!mark_in_progress() || g1_policy()->full_young_gcs(), "sanity");
3535 
3536     char verbose_str[128];
3537     sprintf(verbose_str, "GC pause ");
3538     if (g1_policy()->full_young_gcs()) {
3539       strcat(verbose_str, "(young)");
3540     } else {
3541       strcat(verbose_str, "(partial)");
3542     }
3543     if (g1_policy()->during_initial_mark_pause()) {
3544       strcat(verbose_str, " (initial-mark)");
3545       // We are about to start a marking cycle, so we increment the
3546       // full collection counter.
3547       increment_total_full_collections();
3548     }
3549 
3550     // if PrintGCDetails is on, we'll print long statistics information
3551     // in the collector policy code, so let's not print this as the output
3552     // is messy if we do.
3553     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
3554     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3555     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3556 
3557     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3558     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3559 
3560     // If the secondary_free_list is not empty, append it to the
3561     // free_list. No need to wait for the cleanup operation to finish;
3562     // the region allocation code will check the secondary_free_list
3563     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3564     // set, skip this step so that the region allocation code has to
3565     // get entries from the secondary_free_list.
3566     if (!G1StressConcRegionFreeing) {
3567       append_secondary_free_list_if_not_empty_with_lock();
3568     }
3569 
3570     assert(check_young_list_well_formed(),
3571       "young list should be well formed");
3572 
3573     // Don't dynamically change the number of GC threads this early.  A value of
3574     // 0 is used to indicate serial work.  When parallel work is done,
3575     // it will be set.
3576 
3577     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3578       IsGCActiveMark x;
3579 
3580       gc_prologue(false);
3581       increment_total_collections(false /* full gc */);
3582       increment_gc_time_stamp();
3583 
3584       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
3585         HandleMark hm;  // Discard invalid handles created during verification
3586         gclog_or_tty->print(" VerifyBeforeGC:");
3587         prepare_for_verify();
3588         Universe::verify(/* allow dirty */ false,
3589                          /* silent      */ false,
3590                          /* option      */ VerifyOption_G1UsePrevMarking);
3591 
3592       }
3593 
3594       COMPILER2_PRESENT(DerivedPointerTable::clear());
3595 
3596       // Please see comment in g1CollectedHeap.hpp and
3597       // G1CollectedHeap::ref_processing_init() to see how
3598       // reference processing currently works in G1.
3599       
3600       // Enable discovery in the STW reference processor
3601       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3602                                             true /*verify_no_refs*/);
3603 
3604       {
3605         // We want to temporarily turn off discovery by the
3606         // CM ref processor, if necessary, and turn it back on
3607         // on again later if we do. Using a scoped
3608         // NoRefDiscovery object will do this.
3609         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3610 
3611         // Forget the current alloc region (we might even choose it to be part
3612         // of the collection set!).
3613         release_mutator_alloc_region();
3614 
3615         // We should call this after we retire the mutator alloc
3616         // region(s) so that all the ALLOC / RETIRE events are generated
3617         // before the start GC event.
3618         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3619 
3620         // The elapsed time induced by the start time below deliberately elides
3621         // the possible verification above.
3622         double start_time_sec = os::elapsedTime();
3623         size_t start_used_bytes = used();
3624 
3625 #if YOUNG_LIST_VERBOSE
3626         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3627         _young_list->print();
3628         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3629 #endif // YOUNG_LIST_VERBOSE
3630 
3631         g1_policy()->record_collection_pause_start(start_time_sec,
3632                                                    start_used_bytes);
3633 
3634 #if YOUNG_LIST_VERBOSE
3635         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3636         _young_list->print();
3637 #endif // YOUNG_LIST_VERBOSE
3638 
3639         if (g1_policy()->during_initial_mark_pause()) {
3640           concurrent_mark()->checkpointRootsInitialPre();
3641         }
3642         perm_gen()->save_marks();
3643 
3644         // We must do this before any possible evacuation that should propagate
3645         // marks.
3646         if (mark_in_progress()) {
3647           double start_time_sec = os::elapsedTime();
3648 
3649           _cm->drainAllSATBBuffers();
3650           double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
3651           g1_policy()->record_satb_drain_time(finish_mark_ms);
3652         }
3653         // Record the number of elements currently on the mark stack, so we
3654         // only iterate over these.  (Since evacuation may add to the mark
3655         // stack, doing more exposes race conditions.)  If no mark is in
3656         // progress, this will be zero.
3657         _cm->set_oops_do_bound();
3658 
3659         if (mark_in_progress()) {
3660           concurrent_mark()->newCSet();
3661         }
3662 
3663 #if YOUNG_LIST_VERBOSE
3664         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3665         _young_list->print();
3666         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3667 #endif // YOUNG_LIST_VERBOSE
3668 
3669         g1_policy()->choose_collection_set(target_pause_time_ms);
3670 
3671         if (_hr_printer.is_active()) {
3672           HeapRegion* hr = g1_policy()->collection_set();
3673           while (hr != NULL) {
3674             G1HRPrinter::RegionType type;
3675             if (!hr->is_young()) {
3676               type = G1HRPrinter::Old;
3677             } else if (hr->is_survivor()) {
3678               type = G1HRPrinter::Survivor;
3679             } else {
3680               type = G1HRPrinter::Eden;
3681             }
3682             _hr_printer.cset(hr);
3683             hr = hr->next_in_collection_set();
3684           }
3685         }
3686 
3687         // We have chosen the complete collection set. If marking is
3688         // active then, we clear the region fields of any of the
3689         // concurrent marking tasks whose region fields point into
3690         // the collection set as these values will become stale. This
3691         // will cause the owning marking threads to claim a new region
3692         // when marking restarts.
3693         if (mark_in_progress()) {
3694           concurrent_mark()->reset_active_task_region_fields_in_cset();
3695         }
3696 
3697 #ifdef ASSERT
3698         VerifyCSetClosure cl;
3699         collection_set_iterate(&cl);
3700 #endif // ASSERT
3701 
3702         setup_surviving_young_words();
3703 
3704         // Initialize the GC alloc regions.
3705         init_gc_alloc_regions();
3706 
3707         // Actually do the work...
3708         evacuate_collection_set();
3709 
3710         free_collection_set(g1_policy()->collection_set());
3711         g1_policy()->clear_collection_set();
3712 
3713         cleanup_surviving_young_words();
3714 
3715         // Start a new incremental collection set for the next pause.
3716         g1_policy()->start_incremental_cset_building();
3717 
3718         // Clear the _cset_fast_test bitmap in anticipation of adding
3719         // regions to the incremental collection set for the next
3720         // evacuation pause.
3721         clear_cset_fast_test();
3722 
3723         _young_list->reset_sampled_info();
3724 
3725         // Don't check the whole heap at this point as the
3726         // GC alloc regions from this pause have been tagged
3727         // as survivors and moved on to the survivor list.
3728         // Survivor regions will fail the !is_young() check.
3729         assert(check_young_list_empty(false /* check_heap */),
3730           "young list should be empty");
3731 
3732 #if YOUNG_LIST_VERBOSE
3733         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3734         _young_list->print();
3735 #endif // YOUNG_LIST_VERBOSE
3736 
3737         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3738                                             _young_list->first_survivor_region(),
3739                                             _young_list->last_survivor_region());
3740 
3741         _young_list->reset_auxilary_lists();
3742 
3743         if (evacuation_failed()) {
3744           _summary_bytes_used = recalculate_used();
3745         } else {
3746           // The "used" of the the collection set have already been subtracted
3747           // when they were freed.  Add in the bytes evacuated.
3748           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3749         }
3750 
3751         if (g1_policy()->during_initial_mark_pause()) {
3752           concurrent_mark()->checkpointRootsInitialPost();
3753           set_marking_started();
3754           // CAUTION: after the doConcurrentMark() call below,
3755           // the concurrent marking thread(s) could be running
3756           // concurrently with us. Make sure that anything after
3757           // this point does not assume that we are the only GC thread
3758           // running. Note: of course, the actual marking work will
3759           // not start until the safepoint itself is released in
3760           // ConcurrentGCThread::safepoint_desynchronize().
3761           doConcurrentMark();
3762         }
3763 
3764         allocate_dummy_regions();
3765 
3766 #if YOUNG_LIST_VERBOSE
3767         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3768         _young_list->print();
3769         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3770 #endif // YOUNG_LIST_VERBOSE
3771 
3772         init_mutator_alloc_region();
3773 
3774         {
3775           size_t expand_bytes = g1_policy()->expansion_amount();
3776           if (expand_bytes > 0) {
3777             size_t bytes_before = capacity();
3778             if (!expand(expand_bytes)) {
3779               // We failed to expand the heap so let's verify that
3780               // committed/uncommitted amount match the backing store
3781               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3782               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3783             }
3784           }
3785         }
3786 
3787         double end_time_sec = os::elapsedTime();
3788         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
3789         g1_policy()->record_pause_time_ms(pause_time_ms);
3790         int active_gc_threads = workers()->active_workers();
3791         g1_policy()->record_collection_pause_end(active_gc_threads);
3792 
3793         MemoryService::track_memory_usage();
3794 
3795         // In prepare_for_verify() below we'll need to scan the deferred
3796         // update buffers to bring the RSets up-to-date if
3797         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3798         // the update buffers we'll probably need to scan cards on the
3799         // regions we just allocated to (i.e., the GC alloc
3800         // regions). However, during the last GC we called
3801         // set_saved_mark() on all the GC alloc regions, so card
3802         // scanning might skip the [saved_mark_word()...top()] area of
3803         // those regions (i.e., the area we allocated objects into
3804         // during the last GC). But it shouldn't. Given that
3805         // saved_mark_word() is conditional on whether the GC time stamp
3806         // on the region is current or not, by incrementing the GC time
3807         // stamp here we invalidate all the GC time stamps on all the
3808         // regions and saved_mark_word() will simply return top() for
3809         // all the regions. This is a nicer way of ensuring this rather
3810         // than iterating over the regions and fixing them. In fact, the
3811         // GC time stamp increment here also ensures that
3812         // saved_mark_word() will return top() between pauses, i.e.,
3813         // during concurrent refinement. So we don't need the
3814         // is_gc_active() check to decided which top to use when
3815         // scanning cards (see CR 7039627).
3816         increment_gc_time_stamp();
3817 
3818         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
3819           HandleMark hm;  // Discard invalid handles created during verification
3820           gclog_or_tty->print(" VerifyAfterGC:");
3821           prepare_for_verify();
3822           Universe::verify(/* allow dirty */ true,
3823                            /* silent      */ false,
3824                            /* option      */ VerifyOption_G1UsePrevMarking);
3825         }
3826 
3827         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3828         ref_processor_stw()->verify_no_references_recorded();
3829 
3830         // CM reference discovery will be re-enabled if necessary.
3831       }
3832 
3833       {
3834         size_t expand_bytes = g1_policy()->expansion_amount();
3835         if (expand_bytes > 0) {
3836           size_t bytes_before = capacity();
3837           // No need for an ergo verbose message here,
3838           // expansion_amount() does this when it returns a value > 0.
3839           if (!expand(expand_bytes)) {
3840             // We failed to expand the heap so let's verify that
3841             // committed/uncommitted amount match the backing store
3842             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3843             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3844           }
3845         }
3846       }
3847 
3848       // We should do this after we potentially expand the heap so
3849       // that all the COMMIT events are generated before the end GC
3850       // event, and after we retire the GC alloc regions so that all
3851       // RETIRE events are generated before the end GC event.
3852       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3853 
3854       // We have to do this after we decide whether to expand the heap or not.
