1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1Log.hpp"
  33 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  34 #include "gc_implementation/g1/g1RemSet.hpp"
  35 #include "gc_implementation/g1/heapRegion.inline.hpp"
  36 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  37 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  38 #include "gc_implementation/shared/vmGCOperations.hpp"
  39 #include "memory/genOopClosures.inline.hpp"
  40 #include "memory/referencePolicy.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "runtime/handles.inline.hpp"
  44 #include "runtime/java.hpp"
  45 #include "services/memTracker.hpp"
  46 
  47 // Concurrent marking bit map wrapper
  48 
  49 CMBitMapRO::CMBitMapRO(int shifter) :
  50   _bm(),
  51   _shifter(shifter) {
  52   _bmStartWord = 0;
  53   _bmWordSize = 0;
  54 }
  55 
  56 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
  57                                                HeapWord* limit) const {
  58   // First we must round addr *up* to a possible object boundary.
  59   addr = (HeapWord*)align_size_up((intptr_t)addr,
  60                                   HeapWordSize << _shifter);
  61   size_t addrOffset = heapWordToOffset(addr);
  62   if (limit == NULL) {
  63     limit = _bmStartWord + _bmWordSize;
  64   }
  65   size_t limitOffset = heapWordToOffset(limit);
  66   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  67   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  68   assert(nextAddr >= addr, "get_next_one postcondition");
  69   assert(nextAddr == limit || isMarked(nextAddr),
  70          "get_next_one postcondition");
  71   return nextAddr;
  72 }
  73 
  74 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
  75                                                  HeapWord* limit) const {
  76   size_t addrOffset = heapWordToOffset(addr);
  77   if (limit == NULL) {
  78     limit = _bmStartWord + _bmWordSize;
  79   }
  80   size_t limitOffset = heapWordToOffset(limit);
  81   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  82   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  83   assert(nextAddr >= addr, "get_next_one postcondition");
  84   assert(nextAddr == limit || !isMarked(nextAddr),
  85          "get_next_one postcondition");
  86   return nextAddr;
  87 }
  88 
  89 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  90   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  91   return (int) (diff >> _shifter);
  92 }
  93 
  94 #ifndef PRODUCT
  95 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
  96   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  97   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  98          "size inconsistency");
  99   return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
 100          _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
 101 }
 102 #endif
 103 
 104 bool CMBitMap::allocate(ReservedSpace heap_rs) {
 105   _bmStartWord = (HeapWord*)(heap_rs.base());
 106   _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
 107   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
 108                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
 109   if (!brs.is_reserved()) {
 110     warning("ConcurrentMark marking bit map allocation failure");
 111     return false;
 112   }
 113   MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
 114   // For now we'll just commit all of the bit map up front.
 115   // Later on we'll try to be more parsimonious with swap.
 116   if (!_virtual_space.initialize(brs, brs.size())) {
 117     warning("ConcurrentMark marking bit map backing store failure");
 118     return false;
 119   }
 120   assert(_virtual_space.committed_size() == brs.size(),
 121          "didn't reserve backing store for all of concurrent marking bit map?");
 122   _bm.set_map((uintptr_t*)_virtual_space.low());
 123   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
 124          _bmWordSize, "inconsistency in bit map sizing");
 125   _bm.set_size(_bmWordSize >> _shifter);
 126   return true;
 127 }
 128 
 129 void CMBitMap::clearAll() {
 130   _bm.clear();
 131   return;
 132 }
 133 
 134 void CMBitMap::markRange(MemRegion mr) {
 135   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 136   assert(!mr.is_empty(), "unexpected empty region");
 137   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 138           ((HeapWord *) mr.end())),
 139          "markRange memory region end is not card aligned");
 140   // convert address range into offset range
 141   _bm.at_put_range(heapWordToOffset(mr.start()),
 142                    heapWordToOffset(mr.end()), true);
 143 }
 144 
 145 void CMBitMap::clearRange(MemRegion mr) {
 146   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 147   assert(!mr.is_empty(), "unexpected empty region");
 148   // convert address range into offset range
 149   _bm.at_put_range(heapWordToOffset(mr.start()),
 150                    heapWordToOffset(mr.end()), false);
 151 }
 152 
 153 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 154                                             HeapWord* end_addr) {
 155   HeapWord* start = getNextMarkedWordAddress(addr);
 156   start = MIN2(start, end_addr);
 157   HeapWord* end   = getNextUnmarkedWordAddress(start);
 158   end = MIN2(end, end_addr);
 159   assert(start <= end, "Consistency check");
 160   MemRegion mr(start, end);
 161   if (!mr.is_empty()) {
 162     clearRange(mr);
 163   }
 164   return mr;
 165 }
 166 
 167 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 168   _base(NULL), _cm(cm)
 169 #ifdef ASSERT
 170   , _drain_in_progress(false)
 171   , _drain_in_progress_yields(false)
 172 #endif
 173 {}
 174 
 175 bool CMMarkStack::allocate(size_t capacity) {
 176   // allocate a stack of the requisite depth
 177   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 178   if (!rs.is_reserved()) {
 179     warning("ConcurrentMark MarkStack allocation failure");
 180     return false;
 181   }
 182   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 183   if (!_virtual_space.initialize(rs, rs.size())) {
 184     warning("ConcurrentMark MarkStack backing store failure");
 185     // Release the virtual memory reserved for the marking stack
 186     rs.release();
 187     return false;
 188   }
 189   assert(_virtual_space.committed_size() == rs.size(),
 190          "Didn't reserve backing store for all of ConcurrentMark stack?");
 191   _base = (oop*) _virtual_space.low();
 192   setEmpty();
 193   _capacity = (jint) capacity;
 194   _saved_index = -1;
 195   _should_expand = false;
 196   NOT_PRODUCT(_max_depth = 0);
 197   return true;
 198 }
 199 
 200 void CMMarkStack::expand() {
 201   // Called, during remark, if we've overflown the marking stack during marking.
 202   assert(isEmpty(), "stack should been emptied while handling overflow");
 203   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 204   // Clear expansion flag
 205   _should_expand = false;
 206   if (_capacity == (jint) MarkStackSizeMax) {
 207     if (PrintGCDetails && Verbose) {
 208       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 209     }
 210     return;
 211   }
 212   // Double capacity if possible
 213   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 214   // Do not give up existing stack until we have managed to
 215   // get the double capacity that we desired.
 216   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 217                                                            sizeof(oop)));
 218   if (rs.is_reserved()) {
 219     // Release the backing store associated with old stack
 220     _virtual_space.release();
 221     // Reinitialize virtual space for new stack
 222     if (!_virtual_space.initialize(rs, rs.size())) {
 223       fatal("Not enough swap for expanded marking stack capacity");
 224     }
 225     _base = (oop*)(_virtual_space.low());
 226     _index = 0;
 227     _capacity = new_capacity;
 228   } else {
 229     if (PrintGCDetails && Verbose) {
 230       // Failed to double capacity, continue;
 231       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 232                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 233                           _capacity / K, new_capacity / K);
 234     }
 235   }
 236 }
 237 
 238 void CMMarkStack::set_should_expand() {
 239   // If we're resetting the marking state because of an
 240   // marking stack overflow, record that we should, if
 241   // possible, expand the stack.
 242   _should_expand = _cm->has_overflown();
 243 }
 244 
 245 CMMarkStack::~CMMarkStack() {
 246   if (_base != NULL) {
 247     _base = NULL;
 248     _virtual_space.release();
 249   }
 250 }
 251 
 252 void CMMarkStack::par_push(oop ptr) {
 253   while (true) {
 254     if (isFull()) {
 255       _overflow = true;
 256       return;
 257     }
 258     // Otherwise...
 259     jint index = _index;
 260     jint next_index = index+1;
 261     jint res = Atomic::cmpxchg(next_index, &_index, index);
 262     if (res == index) {
 263       _base[index] = ptr;
 264       // Note that we don't maintain this atomically.  We could, but it
 265       // doesn't seem necessary.
 266       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 267       return;
 268     }
 269     // Otherwise, we need to try again.
 270   }
 271 }
 272 
 273 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 274   while (true) {
 275     if (isFull()) {
 276       _overflow = true;
 277       return;
 278     }
 279     // Otherwise...
 280     jint index = _index;
 281     jint next_index = index + n;
 282     if (next_index > _capacity) {
 283       _overflow = true;
 284       return;
 285     }
 286     jint res = Atomic::cmpxchg(next_index, &_index, index);
 287     if (res == index) {
 288       for (int i = 0; i < n; i++) {
 289         int  ind = index + i;
 290         assert(ind < _capacity, "By overflow test above.");
 291         _base[ind] = ptr_arr[i];
 292       }
 293       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 294       return;
 295     }
 296     // Otherwise, we need to try again.
 297   }
 298 }
 299 
 300 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 301   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 302   jint start = _index;
 303   jint next_index = start + n;
 304   if (next_index > _capacity) {
 305     _overflow = true;
 306     return;
 307   }
 308   // Otherwise.
 309   _index = next_index;
 310   for (int i = 0; i < n; i++) {
 311     int ind = start + i;
 312     assert(ind < _capacity, "By overflow test above.");
 313     _base[ind] = ptr_arr[i];
 314   }
 315   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 316 }
 317 
 318 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 319   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 320   jint index = _index;
 321   if (index == 0) {
 322     *n = 0;
 323     return false;
 324   } else {
 325     int k = MIN2(max, index);
 326     jint  new_ind = index - k;
 327     for (int j = 0; j < k; j++) {
 328       ptr_arr[j] = _base[new_ind + j];
 329     }
 330     _index = new_ind;
 331     *n = k;
 332     return true;
 333   }
 334 }
 335 
 336 template<class OopClosureClass>
 337 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 338   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 339          || SafepointSynchronize::is_at_safepoint(),
 340          "Drain recursion must be yield-safe.");
 341   bool res = true;
 342   debug_only(_drain_in_progress = true);
 343   debug_only(_drain_in_progress_yields = yield_after);
 344   while (!isEmpty()) {
 345     oop newOop = pop();
 346     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 347     assert(newOop->is_oop(), "Expected an oop");
 348     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 349            "only grey objects on this stack");
 350     newOop->oop_iterate(cl);
 351     if (yield_after && _cm->do_yield_check()) {
 352       res = false;
 353       break;
 354     }
 355   }
 356   debug_only(_drain_in_progress = false);
 357   return res;
 358 }
 359 
 360 void CMMarkStack::note_start_of_gc() {
 361   assert(_saved_index == -1,
 362          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 363   _saved_index = _index;
 364 }
 365 
 366 void CMMarkStack::note_end_of_gc() {
 367   // This is intentionally a guarantee, instead of an assert. If we
 368   // accidentally add something to the mark stack during GC, it
 369   // will be a correctness issue so it's better if we crash. we'll
 370   // only check this once per GC anyway, so it won't be a performance
 371   // issue in any way.
 372   guarantee(_saved_index == _index,
 373             err_msg("saved index: %d index: %d", _saved_index, _index));
 374   _saved_index = -1;
 375 }
 376 
 377 void CMMarkStack::oops_do(OopClosure* f) {
 378   assert(_saved_index == _index,
 379          err_msg("saved index: %d index: %d", _saved_index, _index));
 380   for (int i = 0; i < _index; i += 1) {
 381     f->do_oop(&_base[i]);
 382   }
 383 }
 384 
 385 bool ConcurrentMark::not_yet_marked(oop obj) const {
 386   return _g1h->is_obj_ill(obj);
 387 }
 388 
 389 CMRootRegions::CMRootRegions() :
 390   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 391   _should_abort(false),  _next_survivor(NULL) { }
 392 
 393 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 394   _young_list = g1h->young_list();
 395   _cm = cm;
 396 }
 397 
 398 void CMRootRegions::prepare_for_scan() {
 399   assert(!scan_in_progress(), "pre-condition");
 400 
 401   // Currently, only survivors can be root regions.
 402   assert(_next_survivor == NULL, "pre-condition");
 403   _next_survivor = _young_list->first_survivor_region();
 404   _scan_in_progress = (_next_survivor != NULL);
 405   _should_abort = false;
 406 }
 407 
 408 HeapRegion* CMRootRegions::claim_next() {
 409   if (_should_abort) {
 410     // If someone has set the should_abort flag, we return NULL to
 411     // force the caller to bail out of their loop.
 412     return NULL;
 413   }
 414 
 415   // Currently, only survivors can be root regions.
 416   HeapRegion* res = _next_survivor;
 417   if (res != NULL) {
 418     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 419     // Read it again in case it changed while we were waiting for the lock.
 420     res = _next_survivor;
 421     if (res != NULL) {
 422       if (res == _young_list->last_survivor_region()) {
 423         // We just claimed the last survivor so store NULL to indicate
 424         // that we're done.
 425         _next_survivor = NULL;
 426       } else {
 427         _next_survivor = res->get_next_young_region();
 428       }
 429     } else {
 430       // Someone else claimed the last survivor while we were trying
 431       // to take the lock so nothing else to do.
 432     }
 433   }
 434   assert(res == NULL || res->is_survivor(), "post-condition");
 435 
 436   return res;
 437 }
 438 
 439 void CMRootRegions::scan_finished() {
 440   assert(scan_in_progress(), "pre-condition");
 441 
 442   // Currently, only survivors can be root regions.
 443   if (!_should_abort) {
 444     assert(_next_survivor == NULL, "we should have claimed all survivors");
 445   }
 446   _next_survivor = NULL;
 447 
 448   {
 449     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 450     _scan_in_progress = false;
 451     RootRegionScan_lock->notify_all();
 452   }
 453 }
 454 
 455 bool CMRootRegions::wait_until_scan_finished() {
 456   if (!scan_in_progress()) return false;
 457 
 458   {
 459     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 460     while (scan_in_progress()) {
 461       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 462     }
 463   }
 464   return true;
 465 }
 466 
 467 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 468 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 469 #endif // _MSC_VER
 470 
 471 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 472   return MAX2((n_par_threads + 2) / 4, 1U);
 473 }
 474 
 475 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
 476   _g1h(g1h),
 477   _markBitMap1(MinObjAlignment - 1),
 478   _markBitMap2(MinObjAlignment - 1),
 479 
 480   _parallel_marking_threads(0),
 481   _max_parallel_marking_threads(0),
 482   _sleep_factor(0.0),
 483   _marking_task_overhead(1.0),
 484   _cleanup_sleep_factor(0.0),
 485   _cleanup_task_overhead(1.0),
 486   _cleanup_list("Cleanup List"),
 487   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 488   _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
 489             CardTableModRefBS::card_shift,
 490             false /* in_resource_area*/),
 491 
 492   _prevMarkBitMap(&_markBitMap1),
 493   _nextMarkBitMap(&_markBitMap2),
 494 
 495   _markStack(this),
 496   // _finger set in set_non_marking_state
 497 
 498   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 499   // _active_tasks set in set_non_marking_state
 500   // _tasks set inside the constructor
 501   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 502   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 503 
 504   _has_overflown(false),
 505   _concurrent(false),
 506   _has_aborted(false),
 507   _restart_for_overflow(false),
 508   _concurrent_marking_in_progress(false),
 509 
 510   // _verbose_level set below
 511 
 512   _init_times(),
 513   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 514   _cleanup_times(),
 515   _total_counting_time(0.0),
 516   _total_rs_scrub_time(0.0),
 517 
 518   _parallel_workers(NULL),
 519 
 520   _count_card_bitmaps(NULL),
 521   _count_marked_bytes(NULL),
 522   _completed_initialization(false) {
 523   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 524   if (verbose_level < no_verbose) {
 525     verbose_level = no_verbose;
 526   }
 527   if (verbose_level > high_verbose) {
 528     verbose_level = high_verbose;
 529   }
 530   _verbose_level = verbose_level;
 531 
 532   if (verbose_low()) {
 533     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 534                            "heap end = "PTR_FORMAT, _heap_start, _heap_end);
 535   }
 536 
 537   if (!_markBitMap1.allocate(heap_rs)) {
 538     warning("Failed to allocate first CM bit map");
 539     return;
 540   }
 541   if (!_markBitMap2.allocate(heap_rs)) {
 542     warning("Failed to allocate second CM bit map");
 543     return;
 544   }
 545 
 546   // Create & start a ConcurrentMark thread.
 547   _cmThread = new ConcurrentMarkThread(this);
 548   assert(cmThread() != NULL, "CM Thread should have been created");
 549   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 550 
 551   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 552   assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
 553   assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
 554 
 555   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 556   satb_qs.set_buffer_size(G1SATBBufferSize);
 557 
 558   _root_regions.init(_g1h, this);
 559 
 560   if (ConcGCThreads > ParallelGCThreads) {
 561     warning("Can't have more ConcGCThreads (" UINT32_FORMAT ") "
 562             "than ParallelGCThreads (" UINT32_FORMAT ").",
 563             ConcGCThreads, ParallelGCThreads);
 564     return;
 565   }
 566   if (ParallelGCThreads == 0) {
 567     // if we are not running with any parallel GC threads we will not
 568     // spawn any marking threads either
 569     _parallel_marking_threads =       0;
 570     _max_parallel_marking_threads =   0;
 571     _sleep_factor             =     0.0;
 572     _marking_task_overhead    =     1.0;
 573   } else {
 574     if (ConcGCThreads > 0) {
 575       // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
 576       // if both are set
 577 
 578       _parallel_marking_threads = (uint) ConcGCThreads;
 579       _max_parallel_marking_threads = _parallel_marking_threads;
 580       _sleep_factor             = 0.0;
 581       _marking_task_overhead    = 1.0;
 582     } else if (G1MarkingOverheadPercent > 0) {
 583       // we will calculate the number of parallel marking threads
 584       // based on a target overhead with respect to the soft real-time
 585       // goal
 586 
 587       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 588       double overall_cm_overhead =
 589         (double) MaxGCPauseMillis * marking_overhead /
 590         (double) GCPauseIntervalMillis;
 591       double cpu_ratio = 1.0 / (double) os::processor_count();
 592       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 593       double marking_task_overhead =
 594         overall_cm_overhead / marking_thread_num *
 595                                                 (double) os::processor_count();
 596       double sleep_factor =
 597                          (1.0 - marking_task_overhead) / marking_task_overhead;
 598 
 599       _parallel_marking_threads = (uint) marking_thread_num;
 600       _max_parallel_marking_threads = _parallel_marking_threads;
 601       _sleep_factor             = sleep_factor;
 602       _marking_task_overhead    = marking_task_overhead;
 603     } else {
 604       _parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
 605       _max_parallel_marking_threads = _parallel_marking_threads;
 606       _sleep_factor             = 0.0;
 607       _marking_task_overhead    = 1.0;
 608     }
 609 
 610     if (parallel_marking_threads() > 1) {
 611       _cleanup_task_overhead = 1.0;
 612     } else {
 613       _cleanup_task_overhead = marking_task_overhead();
 614     }
 615     _cleanup_sleep_factor =
 616                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 617 
 618 #if 0
 619     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 620     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 621     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 622     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 623     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 624 #endif
 625 
 626     guarantee(parallel_marking_threads() > 0, "peace of mind");
 627     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 628          _max_parallel_marking_threads, false, true);
 629     if (_parallel_workers == NULL) {
 630       vm_exit_during_initialization("Failed necessary allocation.");
 631     } else {
 632       _parallel_workers->initialize_workers();
 633     }
 634   }
 635 
 636   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 637     uintx mark_stack_size =
 638       MIN2(MarkStackSizeMax,
 639           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 640     // Verify that the calculated value for MarkStackSize is in range.
