1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  37 #include "gc_implementation/g1/g1Log.hpp"
  38 #include "gc_implementation/g1/g1MarkSweep.hpp"
  39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  41 #include "gc_implementation/g1/heapRegion.inline.hpp"
  42 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  43 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  44 #include "gc_implementation/g1/vm_operations_g1.hpp"
  45 #include "gc_implementation/shared/isGCActiveMark.hpp"
  46 #include "memory/gcLocker.inline.hpp"
  47 #include "memory/genOopClosures.inline.hpp"
  48 #include "memory/generationSpec.hpp"
  49 #include "memory/referenceProcessor.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/oop.pcgc.inline.hpp"
  52 #include "runtime/aprofiler.hpp"
  53 #include "runtime/vmThread.hpp"
  54 
  55 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  56 
  57 // turn it on so that the contents of the young list (scan-only /
  58 // to-be-collected) are printed at "strategic" points before / during
  59 // / after the collection --- this is useful for debugging
  60 #define YOUNG_LIST_VERBOSE 0
  61 // CURRENT STATUS
  62 // This file is under construction.  Search for "FIXME".
  63 
  64 // INVARIANTS/NOTES
  65 //
  66 // All allocation activity covered by the G1CollectedHeap interface is
  67 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  68 // and allocate_new_tlab, which are the "entry" points to the
  69 // allocation code from the rest of the JVM.  (Note that this does not
  70 // apply to TLAB allocation, which is not part of this interface: it
  71 // is done by clients of this interface.)
  72 
  73 // Notes on implementation of parallelism in different tasks.
  74 //
  75 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  76 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  77 // It does use run_task() which sets _n_workers in the task.
  78 // G1ParTask executes g1_process_strong_roots() ->
  79 // SharedHeap::process_strong_roots() which calls eventuall to
  80 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  81 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  82 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  83 //
  84 
  85 // Local to this file.
  86 
  87 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  88   SuspendibleThreadSet* _sts;
  89   G1RemSet* _g1rs;
  90   ConcurrentG1Refine* _cg1r;
  91   bool _concurrent;
  92 public:
  93   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  94                               G1RemSet* g1rs,
  95                               ConcurrentG1Refine* cg1r) :
  96     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  97   {}
  98   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  99     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
 100     // This path is executed by the concurrent refine or mutator threads,
 101     // concurrently, and so we do not care if card_ptr contains references
 102     // that point into the collection set.
 103     assert(!oops_into_cset, "should be");
 104 
 105     if (_concurrent && _sts->should_yield()) {
 106       // Caller will actually yield.
 107       return false;
 108     }
 109     // Otherwise, we finished successfully; return true.
 110     return true;
 111   }
 112   void set_concurrent(bool b) { _concurrent = b; }
 113 };
 114 
 115 
 116 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 117   int _calls;
 118   G1CollectedHeap* _g1h;
 119   CardTableModRefBS* _ctbs;
 120   int _histo[256];
 121 public:
 122   ClearLoggedCardTableEntryClosure() :
 123     _calls(0)
 124   {
 125     _g1h = G1CollectedHeap::heap();
 126     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 127     for (int i = 0; i < 256; i++) _histo[i] = 0;
 128   }
 129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 131       _calls++;
 132       unsigned char* ujb = (unsigned char*)card_ptr;
 133       int ind = (int)(*ujb);
 134       _histo[ind]++;
 135       *card_ptr = -1;
 136     }
 137     return true;
 138   }
 139   int calls() { return _calls; }
 140   void print_histo() {
 141     gclog_or_tty->print_cr("Card table value histogram:");
 142     for (int i = 0; i < 256; i++) {
 143       if (_histo[i] != 0) {
 144         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 145       }
 146     }
 147   }
 148 };
 149 
 150 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 151   int _calls;
 152   G1CollectedHeap* _g1h;
 153   CardTableModRefBS* _ctbs;
 154 public:
 155   RedirtyLoggedCardTableEntryClosure() :
 156     _calls(0)
 157   {
 158     _g1h = G1CollectedHeap::heap();
 159     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 160   }
 161   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 162     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 163       _calls++;
 164       *card_ptr = 0;
 165     }
 166     return true;
 167   }
 168   int calls() { return _calls; }
 169 };
 170 
 171 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 172 public:
 173   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 174     *card_ptr = CardTableModRefBS::dirty_card_val();
 175     return true;
 176   }
 177 };
 178 
 179 YoungList::YoungList(G1CollectedHeap* g1h) :
 180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 182   guarantee(check_list_empty(false), "just making sure...");
 183 }
 184 
 185 void YoungList::push_region(HeapRegion *hr) {
 186   assert(!hr->is_young(), "should not already be young");
 187   assert(hr->get_next_young_region() == NULL, "cause it should!");
 188 
 189   hr->set_next_young_region(_head);
 190   _head = hr;
 191 
 192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 193   ++_length;
 194 }
 195 
 196 void YoungList::add_survivor_region(HeapRegion* hr) {
 197   assert(hr->is_survivor(), "should be flagged as survivor region");
 198   assert(hr->get_next_young_region() == NULL, "cause it should!");
 199 
 200   hr->set_next_young_region(_survivor_head);
 201   if (_survivor_head == NULL) {
 202     _survivor_tail = hr;
 203   }
 204   _survivor_head = hr;
 205   ++_survivor_length;
 206 }
 207 
 208 void YoungList::empty_list(HeapRegion* list) {
 209   while (list != NULL) {
 210     HeapRegion* next = list->get_next_young_region();
 211     list->set_next_young_region(NULL);
 212     list->uninstall_surv_rate_group();
 213     list->set_not_young();
 214     list = next;
 215   }
 216 }
 217 
 218 void YoungList::empty_list() {
 219   assert(check_list_well_formed(), "young list should be well formed");
 220 
 221   empty_list(_head);
 222   _head = NULL;
 223   _length = 0;
 224 
 225   empty_list(_survivor_head);
 226   _survivor_head = NULL;
 227   _survivor_tail = NULL;
 228   _survivor_length = 0;
 229 
 230   _last_sampled_rs_lengths = 0;
 231 
 232   assert(check_list_empty(false), "just making sure...");
 233 }
 234 
 235 bool YoungList::check_list_well_formed() {
 236   bool ret = true;
 237 
 238   uint length = 0;
 239   HeapRegion* curr = _head;
 240   HeapRegion* last = NULL;
 241   while (curr != NULL) {
 242     if (!curr->is_young()) {
 243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 244                              "incorrectly tagged (y: %d, surv: %d)",
 245                              curr->bottom(), curr->end(),
 246                              curr->is_young(), curr->is_survivor());
 247       ret = false;
 248     }
 249     ++length;
 250     last = curr;
 251     curr = curr->get_next_young_region();
 252   }
 253   ret = ret && (length == _length);
 254 
 255   if (!ret) {
 256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 258                            length, _length);
 259   }
 260 
 261   return ret;
 262 }
 263 
 264 bool YoungList::check_list_empty(bool check_sample) {
 265   bool ret = true;
 266 
 267   if (_length != 0) {
 268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 269                   _length);
 270     ret = false;
 271   }
 272   if (check_sample && _last_sampled_rs_lengths != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 274     ret = false;
 275   }
 276   if (_head != NULL) {
 277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 278     ret = false;
 279   }
 280   if (!ret) {
 281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 282   }
 283 
 284   return ret;
 285 }
 286 
 287 void
 288 YoungList::rs_length_sampling_init() {
 289   _sampled_rs_lengths = 0;
 290   _curr               = _head;
 291 }
 292 
 293 bool
 294 YoungList::rs_length_sampling_more() {
 295   return _curr != NULL;
 296 }
 297 
 298 void
 299 YoungList::rs_length_sampling_next() {
 300   assert( _curr != NULL, "invariant" );
 301   size_t rs_length = _curr->rem_set()->occupied();
 302 
 303   _sampled_rs_lengths += rs_length;
 304 
 305   // The current region may not yet have been added to the
 306   // incremental collection set (it gets added when it is
 307   // retired as the current allocation region).
 308   if (_curr->in_collection_set()) {
 309     // Update the collection set policy information for this region
 310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 311   }
 312 
 313   _curr = _curr->get_next_young_region();
 314   if (_curr == NULL) {
 315     _last_sampled_rs_lengths = _sampled_rs_lengths;
 316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 317   }
 318 }
 319 
 320 void
 321 YoungList::reset_auxilary_lists() {
 322   guarantee( is_empty(), "young list should be empty" );
 323   assert(check_list_well_formed(), "young list should be well formed");
 324 
 325   // Add survivor regions to SurvRateGroup.
 326   _g1h->g1_policy()->note_start_adding_survivor_regions();
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 328 
 329   int young_index_in_cset = 0;
 330   for (HeapRegion* curr = _survivor_head;
 331        curr != NULL;
 332        curr = curr->get_next_young_region()) {
 333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 334 
 335     // The region is a non-empty survivor so let's add it to
 336     // the incremental collection set for the next evacuation
 337     // pause.
