1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  33 #include "memory/genOopClosures.inline.hpp"
  34 #include "memory/iterator.hpp"
  35 #include "oops/oop.inline.hpp"
  36 
  37 int    HeapRegion::LogOfHRGrainBytes = 0;
  38 int    HeapRegion::LogOfHRGrainWords = 0;
  39 size_t HeapRegion::GrainBytes        = 0;
  40 size_t HeapRegion::GrainWords        = 0;
  41 size_t HeapRegion::CardsPerRegion    = 0;
  42 
  43 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  44                                  HeapRegion* hr, ExtendedOopClosure* cl,
  45                                  CardTableModRefBS::PrecisionStyle precision,
  46                                  FilterKind fk) :
  47   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
  48   _hr(hr), _fk(fk), _g1(g1) { }
  49 
  50 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  51                                                    OopClosure* oc) :
  52   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  53 
  54 template<class ClosureType>
  55 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
  56                                HeapRegion* hr,
  57                                HeapWord* cur, HeapWord* top) {
  58   oop cur_oop = oop(cur);
  59   int oop_size = cur_oop->size();
  60   HeapWord* next_obj = cur + oop_size;
  61   while (next_obj < top) {
  62     // Keep filtering the remembered set.
  63     if (!g1h->is_obj_dead(cur_oop, hr)) {
  64       // Bottom lies entirely below top, so we can call the
  65       // non-memRegion version of oop_iterate below.
  66       cur_oop->oop_iterate(cl);
  67     }
  68     cur = next_obj;
  69     cur_oop = oop(cur);
  70     oop_size = cur_oop->size();
  71     next_obj = cur + oop_size;
  72   }
  73   return cur;
  74 }
  75 
  76 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
  77                                               HeapWord* bottom,
  78                                               HeapWord* top,
  79                                               ExtendedOopClosure* cl) {
  80   G1CollectedHeap* g1h = _g1;
  81   int oop_size;
  82   ExtendedOopClosure* cl2 = NULL;
  83 
  84   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
  85   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
  86 
  87   switch (_fk) {
  88   case NoFilterKind:          cl2 = cl; break;
  89   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  90   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
  91   default:                    ShouldNotReachHere();
  92   }
  93 
  94   // Start filtering what we add to the remembered set. If the object is
  95   // not considered dead, either because it is marked (in the mark bitmap)
  96   // or it was allocated after marking finished, then we add it. Otherwise
  97   // we can safely ignore the object.
  98   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
  99     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 100   } else {
 101     oop_size = oop(bottom)->size();
 102   }
 103 
 104   bottom += oop_size;
 105 
 106   if (bottom < top) {
 107     // We replicate the loop below for several kinds of possible filters.
 108     switch (_fk) {
 109     case NoFilterKind:
 110       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
 111       break;
 112 
 113     case IntoCSFilterKind: {
 114       FilterIntoCSClosure filt(this, g1h, cl);
 115       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 116       break;
 117     }
 118 
 119     case OutOfRegionFilterKind: {
 120       FilterOutOfRegionClosure filt(_hr, cl);
 121       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 122       break;
 123     }
 124 
 125     default:
 126       ShouldNotReachHere();
 127     }
 128 
 129     // Last object. Need to do dead-obj filtering here too.
 130     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 131       oop(bottom)->oop_iterate(cl2, mr);
 132     }
 133   }
 134 }
 135 
 136 // Minimum region size; we won't go lower than that.
 137 // We might want to decrease this in the future, to deal with small
 138 // heaps a bit more efficiently.
 139 #define MIN_REGION_SIZE  (      1024 * 1024 )
 140 
 141 // Maximum region size; we don't go higher than that. There's a good
 142 // reason for having an upper bound. We don't want regions to get too
 143 // large, otherwise cleanup's effectiveness would decrease as there
 144 // will be fewer opportunities to find totally empty regions after
 145 // marking.
 146 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
 147 
 148 // The automatic region size calculation will try to have around this
 149 // many regions in the heap (based on the min heap size).
 150 #define TARGET_REGION_NUMBER          2048
 151 
 152 void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
 153   // region_size in bytes
 154   uintx region_size = G1HeapRegionSize;
 155   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 156     // We base the automatic calculation on the min heap size. This
 157     // can be problematic if the spread between min and max is quite
 158     // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
 159     // the max size, the region size might be way too large for the
 160     // min size. Either way, some users might have to set the region
 161     // size manually for some -Xms / -Xmx combos.
 162 
 163     region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
 164                        (uintx) MIN_REGION_SIZE);
 165   }
 166 
 167   int region_size_log = log2_long((jlong) region_size);
 168   // Recalculate the region size to make sure it's a power of
 169   // 2. This means that region_size is the largest power of 2 that's
 170   // <= what we've calculated so far.