 641     // It would be nice to use the private utility routine from Arguments.
 642     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 643       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 644               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 645               mark_stack_size, 1, MarkStackSizeMax);
 646       return;
 647     }
 648     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 649   } else {
 650     // Verify MarkStackSize is in range.
 651     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 652       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 653         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 654           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 655                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 656                   MarkStackSize, 1, MarkStackSizeMax);
 657           return;
 658         }
 659       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 660         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 661           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 662                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 663                   MarkStackSize, MarkStackSizeMax);
 664           return;
 665         }
 666       }
 667     }
 668   }
 669 
 670   if (!_markStack.allocate(MarkStackSize)) {
 671     warning("Failed to allocate CM marking stack");
 672     return;
 673   }
 674 
 675   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 676   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 677 
 678   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 679   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 680 
 681   BitMap::idx_t card_bm_size = _card_bm.size();
 682 
 683   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 684   _active_tasks = _max_worker_id;
 685 
 686   size_t max_regions = (size_t) _g1h->max_regions();
 687   for (uint i = 0; i < _max_worker_id; ++i) {
 688     CMTaskQueue* task_queue = new CMTaskQueue();
 689     task_queue->initialize();
 690     _task_queues->register_queue(i, task_queue);
 691 
 692     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 693     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 694 
 695     _tasks[i] = new CMTask(i, this,
 696                            _count_marked_bytes[i],
 697                            &_count_card_bitmaps[i],
 698                            task_queue, _task_queues);
 699 
 700     _accum_task_vtime[i] = 0.0;
 701   }
 702 
 703   // Calculate the card number for the bottom of the heap. Used
 704   // in biasing indexes into the accounting card bitmaps.
 705   _heap_bottom_card_num =
 706     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 707                                 CardTableModRefBS::card_shift);
 708 
 709   // Clear all the liveness counting data
 710   clear_all_count_data();
 711 
 712   // so that the call below can read a sensible value
 713   _heap_start = (HeapWord*) heap_rs.base();
 714   set_non_marking_state();
 715   _completed_initialization = true;
 716 }
 717 
 718 void ConcurrentMark::update_g1_committed(bool force) {
 719   // If concurrent marking is not in progress, then we do not need to
 720   // update _heap_end.
 721   if (!concurrent_marking_in_progress() && !force) return;
 722 
 723   MemRegion committed = _g1h->g1_committed();
 724   assert(committed.start() == _heap_start, "start shouldn't change");
 725   HeapWord* new_end = committed.end();
 726   if (new_end > _heap_end) {
 727     // The heap has been expanded.
 728 
 729     _heap_end = new_end;
 730   }
 731   // Notice that the heap can also shrink. However, this only happens
 732   // during a Full GC (at least currently) and the entire marking
 733   // phase will bail out and the task will not be restarted. So, let's
 734   // do nothing.
 735 }
 736 
 737 void ConcurrentMark::reset() {
 738   // Starting values for these two. This should be called in a STW
 739   // phase. CM will be notified of any future g1_committed expansions
 740   // will be at the end of evacuation pauses, when tasks are
 741   // inactive.
 742   MemRegion committed = _g1h->g1_committed();
 743   _heap_start = committed.start();
 744   _heap_end   = committed.end();
 745 
 746   // Separated the asserts so that we know which one fires.
 747   assert(_heap_start != NULL, "heap bounds should look ok");
 748   assert(_heap_end != NULL, "heap bounds should look ok");
 749   assert(_heap_start < _heap_end, "heap bounds should look ok");
 750 
 751   // Reset all the marking data structures and any necessary flags
 752   reset_marking_state();
 753 
 754   if (verbose_low()) {
 755     gclog_or_tty->print_cr("[global] resetting");
 756   }
 757 
 758   // We do reset all of them, since different phases will use
 759   // different number of active threads. So, it's easiest to have all
 760   // of them ready.
 761   for (uint i = 0; i < _max_worker_id; ++i) {
 762     _tasks[i]->reset(_nextMarkBitMap);
 763   }
 764 
 765   // we need this to make sure that the flag is on during the evac
 766   // pause with initial mark piggy-backed
 767   set_concurrent_marking_in_progress();
 768 }
 769 
 770 
 771 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 772   _markStack.set_should_expand();
 773   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 774   if (clear_overflow) {
 775     clear_has_overflown();
 776   } else {
 777     assert(has_overflown(), "pre-condition");
 778   }
 779   _finger = _heap_start;
 780 
 781   for (uint i = 0; i < _max_worker_id; ++i) {
 782     CMTaskQueue* queue = _task_queues->queue(i);
 783     queue->set_empty();
 784   }
 785 }
 786 
 787 void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
 788   assert(active_tasks <= _max_worker_id, "we should not have more");
 789 
 790   _active_tasks = active_tasks;
 791   // Need to update the three data structures below according to the
 792   // number of active threads for this phase.
 793   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 794   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 795   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 796 
 797   _concurrent = concurrent;
 798   // We propagate this to all tasks, not just the active ones.
 799   for (uint i = 0; i < _max_worker_id; ++i)
 800     _tasks[i]->set_concurrent(concurrent);
 801 
 802   if (concurrent) {
 803     set_concurrent_marking_in_progress();
 804   } else {
 805     // We currently assume that the concurrent flag has been set to
 806     // false before we start remark. At this point we should also be
 807     // in a STW phase.
 808     assert(!concurrent_marking_in_progress(), "invariant");
 809     assert(_finger == _heap_end, "only way to get here");
 810     update_g1_committed(true);
 811   }
 812 }
 813 
 814 void ConcurrentMark::set_non_marking_state() {
 815   // We set the global marking state to some default values when we're
 816   // not doing marking.
 817   reset_marking_state();
 818   _active_tasks = 0;
 819   clear_concurrent_marking_in_progress();
 820 }
 821 
 822 ConcurrentMark::~ConcurrentMark() {
 823   // The ConcurrentMark instance is never freed.
 824   ShouldNotReachHere();
 825 }
 826 
 827 void ConcurrentMark::clearNextBitmap() {
 828   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 829   G1CollectorPolicy* g1p = g1h->g1_policy();
 830 
 831   // Make sure that the concurrent mark thread looks to still be in
 832   // the current cycle.
 833   guarantee(cmThread()->during_cycle(), "invariant");
 834 
 835   // We are finishing up the current cycle by clearing the next
 836   // marking bitmap and getting it ready for the next cycle. During
 837   // this time no other cycle can start. So, let's make sure that this
 838   // is the case.
 839   guarantee(!g1h->mark_in_progress(), "invariant");
 840 
 841   // clear the mark bitmap (no grey objects to start with).
 842   // We need to do this in chunks and offer to yield in between
 843   // each chunk.
 844   HeapWord* start  = _nextMarkBitMap->startWord();
 845   HeapWord* end    = _nextMarkBitMap->endWord();
 846   HeapWord* cur    = start;
 847   size_t chunkSize = M;
 848   while (cur < end) {
 849     HeapWord* next = cur + chunkSize;
 850     if (next > end) {
 851       next = end;
 852     }
 853     MemRegion mr(cur,next);
 854     _nextMarkBitMap->clearRange(mr);
 855     cur = next;
 856     do_yield_check();
 857 
 858     // Repeat the asserts from above. We'll do them as asserts here to
 859     // minimize their overhead on the product. However, we'll have
 860     // them as guarantees at the beginning / end of the bitmap
 861     // clearing to get some checking in the product.
 862     assert(cmThread()->during_cycle(), "invariant");
 863     assert(!g1h->mark_in_progress(), "invariant");
 864   }
 865 
 866   // Clear the liveness counting data
 867   clear_all_count_data();
 868 
 869   // Repeat the asserts from above.
 870   guarantee(cmThread()->during_cycle(), "invariant");
 871   guarantee(!g1h->mark_in_progress(), "invariant");
 872 }
 873 
 874 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 875 public:
 876   bool doHeapRegion(HeapRegion* r) {
 877     if (!r->continuesHumongous()) {
 878       r->note_start_of_marking();
 879     }
 880     return false;
 881   }
 882 };
 883 
 884 void ConcurrentMark::checkpointRootsInitialPre() {
 885   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 886   G1CollectorPolicy* g1p = g1h->g1_policy();
 887 
 888   _has_aborted = false;
 889 
 890 #ifndef PRODUCT
 891   if (G1PrintReachableAtInitialMark) {
 892     print_reachable("at-cycle-start",
 893                     VerifyOption_G1UsePrevMarking, true /* all */);
 894   }
 895 #endif
 896 
 897   // Initialise marking structures. This has to be done in a STW phase.
 898   reset();
 899 
 900   // For each region note start of marking.
 901   NoteStartOfMarkHRClosure startcl;
 902   g1h->heap_region_iterate(&startcl);
 903 }
 904 
 905 
 906 void ConcurrentMark::checkpointRootsInitialPost() {
 907   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 908 
 909   // If we force an overflow during remark, the remark operation will
 910   // actually abort and we'll restart concurrent marking. If we always
 911   // force an oveflow during remark we'll never actually complete the
 912   // marking phase. So, we initilize this here, at the start of the
 913   // cycle, so that at the remaining overflow number will decrease at
 914   // every remark and we'll eventually not need to cause one.
 915   force_overflow_stw()->init();
 916 
 917   // Start Concurrent Marking weak-reference discovery.
 918   ReferenceProcessor* rp = g1h->ref_processor_cm();
 919   // enable ("weak") refs discovery
 920   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 921   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 922 
 923   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 924   // This is the start of  the marking cycle, we're expected all
 925   // threads to have SATB queues with active set to false.
 926   satb_mq_set.set_active_all_threads(true, /* new active value */
 927                                      false /* expected_active */);
 928 
 929   _root_regions.prepare_for_scan();
 930 
 931   // update_g1_committed() will be called at the end of an evac pause
 932   // when marking is on. So, it's also called at the end of the
 933   // initial-mark pause to update the heap end, if the heap expands
 934   // during it. No need to call it here.
 935 }
 936 
 937 /*
 938  * Notice that in the next two methods, we actually leave the STS
 939  * during the barrier sync and join it immediately afterwards. If we
 940  * do not do this, the following deadlock can occur: one thread could
 941  * be in the barrier sync code, waiting for the other thread to also
 942  * sync up, whereas another one could be trying to yield, while also
 943  * waiting for the other threads to sync up too.
 944  *
 945  * Note, however, that this code is also used during remark and in
 946  * this case we should not attempt to leave / enter the STS, otherwise
 947  * we'll either hit an asseert (debug / fastdebug) or deadlock
 948  * (product). So we should only leave / enter the STS if we are
 949  * operating concurrently.
 950  *
 951  * Because the thread that does the sync barrier has left the STS, it
 952  * is possible to be suspended for a Full GC or an evacuation pause
 953  * could occur. This is actually safe, since the entering the sync
 954  * barrier is one of the last things do_marking_step() does, and it
 955  * doesn't manipulate any data structures afterwards.
 956  */
 957 
 958 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 959   if (verbose_low()) {
 960     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
 961   }
 962 
 963   if (concurrent()) {
 964     ConcurrentGCThread::stsLeave();
 965   }
 966   _first_overflow_barrier_sync.enter();
 967   if (concurrent()) {
 968     ConcurrentGCThread::stsJoin();
 969   }
 970   // at this point everyone should have synced up and not be doing any
 971   // more work
 972 
 973   if (verbose_low()) {
 974     gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
 975   }
 976 
 977   // let the task associated with with worker 0 do this
 978   if (worker_id == 0) {
 979     // task 0 is responsible for clearing the global data structures
 980     // We should be here because of an overflow. During STW we should
 981     // not clear the overflow flag since we rely on it being true when
 982     // we exit this method to abort the pause and restart concurent
 983     // marking.
 984     reset_marking_state(concurrent() /* clear_overflow */);
 985     force_overflow()->update();
 986 
 987     if (G1Log::fine()) {
 988       gclog_or_tty->date_stamp(PrintGCDateStamps);
 989       gclog_or_tty->stamp(PrintGCTimeStamps);
 990       gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
 991     }
 992   }
 993 
 994   // after this, each task should reset its own data structures then
 995   // then go into the second barrier
 996 }
 997 
 998 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 999   if (verbose_low()) {
1000     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1001   }
1002 
1003   if (concurrent()) {
1004     ConcurrentGCThread::stsLeave();
1005   }
1006   _second_overflow_barrier_sync.enter();
1007   if (concurrent()) {
1008     ConcurrentGCThread::stsJoin();
1009   }
1010   // at this point everything should be re-initialised and ready to go
1011 
1012   if (verbose_low()) {
1013     gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1014   }
1015 }
1016 
1017 #ifndef PRODUCT
1018 void ForceOverflowSettings::init() {
1019   _num_remaining = G1ConcMarkForceOverflow;
1020   _force = false;
1021   update();
1022 }
1023 
1024 void ForceOverflowSettings::update() {
1025   if (_num_remaining > 0) {
1026     _num_remaining -= 1;
1027     _force = true;
1028   } else {
1029     _force = false;
1030   }
1031 }
1032 
1033 bool ForceOverflowSettings::should_force() {
1034   if (_force) {
1035     _force = false;
1036     return true;
1037   } else {
1038     return false;
1039   }
1040 }
1041 #endif // !PRODUCT
1042 
1043 class CMConcurrentMarkingTask: public AbstractGangTask {
1044 private:
1045   ConcurrentMark*       _cm;
1046   ConcurrentMarkThread* _cmt;
1047 
1048 public:
1049   void work(uint worker_id) {
1050     assert(Thread::current()->is_ConcurrentGC_thread(),
1051            "this should only be done by a conc GC thread");
1052     ResourceMark rm;
1053 
1054     double start_vtime = os::elapsedVTime();
1055 
1056     ConcurrentGCThread::stsJoin();
1057 
1058     assert(worker_id < _cm->active_tasks(), "invariant");
1059     CMTask* the_task = _cm->task(worker_id);
1060     the_task->record_start_time();
1061     if (!_cm->has_aborted()) {
1062       do {
1063         double start_vtime_sec = os::elapsedVTime();
1064         double start_time_sec = os::elapsedTime();
1065         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1066 
1067         the_task->do_marking_step(mark_step_duration_ms,
1068                                   true /* do_stealing    */,
1069                                   true /* do_termination */);
1070 
1071         double end_time_sec = os::elapsedTime();
1072         double end_vtime_sec = os::elapsedVTime();
1073         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1074         double elapsed_time_sec = end_time_sec - start_time_sec;
1075         _cm->clear_has_overflown();
1076 
1077         bool ret = _cm->do_yield_check(worker_id);
1078 
1079         jlong sleep_time_ms;
1080         if (!_cm->has_aborted() && the_task->has_aborted()) {
1081           sleep_time_ms =
1082             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1083           ConcurrentGCThread::stsLeave();
1084           os::sleep(Thread::current(), sleep_time_ms, false);
1085           ConcurrentGCThread::stsJoin();
1086         }
1087         double end_time2_sec = os::elapsedTime();
1088         double elapsed_time2_sec = end_time2_sec - start_time_sec;
1089 
1090 #if 0
1091           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
1092                                  "overhead %1.4lf",
1093                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
1094                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
1095           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
1096                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
1097 #endif
1098       } while (!_cm->has_aborted() && the_task->has_aborted());
1099     }
1100     the_task->record_end_time();
1101     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1102 
1103     ConcurrentGCThread::stsLeave();
1104 
1105     double end_vtime = os::elapsedVTime();
1106     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1107   }
1108 
1109   CMConcurrentMarkingTask(ConcurrentMark* cm,
1110                           ConcurrentMarkThread* cmt) :
1111       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1112 
1113   ~CMConcurrentMarkingTask() { }
1114 };
1115 
1116 // Calculates the number of active workers for a concurrent
1117 // phase.
1118 uint ConcurrentMark::calc_parallel_marking_threads() {
1119   if (G1CollectedHeap::use_parallel_gc_threads()) {
1120     uint n_conc_workers = 0;
1121     if (!UseDynamicNumberOfGCThreads ||
1122         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1123          !ForceDynamicNumberOfGCThreads)) {
1124       n_conc_workers = max_parallel_marking_threads();
1125     } else {
1126       n_conc_workers =
1127         AdaptiveSizePolicy::calc_default_active_workers(
1128                                      max_parallel_marking_threads(),
1129                                      1, /* Minimum workers */
1130                                      parallel_marking_threads(),
1131                                      Threads::number_of_non_daemon_threads());
1132       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1133       // that scaling has already gone into "_max_parallel_marking_threads".
1134     }
1135     assert(n_conc_workers > 0, "Always need at least 1");
1136     return n_conc_workers;
1137   }
1138   // If we are not running with any parallel GC threads we will not
1139   // have spawned any marking threads either. Hence the number of
1140   // concurrent workers should be 0.
1141   return 0;
1142 }
1143 
1144 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1145   // Currently, only survivors can be root regions.
1146   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1147   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1148 
1149   const uintx interval = PrefetchScanIntervalInBytes;
1150   HeapWord* curr = hr->bottom();
1151   const HeapWord* end = hr->top();
1152   while (curr < end) {
1153     Prefetch::read(curr, interval);
1154     oop obj = oop(curr);
1155     int size = obj->oop_iterate(&cl);
1156     assert(size == obj->size(), "sanity");
1157     curr += size;
1158   }
1159 }
1160 
1161 class CMRootRegionScanTask : public AbstractGangTask {
1162 private:
1163   ConcurrentMark* _cm;
1164 
1165 public:
1166   CMRootRegionScanTask(ConcurrentMark* cm) :
1167     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1168 
1169   void work(uint worker_id) {
1170     assert(Thread::current()->is_ConcurrentGC_thread(),
1171            "this should only be done by a conc GC thread");
1172 
1173     CMRootRegions* root_regions = _cm->root_regions();
1174     HeapRegion* hr = root_regions->claim_next();
1175     while (hr != NULL) {
1176       _cm->scanRootRegion(hr, worker_id);
1177       hr = root_regions->claim_next();
1178     }
1179   }
1180 };
1181 
1182 void ConcurrentMark::scanRootRegions() {
1183   // scan_in_progress() will have been set to true only if there was
1184   // at least one root region to scan. So, if it's false, we
1185   // should not attempt to do any further work.
1186   if (root_regions()->scan_in_progress()) {
1187     _parallel_marking_threads = calc_parallel_marking_threads();
1188     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1189            "Maximum number of marking threads exceeded");
1190     uint active_workers = MAX2(1U, parallel_marking_threads());
1191 
1192     CMRootRegionScanTask task(this);
1193     if (parallel_marking_threads() > 0) {
1194       _parallel_workers->set_active_workers((int) active_workers);
1195       _parallel_workers->run_task(&task);
1196     } else {
1197       task.work(0);
1198     }
1199 
1200     // It's possible that has_aborted() is true here without actually
1201     // aborting the survivor scan earlier. This is OK as it's
1202     // mainly used for sanity checking.