3855       g1_policy()->print_heap_transition();
3856 
3857       if (mark_in_progress()) {
3858         concurrent_mark()->update_g1_committed();
3859       }
3860 
3861 #ifdef TRACESPINNING
3862       ParallelTaskTerminator::print_termination_counts();
3863 #endif
3864 
3865       gc_epilogue(false);
3866     }
3867 
3868     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
3869       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
3870       print_tracing_info();
3871       vm_exit(-1);
3872     }
3873   }
3874 
3875   _hrs.verify_optional();
3876   verify_region_sets_optional();
3877 
3878   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
3879   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3880 
3881   if (PrintHeapAtGC) {
3882     Universe::print_heap_after_gc();
3883   }
3884   g1mm()->update_sizes();
3885 
3886   if (G1SummarizeRSetStats &&
3887       (G1SummarizeRSetStatsPeriod > 0) &&
3888       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3889     g1_rem_set()->print_summary_info();
3890   }
3891 
3892   return true;
3893 }
3894 
3895 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
3896 {
3897   size_t gclab_word_size;
3898   switch (purpose) {
3899     case GCAllocForSurvived:
3900       gclab_word_size = YoungPLABSize;
3901       break;
3902     case GCAllocForTenured:
3903       gclab_word_size = OldPLABSize;
3904       break;
3905     default:
3906       assert(false, "unknown GCAllocPurpose");
3907       gclab_word_size = OldPLABSize;
3908       break;
3909   }
3910   return gclab_word_size;
3911 }
3912 
3913 void G1CollectedHeap::init_mutator_alloc_region() {
3914   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
3915   _mutator_alloc_region.init();
3916 }
3917 
3918 void G1CollectedHeap::release_mutator_alloc_region() {
3919   _mutator_alloc_region.release();
3920   assert(_mutator_alloc_region.get() == NULL, "post-condition");
3921 }
3922 
3923 void G1CollectedHeap::init_gc_alloc_regions() {
3924   assert_at_safepoint(true /* should_be_vm_thread */);
3925 
3926   _survivor_gc_alloc_region.init();
3927   _old_gc_alloc_region.init();
3928   HeapRegion* retained_region = _retained_old_gc_alloc_region;
3929   _retained_old_gc_alloc_region = NULL;
3930 
3931   // We will discard the current GC alloc region if:
3932   // a) it's in the collection set (it can happen!),
3933   // b) it's already full (no point in using it),
3934   // c) it's empty (this means that it was emptied during
3935   // a cleanup and it should be on the free list now), or
3936   // d) it's humongous (this means that it was emptied
3937   // during a cleanup and was added to the free list, but
3938   // has been subseqently used to allocate a humongous
3939   // object that may be less than the region size).
3940   if (retained_region != NULL &&
3941       !retained_region->in_collection_set() &&
3942       !(retained_region->top() == retained_region->end()) &&
3943       !retained_region->is_empty() &&
3944       !retained_region->isHumongous()) {
3945     retained_region->set_saved_mark();
3946     // The retained region was added to the old region set when it was
3947     // retired. We have to remove it now, since we don't allow regions
3948     // we allocate to in the region sets. We'll re-add it later, when
3949     // it's retired again.
3950     _old_set.remove(retained_region);
3951     _old_gc_alloc_region.set(retained_region);
3952     _hr_printer.reuse(retained_region);
3953   }
3954 }
3955 
3956 void G1CollectedHeap::release_gc_alloc_regions() {
3957   _survivor_gc_alloc_region.release();
3958   // If we have an old GC alloc region to release, we'll save it in
3959   // _retained_old_gc_alloc_region. If we don't
3960   // _retained_old_gc_alloc_region will become NULL. This is what we
3961   // want either way so no reason to check explicitly for either
3962   // condition.
3963   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
3964 }
3965 
3966 void G1CollectedHeap::abandon_gc_alloc_regions() {
3967   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
3968   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
3969   _retained_old_gc_alloc_region = NULL;
3970 }
3971 
3972 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
3973   _drain_in_progress = false;
3974   set_evac_failure_closure(cl);
3975   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
3976 }
3977 
3978 void G1CollectedHeap::finalize_for_evac_failure() {
3979   assert(_evac_failure_scan_stack != NULL &&
3980          _evac_failure_scan_stack->length() == 0,
3981          "Postcondition");
3982   assert(!_drain_in_progress, "Postcondition");
3983   delete _evac_failure_scan_stack;
3984   _evac_failure_scan_stack = NULL;
3985 }
3986 
3987 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
3988 private:
3989   G1CollectedHeap* _g1;
3990   DirtyCardQueue *_dcq;
3991   CardTableModRefBS* _ct_bs;
3992 
3993 public:
3994   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
3995     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3996 
3997   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3998   virtual void do_oop(      oop* p) { do_oop_work(p); }
3999   template <class T> void do_oop_work(T* p) {
4000     assert(_from->is_in_reserved(p), "paranoia");
4001     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
4002         !_from->is_survivor()) {
4003       size_t card_index = _ct_bs->index_for(p);
4004       if (_ct_bs->mark_card_deferred(card_index)) {
4005         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
4006       }
4007     }
4008   }
4009 };
4010 
4011 class RemoveSelfPointerClosure: public ObjectClosure {
4012 private:
4013   G1CollectedHeap* _g1;
4014   ConcurrentMark* _cm;
4015   HeapRegion* _hr;
4016   size_t _prev_marked_bytes;
4017   size_t _next_marked_bytes;
4018   OopsInHeapRegionClosure *_cl;
4019 public:
4020   RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
4021                            OopsInHeapRegionClosure* cl) :
4022     _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
4023     _next_marked_bytes(0), _cl(cl) {}
4024 
4025   size_t prev_marked_bytes() { return _prev_marked_bytes; }
4026   size_t next_marked_bytes() { return _next_marked_bytes; }
4027 
4028   // <original comment>
4029   // The original idea here was to coalesce evacuated and dead objects.
4030   // However that caused complications with the block offset table (BOT).
4031   // In particular if there were two TLABs, one of them partially refined.
4032   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
4033   // The BOT entries of the unrefined part of TLAB_2 point to the start
4034   // of TLAB_2. If the last object of the TLAB_1 and the first object
4035   // of TLAB_2 are coalesced, then the cards of the unrefined part
4036   // would point into middle of the filler object.
4037   // The current approach is to not coalesce and leave the BOT contents intact.
4038   // </original comment>
4039   //
4040   // We now reset the BOT when we start the object iteration over the
4041   // region and refine its entries for every object we come across. So
4042   // the above comment is not really relevant and we should be able
4043   // to coalesce dead objects if we want to.
4044   void do_object(oop obj) {
4045     HeapWord* obj_addr = (HeapWord*) obj;
4046     assert(_hr->is_in(obj_addr), "sanity");
4047     size_t obj_size = obj->size();
4048     _hr->update_bot_for_object(obj_addr, obj_size);
4049     if (obj->is_forwarded() && obj->forwardee() == obj) {
4050       // The object failed to move.
4051       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
4052       _cm->markPrev(obj);
4053       assert(_cm->isPrevMarked(obj), "Should be marked!");
4054       _prev_marked_bytes += (obj_size * HeapWordSize);
4055       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
4056         _cm->markAndGrayObjectIfNecessary(obj);
4057       }
4058       obj->set_mark(markOopDesc::prototype());
4059       // While we were processing RSet buffers during the
4060       // collection, we actually didn't scan any cards on the
4061       // collection set, since we didn't want to update remebered
4062       // sets with entries that point into the collection set, given
4063       // that live objects fromthe collection set are about to move
4064       // and such entries will be stale very soon. This change also
4065       // dealt with a reliability issue which involved scanning a
4066       // card in the collection set and coming across an array that
4067       // was being chunked and looking malformed. The problem is
4068       // that, if evacuation fails, we might have remembered set
4069       // entries missing given that we skipped cards on the
4070       // collection set. So, we'll recreate such entries now.
4071       obj->oop_iterate(_cl);
4072       assert(_cm->isPrevMarked(obj), "Should be marked!");
4073     } else {
4074       // The object has been either evacuated or is dead. Fill it with a
4075       // dummy object.
4076       MemRegion mr((HeapWord*)obj, obj_size);
4077       CollectedHeap::fill_with_object(mr);
4078       _cm->clearRangeBothMaps(mr);
4079     }
4080   }
4081 };
4082 
4083 void G1CollectedHeap::remove_self_forwarding_pointers() {
4084   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
4085   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
4086   UpdateRSetDeferred deferred_update(_g1h, &dcq);
4087   OopsInHeapRegionClosure *cl;
4088   if (G1DeferredRSUpdate) {
4089     cl = &deferred_update;
4090   } else {
4091     cl = &immediate_update;
4092   }
4093   HeapRegion* cur = g1_policy()->collection_set();
4094   while (cur != NULL) {
4095     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
4096     assert(!cur->isHumongous(), "sanity");
4097 
4098     if (cur->evacuation_failed()) {
4099       assert(cur->in_collection_set(), "bad CS");
4100       RemoveSelfPointerClosure rspc(_g1h, cur, cl);
4101 
4102       // In the common case we make sure that this is done when the
4103       // region is freed so that it is "ready-to-go" when it's
4104       // re-allocated. However, when evacuation failure happens, a
4105       // region will remain in the heap and might ultimately be added
4106       // to a CSet in the future. So we have to be careful here and
4107       // make sure the region's RSet is ready for parallel iteration
4108       // whenever this might be required in the future.
4109       cur->rem_set()->reset_for_par_iteration();
4110       cur->reset_bot();
4111       cl->set_region(cur);
4112       cur->object_iterate(&rspc);
4113 
4114       // A number of manipulations to make the TAMS be the current top,
4115       // and the marked bytes be the ones observed in the iteration.
4116       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
4117         // The comments below are the postconditions achieved by the
4118         // calls.  Note especially the last such condition, which says that
4119         // the count of marked bytes has been properly restored.
4120         cur->note_start_of_marking(false);
4121         // _next_top_at_mark_start == top, _next_marked_bytes == 0
4122         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
4123         // _next_marked_bytes == prev_marked_bytes.
4124         cur->note_end_of_marking();
4125         // _prev_top_at_mark_start == top(),
4126         // _prev_marked_bytes == prev_marked_bytes
4127       }
4128       // If there is no mark in progress, we modified the _next variables
4129       // above needlessly, but harmlessly.
4130       if (_g1h->mark_in_progress()) {
4131         cur->note_start_of_marking(false);
4132         // _next_top_at_mark_start == top, _next_marked_bytes == 0
4133         // _next_marked_bytes == next_marked_bytes.
4134       }
4135     }
4136     cur = cur->next_in_collection_set();
4137   }
4138   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
4139 
4140   // Now restore saved marks, if any.
4141   if (_objs_with_preserved_marks != NULL) {
4142     assert(_preserved_marks_of_objs != NULL, "Both or none.");
4143     guarantee(_objs_with_preserved_marks->length() ==
4144               _preserved_marks_of_objs->length(), "Both or none.");
4145     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
4146       oop obj   = _objs_with_preserved_marks->at(i);
4147       markOop m = _preserved_marks_of_objs->at(i);
4148       obj->set_mark(m);
4149     }
4150     // Delete the preserved marks growable arrays (allocated on the C heap).
4151     delete _objs_with_preserved_marks;
4152     delete _preserved_marks_of_objs;
4153     _objs_with_preserved_marks = NULL;
4154     _preserved_marks_of_objs = NULL;
4155   }
4156 }
4157 
4158 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4159   _evac_failure_scan_stack->push(obj);
4160 }
4161 
4162 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4163   assert(_evac_failure_scan_stack != NULL, "precondition");
4164 
4165   while (_evac_failure_scan_stack->length() > 0) {
4166      oop obj = _evac_failure_scan_stack->pop();
4167      _evac_failure_closure->set_region(heap_region_containing(obj));
4168      obj->oop_iterate_backwards(_evac_failure_closure);
4169   }
4170 }
4171 
4172 oop
4173 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4174                                                oop old,
4175                                                bool should_mark_root) {
4176   assert(obj_in_cs(old),
4177          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4178                  (HeapWord*) old));
4179   markOop m = old->mark();
4180   oop forward_ptr = old->forward_to_atomic(old);
4181   if (forward_ptr == NULL) {
4182     // Forward-to-self succeeded.