 171   region_size = ((uintx)1 << region_size_log);
 172 
 173   // Now make sure that we don't go over or under our limits.
 174   if (region_size < MIN_REGION_SIZE) {
 175     region_size = MIN_REGION_SIZE;
 176   } else if (region_size > MAX_REGION_SIZE) {
 177     region_size = MAX_REGION_SIZE;
 178   }
 179 
 180   // And recalculate the log.
 181   region_size_log = log2_long((jlong) region_size);
 182 
 183   // Now, set up the globals.
 184   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 185   LogOfHRGrainBytes = region_size_log;
 186 
 187   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 188   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 189 
 190   guarantee(GrainBytes == 0, "we should only set it once");
 191   // The cast to int is safe, given that we've bounded region_size by
 192   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 193   GrainBytes = (size_t)region_size;
 194 
 195   guarantee(GrainWords == 0, "we should only set it once");
 196   GrainWords = GrainBytes >> LogHeapWordSize;
 197   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 198 
 199   guarantee(CardsPerRegion == 0, "we should only set it once");
 200   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 201 }
 202 
 203 void HeapRegion::reset_after_compaction() {
 204   G1OffsetTableContigSpace::reset_after_compaction();
 205   // After a compaction the mark bitmap is invalid, so we must
 206   // treat all objects as being inside the unmarked area.
 207   zero_marked_bytes();
 208   init_top_at_mark_start();
 209 }
 210 
 211 void HeapRegion::hr_clear(bool par, bool clear_space) {
 212   assert(_humongous_type == NotHumongous,
 213          "we should have already filtered out humongous regions");
 214   assert(_humongous_start_region == NULL,
 215          "we should have already filtered out humongous regions");
 216   assert(_end == _orig_end,
 217          "we should have already filtered out humongous regions");
 218 
 219   _in_collection_set = false;
 220 
 221   set_young_index_in_cset(-1);
 222   uninstall_surv_rate_group();
 223   set_young_type(NotYoung);
 224   reset_pre_dummy_top();
 225 
 226   if (!par) {
 227     // If this is parallel, this will be done later.
 228     HeapRegionRemSet* hrrs = rem_set();
 229     hrrs->clear();
 230     _claimed = InitialClaimValue;
 231   }
 232   zero_marked_bytes();
 233 
 234   _offsets.resize(HeapRegion::GrainWords);
 235   init_top_at_mark_start();
 236   if (clear_space) clear(SpaceDecorator::Mangle);
 237 }
 238 
 239 void HeapRegion::par_clear() {
 240   assert(used() == 0, "the region should have been already cleared");
 241   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 242   HeapRegionRemSet* hrrs = rem_set();
 243   hrrs->clear();
 244   CardTableModRefBS* ct_bs =
 245                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 246   ct_bs->clear(MemRegion(bottom(), end()));
 247 }
 248 
 249 void HeapRegion::calc_gc_efficiency() {
 250   // GC efficiency is the ratio of how much space would be
 251   // reclaimed over how long we predict it would take to reclaim it.
 252   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 253   G1CollectorPolicy* g1p = g1h->g1_policy();
 254 
 255   // Retrieve a prediction of the elapsed time for this region for
 256   // a mixed gc because the region will only be evacuated during a
 257   // mixed gc.
 258   double region_elapsed_time_ms =
 259     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 260   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 261 }
 262 
 263 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 264   assert(!isHumongous(), "sanity / pre-condition");
 265   assert(end() == _orig_end,
 266          "Should be normal before the humongous object allocation");
 267   assert(top() == bottom(), "should be empty");
 268   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 269 
 270   _humongous_type = StartsHumongous;
 271   _humongous_start_region = this;
 272 
 273   set_end(new_end);
 274   _offsets.set_for_starts_humongous(new_top);
 275 }
 276 
 277 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 278   assert(!isHumongous(), "sanity / pre-condition");
 279   assert(end() == _orig_end,
 280          "Should be normal before the humongous object allocation");
 281   assert(top() == bottom(), "should be empty");
 282   assert(first_hr->startsHumongous(), "pre-condition");
 283 
 284   _humongous_type = ContinuesHumongous;
 285   _humongous_start_region = first_hr;
 286 }
 287 
 288 void HeapRegion::set_notHumongous() {
 289   assert(isHumongous(), "pre-condition");
 290 
 291   if (startsHumongous()) {
 292     assert(top() <= end(), "pre-condition");
 293     set_end(_orig_end);
 294     if (top() > end()) {
 295       // at least one "continues humongous" region after it
 296       set_top(end());
 297     }
 298   } else {
 299     // continues humongous
 300     assert(end() == _orig_end, "sanity");
 301   }
 302 
 303   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 304   _humongous_type = NotHumongous;
 305   _humongous_start_region = NULL;
 306 }
 307 
 308 bool HeapRegion::claimHeapRegion(jint claimValue) {
 309   jint current = _claimed;
 310   if (current != claimValue) {
 311     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 312     if (res == current) {
 313       return true;
 314     }
 315   }
 316   return false;
 317 }
 318 
 319 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 320   HeapWord* low = addr;
 321   HeapWord* high = end();
 322   while (low < high) {
 323     size_t diff = pointer_delta(high, low);
 324     // Must add one below to bias toward the high amount.  Otherwise, if
 325   // "high" were at the desired value, and "low" were one less, we
 326     // would not converge on "high".  This is not symmetric, because
 327     // we set "high" to a block start, which might be the right one,
 328     // which we don't do for "low".