 338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 339     young_index_in_cset += 1;
 340   }
 341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 343 
 344   _head   = _survivor_head;
 345   _length = _survivor_length;
 346   if (_survivor_head != NULL) {
 347     assert(_survivor_tail != NULL, "cause it shouldn't be");
 348     assert(_survivor_length > 0, "invariant");
 349     _survivor_tail->set_next_young_region(NULL);
 350   }
 351 
 352   // Don't clear the survivor list handles until the start of
 353   // the next evacuation pause - we need it in order to re-tag
 354   // the survivor regions from this evacuation pause as 'young'
 355   // at the start of the next.
 356 
 357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 358 
 359   assert(check_list_well_formed(), "young list should be well formed");
 360 }
 361 
 362 void YoungList::print() {
 363   HeapRegion* lists[] = {_head,   _survivor_head};
 364   const char* names[] = {"YOUNG", "SURVIVOR"};
 365 
 366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 368     HeapRegion *curr = lists[list];
 369     if (curr == NULL)
 370       gclog_or_tty->print_cr("  empty");
 371     while (curr != NULL) {
 372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 373                              HR_FORMAT_PARAMS(curr),
 374                              curr->prev_top_at_mark_start(),
 375                              curr->next_top_at_mark_start(),
 376                              curr->age_in_surv_rate_group_cond());
 377       curr = curr->get_next_young_region();
 378     }
 379   }
 380 
 381   gclog_or_tty->print_cr("");
 382 }
 383 
 384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 385 {
 386   // Claim the right to put the region on the dirty cards region list
 387   // by installing a self pointer.
 388   HeapRegion* next = hr->get_next_dirty_cards_region();
 389   if (next == NULL) {
 390     HeapRegion* res = (HeapRegion*)
 391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 392                           NULL);
 393     if (res == NULL) {
 394       HeapRegion* head;
 395       do {
 396         // Put the region to the dirty cards region list.
 397         head = _dirty_cards_region_list;
 398         next = (HeapRegion*)
 399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 400         if (next == head) {
 401           assert(hr->get_next_dirty_cards_region() == hr,
 402                  "hr->get_next_dirty_cards_region() != hr");
 403           if (next == NULL) {
 404             // The last region in the list points to itself.
 405             hr->set_next_dirty_cards_region(hr);
 406           } else {
 407             hr->set_next_dirty_cards_region(next);
 408           }
 409         }
 410       } while (next != head);
 411     }
 412   }
 413 }
 414 
 415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 416 {
 417   HeapRegion* head;
 418   HeapRegion* hr;
 419   do {
 420     head = _dirty_cards_region_list;
 421     if (head == NULL) {
 422       return NULL;
 423     }
 424     HeapRegion* new_head = head->get_next_dirty_cards_region();
 425     if (head == new_head) {
 426       // The last region.
 427       new_head = NULL;
 428     }
 429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 430                                           head);
 431   } while (hr != head);
 432   assert(hr != NULL, "invariant");
 433   hr->set_next_dirty_cards_region(NULL);
 434   return hr;
 435 }
 436 
 437 void G1CollectedHeap::stop_conc_gc_threads() {
 438   _cg1r->stop();
 439   _cmThread->stop();
 440 }
 441 
 442 #ifdef ASSERT
 443 // A region is added to the collection set as it is retired
 444 // so an address p can point to a region which will be in the
 445 // collection set but has not yet been retired.  This method
 446 // therefore is only accurate during a GC pause after all
 447 // regions have been retired.  It is used for debugging
 448 // to check if an nmethod has references to objects that can
 449 // be move during a partial collection.  Though it can be
 450 // inaccurate, it is sufficient for G1 because the conservative
 451 // implementation of is_scavengable() for G1 will indicate that
 452 // all nmethods must be scanned during a partial collection.
 453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 454   HeapRegion* hr = heap_region_containing(p);
 455   return hr != NULL && hr->in_collection_set();
 456 }
 457 #endif
 458 
 459 // Returns true if the reference points to an object that
 460 // can move in an incremental collecction.
 461 bool G1CollectedHeap::is_scavengable(const void* p) {
 462   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 463   G1CollectorPolicy* g1p = g1h->g1_policy();
 464   HeapRegion* hr = heap_region_containing(p);
 465   if (hr == NULL) {
 466      // null
 467      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 468      return false;
 469   } else {
 470     return !hr->isHumongous();
 471   }
 472 }
 473 
 474 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 475   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 476   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 477 
 478   // Count the dirty cards at the start.