1203     root_regions()->scan_finished();
1204   }
1205 }
1206 
1207 void ConcurrentMark::markFromRoots() {
1208   // we might be tempted to assert that:
1209   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1210   //        "inconsistent argument?");
1211   // However that wouldn't be right, because it's possible that
1212   // a safepoint is indeed in progress as a younger generation
1213   // stop-the-world GC happens even as we mark in this generation.
1214 
1215   _restart_for_overflow = false;
1216   force_overflow_conc()->init();
1217 
1218   // _g1h has _n_par_threads
1219   _parallel_marking_threads = calc_parallel_marking_threads();
1220   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1221     "Maximum number of marking threads exceeded");
1222 
1223   uint active_workers = MAX2(1U, parallel_marking_threads());
1224 
1225   // Parallel task terminator is set in "set_phase()"
1226   set_phase(active_workers, true /* concurrent */);
1227 
1228   CMConcurrentMarkingTask markingTask(this, cmThread());
1229   if (parallel_marking_threads() > 0) {
1230     _parallel_workers->set_active_workers((int)active_workers);
1231     // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
1232     // and the decisions on that MT processing is made elsewhere.
1233     assert(_parallel_workers->active_workers() > 0, "Should have been set");
1234     _parallel_workers->run_task(&markingTask);
1235   } else {
1236     markingTask.work(0);
1237   }
1238   print_stats();
1239 }
1240 
1241 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1242   // world is stopped at this checkpoint
1243   assert(SafepointSynchronize::is_at_safepoint(),
1244          "world should be stopped");
1245 
1246   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1247 
1248   // If a full collection has happened, we shouldn't do this.
1249   if (has_aborted()) {
1250     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1251     return;
1252   }
1253 
1254   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1255 
1256   if (VerifyDuringGC) {
1257     HandleMark hm;  // handle scope
1258     gclog_or_tty->print(" VerifyDuringGC:(before)");
1259     Universe::heap()->prepare_for_verify();
1260     Universe::verify(/* silent */ false,
1261                      /* option */ VerifyOption_G1UsePrevMarking);
1262   }
1263   g1h->check_bitmaps("Remark Start");
1264 
1265   G1CollectorPolicy* g1p = g1h->g1_policy();
1266   g1p->record_concurrent_mark_remark_start();
1267 
1268   double start = os::elapsedTime();
1269 
1270   checkpointRootsFinalWork();
1271 
1272   double mark_work_end = os::elapsedTime();
1273 
1274   weakRefsWork(clear_all_soft_refs);
1275 
1276   if (has_overflown()) {
1277     // Oops.  We overflowed.  Restart concurrent marking.
1278     _restart_for_overflow = true;
1279     // Clear the marking state because we will be restarting
1280     // marking due to overflowing the global mark stack.
1281     reset_marking_state();
1282     if (G1TraceMarkStackOverflow) {
1283       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1284     }
1285   } else {
1286     // Aggregate the per-task counting data that we have accumulated
1287     // while marking.
1288     aggregate_count_data();
1289 
1290     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1291     // We're done with marking.
1292     // This is the end of  the marking cycle, we're expected all
1293     // threads to have SATB queues with active set to true.
1294     satb_mq_set.set_active_all_threads(false, /* new active value */
1295                                        true /* expected_active */);
1296 
1297     if (VerifyDuringGC) {
1298       HandleMark hm;  // handle scope
1299       gclog_or_tty->print(" VerifyDuringGC:(after)");
1300       Universe::heap()->prepare_for_verify();
1301       Universe::verify(/* silent */ false,
1302                        /* option */ VerifyOption_G1UseNextMarking);
1303     }
1304     g1h->check_bitmaps("Remark End");
1305     assert(!restart_for_overflow(), "sanity");
1306     // Completely reset the marking state since marking completed
1307     set_non_marking_state();
1308   }
1309 
1310   // Expand the marking stack, if we have to and if we can.
1311   if (_markStack.should_expand()) {
1312     _markStack.expand();
1313   }
1314 
1315 #if VERIFY_OBJS_PROCESSED
1316   _scan_obj_cl.objs_processed = 0;
1317   ThreadLocalObjQueue::objs_enqueued = 0;
1318 #endif
1319 
1320   // Statistics
1321   double now = os::elapsedTime();
1322   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1323   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1324   _remark_times.add((now - start) * 1000.0);
1325 
1326   g1p->record_concurrent_mark_remark_end();
1327 }
1328 
1329 // Base class of the closures that finalize and verify the
1330 // liveness counting data.
1331 class CMCountDataClosureBase: public HeapRegionClosure {
1332 protected:
1333   G1CollectedHeap* _g1h;
1334   ConcurrentMark* _cm;
1335   CardTableModRefBS* _ct_bs;
1336 
1337   BitMap* _region_bm;
1338   BitMap* _card_bm;
1339 
1340   // Takes a region that's not empty (i.e., it has at least one
1341   // live object in it and sets its corresponding bit on the region
1342   // bitmap to 1. If the region is "starts humongous" it will also set
1343   // to 1 the bits on the region bitmap that correspond to its
1344   // associated "continues humongous" regions.
1345   void set_bit_for_region(HeapRegion* hr) {
1346     assert(!hr->continuesHumongous(), "should have filtered those out");
1347 
1348     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1349     if (!hr->startsHumongous()) {
1350       // Normal (non-humongous) case: just set the bit.
1351       _region_bm->par_at_put(index, true);
1352     } else {
1353       // Starts humongous case: calculate how many regions are part of
1354       // this humongous region and then set the bit range.
1355       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1356       _region_bm->par_at_put_range(index, end_index, true);
1357     }
1358   }
1359 
1360 public:
1361   CMCountDataClosureBase(G1CollectedHeap* g1h,
1362                          BitMap* region_bm, BitMap* card_bm):
1363     _g1h(g1h), _cm(g1h->concurrent_mark()),
1364     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1365     _region_bm(region_bm), _card_bm(card_bm) { }
1366 };
1367 
1368 // Closure that calculates the # live objects per region. Used
1369 // for verification purposes during the cleanup pause.
1370 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1371   CMBitMapRO* _bm;
1372   size_t _region_marked_bytes;
1373 
1374 public:
1375   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1376                          BitMap* region_bm, BitMap* card_bm) :
1377     CMCountDataClosureBase(g1h, region_bm, card_bm),
1378     _bm(bm), _region_marked_bytes(0) { }
1379 
1380   bool doHeapRegion(HeapRegion* hr) {
1381 
1382     if (hr->continuesHumongous()) {
1383       // We will ignore these here and process them when their
1384       // associated "starts humongous" region is processed (see
1385       // set_bit_for_heap_region()). Note that we cannot rely on their
1386       // associated "starts humongous" region to have their bit set to
1387       // 1 since, due to the region chunking in the parallel region
1388       // iteration, a "continues humongous" region might be visited
1389       // before its associated "starts humongous".
1390       return false;
1391     }
1392 
1393     HeapWord* ntams = hr->next_top_at_mark_start();
1394     HeapWord* start = hr->bottom();
1395 
1396     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1397            err_msg("Preconditions not met - "
1398                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1399                    start, ntams, hr->end()));
1400 
1401     // Find the first marked object at or after "start".
1402     start = _bm->getNextMarkedWordAddress(start, ntams);
1403 
1404     size_t marked_bytes = 0;
1405 
1406     while (start < ntams) {
1407       oop obj = oop(start);
1408       int obj_sz = obj->size();
1409       HeapWord* obj_end = start + obj_sz;
1410 
1411       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1412       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1413 
1414       // Note: if we're looking at the last region in heap - obj_end
1415       // could be actually just beyond the end of the heap; end_idx
1416       // will then correspond to a (non-existent) card that is also
1417       // just beyond the heap.
1418       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1419         // end of object is not card aligned - increment to cover
1420         // all the cards spanned by the object
1421         end_idx += 1;
1422       }
1423 
1424       // Set the bits in the card BM for the cards spanned by this object.
1425       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1426 
1427       // Add the size of this object to the number of marked bytes.
1428       marked_bytes += (size_t)obj_sz * HeapWordSize;
1429 
1430       // Find the next marked object after this one.
1431       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1432     }
1433 
1434     // Mark the allocated-since-marking portion...
1435     HeapWord* top = hr->top();
1436     if (ntams < top) {
1437       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1438       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1439 
1440       // Note: if we're looking at the last region in heap - top
1441       // could be actually just beyond the end of the heap; end_idx
1442       // will then correspond to a (non-existent) card that is also
1443       // just beyond the heap.
1444       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1445         // end of object is not card aligned - increment to cover
1446         // all the cards spanned by the object
1447         end_idx += 1;
1448       }
1449       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1450 
1451       // This definitely means the region has live objects.
1452       set_bit_for_region(hr);
1453     }
1454 
1455     // Update the live region bitmap.
1456     if (marked_bytes > 0) {
1457       set_bit_for_region(hr);
1458     }
1459 
1460     // Set the marked bytes for the current region so that
1461     // it can be queried by a calling verificiation routine
1462     _region_marked_bytes = marked_bytes;
1463 
1464     return false;
1465   }
1466 
1467   size_t region_marked_bytes() const { return _region_marked_bytes; }
1468 };
1469 
1470 // Heap region closure used for verifying the counting data
1471 // that was accumulated concurrently and aggregated during
1472 // the remark pause. This closure is applied to the heap
1473 // regions during the STW cleanup pause.
1474 
1475 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1476   G1CollectedHeap* _g1h;
1477   ConcurrentMark* _cm;
1478   CalcLiveObjectsClosure _calc_cl;
1479   BitMap* _region_bm;   // Region BM to be verified
1480   BitMap* _card_bm;     // Card BM to be verified
1481   bool _verbose;        // verbose output?
1482 
1483   BitMap* _exp_region_bm; // Expected Region BM values
1484   BitMap* _exp_card_bm;   // Expected card BM values
1485 
1486   int _failures;
1487 
1488 public:
1489   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1490                                 BitMap* region_bm,
1491                                 BitMap* card_bm,
1492                                 BitMap* exp_region_bm,
1493                                 BitMap* exp_card_bm,
1494                                 bool verbose) :
1495     _g1h(g1h), _cm(g1h->concurrent_mark()),
1496     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1497     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1498     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1499     _failures(0) { }
1500 
1501   int failures() const { return _failures; }
1502 
1503   bool doHeapRegion(HeapRegion* hr) {
1504     if (hr->continuesHumongous()) {
1505       // We will ignore these here and process them when their
1506       // associated "starts humongous" region is processed (see
1507       // set_bit_for_heap_region()). Note that we cannot rely on their
1508       // associated "starts humongous" region to have their bit set to
1509       // 1 since, due to the region chunking in the parallel region
1510       // iteration, a "continues humongous" region might be visited
1511       // before its associated "starts humongous".
1512       return false;
1513     }
1514 
1515     int failures = 0;
1516 
1517     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1518     // this region and set the corresponding bits in the expected region
1519     // and card bitmaps.
1520     bool res = _calc_cl.doHeapRegion(hr);
1521     assert(res == false, "should be continuing");
1522 
1523     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1524                     Mutex::_no_safepoint_check_flag);
1525 
1526     // Verify the marked bytes for this region.
1527     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1528     size_t act_marked_bytes = hr->next_marked_bytes();
1529 
1530     // We're not OK if expected marked bytes > actual marked bytes. It means
1531     // we have missed accounting some objects during the actual marking.
1532     if (exp_marked_bytes > act_marked_bytes) {
1533       if (_verbose) {
1534         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1535                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1536                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
1537       }
1538       failures += 1;
1539     }
1540 
1541     // Verify the bit, for this region, in the actual and expected
1542     // (which was just calculated) region bit maps.
1543     // We're not OK if the bit in the calculated expected region
1544     // bitmap is set and the bit in the actual region bitmap is not.
1545     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1546 
1547     bool expected = _exp_region_bm->at(index);
1548     bool actual = _region_bm->at(index);
1549     if (expected && !actual) {
1550       if (_verbose) {
1551         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1552                                "expected: %s, actual: %s",
1553                                hr->hrs_index(),
1554                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1555       }
1556       failures += 1;
1557     }
1558 
1559     // Verify that the card bit maps for the cards spanned by the current
1560     // region match. We have an error if we have a set bit in the expected
1561     // bit map and the corresponding bit in the actual bitmap is not set.
1562 
1563     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1564     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1565 
1566     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1567       expected = _exp_card_bm->at(i);
1568       actual = _card_bm->at(i);
1569 
1570       if (expected && !actual) {
1571         if (_verbose) {
1572           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1573                                  "expected: %s, actual: %s",
1574                                  hr->hrs_index(), i,
1575                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1576         }
1577         failures += 1;
1578       }
1579     }
1580 
1581     if (failures > 0 && _verbose)  {
1582       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1583                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1584                              HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
1585                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1586     }
1587 
1588     _failures += failures;
1589 
1590     // We could stop iteration over the heap when we
1591     // find the first violating region by returning true.
1592     return false;
1593   }
1594 };
1595 
1596 
1597 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1598 protected:
1599   G1CollectedHeap* _g1h;
1600   ConcurrentMark* _cm;
1601   BitMap* _actual_region_bm;
1602   BitMap* _actual_card_bm;
1603 
1604   uint    _n_workers;
1605 
1606   BitMap* _expected_region_bm;
1607   BitMap* _expected_card_bm;
1608 
1609   int  _failures;
1610   bool _verbose;
1611 
1612 public:
1613   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1614                             BitMap* region_bm, BitMap* card_bm,
1615                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1616     : AbstractGangTask("G1 verify final counting"),
1617       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1618       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1619       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1620       _failures(0), _verbose(false),
1621       _n_workers(0) {
1622     assert(VerifyDuringGC, "don't call this otherwise");
1623 
1624     // Use the value already set as the number of active threads
1625     // in the call to run_task().
1626     if (G1CollectedHeap::use_parallel_gc_threads()) {
1627       assert( _g1h->workers()->active_workers() > 0,
1628         "Should have been previously set");
1629       _n_workers = _g1h->workers()->active_workers();
1630     } else {
1631       _n_workers = 1;
1632     }
1633 
1634     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1635     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1636 
1637     _verbose = _cm->verbose_medium();
1638   }
1639 
1640   void work(uint worker_id) {
1641     assert(worker_id < _n_workers, "invariant");
1642 
1643     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1644                                             _actual_region_bm, _actual_card_bm,
1645                                             _expected_region_bm,
1646                                             _expected_card_bm,
1647                                             _verbose);
1648 
1649     if (G1CollectedHeap::use_parallel_gc_threads()) {
1650       _g1h->heap_region_par_iterate_chunked(&verify_cl,
1651                                             worker_id,
1652                                             _n_workers,
1653                                             HeapRegion::VerifyCountClaimValue);
1654     } else {
1655       _g1h->heap_region_iterate(&verify_cl);
1656     }
1657 
1658     Atomic::add(verify_cl.failures(), &_failures);
1659   }
1660 
1661   int failures() const { return _failures; }
1662 };
1663 
1664 // Closure that finalizes the liveness counting data.
1665 // Used during the cleanup pause.
1666 // Sets the bits corresponding to the interval [NTAMS, top]
1667 // (which contains the implicitly live objects) in the
1668 // card liveness bitmap. Also sets the bit for each region,
1669 // containing live data, in the region liveness bitmap.
1670 
1671 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1672  public:
1673   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1674                               BitMap* region_bm,
1675                               BitMap* card_bm) :
1676     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1677 
1678   bool doHeapRegion(HeapRegion* hr) {
1679 
1680     if (hr->continuesHumongous()) {
1681       // We will ignore these here and process them when their
1682       // associated "starts humongous" region is processed (see
1683       // set_bit_for_heap_region()). Note that we cannot rely on their
1684       // associated "starts humongous" region to have their bit set to
1685       // 1 since, due to the region chunking in the parallel region
1686       // iteration, a "continues humongous" region might be visited
1687       // before its associated "starts humongous".
1688       return false;
1689     }
1690 
1691     HeapWord* ntams = hr->next_top_at_mark_start();
1692     HeapWord* top   = hr->top();
1693 
1694     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1695 
1696     // Mark the allocated-since-marking portion...
1697     if (ntams < top) {
1698       // This definitely means the region has live objects.
1699       set_bit_for_region(hr);
1700 
1701       // Now set the bits in the card bitmap for [ntams, top)
1702       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1703       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1704 
1705       // Note: if we're looking at the last region in heap - top
1706       // could be actually just beyond the end of the heap; end_idx
1707       // will then correspond to a (non-existent) card that is also
1708       // just beyond the heap.
1709       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1710         // end of object is not card aligned - increment to cover
1711         // all the cards spanned by the object
1712         end_idx += 1;
1713       }
1714 
1715       assert(end_idx <= _card_bm->size(),
1716              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1717                      end_idx, _card_bm->size()));
1718       assert(start_idx < _card_bm->size(),
1719              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1720                      start_idx, _card_bm->size()));
1721 
1722       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1723     }
1724 
1725     // Set the bit for the region if it contains live data
1726     if (hr->next_marked_bytes() > 0) {
1727       set_bit_for_region(hr);
1728     }
1729 
1730     return false;
1731   }
1732 };
1733 
1734 class G1ParFinalCountTask: public AbstractGangTask {
1735 protected:
1736   G1CollectedHeap* _g1h;
1737   ConcurrentMark* _cm;
1738   BitMap* _actual_region_bm;
1739   BitMap* _actual_card_bm;
1740 
1741   uint    _n_workers;
1742 
1743 public:
1744   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1745     : AbstractGangTask("G1 final counting"),
1746       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1747       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1748       _n_workers(0) {
1749     // Use the value already set as the number of active threads
1750     // in the call to run_task().
1751     if (G1CollectedHeap::use_parallel_gc_threads()) {
1752       assert( _g1h->workers()->active_workers() > 0,
1753         "Should have been previously set");
1754       _n_workers = _g1h->workers()->active_workers();
1755     } else {
1756       _n_workers = 1;
1757     }
1758   }
1759 
1760   void work(uint worker_id) {
1761     assert(worker_id < _n_workers, "invariant");
1762 
1763     FinalCountDataUpdateClosure final_update_cl(_g1h,
1764                                                 _actual_region_bm,
1765                                                 _actual_card_bm);
1766 
1767     if (G1CollectedHeap::use_parallel_gc_threads()) {
1768       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
1769                                             worker_id,
1770                                             _n_workers,
1771                                             HeapRegion::FinalCountClaimValue);
1772     } else {
1773       _g1h->heap_region_iterate(&final_update_cl);
1774     }
1775   }
1776 };
1777 
1778 class G1ParNoteEndTask;
1779 
1780 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1781   G1CollectedHeap* _g1;
1782   int _worker_num;
1783   size_t _max_live_bytes;
1784   uint _regions_claimed;
1785   size_t _freed_bytes;
1786   FreeRegionList* _local_cleanup_list;
1787   OldRegionSet* _old_proxy_set;
1788   HumongousRegionSet* _humongous_proxy_set;
1789   HRRSCleanupTask* _hrrs_cleanup_task;
1790   double _claimed_region_time;
1791   double _max_region_time;
1792 
1793 public:
1794   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1795                              int worker_num,
1796                              FreeRegionList* local_cleanup_list,
1797                              OldRegionSet* old_proxy_set,
1798                              HumongousRegionSet* humongous_proxy_set,
1799                              HRRSCleanupTask* hrrs_cleanup_task) :
1800     _g1(g1), _worker_num(worker_num),
1801     _max_live_bytes(0), _regions_claimed(0),
1802     _freed_bytes(0),
1803     _claimed_region_time(0.0), _max_region_time(0.0),
1804     _local_cleanup_list(local_cleanup_list),
1805     _old_proxy_set(old_proxy_set),
1806     _humongous_proxy_set(humongous_proxy_set),
1807     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1808 
1809   size_t freed_bytes() { return _freed_bytes; }
1810 
1811   bool doHeapRegion(HeapRegion *hr) {
1812     if (hr->continuesHumongous()) {
1813       return false;
1814     }
1815     // We use a claim value of zero here because all regions
1816     // were claimed with value 1 in the FinalCount task.