 329     HeapWord* middle = low + (diff+1)/2;
 330     if (middle == high) return high;
 331     HeapWord* mid_bs = block_start_careful(middle);
 332     if (mid_bs < addr) {
 333       low = middle;
 334     } else {
 335       high = mid_bs;
 336     }
 337   }
 338   assert(low == high && low >= addr, "Didn't work.");
 339   return low;
 340 }
 341 
 342 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 343 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 344 #endif // _MSC_VER
 345 
 346 
 347 HeapRegion::HeapRegion(uint hrs_index,
 348                        G1BlockOffsetSharedArray* sharedOffsetArray,
 349                        MemRegion mr) :
 350     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 351     _hrs_index(hrs_index),
 352     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 353     _in_collection_set(false),
 354     _next_in_special_set(NULL), _orig_end(NULL),
 355     _claimed(InitialClaimValue), _evacuation_failed(false),
 356     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 357     _young_type(NotYoung), _next_young_region(NULL),
 358     _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
 359 #ifdef ASSERT
 360     _containing_set(NULL),
 361 #endif // ASSERT
 362      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 363     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 364     _predicted_bytes_to_copy(0)
 365 {
 366   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 367   _orig_end = mr.end();
 368   // Note that initialize() will set the start of the unmarked area of the
 369   // region.
 370   hr_clear(false /*par*/, false /*clear_space*/);
 371   set_top(bottom());
 372   set_saved_mark();
 373 
 374   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 375 }
 376 
 377 CompactibleSpace* HeapRegion::next_compaction_space() const {
 378   // We're not using an iterator given that it will wrap around when
 379   // it reaches the last region and this is not what we want here.
 380   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 381   uint index = hrs_index() + 1;
 382   while (index < g1h->n_regions()) {
 383     HeapRegion* hr = g1h->region_at(index);
 384     if (!hr->isHumongous()) {
 385       return hr;
 386     }
 387     index += 1;
 388   }
 389   return NULL;
 390 }
 391 
 392 void HeapRegion::save_marks() {
 393   set_saved_mark();
 394 }
 395 
 396 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) {
 397   HeapWord* p = mr.start();
 398   HeapWord* e = mr.end();
 399   oop obj;
 400   while (p < e) {
 401     obj = oop(p);
 402     p += obj->oop_iterate(cl);
 403   }
 404   assert(p == e, "bad memregion: doesn't end on obj boundary");
 405 }
 406 
 407 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 408 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
 409   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
 410 }
 411 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
 412 
 413 
 414 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) {
 415   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
 416 }
 417 
 418 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 419                                                     bool during_conc_mark) {
 420   // We always recreate the prev marking info and we'll explicitly
 421   // mark all objects we find to be self-forwarded on the prev
 422   // bitmap. So all objects need to be below PTAMS.
 423   _prev_top_at_mark_start = top();
 424   _prev_marked_bytes = 0;
 425 
 426   if (during_initial_mark) {
 427     // During initial-mark, we'll also explicitly mark all objects
 428     // we find to be self-forwarded on the next bitmap. So all
 429     // objects need to be below NTAMS.
 430     _next_top_at_mark_start = top();
 431     _next_marked_bytes = 0;
 432   } else if (during_conc_mark) {
 433     // During concurrent mark, all objects in the CSet (including
 434     // the ones we find to be self-forwarded) are implicitly live.
 435     // So all objects need to be above NTAMS.
