1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  37 #include "gc_implementation/g1/g1Log.hpp"
  38 #include "gc_implementation/g1/g1MarkSweep.hpp"
  39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  41 #include "gc_implementation/g1/heapRegion.inline.hpp"
  42 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  43 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  44 #include "gc_implementation/g1/vm_operations_g1.hpp"
  45 #include "gc_implementation/shared/isGCActiveMark.hpp"
  46 #include "memory/gcLocker.inline.hpp"
  47 #include "memory/genOopClosures.inline.hpp"
  48 #include "memory/generationSpec.hpp"
  49 #include "memory/referenceProcessor.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/oop.pcgc.inline.hpp"
  52 #include "runtime/aprofiler.hpp"
  53 #include "runtime/vmThread.hpp"
  54 
  55 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  56 
  57 // turn it on so that the contents of the young list (scan-only /
  58 // to-be-collected) are printed at "strategic" points before / during
  59 // / after the collection --- this is useful for debugging
  60 #define YOUNG_LIST_VERBOSE 0
  61 // CURRENT STATUS
  62 // This file is under construction.  Search for "FIXME".
  63 
  64 // INVARIANTS/NOTES
  65 //
  66 // All allocation activity covered by the G1CollectedHeap interface is
  67 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  68 // and allocate_new_tlab, which are the "entry" points to the
  69 // allocation code from the rest of the JVM.  (Note that this does not
  70 // apply to TLAB allocation, which is not part of this interface: it
  71 // is done by clients of this interface.)
  72 
  73 // Notes on implementation of parallelism in different tasks.
  74 //
  75 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  76 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  77 // It does use run_task() which sets _n_workers in the task.
  78 // G1ParTask executes g1_process_strong_roots() ->
  79 // SharedHeap::process_strong_roots() which calls eventuall to
  80 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  81 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  82 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  83 //
  84 
  85 // Local to this file.
  86 
  87 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  88   SuspendibleThreadSet* _sts;
  89   G1RemSet* _g1rs;
  90   ConcurrentG1Refine* _cg1r;
  91   bool _concurrent;
  92 public:
  93   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  94                               G1RemSet* g1rs,
  95                               ConcurrentG1Refine* cg1r) :
  96     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  97   {}
  98   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  99     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
 100     // This path is executed by the concurrent refine or mutator threads,
 101     // concurrently, and so we do not care if card_ptr contains references
 102     // that point into the collection set.
 103     assert(!oops_into_cset, "should be");
 104 
 105     if (_concurrent && _sts->should_yield()) {
 106       // Caller will actually yield.
 107       return false;
 108     }
 109     // Otherwise, we finished successfully; return true.
 110     return true;
 111   }
 112   void set_concurrent(bool b) { _concurrent = b; }
 113 };
 114 
 115 
 116 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 117   int _calls;
 118   G1CollectedHeap* _g1h;
 119   CardTableModRefBS* _ctbs;
 120   int _histo[256];
 121 public:
 122   ClearLoggedCardTableEntryClosure() :
 123     _calls(0)
 124   {
 125     _g1h = G1CollectedHeap::heap();
 126     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 127     for (int i = 0; i < 256; i++) _histo[i] = 0;
 128   }
 129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 131       _calls++;
 132       unsigned char* ujb = (unsigned char*)card_ptr;
 133       int ind = (int)(*ujb);
 134       _histo[ind]++;
 135       *card_ptr = -1;
 136     }
 137     return true;
 138   }
 139   int calls() { return _calls; }
 140   void print_histo() {
 141     gclog_or_tty->print_cr("Card table value histogram:");
 142     for (int i = 0; i < 256; i++) {
 143       if (_histo[i] != 0) {
 144         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 145       }
 146     }
 147   }
 148 };
 149 
 150 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 151   int _calls;
 152   G1CollectedHeap* _g1h;
 153   CardTableModRefBS* _ctbs;
 154 public:
 155   RedirtyLoggedCardTableEntryClosure() :
 156     _calls(0)
 157   {
 158     _g1h = G1CollectedHeap::heap();
 159     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 160   }
 161   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 162     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 163       _calls++;
 164       *card_ptr = 0;
 165     }
 166     return true;
 167   }
 168   int calls() { return _calls; }
 169 };
 170 
 171 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 172 public:
 173   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 174     *card_ptr = CardTableModRefBS::dirty_card_val();
 175     return true;
 176   }
 177 };
 178 
 179 YoungList::YoungList(G1CollectedHeap* g1h) :
 180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 182   guarantee(check_list_empty(false), "just making sure...");
 183 }
 184 
 185 void YoungList::push_region(HeapRegion *hr) {
 186   assert(!hr->is_young(), "should not already be young");
 187   assert(hr->get_next_young_region() == NULL, "cause it should!");
 188 
 189   hr->set_next_young_region(_head);
 190   _head = hr;
 191 
 192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 193   ++_length;
 194 }
 195 
 196 void YoungList::add_survivor_region(HeapRegion* hr) {
 197   assert(hr->is_survivor(), "should be flagged as survivor region");
 198   assert(hr->get_next_young_region() == NULL, "cause it should!");
 199 
 200   hr->set_next_young_region(_survivor_head);
 201   if (_survivor_head == NULL) {
 202     _survivor_tail = hr;
 203   }
 204   _survivor_head = hr;
 205   ++_survivor_length;
 206 }
 207 
 208 void YoungList::empty_list(HeapRegion* list) {
 209   while (list != NULL) {
 210     HeapRegion* next = list->get_next_young_region();
 211     list->set_next_young_region(NULL);
 212     list->uninstall_surv_rate_group();
 213     list->set_not_young();
 214     list = next;
 215   }
 216 }
 217 
 218 void YoungList::empty_list() {
 219   assert(check_list_well_formed(), "young list should be well formed");
 220 
 221   empty_list(_head);
 222   _head = NULL;
 223   _length = 0;
 224 
 225   empty_list(_survivor_head);
 226   _survivor_head = NULL;
 227   _survivor_tail = NULL;
 228   _survivor_length = 0;
 229 
 230   _last_sampled_rs_lengths = 0;
 231 
 232   assert(check_list_empty(false), "just making sure...");
 233 }
 234 
 235 bool YoungList::check_list_well_formed() {
 236   bool ret = true;
 237 
 238   uint length = 0;
 239   HeapRegion* curr = _head;
 240   HeapRegion* last = NULL;
 241   while (curr != NULL) {
 242     if (!curr->is_young()) {
 243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 244                              "incorrectly tagged (y: %d, surv: %d)",
 245                              curr->bottom(), curr->end(),
 246                              curr->is_young(), curr->is_survivor());
 247       ret = false;
 248     }
 249     ++length;
 250     last = curr;
 251     curr = curr->get_next_young_region();
 252   }
 253   ret = ret && (length == _length);
 254 
 255   if (!ret) {
 256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 258                            length, _length);
 259   }
 260 
 261   return ret;
 262 }
 263 
 264 bool YoungList::check_list_empty(bool check_sample) {
 265   bool ret = true;
 266 
 267   if (_length != 0) {
 268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 269                   _length);
 270     ret = false;
 271   }
 272   if (check_sample && _last_sampled_rs_lengths != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 274     ret = false;
 275   }
 276   if (_head != NULL) {
 277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 278     ret = false;
 279   }
 280   if (!ret) {
 281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 282   }
 283 
 284   return ret;
 285 }
 286 
 287 void
 288 YoungList::rs_length_sampling_init() {
 289   _sampled_rs_lengths = 0;
 290   _curr               = _head;
 291 }
 292 
 293 bool
 294 YoungList::rs_length_sampling_more() {
 295   return _curr != NULL;
 296 }
 297 
 298 void
 299 YoungList::rs_length_sampling_next() {
 300   assert( _curr != NULL, "invariant" );
 301   size_t rs_length = _curr->rem_set()->occupied();
 302 
 303   _sampled_rs_lengths += rs_length;
 304 
 305   // The current region may not yet have been added to the
 306   // incremental collection set (it gets added when it is
 307   // retired as the current allocation region).
 308   if (_curr->in_collection_set()) {
 309     // Update the collection set policy information for this region
 310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 311   }
 312 
 313   _curr = _curr->get_next_young_region();
 314   if (_curr == NULL) {
 315     _last_sampled_rs_lengths = _sampled_rs_lengths;
 316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 317   }
 318 }
 319 
 320 void
 321 YoungList::reset_auxilary_lists() {
 322   guarantee( is_empty(), "young list should be empty" );
 323   assert(check_list_well_formed(), "young list should be well formed");
 324 
 325   // Add survivor regions to SurvRateGroup.
 326   _g1h->g1_policy()->note_start_adding_survivor_regions();
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 328 
 329   int young_index_in_cset = 0;
 330   for (HeapRegion* curr = _survivor_head;
 331        curr != NULL;
 332        curr = curr->get_next_young_region()) {
 333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 334 
 335     // The region is a non-empty survivor so let's add it to
 336     // the incremental collection set for the next evacuation
 337     // pause.
 338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 339     young_index_in_cset += 1;
 340   }
 341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 343 
 344   _head   = _survivor_head;
 345   _length = _survivor_length;
 346   if (_survivor_head != NULL) {
 347     assert(_survivor_tail != NULL, "cause it shouldn't be");
 348     assert(_survivor_length > 0, "invariant");
 349     _survivor_tail->set_next_young_region(NULL);
 350   }
 351 
 352   // Don't clear the survivor list handles until the start of
 353   // the next evacuation pause - we need it in order to re-tag
 354   // the survivor regions from this evacuation pause as 'young'
 355   // at the start of the next.
 356 
 357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 358 
 359   assert(check_list_well_formed(), "young list should be well formed");
 360 }
 361 
 362 void YoungList::print() {
 363   HeapRegion* lists[] = {_head,   _survivor_head};
 364   const char* names[] = {"YOUNG", "SURVIVOR"};
 365 
 366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 368     HeapRegion *curr = lists[list];
 369     if (curr == NULL)
 370       gclog_or_tty->print_cr("  empty");
 371     while (curr != NULL) {
 372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 373                              HR_FORMAT_PARAMS(curr),
 374                              curr->prev_top_at_mark_start(),
 375                              curr->next_top_at_mark_start(),
 376                              curr->age_in_surv_rate_group_cond());
 377       curr = curr->get_next_young_region();
 378     }
 379   }
 380 
 381   gclog_or_tty->print_cr("");
 382 }
 383 
 384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 385 {
 386   // Claim the right to put the region on the dirty cards region list
 387   // by installing a self pointer.
 388   HeapRegion* next = hr->get_next_dirty_cards_region();
 389   if (next == NULL) {
 390     HeapRegion* res = (HeapRegion*)
 391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 392                           NULL);
 393     if (res == NULL) {
 394       HeapRegion* head;
 395       do {
 396         // Put the region to the dirty cards region list.
 397         head = _dirty_cards_region_list;
 398         next = (HeapRegion*)
 399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 400         if (next == head) {
 401           assert(hr->get_next_dirty_cards_region() == hr,
 402                  "hr->get_next_dirty_cards_region() != hr");
 403           if (next == NULL) {
 404             // The last region in the list points to itself.
 405             hr->set_next_dirty_cards_region(hr);
 406           } else {
 407             hr->set_next_dirty_cards_region(next);
 408           }
 409         }
 410       } while (next != head);
 411     }
 412   }
 413 }
 414 
 415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 416 {
 417   HeapRegion* head;
 418   HeapRegion* hr;
 419   do {
 420     head = _dirty_cards_region_list;
 421     if (head == NULL) {
 422       return NULL;
 423     }
 424     HeapRegion* new_head = head->get_next_dirty_cards_region();
 425     if (head == new_head) {
 426       // The last region.
 427       new_head = NULL;
 428     }
 429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 430                                           head);
 431   } while (hr != head);
 432   assert(hr != NULL, "invariant");
 433   hr->set_next_dirty_cards_region(NULL);
 434   return hr;
 435 }
 436 
 437 void G1CollectedHeap::stop_conc_gc_threads() {
 438   _cg1r->stop();
 439   _cmThread->stop();
 440 }
 441 
 442 #ifdef ASSERT
 443 // A region is added to the collection set as it is retired
 444 // so an address p can point to a region which will be in the
 445 // collection set but has not yet been retired.  This method
 446 // therefore is only accurate during a GC pause after all
 447 // regions have been retired.  It is used for debugging
 448 // to check if an nmethod has references to objects that can
 449 // be move during a partial collection.  Though it can be
 450 // inaccurate, it is sufficient for G1 because the conservative
 451 // implementation of is_scavengable() for G1 will indicate that
 452 // all nmethods must be scanned during a partial collection.
 453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 454   HeapRegion* hr = heap_region_containing(p);
 455   return hr != NULL && hr->in_collection_set();
 456 }
 457 #endif
 458 
 459 // Returns true if the reference points to an object that
 460 // can move in an incremental collecction.
 461 bool G1CollectedHeap::is_scavengable(const void* p) {
 462   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 463   G1CollectorPolicy* g1p = g1h->g1_policy();
 464   HeapRegion* hr = heap_region_containing(p);
 465   if (hr == NULL) {
 466      // null
 467      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 468      return false;
 469   } else {
 470     return !hr->isHumongous();
 471   }
 472 }
 473 
 474 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 475   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 476   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 477 
 478   // Count the dirty cards at the start.
 479   CountNonCleanMemRegionClosure count1(this);
 480   ct_bs->mod_card_iterate(&count1);
 481   int orig_count = count1.n();
 482 
 483   // First clear the logged cards.
 484   ClearLoggedCardTableEntryClosure clear;
 485   dcqs.set_closure(&clear);
 486   dcqs.apply_closure_to_all_completed_buffers();
 487   dcqs.iterate_closure_all_threads(false);
 488   clear.print_histo();
 489 
 490   // Now ensure that there's no dirty cards.
 491   CountNonCleanMemRegionClosure count2(this);
 492   ct_bs->mod_card_iterate(&count2);
 493   if (count2.n() != 0) {
 494     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 495                            count2.n(), orig_count);
 496   }
 497   guarantee(count2.n() == 0, "Card table should be clean.");
 498 
 499   RedirtyLoggedCardTableEntryClosure redirty;
 500   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 501   dcqs.apply_closure_to_all_completed_buffers();
 502   dcqs.iterate_closure_all_threads(false);
 503   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 504                          clear.calls(), orig_count);
 505   guarantee(redirty.calls() == clear.calls(),
 506             "Or else mechanism is broken.");
 507 
 508   CountNonCleanMemRegionClosure count3(this);
 509   ct_bs->mod_card_iterate(&count3);
 510   if (count3.n() != orig_count) {
 511     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 512                            orig_count, count3.n());
 513     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 514   }
 515 
 516   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 517 }
 518 
 519 // Private class members.
 520 
 521 G1CollectedHeap* G1CollectedHeap::_g1h;
 522 
 523 // Private methods.
 524 
 525 HeapRegion*
 526 G1CollectedHeap::new_region_try_secondary_free_list() {
 527   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 528   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 529     if (!_secondary_free_list.is_empty()) {
 530       if (G1ConcRegionFreeingVerbose) {
 531         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 532                                "secondary_free_list has %u entries",
 533                                _secondary_free_list.length());
 534       }
 535       // It looks as if there are free regions available on the
 536       // secondary_free_list. Let's move them to the free_list and try
 537       // again to allocate from it.
 538       append_secondary_free_list();
 539 
 540       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 541              "empty we should have moved at least one entry to the free_list");
 542       HeapRegion* res = _free_list.remove_head();
 543       if (G1ConcRegionFreeingVerbose) {
 544         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 545                                "allocated "HR_FORMAT" from secondary_free_list",
 546                                HR_FORMAT_PARAMS(res));
 547       }
 548       return res;
 549     }
 550 
 551     // Wait here until we get notifed either when (a) there are no
 552     // more free regions coming or (b) some regions have been moved on
 553     // the secondary_free_list.
 554     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 555   }
 556 
 557   if (G1ConcRegionFreeingVerbose) {
 558     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 559                            "could not allocate from secondary_free_list");
 560   }
 561   return NULL;
 562 }
 563 
 564 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 565   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 566          "the only time we use this to allocate a humongous region is "
 567          "when we are allocating a single humongous region");
 568 
 569   HeapRegion* res;
 570   if (G1StressConcRegionFreeing) {
 571     if (!_secondary_free_list.is_empty()) {
 572       if (G1ConcRegionFreeingVerbose) {
 573         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 574                                "forced to look at the secondary_free_list");
 575       }
 576       res = new_region_try_secondary_free_list();
 577       if (res != NULL) {
 578         return res;
 579       }
 580     }
 581   }
 582   res = _free_list.remove_head_or_null();
 583   if (res == NULL) {
 584     if (G1ConcRegionFreeingVerbose) {
 585       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 586                              "res == NULL, trying the secondary_free_list");
 587     }
 588     res = new_region_try_secondary_free_list();
 589   }
 590   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 591     // Currently, only attempts to allocate GC alloc regions set
 592     // do_expand to true. So, we should only reach here during a
 593     // safepoint. If this assumption changes we might have to
 594     // reconsider the use of _expand_heap_after_alloc_failure.
 595     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 596 
 597     ergo_verbose1(ErgoHeapSizing,
 598                   "attempt heap expansion",
 599                   ergo_format_reason("region allocation request failed")
 600                   ergo_format_byte("allocation request"),
 601                   word_size * HeapWordSize);
 602     if (expand(word_size * HeapWordSize)) {
 603       // Given that expand() succeeded in expanding the heap, and we
 604       // always expand the heap by an amount aligned to the heap
 605       // region size, the free list should in theory not be empty. So
 606       // it would probably be OK to use remove_head(). But the extra
 607       // check for NULL is unlikely to be a performance issue here (we
 608       // just expanded the heap!) so let's just be conservative and
 609       // use remove_head_or_null().
 610       res = _free_list.remove_head_or_null();
 611     } else {
 612       _expand_heap_after_alloc_failure = false;
 613     }
 614   }
 615   return res;
 616 }
 617 
 618 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 619                                                         size_t word_size) {
 620   assert(isHumongous(word_size), "word_size should be humongous");
 621   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 622 
 623   uint first = G1_NULL_HRS_INDEX;
 624   if (num_regions == 1) {
 625     // Only one region to allocate, no need to go through the slower
 626     // path. The caller will attempt the expasion if this fails, so
 627     // let's not try to expand here too.
 628     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 629     if (hr != NULL) {
 630       first = hr->hrs_index();
 631     } else {
 632       first = G1_NULL_HRS_INDEX;
 633     }
 634   } else {
 635     // We can't allocate humongous regions while cleanupComplete() is
 636     // running, since some of the regions we find to be empty might not
 637     // yet be added to the free list and it is not straightforward to
 638     // know which list they are on so that we can remove them. Note
 639     // that we only need to do this if we need to allocate more than
 640     // one region to satisfy the current humongous allocation
 641     // request. If we are only allocating one region we use the common
 642     // region allocation code (see above).
 643     wait_while_free_regions_coming();
 644     append_secondary_free_list_if_not_empty_with_lock();
 645 
 646     if (free_regions() >= num_regions) {
 647       first = _hrs.find_contiguous(num_regions);
 648       if (first != G1_NULL_HRS_INDEX) {
 649         for (uint i = first; i < first + num_regions; ++i) {
 650           HeapRegion* hr = region_at(i);
 651           assert(hr->is_empty(), "sanity");
 652           assert(is_on_master_free_list(hr), "sanity");
 653           hr->set_pending_removal(true);
 654         }
 655         _free_list.remove_all_pending(num_regions);
 656       }
 657     }
 658   }
 659   return first;
 660 }
 661 
 662 HeapWord*
 663 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 664                                                            uint num_regions,
 665                                                            size_t word_size) {
 666   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 667   assert(isHumongous(word_size), "word_size should be humongous");
 668   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 669 
 670   // Index of last region in the series + 1.
 671   uint last = first + num_regions;
 672 
 673   // We need to initialize the region(s) we just discovered. This is
 674   // a bit tricky given that it can happen concurrently with
 675   // refinement threads refining cards on these regions and
 676   // potentially wanting to refine the BOT as they are scanning
 677   // those cards (this can happen shortly after a cleanup; see CR
 678   // 6991377). So we have to set up the region(s) carefully and in
 679   // a specific order.
 680 
 681   // The word size sum of all the regions we will allocate.
 682   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 683   assert(word_size <= word_size_sum, "sanity");
 684 
 685   // This will be the "starts humongous" region.
 686   HeapRegion* first_hr = region_at(first);
 687   // The header of the new object will be placed at the bottom of
 688   // the first region.
 689   HeapWord* new_obj = first_hr->bottom();
 690   // This will be the new end of the first region in the series that
 691   // should also match the end of the last region in the seriers.
 692   HeapWord* new_end = new_obj + word_size_sum;
 693   // This will be the new top of the first region that will reflect
 694   // this allocation.
 695   HeapWord* new_top = new_obj + word_size;
 696 
 697   // First, we need to zero the header of the space that we will be
 698   // allocating. When we update top further down, some refinement
 699   // threads might try to scan the region. By zeroing the header we
 700   // ensure that any thread that will try to scan the region will
 701   // come across the zero klass word and bail out.
 702   //
 703   // NOTE: It would not have been correct to have used
 704   // CollectedHeap::fill_with_object() and make the space look like
 705   // an int array. The thread that is doing the allocation will
 706   // later update the object header to a potentially different array
 707   // type and, for a very short period of time, the klass and length
 708   // fields will be inconsistent. This could cause a refinement
 709   // thread to calculate the object size incorrectly.
 710   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 711 
 712   // We will set up the first region as "starts humongous". This
 713   // will also update the BOT covering all the regions to reflect
 714   // that there is a single object that starts at the bottom of the
 715   // first region.
 716   first_hr->set_startsHumongous(new_top, new_end);
 717 
 718   // Then, if there are any, we will set up the "continues
 719   // humongous" regions.
 720   HeapRegion* hr = NULL;
 721   for (uint i = first + 1; i < last; ++i) {
 722     hr = region_at(i);
 723     hr->set_continuesHumongous(first_hr);
 724   }
 725   // If we have "continues humongous" regions (hr != NULL), then the
 726   // end of the last one should match new_end.
 727   assert(hr == NULL || hr->end() == new_end, "sanity");
 728 
 729   // Up to this point no concurrent thread would have been able to
 730   // do any scanning on any region in this series. All the top
 731   // fields still point to bottom, so the intersection between
 732   // [bottom,top] and [card_start,card_end] will be empty. Before we
 733   // update the top fields, we'll do a storestore to make sure that
 734   // no thread sees the update to top before the zeroing of the
 735   // object header and the BOT initialization.
 736   OrderAccess::storestore();
 737 
 738   // Now that the BOT and the object header have been initialized,
 739   // we can update top of the "starts humongous" region.
 740   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 741          "new_top should be in this region");
 742   first_hr->set_top(new_top);
 743   if (_hr_printer.is_active()) {
 744     HeapWord* bottom = first_hr->bottom();
 745     HeapWord* end = first_hr->orig_end();
 746     if ((first + 1) == last) {
 747       // the series has a single humongous region
 748       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 749     } else {
 750       // the series has more than one humongous regions
 751       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 752     }
 753   }
 754 
 755   // Now, we will update the top fields of the "continues humongous"
 756   // regions. The reason we need to do this is that, otherwise,
 757   // these regions would look empty and this will confuse parts of
 758   // G1. For example, the code that looks for a consecutive number
 759   // of empty regions will consider them empty and try to
 760   // re-allocate them. We can extend is_empty() to also include
 761   // !continuesHumongous(), but it is easier to just update the top
 762   // fields here. The way we set top for all regions (i.e., top ==
 763   // end for all regions but the last one, top == new_top for the
 764   // last one) is actually used when we will free up the humongous
 765   // region in free_humongous_region().
 766   hr = NULL;
 767   for (uint i = first + 1; i < last; ++i) {
 768     hr = region_at(i);
 769     if ((i + 1) == last) {
 770       // last continues humongous region
 771       assert(hr->bottom() < new_top && new_top <= hr->end(),
 772              "new_top should fall on this region");
 773       hr->set_top(new_top);
 774       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 775     } else {
 776       // not last one
 777       assert(new_top > hr->end(), "new_top should be above this region");
 778       hr->set_top(hr->end());
 779       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 780     }
 781   }
 782   // If we have continues humongous regions (hr != NULL), then the
 783   // end of the last one should match new_end and its top should
 784   // match new_top.
 785   assert(hr == NULL ||
 786          (hr->end() == new_end && hr->top() == new_top), "sanity");
 787   check_bitmaps("Humongous Region Allocation", first_hr);
 788 
 789   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 790   _summary_bytes_used += first_hr->used();
 791   _humongous_set.add(first_hr);
 792 
 793   return new_obj;
 794 }
 795 
 796 // If could fit into free regions w/o expansion, try.
 797 // Otherwise, if can expand, do so.
 798 // Otherwise, if using ex regions might help, try with ex given back.
 799 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 800   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 801 
 802   verify_region_sets_optional();
 803 
 804   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 805   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 806   uint x_num = expansion_regions();
 807   uint fs = _hrs.free_suffix();
 808   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 809   if (first == G1_NULL_HRS_INDEX) {
 810     // The only thing we can do now is attempt expansion.
 811     if (fs + x_num >= num_regions) {
 812       // If the number of regions we're trying to allocate for this
 813       // object is at most the number of regions in the free suffix,
 814       // then the call to humongous_obj_allocate_find_first() above
 815       // should have succeeded and we wouldn't be here.
 816       //
 817       // We should only be trying to expand when the free suffix is
 818       // not sufficient for the object _and_ we have some expansion
 819       // room available.
 820       assert(num_regions > fs, "earlier allocation should have succeeded");
 821 
 822       ergo_verbose1(ErgoHeapSizing,
 823                     "attempt heap expansion",
 824                     ergo_format_reason("humongous allocation request failed")
 825                     ergo_format_byte("allocation request"),
 826                     word_size * HeapWordSize);
 827       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 828         // Even though the heap was expanded, it might not have
 829         // reached the desired size. So, we cannot assume that the
 830         // allocation will succeed.
 831         first = humongous_obj_allocate_find_first(num_regions, word_size);
 832       }
 833     }
 834   }
 835 
 836   HeapWord* result = NULL;
 837   if (first != G1_NULL_HRS_INDEX) {
 838     result =
 839       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 840     assert(result != NULL, "it should always return a valid result");
 841 
 842     // A successful humongous object allocation changes the used space
 843     // information of the old generation so we need to recalculate the
 844     // sizes and update the jstat counters here.