4183 
4184     // should_mark_root will be true when this routine is called
4185     // from a root scanning closure during an initial mark pause.
4186     // In this case the thread that succeeds in self-forwarding the
4187     // object is also responsible for marking the object.
4188     if (should_mark_root) {
4189       assert(!oopDesc::is_null(old), "shouldn't be");
4190       _cm->grayRoot(old);
4191     }
4192 
4193     if (_evac_failure_closure != cl) {
4194       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4195       assert(!_drain_in_progress,
4196              "Should only be true while someone holds the lock.");
4197       // Set the global evac-failure closure to the current thread's.
4198       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4199       set_evac_failure_closure(cl);
4200       // Now do the common part.
4201       handle_evacuation_failure_common(old, m);
4202       // Reset to NULL.
4203       set_evac_failure_closure(NULL);
4204     } else {
4205       // The lock is already held, and this is recursive.
4206       assert(_drain_in_progress, "This should only be the recursive case.");
4207       handle_evacuation_failure_common(old, m);
4208     }
4209     return old;
4210   } else {
4211     // Forward-to-self failed. Either someone else managed to allocate
4212     // space for this object (old != forward_ptr) or they beat us in
4213     // self-forwarding it (old == forward_ptr).
4214     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4215            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4216                    "should not be in the CSet",
4217                    (HeapWord*) old, (HeapWord*) forward_ptr));
4218     return forward_ptr;
4219   }
4220 }
4221 
4222 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4223   set_evacuation_failed(true);
4224 
4225   preserve_mark_if_necessary(old, m);
4226 
4227   HeapRegion* r = heap_region_containing(old);
4228   if (!r->evacuation_failed()) {
4229     r->set_evacuation_failed(true);
4230     _hr_printer.evac_failure(r);
4231   }
4232 
4233   push_on_evac_failure_scan_stack(old);
4234 
4235   if (!_drain_in_progress) {
4236     // prevent recursion in copy_to_survivor_space()
4237     _drain_in_progress = true;
4238     drain_evac_failure_scan_stack();
4239     _drain_in_progress = false;
4240   }
4241 }
4242 
4243 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4244   assert(evacuation_failed(), "Oversaving!");
4245   // We want to call the "for_promotion_failure" version only in the
4246   // case of a promotion failure.
4247   if (m->must_be_preserved_for_promotion_failure(obj)) {
4248     if (_objs_with_preserved_marks == NULL) {
4249       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4250       _objs_with_preserved_marks =
4251         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4252       _preserved_marks_of_objs =
4253         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
4254     }
4255     _objs_with_preserved_marks->push(obj);
4256     _preserved_marks_of_objs->push(m);
4257   }
4258 }
4259 
4260 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4261                                                   size_t word_size) {
4262   if (purpose == GCAllocForSurvived) {
4263     HeapWord* result = survivor_attempt_allocation(word_size);
4264     if (result != NULL) {
4265       return result;
4266     } else {
4267       // Let's try to allocate in the old gen in case we can fit the
4268       // object there.
4269       return old_attempt_allocation(word_size);
4270     }
4271   } else {
4272     assert(purpose ==  GCAllocForTenured, "sanity");
4273     HeapWord* result = old_attempt_allocation(word_size);
4274     if (result != NULL) {
4275       return result;
4276     } else {
4277       // Let's try to allocate in the survivors in case we can fit the
4278       // object there.
4279       return survivor_attempt_allocation(word_size);
4280     }
4281   }
4282 
4283   ShouldNotReachHere();
4284   // Trying to keep some compilers happy.
4285   return NULL;
4286 }
4287 
4288 #ifndef PRODUCT
4289 bool GCLabBitMapClosure::do_bit(size_t offset) {
4290   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
4291   guarantee(_cm->isMarked(oop(addr)), "it should be!");
4292   return true;
4293 }
4294 #endif // PRODUCT
4295 
4296 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4297   ParGCAllocBuffer(gclab_word_size),
4298   _should_mark_objects(false),
4299   _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
4300   _retired(false)
4301 {
4302   //_should_mark_objects is set to true when G1ParCopyHelper needs to
4303   // mark the forwarded location of an evacuated object.
4304   // We set _should_mark_objects to true if marking is active, i.e. when we
4305   // need to propagate a mark, or during an initial mark pause, i.e. when we
4306   // need to mark objects immediately reachable by the roots.
4307   if (G1CollectedHeap::heap()->mark_in_progress() ||
4308       G1CollectedHeap::heap()->g1_policy()->during_initial_mark_pause()) {
4309     _should_mark_objects = true;
4310   }
4311 }
4312 
4313 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
4314   : _g1h(g1h),
4315     _refs(g1h->task_queue(queue_num)),
4316     _dcq(&g1h->dirty_card_queue_set()),
4317     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4318     _g1_rem(g1h->g1_rem_set()),
4319     _hash_seed(17), _queue_num(queue_num),
4320     _term_attempts(0),
4321     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4322     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4323     _age_table(false),
4324     _strong_roots_time(0), _term_time(0),
4325     _alloc_buffer_waste(0), _undo_waste(0)
4326 {
4327   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4328   // we "sacrifice" entry 0 to keep track of surviving bytes for
4329   // non-young regions (where the age is -1)
4330   // We also add a few elements at the beginning and at the end in
4331   // an attempt to eliminate cache contention
4332   size_t real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4333   size_t array_length = PADDING_ELEM_NUM +
4334                         real_length +
4335                         PADDING_ELEM_NUM;
4336   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
4337   if (_surviving_young_words_base == NULL)
4338     vm_exit_out_of_memory(array_length * sizeof(size_t),
4339                           "Not enough space for young surv histo.");
4340   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4341   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
4342 
4343   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4344   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4345 
4346   _start = os::elapsedTime();
4347 }
4348 
4349 void
4350 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4351 {
4352   st->print_raw_cr("GC Termination Stats");
4353   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4354                    " ------waste (KiB)------");
4355   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4356                    "  total   alloc    undo");
4357   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4358                    " ------- ------- -------");
4359 }
4360 
4361 void
4362 G1ParScanThreadState::print_termination_stats(int i,
4363                                               outputStream* const st) const
4364 {
4365   const double elapsed_ms = elapsed_time() * 1000.0;
4366   const double s_roots_ms = strong_roots_time() * 1000.0;
4367   const double term_ms    = term_time() * 1000.0;
4368   st->print_cr("%3d %9.2f %9.2f %6.2f "
4369                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4370                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4371                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4372                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4373                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4374                alloc_buffer_waste() * HeapWordSize / K,
4375                undo_waste() * HeapWordSize / K);
4376 }
4377 
4378 #ifdef ASSERT
4379 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4380   assert(ref != NULL, "invariant");
4381   assert(UseCompressedOops, "sanity");
4382   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4383   oop p = oopDesc::load_decode_heap_oop(ref);
4384   assert(_g1h->is_in_g1_reserved(p),
4385          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4386   return true;
4387 }
4388 
4389 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4390   assert(ref != NULL, "invariant");
4391   if (has_partial_array_mask(ref)) {
4392     // Must be in the collection set--it's already been copied.
4393     oop p = clear_partial_array_mask(ref);
4394     assert(_g1h->obj_in_cs(p),
4395            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4396   } else {
4397     oop p = oopDesc::load_decode_heap_oop(ref);
4398     assert(_g1h->is_in_g1_reserved(p),
4399            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4400   }
4401   return true;
4402 }
4403 
4404 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4405   if (ref.is_narrow()) {
4406     return verify_ref((narrowOop*) ref);
4407   } else {
4408     return verify_ref((oop*) ref);
4409   }
4410 }
4411 #endif // ASSERT
4412 
4413 void G1ParScanThreadState::trim_queue() {
4414   assert(_evac_cl != NULL, "not set");
4415   assert(_evac_failure_cl != NULL, "not set");
4416   assert(_partial_scan_cl != NULL, "not set");
4417 
4418   StarTask ref;
4419   do {
4420     // Drain the overflow stack first, so other threads can steal.
4421     while (refs()->pop_overflow(ref)) {
4422       deal_with_reference(ref);
4423     }
4424 
4425     while (refs()->pop_local(ref)) {
4426       deal_with_reference(ref);
4427     }
4428   } while (!refs()->is_empty());
4429 }
4430 
4431 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
4432   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4433   _par_scan_state(par_scan_state),
4434   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4435   _mark_in_progress(_g1->mark_in_progress()) { }
4436 
4437 template <class T> void G1ParCopyHelper::mark_object(T* p) {
4438   // This is called from do_oop_work for objects that are not
4439   // in the collection set. Objects in the collection set
4440   // are marked after they have been evacuated.
4441 
4442   T heap_oop = oopDesc::load_heap_oop(p);
4443   if (!oopDesc::is_null(heap_oop)) {
4444     oop obj = oopDesc::decode_heap_oop(heap_oop);
4445     HeapWord* addr = (HeapWord*)obj;
4446     if (_g1->is_in_g1_reserved(addr)) {
4447       _cm->grayRoot(oop(addr));
4448     }
4449   }
4450 }
4451 
4452 oop G1ParCopyHelper::copy_to_survivor_space(oop old, bool should_mark_root,
4453                                                      bool should_mark_copy) {
4454   size_t    word_sz = old->size();
4455   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4456   // +1 to make the -1 indexes valid...
4457   int       young_index = from_region->young_index_in_cset()+1;
4458   assert( (from_region->is_young() && young_index > 0) ||
4459           (!from_region->is_young() && young_index == 0), "invariant" );
4460   G1CollectorPolicy* g1p = _g1->g1_policy();
4461   markOop m = old->mark();
4462   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4463                                            : m->age();
4464   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4465                                                              word_sz);
4466   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4467   oop       obj     = oop(obj_ptr);
4468 
4469   if (obj_ptr == NULL) {
4470     // This will either forward-to-self, or detect that someone else has
4471     // installed a forwarding pointer.
4472     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4473     return _g1->handle_evacuation_failure_par(cl, old, should_mark_root);
4474   }
4475 
4476   // We're going to allocate linearly, so might as well prefetch ahead.
4477   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4478 
4479   oop forward_ptr = old->forward_to_atomic(obj);
4480   if (forward_ptr == NULL) {
4481     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4482     if (g1p->track_object_age(alloc_purpose)) {
4483       // We could simply do obj->incr_age(). However, this causes a
4484       // performance issue. obj->incr_age() will first check whether
4485       // the object has a displaced mark by checking its mark word;
4486       // getting the mark word from the new location of the object
4487       // stalls. So, given that we already have the mark word and we
4488       // are about to install it anyway, it's better to increase the
4489       // age on the mark word, when the object does not have a
4490       // displaced mark word. We're not expecting many objects to have
4491       // a displaced marked word, so that case is not optimized
4492       // further (it could be...) and we simply call obj->incr_age().