1817     _g1->reset_gc_time_stamps(hr);
1818     double start = os::elapsedTime();
1819     _regions_claimed++;
1820     hr->note_end_of_marking();
1821     _max_live_bytes += hr->max_live_bytes();
1822     _g1->free_region_if_empty(hr,
1823                               &_freed_bytes,
1824                               _local_cleanup_list,
1825                               _old_proxy_set,
1826                               _humongous_proxy_set,
1827                               _hrrs_cleanup_task,
1828                               true /* par */);
1829     double region_time = (os::elapsedTime() - start);
1830     _claimed_region_time += region_time;
1831     if (region_time > _max_region_time) {
1832       _max_region_time = region_time;
1833     }
1834     return false;
1835   }
1836 
1837   size_t max_live_bytes() { return _max_live_bytes; }
1838   uint regions_claimed() { return _regions_claimed; }
1839   double claimed_region_time_sec() { return _claimed_region_time; }
1840   double max_region_time_sec() { return _max_region_time; }
1841 };
1842 
1843 class G1ParNoteEndTask: public AbstractGangTask {
1844   friend class G1NoteEndOfConcMarkClosure;
1845 
1846 protected:
1847   G1CollectedHeap* _g1h;
1848   size_t _max_live_bytes;
1849   size_t _freed_bytes;
1850   FreeRegionList* _cleanup_list;
1851 
1852 public:
1853   G1ParNoteEndTask(G1CollectedHeap* g1h,
1854                    FreeRegionList* cleanup_list) :
1855     AbstractGangTask("G1 note end"), _g1h(g1h),
1856     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1857 
1858   void work(uint worker_id) {
1859     double start = os::elapsedTime();
1860     FreeRegionList local_cleanup_list("Local Cleanup List");
1861     OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
1862     HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
1863     HRRSCleanupTask hrrs_cleanup_task;
1864     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
1865                                            &old_proxy_set,
1866                                            &humongous_proxy_set,
1867                                            &hrrs_cleanup_task);
1868     if (G1CollectedHeap::use_parallel_gc_threads()) {
1869       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1870                                             _g1h->workers()->active_workers(),
1871                                             HeapRegion::NoteEndClaimValue);
1872     } else {
1873       _g1h->heap_region_iterate(&g1_note_end);
1874     }
1875     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1876 
1877     // Now update the lists
1878     _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
1879                                             NULL /* free_list */,
1880                                             &old_proxy_set,
1881                                             &humongous_proxy_set,
1882                                             true /* par */);
1883     {
1884       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1885       _max_live_bytes += g1_note_end.max_live_bytes();
1886       _freed_bytes += g1_note_end.freed_bytes();
1887 
1888       // If we iterate over the global cleanup list at the end of
1889       // cleanup to do this printing we will not guarantee to only
1890       // generate output for the newly-reclaimed regions (the list
1891       // might not be empty at the beginning of cleanup; we might
1892       // still be working on its previous contents). So we do the
1893       // printing here, before we append the new regions to the global
1894       // cleanup list.
1895 
1896       G1HRPrinter* hr_printer = _g1h->hr_printer();
1897       if (hr_printer->is_active()) {
1898         HeapRegionLinkedListIterator iter(&local_cleanup_list);
1899         while (iter.more_available()) {
1900           HeapRegion* hr = iter.get_next();
1901           hr_printer->cleanup(hr);
1902         }
1903       }
1904 
1905       _cleanup_list->add_as_tail(&local_cleanup_list);
1906       assert(local_cleanup_list.is_empty(), "post-condition");
1907 
1908       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1909     }
1910   }
1911   size_t max_live_bytes() { return _max_live_bytes; }
1912   size_t freed_bytes() { return _freed_bytes; }
1913 };
1914 
1915 class G1ParScrubRemSetTask: public AbstractGangTask {
1916 protected:
1917   G1RemSet* _g1rs;
1918   BitMap* _region_bm;
1919   BitMap* _card_bm;
1920 public:
1921   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
1922                        BitMap* region_bm, BitMap* card_bm) :
1923     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1924     _region_bm(region_bm), _card_bm(card_bm) { }
1925 
1926   void work(uint worker_id) {
1927     if (G1CollectedHeap::use_parallel_gc_threads()) {
1928       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1929                        HeapRegion::ScrubRemSetClaimValue);
1930     } else {
1931       _g1rs->scrub(_region_bm, _card_bm);
1932     }
1933   }
1934 
1935 };
1936 
1937 void ConcurrentMark::cleanup() {
1938   // world is stopped at this checkpoint
1939   assert(SafepointSynchronize::is_at_safepoint(),
1940          "world should be stopped");
1941   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1942 
1943   // If a full collection has happened, we shouldn't do this.
1944   if (has_aborted()) {
1945     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1946     return;
1947   }
1948 
1949   HRSPhaseSetter x(HRSPhaseCleanup);
1950   g1h->verify_region_sets_optional();
1951 
1952   if (VerifyDuringGC) {
1953     HandleMark hm;  // handle scope
1954     gclog_or_tty->print(" VerifyDuringGC:(before)");
1955     Universe::heap()->prepare_for_verify();
1956     Universe::verify(/* silent */ false,
1957                      /* option */ VerifyOption_G1UsePrevMarking);
1958   }
1959   g1h->check_bitmaps("Cleanup Start");
1960 
1961   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
1962   g1p->record_concurrent_mark_cleanup_start();
1963 
1964   double start = os::elapsedTime();
1965 
1966   HeapRegionRemSet::reset_for_cleanup_tasks();
1967 
1968   uint n_workers;
1969 
1970   // Do counting once more with the world stopped for good measure.
1971   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1972 
1973   if (G1CollectedHeap::use_parallel_gc_threads()) {
1974    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1975            "sanity check");
1976 
1977     g1h->set_par_threads();
1978     n_workers = g1h->n_par_threads();
1979     assert(g1h->n_par_threads() == n_workers,
1980            "Should not have been reset");
1981     g1h->workers()->run_task(&g1_par_count_task);
1982     // Done with the parallel phase so reset to 0.
1983     g1h->set_par_threads(0);
1984 
1985     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
1986            "sanity check");
1987   } else {
1988     n_workers = 1;
1989     g1_par_count_task.work(0);
1990   }
1991 
1992   if (VerifyDuringGC) {
1993     // Verify that the counting data accumulated during marking matches
1994     // that calculated by walking the marking bitmap.
1995 
1996     // Bitmaps to hold expected values
1997     BitMap expected_region_bm(_region_bm.size(), false);
1998     BitMap expected_card_bm(_card_bm.size(), false);
1999 
2000     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2001                                                  &_region_bm,
2002                                                  &_card_bm,
2003                                                  &expected_region_bm,
2004                                                  &expected_card_bm);
2005 
2006     if (G1CollectedHeap::use_parallel_gc_threads()) {
2007       g1h->set_par_threads((int)n_workers);
2008       g1h->workers()->run_task(&g1_par_verify_task);
2009       // Done with the parallel phase so reset to 0.
2010       g1h->set_par_threads(0);
2011 
2012       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
2013              "sanity check");
2014     } else {
2015       g1_par_verify_task.work(0);
2016     }
2017 
2018     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2019   }
2020 
2021   size_t start_used_bytes = g1h->used();
2022   g1h->set_marking_complete();
2023 
2024   double count_end = os::elapsedTime();
2025   double this_final_counting_time = (count_end - start);
2026   _total_counting_time += this_final_counting_time;
2027 
2028   if (G1PrintRegionLivenessInfo) {
2029     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2030     _g1h->heap_region_iterate(&cl);
2031   }
2032 
2033   // Install newly created mark bitMap as "prev".
2034   swapMarkBitMaps();
2035 
2036   g1h->reset_gc_time_stamp();
2037 
2038   // Note end of marking in all heap regions.
2039   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2040   if (G1CollectedHeap::use_parallel_gc_threads()) {
2041     g1h->set_par_threads((int)n_workers);
2042     g1h->workers()->run_task(&g1_par_note_end_task);
2043     g1h->set_par_threads(0);
2044 
2045     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
2046            "sanity check");
2047   } else {
2048     g1_par_note_end_task.work(0);
2049   }
2050   g1h->check_gc_time_stamps();
2051 
2052   if (!cleanup_list_is_empty()) {
2053     // The cleanup list is not empty, so we'll have to process it
2054     // concurrently. Notify anyone else that might be wanting free
2055     // regions that there will be more free regions coming soon.
2056     g1h->set_free_regions_coming();
2057   }
2058 
2059   // call below, since it affects the metric by which we sort the heap
2060   // regions.
2061   if (G1ScrubRemSets) {
2062     double rs_scrub_start = os::elapsedTime();
2063     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2064     if (G1CollectedHeap::use_parallel_gc_threads()) {
2065       g1h->set_par_threads((int)n_workers);
2066       g1h->workers()->run_task(&g1_par_scrub_rs_task);
2067       g1h->set_par_threads(0);
2068 
2069       assert(g1h->check_heap_region_claim_values(
2070                                             HeapRegion::ScrubRemSetClaimValue),
2071              "sanity check");
2072     } else {
2073       g1_par_scrub_rs_task.work(0);
2074     }
2075 
2076     double rs_scrub_end = os::elapsedTime();
2077     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2078     _total_rs_scrub_time += this_rs_scrub_time;
2079   }
2080 
2081   // this will also free any regions totally full of garbage objects,
2082   // and sort the regions.
2083   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2084 
2085   // Statistics.
2086   double end = os::elapsedTime();
2087   _cleanup_times.add((end - start) * 1000.0);
2088 
2089   if (G1Log::fine()) {
2090     g1h->print_size_transition(gclog_or_tty,
2091                                start_used_bytes,
2092                                g1h->used(),
2093                                g1h->capacity());
2094   }
2095 
2096   // Clean up will have freed any regions completely full of garbage.
2097   // Update the soft reference policy with the new heap occupancy.
2098   Universe::update_heap_info_at_gc();
2099 
2100   // We need to make this be a "collection" so any collection pause that
2101   // races with it goes around and waits for completeCleanup to finish.
2102   g1h->increment_total_collections();
2103 
2104   // We reclaimed old regions so we should calculate the sizes to make
2105   // sure we update the old gen/space data.
2106   g1h->g1mm()->update_sizes();
2107 
2108   if (VerifyDuringGC) {
2109     HandleMark hm;  // handle scope
2110     gclog_or_tty->print(" VerifyDuringGC:(after)");
2111     Universe::heap()->prepare_for_verify();
2112     Universe::verify(/* silent */ false,
2113                      /* option */ VerifyOption_G1UsePrevMarking);
2114   }
2115   g1h->check_bitmaps("Cleanup End");
2116 
2117   g1h->verify_region_sets_optional();
2118 }
2119 
2120 void ConcurrentMark::completeCleanup() {
2121   if (has_aborted()) return;
2122 
2123   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2124 
2125   _cleanup_list.verify_optional();
2126   FreeRegionList tmp_free_list("Tmp Free List");
2127 
2128   if (G1ConcRegionFreeingVerbose) {
2129     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2130                            "cleanup list has %u entries",
2131                            _cleanup_list.length());
2132   }
2133 
2134   // Noone else should be accessing the _cleanup_list at this point,
2135   // so it's not necessary to take any locks
2136   while (!_cleanup_list.is_empty()) {
2137     HeapRegion* hr = _cleanup_list.remove_head();
2138     assert(hr != NULL, "the list was not empty");
2139     hr->par_clear();
2140     tmp_free_list.add_as_tail(hr);
2141 
2142     // Instead of adding one region at a time to the secondary_free_list,
2143     // we accumulate them in the local list and move them a few at a
2144     // time. This also cuts down on the number of notify_all() calls
2145     // we do during this process. We'll also append the local list when
2146     // _cleanup_list is empty (which means we just removed the last
2147     // region from the _cleanup_list).
2148     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2149         _cleanup_list.is_empty()) {
2150       if (G1ConcRegionFreeingVerbose) {
2151         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2152                                "appending %u entries to the secondary_free_list, "
2153                                "cleanup list still has %u entries",
2154                                tmp_free_list.length(),
2155                                _cleanup_list.length());
2156       }
2157 
2158       {
2159         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2160         g1h->secondary_free_list_add_as_tail(&tmp_free_list);
2161         SecondaryFreeList_lock->notify_all();
2162       }
2163 
2164       if (G1StressConcRegionFreeing) {
2165         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2166           os::sleep(Thread::current(), (jlong) 1, false);
2167         }
2168       }
2169     }
2170   }
2171   assert(tmp_free_list.is_empty(), "post-condition");
2172 }
2173 
2174 // Support closures for reference procssing in G1
2175 
2176 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2177   HeapWord* addr = (HeapWord*)obj;
2178   return addr != NULL &&
2179          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2180 }
2181 
2182 class G1CMKeepAliveClosure: public ExtendedOopClosure {
2183   G1CollectedHeap* _g1;
2184   ConcurrentMark*  _cm;
2185  public:
2186   G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm) :
2187     _g1(g1), _cm(cm) {
2188     assert(Thread::current()->is_VM_thread(), "otherwise fix worker id");
2189   }
2190 
2191   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2192   virtual void do_oop(      oop* p) { do_oop_work(p); }
2193 
2194   template <class T> void do_oop_work(T* p) {
2195     oop obj = oopDesc::load_decode_heap_oop(p);
2196     HeapWord* addr = (HeapWord*)obj;
2197 
2198     if (_cm->verbose_high()) {
2199       gclog_or_tty->print_cr("\t[0] we're looking at location "
2200                              "*"PTR_FORMAT" = "PTR_FORMAT,
2201                              p, (void*) obj);
2202     }
2203 
2204     if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
2205       _cm->mark_and_count(obj);
2206       _cm->mark_stack_push(obj);
2207     }
2208   }
2209 };
2210 
2211 class G1CMDrainMarkingStackClosure: public VoidClosure {
2212   ConcurrentMark*               _cm;
2213   CMMarkStack*                  _markStack;
2214   G1CMKeepAliveClosure*         _oopClosure;
2215  public:
2216   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMMarkStack* markStack,
2217                                G1CMKeepAliveClosure* oopClosure) :
2218     _cm(cm),
2219     _markStack(markStack),
2220     _oopClosure(oopClosure) { }
2221 
2222   void do_void() {
2223     _markStack->drain(_oopClosure, _cm->nextMarkBitMap(), false);
2224   }
2225 };
2226 
2227 // 'Keep Alive' closure used by parallel reference processing.
2228 // An instance of this closure is used in the parallel reference processing
2229 // code rather than an instance of G1CMKeepAliveClosure. We could have used
2230 // the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
2231 // placed on to discovered ref lists once so we can mark and push with no
2232 // need to check whether the object has already been marked. Using the
2233 // G1CMKeepAliveClosure would mean, however, having all the worker threads
2234 // operating on the global mark stack. This means that an individual
2235 // worker would be doing lock-free pushes while it processes its own
2236 // discovered ref list followed by drain call. If the discovered ref lists
2237 // are unbalanced then this could cause interference with the other
2238 // workers. Using a CMTask (and its embedded local data structures)
2239 // avoids that potential interference.
2240 class G1CMParKeepAliveAndDrainClosure: public OopClosure {
2241   ConcurrentMark*  _cm;
2242   CMTask*          _task;
2243   int              _ref_counter_limit;
2244   int              _ref_counter;
2245  public:
2246   G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
2247     _cm(cm), _task(task),
2248     _ref_counter_limit(G1RefProcDrainInterval) {
2249     assert(_ref_counter_limit > 0, "sanity");
2250     _ref_counter = _ref_counter_limit;
2251   }
2252 
2253   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2254   virtual void do_oop(      oop* p) { do_oop_work(p); }
2255 
2256   template <class T> void do_oop_work(T* p) {
2257     if (!_cm->has_overflown()) {
2258       oop obj = oopDesc::load_decode_heap_oop(p);
2259       if (_cm->verbose_high()) {
2260         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2261                                "*"PTR_FORMAT" = "PTR_FORMAT,
2262                                _task->worker_id(), p, (void*) obj);
2263       }
2264 
2265       _task->deal_with_reference(obj);
2266       _ref_counter--;
2267 
2268       if (_ref_counter == 0) {
2269         // We have dealt with _ref_counter_limit references, pushing them and objects
2270         // reachable from them on to the local stack (and possibly the global stack).
2271         // Call do_marking_step() to process these entries. We call the routine in a
2272         // loop, which we'll exit if there's nothing more to do (i.e. we're done
2273         // with the entries that we've pushed as a result of the deal_with_reference
2274         // calls above) or we overflow.
2275         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
2276         // while there may still be some work to do. (See the comment at the
2277         // beginning of CMTask::do_marking_step() for those conditions - one of which
2278         // is reaching the specified time target.) It is only when
2279         // CMTask::do_marking_step() returns without setting the has_aborted() flag
2280         // that the marking has completed.
2281         do {
2282           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2283           _task->do_marking_step(mark_step_duration_ms,
2284                                  false /* do_stealing    */,
2285                                  false /* do_termination */);
2286         } while (_task->has_aborted() && !_cm->has_overflown());
2287         _ref_counter = _ref_counter_limit;
2288       }
2289     } else {
2290       if (_cm->verbose_high()) {
2291          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2292       }
2293     }
2294   }
2295 };
2296 
2297 class G1CMParDrainMarkingStackClosure: public VoidClosure {
2298   ConcurrentMark* _cm;
2299   CMTask* _task;
2300  public:
2301   G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
2302     _cm(cm), _task(task) { }
2303 
2304   void do_void() {
2305     do {
2306       if (_cm->verbose_high()) {
2307         gclog_or_tty->print_cr("\t[%u] Drain: Calling do marking_step",
2308                                _task->worker_id());
2309       }
2310 
2311       // We call CMTask::do_marking_step() to completely drain the local and
2312       // global marking stacks. The routine is called in a loop, which we'll
2313       // exit if there's nothing more to do (i.e. we'completely drained the
2314       // entries that were pushed as a result of applying the
2315       // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
2316       // lists above) or we overflow the global marking stack.
2317       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
2318       // while there may still be some work to do. (See the comment at the
2319       // beginning of CMTask::do_marking_step() for those conditions - one of which
2320       // is reaching the specified time target.) It is only when
2321       // CMTask::do_marking_step() returns without setting the has_aborted() flag
2322       // that the marking has completed.