 436     _next_top_at_mark_start = bottom();
 437     _next_marked_bytes = 0;
 438   }
 439 }
 440 
 441 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 442                                                   bool during_conc_mark,
 443                                                   size_t marked_bytes) {
 444   assert(0 <= marked_bytes && marked_bytes <= used(),
 445          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 446                  marked_bytes, used()));
 447   _prev_marked_bytes = marked_bytes;
 448 }
 449 
 450 HeapWord*
 451 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 452                                                  ObjectClosure* cl) {
 453   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 454   // We used to use "block_start_careful" here.  But we're actually happy
 455   // to update the BOT while we do this...
 456   HeapWord* cur = block_start(mr.start());
 457   mr = mr.intersection(used_region());
 458   if (mr.is_empty()) return NULL;
 459   // Otherwise, find the obj that extends onto mr.start().
 460 
 461   assert(cur <= mr.start()
 462          && (oop(cur)->klass_or_null() == NULL ||
 463              cur + oop(cur)->size() > mr.start()),
 464          "postcondition of block_start");
 465   oop obj;
 466   while (cur < mr.end()) {
 467     obj = oop(cur);
 468     if (obj->klass_or_null() == NULL) {
 469       // Ran into an unparseable point.
 470       return cur;
 471     } else if (!g1h->is_obj_dead(obj)) {
 472       cl->do_object(obj);
 473     }
 474     if (cl->abort()) return cur;
 475     // The check above must occur before the operation below, since an
 476     // abort might invalidate the "size" operation.
 477     cur += obj->size();
 478   }
 479   return NULL;
 480 }
 481 
 482 HeapWord*
 483 HeapRegion::
 484 oops_on_card_seq_iterate_careful(MemRegion mr,
 485                                  FilterOutOfRegionClosure* cl,
 486                                  bool filter_young,
 487                                  jbyte* card_ptr) {
 488   // Currently, we should only have to clean the card if filter_young
 489   // is true and vice versa.
 490   if (filter_young) {
 491     assert(card_ptr != NULL, "pre-condition");
 492   } else {
 493     assert(card_ptr == NULL, "pre-condition");
 494   }
 495   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 496 
 497   // If we're within a stop-world GC, then we might look at a card in a
 498   // GC alloc region that extends onto a GC LAB, which may not be
 499   // parseable.  Stop such at the "saved_mark" of the region.
 500   if (g1h->is_gc_active()) {
 501     mr = mr.intersection(used_region_at_save_marks());
 502   } else {
 503     mr = mr.intersection(used_region());
 504   }
 505   if (mr.is_empty()) return NULL;
 506   // Otherwise, find the obj that extends onto mr.start().
 507 
 508   // The intersection of the incoming mr (for the card) and the
 509   // allocated part of the region is non-empty. This implies that
 510   // we have actually allocated into this region. The code in
 511   // G1CollectedHeap.cpp that allocates a new region sets the
 512   // is_young tag on the region before allocating. Thus we
 513   // safely know if this region is young.
 514   if (is_young() && filter_young) {
 515     return NULL;
 516   }
 517 
 518   assert(!is_young(), "check value of filter_young");
 519 
 520   // We can only clean the card here, after we make the decision that
 521   // the card is not young. And we only clean the card if we have been
 522   // asked to (i.e., card_ptr != NULL).
 523   if (card_ptr != NULL) {
 524     *card_ptr = CardTableModRefBS::clean_card_val();
 525     // We must complete this write before we do any of the reads below.
 526     OrderAccess::storeload();
 527   }
 528 
 529   // Cache the boundaries of the memory region in some const locals
 530   HeapWord* const start = mr.start();
 531   HeapWord* const end = mr.end();
 532 
 533   // We used to use "block_start_careful" here.  But we're actually happy
 534   // to update the BOT while we do this...
 535   HeapWord* cur = block_start(start);
 536   assert(cur <= start, "Postcondition");
 537 
 538   oop obj;
 539 
 540   HeapWord* next = cur;
 541   while (next <= start) {
 542     cur = next;
 543     obj = oop(cur);
 544     if (obj->klass_or_null() == NULL) {
 545       // Ran into an unparseable point.
 546       return cur;
 547     }
 548     // Otherwise...
 549     next = (cur + obj->size());
 550   }
 551 
 552   // If we finish the above loop...We have a parseable object that
 553   // begins on or before the start of the memory region, and ends
 554   // inside or spans the entire region.
 555 
 556   assert(obj == oop(cur), "sanity");
 557   assert(cur <= start &&
 558          obj->klass_or_null() != NULL &&
 559          (cur + obj->size()) > start,
 560          "Loop postcondition");
 561 
 562   if (!g1h->is_obj_dead(obj)) {
 563     obj->oop_iterate(cl, mr);
 564   }
 565 
 566   while (cur < end) {
 567     obj = oop(cur);
 568     if (obj->klass_or_null() == NULL) {
 569       // Ran into an unparseable point.