4493 
4494       if (m->has_displaced_mark_helper()) {
4495         // in this case, we have to install the mark word first,
4496         // otherwise obj looks to be forwarded (the old mark word,
4497         // which contains the forward pointer, was copied)
4498         obj->set_mark(m);
4499         obj->incr_age();
4500       } else {
4501         m = m->incr_age();
4502         obj->set_mark(m);
4503       }
4504       _par_scan_state->age_table()->add(obj, word_sz);
4505     } else {
4506       obj->set_mark(m);
4507     }
4508 
4509     // Mark the evacuated object or propagate "next" mark bit
4510     if (should_mark_copy) {
4511       if (!use_local_bitmaps ||
4512           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
4513         // if we couldn't mark it on the local bitmap (this happens when
4514         // the object was not allocated in the GCLab), we have to bite
4515         // the bullet and do the standard parallel mark
4516         _cm->markAndGrayObjectIfNecessary(obj);
4517       }
4518 
4519       if (_g1->isMarkedNext(old)) {
4520         // Unmark the object's old location so that marking
4521         // doesn't think the old object is alive.
4522         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
4523       }
4524     }
4525 
4526     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4527     surv_young_words[young_index] += word_sz;
4528 
4529     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4530       arrayOop(old)->set_length(0);
4531       oop* old_p = set_partial_array_mask(old);
4532       _par_scan_state->push_on_queue(old_p);
4533     } else {
4534       // No point in using the slower heap_region_containing() method,
4535       // given that we know obj is in the heap.
4536       _scanner->set_region(_g1->heap_region_containing_raw(obj));
4537       obj->oop_iterate_backwards(_scanner);
4538     }
4539   } else {
4540     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4541     obj = forward_ptr;
4542   }
4543   return obj;
4544 }
4545 
4546 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4547 template <class T>
4548 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4549 ::do_oop_work(T* p) {
4550   oop obj = oopDesc::load_decode_heap_oop(p);
4551   assert(barrier != G1BarrierRS || obj != NULL,
4552          "Precondition: G1BarrierRS implies obj is nonNull");
4553 
4554   // Marking:
4555   // If the object is in the collection set, then the thread
4556   // that copies the object should mark, or propagate the
4557   // mark to, the evacuated object.
4558   // If the object is not in the collection set then we
4559   // should call the mark_object() method depending on the
4560   // value of the template parameter do_mark_object (which will
4561   // be true for root scanning closures during an initial mark
4562   // pause).
4563   // The mark_object() method first checks whether the object
4564   // is marked and, if not, attempts to mark the object.
4565 
4566   // here the null check is implicit in the cset_fast_test() test
4567   if (_g1->in_cset_fast_test(obj)) {
4568     if (obj->is_forwarded()) {
4569       oopDesc::encode_store_heap_oop(p, obj->forwardee());
4570       // If we are a root scanning closure during an initial
4571       // mark pause (i.e. do_mark_object will be true) then
4572       // we also need to handle marking of roots in the
4573       // event of an evacuation failure. In the event of an
4574       // evacuation failure, the object is forwarded to itself
4575       // and not copied. For root-scanning closures, the
4576       // object would be marked after a successful self-forward
4577       // but an object could be pointed to by both a root and non
4578       // root location and be self-forwarded by a non-root-scanning
4579       // closure. Therefore we also have to attempt to mark the
4580       // self-forwarded root object here.
4581       if (do_mark_object && obj->forwardee() == obj) {
4582         mark_object(p);
4583       }
4584     } else {
4585       // During an initial mark pause, objects that are pointed to
4586       // by the roots need to be marked - even in the event of an
4587       // evacuation failure. We pass the template parameter
4588       // do_mark_object (which is true for root scanning closures
4589       // during an initial mark pause) to copy_to_survivor_space
4590       // which will pass it on to the evacuation failure handling
4591       // code. The thread that successfully self-forwards a root
4592       // object to itself is responsible for marking the object.
4593       bool should_mark_root = do_mark_object;
4594 
4595       // We need to mark the copied object if we're a root scanning
4596       // closure during an initial mark pause (i.e. do_mark_object
4597       // will be true), or the object is already marked and we need
4598       // to propagate the mark to the evacuated copy.
4599       bool should_mark_copy = do_mark_object ||
4600                               _during_initial_mark ||
4601                               (_mark_in_progress && !_g1->is_obj_ill(obj));
4602 
4603       oop copy_oop = copy_to_survivor_space(obj, should_mark_root,
4604                                                  should_mark_copy);
4605       oopDesc::encode_store_heap_oop(p, copy_oop);
4606     }
4607     // When scanning the RS, we only care about objs in CS.
4608     if (barrier == G1BarrierRS) {
4609       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4610     }
4611   } else {
4612     // The object is not in collection set. If we're a root scanning
4613     // closure during an initial mark pause (i.e. do_mark_object will
4614     // be true) then attempt to mark the object.
4615     if (do_mark_object) {
4616       mark_object(p);
4617     }
4618   }
4619 
4620   if (barrier == G1BarrierEvac && obj != NULL) {
4621     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4622   }
4623 
4624   if (do_gen_barrier && obj != NULL) {
4625     par_do_barrier(p);
4626   }
4627 }
4628 
4629 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4630 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4631 
4632 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4633   assert(has_partial_array_mask(p), "invariant");
4634   oop old = clear_partial_array_mask(p);
4635   assert(old->is_objArray(), "must be obj array");
4636   assert(old->is_forwarded(), "must be forwarded");
4637   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
4638 
4639   objArrayOop obj = objArrayOop(old->forwardee());
4640   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
4641   // Process ParGCArrayScanChunk elements now
4642   // and push the remainder back onto queue
4643   int start     = arrayOop(old)->length();
4644   int end       = obj->length();
4645   int remainder = end - start;
4646   assert(start <= end, "just checking");
4647   if (remainder > 2 * ParGCArrayScanChunk) {
4648     // Test above combines last partial chunk with a full chunk
4649     end = start + ParGCArrayScanChunk;
4650     arrayOop(old)->set_length(end);
4651     // Push remainder.
4652     oop* old_p = set_partial_array_mask(old);
4653     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
4654     _par_scan_state->push_on_queue(old_p);
4655   } else {
4656     // Restore length so that the heap remains parsable in
4657     // case of evacuation failure.
4658     arrayOop(old)->set_length(end);
4659   }
4660   _scanner.set_region(_g1->heap_region_containing_raw(obj));
4661   // process our set of indices (include header in first chunk)
4662   obj->oop_iterate_range(&_scanner, start, end);
4663 }
4664 
4665 class G1ParEvacuateFollowersClosure : public VoidClosure {
4666 protected:
4667   G1CollectedHeap*              _g1h;
4668   G1ParScanThreadState*         _par_scan_state;
4669   RefToScanQueueSet*            _queues;
4670   ParallelTaskTerminator*       _terminator;
4671 
4672   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4673   RefToScanQueueSet*      queues()         { return _queues; }
4674   ParallelTaskTerminator* terminator()     { return _terminator; }
4675 
4676 public:
4677   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4678                                 G1ParScanThreadState* par_scan_state,
4679                                 RefToScanQueueSet* queues,
4680                                 ParallelTaskTerminator* terminator)
4681     : _g1h(g1h), _par_scan_state(par_scan_state),
4682       _queues(queues), _terminator(terminator) {}
4683 
4684   void do_void();
4685 
4686 private:
4687   inline bool offer_termination();
4688 };
4689 
4690 bool G1ParEvacuateFollowersClosure::offer_termination() {
4691   G1ParScanThreadState* const pss = par_scan_state();
4692   pss->start_term_time();
4693   const bool res = terminator()->offer_termination();
4694   pss->end_term_time();
4695   return res;
4696 }
4697 
4698 void G1ParEvacuateFollowersClosure::do_void() {
4699   StarTask stolen_task;
4700   G1ParScanThreadState* const pss = par_scan_state();
4701   pss->trim_queue();
4702 
4703   do {
4704     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4705       assert(pss->verify_task(stolen_task), "sanity");
4706       if (stolen_task.is_narrow()) {
4707         pss->deal_with_reference((narrowOop*) stolen_task);
4708       } else {
4709         pss->deal_with_reference((oop*) stolen_task);
4710       }
4711 
4712       // We've just processed a reference and we might have made
4713       // available new entries on the queues. So we have to make sure
4714       // we drain the queues as necessary.
4715       pss->trim_queue();
4716     }
4717   } while (!offer_termination());
4718 
4719   pss->retire_alloc_buffers();
4720 }
4721 
4722 class G1ParTask : public AbstractGangTask {
4723 protected:
4724   G1CollectedHeap*       _g1h;
4725   RefToScanQueueSet      *_queues;
4726   ParallelTaskTerminator _terminator;
4727   int _n_workers;
4728 
4729   Mutex _stats_lock;
4730   Mutex* stats_lock() { return &_stats_lock; }
4731 
4732   size_t getNCards() {
4733     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4734       / G1BlockOffsetSharedArray::N_bytes;
4735   }
4736 
4737 public:
4738   G1ParTask(G1CollectedHeap* g1h,
4739             RefToScanQueueSet *task_queues)
4740     : AbstractGangTask("G1 collection"),
4741       _g1h(g1h),
4742       _queues(task_queues),
4743       _terminator(0, _queues),
4744       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4745   {}
4746 
4747   RefToScanQueueSet* queues() { return _queues; }
4748 
4749   RefToScanQueue *work_queue(int i) {
4750     return queues()->queue(i);
4751   }
4752 
4753   ParallelTaskTerminator* terminator() { return &_terminator; }
4754 
4755   virtual void set_for_termination(int active_workers) {
4756     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4757     // in the young space (_par_seq_tasks) in the G1 heap
4758     // for SequentialSubTasksDone.
4759     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4760     // both of which need setting by set_n_termination().
4761     _g1h->SharedHeap::set_n_termination(active_workers);
4762     _g1h->set_n_termination(active_workers);
4763     terminator()->reset_for_reuse(active_workers);
4764     _n_workers = active_workers;
4765   }
4766 
4767   void work(int i) {
4768     if (i >= _n_workers) return;  // no work needed this round
4769 
4770     double start_time_ms = os::elapsedTime() * 1000.0;
4771     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
4772 
4773     ResourceMark rm;
4774     HandleMark   hm;
4775 
4776     ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4777 
4778     G1ParScanThreadState            pss(_g1h, i);
4779     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4780     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4781     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4782 
4783     pss.set_evac_closure(&scan_evac_cl);
4784     pss.set_evac_failure_closure(&evac_failure_cl);
4785     pss.set_partial_scan_closure(&partial_scan_cl);
4786 
4787     G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4788     G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4789 
4790     G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4791     G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4792 
4793     OopClosure*                    scan_root_cl = &only_scan_root_cl;
4794     OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4795 
4796     if (_g1h->g1_policy()->during_initial_mark_pause()) {
4797       // We also need to mark copied objects.
4798       scan_root_cl = &scan_mark_root_cl;
4799       scan_perm_cl = &scan_mark_perm_cl;
4800     }
4801 
4802     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4803 
4804     pss.start_strong_roots();
4805     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4806                                   SharedHeap::SO_AllClasses,
4807                                   scan_root_cl,
4808                                   &push_heap_rs_cl,
4809                                   scan_perm_cl,
4810                                   i);
4811     pss.end_strong_roots();
4812 
4813     {
4814       double start = os::elapsedTime();
4815       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4816       evac.do_void();
4817       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4818       double term_ms = pss.term_time()*1000.0;
4819       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4820       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4821     }
4822     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4823     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4824 
4825     // Clean up any par-expanded rem sets.
4826     HeapRegionRemSet::par_cleanup();
4827 
4828     if (ParallelGCVerbose) {
4829       MutexLocker x(stats_lock());
4830       pss.print_termination_stats(i);
4831     }
4832 
4833     assert(pss.refs()->is_empty(), "should be empty");
4834     double end_time_ms = os::elapsedTime() * 1000.0;
4835     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4836   }
4837 };
4838 
4839 // *** Common G1 Evacuation Stuff
4840 
4841 // This method is run in a GC worker.