 845     g1mm()->update_sizes();
 846   }
 847 
 848   verify_region_sets_optional();
 849 
 850   return result;
 851 }
 852 
 853 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 854   assert_heap_not_locked_and_not_at_safepoint();
 855   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 856 
 857   unsigned int dummy_gc_count_before;
 858   return attempt_allocation(word_size, &dummy_gc_count_before);
 859 }
 860 
 861 HeapWord*
 862 G1CollectedHeap::mem_allocate(size_t word_size,
 863                               bool*  gc_overhead_limit_was_exceeded) {
 864   assert_heap_not_locked_and_not_at_safepoint();
 865 
 866   // Loop until the allocation is satisified, or unsatisfied after GC.
 867   for (int try_count = 1; /* we'll return */; try_count += 1) {
 868     unsigned int gc_count_before;
 869 
 870     HeapWord* result = NULL;
 871     if (!isHumongous(word_size)) {
 872       result = attempt_allocation(word_size, &gc_count_before);
 873     } else {
 874       result = attempt_allocation_humongous(word_size, &gc_count_before);
 875     }
 876     if (result != NULL) {
 877       return result;
 878     }
 879 
 880     // Create the garbage collection operation...
 881     VM_G1CollectForAllocation op(gc_count_before, word_size);
 882     // ...and get the VM thread to execute it.
 883     VMThread::execute(&op);
 884 
 885     if (op.prologue_succeeded() && op.pause_succeeded()) {
 886       // If the operation was successful we'll return the result even
 887       // if it is NULL. If the allocation attempt failed immediately
 888       // after a Full GC, it's unlikely we'll be able to allocate now.
 889       HeapWord* result = op.result();
 890       if (result != NULL && !isHumongous(word_size)) {
 891         // Allocations that take place on VM operations do not do any
 892         // card dirtying and we have to do it here. We only have to do
 893         // this for non-humongous allocations, though.
 894         dirty_young_block(result, word_size);
 895       }
 896       return result;
 897     } else {
 898       assert(op.result() == NULL,
 899              "the result should be NULL if the VM op did not succeed");
 900     }
 901 
 902     // Give a warning if we seem to be looping forever.
 903     if ((QueuedAllocationWarningCount > 0) &&
 904         (try_count % QueuedAllocationWarningCount == 0)) {
 905       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 906     }
 907   }
 908 
 909   ShouldNotReachHere();
 910   return NULL;
 911 }
 912 
 913 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 914                                            unsigned int *gc_count_before_ret) {
 915   // Make sure you read the note in attempt_allocation_humongous().
 916 
 917   assert_heap_not_locked_and_not_at_safepoint();
 918   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 919          "be called for humongous allocation requests");
 920 
 921   // We should only get here after the first-level allocation attempt
 922   // (attempt_allocation()) failed to allocate.
 923 
 924   // We will loop until a) we manage to successfully perform the
 925   // allocation or b) we successfully schedule a collection which
 926   // fails to perform the allocation. b) is the only case when we'll
 927   // return NULL.
 928   HeapWord* result = NULL;
 929   for (int try_count = 1; /* we'll return */; try_count += 1) {
 930     bool should_try_gc;
 931     unsigned int gc_count_before;
 932 
 933     {
 934       MutexLockerEx x(Heap_lock);
 935 
 936       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 937                                                       false /* bot_updates */);
 938       if (result != NULL) {
 939         return result;
 940       }
 941 
 942       // If we reach here, attempt_allocation_locked() above failed to
 943       // allocate a new region. So the mutator alloc region should be NULL.
 944       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 945 
 946       if (GC_locker::is_active_and_needs_gc()) {
 947         if (g1_policy()->can_expand_young_list()) {
 948           // No need for an ergo verbose message here,
 949           // can_expand_young_list() does this when it returns true.
 950           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 951                                                       false /* bot_updates */);
 952           if (result != NULL) {
 953             return result;
 954           }
 955         }
 956         should_try_gc = false;
 957       } else {
 958         // The GCLocker may not be active but the GCLocker initiated
 959         // GC may not yet have been performed (GCLocker::needs_gc()
 960         // returns true). In this case we do not try this GC and
 961         // wait until the GCLocker initiated GC is performed, and
 962         // then retry the allocation.
 963         if (GC_locker::needs_gc()) {
 964           should_try_gc = false;
 965         } else {
 966           // Read the GC count while still holding the Heap_lock.
 967           gc_count_before = total_collections();
 968           should_try_gc = true;
 969         }
 970       }
 971     }
 972 
 973     if (should_try_gc) {
 974       bool succeeded;
 975       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 976       if (result != NULL) {
 977         assert(succeeded, "only way to get back a non-NULL result");
 978         return result;
 979       }
 980 
 981       if (succeeded) {
 982         // If we get here we successfully scheduled a collection which
 983         // failed to allocate. No point in trying to allocate
 984         // further. We'll just return NULL.
 985         MutexLockerEx x(Heap_lock);
 986         *gc_count_before_ret = total_collections();
 987         return NULL;
 988       }
 989     } else {
 990       // The GCLocker is either active or the GCLocker initiated
 991       // GC has not yet been performed. Stall until it is and
 992       // then retry the allocation.
 993       GC_locker::stall_until_clear();
 994     }
 995 
 996     // We can reach here if we were unsuccessul in scheduling a
 997     // collection (because another thread beat us to it) or if we were
 998     // stalled due to the GC locker. In either can we should retry the
 999     // allocation attempt in case another thread successfully
1000     // performed a collection and reclaimed enough space. We do the
1001     // first attempt (without holding the Heap_lock) here and the
1002     // follow-on attempt will be at the start of the next loop
1003     // iteration (after taking the Heap_lock).
1004     result = _mutator_alloc_region.attempt_allocation(word_size,
1005                                                       false /* bot_updates */);
1006     if (result != NULL) {
1007       return result;
1008     }
1009 
1010     // Give a warning if we seem to be looping forever.
1011     if ((QueuedAllocationWarningCount > 0) &&
1012         (try_count % QueuedAllocationWarningCount == 0)) {
1013       warning("G1CollectedHeap::attempt_allocation_slow() "
1014               "retries %d times", try_count);
1015     }
1016   }
1017 
1018   ShouldNotReachHere();
1019   return NULL;
1020 }
1021 
1022 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1023                                           unsigned int * gc_count_before_ret) {
1024   // The structure of this method has a lot of similarities to
1025   // attempt_allocation_slow(). The reason these two were not merged
1026   // into a single one is that such a method would require several "if
1027   // allocation is not humongous do this, otherwise do that"
1028   // conditional paths which would obscure its flow. In fact, an early
1029   // version of this code did use a unified method which was harder to
1030   // follow and, as a result, it had subtle bugs that were hard to
1031   // track down. So keeping these two methods separate allows each to
1032   // be more readable. It will be good to keep these two in sync as
1033   // much as possible.
1034 
1035   assert_heap_not_locked_and_not_at_safepoint();
1036   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1037          "should only be called for humongous allocations");
1038 
1039   // Humongous objects can exhaust the heap quickly, so we should check if we
1040   // need to start a marking cycle at each humongous object allocation. We do
1041   // the check before we do the actual allocation. The reason for doing it
1042   // before the allocation is that we avoid having to keep track of the newly
1043   // allocated memory while we do a GC.
1044   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1045                                            word_size)) {
1046     collect(GCCause::_g1_humongous_allocation);
1047   }
1048 
1049   // We will loop until a) we manage to successfully perform the
1050   // allocation or b) we successfully schedule a collection which
1051   // fails to perform the allocation. b) is the only case when we'll
1052   // return NULL.
1053   HeapWord* result = NULL;
1054   for (int try_count = 1; /* we'll return */; try_count += 1) {
1055     bool should_try_gc;
1056     unsigned int gc_count_before;
1057 
1058     {
1059       MutexLockerEx x(Heap_lock);
1060 
1061       // Given that humongous objects are not allocated in young
1062       // regions, we'll first try to do the allocation without doing a
1063       // collection hoping that there's enough space in the heap.
1064       result = humongous_obj_allocate(word_size);
1065       if (result != NULL) {
1066         return result;
1067       }
1068 
1069       if (GC_locker::is_active_and_needs_gc()) {
1070         should_try_gc = false;
1071       } else {
1072          // The GCLocker may not be active but the GCLocker initiated
1073         // GC may not yet have been performed (GCLocker::needs_gc()
1074         // returns true). In this case we do not try this GC and
1075         // wait until the GCLocker initiated GC is performed, and
1076         // then retry the allocation.
1077         if (GC_locker::needs_gc()) {
1078           should_try_gc = false;
1079         } else {
1080           // Read the GC count while still holding the Heap_lock.
1081           gc_count_before = total_collections();
1082           should_try_gc = true;
1083         }
1084       }
1085     }
1086 
1087     if (should_try_gc) {
1088       // If we failed to allocate the humongous object, we should try to
1089       // do a collection pause (if we're allowed) in case it reclaims
1090       // enough space for the allocation to succeed after the pause.
1091 
1092       bool succeeded;
1093       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1094       if (result != NULL) {
1095         assert(succeeded, "only way to get back a non-NULL result");
1096         return result;
1097       }
1098 
1099       if (succeeded) {
1100         // If we get here we successfully scheduled a collection which
1101         // failed to allocate. No point in trying to allocate
1102         // further. We'll just return NULL.
1103         MutexLockerEx x(Heap_lock);
1104         *gc_count_before_ret = total_collections();
1105         return NULL;
1106       }
1107     } else {
1108       // The GCLocker is either active or the GCLocker initiated
1109       // GC has not yet been performed. Stall until it is and
1110       // then retry the allocation.
1111       GC_locker::stall_until_clear();
1112     }
1113 
1114     // We can reach here if we were unsuccessul in scheduling a
1115     // collection (because another thread beat us to it) or if we were
1116     // stalled due to the GC locker. In either can we should retry the
1117     // allocation attempt in case another thread successfully
1118     // performed a collection and reclaimed enough space.  Give a
1119     // warning if we seem to be looping forever.
1120 
1121     if ((QueuedAllocationWarningCount > 0) &&
1122         (try_count % QueuedAllocationWarningCount == 0)) {
1123       warning("G1CollectedHeap::attempt_allocation_humongous() "
1124               "retries %d times", try_count);
1125     }
1126   }
1127 
1128   ShouldNotReachHere();
1129   return NULL;
1130 }
1131 
1132 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1133                                        bool expect_null_mutator_alloc_region) {
1134   assert_at_safepoint(true /* should_be_vm_thread */);
1135   assert(_mutator_alloc_region.get() == NULL ||
1136                                              !expect_null_mutator_alloc_region,
1137          "the current alloc region was unexpectedly found to be non-NULL");
1138 
1139   if (!isHumongous(word_size)) {
1140     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1141                                                       false /* bot_updates */);
1142   } else {
1143     HeapWord* result = humongous_obj_allocate(word_size);
1144     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1145       g1_policy()->set_initiate_conc_mark_if_possible();
1146     }
1147     return result;
1148   }
1149 
1150   ShouldNotReachHere();
1151 }
1152 
1153 class PostMCRemSetClearClosure: public HeapRegionClosure {
1154   G1CollectedHeap* _g1h;
1155   ModRefBarrierSet* _mr_bs;
1156 public:
1157   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1158     _g1h(g1h), _mr_bs(mr_bs) { }
1159   bool doHeapRegion(HeapRegion* r) {
1160     if (r->continuesHumongous()) {
1161       return false;
1162     }
1163     _g1h->reset_gc_time_stamps(r);
1164     HeapRegionRemSet* hrrs = r->rem_set();
1165     if (hrrs != NULL) hrrs->clear();
1166     // You might think here that we could clear just the cards
1167     // corresponding to the used region.  But no: if we leave a dirty card
1168     // in a region we might allocate into, then it would prevent that card
1169     // from being enqueued, and cause it to be missed.
1170     // Re: the performance cost: we shouldn't be doing full GC anyway!
1171     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1172     return false;
1173   }
1174 };
1175 
1176 void G1CollectedHeap::clear_rsets_post_compaction() {
1177   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1178   heap_region_iterate(&rs_clear);
1179 }
1180 
1181 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1182   G1CollectedHeap*   _g1h;
1183   UpdateRSOopClosure _cl;
1184   int                _worker_i;
1185 public:
1186   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1187     _cl(g1->g1_rem_set(), worker_i),
1188     _worker_i(worker_i),
1189     _g1h(g1)
1190   { }
1191 
1192   bool doHeapRegion(HeapRegion* r) {
1193     if (!r->continuesHumongous()) {
1194       _cl.set_from(r);
1195       r->oop_iterate(&_cl);
1196     }
1197     return false;
1198   }
1199 };
1200 
1201 class ParRebuildRSTask: public AbstractGangTask {
1202   G1CollectedHeap* _g1;
1203 public:
1204   ParRebuildRSTask(G1CollectedHeap* g1)
1205     : AbstractGangTask("ParRebuildRSTask"),
1206       _g1(g1)
1207   { }
1208 
1209   void work(uint worker_id) {
1210     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1211     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1212                                           _g1->workers()->active_workers(),
1213                                          HeapRegion::RebuildRSClaimValue);
1214   }
1215 };
1216 
1217 class PostCompactionPrinterClosure: public HeapRegionClosure {
1218 private:
1219   G1HRPrinter* _hr_printer;
1220 public:
1221   bool doHeapRegion(HeapRegion* hr) {
1222     assert(!hr->is_young(), "not expecting to find young regions");
1223     // We only generate output for non-empty regions.
1224     if (!hr->is_empty()) {
1225       if (!hr->isHumongous()) {
1226         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1227       } else if (hr->startsHumongous()) {
1228         if (hr->region_num() == 1) {
1229           // single humongous region
1230           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1231         } else {
1232           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1233         }
1234       } else {
1235         assert(hr->continuesHumongous(), "only way to get here");
1236         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1237       }
1238     }
1239     return false;
1240   }
1241 
1242   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1243     : _hr_printer(hr_printer) { }
1244 };
1245 
1246 void G1CollectedHeap::print_hrs_post_compaction() {
1247   PostCompactionPrinterClosure cl(hr_printer());
1248   heap_region_iterate(&cl);
1249 }
1250 
1251 double G1CollectedHeap::verify(bool guard, const char* msg) {
1252   double verify_time_ms = 0.0;
1253 
1254   if (guard && total_collections() >= VerifyGCStartAt) {
1255     double verify_start = os::elapsedTime();
1256     HandleMark hm;  // Discard invalid handles created during verification
1257     gclog_or_tty->print(msg);
1258     prepare_for_verify();
1259     Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking);
1260     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
1261   }
1262 
1263   return verify_time_ms;
1264 }
1265 
1266 void G1CollectedHeap::verify_before_gc() {
1267   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
1268   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
1269 }
1270 
1271 void G1CollectedHeap::verify_after_gc() {
1272   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
1273   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
1274 }
1275 
1276 bool G1CollectedHeap::do_collection(bool explicit_gc,
1277                                     bool clear_all_soft_refs,
1278                                     size_t word_size) {
1279   assert_at_safepoint(true /* should_be_vm_thread */);
1280 
1281   if (GC_locker::check_active_before_gc()) {
1282     return false;
1283   }
1284 
1285   SvcGCMarker sgcm(SvcGCMarker::FULL);
1286   ResourceMark rm;
1287 
1288   print_heap_before_gc();
1289 
1290   size_t metadata_prev_used = MetaspaceAux::used_in_bytes();
1291 
1292   HRSPhaseSetter x(HRSPhaseFullGC);
1293   verify_region_sets_optional();
1294 
1295   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1296                            collector_policy()->should_clear_all_soft_refs();
1297 
1298   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1299 
1300   {
1301     IsGCActiveMark x;
1302 
1303     // Timing
1304     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1305     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1306     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1307 
1308     TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
1309     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1310     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1311 
1312     double start = os::elapsedTime();
1313     g1_policy()->record_full_collection_start();
1314 
1315     // Note: When we have a more flexible GC logging framework that
1316     // allows us to add optional attributes to a GC log record we
1317     // could consider timing and reporting how long we wait in the
1318     // following two methods.
1319     wait_while_free_regions_coming();
1320     // If we start the compaction before the CM threads finish
1321     // scanning the root regions we might trip them over as we'll
1322     // be moving objects / updating references. So let's wait until
1323     // they are done. By telling them to abort, they should complete
1324     // early.
1325     _cm->root_regions()->abort();
1326     _cm->root_regions()->wait_until_scan_finished();
1327     append_secondary_free_list_if_not_empty_with_lock();
1328 
1329     gc_prologue(true);
1330     increment_total_collections(true /* full gc */);
1331     increment_old_marking_cycles_started();
1332 
1333     size_t g1h_prev_used = used();
1334     assert(used() == recalculate_used(), "Should be equal");
1335 
1336     verify_before_gc();
1337 
1338     check_bitmaps("Full GC Start");
1339     pre_full_gc_dump();
1340 
1341     COMPILER2_PRESENT(DerivedPointerTable::clear());
1342 
1343     // Disable discovery and empty the discovered lists
1344     // for the CM ref processor.
1345     ref_processor_cm()->disable_discovery();
1346     ref_processor_cm()->abandon_partial_discovery();
1347     ref_processor_cm()->verify_no_references_recorded();
1348 
1349     // Abandon current iterations of concurrent marking and concurrent
1350     // refinement, if any are in progress.
1351     concurrent_mark()->abort();
1352 
1353     // Make sure we'll choose a new allocation region afterwards.
1354     release_mutator_alloc_region();
1355     abandon_gc_alloc_regions();
1356     g1_rem_set()->cleanupHRRS();
1357 
1358     // We should call this after we retire any currently active alloc
1359     // regions so that all the ALLOC / RETIRE events are generated
1360     // before the start GC event.
1361     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1362 
1363     // We may have added regions to the current incremental collection
1364     // set between the last GC or pause and now. We need to clear the
1365     // incremental collection set and then start rebuilding it afresh
1366     // after this full GC.
1367     abandon_collection_set(g1_policy()->inc_cset_head());
1368     g1_policy()->clear_incremental_cset();
1369     g1_policy()->stop_incremental_cset_building();
1370 
1371     tear_down_region_sets(false /* free_list_only */);
1372     g1_policy()->set_gcs_are_young(true);
1373 
1374     // See the comments in g1CollectedHeap.hpp and
1375     // G1CollectedHeap::ref_processing_init() about
1376     // how reference processing currently works in G1.
1377 
1378     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1379     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1380 
1381     // Temporarily clear the STW ref processor's _is_alive_non_header field.
1382     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1383 
1384     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1385     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1386 
1387     // Do collection work
1388     {
1389       HandleMark hm;  // Discard invalid handles created during gc
1390       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1391     }
1392     
1393     // Clear the previous marking bitmap, if needed for bitmap verification.
1394     // Note we cannot do this when we clear the next marking bitmap in
1395     // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1396     // objects marked during a full GC against the previous bitmap.
1397     if (G1VerifyPrevBitmap) {
1398       ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1399     }
1400 
1401     assert(free_regions() == 0, "we should not have added any free regions");
1402     rebuild_region_sets(false /* free_list_only */);
1403 
1404     // Enqueue any discovered reference objects that have
1405     // not been removed from the discovered lists.
1406     ref_processor_stw()->enqueue_discovered_references();
1407 
1408     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1409 
1410     MemoryService::track_memory_usage();
1411 
1412     verify_after_gc();
1413 
1414     check_bitmaps("Full GC End");
1415 
1416     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1417     ref_processor_stw()->verify_no_references_recorded();
1418 
1419     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1420     ClassLoaderDataGraph::purge();
1421 
1422     // Note: since we've just done a full GC, concurrent
1423     // marking is no longer active. Therefore we need not
1424     // re-enable reference discovery for the CM ref processor.
1425     // That will be done at the start of the next marking cycle.
1426     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1427     ref_processor_cm()->verify_no_references_recorded();
1428 
1429     reset_gc_time_stamp();
1430     // Since everything potentially moved, we will clear all remembered
1431     // sets, and clear all cards.  Later we will rebuild remebered
1432     // sets. We will also reset the GC time stamps of the regions.
1433     clear_rsets_post_compaction();
1434     check_gc_time_stamps();
1435 
1436     // Resize the heap if necessary.
1437     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1438 
1439     if (_hr_printer.is_active()) {
1440       // We should do this after we potentially resize the heap so
1441       // that all the COMMIT / UNCOMMIT events are generated before
1442       // the end GC event.
1443 
1444       print_hrs_post_compaction();
1445       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1446     }
1447 
1448     if (_cg1r->use_cache()) {
1449       _cg1r->clear_and_record_card_counts();
1450       _cg1r->clear_hot_cache();
1451     }
1452 
1453     // Rebuild remembered sets of all regions.
1454     if (G1CollectedHeap::use_parallel_gc_threads()) {
1455       uint n_workers =
1456         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1457                                        workers()->active_workers(),
1458                                        Threads::number_of_non_daemon_threads());
1459       assert(UseDynamicNumberOfGCThreads ||
1460              n_workers == workers()->total_workers(),
1461              "If not dynamic should be using all the  workers");
1462       workers()->set_active_workers(n_workers);
1463       // Set parallel threads in the heap (_n_par_threads) only
1464       // before a parallel phase and always reset it to 0 after
1465       // the phase so that the number of parallel threads does
1466       // no get carried forward to a serial phase where there
1467       // may be code that is "possibly_parallel".
1468       set_par_threads(n_workers);
1469 
1470       ParRebuildRSTask rebuild_rs_task(this);
1471       assert(check_heap_region_claim_values(
1472              HeapRegion::InitialClaimValue), "sanity check");
1473       assert(UseDynamicNumberOfGCThreads ||
1474              workers()->active_workers() == workers()->total_workers(),
1475         "Unless dynamic should use total workers");
1476       // Use the most recent number of  active workers
1477       assert(workers()->active_workers() > 0,
1478         "Active workers not properly set");
1479       set_par_threads(workers()->active_workers());
1480       workers()->run_task(&rebuild_rs_task);
1481       set_par_threads(0);
1482       assert(check_heap_region_claim_values(
1483              HeapRegion::RebuildRSClaimValue), "sanity check");
1484       reset_heap_region_claim_values();
1485     } else {
1486       RebuildRSOutOfRegionClosure rebuild_rs(this);
1487       heap_region_iterate(&rebuild_rs);
1488     }
1489 
1490     if (G1Log::fine()) {
1491       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1492     }
1493 
1494     if (true) { // FIXME
1495       MetaspaceGC::compute_new_size();
1496     }
1497 
1498     // Start a new incremental collection set for the next pause
1499     assert(g1_policy()->collection_set() == NULL, "must be");
1500     g1_policy()->start_incremental_cset_building();
1501 
1502     // Clear the _cset_fast_test bitmap in anticipation of adding
1503     // regions to the incremental collection set for the next
1504     // evacuation pause.
1505     clear_cset_fast_test();
1506 
1507     init_mutator_alloc_region();
1508 
1509     double end = os::elapsedTime();
1510     g1_policy()->record_full_collection_end();
1511 
1512 #ifdef TRACESPINNING
1513     ParallelTaskTerminator::print_termination_counts();
1514 #endif
1515 
1516     gc_epilogue(true);
1517 
1518     // Discard all rset updates
1519     JavaThread::dirty_card_queue_set().abandon_logs();
1520     assert(!G1DeferredRSUpdate
1521            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1522 
1523     _young_list->reset_sampled_info();
1524     // At this point there should be no regions in the
1525     // entire heap tagged as young.
1526     assert( check_young_list_empty(true /* check_heap */),
1527       "young list should be empty at this point");
1528 
1529     // Update the number of full collections that have been completed.
1530     increment_old_marking_cycles_completed(false /* concurrent */);
1531 
1532     _hrs.verify_optional();
1533     verify_region_sets_optional();
1534 
1535     print_heap_after_gc();
1536 
1537     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1538     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1539     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1540     // before any GC notifications are raised.
1541     g1mm()->update_sizes();
1542   }
1543 
1544   post_full_gc_dump();
1545 
1546   return true;
1547 }
1548 
1549 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1550   // do_collection() will return whether it succeeded in performing
1551   // the GC. Currently, there is no facility on the
1552   // do_full_collection() API to notify the caller than the collection
1553   // did not succeed (e.g., because it was locked out by the GC
1554   // locker). So, right now, we'll ignore the return value.
1555   bool dummy = do_collection(true,                /* explicit_gc */
1556                              clear_all_soft_refs,
1557                              0                    /* word_size */);
1558 }
1559 
1560 // This code is mostly copied from TenuredGeneration.
1561 void
1562 G1CollectedHeap::
1563 resize_if_necessary_after_full_collection(size_t word_size) {
1564   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1565 
1566   // Include the current allocation, if any, and bytes that will be
1567   // pre-allocated to support collections, as "used".
1568   const size_t used_after_gc = used();
1569   const size_t capacity_after_gc = capacity();
1570   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1571 
1572   // This is enforced in arguments.cpp.
1573   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1574          "otherwise the code below doesn't make sense");
1575 
1576   // We don't have floating point command-line arguments
1577   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1578   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1579   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1580   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1581 
1582   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1583   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1584 
1585   // We have to be careful here as these two calculations can overflow
1586   // 32-bit size_t's.
1587   double used_after_gc_d = (double) used_after_gc;
1588   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1589   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1590 
1591   // Let's make sure that they are both under the max heap size, which
1592   // by default will make them fit into a size_t.
1593   double desired_capacity_upper_bound = (double) max_heap_size;
1594   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1595                                     desired_capacity_upper_bound);
1596   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1597                                     desired_capacity_upper_bound);
1598 
1599   // We can now safely turn them into size_t's.
1600   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1601   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1602 
1603   // This assert only makes sense here, before we adjust them
1604   // with respect to the min and max heap size.
1605   assert(minimum_desired_capacity <= maximum_desired_capacity,
1606          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1607                  "maximum_desired_capacity = "SIZE_FORMAT,
1608                  minimum_desired_capacity, maximum_desired_capacity));
1609 
1610   // Should not be greater than the heap max size. No need to adjust
1611   // it with respect to the heap min size as it's a lower bound (i.e.,
1612   // we'll try to make the capacity larger than it, not smaller).
1613   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1614   // Should not be less than the heap min size. No need to adjust it
1615   // with respect to the heap max size as it's an upper bound (i.e.,
1616   // we'll try to make the capacity smaller than it, not greater).