 570       return cur;
 571     };
 572 
 573     // Otherwise:
 574     next = (cur + obj->size());
 575 
 576     if (!g1h->is_obj_dead(obj)) {
 577       if (next < end || !obj->is_objArray()) {
 578         // This object either does not span the MemRegion
 579         // boundary, or if it does it's not an array.
 580         // Apply closure to whole object.
 581         obj->oop_iterate(cl);
 582       } else {
 583         // This obj is an array that spans the boundary.
 584         // Stop at the boundary.
 585         obj->oop_iterate(cl, mr);
 586       }
 587     }
 588     cur = next;
 589   }
 590   return NULL;
 591 }
 592 
 593 // Code roots support
 594 
 595 void HeapRegion::add_strong_code_root(nmethod* nm) {
 596   HeapRegionRemSet* hrrs = rem_set();
 597   hrrs->add_strong_code_root(nm);
 598 }
 599 
 600 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 601   HeapRegionRemSet* hrrs = rem_set();
 602   hrrs->remove_strong_code_root(nm);
 603 }
 604 
 605 void HeapRegion::migrate_strong_code_roots() {
 606   assert(in_collection_set(), "only collection set regions");
 607   assert(!isHumongous(), "not humongous regions");
 608 
 609   HeapRegionRemSet* hrrs = rem_set();
 610   hrrs->migrate_strong_code_roots();
 611 }
 612 
 613 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 614   HeapRegionRemSet* hrrs = rem_set();
 615   hrrs->strong_code_roots_do(blk);
 616 }
 617 
 618 class VerifyStrongCodeRootOopClosure: public OopClosure {
 619   const HeapRegion* _hr;
 620   nmethod* _nm;
 621   bool _failures;
 622   bool _has_oops_in_region;
 623 
 624   template <class T> void do_oop_work(T* p) {
 625     T heap_oop = oopDesc::load_heap_oop(p);
 626     if (!oopDesc::is_null(heap_oop)) {
 627       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 628 
 629       // Note: not all the oops embedded in the nmethod are in the
 630       // current region. We only look at those which are.
 631       if (_hr->is_in(obj)) {
 632         // Object is in the region. Check that its less than top
 633         if (_hr->top() <= (HeapWord*)obj) {
 634           // Object is above top
 635           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
 636                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
 637                                  "top "PTR_FORMAT,
 638                                  obj, _hr->bottom(), _hr->end(), _hr->top());
 639           _failures = true;
 640           return;
 641         }
 642         // Nmethod has at least one oop in the current region
 643         _has_oops_in_region = true;
 644       }
 645     }
 646   }
 647 
 648 public:
 649   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 650     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 651 
 652   void do_oop(narrowOop* p) { do_oop_work(p); }
 653   void do_oop(oop* p)       { do_oop_work(p); }
 654 
 655   bool failures()           { return _failures; }
 656   bool has_oops_in_region() { return _has_oops_in_region; }
 657 };
 658 
 659 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 660   const HeapRegion* _hr;
 661   bool _failures;
 662 public:
 663   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 664     _hr(hr), _failures(false) {}
 665 
 666   void do_code_blob(CodeBlob* cb) {
 667     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 668     if (nm != NULL) {
 669       // Verify that the nemthod is live
 670       if (!nm->is_alive()) {
 671         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
 672                                PTR_FORMAT" in its strong code roots",
 673                                _hr->bottom(), _hr->end(), nm);
 674         _failures = true;
 675       } else {
 676         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 677         nm->oops_do(&oop_cl);
 678         if (!oop_cl.has_oops_in_region()) {
 679           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
 680                                  PTR_FORMAT" in its strong code roots "
 681                                  "with no pointers into region",
 682                                  _hr->bottom(), _hr->end(), nm);
 683           _failures = true;
 684         } else if (oop_cl.failures()) {
 685           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
 686                                  "failures for nmethod "PTR_FORMAT,
 687                                  _hr->bottom(), _hr->end(), nm);
 688           _failures = true;
 689         }
 690       }
 691     }
 692   }
 693 
 694   bool failures()       { return _failures; }
 695 };
 696 
 697 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 698   if (!G1VerifyHeapRegionCodeRoots) {
 699     // We're not verifying code roots.
 700     return;
 701   }
 702   if (vo == VerifyOption_G1UseMarkWord) {
 703     // Marking verification during a full GC is performed after class
 704     // unloading, code cache unloading, etc so the strong code roots
 705     // attached to each heap region are in an inconsistent state. They won't
 706     // be consistent until the strong code roots are rebuilt after the
 707     // actual GC. Skip verifying the strong code roots in this particular
 708     // time.