2323 
2324       _task->do_marking_step(1000000000.0 /* something very large */,
2325                              true /* do_stealing    */,
2326                              true /* do_termination */);
2327     } while (_task->has_aborted() && !_cm->has_overflown());
2328   }
2329 };
2330 
2331 // Implementation of AbstractRefProcTaskExecutor for parallel
2332 // reference processing at the end of G1 concurrent marking
2333 
2334 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2335 private:
2336   G1CollectedHeap* _g1h;
2337   ConcurrentMark*  _cm;
2338   WorkGang*        _workers;
2339   int              _active_workers;
2340 
2341 public:
2342   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2343                         ConcurrentMark* cm,
2344                         WorkGang* workers,
2345                         int n_workers) :
2346     _g1h(g1h), _cm(cm),
2347     _workers(workers), _active_workers(n_workers) { }
2348 
2349   // Executes the given task using concurrent marking worker threads.
2350   virtual void execute(ProcessTask& task);
2351   virtual void execute(EnqueueTask& task);
2352 };
2353 
2354 class G1CMRefProcTaskProxy: public AbstractGangTask {
2355   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2356   ProcessTask&     _proc_task;
2357   G1CollectedHeap* _g1h;
2358   ConcurrentMark*  _cm;
2359 
2360 public:
2361   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2362                      G1CollectedHeap* g1h,
2363                      ConcurrentMark* cm) :
2364     AbstractGangTask("Process reference objects in parallel"),
2365     _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
2366 
2367   virtual void work(uint worker_id) {
2368     CMTask* marking_task = _cm->task(worker_id);
2369     G1CMIsAliveClosure g1_is_alive(_g1h);
2370     G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
2371     G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);
2372 
2373     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2374   }
2375 };
2376 
2377 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2378   assert(_workers != NULL, "Need parallel worker threads.");
2379 
2380   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2381 
2382   // We need to reset the phase for each task execution so that
2383   // the termination protocol of CMTask::do_marking_step works.
2384   _cm->set_phase(_active_workers, false /* concurrent */);
2385   _g1h->set_par_threads(_active_workers);
2386   _workers->run_task(&proc_task_proxy);
2387   _g1h->set_par_threads(0);
2388 }
2389 
2390 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2391   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2392   EnqueueTask& _enq_task;
2393 
2394 public:
2395   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2396     AbstractGangTask("Enqueue reference objects in parallel"),
2397     _enq_task(enq_task) { }
2398 
2399   virtual void work(uint worker_id) {
2400     _enq_task.work(worker_id);
2401   }
2402 };
2403 
2404 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2405   assert(_workers != NULL, "Need parallel worker threads.");
2406 
2407   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2408 
2409   _g1h->set_par_threads(_active_workers);
2410   _workers->run_task(&enq_task_proxy);
2411   _g1h->set_par_threads(0);
2412 }
2413 
2414 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2415   ResourceMark rm;
2416   HandleMark   hm;
2417 
2418   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2419 
2420   // Is alive closure.
2421   G1CMIsAliveClosure g1_is_alive(g1h);
2422 
2423   // Inner scope to exclude the cleaning of the string and symbol
2424   // tables from the displayed time.
2425   {
2426     if (G1Log::finer()) {
2427       gclog_or_tty->put(' ');
2428     }
2429     TraceTime t("GC ref-proc", G1Log::finer(), false, gclog_or_tty);
2430 
2431     ReferenceProcessor* rp = g1h->ref_processor_cm();
2432 
2433     // See the comment in G1CollectedHeap::ref_processing_init()
2434     // about how reference processing currently works in G1.
2435 
2436     // Process weak references.
2437     rp->setup_policy(clear_all_soft_refs);
2438     assert(_markStack.isEmpty(), "mark stack should be empty");
2439 
2440     G1CMKeepAliveClosure g1_keep_alive(g1h, this);
2441     G1CMDrainMarkingStackClosure
2442       g1_drain_mark_stack(this, &_markStack, &g1_keep_alive);
2443 
2444     // We use the work gang from the G1CollectedHeap and we utilize all
2445     // the worker threads.
2446     uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
2447     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2448 
2449     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2450                                               g1h->workers(), active_workers);
2451 
2452     if (rp->processing_is_mt()) {
2453       // Set the degree of MT here.  If the discovery is done MT, there
2454       // may have been a different number of threads doing the discovery
2455       // and a different number of discovered lists may have Ref objects.
2456       // That is OK as long as the Reference lists are balanced (see
2457       // balance_all_queues() and balance_queues()).
2458       rp->set_active_mt_degree(active_workers);
2459 
2460       rp->process_discovered_references(&g1_is_alive,
2461                                       &g1_keep_alive,
2462                                       &g1_drain_mark_stack,
2463                                       &par_task_executor);
2464 
2465       // The work routines of the parallel keep_alive and drain_marking_stack
2466       // will set the has_overflown flag if we overflow the global marking
2467       // stack.
2468     } else {
2469       rp->process_discovered_references(&g1_is_alive,
2470                                         &g1_keep_alive,
2471                                         &g1_drain_mark_stack,
2472                                         NULL);
2473     }
2474 
2475     assert(_markStack.overflow() || _markStack.isEmpty(),
2476             "mark stack should be empty (unless it overflowed)");
2477     if (_markStack.overflow()) {
2478       // Should have been done already when we tried to push an
2479       // entry on to the global mark stack. But let's do it again.
2480       set_has_overflown();
2481     }
2482 
2483     if (rp->processing_is_mt()) {
2484       assert(rp->num_q() == active_workers, "why not");
2485       rp->enqueue_discovered_references(&par_task_executor);
2486     } else {
2487       rp->enqueue_discovered_references();
2488     }
2489 
2490     rp->verify_no_references_recorded();
2491     assert(!rp->discovery_enabled(), "Post condition");
2492   }
2493 
2494   // Now clean up stale oops in StringTable
2495   StringTable::unlink(&g1_is_alive);
2496   // Clean up unreferenced symbols in symbol table.
2497   SymbolTable::unlink();
2498 }
2499 
2500 void ConcurrentMark::swapMarkBitMaps() {
2501   CMBitMapRO* temp = _prevMarkBitMap;
2502   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2503   _nextMarkBitMap  = (CMBitMap*)  temp;
2504 }
2505 
2506 class CMRemarkTask: public AbstractGangTask {
2507 private:
2508   ConcurrentMark *_cm;
2509 
2510 public:
2511   void work(uint worker_id) {
2512     // Since all available tasks are actually started, we should
2513     // only proceed if we're supposed to be actived.
2514     if (worker_id < _cm->active_tasks()) {
2515       CMTask* task = _cm->task(worker_id);
2516       task->record_start_time();
2517       do {
2518         task->do_marking_step(1000000000.0 /* something very large */,
2519                               true /* do_stealing    */,
2520                               true /* do_termination */);
2521       } while (task->has_aborted() && !_cm->has_overflown());
2522       // If we overflow, then we do not want to restart. We instead
2523       // want to abort remark and do concurrent marking again.
2524       task->record_end_time();
2525     }
2526   }
2527 
2528   CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2529     AbstractGangTask("Par Remark"), _cm(cm) {
2530     _cm->terminator()->reset_for_reuse(active_workers);
2531   }
2532 };
2533 
2534 void ConcurrentMark::checkpointRootsFinalWork() {
2535   ResourceMark rm;
2536   HandleMark   hm;
2537   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2538 
2539   g1h->ensure_parsability(false);
2540 
2541   if (G1CollectedHeap::use_parallel_gc_threads()) {
2542     G1CollectedHeap::StrongRootsScope srs(g1h);
2543     // this is remark, so we'll use up all active threads
2544     uint active_workers = g1h->workers()->active_workers();
2545     if (active_workers == 0) {
2546       assert(active_workers > 0, "Should have been set earlier");
2547       active_workers = (uint) ParallelGCThreads;
2548       g1h->workers()->set_active_workers(active_workers);
2549     }
2550     set_phase(active_workers, false /* concurrent */);
2551     // Leave _parallel_marking_threads at it's
2552     // value originally calculated in the ConcurrentMark
2553     // constructor and pass values of the active workers
2554     // through the gang in the task.
2555 
2556     CMRemarkTask remarkTask(this, active_workers);
2557     g1h->set_par_threads(active_workers);
2558     g1h->workers()->run_task(&remarkTask);
2559     g1h->set_par_threads(0);
2560   } else {
2561     G1CollectedHeap::StrongRootsScope srs(g1h);
2562     // this is remark, so we'll use up all available threads
2563     uint active_workers = 1;
2564     set_phase(active_workers, false /* concurrent */);
2565 
2566     CMRemarkTask remarkTask(this, active_workers);
2567     // We will start all available threads, even if we decide that the
2568     // active_workers will be fewer. The extra ones will just bail out
2569     // immediately.
2570     remarkTask.work(0);
2571   }
2572   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2573   guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
2574 
2575   print_stats();
2576 
2577 #if VERIFY_OBJS_PROCESSED
2578   if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
2579     gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
2580                            _scan_obj_cl.objs_processed,
2581                            ThreadLocalObjQueue::objs_enqueued);
2582     guarantee(_scan_obj_cl.objs_processed ==
2583               ThreadLocalObjQueue::objs_enqueued,
2584               "Different number of objs processed and enqueued.");
2585   }
2586 #endif
2587 }
2588 
2589 #ifndef PRODUCT
2590 
2591 class PrintReachableOopClosure: public OopClosure {
2592 private:
2593   G1CollectedHeap* _g1h;
2594   outputStream*    _out;
2595   VerifyOption     _vo;
2596   bool             _all;
2597 
2598 public:
2599   PrintReachableOopClosure(outputStream* out,
2600                            VerifyOption  vo,
2601                            bool          all) :
2602     _g1h(G1CollectedHeap::heap()),
2603     _out(out), _vo(vo), _all(all) { }
2604 
2605   void do_oop(narrowOop* p) { do_oop_work(p); }
2606   void do_oop(      oop* p) { do_oop_work(p); }
2607 
2608   template <class T> void do_oop_work(T* p) {
2609     oop         obj = oopDesc::load_decode_heap_oop(p);
2610     const char* str = NULL;
2611     const char* str2 = "";
2612 
2613     if (obj == NULL) {
2614       str = "";
2615     } else if (!_g1h->is_in_g1_reserved(obj)) {
2616       str = " O";
2617     } else {
2618       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2619       guarantee(hr != NULL, "invariant");
2620       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2621       bool marked = _g1h->is_marked(obj, _vo);
2622 
2623       if (over_tams) {
2624         str = " >";
2625         if (marked) {
2626           str2 = " AND MARKED";
2627         }
2628       } else if (marked) {
2629         str = " M";
2630       } else {
2631         str = " NOT";
2632       }
2633     }
2634 
2635     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2636                    p, (void*) obj, str, str2);
2637   }
2638 };
2639 
2640 class PrintReachableObjectClosure : public ObjectClosure {
2641 private:
2642   G1CollectedHeap* _g1h;
2643   outputStream*    _out;
2644   VerifyOption     _vo;
2645   bool             _all;
2646   HeapRegion*      _hr;
2647 
2648 public:
2649   PrintReachableObjectClosure(outputStream* out,
2650                               VerifyOption  vo,
2651                               bool          all,
2652                               HeapRegion*   hr) :
2653     _g1h(G1CollectedHeap::heap()),
2654     _out(out), _vo(vo), _all(all), _hr(hr) { }
2655 
2656   void do_object(oop o) {
2657     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2658     bool marked = _g1h->is_marked(o, _vo);
2659     bool print_it = _all || over_tams || marked;
2660 
2661     if (print_it) {
2662       _out->print_cr(" "PTR_FORMAT"%s",
2663                      o, (over_tams) ? " >" : (marked) ? " M" : "");
2664       PrintReachableOopClosure oopCl(_out, _vo, _all);
2665       o->oop_iterate_no_header(&oopCl);
2666     }
2667   }
2668 };
2669 
2670 class PrintReachableRegionClosure : public HeapRegionClosure {
2671 private:
2672   G1CollectedHeap* _g1h;
2673   outputStream*    _out;
2674   VerifyOption     _vo;
2675   bool             _all;
2676 
2677 public:
2678   bool doHeapRegion(HeapRegion* hr) {
2679     HeapWord* b = hr->bottom();
2680     HeapWord* e = hr->end();
2681     HeapWord* t = hr->top();
2682     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2683     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2684                    "TAMS: "PTR_FORMAT, b, e, t, p);
2685     _out->cr();
2686 
2687     HeapWord* from = b;
2688     HeapWord* to   = t;
2689 
2690     if (to > from) {
2691       _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
2692       _out->cr();
2693       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2694       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2695       _out->cr();
2696     }
2697 
2698     return false;
2699   }
2700 
2701   PrintReachableRegionClosure(outputStream* out,
2702                               VerifyOption  vo,
2703                               bool          all) :
2704     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2705 };
2706 
2707 void ConcurrentMark::print_reachable(const char* str,
2708                                      VerifyOption vo,
2709                                      bool all) {
2710   gclog_or_tty->cr();
2711   gclog_or_tty->print_cr("== Doing heap dump... ");
2712 
2713   if (G1PrintReachableBaseFile == NULL) {
2714     gclog_or_tty->print_cr("  #### error: no base file defined");
2715     return;
2716   }
2717 
2718   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2719       (JVM_MAXPATHLEN - 1)) {
2720     gclog_or_tty->print_cr("  #### error: file name too long");
2721     return;
2722   }
2723 
2724   char file_name[JVM_MAXPATHLEN];
2725   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2726   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2727 
2728   fileStream fout(file_name);
2729   if (!fout.is_open()) {
2730     gclog_or_tty->print_cr("  #### error: could not open file");
2731     return;
2732   }
2733 
2734   outputStream* out = &fout;
2735   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2736   out->cr();
2737 
2738   out->print_cr("--- ITERATING OVER REGIONS");
2739   out->cr();
2740   PrintReachableRegionClosure rcl(out, vo, all);
2741   _g1h->heap_region_iterate(&rcl);
2742   out->cr();
2743 
2744   gclog_or_tty->print_cr("  done");
2745   gclog_or_tty->flush();
2746 }
2747 
2748 #endif // PRODUCT
2749 
2750 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2751   // Note we are overriding the read-only view of the prev map here, via
2752   // the cast.
2753   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2754 }
2755 
2756 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2757   _nextMarkBitMap->clearRange(mr);
2758 }
2759 
2760 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
2761   clearRangePrevBitmap(mr);
2762   clearRangeNextBitmap(mr);
2763 }
2764 
2765 HeapRegion*
2766 ConcurrentMark::claim_region(uint worker_id) {
2767   // "checkpoint" the finger
2768   HeapWord* finger = _finger;
2769 
2770   // _heap_end will not change underneath our feet; it only changes at
2771   // yield points.
2772   while (finger < _heap_end) {
2773     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2774 
2775     // Note on how this code handles humongous regions. In the
2776     // normal case the finger will reach the start of a "starts
2777     // humongous" (SH) region. Its end will either be the end of the
2778     // last "continues humongous" (CH) region in the sequence, or the
2779     // standard end of the SH region (if the SH is the only region in
2780     // the sequence). That way claim_region() will skip over the CH
2781     // regions. However, there is a subtle race between a CM thread
2782     // executing this method and a mutator thread doing a humongous
2783     // object allocation. The two are not mutually exclusive as the CM
2784     // thread does not need to hold the Heap_lock when it gets
2785     // here. So there is a chance that claim_region() will come across
2786     // a free region that's in the progress of becoming a SH or a CH
2787     // region. In the former case, it will either
2788     //   a) Miss the update to the region's end, in which case it will
2789     //      visit every subsequent CH region, will find their bitmaps
2790     //      empty, and do nothing, or
2791     //   b) Will observe the update of the region's end (in which case
2792     //      it will skip the subsequent CH regions).
2793     // If it comes across a region that suddenly becomes CH, the
2794     // scenario will be similar to b). So, the race between
2795     // claim_region() and a humongous object allocation might force us
2796     // to do a bit of unnecessary work (due to some unnecessary bitmap
2797     // iterations) but it should not introduce and correctness issues.
2798     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2799     HeapWord*   bottom        = curr_region->bottom();
2800     HeapWord*   end           = curr_region->end();
2801     HeapWord*   limit         = curr_region->next_top_at_mark_start();
2802 
2803     if (verbose_low()) {
2804       gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2805                              "["PTR_FORMAT", "PTR_FORMAT"), "
2806                              "limit = "PTR_FORMAT,
2807                              worker_id, curr_region, bottom, end, limit);
2808     }
2809 
2810     // Is the gap between reading the finger and doing the CAS too long?
2811     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2812     if (res == finger) {
2813       // we succeeded
2814 
2815       // notice that _finger == end cannot be guaranteed here since,
2816       // someone else might have moved the finger even further
2817       assert(_finger >= end, "the finger should have moved forward");
2818 
2819       if (verbose_low()) {
2820         gclog_or_tty->print_cr("[%u] we were successful with region = "
2821                                PTR_FORMAT, worker_id, curr_region);
2822       }
2823 
2824       if (limit > bottom) {
2825         if (verbose_low()) {
2826           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2827                                  "returning it ", worker_id, curr_region);
2828         }
2829         return curr_region;
2830       } else {
2831         assert(limit == bottom,
2832                "the region limit should be at bottom");
2833         if (verbose_low()) {
2834           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
2835                                  "returning NULL", worker_id, curr_region);
2836         }
2837         // we return NULL and the caller should try calling
2838         // claim_region() again.
2839         return NULL;
2840       }
2841     } else {
2842       assert(_finger > finger, "the finger should have moved forward");
2843       if (verbose_low()) {
2844         gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2845                                "global finger = "PTR_FORMAT", "
2846                                "our finger = "PTR_FORMAT,
2847                                worker_id, _finger, finger);
2848       }
2849 
2850       // read it again
2851       finger = _finger;
2852     }
2853   }
2854 
2855   return NULL;
2856 }
2857 
2858 #ifndef PRODUCT
2859 enum VerifyNoCSetOopsPhase {
2860   VerifyNoCSetOopsStack,
2861   VerifyNoCSetOopsQueues,
2862   VerifyNoCSetOopsSATBCompleted,
2863   VerifyNoCSetOopsSATBThread
2864 };
2865 
2866 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
2867 private:
2868   G1CollectedHeap* _g1h;
2869   VerifyNoCSetOopsPhase _phase;
2870   int _info;
2871 
2872   const char* phase_str() {
2873     switch (_phase) {
2874     case VerifyNoCSetOopsStack:         return "Stack";
2875     case VerifyNoCSetOopsQueues:        return "Queue";
2876     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
2877     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
2878     default:                            ShouldNotReachHere();
2879     }
2880     return NULL;
2881   }
2882 
2883   void do_object_work(oop obj) {
2884     guarantee(!_g1h->obj_in_cs(obj),
2885               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
2886                       (void*) obj, phase_str(), _info));
2887   }
2888 
2889 public:
2890   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
2891 
2892   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
2893     _phase = phase;
2894     _info = info;
2895   }
2896 
2897   virtual void do_oop(oop* p) {
2898     oop obj = oopDesc::load_decode_heap_oop(p);
2899     do_object_work(obj);
2900   }
2901 
2902   virtual void do_oop(narrowOop* p) {
2903     // We should not come across narrow oops while scanning marking
2904     // stacks and SATB buffers.