1617   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1618 
1619   if (capacity_after_gc < minimum_desired_capacity) {
1620     // Don't expand unless it's significant
1621     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1622     ergo_verbose4(ErgoHeapSizing,
1623                   "attempt heap expansion",
1624                   ergo_format_reason("capacity lower than "
1625                                      "min desired capacity after Full GC")
1626                   ergo_format_byte("capacity")
1627                   ergo_format_byte("occupancy")
1628                   ergo_format_byte_perc("min desired capacity"),
1629                   capacity_after_gc, used_after_gc,
1630                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1631     expand(expand_bytes);
1632 
1633     // No expansion, now see if we want to shrink
1634   } else if (capacity_after_gc > maximum_desired_capacity) {
1635     // Capacity too large, compute shrinking size
1636     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1637     ergo_verbose4(ErgoHeapSizing,
1638                   "attempt heap shrinking",
1639                   ergo_format_reason("capacity higher than "
1640                                      "max desired capacity after Full GC")
1641                   ergo_format_byte("capacity")
1642                   ergo_format_byte("occupancy")
1643                   ergo_format_byte_perc("max desired capacity"),
1644                   capacity_after_gc, used_after_gc,
1645                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1646     shrink(shrink_bytes);
1647   }
1648 }
1649 
1650 
1651 HeapWord*
1652 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1653                                            bool* succeeded) {
1654   assert_at_safepoint(true /* should_be_vm_thread */);
1655 
1656   *succeeded = true;
1657   // Let's attempt the allocation first.
1658   HeapWord* result =
1659     attempt_allocation_at_safepoint(word_size,
1660                                  false /* expect_null_mutator_alloc_region */);
1661   if (result != NULL) {
1662     assert(*succeeded, "sanity");
1663     return result;
1664   }
1665 
1666   // In a G1 heap, we're supposed to keep allocation from failing by
1667   // incremental pauses.  Therefore, at least for now, we'll favor
1668   // expansion over collection.  (This might change in the future if we can
1669   // do something smarter than full collection to satisfy a failed alloc.)
1670   result = expand_and_allocate(word_size);
1671   if (result != NULL) {
1672     assert(*succeeded, "sanity");
1673     return result;
1674   }
1675 
1676   // Expansion didn't work, we'll try to do a Full GC.
1677   bool gc_succeeded = do_collection(false, /* explicit_gc */
1678                                     false, /* clear_all_soft_refs */
1679                                     word_size);
1680   if (!gc_succeeded) {
1681     *succeeded = false;
1682     return NULL;
1683   }
1684 
1685   // Retry the allocation
1686   result = attempt_allocation_at_safepoint(word_size,
1687                                   true /* expect_null_mutator_alloc_region */);
1688   if (result != NULL) {
1689     assert(*succeeded, "sanity");
1690     return result;
1691   }
1692 
1693   // Then, try a Full GC that will collect all soft references.
1694   gc_succeeded = do_collection(false, /* explicit_gc */
1695                                true,  /* clear_all_soft_refs */
1696                                word_size);
1697   if (!gc_succeeded) {
1698     *succeeded = false;
1699     return NULL;
1700   }
1701 
1702   // Retry the allocation once more
1703   result = attempt_allocation_at_safepoint(word_size,
1704                                   true /* expect_null_mutator_alloc_region */);
1705   if (result != NULL) {
1706     assert(*succeeded, "sanity");
1707     return result;
1708   }
1709 
1710   assert(!collector_policy()->should_clear_all_soft_refs(),
1711          "Flag should have been handled and cleared prior to this point");
1712 
1713   // What else?  We might try synchronous finalization later.  If the total
1714   // space available is large enough for the allocation, then a more
1715   // complete compaction phase than we've tried so far might be
1716   // appropriate.
1717   assert(*succeeded, "sanity");
1718   return NULL;
1719 }
1720 
1721 // Attempting to expand the heap sufficiently
1722 // to support an allocation of the given "word_size".  If
1723 // successful, perform the allocation and return the address of the
1724 // allocated block, or else "NULL".
1725 
1726 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1727   assert_at_safepoint(true /* should_be_vm_thread */);
1728 
1729   verify_region_sets_optional();
1730 
1731   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1732   ergo_verbose1(ErgoHeapSizing,
1733                 "attempt heap expansion",
1734                 ergo_format_reason("allocation request failed")
1735                 ergo_format_byte("allocation request"),
1736                 word_size * HeapWordSize);
1737   if (expand(expand_bytes)) {
1738     _hrs.verify_optional();
1739     verify_region_sets_optional();
1740     return attempt_allocation_at_safepoint(word_size,
1741                                  false /* expect_null_mutator_alloc_region */);
1742   }
1743   return NULL;
1744 }
1745 
1746 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1747                                              HeapWord* new_end) {
1748   assert(old_end != new_end, "don't call this otherwise");
1749   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1750 
1751   // Update the committed mem region.
1752   _g1_committed.set_end(new_end);
1753   // Tell the card table about the update.
1754   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1755   // Tell the BOT about the update.
1756   _bot_shared->resize(_g1_committed.word_size());
1757 }
1758 
1759 bool G1CollectedHeap::expand(size_t expand_bytes) {
1760   size_t old_mem_size = _g1_storage.committed_size();
1761   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1762   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1763                                        HeapRegion::GrainBytes);
1764   ergo_verbose2(ErgoHeapSizing,
1765                 "expand the heap",
1766                 ergo_format_byte("requested expansion amount")
1767                 ergo_format_byte("attempted expansion amount"),
1768                 expand_bytes, aligned_expand_bytes);
1769 
1770   // First commit the memory.
1771   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1772   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1773   if (successful) {
1774     // Then propagate this update to the necessary data structures.
1775     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1776     update_committed_space(old_end, new_end);
1777 
1778     FreeRegionList expansion_list("Local Expansion List");
1779     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1780     assert(mr.start() == old_end, "post-condition");
1781     // mr might be a smaller region than what was requested if
1782     // expand_by() was unable to allocate the HeapRegion instances
1783     assert(mr.end() <= new_end, "post-condition");
1784 
1785     size_t actual_expand_bytes = mr.byte_size();
1786     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1787     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1788            "post-condition");
1789     if (actual_expand_bytes < aligned_expand_bytes) {
1790       // We could not expand _hrs to the desired size. In this case we
1791       // need to shrink the committed space accordingly.
1792       assert(mr.end() < new_end, "invariant");
1793 
1794       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1795       // First uncommit the memory.
1796       _g1_storage.shrink_by(diff_bytes);
1797       // Then propagate this update to the necessary data structures.
1798       update_committed_space(new_end, mr.end());
1799     }
1800     _free_list.add_as_tail(&expansion_list);
1801 
1802     if (_hr_printer.is_active()) {
1803       HeapWord* curr = mr.start();
1804       while (curr < mr.end()) {
1805         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1806         _hr_printer.commit(curr, curr_end);
1807         curr = curr_end;
1808       }
1809       assert(curr == mr.end(), "post-condition");
1810     }
1811     g1_policy()->record_new_heap_size(n_regions());
1812   } else {
1813     ergo_verbose0(ErgoHeapSizing,
1814                   "did not expand the heap",
1815                   ergo_format_reason("heap expansion operation failed"));
1816     // The expansion of the virtual storage space was unsuccessful.
1817     // Let's see if it was because we ran out of swap.
1818     if (G1ExitOnExpansionFailure &&
1819         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1820       // We had head room...
1821       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1822     }
1823   }
1824   return successful;
1825 }
1826 
1827 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1828   size_t old_mem_size = _g1_storage.committed_size();
1829   size_t aligned_shrink_bytes =
1830     ReservedSpace::page_align_size_down(shrink_bytes);
1831   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1832                                          HeapRegion::GrainBytes);
1833   uint num_regions_deleted = 0;
1834   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1835   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1836   assert(mr.end() == old_end, "post-condition");
1837 
1838   ergo_verbose3(ErgoHeapSizing,
1839                 "shrink the heap",
1840                 ergo_format_byte("requested shrinking amount")
1841                 ergo_format_byte("aligned shrinking amount")
1842                 ergo_format_byte("attempted shrinking amount"),
1843                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1844   if (mr.byte_size() > 0) {
1845     if (_hr_printer.is_active()) {
1846       HeapWord* curr = mr.end();
1847       while (curr > mr.start()) {
1848         HeapWord* curr_end = curr;
1849         curr -= HeapRegion::GrainWords;
1850         _hr_printer.uncommit(curr, curr_end);
1851       }
1852       assert(curr == mr.start(), "post-condition");
1853     }
1854 
1855     _g1_storage.shrink_by(mr.byte_size());
1856     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1857     assert(mr.start() == new_end, "post-condition");
1858 
1859     _expansion_regions += num_regions_deleted;
1860     update_committed_space(old_end, new_end);
1861     HeapRegionRemSet::shrink_heap(n_regions());
1862     g1_policy()->record_new_heap_size(n_regions());
1863   } else {
1864     ergo_verbose0(ErgoHeapSizing,
1865                   "did not shrink the heap",
1866                   ergo_format_reason("heap shrinking operation failed"));
1867   }
1868 }
1869 
1870 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1871   verify_region_sets_optional();
1872 
1873   // We should only reach here at the end of a Full GC which means we
1874   // should not not be holding to any GC alloc regions. The method
1875   // below will make sure of that and do any remaining clean up.
1876   abandon_gc_alloc_regions();
1877 
1878   // Instead of tearing down / rebuilding the free lists here, we
1879   // could instead use the remove_all_pending() method on free_list to
1880   // remove only the ones that we need to remove.
1881   tear_down_region_sets(true /* free_list_only */);
1882   shrink_helper(shrink_bytes);
1883   rebuild_region_sets(true /* free_list_only */);
1884 
1885   _hrs.verify_optional();
1886   verify_region_sets_optional();
1887 }
1888 
1889 // Public methods.
1890 
1891 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1892 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1893 #endif // _MSC_VER
1894 
1895 
1896 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1897   SharedHeap(policy_),
1898   _g1_policy(policy_),
1899   _dirty_card_queue_set(false),
1900   _into_cset_dirty_card_queue_set(false),
1901   _is_alive_closure_cm(this),
1902   _is_alive_closure_stw(this),
1903   _ref_processor_cm(NULL),
1904   _ref_processor_stw(NULL),
1905   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1906   _bot_shared(NULL),
1907   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1908   _evac_failure_scan_stack(NULL) ,
1909   _mark_in_progress(false),
1910   _cg1r(NULL), _summary_bytes_used(0),
1911   _g1mm(NULL),
1912   _refine_cte_cl(NULL),
1913   _full_collection(false),
1914   _free_list("Master Free List"),
1915   _secondary_free_list("Secondary Free List"),
1916   _old_set("Old Set"),
1917   _humongous_set("Master Humongous Set"),
1918   _free_regions_coming(false),
1919   _young_list(new YoungList(this)),
1920   _gc_time_stamp(0),
1921   _retained_old_gc_alloc_region(NULL),
1922   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1923   _old_plab_stats(OldPLABSize, PLABWeight),
1924   _expand_heap_after_alloc_failure(true),
1925   _surviving_young_words(NULL),
1926   _old_marking_cycles_started(0),
1927   _old_marking_cycles_completed(0),
1928   _in_cset_fast_test(NULL),
1929   _in_cset_fast_test_base(NULL),
1930   _dirty_cards_region_list(NULL),
1931   _worker_cset_start_region(NULL),
1932   _worker_cset_start_region_time_stamp(NULL) {
1933   _g1h = this; // To catch bugs.
1934   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1935     vm_exit_during_initialization("Failed necessary allocation.");
1936   }
1937 
1938   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1939 
1940   int n_queues = MAX2((int)ParallelGCThreads, 1);
1941   _task_queues = new RefToScanQueueSet(n_queues);
1942 
1943   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1944   assert(n_rem_sets > 0, "Invariant.");
1945 
1946   HeapRegionRemSetIterator** iter_arr =
1947     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
1948   for (int i = 0; i < n_queues; i++) {
1949     iter_arr[i] = new HeapRegionRemSetIterator();
1950   }
1951   _rem_set_iterator = iter_arr;
1952 
1953   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1954   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1955 
1956   for (int i = 0; i < n_queues; i++) {
1957     RefToScanQueue* q = new RefToScanQueue();
1958     q->initialize();
1959     _task_queues->register_queue(i, q);
1960   }
1961 
1962   clear_cset_start_regions();
1963 
1964   // Initialize the G1EvacuationFailureALot counters and flags.
1965   NOT_PRODUCT(reset_evacuation_should_fail();)
1966 
1967   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1968 }
1969 
1970 jint G1CollectedHeap::initialize() {
1971   CollectedHeap::pre_initialize();
1972   os::enable_vtime();
1973 
1974   G1Log::init();
1975 
1976   // Necessary to satisfy locking discipline assertions.
1977 
1978   MutexLocker x(Heap_lock);
1979 
1980   // We have to initialize the printer before committing the heap, as
1981   // it will be used then.
1982   _hr_printer.set_active(G1PrintHeapRegions);
1983 
1984   // While there are no constraints in the GC code that HeapWordSize
1985   // be any particular value, there are multiple other areas in the
1986   // system which believe this to be true (e.g. oop->object_size in some
1987   // cases incorrectly returns the size in wordSize units rather than
1988   // HeapWordSize).
1989   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1990 
1991   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1992   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1993 
1994   // Ensure that the sizes are properly aligned.
1995   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1996   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1997 
1998   _cg1r = new ConcurrentG1Refine();
1999 
2000   // Reserve the maximum.
2001 
2002   // When compressed oops are enabled, the preferred heap base
2003   // is calculated by subtracting the requested size from the
2004   // 32Gb boundary and using the result as the base address for
2005   // heap reservation. If the requested size is not aligned to
2006   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2007   // into the ReservedHeapSpace constructor) then the actual
2008   // base of the reserved heap may end up differing from the
2009   // address that was requested (i.e. the preferred heap base).
2010   // If this happens then we could end up using a non-optimal
2011   // compressed oops mode.
2012 
2013   // Since max_byte_size is aligned to the size of a heap region (checked
2014   // above).
2015   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2016 
2017   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2018                                                  HeapRegion::GrainBytes);
2019 
2020   // It is important to do this in a way such that concurrent readers can't
2021   // temporarily think somethings in the heap.  (I've actually seen this
2022   // happen in asserts: DLD.)
2023   _reserved.set_word_size(0);
2024   _reserved.set_start((HeapWord*)heap_rs.base());
2025   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2026 
2027   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2028 
2029   // Create the gen rem set (and barrier set) for the entire reserved region.
2030   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2031   set_barrier_set(rem_set()->bs());
2032   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2033     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2034   } else {
2035     vm_exit_during_initialization("G1 requires a mod ref bs.");
2036     return JNI_ENOMEM;
2037   }
2038 
2039   // Also create a G1 rem set.
2040   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2041     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2042   } else {
2043     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2044     return JNI_ENOMEM;
2045   }
2046 
2047   // Carve out the G1 part of the heap.
2048 
2049   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2050   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2051                            g1_rs.size()/HeapWordSize);
2052 
2053   _g1_storage.initialize(g1_rs, 0);
2054   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2055   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2056                   (HeapWord*) _g1_reserved.end(),
2057                   _expansion_regions);
2058 
2059   // 6843694 - ensure that the maximum region index can fit
2060   // in the remembered set structures.
2061   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2062   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2063 
2064   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2065   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2066   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2067             "too many cards per region");
2068 
2069   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2070 
2071   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2072                                              heap_word_size(init_byte_size));
2073 
2074   _g1h = this;
2075 
2076    _in_cset_fast_test_length = max_regions();
2077    _in_cset_fast_test_base =
2078                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2079 
2080    // We're biasing _in_cset_fast_test to avoid subtracting the
2081    // beginning of the heap every time we want to index; basically
2082    // it's the same with what we do with the card table.
2083    _in_cset_fast_test = _in_cset_fast_test_base -
2084                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2085 
2086    // Clear the _cset_fast_test bitmap in anticipation of adding
2087    // regions to the incremental collection set for the first
2088    // evacuation pause.
2089    clear_cset_fast_test();
2090 
2091   // Create the ConcurrentMark data structure and thread.
2092   // (Must do this late, so that "max_regions" is defined.)
2093   _cm = new ConcurrentMark(this, heap_rs);
2094   if (_cm == NULL || !_cm->completed_initialization()) {
2095     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2096     return JNI_ENOMEM;
2097   }
2098   _cmThread = _cm->cmThread();
2099 
2100   // Initialize the from_card cache structure of HeapRegionRemSet.
2101   HeapRegionRemSet::init_heap(max_regions());
2102 
2103   // Now expand into the initial heap size.
2104   if (!expand(init_byte_size)) {
2105     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2106     return JNI_ENOMEM;
2107   }
2108 
2109   // Perform any initialization actions delegated to the policy.
2110   g1_policy()->init();
2111 
2112   _refine_cte_cl =
2113     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2114                                     g1_rem_set(),
2115                                     concurrent_g1_refine());
2116   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2117 
2118   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2119                                                SATB_Q_FL_lock,
2120                                                G1SATBProcessCompletedThreshold,
2121                                                Shared_SATB_Q_lock);
2122 
2123   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2124                                                 DirtyCardQ_FL_lock,
2125                                                 concurrent_g1_refine()->yellow_zone(),
2126                                                 concurrent_g1_refine()->red_zone(),
2127                                                 Shared_DirtyCardQ_lock);
2128 
2129   if (G1DeferredRSUpdate) {
2130     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2131                                       DirtyCardQ_FL_lock,
2132                                       -1, // never trigger processing
2133                                       -1, // no limit on length
2134                                       Shared_DirtyCardQ_lock,
2135                                       &JavaThread::dirty_card_queue_set());
2136   }
2137 
2138   // Initialize the card queue set used to hold cards containing
2139   // references into the collection set.
2140   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2141                                              DirtyCardQ_FL_lock,
2142                                              -1, // never trigger processing
2143                                              -1, // no limit on length
2144                                              Shared_DirtyCardQ_lock,
2145                                              &JavaThread::dirty_card_queue_set());
2146 
2147   // In case we're keeping closure specialization stats, initialize those
2148   // counts and that mechanism.
2149   SpecializationStats::clear();
2150 
2151   // Do later initialization work for concurrent refinement.
2152   _cg1r->init();
2153 
2154   // Here we allocate the dummy full region that is required by the
2155   // G1AllocRegion class. If we don't pass an address in the reserved
2156   // space here, lots of asserts fire.
2157 
2158   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2159                                              _g1_reserved.start());
2160   // We'll re-use the same region whether the alloc region will
2161   // require BOT updates or not and, if it doesn't, then a non-young
2162   // region will complain that it cannot support allocations without
2163   // BOT updates. So we'll tag the dummy region as young to avoid that.
2164   dummy_region->set_young();
2165   // Make sure it's full.
2166   dummy_region->set_top(dummy_region->end());
2167   G1AllocRegion::setup(this, dummy_region);
2168 
2169   init_mutator_alloc_region();
2170 
2171   // Do create of the monitoring and management support so that
2172   // values in the heap have been properly initialized.
2173   _g1mm = new G1MonitoringSupport(this);
2174 
2175   return JNI_OK;
2176 }
2177 
2178 void G1CollectedHeap::ref_processing_init() {
2179   // Reference processing in G1 currently works as follows:
2180   //
2181   // * There are two reference processor instances. One is
2182   //   used to record and process discovered references
2183   //   during concurrent marking; the other is used to
2184   //   record and process references during STW pauses
2185   //   (both full and incremental).
2186   // * Both ref processors need to 'span' the entire heap as
2187   //   the regions in the collection set may be dotted around.
2188   //
2189   // * For the concurrent marking ref processor:
2190   //   * Reference discovery is enabled at initial marking.
2191   //   * Reference discovery is disabled and the discovered
2192   //     references processed etc during remarking.
2193   //   * Reference discovery is MT (see below).
2194   //   * Reference discovery requires a barrier (see below).
2195   //   * Reference processing may or may not be MT
2196   //     (depending on the value of ParallelRefProcEnabled
2197   //     and ParallelGCThreads).
2198   //   * A full GC disables reference discovery by the CM
2199   //     ref processor and abandons any entries on it's
2200   //     discovered lists.
2201   //
2202   // * For the STW processor:
2203   //   * Non MT discovery is enabled at the start of a full GC.
2204   //   * Processing and enqueueing during a full GC is non-MT.
2205   //   * During a full GC, references are processed after marking.
2206   //
2207   //   * Discovery (may or may not be MT) is enabled at the start
2208   //     of an incremental evacuation pause.
2209   //   * References are processed near the end of a STW evacuation pause.
2210   //   * For both types of GC:
2211   //     * Discovery is atomic - i.e. not concurrent.
2212   //     * Reference discovery will not need a barrier.
2213 
2214   SharedHeap::ref_processing_init();
2215   MemRegion mr = reserved_region();
2216 
2217   // Concurrent Mark ref processor
2218   _ref_processor_cm =
2219     new ReferenceProcessor(mr,    // span
2220                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2221                                 // mt processing
2222                            (int) ParallelGCThreads,
2223                                 // degree of mt processing
2224                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2225                                 // mt discovery
2226                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2227                                 // degree of mt discovery
2228                            false,
2229                                 // Reference discovery is not atomic
2230                            &_is_alive_closure_cm,
2231                                 // is alive closure
2232                                 // (for efficiency/performance)
2233                            true);
2234                                 // Setting next fields of discovered
2235                                 // lists requires a barrier.
2236 
2237   // STW ref processor
2238   _ref_processor_stw =
2239     new ReferenceProcessor(mr,    // span
2240                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2241                                 // mt processing
2242                            MAX2((int)ParallelGCThreads, 1),
2243                                 // degree of mt processing
2244                            (ParallelGCThreads > 1),
2245                                 // mt discovery
2246                            MAX2((int)ParallelGCThreads, 1),
2247                                 // degree of mt discovery
2248                            true,
2249                                 // Reference discovery is atomic
2250                            &_is_alive_closure_stw,
2251                                 // is alive closure
2252                                 // (for efficiency/performance)
2253                            false);
2254                                 // Setting next fields of discovered
2255                                 // lists requires a barrier.
2256 }
2257 
2258 size_t G1CollectedHeap::capacity() const {
2259   return _g1_committed.byte_size();
2260 }
2261 
2262 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2263   assert(!hr->continuesHumongous(), "pre-condition");
2264   hr->reset_gc_time_stamp();
2265   if (hr->startsHumongous()) {
2266     uint first_index = hr->hrs_index() + 1;
2267     uint last_index = hr->last_hc_index();
2268     for (uint i = first_index; i < last_index; i += 1) {
2269       HeapRegion* chr = region_at(i);
2270       assert(chr->continuesHumongous(), "sanity");
2271       chr->reset_gc_time_stamp();
2272     }
2273   }
2274 }
2275 
2276 #ifndef PRODUCT
2277 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2278 private:
2279   unsigned _gc_time_stamp;
2280   bool _failures;
2281 
2282 public:
2283   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2284     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2285 
2286   virtual bool doHeapRegion(HeapRegion* hr) {
2287     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2288     if (_gc_time_stamp != region_gc_time_stamp) {
2289       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2290                              "expected %d", HR_FORMAT_PARAMS(hr),
2291                              region_gc_time_stamp, _gc_time_stamp);
2292       _failures = true;
2293     }
2294     return false;
2295   }
2296 
2297   bool failures() { return _failures; }
2298 };
2299 
2300 void G1CollectedHeap::check_gc_time_stamps() {
2301   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2302   heap_region_iterate(&cl);
2303   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2304 }
2305 #endif // PRODUCT
2306 
2307 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2308                                                  DirtyCardQueue* into_cset_dcq,
2309                                                  bool concurrent,
2310                                                  int worker_i) {
2311   // Clean cards in the hot card cache
2312   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2313 
2314   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2315   int n_completed_buffers = 0;
2316   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2317     n_completed_buffers++;
2318   }
2319   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2320   dcqs.clear_n_completed_buffers();
2321   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2322 }
2323 
2324 
2325 // Computes the sum of the storage used by the various regions.
2326 
2327 size_t G1CollectedHeap::used() const {
2328   assert(Heap_lock->owner() != NULL,
2329          "Should be owned on this thread's behalf.");
2330   size_t result = _summary_bytes_used;
2331   // Read only once in case it is set to NULL concurrently
2332   HeapRegion* hr = _mutator_alloc_region.get();
2333   if (hr != NULL)
2334     result += hr->used();
2335   return result;
2336 }
2337 
2338 size_t G1CollectedHeap::used_unlocked() const {
2339   size_t result = _summary_bytes_used;
2340   return result;
2341 }
2342 
2343 class SumUsedClosure: public HeapRegionClosure {
2344   size_t _used;
2345 public:
2346   SumUsedClosure() : _used(0) {}
2347   bool doHeapRegion(HeapRegion* r) {
2348     if (!r->continuesHumongous()) {
2349       _used += r->used();
2350     }
2351     return false;
2352   }
2353   size_t result() { return _used; }
2354 };
2355 
2356 size_t G1CollectedHeap::recalculate_used() const {
2357   SumUsedClosure blk;
2358   heap_region_iterate(&blk);
2359   return blk.result();
2360 }
2361 
2362 size_t G1CollectedHeap::unsafe_max_alloc() {
2363   if (free_regions() > 0) return HeapRegion::GrainBytes;
2364   // otherwise, is there space in the current allocation region?
2365 
2366   // We need to store the current allocation region in a local variable
2367   // here. The problem is that this method doesn't take any locks and
2368   // there may be other threads which overwrite the current allocation
2369   // region field. attempt_allocation(), for example, sets it to NULL
2370   // and this can happen *after* the NULL check here but before the call
2371   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2372   // to be a problem in the optimized build, since the two loads of the
2373   // current allocation region field are optimized away.
2374   HeapRegion* hr = _mutator_alloc_region.get();
2375   if (hr == NULL) {
2376     return 0;
2377   }
2378   return hr->free();
2379 }
2380 
2381 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2382   switch (cause) {
2383     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2384     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2385     case GCCause::_g1_humongous_allocation: return true;
2386     default:                                return false;
2387   }
2388 }
2389 
2390 #ifndef PRODUCT
2391 void G1CollectedHeap::allocate_dummy_regions() {
2392   // Let's fill up most of the region
2393   size_t word_size = HeapRegion::GrainWords - 1024;
2394   // And as a result the region we'll allocate will be humongous.
2395   guarantee(isHumongous(word_size), "sanity");
2396 
2397   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2398     // Let's use the existing mechanism for the allocation
2399     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2400     if (dummy_obj != NULL) {
2401       MemRegion mr(dummy_obj, word_size);
2402       CollectedHeap::fill_with_object(mr);
2403     } else {
2404       // If we can't allocate once, we probably cannot allocate
2405       // again. Let's get out of the loop.
2406       break;
2407     }
2408   }
2409 }
2410 #endif // !PRODUCT
2411 
2412 void G1CollectedHeap::increment_old_marking_cycles_started() {
2413   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2414     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2415     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2416     _old_marking_cycles_started, _old_marking_cycles_completed));
2417 
2418   _old_marking_cycles_started++;
2419 }
2420 
2421 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2422   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2423 
2424   // We assume that if concurrent == true, then the caller is a
2425   // concurrent thread that was joined the Suspendible Thread
2426   // Set. If there's ever a cheap way to check this, we should add an
2427   // assert here.