 709     assert(VerifyDuringGC, "only way to get here");
 710     return;
 711   }
 712 
 713   HeapRegionRemSet* hrrs = rem_set();
 714   int strong_code_roots_length = hrrs->strong_code_roots_list_length();
 715 
 716   // if this region is empty then there should be no entries
 717   // on its strong code root list
 718   if (is_empty()) {
 719     if (strong_code_roots_length > 0) {
 720       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
 721                              "but has "INT32_FORMAT" code root entries",
 722                              bottom(), end(), strong_code_roots_length);
 723       *failures = true;
 724     }
 725     return;
 726   }
 727 
 728   // An H-region should have an empty strong code root list
 729   if (isHumongous()) {
 730     if (strong_code_roots_length > 0) {
 731       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
 732                              "but has "INT32_FORMAT" code root entries",
 733                              bottom(), end(), strong_code_roots_length);
 734       *failures = true;
 735     }
 736     return;
 737   }
 738 
 739   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 740   strong_code_roots_do(&cb_cl);
 741 
 742   if (cb_cl.failures()) {
 743     *failures = true;
 744   }
 745 }
 746 
 747 void HeapRegion::print() const { print_on(gclog_or_tty); }
 748 void HeapRegion::print_on(outputStream* st) const {
 749   if (isHumongous()) {
 750     if (startsHumongous())
 751       st->print(" HS");
 752     else
 753       st->print(" HC");
 754   } else {
 755     st->print("   ");
 756   }
 757   if (in_collection_set())
 758     st->print(" CS");
 759   else
 760     st->print("   ");
 761   if (is_young())
 762     st->print(is_survivor() ? " SU" : " Y ");
 763   else
 764     st->print("   ");
 765   if (is_empty())
 766     st->print(" F");
 767   else
 768     st->print("  ");
 769   st->print(" TS %5d", _gc_time_stamp);
 770   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 771             prev_top_at_mark_start(), next_top_at_mark_start());
 772   G1OffsetTableContigSpace::print_on(st);
 773 }
 774 
 775 class VerifyLiveClosure: public OopClosure {
 776 private:
 777   G1CollectedHeap* _g1h;
 778   CardTableModRefBS* _bs;
 779   oop _containing_obj;
 780   bool _failures;
 781   int _n_failures;
 782   VerifyOption _vo;
 783 public:
 784   // _vo == UsePrevMarking -> use "prev" marking information,
 785   // _vo == UseNextMarking -> use "next" marking information,
 786   // _vo == UseMarkWord    -> use mark word from object header.
 787   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 788     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 789     _failures(false), _n_failures(0), _vo(vo)
 790   {
 791     BarrierSet* bs = _g1h->barrier_set();
 792     if (bs->is_a(BarrierSet::CardTableModRef))
 793       _bs = (CardTableModRefBS*)bs;
 794   }
 795 
 796   void set_containing_obj(oop obj) {
 797     _containing_obj = obj;
 798   }
 799 
 800   bool failures() { return _failures; }
 801   int n_failures() { return _n_failures; }
 802 
 803   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 804   virtual void do_oop(      oop* p) { do_oop_work(p); }
 805 
 806   void print_object(outputStream* out, oop obj) {
 807 #ifdef PRODUCT
 808     Klass* k = obj->klass();
 809     const char* class_name = InstanceKlass::cast(k)->external_name();
 810     out->print_cr("class name %s", class_name);
 811 #else // PRODUCT
 812     obj->print_on(out);
 813 #endif // PRODUCT
 814   }
 815 
 816   template <class T>
 817   void do_oop_work(T* p) {
 818     assert(_containing_obj != NULL, "Precondition");
 819     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 820            "Precondition");
 821     T heap_oop = oopDesc::load_heap_oop(p);
 822     if (!oopDesc::is_null(heap_oop)) {
 823       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 824       bool failed = false;
 825       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 826         MutexLockerEx x(ParGCRareEvent_lock,
 827                         Mutex::_no_safepoint_check_flag);
 828 
 829         if (!_failures) {
 830           gclog_or_tty->print_cr("");
 831           gclog_or_tty->print_cr("----------");
 832         }
 833         if (!_g1h->is_in_closed_subset(obj)) {
 834           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 835           gclog_or_tty->print_cr("Field "PTR_FORMAT
 836                                  " of live obj "PTR_FORMAT" in region "
 837                                  "["PTR_FORMAT", "PTR_FORMAT")",
 838                                  p, (void*) _containing_obj,
 839                                  from->bottom(), from->end());
 840           print_object(gclog_or_tty, _containing_obj);
 841           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 842                                  (void*) obj);
 843         } else {
 844           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 845           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 846           gclog_or_tty->print_cr("Field "PTR_FORMAT
 847                                  " of live obj "PTR_FORMAT" in region "
 848                                  "["PTR_FORMAT", "PTR_FORMAT")",
 849                                  p, (void*) _containing_obj,
 850                                  from->bottom(), from->end());
 851           print_object(gclog_or_tty, _containing_obj);
 852           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 853                                  "["PTR_FORMAT", "PTR_FORMAT")",
 854                                  (void*) obj, to->bottom(), to->end());
 855           print_object(gclog_or_tty, obj);
 856         }
 857         gclog_or_tty->print_cr("----------");
 858         gclog_or_tty->flush();
 859         _failures = true;
 860         failed = true;
 861         _n_failures++;
 862       }
 863 
 864       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 865         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 866         HeapRegion* to   = _g1h->heap_region_containing(obj);
 867         if (from != NULL && to != NULL &&
 868             from != to &&
 869             !to->isHumongous()) {
 870           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 871           jbyte cv_field = *_bs->byte_for_const(p);
 872           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 873 
 874           bool is_bad = !(from->is_young()
 875                           || to->rem_set()->contains_reference(p)
 876                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 877                               (_containing_obj->is_objArray() ?