2905     ShouldNotReachHere();
2906   }
2907 
2908   virtual void do_object(oop obj) {
2909     do_object_work(obj);
2910   }
2911 };
2912 
2913 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
2914                                          bool verify_enqueued_buffers,
2915                                          bool verify_thread_buffers,
2916                                          bool verify_fingers) {
2917   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2918   if (!G1CollectedHeap::heap()->mark_in_progress()) {
2919     return;
2920   }
2921 
2922   VerifyNoCSetOopsClosure cl;
2923 
2924   if (verify_stacks) {
2925     // Verify entries on the global mark stack
2926     cl.set_phase(VerifyNoCSetOopsStack);
2927     _markStack.oops_do(&cl);
2928 
2929     // Verify entries on the task queues
2930     for (uint i = 0; i < _max_worker_id; i += 1) {
2931       cl.set_phase(VerifyNoCSetOopsQueues, i);
2932       CMTaskQueue* queue = _task_queues->queue(i);
2933       queue->oops_do(&cl);
2934     }
2935   }
2936 
2937   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
2938 
2939   // Verify entries on the enqueued SATB buffers
2940   if (verify_enqueued_buffers) {
2941     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
2942     satb_qs.iterate_completed_buffers_read_only(&cl);
2943   }
2944 
2945   // Verify entries on the per-thread SATB buffers
2946   if (verify_thread_buffers) {
2947     cl.set_phase(VerifyNoCSetOopsSATBThread);
2948     satb_qs.iterate_thread_buffers_read_only(&cl);
2949   }
2950 
2951   if (verify_fingers) {
2952     // Verify the global finger
2953     HeapWord* global_finger = finger();
2954     if (global_finger != NULL && global_finger < _heap_end) {
2955       // The global finger always points to a heap region boundary. We
2956       // use heap_region_containing_raw() to get the containing region
2957       // given that the global finger could be pointing to a free region
2958       // which subsequently becomes continues humongous. If that
2959       // happens, heap_region_containing() will return the bottom of the
2960       // corresponding starts humongous region and the check below will
2961       // not hold any more.
2962       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
2963       guarantee(global_finger == global_hr->bottom(),
2964                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
2965                         global_finger, HR_FORMAT_PARAMS(global_hr)));
2966     }
2967 
2968     // Verify the task fingers
2969     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2970     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
2971       CMTask* task = _tasks[i];
2972       HeapWord* task_finger = task->finger();
2973       if (task_finger != NULL && task_finger < _heap_end) {
2974         // See above note on the global finger verification.
2975         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
2976         guarantee(task_finger == task_hr->bottom() ||
2977                   !task_hr->in_collection_set(),
2978                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
2979                           task_finger, HR_FORMAT_PARAMS(task_hr)));
2980       }
2981     }
2982   }
2983 }
2984 #endif // PRODUCT
2985 
2986 // Aggregate the counting data that was constructed concurrently
2987 // with marking.
2988 class AggregateCountDataHRClosure: public HeapRegionClosure {
2989   G1CollectedHeap* _g1h;
2990   ConcurrentMark* _cm;
2991   CardTableModRefBS* _ct_bs;
2992   BitMap* _cm_card_bm;
2993   uint _max_worker_id;
2994 
2995  public:
2996   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2997                               BitMap* cm_card_bm,
2998                               uint max_worker_id) :
2999     _g1h(g1h), _cm(g1h->concurrent_mark()),
3000     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3001     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3002 
3003   bool doHeapRegion(HeapRegion* hr) {
3004     if (hr->continuesHumongous()) {
3005       // We will ignore these here and process them when their
3006       // associated "starts humongous" region is processed.
3007       // Note that we cannot rely on their associated
3008       // "starts humongous" region to have their bit set to 1
3009       // since, due to the region chunking in the parallel region
3010       // iteration, a "continues humongous" region might be visited
3011       // before its associated "starts humongous".
3012       return false;
3013     }
3014 
3015     HeapWord* start = hr->bottom();
3016     HeapWord* limit = hr->next_top_at_mark_start();
3017     HeapWord* end = hr->end();
3018 
3019     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3020            err_msg("Preconditions not met - "
3021                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3022                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3023                    start, limit, hr->top(), hr->end()));
3024 
3025     assert(hr->next_marked_bytes() == 0, "Precondition");
3026 
3027     if (start == limit) {
3028       // NTAMS of this region has not been set so nothing to do.
3029       return false;
3030     }
3031 
3032     // 'start' should be in the heap.
3033     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3034     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
3035     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3036 
3037     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3038     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3039     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3040 
3041     // If ntams is not card aligned then we bump card bitmap index
3042     // for limit so that we get the all the cards spanned by
3043     // the object ending at ntams.
3044     // Note: if this is the last region in the heap then ntams
3045     // could be actually just beyond the end of the the heap;
3046     // limit_idx will then  correspond to a (non-existent) card
3047     // that is also outside the heap.
3048     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3049       limit_idx += 1;
3050     }
3051 
3052     assert(limit_idx <= end_idx, "or else use atomics");
3053 
3054     // Aggregate the "stripe" in the count data associated with hr.
3055     uint hrs_index = hr->hrs_index();
3056     size_t marked_bytes = 0;
3057 
3058     for (uint i = 0; i < _max_worker_id; i += 1) {
3059       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3060       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3061 
3062       // Fetch the marked_bytes in this region for task i and
3063       // add it to the running total for this region.
3064       marked_bytes += marked_bytes_array[hrs_index];
3065 
3066       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3067       // into the global card bitmap.
3068       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3069 
3070       while (scan_idx < limit_idx) {
3071         assert(task_card_bm->at(scan_idx) == true, "should be");
3072         _cm_card_bm->set_bit(scan_idx);
3073         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3074 
3075         // BitMap::get_next_one_offset() can handle the case when
3076         // its left_offset parameter is greater than its right_offset
3077         // parameter. It does, however, have an early exit if
3078         // left_offset == right_offset. So let's limit the value
3079         // passed in for left offset here.
3080         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3081         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3082       }
3083     }
3084 
3085     // Update the marked bytes for this region.
3086     hr->add_to_marked_bytes(marked_bytes);
3087 
3088     // Next heap region
3089     return false;
3090   }
3091 };
3092 
3093 class G1AggregateCountDataTask: public AbstractGangTask {
3094 protected:
3095   G1CollectedHeap* _g1h;
3096   ConcurrentMark* _cm;
3097   BitMap* _cm_card_bm;
3098   uint _max_worker_id;
3099   int _active_workers;
3100 
3101 public:
3102   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3103                            ConcurrentMark* cm,
3104                            BitMap* cm_card_bm,
3105                            uint max_worker_id,
3106                            int n_workers) :
3107     AbstractGangTask("Count Aggregation"),
3108     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3109     _max_worker_id(max_worker_id),
3110     _active_workers(n_workers) { }
3111 
3112   void work(uint worker_id) {
3113     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3114 
3115     if (G1CollectedHeap::use_parallel_gc_threads()) {
3116       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
3117                                             _active_workers,
3118                                             HeapRegion::AggregateCountClaimValue);
3119     } else {
3120       _g1h->heap_region_iterate(&cl);
3121     }
3122   }
3123 };
3124 
3125 
3126 void ConcurrentMark::aggregate_count_data() {
3127   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3128                         _g1h->workers()->active_workers() :
3129                         1);
3130 
3131   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3132                                            _max_worker_id, n_workers);
3133 
3134   if (G1CollectedHeap::use_parallel_gc_threads()) {
3135     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3136            "sanity check");
3137     _g1h->set_par_threads(n_workers);
3138     _g1h->workers()->run_task(&g1_par_agg_task);
3139     _g1h->set_par_threads(0);
3140 
3141     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
3142            "sanity check");
3143     _g1h->reset_heap_region_claim_values();
3144   } else {
3145     g1_par_agg_task.work(0);
3146   }
3147 }
3148 
3149 // Clear the per-worker arrays used to store the per-region counting data
3150 void ConcurrentMark::clear_all_count_data() {
3151   // Clear the global card bitmap - it will be filled during
3152   // liveness count aggregation (during remark) and the
3153   // final counting task.
3154   _card_bm.clear();
3155 
3156   // Clear the global region bitmap - it will be filled as part
3157   // of the final counting task.
3158   _region_bm.clear();
3159 
3160   uint max_regions = _g1h->max_regions();
3161   assert(_max_worker_id > 0, "uninitialized");
3162 
3163   for (uint i = 0; i < _max_worker_id; i += 1) {
3164     BitMap* task_card_bm = count_card_bitmap_for(i);
3165     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3166 
3167     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3168     assert(marked_bytes_array != NULL, "uninitialized");
3169 
3170     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3171     task_card_bm->clear();
3172   }
3173 }
3174 
3175 void ConcurrentMark::print_stats() {
3176   if (verbose_stats()) {
3177     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3178     for (size_t i = 0; i < _active_tasks; ++i) {
3179       _tasks[i]->print_stats();
3180       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3181     }
3182   }
3183 }
3184 
3185 // abandon current marking iteration due to a Full GC
3186 void ConcurrentMark::abort() {
3187   // Clear all marks to force marking thread to do nothing
3188   _nextMarkBitMap->clearAll();
3189  
3190   // Note we cannot clear the previous marking bitmap here
3191   // since VerifyDuringGC verifies the objects marked during
3192   // a full GC against the previous bitmap.
3193 
3194   // Clear the liveness counting data
3195   clear_all_count_data();
3196   // Empty mark stack
3197   reset_marking_state();
3198   for (uint i = 0; i < _max_worker_id; ++i) {
3199     _tasks[i]->clear_region_fields();
3200   }
3201   _has_aborted = true;
3202 
3203   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3204   satb_mq_set.abandon_partial_marking();
3205   // This can be called either during or outside marking, we'll read
3206   // the expected_active value from the SATB queue set.
3207   satb_mq_set.set_active_all_threads(
3208                                  false, /* new active value */
3209                                  satb_mq_set.is_active() /* expected_active */);
3210 }
3211 
3212 static void print_ms_time_info(const char* prefix, const char* name,
3213                                NumberSeq& ns) {
3214   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3215                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3216   if (ns.num() > 0) {
3217     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3218                            prefix, ns.sd(), ns.maximum());
3219   }
3220 }
3221 
3222 void ConcurrentMark::print_summary_info() {
3223   gclog_or_tty->print_cr(" Concurrent marking:");
3224   print_ms_time_info("  ", "init marks", _init_times);
3225   print_ms_time_info("  ", "remarks", _remark_times);
3226   {
3227     print_ms_time_info("     ", "final marks", _remark_mark_times);
3228     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3229 
3230   }
3231   print_ms_time_info("  ", "cleanups", _cleanup_times);
3232   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3233                          _total_counting_time,
3234                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3235                           (double)_cleanup_times.num()
3236                          : 0.0));
3237   if (G1ScrubRemSets) {
3238     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3239                            _total_rs_scrub_time,
3240                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3241                             (double)_cleanup_times.num()
3242                            : 0.0));
3243   }
3244   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3245                          (_init_times.sum() + _remark_times.sum() +
3246                           _cleanup_times.sum())/1000.0);
3247   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3248                 "(%8.2f s marking).",
3249                 cmThread()->vtime_accum(),
3250                 cmThread()->vtime_mark_accum());
3251 }
3252 
3253 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3254   _parallel_workers->print_worker_threads_on(st);
3255 }
3256 
3257 // We take a break if someone is trying to stop the world.
3258 bool ConcurrentMark::do_yield_check(uint worker_id) {
3259   if (should_yield()) {
3260     if (worker_id == 0) {
3261       _g1h->g1_policy()->record_concurrent_pause();
3262     }
3263     cmThread()->yield();
3264     return true;
3265   } else {
3266     return false;
3267   }
3268 }
3269 
3270 bool ConcurrentMark::should_yield() {
3271   return cmThread()->should_yield();
3272 }
3273 
3274 bool ConcurrentMark::containing_card_is_marked(void* p) {
3275   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
3276   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
3277 }
3278 
3279 bool ConcurrentMark::containing_cards_are_marked(void* start,
3280                                                  void* last) {
3281   return containing_card_is_marked(start) &&
3282          containing_card_is_marked(last);
3283 }
3284 
3285 #ifndef PRODUCT
3286 // for debugging purposes
3287 void ConcurrentMark::print_finger() {
3288   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3289                          _heap_start, _heap_end, _finger);
3290   for (uint i = 0; i < _max_worker_id; ++i) {
3291     gclog_or_tty->print("   %u: "PTR_FORMAT, i, _tasks[i]->finger());
3292   }
3293   gclog_or_tty->print_cr("");
3294 }
3295 #endif
3296 
3297 void CMTask::scan_object(oop obj) {
3298   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3299 
3300   if (_cm->verbose_high()) {
3301     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3302                            _worker_id, (void*) obj);
3303   }
3304 
3305   size_t obj_size = obj->size();
3306   _words_scanned += obj_size;
3307 
3308   obj->oop_iterate(_cm_oop_closure);
3309   statsOnly( ++_objs_scanned );
3310   check_limits();
3311 }
3312 
3313 // Closure for iteration over bitmaps
3314 class CMBitMapClosure : public BitMapClosure {
3315 private:
3316   // the bitmap that is being iterated over
3317   CMBitMap*                   _nextMarkBitMap;
3318   ConcurrentMark*             _cm;
3319   CMTask*                     _task;
3320 
3321 public:
3322   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3323     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3324 
3325   bool do_bit(size_t offset) {
3326     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3327     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3328     assert( addr < _cm->finger(), "invariant");
3329 
3330     statsOnly( _task->increase_objs_found_on_bitmap() );
3331     assert(addr >= _task->finger(), "invariant");
3332 
3333     // We move that task's local finger along.
3334     _task->move_finger_to(addr);
3335 
3336     _task->scan_object(oop(addr));
3337     // we only partially drain the local queue and global stack
3338     _task->drain_local_queue(true);
3339     _task->drain_global_stack(true);
3340 
3341     // if the has_aborted flag has been raised, we need to bail out of
3342     // the iteration
3343     return !_task->has_aborted();
3344   }
3345 };
3346 
3347 // Closure for iterating over objects, currently only used for
3348 // processing SATB buffers.
3349 class CMObjectClosure : public ObjectClosure {
3350 private:
3351   CMTask* _task;
3352 
3353 public:
3354   void do_object(oop obj) {
3355     _task->deal_with_reference(obj);
3356   }
3357 
3358   CMObjectClosure(CMTask* task) : _task(task) { }
3359 };
3360 
3361 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3362                                ConcurrentMark* cm,
3363                                CMTask* task)
3364   : _g1h(g1h), _cm(cm), _task(task) {
3365   assert(_ref_processor == NULL, "should be initialized to NULL");
3366 
3367   if (G1UseConcMarkReferenceProcessing) {
3368     _ref_processor = g1h->ref_processor_cm();
3369     assert(_ref_processor != NULL, "should not be NULL");
3370   }
3371 }
3372 
3373 void CMTask::setup_for_region(HeapRegion* hr) {
3374   // Separated the asserts so that we know which one fires.
3375   assert(hr != NULL,
3376         "claim_region() should have filtered out continues humongous regions");
3377   assert(!hr->continuesHumongous(),
3378         "claim_region() should have filtered out continues humongous regions");
3379 
3380   if (_cm->verbose_low()) {
3381     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3382                            _worker_id, hr);
3383   }
3384 
3385   _curr_region  = hr;
3386   _finger       = hr->bottom();
3387   update_region_limit();
3388 }
3389 
3390 void CMTask::update_region_limit() {
3391   HeapRegion* hr            = _curr_region;
3392   HeapWord* bottom          = hr->bottom();
3393   HeapWord* limit           = hr->next_top_at_mark_start();
3394 
3395   if (limit == bottom) {
3396     if (_cm->verbose_low()) {
3397       gclog_or_tty->print_cr("[%u] found an empty region "
3398                              "["PTR_FORMAT", "PTR_FORMAT")",
3399                              _worker_id, bottom, limit);
3400     }
3401     // The region was collected underneath our feet.
3402     // We set the finger to bottom to ensure that the bitmap
3403     // iteration that will follow this will not do anything.
3404     // (this is not a condition that holds when we set the region up,
3405     // as the region is not supposed to be empty in the first place)
3406     _finger = bottom;
3407   } else if (limit >= _region_limit) {
3408     assert(limit >= _finger, "peace of mind");
3409   } else {
3410     assert(limit < _region_limit, "only way to get here");
3411     // This can happen under some pretty unusual circumstances.  An
3412     // evacuation pause empties the region underneath our feet (NTAMS
3413     // at bottom). We then do some allocation in the region (NTAMS
3414     // stays at bottom), followed by the region being used as a GC
3415     // alloc region (NTAMS will move to top() and the objects
3416     // originally below it will be grayed). All objects now marked in
3417     // the region are explicitly grayed, if below the global finger,
3418     // and we do not need in fact to scan anything else. So, we simply
3419     // set _finger to be limit to ensure that the bitmap iteration
3420     // doesn't do anything.
3421     _finger = limit;
3422   }
3423 
3424   _region_limit = limit;
3425 }
3426 
3427 void CMTask::giveup_current_region() {
3428   assert(_curr_region != NULL, "invariant");
3429   if (_cm->verbose_low()) {
3430     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3431                            _worker_id, _curr_region);
3432   }
3433   clear_region_fields();
3434 }
3435 
3436 void CMTask::clear_region_fields() {
3437   // Values for these three fields that indicate that we're not
3438   // holding on to a region.
3439   _curr_region   = NULL;
3440   _finger        = NULL;
3441   _region_limit  = NULL;
3442 }
3443 
3444 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3445   if (cm_oop_closure == NULL) {
3446     assert(_cm_oop_closure != NULL, "invariant");
3447   } else {
3448     assert(_cm_oop_closure == NULL, "invariant");
3449   }
3450   _cm_oop_closure = cm_oop_closure;
3451 }
3452 
3453 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3454   guarantee(nextMarkBitMap != NULL, "invariant");
3455 
3456   if (_cm->verbose_low()) {
3457     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3458   }
3459 
3460   _nextMarkBitMap                = nextMarkBitMap;
3461   clear_region_fields();
3462 
3463   _calls                         = 0;
3464   _elapsed_time_ms               = 0.0;
3465   _termination_time_ms           = 0.0;
3466   _termination_start_time_ms     = 0.0;
3467 
3468 #if _MARKING_STATS_
3469   _local_pushes                  = 0;
3470   _local_pops                    = 0;
3471   _local_max_size                = 0;
3472   _objs_scanned                  = 0;
3473   _global_pushes                 = 0;
3474   _global_pops                   = 0;
3475   _global_max_size               = 0;
3476   _global_transfers_to           = 0;
3477   _global_transfers_from         = 0;
3478   _regions_claimed               = 0;
3479   _objs_found_on_bitmap          = 0;
3480   _satb_buffers_processed        = 0;
3481   _steal_attempts                = 0;
3482   _steals                        = 0;
3483   _aborted                       = 0;
3484   _aborted_overflow              = 0;
3485   _aborted_cm_aborted            = 0;
3486   _aborted_yield                 = 0;
3487   _aborted_timed_out             = 0;
3488   _aborted_satb                  = 0;
3489   _aborted_termination           = 0;
3490 #endif // _MARKING_STATS_
3491 }
3492 
3493 bool CMTask::should_exit_termination() {
3494   regular_clock_call();
3495   // This is called when we are in the termination protocol. We should
3496   // quit if, for some reason, this task wants to abort or the global
3497   // stack is not empty (this means that we can get work from it).