2428 
2429   // Given that this method is called at the end of a Full GC or of a
2430   // concurrent cycle, and those can be nested (i.e., a Full GC can
2431   // interrupt a concurrent cycle), the number of full collections
2432   // completed should be either one (in the case where there was no
2433   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2434   // behind the number of full collections started.
2435 
2436   // This is the case for the inner caller, i.e. a Full GC.
2437   assert(concurrent ||
2438          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2439          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2440          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2441                  "is inconsistent with _old_marking_cycles_completed = %u",
2442                  _old_marking_cycles_started, _old_marking_cycles_completed));
2443 
2444   // This is the case for the outer caller, i.e. the concurrent cycle.
2445   assert(!concurrent ||
2446          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2447          err_msg("for outer caller (concurrent cycle): "
2448                  "_old_marking_cycles_started = %u "
2449                  "is inconsistent with _old_marking_cycles_completed = %u",
2450                  _old_marking_cycles_started, _old_marking_cycles_completed));
2451 
2452   _old_marking_cycles_completed += 1;
2453 
2454   // We need to clear the "in_progress" flag in the CM thread before
2455   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2456   // is set) so that if a waiter requests another System.gc() it doesn't
2457   // incorrectly see that a marking cyle is still in progress.
2458   if (concurrent) {
2459     _cmThread->clear_in_progress();
2460   }
2461 
2462   // This notify_all() will ensure that a thread that called
2463   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2464   // and it's waiting for a full GC to finish will be woken up. It is
2465   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2466   FullGCCount_lock->notify_all();
2467 }
2468 
2469 void G1CollectedHeap::collect(GCCause::Cause cause) {
2470   assert_heap_not_locked();
2471 
2472   unsigned int gc_count_before;
2473   unsigned int old_marking_count_before;
2474   bool retry_gc;
2475 
2476   do {
2477     retry_gc = false;
2478 
2479     {
2480       MutexLocker ml(Heap_lock);
2481 
2482       // Read the GC count while holding the Heap_lock
2483       gc_count_before = total_collections();
2484       old_marking_count_before = _old_marking_cycles_started;
2485     }
2486 
2487     if (should_do_concurrent_full_gc(cause)) {
2488       // Schedule an initial-mark evacuation pause that will start a
2489       // concurrent cycle. We're setting word_size to 0 which means that
2490       // we are not requesting a post-GC allocation.
2491       VM_G1IncCollectionPause op(gc_count_before,
2492                                  0,     /* word_size */
2493                                  true,  /* should_initiate_conc_mark */
2494                                  g1_policy()->max_pause_time_ms(),
2495                                  cause);
2496 
2497       VMThread::execute(&op);
2498       if (!op.pause_succeeded()) {
2499         if (old_marking_count_before == _old_marking_cycles_started) {
2500           retry_gc = op.should_retry_gc();
2501         } else {
2502           // A Full GC happened while we were trying to schedule the
2503           // initial-mark GC. No point in starting a new cycle given
2504           // that the whole heap was collected anyway.
2505         }
2506 
2507         if (retry_gc) {
2508           if (GC_locker::is_active_and_needs_gc()) {
2509             GC_locker::stall_until_clear();
2510           }
2511         }
2512       }
2513     } else {
2514       if (cause == GCCause::_gc_locker
2515           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2516 
2517         // Schedule a standard evacuation pause. We're setting word_size
2518         // to 0 which means that we are not requesting a post-GC allocation.
2519         VM_G1IncCollectionPause op(gc_count_before,
2520                                    0,     /* word_size */
2521                                    false, /* should_initiate_conc_mark */
2522                                    g1_policy()->max_pause_time_ms(),
2523                                    cause);
2524         VMThread::execute(&op);
2525       } else {
2526         // Schedule a Full GC.
2527         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2528         VMThread::execute(&op);
2529       }
2530     }
2531   } while (retry_gc);
2532 }
2533 
2534 bool G1CollectedHeap::is_in(const void* p) const {
2535   if (_g1_committed.contains(p)) {
2536     // Given that we know that p is in the committed space,
2537     // heap_region_containing_raw() should successfully
2538     // return the containing region.
2539     HeapRegion* hr = heap_region_containing_raw(p);
2540     return hr->is_in(p);
2541   } else {
2542     return false;
2543   }
2544 }
2545 
2546 // Iteration functions.
2547 
2548 // Iterates an OopClosure over all ref-containing fields of objects
2549 // within a HeapRegion.
2550 
2551 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2552   MemRegion _mr;
2553   ExtendedOopClosure* _cl;
2554 public:
2555   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2556     : _mr(mr), _cl(cl) {}
2557   bool doHeapRegion(HeapRegion* r) {
2558     if (!r->continuesHumongous()) {
2559       r->oop_iterate(_cl);
2560     }
2561     return false;
2562   }
2563 };
2564 
2565 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2566   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2567   heap_region_iterate(&blk);
2568 }
2569 
2570 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2571   IterateOopClosureRegionClosure blk(mr, cl);
2572   heap_region_iterate(&blk);
2573 }
2574 
2575 // Iterates an ObjectClosure over all objects within a HeapRegion.
2576 
2577 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2578   ObjectClosure* _cl;
2579 public:
2580   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2581   bool doHeapRegion(HeapRegion* r) {
2582     if (! r->continuesHumongous()) {
2583       r->object_iterate(_cl);
2584     }
2585     return false;
2586   }
2587 };
2588 
2589 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2590   IterateObjectClosureRegionClosure blk(cl);
2591   heap_region_iterate(&blk);
2592 }
2593 
2594 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2595   // FIXME: is this right?
2596   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2597 }
2598 
2599 // Calls a SpaceClosure on a HeapRegion.
2600 
2601 class SpaceClosureRegionClosure: public HeapRegionClosure {
2602   SpaceClosure* _cl;
2603 public:
2604   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2605   bool doHeapRegion(HeapRegion* r) {
2606     _cl->do_space(r);
2607     return false;
2608   }
2609 };
2610 
2611 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2612   SpaceClosureRegionClosure blk(cl);
2613   heap_region_iterate(&blk);
2614 }
2615 
2616 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2617   _hrs.iterate(cl);
2618 }
2619 
2620 void
2621 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2622                                                  uint worker_id,
2623                                                  uint no_of_par_workers,
2624                                                  jint claim_value) {
2625   const uint regions = n_regions();
2626   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2627                              no_of_par_workers :
2628                              1);
2629   assert(UseDynamicNumberOfGCThreads ||
2630          no_of_par_workers == workers()->total_workers(),
2631          "Non dynamic should use fixed number of workers");
2632   // try to spread out the starting points of the workers
2633   const HeapRegion* start_hr =
2634                         start_region_for_worker(worker_id, no_of_par_workers);
2635   const uint start_index = start_hr->hrs_index();
2636 
2637   // each worker will actually look at all regions
2638   for (uint count = 0; count < regions; ++count) {
2639     const uint index = (start_index + count) % regions;
2640     assert(0 <= index && index < regions, "sanity");
2641     HeapRegion* r = region_at(index);
2642     // we'll ignore "continues humongous" regions (we'll process them
2643     // when we come across their corresponding "start humongous"
2644     // region) and regions already claimed
2645     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2646       continue;
2647     }
2648     // OK, try to claim it
2649     if (r->claimHeapRegion(claim_value)) {
2650       // success!
2651       assert(!r->continuesHumongous(), "sanity");
2652       if (r->startsHumongous()) {
2653         // If the region is "starts humongous" we'll iterate over its
2654         // "continues humongous" first; in fact we'll do them
2655         // first. The order is important. In on case, calling the
2656         // closure on the "starts humongous" region might de-allocate
2657         // and clear all its "continues humongous" regions and, as a
2658         // result, we might end up processing them twice. So, we'll do
2659         // them first (notice: most closures will ignore them anyway) and
2660         // then we'll do the "starts humongous" region.
2661         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2662           HeapRegion* chr = region_at(ch_index);
2663 
2664           // if the region has already been claimed or it's not
2665           // "continues humongous" we're done
2666           if (chr->claim_value() == claim_value ||
2667               !chr->continuesHumongous()) {
2668             break;
2669           }
2670 
2671           // Noone should have claimed it directly. We can given
2672           // that we claimed its "starts humongous" region.
2673           assert(chr->claim_value() != claim_value, "sanity");
2674           assert(chr->humongous_start_region() == r, "sanity");
2675 
2676           if (chr->claimHeapRegion(claim_value)) {
2677             // we should always be able to claim it; noone else should
2678             // be trying to claim this region
2679 
2680             bool res2 = cl->doHeapRegion(chr);
2681             assert(!res2, "Should not abort");
2682 
2683             // Right now, this holds (i.e., no closure that actually
2684             // does something with "continues humongous" regions
2685             // clears them). We might have to weaken it in the future,
2686             // but let's leave these two asserts here for extra safety.
2687             assert(chr->continuesHumongous(), "should still be the case");
2688             assert(chr->humongous_start_region() == r, "sanity");
2689           } else {
2690             guarantee(false, "we should not reach here");
2691           }
2692         }
2693       }
2694 
2695       assert(!r->continuesHumongous(), "sanity");
2696       bool res = cl->doHeapRegion(r);
2697       assert(!res, "Should not abort");
2698     }
2699   }
2700 }
2701 
2702 class ResetClaimValuesClosure: public HeapRegionClosure {
2703 public:
2704   bool doHeapRegion(HeapRegion* r) {
2705     r->set_claim_value(HeapRegion::InitialClaimValue);
2706     return false;
2707   }
2708 };
2709 
2710 void G1CollectedHeap::reset_heap_region_claim_values() {
2711   ResetClaimValuesClosure blk;
2712   heap_region_iterate(&blk);
2713 }
2714 
2715 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2716   ResetClaimValuesClosure blk;
2717   collection_set_iterate(&blk);
2718 }
2719 
2720 #ifdef ASSERT
2721 // This checks whether all regions in the heap have the correct claim
2722 // value. I also piggy-backed on this a check to ensure that the
2723 // humongous_start_region() information on "continues humongous"
2724 // regions is correct.
2725 
2726 class CheckClaimValuesClosure : public HeapRegionClosure {
2727 private:
2728   jint _claim_value;
2729   uint _failures;
2730   HeapRegion* _sh_region;
2731 
2732 public:
2733   CheckClaimValuesClosure(jint claim_value) :
2734     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2735   bool doHeapRegion(HeapRegion* r) {
2736     if (r->claim_value() != _claim_value) {
2737       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2738                              "claim value = %d, should be %d",
2739                              HR_FORMAT_PARAMS(r),
2740                              r->claim_value(), _claim_value);
2741       ++_failures;
2742     }
2743     if (!r->isHumongous()) {
2744       _sh_region = NULL;
2745     } else if (r->startsHumongous()) {
2746       _sh_region = r;
2747     } else if (r->continuesHumongous()) {
2748       if (r->humongous_start_region() != _sh_region) {
2749         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2750                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2751                                HR_FORMAT_PARAMS(r),
2752                                r->humongous_start_region(),
2753                                _sh_region);
2754         ++_failures;
2755       }
2756     }
2757     return false;
2758   }
2759   uint failures() { return _failures; }
2760 };
2761 
2762 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2763   CheckClaimValuesClosure cl(claim_value);
2764   heap_region_iterate(&cl);
2765   return cl.failures() == 0;
2766 }
2767 
2768 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2769 private:
2770   jint _claim_value;
2771   uint _failures;
2772 
2773 public:
2774   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2775     _claim_value(claim_value), _failures(0) { }
2776 
2777   uint failures() { return _failures; }
2778 
2779   bool doHeapRegion(HeapRegion* hr) {
2780     assert(hr->in_collection_set(), "how?");
2781     assert(!hr->isHumongous(), "H-region in CSet");
2782     if (hr->claim_value() != _claim_value) {
2783       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2784                              "claim value = %d, should be %d",
2785                              HR_FORMAT_PARAMS(hr),
2786                              hr->claim_value(), _claim_value);
2787       _failures += 1;
2788     }
2789     return false;
2790   }
2791 };
2792 
2793 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2794   CheckClaimValuesInCSetHRClosure cl(claim_value);
2795   collection_set_iterate(&cl);
2796   return cl.failures() == 0;
2797 }
2798 #endif // ASSERT
2799 
2800 // Clear the cached CSet starting regions and (more importantly)
2801 // the time stamps. Called when we reset the GC time stamp.
2802 void G1CollectedHeap::clear_cset_start_regions() {
2803   assert(_worker_cset_start_region != NULL, "sanity");
2804   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2805 
2806   int n_queues = MAX2((int)ParallelGCThreads, 1);
2807   for (int i = 0; i < n_queues; i++) {
2808     _worker_cset_start_region[i] = NULL;
2809     _worker_cset_start_region_time_stamp[i] = 0;
2810   }
2811 }
2812 
2813 // Given the id of a worker, obtain or calculate a suitable
2814 // starting region for iterating over the current collection set.
2815 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2816   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2817 
2818   HeapRegion* result = NULL;
2819   unsigned gc_time_stamp = get_gc_time_stamp();
2820 
2821   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2822     // Cached starting region for current worker was set
2823     // during the current pause - so it's valid.
2824     // Note: the cached starting heap region may be NULL
2825     // (when the collection set is empty).
2826     result = _worker_cset_start_region[worker_i];
2827     assert(result == NULL || result->in_collection_set(), "sanity");
2828     return result;
2829   }
2830 
2831   // The cached entry was not valid so let's calculate
2832   // a suitable starting heap region for this worker.
2833 
2834   // We want the parallel threads to start their collection
2835   // set iteration at different collection set regions to
2836   // avoid contention.
2837   // If we have:
2838   //          n collection set regions
2839   //          p threads
2840   // Then thread t will start at region floor ((t * n) / p)
2841 
2842   result = g1_policy()->collection_set();
2843   if (G1CollectedHeap::use_parallel_gc_threads()) {
2844     uint cs_size = g1_policy()->cset_region_length();
2845     uint active_workers = workers()->active_workers();
2846     assert(UseDynamicNumberOfGCThreads ||
2847              active_workers == workers()->total_workers(),
2848              "Unless dynamic should use total workers");
2849 
2850     uint end_ind   = (cs_size * worker_i) / active_workers;
2851     uint start_ind = 0;
2852 
2853     if (worker_i > 0 &&
2854         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2855       // Previous workers starting region is valid
2856       // so let's iterate from there
2857       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2858       result = _worker_cset_start_region[worker_i - 1];
2859     }
2860 
2861     for (uint i = start_ind; i < end_ind; i++) {
2862       result = result->next_in_collection_set();
2863     }
2864   }
2865 
2866   // Note: the calculated starting heap region may be NULL
2867   // (when the collection set is empty).
2868   assert(result == NULL || result->in_collection_set(), "sanity");
2869   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2870          "should be updated only once per pause");
2871   _worker_cset_start_region[worker_i] = result;
2872   OrderAccess::storestore();
2873   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2874   return result;
2875 }
2876 
2877 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2878                                                      uint no_of_par_workers) {
2879   uint worker_num =
2880            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2881   assert(UseDynamicNumberOfGCThreads ||
2882          no_of_par_workers == workers()->total_workers(),
2883          "Non dynamic should use fixed number of workers");
2884   const uint start_index = n_regions() * worker_i / worker_num;
2885   return region_at(start_index);
2886 }
2887 
2888 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2889   HeapRegion* r = g1_policy()->collection_set();
2890   while (r != NULL) {
2891     HeapRegion* next = r->next_in_collection_set();
2892     if (cl->doHeapRegion(r)) {
2893       cl->incomplete();
2894       return;
2895     }
2896     r = next;
2897   }
2898 }
2899 
2900 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2901                                                   HeapRegionClosure *cl) {
2902   if (r == NULL) {
2903     // The CSet is empty so there's nothing to do.
2904     return;
2905   }
2906 
2907   assert(r->in_collection_set(),
2908          "Start region must be a member of the collection set.");
2909   HeapRegion* cur = r;
2910   while (cur != NULL) {
2911     HeapRegion* next = cur->next_in_collection_set();
2912     if (cl->doHeapRegion(cur) && false) {
2913       cl->incomplete();
2914       return;
2915     }
2916     cur = next;
2917   }
2918   cur = g1_policy()->collection_set();
2919   while (cur != r) {
2920     HeapRegion* next = cur->next_in_collection_set();
2921     if (cl->doHeapRegion(cur) && false) {
2922       cl->incomplete();
2923       return;
2924     }
2925     cur = next;
2926   }
2927 }
2928 
2929 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2930   return n_regions() > 0 ? region_at(0) : NULL;
2931 }
2932 
2933 
2934 Space* G1CollectedHeap::space_containing(const void* addr) const {
2935   Space* res = heap_region_containing(addr);
2936   return res;
2937 }
2938 
2939 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2940   Space* sp = space_containing(addr);
2941   if (sp != NULL) {
2942     return sp->block_start(addr);
2943   }
2944   return NULL;
2945 }
2946 
2947 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2948   Space* sp = space_containing(addr);
2949   assert(sp != NULL, "block_size of address outside of heap");
2950   return sp->block_size(addr);
2951 }
2952 
2953 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2954   Space* sp = space_containing(addr);
2955   return sp->block_is_obj(addr);
2956 }
2957 
2958 bool G1CollectedHeap::supports_tlab_allocation() const {
2959   return true;
2960 }
2961 
2962 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2963   return HeapRegion::GrainBytes;
2964 }
2965 
2966 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2967   // Return the remaining space in the cur alloc region, but not less than
2968   // the min TLAB size.
2969 
2970   // Also, this value can be at most the humongous object threshold,
2971   // since we can't allow tlabs to grow big enough to accomodate
2972   // humongous objects.
2973 
2974   HeapRegion* hr = _mutator_alloc_region.get();
2975   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2976   if (hr == NULL) {
2977     return max_tlab_size;
2978   } else {
2979     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2980   }
2981 }
2982 
2983 size_t G1CollectedHeap::max_capacity() const {
2984   return _g1_reserved.byte_size();
2985 }
2986 
2987 jlong G1CollectedHeap::millis_since_last_gc() {
2988   // assert(false, "NYI");
2989   return 0;
2990 }
2991 
2992 void G1CollectedHeap::prepare_for_verify() {
2993   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2994     ensure_parsability(false);
2995   }
2996   g1_rem_set()->prepare_for_verify();
2997 }
2998 
2999 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3000                                               VerifyOption vo) {
3001   switch (vo) {
3002   case VerifyOption_G1UsePrevMarking:
3003     return hr->obj_allocated_since_prev_marking(obj);
3004   case VerifyOption_G1UseNextMarking:
3005     return hr->obj_allocated_since_next_marking(obj);
3006   case VerifyOption_G1UseMarkWord:
3007     return false;
3008   default:
3009     ShouldNotReachHere();
3010   }
3011   return false; // keep some compilers happy
3012 }
3013 
3014 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3015   switch (vo) {
3016   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3017   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3018   case VerifyOption_G1UseMarkWord:    return NULL;
3019   default:                            ShouldNotReachHere();
3020   }
3021   return NULL; // keep some compilers happy
3022 }
3023 
3024 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3025   switch (vo) {
3026   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3027   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3028   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3029   default:                            ShouldNotReachHere();
3030   }
3031   return false; // keep some compilers happy
3032 }
3033 
3034 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3035   switch (vo) {
3036   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3037   case VerifyOption_G1UseNextMarking: return "NTAMS";
3038   case VerifyOption_G1UseMarkWord:    return "NONE";
3039   default:                            ShouldNotReachHere();
3040   }
3041   return NULL; // keep some compilers happy
3042 }
3043 
3044 class VerifyLivenessOopClosure: public OopClosure {
3045   G1CollectedHeap* _g1h;
3046   VerifyOption _vo;
3047 public:
3048   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3049     _g1h(g1h), _vo(vo)
3050   { }
3051   void do_oop(narrowOop *p) { do_oop_work(p); }
3052   void do_oop(      oop *p) { do_oop_work(p); }
3053 
3054   template <class T> void do_oop_work(T *p) {
3055     oop obj = oopDesc::load_decode_heap_oop(p);
3056     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3057               "Dead object referenced by a not dead object");
3058   }
3059 };
3060 
3061 class VerifyObjsInRegionClosure: public ObjectClosure {
3062 private:
3063   G1CollectedHeap* _g1h;
3064   size_t _live_bytes;
3065   HeapRegion *_hr;
3066   VerifyOption _vo;
3067 public:
3068   // _vo == UsePrevMarking -> use "prev" marking information,
3069   // _vo == UseNextMarking -> use "next" marking information,
3070   // _vo == UseMarkWord    -> use mark word from object header.
3071   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3072     : _live_bytes(0), _hr(hr), _vo(vo) {
3073     _g1h = G1CollectedHeap::heap();
3074   }
3075   void do_object(oop o) {
3076     VerifyLivenessOopClosure isLive(_g1h, _vo);
3077     assert(o != NULL, "Huh?");
3078     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3079       // If the object is alive according to the mark word,
3080       // then verify that the marking information agrees.
3081       // Note we can't verify the contra-positive of the
3082       // above: if the object is dead (according to the mark
3083       // word), it may not be marked, or may have been marked
3084       // but has since became dead, or may have been allocated
3085       // since the last marking.
3086       if (_vo == VerifyOption_G1UseMarkWord) {
3087         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3088       }
3089 
3090       o->oop_iterate_no_header(&isLive);
3091       if (!_hr->obj_allocated_since_prev_marking(o)) {
3092         size_t obj_size = o->size();    // Make sure we don't overflow
3093         _live_bytes += (obj_size * HeapWordSize);
3094       }
3095     }
3096   }
3097   size_t live_bytes() { return _live_bytes; }
3098 };
3099 
3100 class PrintObjsInRegionClosure : public ObjectClosure {
3101   HeapRegion *_hr;
3102   G1CollectedHeap *_g1;
3103 public:
3104   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3105     _g1 = G1CollectedHeap::heap();
3106   };
3107 
3108   void do_object(oop o) {
3109     if (o != NULL) {
3110       HeapWord *start = (HeapWord *) o;
3111       size_t word_sz = o->size();
3112       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3113                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3114                           (void*) o, word_sz,
3115                           _g1->isMarkedPrev(o),
3116                           _g1->isMarkedNext(o),
3117                           _hr->obj_allocated_since_prev_marking(o));
3118       HeapWord *end = start + word_sz;
3119       HeapWord *cur;
3120       int *val;
3121       for (cur = start; cur < end; cur++) {
3122         val = (int *) cur;
3123         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3124       }
3125     }
3126   }
3127 };
3128 
3129 class VerifyRegionClosure: public HeapRegionClosure {
3130 private:
3131   bool             _par;
3132   VerifyOption     _vo;
3133   bool             _failures;
3134 public:
3135   // _vo == UsePrevMarking -> use "prev" marking information,
3136   // _vo == UseNextMarking -> use "next" marking information,
3137   // _vo == UseMarkWord    -> use mark word from object header.
3138   VerifyRegionClosure(bool par, VerifyOption vo)
3139     : _par(par),
3140       _vo(vo),
3141       _failures(false) {}
3142 
3143   bool failures() {
3144     return _failures;
3145   }
3146 
3147   bool doHeapRegion(HeapRegion* r) {
3148     if (!r->continuesHumongous()) {
3149       bool failures = false;
3150       r->verify(_vo, &failures);
3151       if (failures) {
3152         _failures = true;
3153       } else {
3154         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3155         r->object_iterate(&not_dead_yet_cl);
3156         if (_vo != VerifyOption_G1UseNextMarking) {
3157           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3158             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3159                                    "max_live_bytes "SIZE_FORMAT" "
3160                                    "< calculated "SIZE_FORMAT,
3161                                    r->bottom(), r->end(),
3162                                    r->max_live_bytes(),
3163                                  not_dead_yet_cl.live_bytes());
3164             _failures = true;
3165           }
3166         } else {
3167           // When vo == UseNextMarking we cannot currently do a sanity
3168           // check on the live bytes as the calculation has not been
3169           // finalized yet.
3170         }
3171       }
3172     }
3173     return false; // stop the region iteration if we hit a failure
3174   }
3175 };
3176 
3177 class YoungRefCounterClosure : public OopClosure {
3178   G1CollectedHeap* _g1h;
3179   int              _count;
3180  public:
3181   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3182   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3183   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3184 
3185   int count() { return _count; }
3186   void reset_count() { _count = 0; };
3187 };
3188 
3189 class VerifyKlassClosure: public KlassClosure {
3190   YoungRefCounterClosure _young_ref_counter_closure;
3191   OopClosure *_oop_closure;
3192  public:
3193   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3194   void do_klass(Klass* k) {
3195     k->oops_do(_oop_closure);
3196 
3197     _young_ref_counter_closure.reset_count();
3198     k->oops_do(&_young_ref_counter_closure);
3199     if (_young_ref_counter_closure.count() > 0) {
3200       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3201     }
3202   }
3203 };
3204 
3205 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
3206 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
3207 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
3208 //       we can change this closure to extend the simpler OopClosure.
3209 class VerifyRootsClosure: public OopsInGenClosure {
3210 private:
3211   G1CollectedHeap* _g1h;
3212   VerifyOption     _vo;
3213   bool             _failures;
3214 public:
3215   // _vo == UsePrevMarking -> use "prev" marking information,
3216   // _vo == UseNextMarking -> use "next" marking information,
3217   // _vo == UseMarkWord    -> use mark word from object header.
3218   VerifyRootsClosure(VerifyOption vo) :
3219     _g1h(G1CollectedHeap::heap()),
3220     _vo(vo),
3221     _failures(false) { }
3222 
3223   bool failures() { return _failures; }
3224 
3225   template <class T> void do_oop_nv(T* p) {
3226     T heap_oop = oopDesc::load_heap_oop(p);
3227     if (!oopDesc::is_null(heap_oop)) {
3228       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3229       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3230         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3231                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3232         if (_vo == VerifyOption_G1UseMarkWord) {
3233           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3234         }
3235         obj->print_on(gclog_or_tty);
3236         _failures = true;
3237       }
3238     }
3239   }
3240 
3241   void do_oop(oop* p)       { do_oop_nv(p); }
3242   void do_oop(narrowOop* p) { do_oop_nv(p); }
3243 };
3244 
3245 // This is the task used for parallel heap verification.
3246 
3247 class G1ParVerifyTask: public AbstractGangTask {
3248 private:
3249   G1CollectedHeap* _g1h;
3250   VerifyOption     _vo;
3251   bool             _failures;
3252 
3253 public:
3254   // _vo == UsePrevMarking -> use "prev" marking information,
3255   // _vo == UseNextMarking -> use "next" marking information,
3256   // _vo == UseMarkWord    -> use mark word from object header.