 878                                   cv_field == dirty
 879                                : cv_obj == dirty || cv_field == dirty));
 880           if (is_bad) {
 881             MutexLockerEx x(ParGCRareEvent_lock,
 882                             Mutex::_no_safepoint_check_flag);
 883 
 884             if (!_failures) {
 885               gclog_or_tty->print_cr("");
 886               gclog_or_tty->print_cr("----------");
 887             }
 888             gclog_or_tty->print_cr("Missing rem set entry:");
 889             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 890                                    "of obj "PTR_FORMAT", "
 891                                    "in region "HR_FORMAT,
 892                                    p, (void*) _containing_obj,
 893                                    HR_FORMAT_PARAMS(from));
 894             _containing_obj->print_on(gclog_or_tty);
 895             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 896                                    "in region "HR_FORMAT,
 897                                    (void*) obj,
 898                                    HR_FORMAT_PARAMS(to));
 899             obj->print_on(gclog_or_tty);
 900             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 901                           cv_obj, cv_field);
 902             gclog_or_tty->print_cr("----------");
 903             gclog_or_tty->flush();
 904             _failures = true;
 905             if (!failed) _n_failures++;
 906           }
 907         }
 908       }
 909     }
 910   }
 911 };
 912 
 913 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 914 // We would need a mechanism to make that code skip dead objects.
 915 
 916 void HeapRegion::verify(VerifyOption vo,
 917                         bool* failures) const {
 918   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 919   *failures = false;
 920   HeapWord* p = bottom();
 921   HeapWord* prev_p = NULL;
 922   VerifyLiveClosure vl_cl(g1, vo);
 923   bool is_humongous = isHumongous();
 924   bool do_bot_verify = !is_young();
 925   size_t object_num = 0;
 926   while (p < top()) {
 927     oop obj = oop(p);
 928     size_t obj_size = obj->size();
 929     object_num += 1;
 930 
 931     if (is_humongous != g1->isHumongous(obj_size)) {
 932       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 933                              SIZE_FORMAT" words) in a %shumongous region",
 934                              p, g1->isHumongous(obj_size) ? "" : "non-",
 935                              obj_size, is_humongous ? "" : "non-");
 936        *failures = true;
 937        return;
 938     }
 939 
 940     // If it returns false, verify_for_object() will output the
 941     // appropriate messasge.
 942     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
 943       *failures = true;
 944       return;
 945     }
 946 
 947     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 948       if (obj->is_oop()) {
 949         Klass* klass = obj->klass();
 950         if (!klass->is_metadata()) {
 951           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 952                                  "not metadata", klass, obj);
 953           *failures = true;
 954           return;
 955         } else if (!klass->is_klass()) {
 956           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 957                                  "not a klass", klass, obj);
 958           *failures = true;
 959           return;
 960         } else {
 961           vl_cl.set_containing_obj(obj);
 962           obj->oop_iterate_no_header(&vl_cl);
 963           if (vl_cl.failures()) {
 964             *failures = true;
 965           }
 966           if (G1MaxVerifyFailures >= 0 &&
 967               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 968             return;
 969           }
 970         }
 971       } else {
 972         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
 973         *failures = true;
 974         return;
 975       }
 976     }
 977     prev_p = p;
 978     p += obj_size;
 979   }
 980 
 981   if (p != top()) {
 982     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 983                            "does not match top "PTR_FORMAT, p, top());
 984     *failures = true;
 985     return;
 986   }
 987 
 988   HeapWord* the_end = end();
 989   assert(p == top(), "it should still hold");
 990   // Do some extra BOT consistency checking for addresses in the
 991   // range [top, end). BOT look-ups in this range should yield
 992   // top. No point in doing that if top == end (there's nothing there).