3498   return !_cm->mark_stack_empty() || has_aborted();
3499 }
3500 
3501 void CMTask::reached_limit() {
3502   assert(_words_scanned >= _words_scanned_limit ||
3503          _refs_reached >= _refs_reached_limit ,
3504          "shouldn't have been called otherwise");
3505   regular_clock_call();
3506 }
3507 
3508 void CMTask::regular_clock_call() {
3509   if (has_aborted()) return;
3510 
3511   // First, we need to recalculate the words scanned and refs reached
3512   // limits for the next clock call.
3513   recalculate_limits();
3514 
3515   // During the regular clock call we do the following
3516 
3517   // (1) If an overflow has been flagged, then we abort.
3518   if (_cm->has_overflown()) {
3519     set_has_aborted();
3520     return;
3521   }
3522 
3523   // If we are not concurrent (i.e. we're doing remark) we don't need
3524   // to check anything else. The other steps are only needed during
3525   // the concurrent marking phase.
3526   if (!concurrent()) return;
3527 
3528   // (2) If marking has been aborted for Full GC, then we also abort.
3529   if (_cm->has_aborted()) {
3530     set_has_aborted();
3531     statsOnly( ++_aborted_cm_aborted );
3532     return;
3533   }
3534 
3535   double curr_time_ms = os::elapsedVTime() * 1000.0;
3536 
3537   // (3) If marking stats are enabled, then we update the step history.
3538 #if _MARKING_STATS_
3539   if (_words_scanned >= _words_scanned_limit) {
3540     ++_clock_due_to_scanning;
3541   }
3542   if (_refs_reached >= _refs_reached_limit) {
3543     ++_clock_due_to_marking;
3544   }
3545 
3546   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3547   _interval_start_time_ms = curr_time_ms;
3548   _all_clock_intervals_ms.add(last_interval_ms);
3549 
3550   if (_cm->verbose_medium()) {
3551       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3552                         "scanned = %d%s, refs reached = %d%s",
3553                         _worker_id, last_interval_ms,
3554                         _words_scanned,
3555                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3556                         _refs_reached,
3557                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3558   }
3559 #endif // _MARKING_STATS_
3560 
3561   // (4) We check whether we should yield. If we have to, then we abort.
3562   if (_cm->should_yield()) {
3563     // We should yield. To do this we abort the task. The caller is
3564     // responsible for yielding.
3565     set_has_aborted();
3566     statsOnly( ++_aborted_yield );
3567     return;
3568   }
3569 
3570   // (5) We check whether we've reached our time quota. If we have,
3571   // then we abort.
3572   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3573   if (elapsed_time_ms > _time_target_ms) {
3574     set_has_aborted();
3575     _has_timed_out = true;
3576     statsOnly( ++_aborted_timed_out );
3577     return;
3578   }
3579 
3580   // (6) Finally, we check whether there are enough completed STAB
3581   // buffers available for processing. If there are, we abort.
3582   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3583   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3584     if (_cm->verbose_low()) {
3585       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3586                              _worker_id);
3587     }
3588     // we do need to process SATB buffers, we'll abort and restart
3589     // the marking task to do so
3590     set_has_aborted();
3591     statsOnly( ++_aborted_satb );
3592     return;
3593   }
3594 }
3595 
3596 void CMTask::recalculate_limits() {
3597   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3598   _words_scanned_limit      = _real_words_scanned_limit;
3599 
3600   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3601   _refs_reached_limit       = _real_refs_reached_limit;
3602 }
3603 
3604 void CMTask::decrease_limits() {
3605   // This is called when we believe that we're going to do an infrequent
3606   // operation which will increase the per byte scanned cost (i.e. move
3607   // entries to/from the global stack). It basically tries to decrease the
3608   // scanning limit so that the clock is called earlier.
3609 
3610   if (_cm->verbose_medium()) {
3611     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3612   }
3613 
3614   _words_scanned_limit = _real_words_scanned_limit -
3615     3 * words_scanned_period / 4;
3616   _refs_reached_limit  = _real_refs_reached_limit -
3617     3 * refs_reached_period / 4;
3618 }
3619 
3620 void CMTask::move_entries_to_global_stack() {
3621   // local array where we'll store the entries that will be popped
3622   // from the local queue
3623   oop buffer[global_stack_transfer_size];
3624 
3625   int n = 0;
3626   oop obj;
3627   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3628     buffer[n] = obj;
3629     ++n;
3630   }
3631 
3632   if (n > 0) {
3633     // we popped at least one entry from the local queue
3634 
3635     statsOnly( ++_global_transfers_to; _local_pops += n );
3636 
3637     if (!_cm->mark_stack_push(buffer, n)) {
3638       if (_cm->verbose_low()) {
3639         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3640                                _worker_id);
3641       }
3642       set_has_aborted();
3643     } else {
3644       // the transfer was successful
3645 
3646       if (_cm->verbose_medium()) {
3647         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3648                                _worker_id, n);
3649       }
3650       statsOnly( int tmp_size = _cm->mark_stack_size();
3651                  if (tmp_size > _global_max_size) {
3652                    _global_max_size = tmp_size;
3653                  }
3654                  _global_pushes += n );
3655     }
3656   }
3657 
3658   // this operation was quite expensive, so decrease the limits
3659   decrease_limits();
3660 }
3661 
3662 void CMTask::get_entries_from_global_stack() {
3663   // local array where we'll store the entries that will be popped
3664   // from the global stack.
3665   oop buffer[global_stack_transfer_size];
3666   int n;
3667   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3668   assert(n <= global_stack_transfer_size,
3669          "we should not pop more than the given limit");
3670   if (n > 0) {
3671     // yes, we did actually pop at least one entry
3672 
3673     statsOnly( ++_global_transfers_from; _global_pops += n );
3674     if (_cm->verbose_medium()) {
3675       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3676                              _worker_id, n);
3677     }
3678     for (int i = 0; i < n; ++i) {
3679       bool success = _task_queue->push(buffer[i]);
3680       // We only call this when the local queue is empty or under a
3681       // given target limit. So, we do not expect this push to fail.
3682       assert(success, "invariant");
3683     }
3684 
3685     statsOnly( int tmp_size = _task_queue->size();
3686                if (tmp_size > _local_max_size) {
3687                  _local_max_size = tmp_size;
3688                }
3689                _local_pushes += n );
3690   }
3691 
3692   // this operation was quite expensive, so decrease the limits
3693   decrease_limits();
3694 }
3695 
3696 void CMTask::drain_local_queue(bool partially) {
3697   if (has_aborted()) return;
3698 
3699   // Decide what the target size is, depending whether we're going to
3700   // drain it partially (so that other tasks can steal if they run out
3701   // of things to do) or totally (at the very end).
3702   size_t target_size;
3703   if (partially) {
3704     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3705   } else {
3706     target_size = 0;
3707   }
3708 
3709   if (_task_queue->size() > target_size) {
3710     if (_cm->verbose_high()) {
3711       gclog_or_tty->print_cr("[%u] draining local queue, target size = %d",
3712                              _worker_id, target_size);
3713     }
3714 
3715     oop obj;
3716     bool ret = _task_queue->pop_local(obj);
3717     while (ret) {
3718       statsOnly( ++_local_pops );
3719 
3720       if (_cm->verbose_high()) {
3721         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3722                                (void*) obj);
3723       }
3724 
3725       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3726       assert(!_g1h->is_on_master_free_list(
3727                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3728 
3729       scan_object(obj);
3730 
3731       if (_task_queue->size() <= target_size || has_aborted()) {
3732         ret = false;
3733       } else {
3734         ret = _task_queue->pop_local(obj);
3735       }
3736     }
3737 
3738     if (_cm->verbose_high()) {
3739       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
3740                              _worker_id, _task_queue->size());
3741     }
3742   }
3743 }
3744 
3745 void CMTask::drain_global_stack(bool partially) {
3746   if (has_aborted()) return;
3747 
3748   // We have a policy to drain the local queue before we attempt to
3749   // drain the global stack.
3750   assert(partially || _task_queue->size() == 0, "invariant");
3751 
3752   // Decide what the target size is, depending whether we're going to
3753   // drain it partially (so that other tasks can steal if they run out
3754   // of things to do) or totally (at the very end).  Notice that,
3755   // because we move entries from the global stack in chunks or
3756   // because another task might be doing the same, we might in fact
3757   // drop below the target. But, this is not a problem.
3758   size_t target_size;
3759   if (partially) {
3760     target_size = _cm->partial_mark_stack_size_target();
3761   } else {
3762     target_size = 0;
3763   }
3764 
3765   if (_cm->mark_stack_size() > target_size) {
3766     if (_cm->verbose_low()) {
3767       gclog_or_tty->print_cr("[%u] draining global_stack, target size %d",
3768                              _worker_id, target_size);
3769     }
3770 
3771     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3772       get_entries_from_global_stack();
3773       drain_local_queue(partially);
3774     }
3775 
3776     if (_cm->verbose_low()) {
3777       gclog_or_tty->print_cr("[%u] drained global stack, size = %d",
3778                              _worker_id, _cm->mark_stack_size());
3779     }
3780   }
3781 }
3782 
3783 // SATB Queue has several assumptions on whether to call the par or
3784 // non-par versions of the methods. this is why some of the code is
3785 // replicated. We should really get rid of the single-threaded version
3786 // of the code to simplify things.
3787 void CMTask::drain_satb_buffers() {
3788   if (has_aborted()) return;
3789 
3790   // We set this so that the regular clock knows that we're in the
3791   // middle of draining buffers and doesn't set the abort flag when it
3792   // notices that SATB buffers are available for draining. It'd be
3793   // very counter productive if it did that. :-)
3794   _draining_satb_buffers = true;
3795 
3796   CMObjectClosure oc(this);
3797   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3798   if (G1CollectedHeap::use_parallel_gc_threads()) {
3799     satb_mq_set.set_par_closure(_worker_id, &oc);
3800   } else {
3801     satb_mq_set.set_closure(&oc);
3802   }
3803 
3804   // This keeps claiming and applying the closure to completed buffers
3805   // until we run out of buffers or we need to abort.
3806   if (G1CollectedHeap::use_parallel_gc_threads()) {
3807     while (!has_aborted() &&
3808            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3809       if (_cm->verbose_medium()) {
3810         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3811       }
3812       statsOnly( ++_satb_buffers_processed );
3813       regular_clock_call();
3814     }
3815   } else {
3816     while (!has_aborted() &&
3817            satb_mq_set.apply_closure_to_completed_buffer()) {
3818       if (_cm->verbose_medium()) {
3819         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3820       }
3821       statsOnly( ++_satb_buffers_processed );
3822       regular_clock_call();
3823     }
3824   }
3825 
3826   if (!concurrent() && !has_aborted()) {
3827     // We should only do this during remark.
3828     if (G1CollectedHeap::use_parallel_gc_threads()) {
3829       satb_mq_set.par_iterate_closure_all_threads(_worker_id);
3830     } else {
3831       satb_mq_set.iterate_closure_all_threads();
3832     }
3833   }
3834 
3835   _draining_satb_buffers = false;
3836 
3837   assert(has_aborted() ||
3838          concurrent() ||
3839          satb_mq_set.completed_buffers_num() == 0, "invariant");
3840 
3841   if (G1CollectedHeap::use_parallel_gc_threads()) {
3842     satb_mq_set.set_par_closure(_worker_id, NULL);
3843   } else {
3844     satb_mq_set.set_closure(NULL);
3845   }
3846 
3847   // again, this was a potentially expensive operation, decrease the
3848   // limits to get the regular clock call early
3849   decrease_limits();
3850 }
3851 
3852 void CMTask::print_stats() {
3853   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3854                          _worker_id, _calls);
3855   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3856                          _elapsed_time_ms, _termination_time_ms);
3857   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3858                          _step_times_ms.num(), _step_times_ms.avg(),
3859                          _step_times_ms.sd());
3860   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3861                          _step_times_ms.maximum(), _step_times_ms.sum());
3862 
3863 #if _MARKING_STATS_
3864   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3865                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3866                          _all_clock_intervals_ms.sd());
3867   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3868                          _all_clock_intervals_ms.maximum(),
3869                          _all_clock_intervals_ms.sum());
3870   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
3871                          _clock_due_to_scanning, _clock_due_to_marking);
3872   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
3873                          _objs_scanned, _objs_found_on_bitmap);
3874   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
3875                          _local_pushes, _local_pops, _local_max_size);
3876   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
3877                          _global_pushes, _global_pops, _global_max_size);
3878   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
3879                          _global_transfers_to,_global_transfers_from);
3880   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3881   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
3882   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
3883                          _steal_attempts, _steals);
3884   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
3885   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
3886                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3887   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
3888                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3889 #endif // _MARKING_STATS_
3890 }
3891 
3892 /*****************************************************************************
3893 
3894     The do_marking_step(time_target_ms) method is the building block
3895     of the parallel marking framework. It can be called in parallel
3896     with other invocations of do_marking_step() on different tasks
3897     (but only one per task, obviously) and concurrently with the
3898     mutator threads, or during remark, hence it eliminates the need
3899     for two versions of the code. When called during remark, it will
3900     pick up from where the task left off during the concurrent marking
3901     phase. Interestingly, tasks are also claimable during evacuation
3902     pauses too, since do_marking_step() ensures that it aborts before
3903     it needs to yield.
3904 
3905     The data structures that is uses to do marking work are the
3906     following:
3907 
3908       (1) Marking Bitmap. If there are gray objects that appear only
3909       on the bitmap (this happens either when dealing with an overflow
3910       or when the initial marking phase has simply marked the roots
3911       and didn't push them on the stack), then tasks claim heap
3912       regions whose bitmap they then scan to find gray objects. A
3913       global finger indicates where the end of the last claimed region
3914       is. A local finger indicates how far into the region a task has
3915       scanned. The two fingers are used to determine how to gray an
3916       object (i.e. whether simply marking it is OK, as it will be
3917       visited by a task in the future, or whether it needs to be also
3918       pushed on a stack).
3919 
3920       (2) Local Queue. The local queue of the task which is accessed
3921       reasonably efficiently by the task. Other tasks can steal from
3922       it when they run out of work. Throughout the marking phase, a
3923       task attempts to keep its local queue short but not totally
3924       empty, so that entries are available for stealing by other
3925       tasks. Only when there is no more work, a task will totally
3926       drain its local queue.
3927 
3928       (3) Global Mark Stack. This handles local queue overflow. During
3929       marking only sets of entries are moved between it and the local
3930       queues, as access to it requires a mutex and more fine-grain
3931       interaction with it which might cause contention. If it
3932       overflows, then the marking phase should restart and iterate
3933       over the bitmap to identify gray objects. Throughout the marking
3934       phase, tasks attempt to keep the global mark stack at a small
3935       length but not totally empty, so that entries are available for
3936       popping by other tasks. Only when there is no more work, tasks
3937       will totally drain the global mark stack.
3938 
3939       (4) SATB Buffer Queue. This is where completed SATB buffers are
3940       made available. Buffers are regularly removed from this queue
3941       and scanned for roots, so that the queue doesn't get too
3942       long. During remark, all completed buffers are processed, as
3943       well as the filled in parts of any uncompleted buffers.
3944 
3945     The do_marking_step() method tries to abort when the time target
3946     has been reached. There are a few other cases when the
3947     do_marking_step() method also aborts:
3948 
3949       (1) When the marking phase has been aborted (after a Full GC).
3950 
3951       (2) When a global overflow (on the global stack) has been
3952       triggered. Before the task aborts, it will actually sync up with
3953       the other tasks to ensure that all the marking data structures
3954       (local queues, stacks, fingers etc.)  are re-initialised so that
3955       when do_marking_step() completes, the marking phase can
3956       immediately restart.
3957 
3958       (3) When enough completed SATB buffers are available. The
3959       do_marking_step() method only tries to drain SATB buffers right
3960       at the beginning. So, if enough buffers are available, the
3961       marking step aborts and the SATB buffers are processed at
3962       the beginning of the next invocation.
3963 
3964       (4) To yield. when we have to yield then we abort and yield
3965       right at the end of do_marking_step(). This saves us from a lot
3966       of hassle as, by yielding we might allow a Full GC. If this
3967       happens then objects will be compacted underneath our feet, the
3968       heap might shrink, etc. We save checking for this by just
3969       aborting and doing the yield right at the end.
3970 
3971     From the above it follows that the do_marking_step() method should
3972     be called in a loop (or, otherwise, regularly) until it completes.
3973 
3974     If a marking step completes without its has_aborted() flag being
3975     true, it means it has completed the current marking phase (and
3976     also all other marking tasks have done so and have all synced up).
3977 
3978     A method called regular_clock_call() is invoked "regularly" (in
3979     sub ms intervals) throughout marking. It is this clock method that
3980     checks all the abort conditions which were mentioned above and
3981     decides when the task should abort. A work-based scheme is used to
3982     trigger this clock method: when the number of object words the
3983     marking phase has scanned or the number of references the marking
3984     phase has visited reach a given limit. Additional invocations to
3985     the method clock have been planted in a few other strategic places
3986     too. The initial reason for the clock method was to avoid calling
3987     vtime too regularly, as it is quite expensive. So, once it was in
3988     place, it was natural to piggy-back all the other conditions on it
3989     too and not constantly check them throughout the code.
3990 
3991  *****************************************************************************/
3992 
3993 void CMTask::do_marking_step(double time_target_ms,
3994                              bool do_stealing,
3995                              bool do_termination) {
3996   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3997   assert(concurrent() == _cm->concurrent(), "they should be the same");
3998 
3999   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4000   assert(_task_queues != NULL, "invariant");
4001   assert(_task_queue != NULL, "invariant");
4002   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4003 
4004   assert(!_claimed,
4005          "only one thread should claim this task at any one time");
4006 
4007   // OK, this doesn't safeguard again all possible scenarios, as it is
4008   // possible for two threads to set the _claimed flag at the same
4009   // time. But it is only for debugging purposes anyway and it will
4010   // catch most problems.
4011   _claimed = true;
4012 
4013   _start_time_ms = os::elapsedVTime() * 1000.0;
4014   statsOnly( _interval_start_time_ms = _start_time_ms );
4015 
4016   double diff_prediction_ms =
4017     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4018   _time_target_ms = time_target_ms - diff_prediction_ms;
4019 
4020   // set up the variables that are used in the work-based scheme to
4021   // call the regular clock method
4022   _words_scanned = 0;
4023   _refs_reached  = 0;
4024   recalculate_limits();
4025 
4026   // clear all flags
4027   clear_has_aborted();
4028   _has_timed_out = false;
4029   _draining_satb_buffers = false;
4030 
4031   ++_calls;
4032 
4033   if (_cm->verbose_low()) {
4034     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4035                            "target = %1.2lfms >>>>>>>>>>",
4036                            _worker_id, _calls, _time_target_ms);
4037   }
4038 
4039   // Set up the bitmap and oop closures. Anything that uses them is
4040   // eventually called from this method, so it is OK to allocate these
4041   // statically.
4042   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4043   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4044   set_cm_oop_closure(&cm_oop_closure);
4045 
4046   if (_cm->has_overflown()) {
4047     // This can happen if the mark stack overflows during a GC pause
4048     // and this task, after a yield point, restarts. We have to abort
4049     // as we need to get into the overflow protocol which happens
4050     // right at the end of this task.