3257   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3258     AbstractGangTask("Parallel verify task"),
3259     _g1h(g1h),
3260     _vo(vo),
3261     _failures(false) { }
3262 
3263   bool failures() {
3264     return _failures;
3265   }
3266 
3267   void work(uint worker_id) {
3268     HandleMark hm;
3269     VerifyRegionClosure blk(true, _vo);
3270     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3271                                           _g1h->workers()->active_workers(),
3272                                           HeapRegion::ParVerifyClaimValue);
3273     if (blk.failures()) {
3274       _failures = true;
3275     }
3276   }
3277 };
3278 
3279 void G1CollectedHeap::verify(bool silent) {
3280   verify(silent, VerifyOption_G1UsePrevMarking);
3281 }
3282 
3283 void G1CollectedHeap::verify(bool silent,
3284                              VerifyOption vo) {
3285   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3286     if (!silent) { gclog_or_tty->print("Roots "); }
3287     VerifyRootsClosure rootsCl(vo);
3288 
3289     assert(Thread::current()->is_VM_thread(),
3290       "Expected to be executed serially by the VM thread at this point");
3291 
3292     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3293     VerifyKlassClosure klassCl(this, &rootsCl);
3294 
3295     // We apply the relevant closures to all the oops in the
3296     // system dictionary, the string table and the code cache.
3297     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3298 
3299     // Need cleared claim bits for the strong roots processing
3300     ClassLoaderDataGraph::clear_claimed_marks();
3301 
3302     process_strong_roots(true,      // activate StrongRootsScope
3303                          false,     // we set "is scavenging" to false,
3304                                     // so we don't reset the dirty cards.
3305                          ScanningOption(so),  // roots scanning options
3306                          &rootsCl,
3307                          &blobsCl,
3308                          &klassCl
3309                          );
3310 
3311     bool failures = rootsCl.failures();
3312 
3313     if (vo != VerifyOption_G1UseMarkWord) {
3314       // If we're verifying during a full GC then the region sets
3315       // will have been torn down at the start of the GC. Therefore
3316       // verifying the region sets will fail. So we only verify
3317       // the region sets when not in a full GC.
3318       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3319       verify_region_sets();
3320     }
3321 
3322     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3323     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3324       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3325              "sanity check");
3326 
3327       G1ParVerifyTask task(this, vo);
3328       assert(UseDynamicNumberOfGCThreads ||
3329         workers()->active_workers() == workers()->total_workers(),
3330         "If not dynamic should be using all the workers");
3331       int n_workers = workers()->active_workers();
3332       set_par_threads(n_workers);
3333       workers()->run_task(&task);
3334       set_par_threads(0);
3335       if (task.failures()) {
3336         failures = true;
3337       }
3338 
3339       // Checks that the expected amount of parallel work was done.
3340       // The implication is that n_workers is > 0.
3341       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3342              "sanity check");
3343 
3344       reset_heap_region_claim_values();
3345 
3346       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3347              "sanity check");
3348     } else {
3349       VerifyRegionClosure blk(false, vo);
3350       heap_region_iterate(&blk);
3351       if (blk.failures()) {
3352         failures = true;
3353       }
3354     }
3355     if (!silent) gclog_or_tty->print("RemSet ");
3356     rem_set()->verify();
3357 
3358     if (failures) {
3359       gclog_or_tty->print_cr("Heap:");
3360       // It helps to have the per-region information in the output to
3361       // help us track down what went wrong. This is why we call
3362       // print_extended_on() instead of print_on().
3363       print_extended_on(gclog_or_tty);
3364       gclog_or_tty->print_cr("");
3365 #ifndef PRODUCT
3366       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3367         concurrent_mark()->print_reachable("at-verification-failure",
3368                                            vo, false /* all */);
3369       }
3370 #endif
3371       gclog_or_tty->flush();
3372     }
3373     guarantee(!failures, "there should not have been any failures");
3374   } else {
3375     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
3376   }
3377 }
3378 
3379 class PrintRegionClosure: public HeapRegionClosure {
3380   outputStream* _st;
3381 public:
3382   PrintRegionClosure(outputStream* st) : _st(st) {}
3383   bool doHeapRegion(HeapRegion* r) {
3384     r->print_on(_st);
3385     return false;
3386   }
3387 };
3388 
3389 void G1CollectedHeap::print_on(outputStream* st) const {
3390   st->print(" %-20s", "garbage-first heap");
3391   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3392             capacity()/K, used_unlocked()/K);
3393   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3394             _g1_storage.low_boundary(),
3395             _g1_storage.high(),
3396             _g1_storage.high_boundary());
3397   st->cr();
3398   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3399   uint young_regions = _young_list->length();
3400   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3401             (size_t) young_regions * HeapRegion::GrainBytes / K);
3402   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3403   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3404             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3405   st->cr();
3406   MetaspaceAux::print_on(st);
3407 }
3408 
3409 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3410   print_on(st);
3411 
3412   // Print the per-region information.
3413   st->cr();
3414   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3415                "HS=humongous(starts), HC=humongous(continues), "
3416                "CS=collection set, F=free, TS=gc time stamp, "
3417                "PTAMS=previous top-at-mark-start, "
3418                "NTAMS=next top-at-mark-start)");
3419   PrintRegionClosure blk(st);
3420   heap_region_iterate(&blk);
3421 }
3422 
3423 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3424   if (G1CollectedHeap::use_parallel_gc_threads()) {
3425     workers()->print_worker_threads_on(st);
3426   }
3427   _cmThread->print_on(st);
3428   st->cr();
3429   _cm->print_worker_threads_on(st);
3430   _cg1r->print_worker_threads_on(st);
3431 }
3432 
3433 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3434   if (G1CollectedHeap::use_parallel_gc_threads()) {
3435     workers()->threads_do(tc);
3436   }
3437   tc->do_thread(_cmThread);
3438   _cg1r->threads_do(tc);
3439 }
3440 
3441 void G1CollectedHeap::print_tracing_info() const {
3442   // We'll overload this to mean "trace GC pause statistics."
3443   if (TraceGen0Time || TraceGen1Time) {
3444     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3445     // to that.
3446     g1_policy()->print_tracing_info();
3447   }
3448   if (G1SummarizeRSetStats) {
3449     g1_rem_set()->print_summary_info();
3450   }
3451   if (G1SummarizeConcMark) {
3452     concurrent_mark()->print_summary_info();
3453   }
3454   g1_policy()->print_yg_surv_rate_info();
3455   SpecializationStats::print();
3456 }
3457 
3458 #ifndef PRODUCT
3459 // Helpful for debugging RSet issues.
3460 
3461 class PrintRSetsClosure : public HeapRegionClosure {
3462 private:
3463   const char* _msg;
3464   size_t _occupied_sum;
3465 
3466 public:
3467   bool doHeapRegion(HeapRegion* r) {
3468     HeapRegionRemSet* hrrs = r->rem_set();
3469     size_t occupied = hrrs->occupied();
3470     _occupied_sum += occupied;
3471 
3472     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3473                            HR_FORMAT_PARAMS(r));
3474     if (occupied == 0) {
3475       gclog_or_tty->print_cr("  RSet is empty");
3476     } else {
3477       hrrs->print();
3478     }
3479     gclog_or_tty->print_cr("----------");
3480     return false;
3481   }
3482 
3483   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3484     gclog_or_tty->cr();
3485     gclog_or_tty->print_cr("========================================");
3486     gclog_or_tty->print_cr(msg);
3487     gclog_or_tty->cr();
3488   }
3489 
3490   ~PrintRSetsClosure() {
3491     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3492     gclog_or_tty->print_cr("========================================");
3493     gclog_or_tty->cr();
3494   }
3495 };
3496 
3497 void G1CollectedHeap::print_cset_rsets() {
3498   PrintRSetsClosure cl("Printing CSet RSets");
3499   collection_set_iterate(&cl);
3500 }
3501 
3502 void G1CollectedHeap::print_all_rsets() {
3503   PrintRSetsClosure cl("Printing All RSets");;
3504   heap_region_iterate(&cl);
3505 }
3506 #endif // PRODUCT
3507 
3508 G1CollectedHeap* G1CollectedHeap::heap() {
3509   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3510          "not a garbage-first heap");
3511   return _g1h;
3512 }
3513 
3514 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3515   // always_do_update_barrier = false;
3516   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3517   // Call allocation profiler
3518   AllocationProfiler::iterate_since_last_gc();
3519   // Fill TLAB's and such
3520   ensure_parsability(true);
3521 }
3522 
3523 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3524   // FIXME: what is this about?
3525   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3526   // is set.
3527   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3528                         "derived pointer present"));
3529   // always_do_update_barrier = true;
3530 
3531   // We have just completed a GC. Update the soft reference
3532   // policy with the new heap occupancy
3533   Universe::update_heap_info_at_gc();
3534 }
3535 
3536 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3537                                                unsigned int gc_count_before,
3538                                                bool* succeeded) {
3539   assert_heap_not_locked_and_not_at_safepoint();
3540   g1_policy()->record_stop_world_start();
3541   VM_G1IncCollectionPause op(gc_count_before,
3542                              word_size,
3543                              false, /* should_initiate_conc_mark */
3544                              g1_policy()->max_pause_time_ms(),
3545                              GCCause::_g1_inc_collection_pause);
3546   VMThread::execute(&op);
3547 
3548   HeapWord* result = op.result();
3549   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3550   assert(result == NULL || ret_succeeded,
3551          "the result should be NULL if the VM did not succeed");
3552   *succeeded = ret_succeeded;
3553 
3554   assert_heap_not_locked();
3555   return result;
3556 }
3557 
3558 void
3559 G1CollectedHeap::doConcurrentMark() {
3560   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3561   if (!_cmThread->in_progress()) {
3562     _cmThread->set_started();
3563     CGC_lock->notify();
3564   }
3565 }
3566 
3567 size_t G1CollectedHeap::pending_card_num() {
3568   size_t extra_cards = 0;
3569   JavaThread *curr = Threads::first();
3570   while (curr != NULL) {
3571     DirtyCardQueue& dcq = curr->dirty_card_queue();
3572     extra_cards += dcq.size();
3573     curr = curr->next();
3574   }
3575   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3576   size_t buffer_size = dcqs.buffer_size();
3577   size_t buffer_num = dcqs.completed_buffers_num();
3578 
3579   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3580   // in bytes - not the number of 'entries'. We need to convert
3581   // into a number of cards.
3582   return (buffer_size * buffer_num + extra_cards) / oopSize;
3583 }
3584 
3585 size_t G1CollectedHeap::cards_scanned() {
3586   return g1_rem_set()->cardsScanned();
3587 }
3588 
3589 void
3590 G1CollectedHeap::setup_surviving_young_words() {
3591   assert(_surviving_young_words == NULL, "pre-condition");
3592   uint array_length = g1_policy()->young_cset_region_length();
3593   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3594   if (_surviving_young_words == NULL) {
3595     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3596                           "Not enough space for young surv words summary.");
3597   }
3598   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3599 #ifdef ASSERT
3600   for (uint i = 0;  i < array_length; ++i) {
3601     assert( _surviving_young_words[i] == 0, "memset above" );
3602   }
3603 #endif // !ASSERT
3604 }
3605 
3606 void
3607 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3608   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3609   uint array_length = g1_policy()->young_cset_region_length();
3610   for (uint i = 0; i < array_length; ++i) {
3611     _surviving_young_words[i] += surv_young_words[i];
3612   }
3613 }
3614 
3615 void
3616 G1CollectedHeap::cleanup_surviving_young_words() {
3617   guarantee( _surviving_young_words != NULL, "pre-condition" );
3618   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3619   _surviving_young_words = NULL;
3620 }
3621 
3622 #ifdef ASSERT
3623 class VerifyCSetClosure: public HeapRegionClosure {
3624 public:
3625   bool doHeapRegion(HeapRegion* hr) {
3626     // Here we check that the CSet region's RSet is ready for parallel
3627     // iteration. The fields that we'll verify are only manipulated
3628     // when the region is part of a CSet and is collected. Afterwards,
3629     // we reset these fields when we clear the region's RSet (when the
3630     // region is freed) so they are ready when the region is
3631     // re-allocated. The only exception to this is if there's an
3632     // evacuation failure and instead of freeing the region we leave
3633     // it in the heap. In that case, we reset these fields during
3634     // evacuation failure handling.
3635     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3636 
3637     // Here's a good place to add any other checks we'd like to
3638     // perform on CSet regions.
3639     return false;
3640   }
3641 };
3642 #endif // ASSERT
3643 
3644 #if TASKQUEUE_STATS
3645 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3646   st->print_raw_cr("GC Task Stats");
3647   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3648   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3649 }
3650 
3651 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3652   print_taskqueue_stats_hdr(st);
3653 
3654   TaskQueueStats totals;
3655   const int n = workers() != NULL ? workers()->total_workers() : 1;
3656   for (int i = 0; i < n; ++i) {
3657     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3658     totals += task_queue(i)->stats;
3659   }
3660   st->print_raw("tot "); totals.print(st); st->cr();
3661 
3662   DEBUG_ONLY(totals.verify());
3663 }
3664 
3665 void G1CollectedHeap::reset_taskqueue_stats() {
3666   const int n = workers() != NULL ? workers()->total_workers() : 1;
3667   for (int i = 0; i < n; ++i) {
3668     task_queue(i)->stats.reset();
3669   }
3670 }
3671 #endif // TASKQUEUE_STATS
3672 
3673 void G1CollectedHeap::log_gc_header() {
3674   if (!G1Log::fine()) {
3675     return;
3676   }
3677 
3678   gclog_or_tty->date_stamp(PrintGCDateStamps);
3679   gclog_or_tty->stamp(PrintGCTimeStamps);
3680 
3681   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3682     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3683     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3684 
3685   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3686 }
3687 
3688 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3689   if (!G1Log::fine()) {
3690     return;
3691   }
3692 
3693   if (G1Log::finer()) {
3694     if (evacuation_failed()) {
3695       gclog_or_tty->print(" (to-space exhausted)");
3696     }
3697     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3698     g1_policy()->phase_times()->note_gc_end();
3699     g1_policy()->phase_times()->print(pause_time_sec);
3700     g1_policy()->print_detailed_heap_transition();
3701   } else {
3702     if (evacuation_failed()) {
3703       gclog_or_tty->print("--");
3704     }
3705     g1_policy()->print_heap_transition();
3706     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3707   }
3708   gclog_or_tty->flush();
3709 }
3710 
3711 bool
3712 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3713   assert_at_safepoint(true /* should_be_vm_thread */);
3714   guarantee(!is_gc_active(), "collection is not reentrant");
3715 
3716   if (GC_locker::check_active_before_gc()) {
3717     return false;
3718   }
3719 
3720   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3721   ResourceMark rm;
3722 
3723   print_heap_before_gc();
3724 
3725   HRSPhaseSetter x(HRSPhaseEvacuation);
3726   verify_region_sets_optional();
3727   verify_dirty_young_regions();
3728 
3729   // This call will decide whether this pause is an initial-mark
3730   // pause. If it is, during_initial_mark_pause() will return true
3731   // for the duration of this pause.
3732   g1_policy()->decide_on_conc_mark_initiation();
3733 
3734   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3735   assert(!g1_policy()->during_initial_mark_pause() ||
3736           g1_policy()->gcs_are_young(), "sanity");
3737 
3738   // We also do not allow mixed GCs during marking.
3739   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3740 
3741   // Record whether this pause is an initial mark. When the current
3742   // thread has completed its logging output and it's safe to signal
3743   // the CM thread, the flag's value in the policy has been reset.
3744   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3745 
3746   // Inner scope for scope based logging, timers, and stats collection
3747   {
3748     if (g1_policy()->during_initial_mark_pause()) {
3749       // We are about to start a marking cycle, so we increment the
3750       // full collection counter.
3751       increment_old_marking_cycles_started();
3752     }
3753     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3754 
3755     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3756                                 workers()->active_workers() : 1);
3757     double pause_start_sec = os::elapsedTime();
3758     g1_policy()->phase_times()->note_gc_start(active_workers);
3759     log_gc_header();
3760 
3761     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3762     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3763 
3764     // If the secondary_free_list is not empty, append it to the
3765     // free_list. No need to wait for the cleanup operation to finish;
3766     // the region allocation code will check the secondary_free_list
3767     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3768     // set, skip this step so that the region allocation code has to
3769     // get entries from the secondary_free_list.
3770     if (!G1StressConcRegionFreeing) {
3771       append_secondary_free_list_if_not_empty_with_lock();
3772     }
3773 
3774     assert(check_young_list_well_formed(),
3775       "young list should be well formed");
3776 
3777     // Don't dynamically change the number of GC threads this early.  A value of
3778     // 0 is used to indicate serial work.  When parallel work is done,
3779     // it will be set.
3780 
3781     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3782       IsGCActiveMark x;
3783 
3784       gc_prologue(false);
3785       increment_total_collections(false /* full gc */);
3786       increment_gc_time_stamp();
3787 
3788       verify_before_gc();
3789       check_bitmaps("GC Start");
3790 
3791       COMPILER2_PRESENT(DerivedPointerTable::clear());
3792 
3793       // Please see comment in g1CollectedHeap.hpp and
3794       // G1CollectedHeap::ref_processing_init() to see how
3795       // reference processing currently works in G1.
3796 
3797       // Enable discovery in the STW reference processor
3798       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3799                                             true /*verify_no_refs*/);
3800 
3801       {
3802         // We want to temporarily turn off discovery by the
3803         // CM ref processor, if necessary, and turn it back on
3804         // on again later if we do. Using a scoped
3805         // NoRefDiscovery object will do this.
3806         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3807 
3808         // Forget the current alloc region (we might even choose it to be part
3809         // of the collection set!).
3810         release_mutator_alloc_region();
3811 
3812         // We should call this after we retire the mutator alloc
3813         // region(s) so that all the ALLOC / RETIRE events are generated
3814         // before the start GC event.
3815         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3816 
3817         // This timing is only used by the ergonomics to handle our pause target.
3818         // It is unclear why this should not include the full pause. We will
3819         // investigate this in CR 7178365.
3820         //
3821         // Preserving the old comment here if that helps the investigation:
3822         //
3823         // The elapsed time induced by the start time below deliberately elides
3824         // the possible verification above.
3825         double sample_start_time_sec = os::elapsedTime();
3826         size_t start_used_bytes = used();
3827 
3828 #if YOUNG_LIST_VERBOSE
3829         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3830         _young_list->print();
3831         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3832 #endif // YOUNG_LIST_VERBOSE
3833 
3834         g1_policy()->record_collection_pause_start(sample_start_time_sec,
3835                                                    start_used_bytes);
3836 
3837         double scan_wait_start = os::elapsedTime();
3838         // We have to wait until the CM threads finish scanning the
3839         // root regions as it's the only way to ensure that all the
3840         // objects on them have been correctly scanned before we start
3841         // moving them during the GC.
3842         bool waited = _cm->root_regions()->wait_until_scan_finished();
3843         double wait_time_ms = 0.0;
3844         if (waited) {
3845           double scan_wait_end = os::elapsedTime();
3846           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3847         }
3848         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3849 
3850 #if YOUNG_LIST_VERBOSE
3851         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3852         _young_list->print();
3853 #endif // YOUNG_LIST_VERBOSE
3854 
3855         if (g1_policy()->during_initial_mark_pause()) {
3856           concurrent_mark()->checkpointRootsInitialPre();
3857         }
3858 
3859 #if YOUNG_LIST_VERBOSE
3860         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3861         _young_list->print();
3862         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3863 #endif // YOUNG_LIST_VERBOSE
3864 
3865         g1_policy()->finalize_cset(target_pause_time_ms);
3866 
3867         _cm->note_start_of_gc();
3868         // We should not verify the per-thread SATB buffers given that
3869         // we have not filtered them yet (we'll do so during the
3870         // GC). We also call this after finalize_cset() to
3871         // ensure that the CSet has been finalized.
3872         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3873                                  true  /* verify_enqueued_buffers */,
3874                                  false /* verify_thread_buffers */,
3875                                  true  /* verify_fingers */);
3876 
3877         if (_hr_printer.is_active()) {
3878           HeapRegion* hr = g1_policy()->collection_set();
3879           while (hr != NULL) {
3880             G1HRPrinter::RegionType type;
3881             if (!hr->is_young()) {
3882               type = G1HRPrinter::Old;
3883             } else if (hr->is_survivor()) {
3884               type = G1HRPrinter::Survivor;
3885             } else {
3886               type = G1HRPrinter::Eden;
3887             }
3888             _hr_printer.cset(hr);
3889             hr = hr->next_in_collection_set();
3890           }
3891         }
3892 
3893 #ifdef ASSERT
3894         VerifyCSetClosure cl;
3895         collection_set_iterate(&cl);
3896 #endif // ASSERT
3897 
3898         setup_surviving_young_words();
3899 
3900         // Initialize the GC alloc regions.
3901         init_gc_alloc_regions();
3902 
3903         // Actually do the work...
3904         evacuate_collection_set();
3905 
3906         // We do this to mainly verify the per-thread SATB buffers
3907         // (which have been filtered by now) since we didn't verify
3908         // them earlier. No point in re-checking the stacks / enqueued
3909         // buffers given that the CSet has not changed since last time
3910         // we checked.
3911         _cm->verify_no_cset_oops(false /* verify_stacks */,
3912                                  false /* verify_enqueued_buffers */,
3913                                  true  /* verify_thread_buffers */,
3914                                  true  /* verify_fingers */);
3915 
3916         free_collection_set(g1_policy()->collection_set());
3917         g1_policy()->clear_collection_set();
3918 
3919         cleanup_surviving_young_words();
3920 
3921         // Start a new incremental collection set for the next pause.
3922         g1_policy()->start_incremental_cset_building();
3923 
3924         // Clear the _cset_fast_test bitmap in anticipation of adding
3925         // regions to the incremental collection set for the next
3926         // evacuation pause.
3927         clear_cset_fast_test();
3928 
3929         _young_list->reset_sampled_info();
3930 
3931         // Don't check the whole heap at this point as the
3932         // GC alloc regions from this pause have been tagged
3933         // as survivors and moved on to the survivor list.
3934         // Survivor regions will fail the !is_young() check.
3935         assert(check_young_list_empty(false /* check_heap */),
3936           "young list should be empty");
3937 
3938 #if YOUNG_LIST_VERBOSE
3939         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3940         _young_list->print();
3941 #endif // YOUNG_LIST_VERBOSE
3942 
3943         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3944                                             _young_list->first_survivor_region(),
3945                                             _young_list->last_survivor_region());
3946 
3947         _young_list->reset_auxilary_lists();
3948 
3949         if (evacuation_failed()) {
3950           _summary_bytes_used = recalculate_used();
3951         } else {
3952           // The "used" of the the collection set have already been subtracted
3953           // when they were freed.  Add in the bytes evacuated.
3954           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3955         }
3956 
3957         if (g1_policy()->during_initial_mark_pause()) {
3958           // We have to do this before we notify the CM threads that
3959           // they can start working to make sure that all the
3960           // appropriate initialization is done on the CM object.
3961           concurrent_mark()->checkpointRootsInitialPost();
3962           set_marking_started();
3963           // Note that we don't actually trigger the CM thread at
3964           // this point. We do that later when we're sure that
3965           // the current thread has completed its logging output.
3966         }
3967 
3968         allocate_dummy_regions();
3969 
3970 #if YOUNG_LIST_VERBOSE
3971         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3972         _young_list->print();
3973         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3974 #endif // YOUNG_LIST_VERBOSE
3975 
3976         init_mutator_alloc_region();
3977 
3978         {
3979           size_t expand_bytes = g1_policy()->expansion_amount();
3980           if (expand_bytes > 0) {
3981             size_t bytes_before = capacity();
3982             // No need for an ergo verbose message here,
3983             // expansion_amount() does this when it returns a value > 0.
3984             if (!expand(expand_bytes)) {
3985               // We failed to expand the heap so let's verify that
3986               // committed/uncommitted amount match the backing store
3987               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3988               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3989             }
3990           }
3991         }
3992 
3993         // We redo the verificaiton but now wrt to the new CSet which
3994         // has just got initialized after the previous CSet was freed.
3995         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3996                                  true  /* verify_enqueued_buffers */,
3997                                  true  /* verify_thread_buffers */,
3998                                  true  /* verify_fingers */);
3999         _cm->note_end_of_gc();
4000 
4001         // This timing is only used by the ergonomics to handle our pause target.
4002         // It is unclear why this should not include the full pause. We will
4003         // investigate this in CR 7178365.
4004         double sample_end_time_sec = os::elapsedTime();
4005         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4006         g1_policy()->record_collection_pause_end(pause_time_ms);
4007 
4008         MemoryService::track_memory_usage();
4009 
4010         // In prepare_for_verify() below we'll need to scan the deferred
4011         // update buffers to bring the RSets up-to-date if
4012         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4013         // the update buffers we'll probably need to scan cards on the
4014         // regions we just allocated to (i.e., the GC alloc
4015         // regions). However, during the last GC we called
4016         // set_saved_mark() on all the GC alloc regions, so card
4017         // scanning might skip the [saved_mark_word()...top()] area of
4018         // those regions (i.e., the area we allocated objects into
4019         // during the last GC). But it shouldn't. Given that
4020         // saved_mark_word() is conditional on whether the GC time stamp
4021         // on the region is current or not, by incrementing the GC time
4022         // stamp here we invalidate all the GC time stamps on all the
4023         // regions and saved_mark_word() will simply return top() for
4024         // all the regions. This is a nicer way of ensuring this rather
4025         // than iterating over the regions and fixing them. In fact, the
4026         // GC time stamp increment here also ensures that
4027         // saved_mark_word() will return top() between pauses, i.e.,
4028         // during concurrent refinement. So we don't need the
4029         // is_gc_active() check to decided which top to use when
4030         // scanning cards (see CR 7039627).
4031         increment_gc_time_stamp();
4032 
4033         verify_after_gc();
4034         check_bitmaps("GC End");
4035 
4036         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4037         ref_processor_stw()->verify_no_references_recorded();
4038 
4039         // CM reference discovery will be re-enabled if necessary.
4040       }
4041 
4042       // We should do this after we potentially expand the heap so
4043       // that all the COMMIT events are generated before the end GC
4044       // event, and after we retire the GC alloc regions so that all
4045       // RETIRE events are generated before the end GC event.
4046       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4047 
4048       if (mark_in_progress()) {
4049         concurrent_mark()->update_g1_committed();
4050       }
4051 
4052 #ifdef TRACESPINNING
4053       ParallelTaskTerminator::print_termination_counts();
4054 #endif
4055 
4056       gc_epilogue(false);
4057     }
4058 
4059     // Print the remainder of the GC log output.