4842 
4843 void
4844 G1CollectedHeap::
4845 g1_process_strong_roots(bool collecting_perm_gen,
4846                         SharedHeap::ScanningOption so,
4847                         OopClosure* scan_non_heap_roots,
4848                         OopsInHeapRegionClosure* scan_rs,
4849                         OopsInGenClosure* scan_perm,
4850                         int worker_i) {
4851 
4852   // First scan the strong roots, including the perm gen.
4853   double ext_roots_start = os::elapsedTime();
4854   double closure_app_time_sec = 0.0;
4855 
4856   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4857   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4858   buf_scan_perm.set_generation(perm_gen());
4859 
4860   // Walk the code cache w/o buffering, because StarTask cannot handle
4861   // unaligned oop locations.
4862   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
4863 
4864   process_strong_roots(false, // no scoping; this is parallel code
4865                        collecting_perm_gen, so,
4866                        &buf_scan_non_heap_roots,
4867                        &eager_scan_code_roots,
4868                        &buf_scan_perm);
4869 
4870   // Now the CM ref_processor roots.
4871   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4872     // We need to treat the discovered reference lists of the
4873     // concurrent mark ref processor as roots and keep entries
4874     // (which are added by the marking threads) on them live
4875     // until they can be processed at the end of marking.
4876     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4877   }
4878 
4879   // Finish up any enqueued closure apps (attributed as object copy time).
4880   buf_scan_non_heap_roots.done();
4881   buf_scan_perm.done();
4882 
4883   double ext_roots_end = os::elapsedTime();
4884 
4885   g1_policy()->reset_obj_copy_time(worker_i);
4886   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
4887                                 buf_scan_non_heap_roots.closure_app_seconds();
4888   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4889 
4890   double ext_root_time_ms =
4891     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4892 
4893   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4894 
4895   // Scan strong roots in mark stack.
4896   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
4897     concurrent_mark()->oops_do(scan_non_heap_roots);
4898   }
4899   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4900   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
4901 
4902   // Now scan the complement of the collection set.
4903   if (scan_rs != NULL) {
4904     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4905   }
4906 
4907   _process_strong_tasks->all_tasks_completed();
4908 }
4909 
4910 void
4911 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4912                                        OopClosure* non_root_closure) {
4913   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
4914   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4915 }
4916 
4917 // Weak Reference Processing support
4918 
4919 // An always "is_alive" closure that is used to preserve referents.
4920 // If the object is non-null then it's alive.  Used in the preservation
4921 // of referent objects that are pointed to by reference objects
4922 // discovered by the CM ref processor.
4923 class G1AlwaysAliveClosure: public BoolObjectClosure {
4924   G1CollectedHeap* _g1;
4925 public:
4926   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4927   void do_object(oop p) { assert(false, "Do not call."); }
4928   bool do_object_b(oop p) {
4929     if (p != NULL) {
4930       return true;
4931     }
4932     return false;
4933   }
4934 };
4935 
4936 bool G1STWIsAliveClosure::do_object_b(oop p) {
4937   // An object is reachable if it is outside the collection set,
4938   // or is inside and copied.
4939   return !_g1->obj_in_cs(p) || p->is_forwarded();
4940 }
4941 
4942 // Non Copying Keep Alive closure
4943 class G1KeepAliveClosure: public OopClosure {
4944   G1CollectedHeap* _g1;
4945 public:
4946   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4947   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4948   void do_oop(      oop* p) {
4949     oop obj = *p;
4950 
4951     if (_g1->obj_in_cs(obj)) {
4952       assert( obj->is_forwarded(), "invariant" );
4953       *p = obj->forwardee();
4954     }
4955   }
4956 };
4957 
4958 // Copying Keep Alive closure - can be called from both
4959 // serial and parallel code as long as different worker
4960 // threads utilize different G1ParScanThreadState instances
4961 // and different queues.
4962 
4963 class G1CopyingKeepAliveClosure: public OopClosure {
4964   G1CollectedHeap*         _g1h;
4965   OopClosure*              _copy_non_heap_obj_cl;
4966   OopsInHeapRegionClosure* _copy_perm_obj_cl;
4967   G1ParScanThreadState*    _par_scan_state;
4968 
4969 public:
4970   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4971                             OopClosure* non_heap_obj_cl,
4972                             OopsInHeapRegionClosure* perm_obj_cl,
4973                             G1ParScanThreadState* pss):
4974     _g1h(g1h),
4975     _copy_non_heap_obj_cl(non_heap_obj_cl),
4976     _copy_perm_obj_cl(perm_obj_cl),
4977     _par_scan_state(pss)
4978   {}
4979 
4980   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4981   virtual void do_oop(      oop* p) { do_oop_work(p); }
4982 
4983   template <class T> void do_oop_work(T* p) {
4984     oop obj = oopDesc::load_decode_heap_oop(p);
4985 
4986     if (_g1h->obj_in_cs(obj)) {
4987       // If the referent object has been forwarded (either copied
4988       // to a new location or to itself in the event of an
4989       // evacuation failure) then we need to update the reference
4990       // field and, if both reference and referent are in the G1
4991       // heap, update the RSet for the referent.
4992       //
4993       // If the referent has not been forwarded then we have to keep
4994       // it alive by policy. Therefore we have copy the referent.
4995       //
4996       // If the reference field is in the G1 heap then we can push
4997       // on the PSS queue. When the queue is drained (after each
4998       // phase of reference processing) the object and it's followers
4999       // will be copied, the reference field set to point to the
5000       // new location, and the RSet updated. Otherwise we need to
5001       // use the the non-heap or perm closures directly to copy
5002       // the refernt object and update the pointer, while avoiding
5003       // updating the RSet.
5004 
5005       if (_g1h->is_in_g1_reserved(p)) {
5006         _par_scan_state->push_on_queue(p);
5007       } else {
5008         // The reference field is not in the G1 heap.
5009         if (_g1h->perm_gen()->is_in(p)) {
5010           _copy_perm_obj_cl->do_oop(p);
5011         } else {
5012           _copy_non_heap_obj_cl->do_oop(p);
5013         }
5014       }
5015     }
5016   }
5017 };
5018 
5019 // Serial drain queue closure. Called as the 'complete_gc'
5020 // closure for each discovered list in some of the
5021 // reference processing phases.
5022 
5023 class G1STWDrainQueueClosure: public VoidClosure {
5024 protected:
5025   G1CollectedHeap* _g1h;
5026   G1ParScanThreadState* _par_scan_state;
5027 
5028   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5029 
5030 public:
5031   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5032     _g1h(g1h),
5033     _par_scan_state(pss)
5034   { }
5035 
5036   void do_void() {
5037     G1ParScanThreadState* const pss = par_scan_state();
5038     pss->trim_queue();
5039   }
5040 };
5041 
5042 // Parallel Reference Processing closures
5043 
5044 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5045 // processing during G1 evacuation pauses.
5046 
5047 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5048 private:
5049   G1CollectedHeap*   _g1h;
5050   RefToScanQueueSet* _queues;
5051   FlexibleWorkGang*  _workers;
5052   int                _active_workers;
5053 
5054 public:
5055   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5056                         FlexibleWorkGang* workers,
5057                         RefToScanQueueSet *task_queues,
5058                         int n_workers) :
5059     _g1h(g1h),
5060     _queues(task_queues),
5061     _workers(workers),
5062     _active_workers(n_workers)
5063   {
5064     assert(n_workers > 0, "shouldn't call this otherwise");
5065   }
5066 
5067   // Executes the given task using concurrent marking worker threads.
5068   virtual void execute(ProcessTask& task);
5069   virtual void execute(EnqueueTask& task);
5070 };
5071 
5072 // Gang task for possibly parallel reference processing
5073 
5074 class G1STWRefProcTaskProxy: public AbstractGangTask {
5075   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5076   ProcessTask&     _proc_task;
5077   G1CollectedHeap* _g1h;
5078   RefToScanQueueSet *_task_queues;
5079   ParallelTaskTerminator* _terminator;
5080 
5081 public:
5082   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5083                      G1CollectedHeap* g1h,
5084                      RefToScanQueueSet *task_queues,
5085                      ParallelTaskTerminator* terminator) :
5086     AbstractGangTask("Process reference objects in parallel"),
5087     _proc_task(proc_task),
5088     _g1h(g1h),
5089     _task_queues(task_queues),
5090     _terminator(terminator)
5091   {}
5092 
5093   virtual void work(int i) {
5094     // The reference processing task executed by a single worker.
5095     ResourceMark rm;
5096     HandleMark   hm;
5097 
5098     G1STWIsAliveClosure is_alive(_g1h);
5099 
5100     G1ParScanThreadState pss(_g1h, i);
5101 
5102     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5103     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5104     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5105 
5106     pss.set_evac_closure(&scan_evac_cl);
5107     pss.set_evac_failure_closure(&evac_failure_cl);
5108     pss.set_partial_scan_closure(&partial_scan_cl);
5109 
5110     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5111     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5112 
5113     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5114     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5115 
5116     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5117     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5118 
5119     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5120       // We also need to mark copied objects.
5121       copy_non_heap_cl = &copy_mark_non_heap_cl;
5122       copy_perm_cl = &copy_mark_perm_cl;
5123     }
5124 
5125     // Keep alive closure.
5126     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5127 
5128     // Complete GC closure
5129     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5130 
5131     // Call the reference processing task's work routine.
5132     _proc_task.work(i, is_alive, keep_alive, drain_queue);
5133 
5134     // Note we cannot assert that the refs array is empty here as not all
5135     // of the processing tasks (specifically phase2 - pp2_work) execute
5136     // the complete_gc closure (which ordinarily would drain the queue) so
5137     // the queue may not be empty.
5138   }
5139 };
5140 
5141 // Driver routine for parallel reference processing.
5142 // Creates an instance of the ref processing gang
5143 // task and has the worker threads execute it.
5144 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5145   assert(_workers != NULL, "Need parallel worker threads.");
5146 
5147   ParallelTaskTerminator terminator(_active_workers, _queues);
5148   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5149 
5150   _g1h->set_par_threads(_active_workers);
5151   _workers->run_task(&proc_task_proxy);
5152   _g1h->set_par_threads(0);
5153 }
5154 
5155 // Gang task for parallel reference enqueueing.
5156 
5157 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5158   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5159   EnqueueTask& _enq_task;
5160 
5161 public:
5162   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5163     AbstractGangTask("Enqueue reference objects in parallel"),
5164     _enq_task(enq_task)
5165   { }
5166 
5167   virtual void work(int i) {
5168     _enq_task.work(i);
5169   }
5170 };
5171 
5172 // Driver routine for parallel reference enqueing.
5173 // Creates an instance of the ref enqueueing gang
5174 // task and has the worker threads execute it.
5175 
5176 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5177   assert(_workers != NULL, "Need parallel worker threads.");
5178 
5179   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5180 
5181   _g1h->set_par_threads(_active_workers);
5182   _workers->run_task(&enq_task_proxy);
5183   _g1h->set_par_threads(0);
5184 }
5185 
5186 // End of weak reference support closures
5187 
5188 // Abstract task used to preserve (i.e. copy) any referent objects
5189 // that are in the collection set and are pointed to by reference
5190 // objects discovered by the CM ref processor.
5191 
5192 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5193 protected:
5194   G1CollectedHeap* _g1h;
5195   RefToScanQueueSet      *_queues;
5196   ParallelTaskTerminator _terminator;
5197   int _n_workers;
5198 
5199 public:
5200   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5201     AbstractGangTask("ParPreserveCMReferents"),
5202     _g1h(g1h),
5203     _queues(task_queues),
5204     _terminator(workers, _queues),
5205     _n_workers(workers)
5206   { }
5207 
5208   void work(int i) {
5209     ResourceMark rm;
5210     HandleMark   hm;
5211 
5212     G1ParScanThreadState            pss(_g1h, i);
5213     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5214     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5215     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5216 
5217     pss.set_evac_closure(&scan_evac_cl);
5218     pss.set_evac_failure_closure(&evac_failure_cl);
5219     pss.set_partial_scan_closure(&partial_scan_cl);
5220 
5221     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5222 
5223 
5224     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5225     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5226 
5227     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5228     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5229 
5230     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5231     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5232 
5233     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5234       // We also need to mark copied objects.