 993   if (p < the_end) {
 994     // Look up top
 995     HeapWord* addr_1 = p;
 996     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 997     if (b_start_1 != p) {
 998       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 999                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1000                              addr_1, b_start_1, p);
1001       *failures = true;
1002       return;
1003     }
1004 
1005     // Look up top + 1
1006     HeapWord* addr_2 = p + 1;
1007     if (addr_2 < the_end) {
1008       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
1009       if (b_start_2 != p) {
1010         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
1011                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1012                                addr_2, b_start_2, p);
1013         *failures = true;
1014         return;
1015       }
1016     }
1017 
1018     // Look up an address between top and end
1019     size_t diff = pointer_delta(the_end, p) / 2;
1020     HeapWord* addr_3 = p + diff;
1021     if (addr_3 < the_end) {
1022       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
1023       if (b_start_3 != p) {
1024         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
1025                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1026                                addr_3, b_start_3, p);
1027         *failures = true;
1028         return;
1029       }
1030     }
1031 
1032     // Loook up end - 1
1033     HeapWord* addr_4 = the_end - 1;
1034     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
1035     if (b_start_4 != p) {
1036       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
1037                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1038                              addr_4, b_start_4, p);
1039       *failures = true;
1040       return;
1041     }
1042   }
1043 
1044   if (is_humongous && object_num > 1) {
1045     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
1046                            "but has "SIZE_FORMAT", objects",
1047                            bottom(), end(), object_num);
1048     *failures = true;
1049     return;
1050   }
1051 
1052   verify_strong_code_roots(vo, failures);
1053 }
1054 
1055 void HeapRegion::verify() const {
1056   bool dummy = false;
1057   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
1058 }
1059 
1060 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
1061 // away eventually.
1062 
1063 void G1OffsetTableContigSpace::clear(bool mangle_space) {
1064   ContiguousSpace::clear(mangle_space);
1065   _offsets.zero_bottom_entry();
1066   _offsets.initialize_threshold();
1067 }
1068 
1069 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
1070   Space::set_bottom(new_bottom);
1071   _offsets.set_bottom(new_bottom);
1072 }
1073 
1074 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
1075   Space::set_end(new_end);
1076   _offsets.resize(new_end - bottom());
1077 }
1078 
1079 void G1OffsetTableContigSpace::print() const {
1080   print_short();
1081   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1082                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1083                 bottom(), top(), _offsets.threshold(), end());
1084 }
1085 
1086 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
1087   return _offsets.initialize_threshold();
1088 }
1089 
1090 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1091                                                     HeapWord* end) {
1092   _offsets.alloc_block(start, end);
1093   return _offsets.threshold();
1094 }
1095 
1096 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
1097   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1098   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
1099   if (_gc_time_stamp < g1h->get_gc_time_stamp())
1100     return top();
1101   else
1102     return ContiguousSpace::saved_mark_word();
1103 }
1104 
1105 void G1OffsetTableContigSpace::set_saved_mark() {
1106   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1107   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1108 
1109   if (_gc_time_stamp < curr_gc_time_stamp) {
1110     // The order of these is important, as another thread might be
1111     // about to start scanning this region. If it does so after
1112     // set_saved_mark and before _gc_time_stamp = ..., then the latter
1113     // will be false, and it will pick up top() as the high water mark
1114     // of region. If it does so after _gc_time_stamp = ..., then it
1115     // will pick up the right saved_mark_word() as the high water mark
1116     // of the region. Either way, the behaviour will be correct.
1117     ContiguousSpace::set_saved_mark();
1118     OrderAccess::storestore();
1119     _gc_time_stamp = curr_gc_time_stamp;
1120     // No need to do another barrier to flush the writes above. If
1121     // this is called in parallel with other threads trying to
1122     // allocate into the region, the caller should call this while
1123     // holding a lock and when the lock is released the writes will be
1124     // flushed.
1125   }
1126 }
1127 
1128 G1OffsetTableContigSpace::
1129 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1130                          MemRegion mr) :
1131   _offsets(sharedOffsetArray, mr),
1132   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1133   _gc_time_stamp(0)
1134 {
1135   _offsets.set_space(this);
1136   // false ==> we'll do the clearing if there's clearing to be done.
1137   ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
1138   _offsets.zero_bottom_entry();
1139   _offsets.initialize_threshold();
1140 }