4060     log_gc_footer(os::elapsedTime() - pause_start_sec);
4061 
4062     // It is not yet to safe to tell the concurrent mark to
4063     // start as we have some optional output below. We don't want the
4064     // output from the concurrent mark thread interfering with this
4065     // logging output either.
4066 
4067     _hrs.verify_optional();
4068     verify_region_sets_optional();
4069 
4070     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4071     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4072 
4073     print_heap_after_gc();
4074 
4075     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4076     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4077     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4078     // before any GC notifications are raised.
4079     g1mm()->update_sizes();
4080   }
4081 
4082   if (G1SummarizeRSetStats &&
4083       (G1SummarizeRSetStatsPeriod > 0) &&
4084       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
4085     g1_rem_set()->print_summary_info();
4086   }
4087 
4088   // It should now be safe to tell the concurrent mark thread to start
4089   // without its logging output interfering with the logging output
4090   // that came from the pause.
4091 
4092   if (should_start_conc_mark) {
4093     // CAUTION: after the doConcurrentMark() call below,
4094     // the concurrent marking thread(s) could be running
4095     // concurrently with us. Make sure that anything after
4096     // this point does not assume that we are the only GC thread
4097     // running. Note: of course, the actual marking work will
4098     // not start until the safepoint itself is released in
4099     // ConcurrentGCThread::safepoint_desynchronize().
4100     doConcurrentMark();
4101   }
4102 
4103   return true;
4104 }
4105 
4106 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4107 {
4108   size_t gclab_word_size;
4109   switch (purpose) {
4110     case GCAllocForSurvived:
4111       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4112       break;
4113     case GCAllocForTenured:
4114       gclab_word_size = _old_plab_stats.desired_plab_sz();
4115       break;
4116     default:
4117       assert(false, "unknown GCAllocPurpose");
4118       gclab_word_size = _old_plab_stats.desired_plab_sz();
4119       break;
4120   }
4121 
4122   // Prevent humongous PLAB sizes for two reasons:
4123   // * PLABs are allocated using a similar paths as oops, but should
4124   //   never be in a humongous region
4125   // * Allowing humongous PLABs needlessly churns the region free lists
4126   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4127 }
4128 
4129 void G1CollectedHeap::init_mutator_alloc_region() {
4130   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4131   _mutator_alloc_region.init();
4132 }
4133 
4134 void G1CollectedHeap::release_mutator_alloc_region() {
4135   _mutator_alloc_region.release();
4136   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4137 }
4138 
4139 void G1CollectedHeap::init_gc_alloc_regions() {
4140   assert_at_safepoint(true /* should_be_vm_thread */);
4141 
4142   _survivor_gc_alloc_region.init();
4143   _old_gc_alloc_region.init();
4144   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4145   _retained_old_gc_alloc_region = NULL;
4146 
4147   // We will discard the current GC alloc region if:
4148   // a) it's in the collection set (it can happen!),
4149   // b) it's already full (no point in using it),
4150   // c) it's empty (this means that it was emptied during
4151   // a cleanup and it should be on the free list now), or
4152   // d) it's humongous (this means that it was emptied
4153   // during a cleanup and was added to the free list, but
4154   // has been subseqently used to allocate a humongous
4155   // object that may be less than the region size).
4156   if (retained_region != NULL &&
4157       !retained_region->in_collection_set() &&
4158       !(retained_region->top() == retained_region->end()) &&
4159       !retained_region->is_empty() &&
4160       !retained_region->isHumongous()) {
4161     retained_region->set_saved_mark();
4162     // The retained region was added to the old region set when it was
4163     // retired. We have to remove it now, since we don't allow regions
4164     // we allocate to in the region sets. We'll re-add it later, when
4165     // it's retired again.
4166     _old_set.remove(retained_region);
4167     bool during_im = g1_policy()->during_initial_mark_pause();
4168     retained_region->note_start_of_copying(during_im);
4169     _old_gc_alloc_region.set(retained_region);
4170     _hr_printer.reuse(retained_region);
4171   }
4172 }
4173 
4174 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers) {
4175   _survivor_gc_alloc_region.release();
4176   // If we have an old GC alloc region to release, we'll save it in
4177   // _retained_old_gc_alloc_region. If we don't
4178   // _retained_old_gc_alloc_region will become NULL. This is what we
4179   // want either way so no reason to check explicitly for either
4180   // condition.
4181   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4182 
4183   if (ResizePLAB) {
4184     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4185     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4186   }
4187 }
4188 
4189 void G1CollectedHeap::abandon_gc_alloc_regions() {
4190   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4191   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4192   _retained_old_gc_alloc_region = NULL;
4193 }
4194 
4195 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4196   _drain_in_progress = false;
4197   set_evac_failure_closure(cl);
4198   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4199 }
4200 
4201 void G1CollectedHeap::finalize_for_evac_failure() {
4202   assert(_evac_failure_scan_stack != NULL &&
4203          _evac_failure_scan_stack->length() == 0,
4204          "Postcondition");
4205   assert(!_drain_in_progress, "Postcondition");
4206   delete _evac_failure_scan_stack;
4207   _evac_failure_scan_stack = NULL;
4208 }
4209 
4210 void G1CollectedHeap::remove_self_forwarding_pointers() {
4211   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4212 
4213   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4214 
4215   if (G1CollectedHeap::use_parallel_gc_threads()) {
4216     set_par_threads();
4217     workers()->run_task(&rsfp_task);
4218     set_par_threads(0);
4219   } else {
4220     rsfp_task.work(0);
4221   }
4222 
4223   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4224 
4225   // Reset the claim values in the regions in the collection set.
4226   reset_cset_heap_region_claim_values();
4227 
4228   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4229 
4230   // Now restore saved marks, if any.
4231   if (_objs_with_preserved_marks != NULL) {
4232     assert(_preserved_marks_of_objs != NULL, "Both or none.");
4233     guarantee(_objs_with_preserved_marks->length() ==
4234               _preserved_marks_of_objs->length(), "Both or none.");
4235     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
4236       oop obj   = _objs_with_preserved_marks->at(i);
4237       markOop m = _preserved_marks_of_objs->at(i);
4238       obj->set_mark(m);
4239     }
4240 
4241     // Delete the preserved marks growable arrays (allocated on the C heap).
4242     delete _objs_with_preserved_marks;
4243     delete _preserved_marks_of_objs;
4244     _objs_with_preserved_marks = NULL;
4245     _preserved_marks_of_objs = NULL;
4246   }
4247 }
4248 
4249 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4250   _evac_failure_scan_stack->push(obj);
4251 }
4252 
4253 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4254   assert(_evac_failure_scan_stack != NULL, "precondition");
4255 
4256   while (_evac_failure_scan_stack->length() > 0) {
4257      oop obj = _evac_failure_scan_stack->pop();
4258      _evac_failure_closure->set_region(heap_region_containing(obj));
4259      obj->oop_iterate_backwards(_evac_failure_closure);
4260   }
4261 }
4262 
4263 oop
4264 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4265                                                oop old) {
4266   assert(obj_in_cs(old),
4267          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4268                  (HeapWord*) old));
4269   markOop m = old->mark();
4270   oop forward_ptr = old->forward_to_atomic(old);
4271   if (forward_ptr == NULL) {
4272     // Forward-to-self succeeded.
4273 
4274     if (_evac_failure_closure != cl) {
4275       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4276       assert(!_drain_in_progress,
4277              "Should only be true while someone holds the lock.");
4278       // Set the global evac-failure closure to the current thread's.
4279       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4280       set_evac_failure_closure(cl);
4281       // Now do the common part.
4282       handle_evacuation_failure_common(old, m);
4283       // Reset to NULL.
4284       set_evac_failure_closure(NULL);
4285     } else {
4286       // The lock is already held, and this is recursive.
4287       assert(_drain_in_progress, "This should only be the recursive case.");
4288       handle_evacuation_failure_common(old, m);
4289     }
4290     return old;
4291   } else {
4292     // Forward-to-self failed. Either someone else managed to allocate
4293     // space for this object (old != forward_ptr) or they beat us in
4294     // self-forwarding it (old == forward_ptr).
4295     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4296            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4297                    "should not be in the CSet",
4298                    (HeapWord*) old, (HeapWord*) forward_ptr));
4299     return forward_ptr;
4300   }
4301 }
4302 
4303 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4304   set_evacuation_failed(true);
4305 
4306   preserve_mark_if_necessary(old, m);
4307 
4308   HeapRegion* r = heap_region_containing(old);
4309   if (!r->evacuation_failed()) {
4310     r->set_evacuation_failed(true);
4311     _hr_printer.evac_failure(r);
4312   }
4313 
4314   push_on_evac_failure_scan_stack(old);
4315 
4316   if (!_drain_in_progress) {
4317     // prevent recursion in copy_to_survivor_space()
4318     _drain_in_progress = true;
4319     drain_evac_failure_scan_stack();
4320     _drain_in_progress = false;
4321   }
4322 }
4323 
4324 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4325   assert(evacuation_failed(), "Oversaving!");
4326   // We want to call the "for_promotion_failure" version only in the
4327   // case of a promotion failure.
4328   if (m->must_be_preserved_for_promotion_failure(obj)) {
4329     if (_objs_with_preserved_marks == NULL) {
4330       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4331       _objs_with_preserved_marks =
4332         new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4333       _preserved_marks_of_objs =
4334         new (ResourceObj::C_HEAP, mtGC) GrowableArray<markOop>(40, true);
4335     }
4336     _objs_with_preserved_marks->push(obj);
4337     _preserved_marks_of_objs->push(m);
4338   }
4339 }
4340 
4341 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4342                                                   size_t word_size) {
4343   if (purpose == GCAllocForSurvived) {
4344     HeapWord* result = survivor_attempt_allocation(word_size);
4345     if (result != NULL) {
4346       return result;
4347     } else {
4348       // Let's try to allocate in the old gen in case we can fit the
4349       // object there.
4350       return old_attempt_allocation(word_size);
4351     }
4352   } else {
4353     assert(purpose ==  GCAllocForTenured, "sanity");
4354     HeapWord* result = old_attempt_allocation(word_size);
4355     if (result != NULL) {
4356       return result;
4357     } else {
4358       // Let's try to allocate in the survivors in case we can fit the
4359       // object there.
4360       return survivor_attempt_allocation(word_size);
4361     }
4362   }
4363 
4364   ShouldNotReachHere();
4365   // Trying to keep some compilers happy.
4366   return NULL;
4367 }
4368 
4369 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4370   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4371 
4372 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4373   : _g1h(g1h),
4374     _refs(g1h->task_queue(queue_num)),
4375     _dcq(&g1h->dirty_card_queue_set()),
4376     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4377     _g1_rem(g1h->g1_rem_set()),
4378     _hash_seed(17), _queue_num(queue_num),
4379     _term_attempts(0),
4380     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4381     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4382     _age_table(false),
4383     _strong_roots_time(0), _term_time(0),
4384     _alloc_buffer_waste(0), _undo_waste(0) {
4385   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4386   // we "sacrifice" entry 0 to keep track of surviving bytes for
4387   // non-young regions (where the age is -1)
4388   // We also add a few elements at the beginning and at the end in
4389   // an attempt to eliminate cache contention
4390   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4391   uint array_length = PADDING_ELEM_NUM +
4392                       real_length +
4393                       PADDING_ELEM_NUM;
4394   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4395   if (_surviving_young_words_base == NULL)
4396     vm_exit_out_of_memory(array_length * sizeof(size_t),
4397                           "Not enough space for young surv histo.");
4398   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4399   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4400 
4401   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4402   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4403 
4404   _start = os::elapsedTime();
4405 }
4406 
4407 void
4408 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4409 {
4410   st->print_raw_cr("GC Termination Stats");
4411   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4412                    " ------waste (KiB)------");
4413   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4414                    "  total   alloc    undo");
4415   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4416                    " ------- ------- -------");
4417 }
4418 
4419 void
4420 G1ParScanThreadState::print_termination_stats(int i,
4421                                               outputStream* const st) const
4422 {
4423   const double elapsed_ms = elapsed_time() * 1000.0;
4424   const double s_roots_ms = strong_roots_time() * 1000.0;
4425   const double term_ms    = term_time() * 1000.0;
4426   st->print_cr("%3d %9.2f %9.2f %6.2f "
4427                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4428                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4429                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4430                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4431                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4432                alloc_buffer_waste() * HeapWordSize / K,
4433                undo_waste() * HeapWordSize / K);
4434 }
4435 
4436 #ifdef ASSERT
4437 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4438   assert(ref != NULL, "invariant");
4439   assert(UseCompressedOops, "sanity");
4440   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4441   oop p = oopDesc::load_decode_heap_oop(ref);
4442   assert(_g1h->is_in_g1_reserved(p),
4443          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4444   return true;
4445 }
4446 
4447 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4448   assert(ref != NULL, "invariant");
4449   if (has_partial_array_mask(ref)) {
4450     // Must be in the collection set--it's already been copied.
4451     oop p = clear_partial_array_mask(ref);
4452     assert(_g1h->obj_in_cs(p),
4453            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4454   } else {
4455     oop p = oopDesc::load_decode_heap_oop(ref);
4456     assert(_g1h->is_in_g1_reserved(p),
4457            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4458   }
4459   return true;
4460 }
4461 
4462 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4463   if (ref.is_narrow()) {
4464     return verify_ref((narrowOop*) ref);
4465   } else {
4466     return verify_ref((oop*) ref);
4467   }
4468 }
4469 #endif // ASSERT
4470 
4471 void G1ParScanThreadState::trim_queue() {
4472   assert(_evac_cl != NULL, "not set");
4473   assert(_evac_failure_cl != NULL, "not set");
4474   assert(_partial_scan_cl != NULL, "not set");
4475 
4476   StarTask ref;
4477   do {
4478     // Drain the overflow stack first, so other threads can steal.
4479     while (refs()->pop_overflow(ref)) {
4480       deal_with_reference(ref);
4481     }
4482 
4483     while (refs()->pop_local(ref)) {
4484       deal_with_reference(ref);
4485     }
4486   } while (!refs()->is_empty());
4487 }
4488 
4489 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4490                                      G1ParScanThreadState* par_scan_state) :
4491   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4492   _par_scan_state(par_scan_state),
4493   _worker_id(par_scan_state->queue_num()),
4494   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4495   _mark_in_progress(_g1->mark_in_progress()) { }
4496 
4497 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4498 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4499 #ifdef ASSERT
4500   HeapRegion* hr = _g1->heap_region_containing(obj);
4501   assert(hr != NULL, "sanity");
4502   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4503 #endif // ASSERT
4504 
4505   // We know that the object is not moving so it's safe to read its size.
4506   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4507 }
4508 
4509 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4510 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4511   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4512 #ifdef ASSERT
4513   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4514   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4515   assert(from_obj != to_obj, "should not be self-forwarded");
4516 
4517   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4518   assert(from_hr != NULL, "sanity");
4519   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4520 
4521   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4522   assert(to_hr != NULL, "sanity");
4523   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4524 #endif // ASSERT
4525 
4526   // The object might be in the process of being copied by another
4527   // worker so we cannot trust that its to-space image is
4528   // well-formed. So we have to read its size from its from-space
4529   // image which we know should not be changing.
4530   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4531 }
4532 
4533 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4534 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4535   ::copy_to_survivor_space(oop old) {
4536   size_t word_sz = old->size();
4537   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4538   // +1 to make the -1 indexes valid...
4539   int       young_index = from_region->young_index_in_cset()+1;
4540   assert( (from_region->is_young() && young_index >  0) ||
4541          (!from_region->is_young() && young_index == 0), "invariant" );
4542   G1CollectorPolicy* g1p = _g1->g1_policy();
4543   markOop m = old->mark();
4544   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4545                                            : m->age();
4546   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4547                                                              word_sz);
4548   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4549 #ifndef PRODUCT
4550   // Should this evacuation fail?
4551   if (_g1->evacuation_should_fail()) {
4552     if (obj_ptr != NULL) {
4553       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4554       obj_ptr = NULL;
4555     }
4556   }
4557 #endif // !PRODUCT
4558 
4559   if (obj_ptr == NULL) {
4560     // This will either forward-to-self, or detect that someone else has
4561     // installed a forwarding pointer.
4562     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4563     return _g1->handle_evacuation_failure_par(cl, old);
4564   }
4565 
4566   oop obj = oop(obj_ptr);
4567 
4568   // We're going to allocate linearly, so might as well prefetch ahead.
4569   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4570 
4571   oop forward_ptr = old->forward_to_atomic(obj);
4572   if (forward_ptr == NULL) {
4573     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4574     if (g1p->track_object_age(alloc_purpose)) {
4575       // We could simply do obj->incr_age(). However, this causes a
4576       // performance issue. obj->incr_age() will first check whether
4577       // the object has a displaced mark by checking its mark word;
4578       // getting the mark word from the new location of the object
4579       // stalls. So, given that we already have the mark word and we
4580       // are about to install it anyway, it's better to increase the
4581       // age on the mark word, when the object does not have a
4582       // displaced mark word. We're not expecting many objects to have
4583       // a displaced marked word, so that case is not optimized
4584       // further (it could be...) and we simply call obj->incr_age().
4585 
4586       if (m->has_displaced_mark_helper()) {
4587         // in this case, we have to install the mark word first,
4588         // otherwise obj looks to be forwarded (the old mark word,
4589         // which contains the forward pointer, was copied)
4590         obj->set_mark(m);
4591         obj->incr_age();
4592       } else {
4593         m = m->incr_age();
4594         obj->set_mark(m);
4595       }
4596       _par_scan_state->age_table()->add(obj, word_sz);
4597     } else {
4598       obj->set_mark(m);
4599     }
4600 
4601     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4602     surv_young_words[young_index] += word_sz;
4603 
4604     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4605       // We keep track of the next start index in the length field of
4606       // the to-space object. The actual length can be found in the
4607       // length field of the from-space object.
4608       arrayOop(obj)->set_length(0);
4609       oop* old_p = set_partial_array_mask(old);
4610       _par_scan_state->push_on_queue(old_p);
4611     } else {
4612       // No point in using the slower heap_region_containing() method,
4613       // given that we know obj is in the heap.
4614       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4615       obj->oop_iterate_backwards(&_scanner);
4616     }
4617   } else {
4618     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4619     obj = forward_ptr;
4620   }
4621   return obj;
4622 }
4623 
4624 template <class T>
4625 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4626   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4627     _scanned_klass->record_modified_oops();
4628   }
4629 }
4630 
4631 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4632 template <class T>
4633 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4634 ::do_oop_work(T* p) {
4635   oop obj = oopDesc::load_decode_heap_oop(p);
4636   assert(barrier != G1BarrierRS || obj != NULL,
4637          "Precondition: G1BarrierRS implies obj is non-NULL");
4638 
4639   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4640 
4641   // here the null check is implicit in the cset_fast_test() test
4642   if (_g1->in_cset_fast_test(obj)) {
4643     oop forwardee;
4644     if (obj->is_forwarded()) {
4645       forwardee = obj->forwardee();
4646     } else {
4647       forwardee = copy_to_survivor_space(obj);
4648     }
4649     assert(forwardee != NULL, "forwardee should not be NULL");
4650     oopDesc::encode_store_heap_oop(p, forwardee);
4651     if (do_mark_object && forwardee != obj) {
4652       // If the object is self-forwarded we don't need to explicitly
4653       // mark it, the evacuation failure protocol will do so.
4654       mark_forwarded_object(obj, forwardee);
4655     }
4656 
4657     // When scanning the RS, we only care about objs in CS.
4658     if (barrier == G1BarrierRS) {
4659       _par_scan_state->update_rs(_from, p, _worker_id);
4660     } else if (barrier == G1BarrierKlass) {
4661       do_klass_barrier(p, forwardee);
4662     }
4663   } else {
4664     // The object is not in collection set. If we're a root scanning
4665     // closure during an initial mark pause (i.e. do_mark_object will
4666     // be true) then attempt to mark the object.
4667     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4668       mark_object(obj);
4669     }
4670   }
4671 
4672   if (barrier == G1BarrierEvac && obj != NULL) {
4673     _par_scan_state->update_rs(_from, p, _worker_id);
4674   }
4675 
4676   if (do_gen_barrier && obj != NULL) {
4677     par_do_barrier(p);
4678   }
4679 }
4680 
4681 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4682 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4683 
4684 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4685   assert(has_partial_array_mask(p), "invariant");
4686   oop from_obj = clear_partial_array_mask(p);
4687 
4688   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4689   assert(from_obj->is_objArray(), "must be obj array");
4690   objArrayOop from_obj_array = objArrayOop(from_obj);
4691   // The from-space object contains the real length.
4692   int length                 = from_obj_array->length();
4693 
4694   assert(from_obj->is_forwarded(), "must be forwarded");
4695   oop to_obj                 = from_obj->forwardee();
4696   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4697   objArrayOop to_obj_array   = objArrayOop(to_obj);
4698   // We keep track of the next start index in the length field of the
4699   // to-space object.
4700   int next_index             = to_obj_array->length();
4701   assert(0 <= next_index && next_index < length,
4702          err_msg("invariant, next index: %d, length: %d", next_index, length));
4703 
4704   int start                  = next_index;
4705   int end                    = length;
4706   int remainder              = end - start;
4707   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4708   if (remainder > 2 * ParGCArrayScanChunk) {
4709     end = start + ParGCArrayScanChunk;
4710     to_obj_array->set_length(end);
4711     // Push the remainder before we process the range in case another
4712     // worker has run out of things to do and can steal it.
4713     oop* from_obj_p = set_partial_array_mask(from_obj);
4714     _par_scan_state->push_on_queue(from_obj_p);
4715   } else {
4716     assert(length == end, "sanity");
4717     // We'll process the final range for this object. Restore the length
4718     // so that the heap remains parsable in case of evacuation failure.
4719     to_obj_array->set_length(end);
4720   }
4721   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4722   // Process indexes [start,end). It will also process the header
4723   // along with the first chunk (i.e., the chunk with start == 0).
4724   // Note that at this point the length field of to_obj_array is not
4725   // correct given that we are using it to keep track of the next
4726   // start index. oop_iterate_range() (thankfully!) ignores the length
4727   // field and only relies on the start / end parameters.  It does
4728   // however return the size of the object which will be incorrect. So
4729   // we have to ignore it even if we wanted to use it.
4730   to_obj_array->oop_iterate_range(&_scanner, start, end);
4731 }
4732 
4733 class G1ParEvacuateFollowersClosure : public VoidClosure {
4734 protected:
4735   G1CollectedHeap*              _g1h;
4736   G1ParScanThreadState*         _par_scan_state;
4737   RefToScanQueueSet*            _queues;
4738   ParallelTaskTerminator*       _terminator;
4739 
4740   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4741   RefToScanQueueSet*      queues()         { return _queues; }
4742   ParallelTaskTerminator* terminator()     { return _terminator; }
4743 
4744 public:
4745   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4746                                 G1ParScanThreadState* par_scan_state,
4747                                 RefToScanQueueSet* queues,
4748                                 ParallelTaskTerminator* terminator)
4749     : _g1h(g1h), _par_scan_state(par_scan_state),
4750       _queues(queues), _terminator(terminator) {}
4751 
4752   void do_void();
4753 
4754 private:
4755   inline bool offer_termination();
4756 };
4757 
4758 bool G1ParEvacuateFollowersClosure::offer_termination() {
4759   G1ParScanThreadState* const pss = par_scan_state();
4760   pss->start_term_time();
4761   const bool res = terminator()->offer_termination();
4762   pss->end_term_time();
4763   return res;
4764 }
4765 
4766 void G1ParEvacuateFollowersClosure::do_void() {
4767   StarTask stolen_task;
4768   G1ParScanThreadState* const pss = par_scan_state();
4769   pss->trim_queue();
4770 
4771   do {
4772     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4773       assert(pss->verify_task(stolen_task), "sanity");
4774       if (stolen_task.is_narrow()) {
4775         pss->deal_with_reference((narrowOop*) stolen_task);
4776       } else {
4777         pss->deal_with_reference((oop*) stolen_task);
4778       }
4779 
4780       // We've just processed a reference and we might have made
4781       // available new entries on the queues. So we have to make sure
4782       // we drain the queues as necessary.
4783       pss->trim_queue();
4784     }
4785   } while (!offer_termination());
4786 
4787   pss->retire_alloc_buffers();
4788 }
4789 
4790 class G1KlassScanClosure : public KlassClosure {
4791  G1ParCopyHelper* _closure;
4792  bool             _process_only_dirty;
4793  int              _count;
4794  public:
4795   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4796       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4797   void do_klass(Klass* klass) {
4798     // If the klass has not been dirtied we know that there's
4799     // no references into  the young gen and we can skip it.
4800    if (!_process_only_dirty || klass->has_modified_oops()) {
4801       // Clean the klass since we're going to scavenge all the metadata.
4802       klass->clear_modified_oops();
4803 
4804       // Tell the closure that this klass is the Klass to scavenge
4805       // and is the one to dirty if oops are left pointing into the young gen.
4806       _closure->set_scanned_klass(klass);
4807 
4808       klass->oops_do(_closure);
4809 
4810       _closure->set_scanned_klass(NULL);
4811     }
4812     _count++;
4813   }
4814 };
4815 
4816 class G1ParTask : public AbstractGangTask {
4817 protected:
4818   G1CollectedHeap*       _g1h;
4819   RefToScanQueueSet      *_queues;
4820   ParallelTaskTerminator _terminator;
4821   uint _n_workers;
4822 
4823   Mutex _stats_lock;
4824   Mutex* stats_lock() { return &_stats_lock; }
4825 
4826   size_t getNCards() {
4827     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4828       / G1BlockOffsetSharedArray::N_bytes;
4829   }
4830 
4831 public:
4832   G1ParTask(G1CollectedHeap* g1h,
4833             RefToScanQueueSet *task_queues)
4834     : AbstractGangTask("G1 collection"),
4835       _g1h(g1h),
4836       _queues(task_queues),
4837       _terminator(0, _queues),
4838       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4839   {}
4840 
4841   RefToScanQueueSet* queues() { return _queues; }
4842 
4843   RefToScanQueue *work_queue(int i) {
4844     return queues()->queue(i);
4845   }
4846 
4847   ParallelTaskTerminator* terminator() { return &_terminator; }
4848 
4849   virtual void set_for_termination(int active_workers) {
4850     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4851     // in the young space (_par_seq_tasks) in the G1 heap
4852     // for SequentialSubTasksDone.
4853     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4854     // both of which need setting by set_n_termination().