5235       copy_non_heap_cl = &copy_mark_non_heap_cl;
5236       copy_perm_cl = &copy_mark_perm_cl;
5237     }
5238 
5239     // Is alive closure
5240     G1AlwaysAliveClosure always_alive(_g1h);
5241 
5242     // Copying keep alive closure. Applied to referent objects that need
5243     // to be copied.
5244     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5245 
5246     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5247 
5248     int limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5249     int stride = MIN2(MAX2(_n_workers, 1), limit);
5250 
5251     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5252     // So this must be true - but assert just in case someone decides to
5253     // change the worker ids.
5254     assert(0 <= i && i < limit, "sanity");
5255     assert(!rp->discovery_is_atomic(), "check this code");
5256 
5257     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5258     for (int idx = i; idx < limit; idx += stride) {
5259       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5260 
5261       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5262       while (iter.has_next()) {
5263         // Since discovery is not atomic for the CM ref processor, we
5264         // can see some null referent objects.
5265         iter.load_ptrs(DEBUG_ONLY(true));
5266         oop ref = iter.obj();
5267 
5268         // This will filter nulls.
5269         if (iter.is_referent_alive()) {
5270           iter.make_referent_alive();
5271         }
5272         iter.move_to_next();
5273       }
5274     }
5275 
5276     // Drain the queue - which may cause stealing
5277     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5278     drain_queue.do_void();
5279     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5280     assert(pss.refs()->is_empty(), "should be");
5281   }
5282 };
5283 
5284 // Weak Reference processing during an evacuation pause (part 1).
5285 void G1CollectedHeap::process_discovered_references() {
5286   double ref_proc_start = os::elapsedTime();
5287 
5288   ReferenceProcessor* rp = _ref_processor_stw;
5289   assert(rp->discovery_enabled(), "should have been enabled");
5290 
5291   // Any reference objects, in the collection set, that were 'discovered'
5292   // by the CM ref processor should have already been copied (either by
5293   // applying the external root copy closure to the discovered lists, or
5294   // by following an RSet entry).
5295   //
5296   // But some of the referents, that are in the collection set, that these
5297   // reference objects point to may not have been copied: the STW ref
5298   // processor would have seen that the reference object had already
5299   // been 'discovered' and would have skipped discovering the reference,
5300   // but would not have treated the reference object as a regular oop.
5301   // As a reult the copy closure would not have been applied to the
5302   // referent object.
5303   //
5304   // We need to explicitly copy these referent objects - the references
5305   // will be processed at the end of remarking.
5306   //
5307   // We also need to do this copying before we process the reference
5308   // objects discovered by the STW ref processor in case one of these
5309   // referents points to another object which is also referenced by an
5310   // object discovered by the STW ref processor.
5311 
5312   int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5313                         workers()->active_workers() : 1);
5314 
5315   assert(active_workers == workers()->active_workers(),
5316          "Need to reset active_workers");  
5317   set_par_threads(active_workers);
5318   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
5319 
5320   if (G1CollectedHeap::use_parallel_gc_threads()) {
5321     workers()->run_task(&keep_cm_referents);
5322   } else {
5323     keep_cm_referents.work(0);
5324   }
5325 
5326   set_par_threads(0);
5327 
5328   // Closure to test whether a referent is alive.
5329   G1STWIsAliveClosure is_alive(this);
5330 
5331   // Even when parallel reference processing is enabled, the processing
5332   // of JNI refs is serial and performed serially by the current thread
5333   // rather than by a worker. The following PSS will be used for processing
5334   // JNI refs.
5335 
5336   // Use only a single queue for this PSS.
5337   G1ParScanThreadState pss(this, 0);
5338 
5339   // We do not embed a reference processor in the copying/scanning
5340   // closures while we're actually processing the discovered
5341   // reference objects.
5342   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5343   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5344   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5345 
5346   pss.set_evac_closure(&scan_evac_cl);
5347   pss.set_evac_failure_closure(&evac_failure_cl);
5348   pss.set_partial_scan_closure(&partial_scan_cl);
5349 
5350   assert(pss.refs()->is_empty(), "pre-condition");
5351 
5352   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5353   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
5354 
5355   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5356   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
5357 
5358   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5359   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5360 
5361   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5362     // We also need to mark copied objects.
5363     copy_non_heap_cl = &copy_mark_non_heap_cl;
5364     copy_perm_cl = &copy_mark_perm_cl;
5365   }
5366 
5367   // Keep alive closure.
5368   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
5369 
5370   // Serial Complete GC closure
5371   G1STWDrainQueueClosure drain_queue(this, &pss);
5372 
5373   // Setup the soft refs policy...
5374   rp->setup_policy(false);
5375 
5376   if (!rp->processing_is_mt()) {
5377     // Serial reference processing...
5378     rp->process_discovered_references(&is_alive,
5379                                       &keep_alive,
5380                                       &drain_queue,
5381                                       NULL);
5382   } else {
5383     // Parallel reference processing
5384     assert(rp->num_q() == active_workers, "sanity");
5385     assert(active_workers <= rp->max_num_q(), "sanity");
5386 
5387     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5388     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
5389   }
5390 
5391   // We have completed copying any necessary live referent objects
5392   // (that were not copied during the actual pause) so we can
5393   // retire any active alloc buffers
5394   pss.retire_alloc_buffers();
5395   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5396 
5397   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5398   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
5399 }
5400 
5401 // Weak Reference processing during an evacuation pause (part 2).
5402 void G1CollectedHeap::enqueue_discovered_references() {
5403   double ref_enq_start = os::elapsedTime();
5404 
5405   ReferenceProcessor* rp = _ref_processor_stw;
5406   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5407 
5408   // Now enqueue any remaining on the discovered lists on to
5409   // the pending list.
5410   if (!rp->processing_is_mt()) {
5411     // Serial reference processing...
5412     rp->enqueue_discovered_references();
5413   } else {
5414     // Parallel reference enqueuing
5415 
5416     int active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
5417     assert(active_workers == workers()->active_workers(),
5418            "Need to reset active_workers");
5419     assert(rp->num_q() == active_workers, "sanity");
5420     assert(active_workers <= rp->max_num_q(), "sanity");
5421 
5422     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5423     rp->enqueue_discovered_references(&par_task_executor);
5424   }
5425 
5426   rp->verify_no_references_recorded();
5427   assert(!rp->discovery_enabled(), "should have been disabled");
5428 
5429   // FIXME
5430   // CM's reference processing also cleans up the string and symbol tables.
5431   // Should we do that here also? We could, but it is a serial operation
5432   // and could signicantly increase the pause time.
5433 
5434   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5435   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
5436 }
5437 
5438 void G1CollectedHeap::evacuate_collection_set() {
5439   set_evacuation_failed(false);
5440 
5441   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5442   concurrent_g1_refine()->set_use_cache(false);
5443   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5444 
5445   int n_workers;
5446   if (G1CollectedHeap::use_parallel_gc_threads()) {
5447     n_workers =
5448       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5449                                      workers()->active_workers(),
5450                                      Threads::number_of_non_daemon_threads());
5451     assert(UseDynamicNumberOfGCThreads ||
5452            n_workers == workers()->total_workers(),
5453            "If not dynamic should be using all the  workers");
5454     set_par_threads(n_workers);
5455   } else {
5456     assert(n_par_threads() == 0,
5457            "Should be the original non-parallel value");
5458     n_workers = 1;
5459   }
5460   workers()->set_active_workers(n_workers);
5461 
5462   G1ParTask g1_par_task(this, _task_queues);
5463 
5464   init_for_evac_failure(NULL);
5465 
5466   rem_set()->prepare_for_younger_refs_iterate(true);
5467 
5468   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5469   double start_par = os::elapsedTime();
5470 
5471   if (G1CollectedHeap::use_parallel_gc_threads()) {
5472     // The individual threads will set their evac-failure closures.
5473     StrongRootsScope srs(this);
5474     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5475     // These tasks use ShareHeap::_process_strong_tasks
5476     assert(UseDynamicNumberOfGCThreads ||
5477            workers()->active_workers() == workers()->total_workers(),
5478            "If not dynamic should be using all the  workers");
5479     workers()->run_task(&g1_par_task);
5480   } else {
5481     StrongRootsScope srs(this);
5482     g1_par_task.work(0);
5483   }
5484 
5485   double par_time = (os::elapsedTime() - start_par) * 1000.0;
5486   g1_policy()->record_par_time(par_time);
5487 
5488   set_par_threads(0);
5489 
5490   // Process any discovered reference objects - we have
5491   // to do this _before_ we retire the GC alloc regions
5492   // as we may have to copy some 'reachable' referent
5493   // objects (and their reachable sub-graphs) that were
5494   // not copied during the pause.
5495   process_discovered_references();
5496 
5497   // Weak root processing.
5498   // Note: when JSR 292 is enabled and code blobs can contain
5499   // non-perm oops then we will need to process the code blobs
5500   // here too.
5501   {
5502     G1STWIsAliveClosure is_alive(this);
5503     G1KeepAliveClosure keep_alive(this);
5504     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5505   }
5506 
5507   release_gc_alloc_regions();
5508   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5509 
5510   concurrent_g1_refine()->clear_hot_cache();
5511   concurrent_g1_refine()->set_use_cache(true);
5512 
5513   finalize_for_evac_failure();
5514 
5515   // Must do this before clearing the per-region evac-failure flags
5516   // (which is currently done when we free the collection set).
5517   // We also only do this if marking is actually in progress and so
5518   // have to do this before we set the mark_in_progress flag at the
5519   // end of an initial mark pause.
5520   concurrent_mark()->complete_marking_in_collection_set();
5521 
5522   if (evacuation_failed()) {
5523     remove_self_forwarding_pointers();
5524     if (PrintGCDetails) {
5525       gclog_or_tty->print(" (to-space overflow)");
5526     } else if (PrintGC) {
5527       gclog_or_tty->print("--");
5528     }
5529   }
5530 
5531   // Enqueue any remaining references remaining on the STW
5532   // reference processor's discovered lists. We need to do
5533   // this after the card table is cleaned (and verified) as
5534   // the act of enqueuing entries on to the pending list
5535   // will log these updates (and dirty their associated
5536   // cards). We need these updates logged to update any
5537   // RSets.