4051     set_has_aborted();
4052   }
4053 
4054   // First drain any available SATB buffers. After this, we will not
4055   // look at SATB buffers before the next invocation of this method.
4056   // If enough completed SATB buffers are queued up, the regular clock
4057   // will abort this task so that it restarts.
4058   drain_satb_buffers();
4059   // ...then partially drain the local queue and the global stack
4060   drain_local_queue(true);
4061   drain_global_stack(true);
4062 
4063   do {
4064     if (!has_aborted() && _curr_region != NULL) {
4065       // This means that we're already holding on to a region.
4066       assert(_finger != NULL, "if region is not NULL, then the finger "
4067              "should not be NULL either");
4068 
4069       // We might have restarted this task after an evacuation pause
4070       // which might have evacuated the region we're holding on to
4071       // underneath our feet. Let's read its limit again to make sure
4072       // that we do not iterate over a region of the heap that
4073       // contains garbage (update_region_limit() will also move
4074       // _finger to the start of the region if it is found empty).
4075       update_region_limit();
4076       // We will start from _finger not from the start of the region,
4077       // as we might be restarting this task after aborting half-way
4078       // through scanning this region. In this case, _finger points to
4079       // the address where we last found a marked object. If this is a
4080       // fresh region, _finger points to start().
4081       MemRegion mr = MemRegion(_finger, _region_limit);
4082 
4083       if (_cm->verbose_low()) {
4084         gclog_or_tty->print_cr("[%u] we're scanning part "
4085                                "["PTR_FORMAT", "PTR_FORMAT") "
4086                                "of region "PTR_FORMAT,
4087                                _worker_id, _finger, _region_limit, _curr_region);
4088       }
4089 
4090       // Let's iterate over the bitmap of the part of the
4091       // region that is left.
4092       if (mr.is_empty() || _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4093         // We successfully completed iterating over the region. Now,
4094         // let's give up the region.
4095         giveup_current_region();
4096         regular_clock_call();
4097       } else {
4098         assert(has_aborted(), "currently the only way to do so");
4099         // The only way to abort the bitmap iteration is to return
4100         // false from the do_bit() method. However, inside the
4101         // do_bit() method we move the _finger to point to the
4102         // object currently being looked at. So, if we bail out, we
4103         // have definitely set _finger to something non-null.
4104         assert(_finger != NULL, "invariant");
4105 
4106         // Region iteration was actually aborted. So now _finger
4107         // points to the address of the object we last scanned. If we
4108         // leave it there, when we restart this task, we will rescan
4109         // the object. It is easy to avoid this. We move the finger by
4110         // enough to point to the next possible object header (the
4111         // bitmap knows by how much we need to move it as it knows its
4112         // granularity).
4113         assert(_finger < _region_limit, "invariant");
4114         HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
4115         // Check if bitmap iteration was aborted while scanning the last object
4116         if (new_finger >= _region_limit) {
4117           giveup_current_region();
4118         } else {
4119           move_finger_to(new_finger);
4120         }
4121       }
4122     }
4123     // At this point we have either completed iterating over the
4124     // region we were holding on to, or we have aborted.
4125 
4126     // We then partially drain the local queue and the global stack.
4127     // (Do we really need this?)
4128     drain_local_queue(true);
4129     drain_global_stack(true);
4130 
4131     // Read the note on the claim_region() method on why it might
4132     // return NULL with potentially more regions available for
4133     // claiming and why we have to check out_of_regions() to determine
4134     // whether we're done or not.
4135     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4136       // We are going to try to claim a new region. We should have
4137       // given up on the previous one.
4138       // Separated the asserts so that we know which one fires.
4139       assert(_curr_region  == NULL, "invariant");
4140       assert(_finger       == NULL, "invariant");
4141       assert(_region_limit == NULL, "invariant");
4142       if (_cm->verbose_low()) {
4143         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4144       }
4145       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4146       if (claimed_region != NULL) {
4147         // Yes, we managed to claim one
4148         statsOnly( ++_regions_claimed );
4149 
4150         if (_cm->verbose_low()) {
4151           gclog_or_tty->print_cr("[%u] we successfully claimed "
4152                                  "region "PTR_FORMAT,
4153                                  _worker_id, claimed_region);
4154         }
4155 
4156         setup_for_region(claimed_region);
4157         assert(_curr_region == claimed_region, "invariant");
4158       }
4159       // It is important to call the regular clock here. It might take
4160       // a while to claim a region if, for example, we hit a large
4161       // block of empty regions. So we need to call the regular clock
4162       // method once round the loop to make sure it's called
4163       // frequently enough.
4164       regular_clock_call();
4165     }
4166 
4167     if (!has_aborted() && _curr_region == NULL) {
4168       assert(_cm->out_of_regions(),
4169              "at this point we should be out of regions");
4170     }
4171   } while ( _curr_region != NULL && !has_aborted());
4172 
4173   if (!has_aborted()) {
4174     // We cannot check whether the global stack is empty, since other
4175     // tasks might be pushing objects to it concurrently.
4176     assert(_cm->out_of_regions(),
4177            "at this point we should be out of regions");
4178 
4179     if (_cm->verbose_low()) {
4180       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4181     }
4182 
4183     // Try to reduce the number of available SATB buffers so that
4184     // remark has less work to do.
4185     drain_satb_buffers();
4186   }
4187 
4188   // Since we've done everything else, we can now totally drain the
4189   // local queue and global stack.
4190   drain_local_queue(false);
4191   drain_global_stack(false);
4192 
4193   // Attempt at work stealing from other task's queues.
4194   if (do_stealing && !has_aborted()) {
4195     // We have not aborted. This means that we have finished all that
4196     // we could. Let's try to do some stealing...
4197 
4198     // We cannot check whether the global stack is empty, since other
4199     // tasks might be pushing objects to it concurrently.
4200     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4201            "only way to reach here");
4202 
4203     if (_cm->verbose_low()) {
4204       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4205     }
4206 
4207     while (!has_aborted()) {
4208       oop obj;
4209       statsOnly( ++_steal_attempts );
4210 
4211       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4212         if (_cm->verbose_medium()) {
4213           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4214                                  _worker_id, (void*) obj);
4215         }
4216 
4217         statsOnly( ++_steals );
4218 
4219         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4220                "any stolen object should be marked");
4221         scan_object(obj);
4222 
4223         // And since we're towards the end, let's totally drain the
4224         // local queue and global stack.
4225         drain_local_queue(false);
4226         drain_global_stack(false);
4227       } else {
4228         break;
4229       }
4230     }
4231   }
4232 
4233   // If we are about to wrap up and go into termination, check if we
4234   // should raise the overflow flag.
4235   if (do_termination && !has_aborted()) {
4236     if (_cm->force_overflow()->should_force()) {
4237       _cm->set_has_overflown();
4238       regular_clock_call();
4239     }
4240   }
4241 
4242   // We still haven't aborted. Now, let's try to get into the
4243   // termination protocol.
4244   if (do_termination && !has_aborted()) {
4245     // We cannot check whether the global stack is empty, since other
4246     // tasks might be concurrently pushing objects on it.
4247     // Separated the asserts so that we know which one fires.
4248     assert(_cm->out_of_regions(), "only way to reach here");
4249     assert(_task_queue->size() == 0, "only way to reach here");
4250 
4251     if (_cm->verbose_low()) {
4252       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4253     }
4254 
4255     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4256     // The CMTask class also extends the TerminatorTerminator class,
4257     // hence its should_exit_termination() method will also decide
4258     // whether to exit the termination protocol or not.
4259     bool finished = _cm->terminator()->offer_termination(this);
4260     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4261     _termination_time_ms +=
4262       termination_end_time_ms - _termination_start_time_ms;
4263 
4264     if (finished) {
4265       // We're all done.
4266 
4267       if (_worker_id == 0) {
4268         // let's allow task 0 to do this
4269         if (concurrent()) {
4270           assert(_cm->concurrent_marking_in_progress(), "invariant");
4271           // we need to set this to false before the next
4272           // safepoint. This way we ensure that the marking phase
4273           // doesn't observe any more heap expansions.
4274           _cm->clear_concurrent_marking_in_progress();
4275         }
4276       }
4277 
4278       // We can now guarantee that the global stack is empty, since
4279       // all other tasks have finished. We separated the guarantees so
4280       // that, if a condition is false, we can immediately find out
4281       // which one.
4282       guarantee(_cm->out_of_regions(), "only way to reach here");
4283       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4284       guarantee(_task_queue->size() == 0, "only way to reach here");
4285       guarantee(!_cm->has_overflown(), "only way to reach here");
4286       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4287 
4288       if (_cm->verbose_low()) {
4289         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4290       }
4291     } else {
4292       // Apparently there's more work to do. Let's abort this task. It
4293       // will restart it and we can hopefully find more things to do.
4294 
4295       if (_cm->verbose_low()) {
4296         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4297                                _worker_id);
4298       }
4299 
4300       set_has_aborted();
4301       statsOnly( ++_aborted_termination );
4302     }
4303   }
4304 
4305   // Mainly for debugging purposes to make sure that a pointer to the
4306   // closure which was statically allocated in this frame doesn't
4307   // escape it by accident.
4308   set_cm_oop_closure(NULL);
4309   double end_time_ms = os::elapsedVTime() * 1000.0;
4310   double elapsed_time_ms = end_time_ms - _start_time_ms;
4311   // Update the step history.
4312   _step_times_ms.add(elapsed_time_ms);
4313 
4314   if (has_aborted()) {
4315     // The task was aborted for some reason.
4316 
4317     statsOnly( ++_aborted );
4318 
4319     if (_has_timed_out) {
4320       double diff_ms = elapsed_time_ms - _time_target_ms;
4321       // Keep statistics of how well we did with respect to hitting
4322       // our target only if we actually timed out (if we aborted for
4323       // other reasons, then the results might get skewed).
4324       _marking_step_diffs_ms.add(diff_ms);
4325     }
4326 
4327     if (_cm->has_overflown()) {
4328       // This is the interesting one. We aborted because a global
4329       // overflow was raised. This means we have to restart the
4330       // marking phase and start iterating over regions. However, in
4331       // order to do this we have to make sure that all tasks stop
4332       // what they are doing and re-initialise in a safe manner. We
4333       // will achieve this with the use of two barrier sync points.
4334 
4335       if (_cm->verbose_low()) {
4336         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4337       }
4338 
4339       _cm->enter_first_sync_barrier(_worker_id);
4340       // When we exit this sync barrier we know that all tasks have
4341       // stopped doing marking work. So, it's now safe to
4342       // re-initialise our data structures. At the end of this method,
4343       // task 0 will clear the global data structures.
4344 
4345       statsOnly( ++_aborted_overflow );
4346 
4347       // We clear the local state of this task...
4348       clear_region_fields();
4349 
4350       // ...and enter the second barrier.
4351       _cm->enter_second_sync_barrier(_worker_id);
4352       // At this point everything has bee re-initialised and we're
4353       // ready to restart.
4354     }
4355 
4356     if (_cm->verbose_low()) {
4357       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4358                              "elapsed = %1.2lfms <<<<<<<<<<",
4359                              _worker_id, _time_target_ms, elapsed_time_ms);
4360       if (_cm->has_aborted()) {
4361         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4362                                _worker_id);
4363       }
4364     }
4365   } else {
4366     if (_cm->verbose_low()) {
4367       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4368                              "elapsed = %1.2lfms <<<<<<<<<<",
4369                              _worker_id, _time_target_ms, elapsed_time_ms);
4370     }
4371   }
4372 
4373   _claimed = false;
4374 }
4375 
4376 CMTask::CMTask(uint worker_id,
4377                ConcurrentMark* cm,
4378                size_t* marked_bytes,
4379                BitMap* card_bm,
4380                CMTaskQueue* task_queue,
4381                CMTaskQueueSet* task_queues)
4382   : _g1h(G1CollectedHeap::heap()),
4383     _worker_id(worker_id), _cm(cm),
4384     _claimed(false),
4385     _nextMarkBitMap(NULL), _hash_seed(17),
4386     _task_queue(task_queue),
4387     _task_queues(task_queues),
4388     _cm_oop_closure(NULL),
4389     _marked_bytes_array(marked_bytes),
4390     _card_bm(card_bm) {
4391   guarantee(task_queue != NULL, "invariant");
4392   guarantee(task_queues != NULL, "invariant");
4393 
4394   statsOnly( _clock_due_to_scanning = 0;
4395              _clock_due_to_marking  = 0 );
4396 
4397   _marking_step_diffs_ms.add(0.5);
4398 }
4399 
4400 // These are formatting macros that are used below to ensure
4401 // consistent formatting. The *_H_* versions are used to format the
4402 // header for a particular value and they should be kept consistent
4403 // with the corresponding macro. Also note that most of the macros add
4404 // the necessary white space (as a prefix) which makes them a bit
4405 // easier to compose.
4406 
4407 // All the output lines are prefixed with this string to be able to
4408 // identify them easily in a large log file.
4409 #define G1PPRL_LINE_PREFIX            "###"
4410 
4411 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4412 #ifdef _LP64
4413 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4414 #else // _LP64
4415 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4416 #endif // _LP64
4417 
4418 // For per-region info
4419 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4420 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4421 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4422 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4423 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4424 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4425 
4426 // For summary info
4427 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4428 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4429 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4430 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4431 
4432 G1PrintRegionLivenessInfoClosure::
4433 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4434   : _out(out),
4435     _total_used_bytes(0), _total_capacity_bytes(0),
4436     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4437     _hum_used_bytes(0), _hum_capacity_bytes(0),
4438     _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
4439   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4440   MemRegion g1_committed = g1h->g1_committed();
4441   MemRegion g1_reserved = g1h->g1_reserved();
4442   double now = os::elapsedTime();
4443 
4444   // Print the header of the output.
4445   _out->cr();
4446   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4447   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4448                  G1PPRL_SUM_ADDR_FORMAT("committed")
4449                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4450                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4451                  g1_committed.start(), g1_committed.end(),
4452                  g1_reserved.start(), g1_reserved.end(),
4453                  HeapRegion::GrainBytes);
4454   _out->print_cr(G1PPRL_LINE_PREFIX);
4455   _out->print_cr(G1PPRL_LINE_PREFIX
4456                  G1PPRL_TYPE_H_FORMAT
4457                  G1PPRL_ADDR_BASE_H_FORMAT
4458                  G1PPRL_BYTE_H_FORMAT
4459                  G1PPRL_BYTE_H_FORMAT
4460                  G1PPRL_BYTE_H_FORMAT
4461                  G1PPRL_DOUBLE_H_FORMAT,
4462                  "type", "address-range",
4463                  "used", "prev-live", "next-live", "gc-eff");
4464   _out->print_cr(G1PPRL_LINE_PREFIX
4465                  G1PPRL_TYPE_H_FORMAT
4466                  G1PPRL_ADDR_BASE_H_FORMAT
4467                  G1PPRL_BYTE_H_FORMAT
4468                  G1PPRL_BYTE_H_FORMAT
4469                  G1PPRL_BYTE_H_FORMAT
4470                  G1PPRL_DOUBLE_H_FORMAT,
4471                  "", "",
4472                  "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
4473 }
4474 
4475 // It takes as a parameter a reference to one of the _hum_* fields, it
4476 // deduces the corresponding value for a region in a humongous region
4477 // series (either the region size, or what's left if the _hum_* field
4478 // is < the region size), and updates the _hum_* field accordingly.
4479 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4480   size_t bytes = 0;
4481   // The > 0 check is to deal with the prev and next live bytes which
4482   // could be 0.
4483   if (*hum_bytes > 0) {
4484     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4485     *hum_bytes -= bytes;
4486   }
4487   return bytes;
4488 }
4489 
4490 // It deduces the values for a region in a humongous region series
4491 // from the _hum_* fields and updates those accordingly. It assumes
4492 // that that _hum_* fields have already been set up from the "starts
4493 // humongous" region and we visit the regions in address order.
4494 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4495                                                      size_t* capacity_bytes,
4496                                                      size_t* prev_live_bytes,
4497                                                      size_t* next_live_bytes) {
4498   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4499   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4500   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4501   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4502   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4503 }
4504 
4505 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4506   const char* type = "";
4507   HeapWord* bottom       = r->bottom();
4508   HeapWord* end          = r->end();
4509   size_t capacity_bytes  = r->capacity();
4510   size_t used_bytes      = r->used();
4511   size_t prev_live_bytes = r->live_bytes();
4512   size_t next_live_bytes = r->next_live_bytes();
4513   double gc_eff          = r->gc_efficiency();
4514   if (r->used() == 0) {
4515     type = "FREE";
4516   } else if (r->is_survivor()) {
4517     type = "SURV";
4518   } else if (r->is_young()) {
4519     type = "EDEN";
4520   } else if (r->startsHumongous()) {
4521     type = "HUMS";
4522 
4523     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4524            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4525            "they should have been zeroed after the last time we used them");
4526     // Set up the _hum_* fields.
4527     _hum_capacity_bytes  = capacity_bytes;
4528     _hum_used_bytes      = used_bytes;
4529     _hum_prev_live_bytes = prev_live_bytes;
4530     _hum_next_live_bytes = next_live_bytes;
4531     get_hum_bytes(&used_bytes, &capacity_bytes,
4532                   &prev_live_bytes, &next_live_bytes);
4533     end = bottom + HeapRegion::GrainWords;
4534   } else if (r->continuesHumongous()) {
4535     type = "HUMC";
4536     get_hum_bytes(&used_bytes, &capacity_bytes,
4537                   &prev_live_bytes, &next_live_bytes);
4538     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4539   } else {
4540     type = "OLD";
4541   }
4542 
4543   _total_used_bytes      += used_bytes;
4544   _total_capacity_bytes  += capacity_bytes;
4545   _total_prev_live_bytes += prev_live_bytes;
4546   _total_next_live_bytes += next_live_bytes;
4547 
4548   // Print a line for this particular region.
4549   _out->print_cr(G1PPRL_LINE_PREFIX
4550                  G1PPRL_TYPE_FORMAT
4551                  G1PPRL_ADDR_BASE_FORMAT
4552                  G1PPRL_BYTE_FORMAT
4553                  G1PPRL_BYTE_FORMAT
4554                  G1PPRL_BYTE_FORMAT
4555                  G1PPRL_DOUBLE_FORMAT,
4556                  type, bottom, end,
4557                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff);
4558 
4559   return false;
4560 }
4561 
4562 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4563   // Print the footer of the output.
4564   _out->print_cr(G1PPRL_LINE_PREFIX);
4565   _out->print_cr(G1PPRL_LINE_PREFIX
4566                  " SUMMARY"
4567                  G1PPRL_SUM_MB_FORMAT("capacity")
4568                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4569                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4570                  G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
4571                  bytes_to_mb(_total_capacity_bytes),
4572                  bytes_to_mb(_total_used_bytes),
4573                  perc(_total_used_bytes, _total_capacity_bytes),
4574                  bytes_to_mb(_total_prev_live_bytes),
4575                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4576                  bytes_to_mb(_total_next_live_bytes),
4577                  perc(_total_next_live_bytes, _total_capacity_bytes));
4578   _out->cr();
4579 }