4855     _g1h->SharedHeap::set_n_termination(active_workers);
4856     _g1h->set_n_termination(active_workers);
4857     terminator()->reset_for_reuse(active_workers);
4858     _n_workers = active_workers;
4859   }
4860 
4861   void work(uint worker_id) {
4862     if (worker_id >= _n_workers) return;  // no work needed this round
4863 
4864     double start_time_ms = os::elapsedTime() * 1000.0;
4865     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4866 
4867     {
4868       ResourceMark rm;
4869       HandleMark   hm;
4870 
4871       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4872 
4873       G1ParScanThreadState            pss(_g1h, worker_id);
4874       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4875       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4876       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4877 
4878       pss.set_evac_closure(&scan_evac_cl);
4879       pss.set_evac_failure_closure(&evac_failure_cl);
4880       pss.set_partial_scan_closure(&partial_scan_cl);
4881 
4882       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4883       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
4884 
4885       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4886       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
4887 
4888       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
4889       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
4890       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
4891 
4892       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4893       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
4894 
4895       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4896         // We also need to mark copied objects.
4897         scan_root_cl = &scan_mark_root_cl;
4898         scan_klasses_cl = &scan_mark_klasses_cl_s;
4899       }
4900 
4901       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4902 
4903       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
4904 
4905       pss.start_strong_roots();
4906       _g1h->g1_process_strong_roots(/* is scavenging */ true,
4907                                     SharedHeap::ScanningOption(so),
4908                                     scan_root_cl,
4909                                     &push_heap_rs_cl,
4910                                     scan_klasses_cl,
4911                                     worker_id);
4912       pss.end_strong_roots();
4913 
4914       {
4915         double start = os::elapsedTime();
4916         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4917         evac.do_void();
4918         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4919         double term_ms = pss.term_time()*1000.0;
4920         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4921         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4922       }
4923       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4924       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4925 
4926       if (ParallelGCVerbose) {
4927         MutexLocker x(stats_lock());
4928         pss.print_termination_stats(worker_id);
4929       }
4930 
4931       assert(pss.refs()->is_empty(), "should be empty");
4932 
4933       // Close the inner scope so that the ResourceMark and HandleMark
4934       // destructors are executed here and are included as part of the
4935       // "GC Worker Time".
4936     }
4937 
4938     double end_time_ms = os::elapsedTime() * 1000.0;
4939     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4940   }
4941 };
4942 
4943 // *** Common G1 Evacuation Stuff
4944 
4945 // Closures that support the filtering of CodeBlobs scanned during
4946 // external root scanning.
4947 
4948 // Closure applied to reference fields in code blobs (specifically nmethods)
4949 // to determine whether an nmethod contains references that point into
4950 // the collection set. Used as a predicate when walking code roots so
4951 // that only nmethods that point into the collection set are added to the
4952 // 'marked' list.
4953 
4954 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
4955 
4956   class G1PointsIntoCSOopClosure : public OopClosure {
4957     G1CollectedHeap* _g1;
4958     bool _points_into_cs;
4959   public:
4960     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
4961       _g1(g1), _points_into_cs(false) { }
4962 
4963     bool points_into_cs() const { return _points_into_cs; }
4964 
4965     template <class T>
4966     void do_oop_nv(T* p) {
4967       if (!_points_into_cs) {
4968         T heap_oop = oopDesc::load_heap_oop(p);
4969         if (!oopDesc::is_null(heap_oop) &&
4970             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
4971           _points_into_cs = true;
4972         }
4973       }
4974     }
4975 
4976     virtual void do_oop(oop* p)        { do_oop_nv(p); }
4977     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
4978   };
4979 
4980   G1CollectedHeap* _g1;
4981 
4982 public:
4983   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
4984     CodeBlobToOopClosure(cl, true), _g1(g1) { }
4985 
4986   virtual void do_code_blob(CodeBlob* cb) {
4987     nmethod* nm = cb->as_nmethod_or_null();
4988     if (nm != NULL && !(nm->test_oops_do_mark())) {
4989       G1PointsIntoCSOopClosure predicate_cl(_g1);
4990       nm->oops_do(&predicate_cl);
4991 
4992       if (predicate_cl.points_into_cs()) {
4993         // At least one of the reference fields or the oop relocations
4994         // in the nmethod points into the collection set. We have to
4995         // 'mark' this nmethod.
4996         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
4997         // or MarkingCodeBlobClosure::do_code_blob() change.
4998         if (!nm->test_set_oops_do_mark()) {
4999           do_newly_marked_nmethod(nm);
5000         }
5001       }
5002     }
5003   }
5004 };
5005 
5006 // This method is run in a GC worker.
5007 
5008 void
5009 G1CollectedHeap::
5010 g1_process_strong_roots(bool is_scavenging,
5011                         ScanningOption so,
5012                         OopClosure* scan_non_heap_roots,
5013                         OopsInHeapRegionClosure* scan_rs,
5014                         G1KlassScanClosure* scan_klasses,
5015                         int worker_i) {
5016 
5017   // First scan the strong roots
5018   double ext_roots_start = os::elapsedTime();
5019   double closure_app_time_sec = 0.0;
5020 
5021   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5022 
5023   // Walk the code cache w/o buffering, because StarTask cannot handle
5024   // unaligned oop locations.
5025   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
5026 
5027   process_strong_roots(false, // no scoping; this is parallel code
5028                        is_scavenging, so,
5029                        &buf_scan_non_heap_roots,
5030                        &eager_scan_code_roots,
5031                        scan_klasses
5032                        );
5033 
5034   // Now the CM ref_processor roots.
5035   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5036     // We need to treat the discovered reference lists of the
5037     // concurrent mark ref processor as roots and keep entries
5038     // (which are added by the marking threads) on them live
5039     // until they can be processed at the end of marking.
5040     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5041   }
5042 
5043   // Finish up any enqueued closure apps (attributed as object copy time).
5044   buf_scan_non_heap_roots.done();
5045 
5046   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5047 
5048   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5049 
5050   double ext_root_time_ms =
5051     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5052 
5053   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5054 
5055   // During conc marking we have to filter the per-thread SATB buffers
5056   // to make sure we remove any oops into the CSet (which will show up
5057   // as implicitly live).
5058   double satb_filtering_ms = 0.0;
5059   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5060     if (mark_in_progress()) {
5061       double satb_filter_start = os::elapsedTime();
5062 
5063       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5064 
5065       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5066     }
5067   }
5068   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5069 
5070   // Now scan the complement of the collection set.
5071   if (scan_rs != NULL) {
5072     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
5073   }
5074   _process_strong_tasks->all_tasks_completed();
5075 }
5076 
5077 void
5078 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
5079                                        OopClosure* non_root_closure) {
5080   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5081   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
5082 }
5083 
5084 // Weak Reference Processing support
5085 
5086 // An always "is_alive" closure that is used to preserve referents.
5087 // If the object is non-null then it's alive.  Used in the preservation
5088 // of referent objects that are pointed to by reference objects
5089 // discovered by the CM ref processor.
5090 class G1AlwaysAliveClosure: public BoolObjectClosure {
5091   G1CollectedHeap* _g1;
5092 public:
5093   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5094   void do_object(oop p) { assert(false, "Do not call."); }
5095   bool do_object_b(oop p) {
5096     if (p != NULL) {
5097       return true;
5098     }
5099     return false;
5100   }
5101 };
5102 
5103 bool G1STWIsAliveClosure::do_object_b(oop p) {
5104   // An object is reachable if it is outside the collection set,
5105   // or is inside and copied.
5106   return !_g1->obj_in_cs(p) || p->is_forwarded();
5107 }
5108 
5109 // Non Copying Keep Alive closure
5110 class G1KeepAliveClosure: public OopClosure {
5111   G1CollectedHeap* _g1;
5112 public:
5113   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5114   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5115   void do_oop(      oop* p) {
5116     oop obj = *p;
5117 
5118     if (_g1->obj_in_cs(obj)) {
5119       assert( obj->is_forwarded(), "invariant" );
5120       *p = obj->forwardee();
5121     }
5122   }
5123 };
5124 
5125 // Copying Keep Alive closure - can be called from both
5126 // serial and parallel code as long as different worker
5127 // threads utilize different G1ParScanThreadState instances
5128 // and different queues.
5129 
5130 class G1CopyingKeepAliveClosure: public OopClosure {
5131   G1CollectedHeap*         _g1h;
5132   OopClosure*              _copy_non_heap_obj_cl;
5133   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5134   G1ParScanThreadState*    _par_scan_state;
5135 
5136 public:
5137   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5138                             OopClosure* non_heap_obj_cl,
5139                             OopsInHeapRegionClosure* metadata_obj_cl,
5140                             G1ParScanThreadState* pss):
5141     _g1h(g1h),
5142     _copy_non_heap_obj_cl(non_heap_obj_cl),
5143     _copy_metadata_obj_cl(metadata_obj_cl),
5144     _par_scan_state(pss)
5145   {}
5146 
5147   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5148   virtual void do_oop(      oop* p) { do_oop_work(p); }
5149 
5150   template <class T> void do_oop_work(T* p) {
5151     oop obj = oopDesc::load_decode_heap_oop(p);
5152 
5153     if (_g1h->obj_in_cs(obj)) {
5154       // If the referent object has been forwarded (either copied
5155       // to a new location or to itself in the event of an
5156       // evacuation failure) then we need to update the reference
5157       // field and, if both reference and referent are in the G1
5158       // heap, update the RSet for the referent.
5159       //
5160       // If the referent has not been forwarded then we have to keep
5161       // it alive by policy. Therefore we have copy the referent.
5162       //
5163       // If the reference field is in the G1 heap then we can push
5164       // on the PSS queue. When the queue is drained (after each
5165       // phase of reference processing) the object and it's followers
5166       // will be copied, the reference field set to point to the
5167       // new location, and the RSet updated. Otherwise we need to
5168       // use the the non-heap or metadata closures directly to copy
5169       // the refernt object and update the pointer, while avoiding
5170       // updating the RSet.
5171 
5172       if (_g1h->is_in_g1_reserved(p)) {
5173         _par_scan_state->push_on_queue(p);
5174       } else {
5175         assert(!ClassLoaderDataGraph::contains((address)p),
5176                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5177                               PTR_FORMAT, p));
5178           _copy_non_heap_obj_cl->do_oop(p);
5179         }
5180       }
5181     }
5182 };
5183 
5184 // Serial drain queue closure. Called as the 'complete_gc'
5185 // closure for each discovered list in some of the
5186 // reference processing phases.
5187 
5188 class G1STWDrainQueueClosure: public VoidClosure {
5189 protected:
5190   G1CollectedHeap* _g1h;
5191   G1ParScanThreadState* _par_scan_state;
5192 
5193   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5194 
5195 public:
5196   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5197     _g1h(g1h),
5198     _par_scan_state(pss)
5199   { }
5200 
5201   void do_void() {
5202     G1ParScanThreadState* const pss = par_scan_state();
5203     pss->trim_queue();
5204   }
5205 };
5206 
5207 // Parallel Reference Processing closures
5208 
5209 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5210 // processing during G1 evacuation pauses.
5211 
5212 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5213 private:
5214   G1CollectedHeap*   _g1h;
5215   RefToScanQueueSet* _queues;
5216   FlexibleWorkGang*  _workers;
5217   int                _active_workers;
5218 
5219 public:
5220   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5221                         FlexibleWorkGang* workers,
5222                         RefToScanQueueSet *task_queues,
5223                         int n_workers) :
5224     _g1h(g1h),
5225     _queues(task_queues),
5226     _workers(workers),
5227     _active_workers(n_workers)
5228   {
5229     assert(n_workers > 0, "shouldn't call this otherwise");
5230   }
5231 
5232   // Executes the given task using concurrent marking worker threads.
5233   virtual void execute(ProcessTask& task);
5234   virtual void execute(EnqueueTask& task);
5235 };
5236 
5237 // Gang task for possibly parallel reference processing
5238 
5239 class G1STWRefProcTaskProxy: public AbstractGangTask {
5240   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5241   ProcessTask&     _proc_task;
5242   G1CollectedHeap* _g1h;
5243   RefToScanQueueSet *_task_queues;
5244   ParallelTaskTerminator* _terminator;
5245 
5246 public:
5247   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5248                      G1CollectedHeap* g1h,
5249                      RefToScanQueueSet *task_queues,
5250                      ParallelTaskTerminator* terminator) :
5251     AbstractGangTask("Process reference objects in parallel"),
5252     _proc_task(proc_task),
5253     _g1h(g1h),
5254     _task_queues(task_queues),
5255     _terminator(terminator)
5256   {}
5257 
5258   virtual void work(uint worker_id) {
5259     // The reference processing task executed by a single worker.
5260     ResourceMark rm;
5261     HandleMark   hm;
5262 
5263     G1STWIsAliveClosure is_alive(_g1h);
5264 
5265     G1ParScanThreadState pss(_g1h, worker_id);
5266 
5267     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5268     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5269     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5270 
5271     pss.set_evac_closure(&scan_evac_cl);
5272     pss.set_evac_failure_closure(&evac_failure_cl);
5273     pss.set_partial_scan_closure(&partial_scan_cl);
5274 
5275     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5276     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5277 
5278     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5279     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5280 
5281     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5282     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5283 
5284     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5285       // We also need to mark copied objects.
5286       copy_non_heap_cl = &copy_mark_non_heap_cl;
5287       copy_metadata_cl = &copy_mark_metadata_cl;
5288     }
5289 
5290     // Keep alive closure.
5291     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5292 
5293     // Complete GC closure
5294     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5295 
5296     // Call the reference processing task's work routine.
5297     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5298 
5299     // Note we cannot assert that the refs array is empty here as not all
5300     // of the processing tasks (specifically phase2 - pp2_work) execute
5301     // the complete_gc closure (which ordinarily would drain the queue) so
5302     // the queue may not be empty.
5303   }
5304 };
5305 
5306 // Driver routine for parallel reference processing.
5307 // Creates an instance of the ref processing gang
5308 // task and has the worker threads execute it.
5309 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5310   assert(_workers != NULL, "Need parallel worker threads.");
5311 
5312   ParallelTaskTerminator terminator(_active_workers, _queues);
5313   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5314 
5315   _g1h->set_par_threads(_active_workers);
5316   _workers->run_task(&proc_task_proxy);
5317   _g1h->set_par_threads(0);
5318 }
5319 
5320 // Gang task for parallel reference enqueueing.
5321 
5322 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5323   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5324   EnqueueTask& _enq_task;
5325 
5326 public:
5327   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5328     AbstractGangTask("Enqueue reference objects in parallel"),
5329     _enq_task(enq_task)
5330   { }
5331 
5332   virtual void work(uint worker_id) {
5333     _enq_task.work(worker_id);
5334   }
5335 };
5336 
5337 // Driver routine for parallel reference enqueing.
5338 // Creates an instance of the ref enqueueing gang
5339 // task and has the worker threads execute it.
5340 
5341 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5342   assert(_workers != NULL, "Need parallel worker threads.");
5343 
5344   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5345 
5346   _g1h->set_par_threads(_active_workers);
5347   _workers->run_task(&enq_task_proxy);
5348   _g1h->set_par_threads(0);
5349 }
5350 
5351 // End of weak reference support closures
5352 
5353 // Abstract task used to preserve (i.e. copy) any referent objects
5354 // that are in the collection set and are pointed to by reference
5355 // objects discovered by the CM ref processor.
5356 
5357 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5358 protected:
5359   G1CollectedHeap* _g1h;
5360   RefToScanQueueSet      *_queues;
5361   ParallelTaskTerminator _terminator;
5362   uint _n_workers;
5363 
5364 public:
5365   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5366     AbstractGangTask("ParPreserveCMReferents"),
5367     _g1h(g1h),
5368     _queues(task_queues),
5369     _terminator(workers, _queues),
5370     _n_workers(workers)
5371   { }
5372 
5373   void work(uint worker_id) {
5374     ResourceMark rm;
5375     HandleMark   hm;
5376 
5377     G1ParScanThreadState            pss(_g1h, worker_id);
5378     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5379     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5380     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5381 
5382     pss.set_evac_closure(&scan_evac_cl);
5383     pss.set_evac_failure_closure(&evac_failure_cl);
5384     pss.set_partial_scan_closure(&partial_scan_cl);
5385 
5386     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5387 
5388 
5389     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5390     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5391 
5392     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5393     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5394 
5395     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5396     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5397 
5398     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5399       // We also need to mark copied objects.
5400       copy_non_heap_cl = &copy_mark_non_heap_cl;
5401       copy_metadata_cl = &copy_mark_metadata_cl;
5402     }
5403 
5404     // Is alive closure
5405     G1AlwaysAliveClosure always_alive(_g1h);
5406 
5407     // Copying keep alive closure. Applied to referent objects that need
5408     // to be copied.
5409     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5410 
5411     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5412 
5413     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5414     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5415 
5416     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5417     // So this must be true - but assert just in case someone decides to
5418     // change the worker ids.
5419     assert(0 <= worker_id && worker_id < limit, "sanity");
5420     assert(!rp->discovery_is_atomic(), "check this code");
5421 
5422     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5423     for (uint idx = worker_id; idx < limit; idx += stride) {
5424       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5425 
5426       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5427       while (iter.has_next()) {
5428         // Since discovery is not atomic for the CM ref processor, we
5429         // can see some null referent objects.
5430         iter.load_ptrs(DEBUG_ONLY(true));
5431         oop ref = iter.obj();
5432 
5433         // This will filter nulls.
5434         if (iter.is_referent_alive()) {
5435           iter.make_referent_alive();
5436         }
5437         iter.move_to_next();
5438       }
5439     }
5440 
5441     // Drain the queue - which may cause stealing
5442     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5443     drain_queue.do_void();
5444     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5445     assert(pss.refs()->is_empty(), "should be");
5446   }
5447 };
5448 
5449 // Weak Reference processing during an evacuation pause (part 1).
5450 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5451   double ref_proc_start = os::elapsedTime();
5452 
5453   ReferenceProcessor* rp = _ref_processor_stw;
5454   assert(rp->discovery_enabled(), "should have been enabled");
5455 
5456   // Any reference objects, in the collection set, that were 'discovered'
5457   // by the CM ref processor should have already been copied (either by
5458   // applying the external root copy closure to the discovered lists, or
5459   // by following an RSet entry).
5460   //
5461   // But some of the referents, that are in the collection set, that these
5462   // reference objects point to may not have been copied: the STW ref
5463   // processor would have seen that the reference object had already
5464   // been 'discovered' and would have skipped discovering the reference,
5465   // but would not have treated the reference object as a regular oop.
5466   // As a reult the copy closure would not have been applied to the
5467   // referent object.
5468   //
5469   // We need to explicitly copy these referent objects - the references
5470   // will be processed at the end of remarking.
5471   //
5472   // We also need to do this copying before we process the reference
5473   // objects discovered by the STW ref processor in case one of these
5474   // referents points to another object which is also referenced by an
5475   // object discovered by the STW ref processor.
5476 
5477   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5478            no_of_gc_workers == workers()->active_workers(),
5479            "Need to reset active GC workers");
5480 
5481   set_par_threads(no_of_gc_workers);
5482   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5483                                                  no_of_gc_workers,
5484                                                  _task_queues);
5485 
5486   if (G1CollectedHeap::use_parallel_gc_threads()) {
5487     workers()->run_task(&keep_cm_referents);
5488   } else {
5489     keep_cm_referents.work(0);
5490   }
5491 
5492   set_par_threads(0);
5493 
5494   // Closure to test whether a referent is alive.
5495   G1STWIsAliveClosure is_alive(this);
5496 
5497   // Even when parallel reference processing is enabled, the processing
5498   // of JNI refs is serial and performed serially by the current thread
5499   // rather than by a worker. The following PSS will be used for processing
5500   // JNI refs.
5501 
5502   // Use only a single queue for this PSS.
5503   G1ParScanThreadState pss(this, 0);
5504 
5505   // We do not embed a reference processor in the copying/scanning
5506   // closures while we're actually processing the discovered
5507   // reference objects.
5508   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5509   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5510   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5511 
5512   pss.set_evac_closure(&scan_evac_cl);
5513   pss.set_evac_failure_closure(&evac_failure_cl);
5514   pss.set_partial_scan_closure(&partial_scan_cl);
5515 
5516   assert(pss.refs()->is_empty(), "pre-condition");
5517 
5518   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5519   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5520 
5521   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5522   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5523 
5524   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5525   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5526 
5527   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5528     // We also need to mark copied objects.
5529     copy_non_heap_cl = &copy_mark_non_heap_cl;
5530     copy_metadata_cl = &copy_mark_metadata_cl;
5531   }
5532 
5533   // Keep alive closure.
5534   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5535 
5536   // Serial Complete GC closure
5537   G1STWDrainQueueClosure drain_queue(this, &pss);
5538 
5539   // Setup the soft refs policy...
5540   rp->setup_policy(false);
5541 
5542   if (!rp->processing_is_mt()) {
5543     // Serial reference processing...
5544     rp->process_discovered_references(&is_alive,
5545                                       &keep_alive,
5546                                       &drain_queue,
5547                                       NULL);
5548   } else {
5549     // Parallel reference processing
5550     assert(rp->num_q() == no_of_gc_workers, "sanity");
5551     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5552 
5553     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5554     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
5555   }
5556 
5557   // We have completed copying any necessary live referent objects
5558   // (that were not copied during the actual pause) so we can
5559   // retire any active alloc buffers
5560   pss.retire_alloc_buffers();
5561   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5562 
5563   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5564   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5565 }
5566 
5567 // Weak Reference processing during an evacuation pause (part 2).
5568 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5569   double ref_enq_start = os::elapsedTime();
5570 
5571   ReferenceProcessor* rp = _ref_processor_stw;
5572   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5573 
5574   // Now enqueue any remaining on the discovered lists on to
5575   // the pending list.
5576   if (!rp->processing_is_mt()) {
5577     // Serial reference processing...
5578     rp->enqueue_discovered_references();
5579   } else {
5580     // Parallel reference enqueuing
5581 
5582     assert(no_of_gc_workers == workers()->active_workers(),
5583            "Need to reset active workers");
5584     assert(rp->num_q() == no_of_gc_workers, "sanity");
5585     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5586 
5587     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5588     rp->enqueue_discovered_references(&par_task_executor);
5589   }
5590 
5591   rp->verify_no_references_recorded();
5592   assert(!rp->discovery_enabled(), "should have been disabled");
5593 
5594   // FIXME
5595   // CM's reference processing also cleans up the string and symbol tables.
5596   // Should we do that here also? We could, but it is a serial operation
5597   // and could signicantly increase the pause time.
5598 
5599   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5600   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5601 }
5602 
5603 void G1CollectedHeap::evacuate_collection_set() {
5604   _expand_heap_after_alloc_failure = true;
5605   set_evacuation_failed(false);
5606 
5607   // Should G1EvacuationFailureALot be in effect for this GC?
5608   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5609 
5610   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5611   concurrent_g1_refine()->set_use_cache(false);
5612   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5613 
5614   uint n_workers;
5615   if (G1CollectedHeap::use_parallel_gc_threads()) {
5616     n_workers =
5617       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5618                                      workers()->active_workers(),
5619                                      Threads::number_of_non_daemon_threads());
5620     assert(UseDynamicNumberOfGCThreads ||
5621            n_workers == workers()->total_workers(),
5622            "If not dynamic should be using all the  workers");
5623     workers()->set_active_workers(n_workers);
5624     set_par_threads(n_workers);
5625   } else {
5626     assert(n_par_threads() == 0,
5627            "Should be the original non-parallel value");
5628     n_workers = 1;
5629   }
5630 
5631   G1ParTask g1_par_task(this, _task_queues);
5632 
5633   init_for_evac_failure(NULL);
5634 
5635   rem_set()->prepare_for_younger_refs_iterate(true);
5636 
5637   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5638   double start_par_time_sec = os::elapsedTime();
5639   double end_par_time_sec;
5640 
5641   {
5642     StrongRootsScope srs(this);
5643 
5644     if (G1CollectedHeap::use_parallel_gc_threads()) {
5645       // The individual threads will set their evac-failure closures.
5646       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5647       // These tasks use ShareHeap::_process_strong_tasks
5648       assert(UseDynamicNumberOfGCThreads ||
5649              workers()->active_workers() == workers()->total_workers(),
5650              "If not dynamic should be using all the  workers");
5651       workers()->run_task(&g1_par_task);
5652     } else {
5653       g1_par_task.set_for_termination(n_workers);
5654       g1_par_task.work(0);
5655     }
5656     end_par_time_sec = os::elapsedTime();
5657 
5658     // Closing the inner scope will execute the destructor
5659     // for the StrongRootsScope object. We record the current
5660     // elapsed time before closing the scope so that time
5661     // taken for the SRS destructor is NOT included in the
5662     // reported parallel time.
5663   }
5664 
5665   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5666   g1_policy()->phase_times()->record_par_time(par_time_ms);
5667 
5668   double code_root_fixup_time_ms =
5669         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5670   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5671 
5672   set_par_threads(0);
5673 
5674   // Process any discovered reference objects - we have
5675   // to do this _before_ we retire the GC alloc regions
5676   // as we may have to copy some 'reachable' referent
5677   // objects (and their reachable sub-graphs) that were
5678   // not copied during the pause.
5679   process_discovered_references(n_workers);
5680 
5681   // Weak root processing.
5682   // Note: when JSR 292 is enabled and code blobs can contain
5683   // non-perm oops then we will need to process the code blobs
5684   // here too.
5685   {
5686     G1STWIsAliveClosure is_alive(this);
5687     G1KeepAliveClosure keep_alive(this);
5688     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5689   }
5690 
5691   release_gc_alloc_regions(n_workers);
5692   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5693 
5694   concurrent_g1_refine()->clear_hot_cache();
5695   concurrent_g1_refine()->set_use_cache(true);
5696 
5697   finalize_for_evac_failure();
5698 
5699   if (evacuation_failed()) {
5700     remove_self_forwarding_pointers();
5701 
5702     // Reset the G1EvacuationFailureALot counters and flags
5703     // Note: the values are reset only when an actual
5704     // evacuation failure occurs.
5705     NOT_PRODUCT(reset_evacuation_should_fail();)
5706   }
5707 
5708   // Enqueue any remaining references remaining on the STW
5709   // reference processor's discovered lists. We need to do
5710   // this after the card table is cleaned (and verified) as
5711   // the act of enqueuing entries on to the pending list
5712   // will log these updates (and dirty their associated
5713   // cards). We need these updates logged to update any
5714   // RSets.