5538   enqueue_discovered_references();
5539 
5540   if (G1DeferredRSUpdate) {
5541     RedirtyLoggedCardTableEntryFastClosure redirty;
5542     dirty_card_queue_set().set_closure(&redirty);
5543     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5544 
5545     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5546     dcq.merge_bufferlists(&dirty_card_queue_set());
5547     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5548   }
5549   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5550 }
5551 
5552 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5553                                      size_t* pre_used,
5554                                      FreeRegionList* free_list,
5555                                      OldRegionSet* old_proxy_set,
5556                                      HumongousRegionSet* humongous_proxy_set,
5557                                      HRRSCleanupTask* hrrs_cleanup_task,
5558                                      bool par) {
5559   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5560     if (hr->isHumongous()) {
5561       assert(hr->startsHumongous(), "we should only see starts humongous");
5562       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5563     } else {
5564       _old_set.remove_with_proxy(hr, old_proxy_set);
5565       free_region(hr, pre_used, free_list, par);
5566     }
5567   } else {
5568     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5569   }
5570 }
5571 
5572 void G1CollectedHeap::free_region(HeapRegion* hr,
5573                                   size_t* pre_used,
5574                                   FreeRegionList* free_list,
5575                                   bool par) {
5576   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5577   assert(!hr->is_empty(), "the region should not be empty");
5578   assert(free_list != NULL, "pre-condition");
5579 
5580   *pre_used += hr->used();
5581   hr->hr_clear(par, true /* clear_space */);
5582   free_list->add_as_head(hr);
5583 }
5584 
5585 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5586                                      size_t* pre_used,
5587                                      FreeRegionList* free_list,
5588                                      HumongousRegionSet* humongous_proxy_set,
5589                                      bool par) {
5590   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5591   assert(free_list != NULL, "pre-condition");
5592   assert(humongous_proxy_set != NULL, "pre-condition");
5593 
5594   size_t hr_used = hr->used();
5595   size_t hr_capacity = hr->capacity();
5596   size_t hr_pre_used = 0;
5597   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5598   hr->set_notHumongous();
5599   free_region(hr, &hr_pre_used, free_list, par);
5600 
5601   size_t i = hr->hrs_index() + 1;
5602   size_t num = 1;
5603   while (i < n_regions()) {
5604     HeapRegion* curr_hr = region_at(i);
5605     if (!curr_hr->continuesHumongous()) {
5606       break;
5607     }
5608     curr_hr->set_notHumongous();
5609     free_region(curr_hr, &hr_pre_used, free_list, par);
5610     num += 1;
5611     i += 1;
5612   }
5613   assert(hr_pre_used == hr_used,
5614          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5615                  "should be the same", hr_pre_used, hr_used));
5616   *pre_used += hr_pre_used;
5617 }
5618 
5619 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5620                                        FreeRegionList* free_list,
5621                                        OldRegionSet* old_proxy_set,
5622                                        HumongousRegionSet* humongous_proxy_set,
5623                                        bool par) {
5624   if (pre_used > 0) {
5625     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5626     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5627     assert(_summary_bytes_used >= pre_used,
5628            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5629                    "should be >= pre_used: "SIZE_FORMAT,
5630                    _summary_bytes_used, pre_used));
5631     _summary_bytes_used -= pre_used;
5632   }
5633   if (free_list != NULL && !free_list->is_empty()) {
5634     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5635     _free_list.add_as_head(free_list);
5636   }
5637   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5638     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5639     _old_set.update_from_proxy(old_proxy_set);
5640   }
5641   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5642     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5643     _humongous_set.update_from_proxy(humongous_proxy_set);
5644   }
5645 }
5646 
5647 class G1ParCleanupCTTask : public AbstractGangTask {
5648   CardTableModRefBS* _ct_bs;
5649   G1CollectedHeap* _g1h;
5650   HeapRegion* volatile _su_head;
5651 public:
5652   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5653                      G1CollectedHeap* g1h) :
5654     AbstractGangTask("G1 Par Cleanup CT Task"),
5655     _ct_bs(ct_bs), _g1h(g1h) { }
5656 
5657   void work(int i) {
5658     HeapRegion* r;
5659     while (r = _g1h->pop_dirty_cards_region()) {
5660       clear_cards(r);
5661     }
5662   }
5663 
5664   void clear_cards(HeapRegion* r) {
5665     // Cards of the survivors should have already been dirtied.
5666     if (!r->is_survivor()) {
5667       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5668     }
5669   }
5670 };
5671 
5672 #ifndef PRODUCT
5673 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5674   G1CollectedHeap* _g1h;
5675   CardTableModRefBS* _ct_bs;
5676 public:
5677   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5678     : _g1h(g1h), _ct_bs(ct_bs) { }
5679   virtual bool doHeapRegion(HeapRegion* r) {
5680     if (r->is_survivor()) {
5681       _g1h->verify_dirty_region(r);
5682     } else {
5683       _g1h->verify_not_dirty_region(r);
5684     }
5685     return false;
5686   }
5687 };
5688 
5689 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5690   // All of the region should be clean.
5691   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5692   MemRegion mr(hr->bottom(), hr->end());
5693   ct_bs->verify_not_dirty_region(mr);
5694 }
5695 
5696 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5697   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5698   // dirty allocated blocks as they allocate them. The thread that
5699   // retires each region and replaces it with a new one will do a
5700   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5701   // not dirty that area (one less thing to have to do while holding
5702   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5703   // is dirty.
5704   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5705   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5706   ct_bs->verify_dirty_region(mr);
5707 }
5708 
5709 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5710   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5711   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5712     verify_dirty_region(hr);
5713   }
5714 }
5715 
5716 void G1CollectedHeap::verify_dirty_young_regions() {
5717   verify_dirty_young_list(_young_list->first_region());
5718   verify_dirty_young_list(_young_list->first_survivor_region());
5719 }
5720 #endif
5721 
5722 void G1CollectedHeap::cleanUpCardTable() {
5723   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5724   double start = os::elapsedTime();
5725 
5726   {
5727     // Iterate over the dirty cards region list.
5728     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5729 
5730     if (ParallelGCThreads > 0) {
5731       set_par_threads(workers()->total_workers());
5732       workers()->run_task(&cleanup_task);
5733       set_par_threads(0);
5734     } else {
5735       while (_dirty_cards_region_list) {
5736         HeapRegion* r = _dirty_cards_region_list;
5737         cleanup_task.clear_cards(r);
5738         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5739         if (_dirty_cards_region_list == r) {
5740           // The last region.
5741           _dirty_cards_region_list = NULL;
5742         }
5743         r->set_next_dirty_cards_region(NULL);
5744       }
5745     }
5746 #ifndef PRODUCT
5747     if (G1VerifyCTCleanup || VerifyAfterGC) {
5748       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5749       heap_region_iterate(&cleanup_verifier);
5750     }
5751 #endif
5752   }
5753 
5754   double elapsed = os::elapsedTime() - start;
5755   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
5756 }
5757 
5758 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5759   size_t pre_used = 0;
5760   FreeRegionList local_free_list("Local List for CSet Freeing");
5761 
5762   double young_time_ms     = 0.0;
5763   double non_young_time_ms = 0.0;
5764 
5765   // Since the collection set is a superset of the the young list,
5766   // all we need to do to clear the young list is clear its
5767   // head and length, and unlink any young regions in the code below
5768   _young_list->clear();
5769 
5770   G1CollectorPolicy* policy = g1_policy();
5771 
5772   double start_sec = os::elapsedTime();
5773   bool non_young = true;
5774 
5775   HeapRegion* cur = cs_head;
5776   int age_bound = -1;
5777   size_t rs_lengths = 0;
5778 
5779   while (cur != NULL) {
5780     assert(!is_on_master_free_list(cur), "sanity");
5781     if (non_young) {
5782       if (cur->is_young()) {
5783         double end_sec = os::elapsedTime();
5784         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5785         non_young_time_ms += elapsed_ms;
5786 
5787         start_sec = os::elapsedTime();
5788         non_young = false;
5789       }
5790     } else {
5791       if (!cur->is_young()) {
5792         double end_sec = os::elapsedTime();
5793         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5794         young_time_ms += elapsed_ms;
5795 
5796         start_sec = os::elapsedTime();
5797         non_young = true;
5798       }
5799     }
5800 
5801     rs_lengths += cur->rem_set()->occupied();
5802 
5803     HeapRegion* next = cur->next_in_collection_set();
5804     assert(cur->in_collection_set(), "bad CS");
5805     cur->set_next_in_collection_set(NULL);
5806     cur->set_in_collection_set(false);
5807 
5808     if (cur->is_young()) {
5809       int index = cur->young_index_in_cset();
5810       assert(index != -1, "invariant");
5811       assert((size_t) index < policy->young_cset_region_length(), "invariant");
5812       size_t words_survived = _surviving_young_words[index];
5813       cur->record_surv_words_in_group(words_survived);
5814 
5815       // At this point the we have 'popped' cur from the collection set
5816       // (linked via next_in_collection_set()) but it is still in the
5817       // young list (linked via next_young_region()). Clear the
5818       // _next_young_region field.
5819       cur->set_next_young_region(NULL);
5820     } else {
5821       int index = cur->young_index_in_cset();
5822       assert(index == -1, "invariant");
5823     }
5824 
5825     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5826             (!cur->is_young() && cur->young_index_in_cset() == -1),
5827             "invariant" );
5828 
5829     if (!cur->evacuation_failed()) {
5830       MemRegion used_mr = cur->used_region();
5831 
5832       // And the region is empty.
5833       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5834 
5835       // If marking is in progress then clear any objects marked in
5836       // the current region. Note mark_in_progress() returns false,
5837       // even during an initial mark pause, until the set_marking_started()
5838       // call which takes place later in the pause.
5839       if (mark_in_progress()) {
5840         assert(!g1_policy()->during_initial_mark_pause(), "sanity");
5841         _cm->nextMarkBitMap()->clearRange(used_mr);
5842       }
5843 
5844       free_region(cur, &pre_used, &local_free_list, false /* par */);
5845     } else {
5846       cur->uninstall_surv_rate_group();
5847       if (cur->is_young()) {
5848         cur->set_young_index_in_cset(-1);
5849       }
5850       cur->set_not_young();
5851       cur->set_evacuation_failed(false);
5852       // The region is now considered to be old.
5853       _old_set.add(cur);
5854     }
5855     cur = next;
5856   }
5857 
5858   policy->record_max_rs_lengths(rs_lengths);
5859   policy->cset_regions_freed();
5860 
5861   double end_sec = os::elapsedTime();
5862   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5863 
5864   if (non_young) {
5865     non_young_time_ms += elapsed_ms;
5866   } else {
5867     young_time_ms += elapsed_ms;
5868   }
5869 
5870   update_sets_after_freeing_regions(pre_used, &local_free_list,
5871                                     NULL /* old_proxy_set */,
5872                                     NULL /* humongous_proxy_set */,
5873                                     false /* par */);
5874   policy->record_young_free_cset_time_ms(young_time_ms);
5875   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
5876 }
5877 
5878 // This routine is similar to the above but does not record
5879 // any policy statistics or update free lists; we are abandoning
5880 // the current incremental collection set in preparation of a
5881 // full collection. After the full GC we will start to build up
5882 // the incremental collection set again.
5883 // This is only called when we're doing a full collection
5884 // and is immediately followed by the tearing down of the young list.
5885 
5886 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5887   HeapRegion* cur = cs_head;
5888 
5889   while (cur != NULL) {
5890     HeapRegion* next = cur->next_in_collection_set();
5891     assert(cur->in_collection_set(), "bad CS");
5892     cur->set_next_in_collection_set(NULL);
5893     cur->set_in_collection_set(false);
5894     cur->set_young_index_in_cset(-1);
5895     cur = next;
5896   }
5897 }
5898 
5899 void G1CollectedHeap::set_free_regions_coming() {
5900   if (G1ConcRegionFreeingVerbose) {
5901     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5902                            "setting free regions coming");
5903   }
5904 
5905   assert(!free_regions_coming(), "pre-condition");
5906   _free_regions_coming = true;
5907 }
5908 
5909 void G1CollectedHeap::reset_free_regions_coming() {
5910   {
5911     assert(free_regions_coming(), "pre-condition");
5912     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5913     _free_regions_coming = false;
5914     SecondaryFreeList_lock->notify_all();
5915   }
5916 
5917   if (G1ConcRegionFreeingVerbose) {
5918     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5919                            "reset free regions coming");
5920   }
5921 }
5922 
5923 void G1CollectedHeap::wait_while_free_regions_coming() {
5924   // Most of the time we won't have to wait, so let's do a quick test
5925   // first before we take the lock.
5926   if (!free_regions_coming()) {
5927     return;
5928   }
5929 
5930   if (G1ConcRegionFreeingVerbose) {
5931     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5932                            "waiting for free regions");
5933   }
5934 
5935   {
5936     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5937     while (free_regions_coming()) {
5938       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5939     }
5940   }
5941 
5942   if (G1ConcRegionFreeingVerbose) {
5943     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5944                            "done waiting for free regions");
5945   }
5946 }
5947 
5948 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5949   assert(heap_lock_held_for_gc(),
5950               "the heap lock should already be held by or for this thread");
5951   _young_list->push_region(hr);
5952 }
5953 
5954 class NoYoungRegionsClosure: public HeapRegionClosure {
5955 private:
5956   bool _success;
5957 public:
5958   NoYoungRegionsClosure() : _success(true) { }
5959   bool doHeapRegion(HeapRegion* r) {
5960     if (r->is_young()) {
5961       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
5962                              r->bottom(), r->end());
5963       _success = false;
5964     }
5965     return false;
5966   }
5967   bool success() { return _success; }
5968 };
5969 
5970 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5971   bool ret = _young_list->check_list_empty(check_sample);
5972 
5973   if (check_heap) {
5974     NoYoungRegionsClosure closure;
5975     heap_region_iterate(&closure);
5976     ret = ret && closure.success();
5977   }
5978 
5979   return ret;
5980 }
5981 
5982 class TearDownRegionSetsClosure : public HeapRegionClosure {
5983 private:
5984   OldRegionSet *_old_set;
5985 
5986 public:
5987   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
5988 
5989   bool doHeapRegion(HeapRegion* r) {
5990     if (r->is_empty()) {
5991       // We ignore empty regions, we'll empty the free list afterwards
5992     } else if (r->is_young()) {
5993       // We ignore young regions, we'll empty the young list afterwards
5994     } else if (r->isHumongous()) {
5995       // We ignore humongous regions, we're not tearing down the
5996       // humongous region set
5997     } else {
5998       // The rest should be old
5999       _old_set->remove(r);
6000     }
6001     return false;
6002   }
6003 
6004   ~TearDownRegionSetsClosure() {
6005     assert(_old_set->is_empty(), "post-condition");
6006   }
6007 };
6008 
6009 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6010   assert_at_safepoint(true /* should_be_vm_thread */);
6011 
6012   if (!free_list_only) {
6013     TearDownRegionSetsClosure cl(&_old_set);
6014     heap_region_iterate(&cl);
6015 
6016     // Need to do this after the heap iteration to be able to
6017     // recognize the young regions and ignore them during the iteration.
6018     _young_list->empty_list();
6019   }
6020   _free_list.remove_all();
6021 }
6022 
6023 class RebuildRegionSetsClosure : public HeapRegionClosure {
6024 private:
6025   bool            _free_list_only;
6026   OldRegionSet*   _old_set;
6027   FreeRegionList* _free_list;
6028   size_t          _total_used;
6029 
6030 public:
6031   RebuildRegionSetsClosure(bool free_list_only,
6032                            OldRegionSet* old_set, FreeRegionList* free_list) :
6033     _free_list_only(free_list_only),
6034     _old_set(old_set), _free_list(free_list), _total_used(0) {
6035     assert(_free_list->is_empty(), "pre-condition");
6036     if (!free_list_only) {
6037       assert(_old_set->is_empty(), "pre-condition");
6038     }
6039   }
6040 
6041   bool doHeapRegion(HeapRegion* r) {
6042     if (r->continuesHumongous()) {
6043       return false;
6044     }
6045 
6046     if (r->is_empty()) {
6047       // Add free regions to the free list
6048       _free_list->add_as_tail(r);
6049     } else if (!_free_list_only) {
6050       assert(!r->is_young(), "we should not come across young regions");
6051 
6052       if (r->isHumongous()) {
6053         // We ignore humongous regions, we left the humongous set unchanged
6054       } else {
6055         // The rest should be old, add them to the old set
6056         _old_set->add(r);
6057       }
6058       _total_used += r->used();
6059     }
6060 
6061     return false;
6062   }
6063 
6064   size_t total_used() {
6065     return _total_used;
6066   }
6067 };
6068 
6069 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6070   assert_at_safepoint(true /* should_be_vm_thread */);
6071 
6072   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6073   heap_region_iterate(&cl);
6074 
6075   if (!free_list_only) {
6076     _summary_bytes_used = cl.total_used();
6077   }
6078   assert(_summary_bytes_used == recalculate_used(),
6079          err_msg("inconsistent _summary_bytes_used, "
6080                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6081                  _summary_bytes_used, recalculate_used()));
6082 }
6083 
6084 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6085   _refine_cte_cl->set_concurrent(concurrent);
6086 }
6087 
6088 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6089   HeapRegion* hr = heap_region_containing(p);
6090   if (hr == NULL) {
6091     return is_in_permanent(p);
6092   } else {
6093     return hr->is_in(p);
6094   }
6095 }
6096 
6097 // Methods for the mutator alloc region
6098 
6099 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6100                                                       bool force) {
6101   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6102   assert(!force || g1_policy()->can_expand_young_list(),
6103          "if force is true we should be able to expand the young list");
6104   bool young_list_full = g1_policy()->is_young_list_full();
6105   if (force || !young_list_full) {
6106     HeapRegion* new_alloc_region = new_region(word_size,
6107                                               false /* do_expand */);
6108     if (new_alloc_region != NULL) {
6109       set_region_short_lived_locked(new_alloc_region);
6110       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6111       return new_alloc_region;
6112     }
6113   }
6114   return NULL;
6115 }
6116 
6117 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6118                                                   size_t allocated_bytes) {
6119   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6120   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6121 
6122   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6123   _summary_bytes_used += allocated_bytes;
6124   _hr_printer.retire(alloc_region);
6125   // We update the eden sizes here, when the region is retired,
6126   // instead of when it's allocated, since this is the point that its
6127   // used space has been recored in _summary_bytes_used.
6128   g1mm()->update_eden_size();
6129 }
6130 
6131 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6132                                                     bool force) {
6133   return _g1h->new_mutator_alloc_region(word_size, force);
6134 }
6135 
6136 void G1CollectedHeap::set_par_threads() {
6137   // Don't change the number of workers.  Use the value previously set
6138   // in the workgroup.
6139   int n_workers = workers()->active_workers();
6140     assert(UseDynamicNumberOfGCThreads ||
6141            n_workers == workers()->total_workers(),
6142       "Otherwise should be using the total number of workers");
6143   if (n_workers == 0) {
6144     assert(false, "Should have been set in prior evacuation pause.");
6145     n_workers = ParallelGCThreads;
6146     workers()->set_active_workers(n_workers);
6147   }
6148   set_par_threads(n_workers);
6149 }
6150 
6151 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6152                                        size_t allocated_bytes) {
6153   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6154 }
6155 
6156 // Methods for the GC alloc regions
6157 
6158 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6159                                                  size_t count,
6160                                                  GCAllocPurpose ap) {
6161   assert(FreeList_lock->owned_by_self(), "pre-condition");
6162 
6163   if (count < g1_policy()->max_regions(ap)) {
6164     HeapRegion* new_alloc_region = new_region(word_size,
6165                                               true /* do_expand */);
6166     if (new_alloc_region != NULL) {
6167       // We really only need to do this for old regions given that we
6168       // should never scan survivors. But it doesn't hurt to do it
6169       // for survivors too.
6170       new_alloc_region->set_saved_mark();
6171       if (ap == GCAllocForSurvived) {
6172         new_alloc_region->set_survivor();
6173         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6174       } else {
6175         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6176       }
6177       return new_alloc_region;
6178     } else {
6179       g1_policy()->note_alloc_region_limit_reached(ap);
6180     }
6181   }
6182   return NULL;
6183 }
6184 
6185 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6186                                              size_t allocated_bytes,
6187                                              GCAllocPurpose ap) {
6188   alloc_region->note_end_of_copying();
6189   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6190   if (ap == GCAllocForSurvived) {
6191     young_list()->add_survivor_region(alloc_region);
6192   } else {
6193     _old_set.add(alloc_region);
6194   }
6195   _hr_printer.retire(alloc_region);
6196 }
6197 
6198 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6199                                                        bool force) {
6200   assert(!force, "not supported for GC alloc regions");
6201   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6202 }
6203 
6204 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6205                                           size_t allocated_bytes) {
6206   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6207                                GCAllocForSurvived);
6208 }
6209 
6210 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6211                                                   bool force) {
6212   assert(!force, "not supported for GC alloc regions");
6213   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6214 }
6215 
6216 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6217                                      size_t allocated_bytes) {
6218   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6219                                GCAllocForTenured);
6220 }
6221 // Heap region set verification
6222 
6223 class VerifyRegionListsClosure : public HeapRegionClosure {
6224 private:
6225   FreeRegionList*     _free_list;
6226   OldRegionSet*       _old_set;
6227   HumongousRegionSet* _humongous_set;
6228   size_t              _region_count;
6229 
6230 public:
6231   VerifyRegionListsClosure(OldRegionSet* old_set,
6232                            HumongousRegionSet* humongous_set,
6233                            FreeRegionList* free_list) :
6234     _old_set(old_set), _humongous_set(humongous_set),
6235     _free_list(free_list), _region_count(0) { }
6236 
6237   size_t region_count()      { return _region_count;      }
6238 
6239   bool doHeapRegion(HeapRegion* hr) {
6240     _region_count += 1;
6241 
6242     if (hr->continuesHumongous()) {
6243       return false;
6244     }
6245 
6246     if (hr->is_young()) {
6247       // TODO
6248     } else if (hr->startsHumongous()) {
6249       _humongous_set->verify_next_region(hr);
6250     } else if (hr->is_empty()) {
6251       _free_list->verify_next_region(hr);
6252     } else {
6253       _old_set->verify_next_region(hr);
6254     }
6255     return false;
6256   }
6257 };
6258 
6259 HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
6260                                              HeapWord* bottom) {
6261   HeapWord* end = bottom + HeapRegion::GrainWords;
6262   MemRegion mr(bottom, end);
6263   assert(_g1_reserved.contains(mr), "invariant");
6264   // This might return NULL if the allocation fails
6265   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
6266 }
6267 
6268 void G1CollectedHeap::verify_region_sets() {
6269   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6270 
6271   // First, check the explicit lists.
6272   _free_list.verify();
6273   {
6274     // Given that a concurrent operation might be adding regions to
6275     // the secondary free list we have to take the lock before
6276     // verifying it.
6277     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6278     _secondary_free_list.verify();
6279   }
6280   _old_set.verify();
6281   _humongous_set.verify();
6282 
6283   // If a concurrent region freeing operation is in progress it will
6284   // be difficult to correctly attributed any free regions we come
6285   // across to the correct free list given that they might belong to
6286   // one of several (free_list, secondary_free_list, any local lists,
6287   // etc.). So, if that's the case we will skip the rest of the
6288   // verification operation. Alternatively, waiting for the concurrent
6289   // operation to complete will have a non-trivial effect on the GC's
6290   // operation (no concurrent operation will last longer than the
6291   // interval between two calls to verification) and it might hide
6292   // any issues that we would like to catch during testing.
6293   if (free_regions_coming()) {
6294     return;
6295   }
6296 
6297   // Make sure we append the secondary_free_list on the free_list so
6298   // that all free regions we will come across can be safely
6299   // attributed to the free_list.
6300   append_secondary_free_list_if_not_empty_with_lock();
6301 
6302   // Finally, make sure that the region accounting in the lists is
6303   // consistent with what we see in the heap.
6304   _old_set.verify_start();
6305   _humongous_set.verify_start();
6306   _free_list.verify_start();
6307 
6308   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6309   heap_region_iterate(&cl);
6310 
6311   _old_set.verify_end();
6312   _humongous_set.verify_end();
6313   _free_list.verify_end();
6314 }