5715   enqueue_discovered_references(n_workers);
5716 
5717   if (G1DeferredRSUpdate) {
5718     RedirtyLoggedCardTableEntryFastClosure redirty;
5719     dirty_card_queue_set().set_closure(&redirty);
5720     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5721 
5722     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5723     dcq.merge_bufferlists(&dirty_card_queue_set());
5724     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5725   }
5726   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5727 }
5728 
5729 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5730                                      size_t* pre_used,
5731                                      FreeRegionList* free_list,
5732                                      OldRegionSet* old_proxy_set,
5733                                      HumongousRegionSet* humongous_proxy_set,
5734                                      HRRSCleanupTask* hrrs_cleanup_task,
5735                                      bool par) {
5736   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5737     if (hr->isHumongous()) {
5738       assert(hr->startsHumongous(), "we should only see starts humongous");
5739       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5740     } else {
5741       _old_set.remove_with_proxy(hr, old_proxy_set);
5742       free_region(hr, pre_used, free_list, par);
5743     }
5744   } else {
5745     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5746   }
5747 }
5748 
5749 void G1CollectedHeap::free_region(HeapRegion* hr,
5750                                   size_t* pre_used,
5751                                   FreeRegionList* free_list,
5752                                   bool par) {
5753   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5754   assert(!hr->is_empty(), "the region should not be empty");
5755   assert(free_list != NULL, "pre-condition");
5756 
5757   if (G1VerifyPrevBitmap) {
5758     MemRegion mr(hr->bottom(), hr->end());
5759     concurrent_mark()->clearRangePrevBitmap(mr);
5760   }
5761   *pre_used += hr->used();
5762   hr->hr_clear(par, true /* clear_space */);
5763   free_list->add_as_head(hr);
5764 }
5765 
5766 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5767                                      size_t* pre_used,
5768                                      FreeRegionList* free_list,
5769                                      HumongousRegionSet* humongous_proxy_set,
5770                                      bool par) {
5771   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5772   assert(free_list != NULL, "pre-condition");
5773   assert(humongous_proxy_set != NULL, "pre-condition");
5774 
5775   size_t hr_used = hr->used();
5776   size_t hr_capacity = hr->capacity();
5777   size_t hr_pre_used = 0;
5778   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5779   // We need to read this before we make the region non-humongous,
5780   // otherwise the information will be gone.
5781   uint last_index = hr->last_hc_index();
5782   hr->set_notHumongous();
5783   free_region(hr, &hr_pre_used, free_list, par);
5784 
5785   uint i = hr->hrs_index() + 1;
5786   while (i < last_index) {
5787     HeapRegion* curr_hr = region_at(i);
5788     assert(curr_hr->continuesHumongous(), "invariant");
5789     curr_hr->set_notHumongous();
5790     free_region(curr_hr, &hr_pre_used, free_list, par);
5791     i += 1;
5792   }
5793   assert(hr_pre_used == hr_used,
5794          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5795                  "should be the same", hr_pre_used, hr_used));
5796   *pre_used += hr_pre_used;
5797 }
5798 
5799 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5800                                        FreeRegionList* free_list,
5801                                        OldRegionSet* old_proxy_set,
5802                                        HumongousRegionSet* humongous_proxy_set,
5803                                        bool par) {
5804   if (pre_used > 0) {
5805     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5806     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5807     assert(_summary_bytes_used >= pre_used,
5808            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5809                    "should be >= pre_used: "SIZE_FORMAT,
5810                    _summary_bytes_used, pre_used));
5811     _summary_bytes_used -= pre_used;
5812   }
5813   if (free_list != NULL && !free_list->is_empty()) {
5814     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5815     _free_list.add_as_head(free_list);
5816   }
5817   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5818     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5819     _old_set.update_from_proxy(old_proxy_set);
5820   }
5821   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5822     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5823     _humongous_set.update_from_proxy(humongous_proxy_set);
5824   }
5825 }
5826 
5827 class G1ParCleanupCTTask : public AbstractGangTask {
5828   CardTableModRefBS* _ct_bs;
5829   G1CollectedHeap* _g1h;
5830   HeapRegion* volatile _su_head;
5831 public:
5832   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5833                      G1CollectedHeap* g1h) :
5834     AbstractGangTask("G1 Par Cleanup CT Task"),
5835     _ct_bs(ct_bs), _g1h(g1h) { }
5836 
5837   void work(uint worker_id) {
5838     HeapRegion* r;
5839     while (r = _g1h->pop_dirty_cards_region()) {
5840       clear_cards(r);
5841     }
5842   }
5843 
5844   void clear_cards(HeapRegion* r) {
5845     // Cards of the survivors should have already been dirtied.
5846     if (!r->is_survivor()) {
5847       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5848     }
5849   }
5850 };
5851 
5852 #ifndef PRODUCT
5853 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5854   G1CollectedHeap* _g1h;
5855   CardTableModRefBS* _ct_bs;
5856 public:
5857   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5858     : _g1h(g1h), _ct_bs(ct_bs) { }
5859   virtual bool doHeapRegion(HeapRegion* r) {
5860     if (r->is_survivor()) {
5861       _g1h->verify_dirty_region(r);
5862     } else {
5863       _g1h->verify_not_dirty_region(r);
5864     }
5865     return false;
5866   }
5867 };
5868 
5869 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5870   // All of the region should be clean.
5871   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5872   MemRegion mr(hr->bottom(), hr->end());
5873   ct_bs->verify_not_dirty_region(mr);
5874 }
5875 
5876 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5877   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5878   // dirty allocated blocks as they allocate them. The thread that
5879   // retires each region and replaces it with a new one will do a
5880   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5881   // not dirty that area (one less thing to have to do while holding
5882   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5883   // is dirty.
5884   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5885   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5886   ct_bs->verify_dirty_region(mr);
5887 }
5888 
5889 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5890   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5891   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5892     verify_dirty_region(hr);
5893   }
5894 }
5895 
5896 void G1CollectedHeap::verify_dirty_young_regions() {
5897   verify_dirty_young_list(_young_list->first_region());
5898 }
5899 
5900 bool G1CollectedHeap::verify_bitmap(const char* bitmap_name, CMBitMapRO* bitmap,
5901                                     HeapWord* tams, HeapWord* end) {
5902   guarantee(tams <= end,
5903             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5904   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5905   guarantee(result <= end,
5906             err_msg("result: "PTR_FORMAT" end: "PTR_FORMAT, result, end));
5907   if (result < end) {
5908     gclog_or_tty->cr();
5909     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5910                            bitmap_name, result);
5911     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5912                            bitmap_name, tams, end);
5913     return false;
5914   }
5915   return true;
5916 }
5917 
5918 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5919   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5920   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5921 
5922   HeapWord* bottom = hr->bottom();
5923   HeapWord* ptams  = hr->prev_top_at_mark_start();
5924   HeapWord* ntams  = hr->next_top_at_mark_start();
5925   HeapWord* end    = hr->end();
5926 
5927   bool res_p = true;
5928   if (G1VerifyPrevBitmap) {
5929     res_p = verify_bitmap("prev", prev_bitmap, ptams, end);
5930   }
5931 
5932   bool res_n = true;
5933   if (mark_in_progress() || !_cmThread->in_progress()) {
5934     res_n = verify_bitmap("next", next_bitmap, ntams, end);
5935   }
5936   if (!res_p || !res_n) {
5937     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5938                            HR_FORMAT_PARAMS(hr));
5939     gclog_or_tty->print_cr("#### Caller: %s", caller);
5940     return false;
5941   }
5942   return true;
5943 }
5944 
5945 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5946   if (!G1VerifyBitmaps) return;
5947 
5948   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5949 }
5950 
5951 class G1VerifyBitmapClosure : public HeapRegionClosure {
5952 private:
5953   const char* _caller;
5954   G1CollectedHeap* _g1h;
5955   bool _failures;
5956 
5957 public:
5958   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5959     _caller(caller), _g1h(g1h), _failures(false) { }
5960 
5961   bool failures() { return _failures; }
5962 
5963   virtual bool doHeapRegion(HeapRegion* hr) {
5964     if (hr->continuesHumongous()) return false;
5965 
5966     bool result = _g1h->verify_bitmaps(_caller, hr);
5967     if (!result) {
5968       _failures = true;
5969     }
5970     return false;
5971   }
5972 };
5973 
5974 void G1CollectedHeap::check_bitmaps(const char* caller) {
5975   if (!G1VerifyBitmaps) return;
5976 
5977   G1VerifyBitmapClosure cl(caller, this);
5978   heap_region_iterate(&cl);
5979   guarantee(!cl.failures(), "bitmap verification");
5980 }
5981 #endif // PRODUCT
5982 
5983 void G1CollectedHeap::cleanUpCardTable() {
5984   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5985   double start = os::elapsedTime();
5986 
5987   {
5988     // Iterate over the dirty cards region list.
5989     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5990 
5991     if (G1CollectedHeap::use_parallel_gc_threads()) {
5992       set_par_threads();
5993       workers()->run_task(&cleanup_task);
5994       set_par_threads(0);
5995     } else {
5996       while (_dirty_cards_region_list) {
5997         HeapRegion* r = _dirty_cards_region_list;
5998         cleanup_task.clear_cards(r);
5999         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6000         if (_dirty_cards_region_list == r) {
6001           // The last region.
6002           _dirty_cards_region_list = NULL;
6003         }
6004         r->set_next_dirty_cards_region(NULL);
6005       }
6006     }
6007 #ifndef PRODUCT
6008     if (G1VerifyCTCleanup || VerifyAfterGC) {
6009       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6010       heap_region_iterate(&cleanup_verifier);
6011     }
6012 #endif
6013   }
6014 
6015   double elapsed = os::elapsedTime() - start;
6016   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6017 }
6018 
6019 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
6020   size_t pre_used = 0;
6021   FreeRegionList local_free_list("Local List for CSet Freeing");
6022 
6023   double young_time_ms     = 0.0;
6024   double non_young_time_ms = 0.0;
6025 
6026   // Since the collection set is a superset of the the young list,
6027   // all we need to do to clear the young list is clear its
6028   // head and length, and unlink any young regions in the code below
6029   _young_list->clear();
6030 
6031   G1CollectorPolicy* policy = g1_policy();
6032 
6033   double start_sec = os::elapsedTime();
6034   bool non_young = true;
6035 
6036   HeapRegion* cur = cs_head;
6037   int age_bound = -1;
6038   size_t rs_lengths = 0;
6039 
6040   while (cur != NULL) {
6041     assert(!is_on_master_free_list(cur), "sanity");
6042     if (non_young) {
6043       if (cur->is_young()) {
6044         double end_sec = os::elapsedTime();
6045         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6046         non_young_time_ms += elapsed_ms;
6047 
6048         start_sec = os::elapsedTime();
6049         non_young = false;
6050       }
6051     } else {
6052       if (!cur->is_young()) {
6053         double end_sec = os::elapsedTime();
6054         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6055         young_time_ms += elapsed_ms;
6056 
6057         start_sec = os::elapsedTime();
6058         non_young = true;
6059       }
6060     }
6061 
6062     rs_lengths += cur->rem_set()->occupied();
6063 
6064     HeapRegion* next = cur->next_in_collection_set();
6065     assert(cur->in_collection_set(), "bad CS");
6066     cur->set_next_in_collection_set(NULL);
6067     cur->set_in_collection_set(false);
6068 
6069     if (cur->is_young()) {
6070       int index = cur->young_index_in_cset();
6071       assert(index != -1, "invariant");
6072       assert((uint) index < policy->young_cset_region_length(), "invariant");
6073       size_t words_survived = _surviving_young_words[index];
6074       cur->record_surv_words_in_group(words_survived);
6075 
6076       // At this point the we have 'popped' cur from the collection set
6077       // (linked via next_in_collection_set()) but it is still in the
6078       // young list (linked via next_young_region()). Clear the
6079       // _next_young_region field.
6080       cur->set_next_young_region(NULL);
6081     } else {
6082       int index = cur->young_index_in_cset();
6083       assert(index == -1, "invariant");
6084     }
6085 
6086     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6087             (!cur->is_young() && cur->young_index_in_cset() == -1),
6088             "invariant" );
6089 
6090     if (!cur->evacuation_failed()) {
6091       MemRegion used_mr = cur->used_region();
6092 
6093       // And the region is empty.
6094       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6095       free_region(cur, &pre_used, &local_free_list, false /* par */);
6096     } else {
6097       cur->uninstall_surv_rate_group();
6098       if (cur->is_young()) {
6099         cur->set_young_index_in_cset(-1);
6100       }
6101       cur->set_not_young();
6102       cur->set_evacuation_failed(false);
6103       // The region is now considered to be old.
6104       _old_set.add(cur);
6105     }
6106     cur = next;
6107   }
6108 
6109   policy->record_max_rs_lengths(rs_lengths);
6110   policy->cset_regions_freed();
6111 
6112   double end_sec = os::elapsedTime();
6113   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6114 
6115   if (non_young) {
6116     non_young_time_ms += elapsed_ms;
6117   } else {
6118     young_time_ms += elapsed_ms;
6119   }
6120 
6121   update_sets_after_freeing_regions(pre_used, &local_free_list,
6122                                     NULL /* old_proxy_set */,
6123                                     NULL /* humongous_proxy_set */,
6124                                     false /* par */);
6125   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6126   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6127 }
6128 
6129 // This routine is similar to the above but does not record
6130 // any policy statistics or update free lists; we are abandoning
6131 // the current incremental collection set in preparation of a
6132 // full collection. After the full GC we will start to build up
6133 // the incremental collection set again.
6134 // This is only called when we're doing a full collection
6135 // and is immediately followed by the tearing down of the young list.
6136 
6137 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6138   HeapRegion* cur = cs_head;
6139 
6140   while (cur != NULL) {
6141     HeapRegion* next = cur->next_in_collection_set();
6142     assert(cur->in_collection_set(), "bad CS");
6143     cur->set_next_in_collection_set(NULL);
6144     cur->set_in_collection_set(false);
6145     cur->set_young_index_in_cset(-1);
6146     cur = next;
6147   }
6148 }
6149 
6150 void G1CollectedHeap::set_free_regions_coming() {
6151   if (G1ConcRegionFreeingVerbose) {
6152     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6153                            "setting free regions coming");
6154   }
6155 
6156   assert(!free_regions_coming(), "pre-condition");
6157   _free_regions_coming = true;
6158 }
6159 
6160 void G1CollectedHeap::reset_free_regions_coming() {
6161   assert(free_regions_coming(), "pre-condition");
6162 
6163   {
6164     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6165     _free_regions_coming = false;
6166     SecondaryFreeList_lock->notify_all();
6167   }
6168 
6169   if (G1ConcRegionFreeingVerbose) {
6170     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6171                            "reset free regions coming");
6172   }
6173 }
6174 
6175 void G1CollectedHeap::wait_while_free_regions_coming() {
6176   // Most of the time we won't have to wait, so let's do a quick test
6177   // first before we take the lock.
6178   if (!free_regions_coming()) {
6179     return;
6180   }
6181 
6182   if (G1ConcRegionFreeingVerbose) {
6183     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6184                            "waiting for free regions");
6185   }
6186 
6187   {
6188     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6189     while (free_regions_coming()) {
6190       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6191     }
6192   }
6193 
6194   if (G1ConcRegionFreeingVerbose) {
6195     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6196                            "done waiting for free regions");
6197   }
6198 }
6199 
6200 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6201   assert(heap_lock_held_for_gc(),
6202               "the heap lock should already be held by or for this thread");
6203   _young_list->push_region(hr);
6204 }
6205 
6206 class NoYoungRegionsClosure: public HeapRegionClosure {
6207 private:
6208   bool _success;
6209 public:
6210   NoYoungRegionsClosure() : _success(true) { }
6211   bool doHeapRegion(HeapRegion* r) {
6212     if (r->is_young()) {
6213       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6214                              r->bottom(), r->end());
6215       _success = false;
6216     }
6217     return false;
6218   }
6219   bool success() { return _success; }
6220 };
6221 
6222 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6223   bool ret = _young_list->check_list_empty(check_sample);
6224 
6225   if (check_heap) {
6226     NoYoungRegionsClosure closure;
6227     heap_region_iterate(&closure);
6228     ret = ret && closure.success();
6229   }
6230 
6231   return ret;
6232 }
6233 
6234 class TearDownRegionSetsClosure : public HeapRegionClosure {
6235 private:
6236   OldRegionSet *_old_set;
6237 
6238 public:
6239   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6240 
6241   bool doHeapRegion(HeapRegion* r) {
6242     if (r->is_empty()) {
6243       // We ignore empty regions, we'll empty the free list afterwards
6244     } else if (r->is_young()) {
6245       // We ignore young regions, we'll empty the young list afterwards
6246     } else if (r->isHumongous()) {
6247       // We ignore humongous regions, we're not tearing down the
6248       // humongous region set
6249     } else {
6250       // The rest should be old
6251       _old_set->remove(r);
6252     }
6253     return false;
6254   }
6255 
6256   ~TearDownRegionSetsClosure() {
6257     assert(_old_set->is_empty(), "post-condition");
6258   }
6259 };
6260 
6261 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6262   assert_at_safepoint(true /* should_be_vm_thread */);
6263 
6264   if (!free_list_only) {
6265     TearDownRegionSetsClosure cl(&_old_set);
6266     heap_region_iterate(&cl);
6267 
6268     // Need to do this after the heap iteration to be able to
6269     // recognize the young regions and ignore them during the iteration.
6270     _young_list->empty_list();
6271   }
6272   _free_list.remove_all();
6273 }
6274 
6275 class RebuildRegionSetsClosure : public HeapRegionClosure {
6276 private:
6277   bool            _free_list_only;
6278   OldRegionSet*   _old_set;
6279   FreeRegionList* _free_list;
6280   size_t          _total_used;
6281 
6282 public:
6283   RebuildRegionSetsClosure(bool free_list_only,
6284                            OldRegionSet* old_set, FreeRegionList* free_list) :
6285     _free_list_only(free_list_only),
6286     _old_set(old_set), _free_list(free_list), _total_used(0) {
6287     assert(_free_list->is_empty(), "pre-condition");
6288     if (!free_list_only) {
6289       assert(_old_set->is_empty(), "pre-condition");
6290     }
6291   }
6292 
6293   bool doHeapRegion(HeapRegion* r) {
6294     if (r->continuesHumongous()) {
6295       return false;
6296     }
6297 
6298     if (r->is_empty()) {
6299       // Add free regions to the free list
6300       _free_list->add_as_tail(r);
6301     } else if (!_free_list_only) {
6302       assert(!r->is_young(), "we should not come across young regions");
6303 
6304       if (r->isHumongous()) {
6305         // We ignore humongous regions, we left the humongous set unchanged
6306       } else {
6307         // The rest should be old, add them to the old set
6308         _old_set->add(r);
6309       }
6310       _total_used += r->used();
6311     }
6312 
6313     return false;
6314   }
6315 
6316   size_t total_used() {
6317     return _total_used;
6318   }
6319 };
6320 
6321 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6322   assert_at_safepoint(true /* should_be_vm_thread */);
6323 
6324   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6325   heap_region_iterate(&cl);
6326 
6327   if (!free_list_only) {
6328     _summary_bytes_used = cl.total_used();
6329   }
6330   assert(_summary_bytes_used == recalculate_used(),
6331          err_msg("inconsistent _summary_bytes_used, "
6332                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6333                  _summary_bytes_used, recalculate_used()));
6334 }
6335 
6336 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6337   _refine_cte_cl->set_concurrent(concurrent);
6338 }
6339 
6340 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6341   HeapRegion* hr = heap_region_containing(p);
6342   if (hr == NULL) {
6343     return false;
6344   } else {
6345     return hr->is_in(p);
6346   }
6347 }
6348 
6349 // Methods for the mutator alloc region
6350 
6351 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6352                                                       bool force) {
6353   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6354   assert(!force || g1_policy()->can_expand_young_list(),
6355          "if force is true we should be able to expand the young list");
6356   bool young_list_full = g1_policy()->is_young_list_full();
6357   if (force || !young_list_full) {
6358     HeapRegion* new_alloc_region = new_region(word_size,
6359                                               false /* do_expand */);
6360     if (new_alloc_region != NULL) {
6361       set_region_short_lived_locked(new_alloc_region);
6362       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6363       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6364       return new_alloc_region;
6365     }
6366   }
6367   return NULL;
6368 }
6369 
6370 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6371                                                   size_t allocated_bytes) {
6372   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6373   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6374 
6375   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6376   _summary_bytes_used += allocated_bytes;
6377   _hr_printer.retire(alloc_region);
6378   // We update the eden sizes here, when the region is retired,
6379   // instead of when it's allocated, since this is the point that its
6380   // used space has been recored in _summary_bytes_used.
6381   g1mm()->update_eden_size();
6382 }
6383 
6384 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6385                                                     bool force) {
6386   return _g1h->new_mutator_alloc_region(word_size, force);
6387 }
6388 
6389 void G1CollectedHeap::set_par_threads() {
6390   // Don't change the number of workers.  Use the value previously set
6391   // in the workgroup.
6392   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6393   uint n_workers = workers()->active_workers();
6394   assert(UseDynamicNumberOfGCThreads ||
6395            n_workers == workers()->total_workers(),
6396       "Otherwise should be using the total number of workers");
6397   if (n_workers == 0) {
6398     assert(false, "Should have been set in prior evacuation pause.");
6399     n_workers = ParallelGCThreads;
6400     workers()->set_active_workers(n_workers);
6401   }
6402   set_par_threads(n_workers);
6403 }
6404 
6405 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6406                                        size_t allocated_bytes) {
6407   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6408 }
6409 
6410 // Methods for the GC alloc regions
6411 
6412 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6413                                                  uint count,
6414                                                  GCAllocPurpose ap) {
6415   assert(FreeList_lock->owned_by_self(), "pre-condition");
6416 
6417   if (count < g1_policy()->max_regions(ap)) {
6418     HeapRegion* new_alloc_region = new_region(word_size,
6419                                               true /* do_expand */);
6420     if (new_alloc_region != NULL) {
6421       // We really only need to do this for old regions given that we
6422       // should never scan survivors. But it doesn't hurt to do it
6423       // for survivors too.
6424       new_alloc_region->set_saved_mark();
6425       if (ap == GCAllocForSurvived) {
6426         new_alloc_region->set_survivor();
6427         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6428         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6429       } else {
6430         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6431         check_bitmaps("Old Region Allocation", new_alloc_region);
6432       }
6433       bool during_im = g1_policy()->during_initial_mark_pause();
6434       new_alloc_region->note_start_of_copying(during_im);
6435       return new_alloc_region;
6436     } else {
6437       g1_policy()->note_alloc_region_limit_reached(ap);
6438     }
6439   }
6440   return NULL;
6441 }
6442 
6443 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6444                                              size_t allocated_bytes,
6445                                              GCAllocPurpose ap) {
6446   bool during_im = g1_policy()->during_initial_mark_pause();
6447   alloc_region->note_end_of_copying(during_im);
6448   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6449   if (ap == GCAllocForSurvived) {
6450     young_list()->add_survivor_region(alloc_region);
6451   } else {
6452     _old_set.add(alloc_region);
6453   }
6454   _hr_printer.retire(alloc_region);
6455 }
6456 
6457 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6458                                                        bool force) {
6459   assert(!force, "not supported for GC alloc regions");
6460   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6461 }
6462 
6463 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6464                                           size_t allocated_bytes) {
6465   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6466                                GCAllocForSurvived);
6467 }
6468 
6469 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6470                                                   bool force) {
6471   assert(!force, "not supported for GC alloc regions");
6472   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6473 }
6474 
6475 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6476                                      size_t allocated_bytes) {
6477   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6478                                GCAllocForTenured);
6479 }
6480 // Heap region set verification
6481 
6482 class VerifyRegionListsClosure : public HeapRegionClosure {
6483 private:
6484   FreeRegionList*     _free_list;
6485   OldRegionSet*       _old_set;
6486   HumongousRegionSet* _humongous_set;
6487   uint                _region_count;
6488 
6489 public:
6490   VerifyRegionListsClosure(OldRegionSet* old_set,
6491                            HumongousRegionSet* humongous_set,
6492                            FreeRegionList* free_list) :
6493     _old_set(old_set), _humongous_set(humongous_set),
6494     _free_list(free_list), _region_count(0) { }
6495 
6496   uint region_count() { return _region_count; }
6497 
6498   bool doHeapRegion(HeapRegion* hr) {
6499     _region_count += 1;
6500 
6501     if (hr->continuesHumongous()) {
6502       return false;
6503     }
6504 
6505     if (hr->is_young()) {
6506       // TODO
6507     } else if (hr->startsHumongous()) {
6508       _humongous_set->verify_next_region(hr);
6509     } else if (hr->is_empty()) {
6510       _free_list->verify_next_region(hr);
6511     } else {
6512       _old_set->verify_next_region(hr);
6513     }
6514     return false;
6515   }
6516 };
6517 
6518 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6519                                              HeapWord* bottom) {
6520   HeapWord* end = bottom + HeapRegion::GrainWords;
6521   MemRegion mr(bottom, end);
6522   assert(_g1_reserved.contains(mr), "invariant");
6523   // This might return NULL if the allocation fails
6524   return new HeapRegion(hrs_index, _bot_shared, mr);
6525 }
6526 
6527 void G1CollectedHeap::verify_region_sets() {
6528   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6529 
6530   // First, check the explicit lists.
6531   _free_list.verify();
6532   {
6533     // Given that a concurrent operation might be adding regions to
6534     // the secondary free list we have to take the lock before
6535     // verifying it.
6536     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6537     _secondary_free_list.verify();
6538   }
6539   _old_set.verify();
6540   _humongous_set.verify();
6541 
6542   // If a concurrent region freeing operation is in progress it will
6543   // be difficult to correctly attributed any free regions we come
6544   // across to the correct free list given that they might belong to
6545   // one of several (free_list, secondary_free_list, any local lists,
6546   // etc.). So, if that's the case we will skip the rest of the
6547   // verification operation. Alternatively, waiting for the concurrent
6548   // operation to complete will have a non-trivial effect on the GC's
6549   // operation (no concurrent operation will last longer than the
6550   // interval between two calls to verification) and it might hide
6551   // any issues that we would like to catch during testing.
6552   if (free_regions_coming()) {
6553     return;
6554   }
6555 
6556   // Make sure we append the secondary_free_list on the free_list so
6557   // that all free regions we will come across can be safely
6558   // attributed to the free_list.
6559   append_secondary_free_list_if_not_empty_with_lock();
6560 
6561   // Finally, make sure that the region accounting in the lists is
6562   // consistent with what we see in the heap.
6563   _old_set.verify_start();
6564   _humongous_set.verify_start();
6565   _free_list.verify_start();
6566 
6567   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6568   heap_region_iterate(&cl);
6569 
6570   _old_set.verify_end();
6571   _humongous_set.verify_end();
6572   _free_list.verify_end();
6573 }