 479   CountNonCleanMemRegionClosure count1(this);
 480   ct_bs->mod_card_iterate(&count1);
 481   int orig_count = count1.n();
 482 
 483   // First clear the logged cards.
 484   ClearLoggedCardTableEntryClosure clear;
 485   dcqs.set_closure(&clear);
 486   dcqs.apply_closure_to_all_completed_buffers();
 487   dcqs.iterate_closure_all_threads(false);
 488   clear.print_histo();
 489 
 490   // Now ensure that there's no dirty cards.
 491   CountNonCleanMemRegionClosure count2(this);
 492   ct_bs->mod_card_iterate(&count2);
 493   if (count2.n() != 0) {
 494     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 495                            count2.n(), orig_count);
 496   }
 497   guarantee(count2.n() == 0, "Card table should be clean.");
 498 
 499   RedirtyLoggedCardTableEntryClosure redirty;
 500   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 501   dcqs.apply_closure_to_all_completed_buffers();
 502   dcqs.iterate_closure_all_threads(false);
 503   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 504                          clear.calls(), orig_count);
 505   guarantee(redirty.calls() == clear.calls(),
 506             "Or else mechanism is broken.");
 507 
 508   CountNonCleanMemRegionClosure count3(this);
 509   ct_bs->mod_card_iterate(&count3);
 510   if (count3.n() != orig_count) {
 511     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 512                            orig_count, count3.n());
 513     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 514   }
 515 
 516   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 517 }
 518 
 519 // Private class members.
 520 
 521 G1CollectedHeap* G1CollectedHeap::_g1h;
 522 
 523 // Private methods.
 524 
 525 HeapRegion*
 526 G1CollectedHeap::new_region_try_secondary_free_list() {
 527   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 528   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 529     if (!_secondary_free_list.is_empty()) {
 530       if (G1ConcRegionFreeingVerbose) {
 531         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 532                                "secondary_free_list has %u entries",
 533                                _secondary_free_list.length());
 534       }
 535       // It looks as if there are free regions available on the
 536       // secondary_free_list. Let's move them to the free_list and try
 537       // again to allocate from it.
 538       append_secondary_free_list();
 539 
 540       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 541              "empty we should have moved at least one entry to the free_list");
 542       HeapRegion* res = _free_list.remove_head();
 543       if (G1ConcRegionFreeingVerbose) {
 544         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 545                                "allocated "HR_FORMAT" from secondary_free_list",
 546                                HR_FORMAT_PARAMS(res));
 547       }
 548       return res;
 549     }
 550 
 551     // Wait here until we get notifed either when (a) there are no
 552     // more free regions coming or (b) some regions have been moved on
 553     // the secondary_free_list.
 554     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 555   }
 556 
 557   if (G1ConcRegionFreeingVerbose) {
 558     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 559                            "could not allocate from secondary_free_list");
 560   }
 561   return NULL;
 562 }
 563 
 564 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 565   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 566          "the only time we use this to allocate a humongous region is "
 567          "when we are allocating a single humongous region");
 568 
 569   HeapRegion* res;
 570   if (G1StressConcRegionFreeing) {
 571     if (!_secondary_free_list.is_empty()) {
 572       if (G1ConcRegionFreeingVerbose) {
 573         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 574                                "forced to look at the secondary_free_list");
 575       }
 576       res = new_region_try_secondary_free_list();
 577       if (res != NULL) {
 578         return res;
 579       }
 580     }
 581   }
 582   res = _free_list.remove_head_or_null();
 583   if (res == NULL) {
 584     if (G1ConcRegionFreeingVerbose) {
 585       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 586                              "res == NULL, trying the secondary_free_list");
 587     }
 588     res = new_region_try_secondary_free_list();
 589   }
 590   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 591     // Currently, only attempts to allocate GC alloc regions set
 592     // do_expand to true. So, we should only reach here during a
 593     // safepoint. If this assumption changes we might have to
 594     // reconsider the use of _expand_heap_after_alloc_failure.
 595     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 596 
 597     ergo_verbose1(ErgoHeapSizing,
 598                   "attempt heap expansion",
 599                   ergo_format_reason("region allocation request failed")
 600                   ergo_format_byte("allocation request"),
 601                   word_size * HeapWordSize);
 602     if (expand(word_size * HeapWordSize)) {
 603       // Given that expand() succeeded in expanding the heap, and we
 604       // always expand the heap by an amount aligned to the heap
 605       // region size, the free list should in theory not be empty. So
 606       // it would probably be OK to use remove_head(). But the extra
 607       // check for NULL is unlikely to be a performance issue here (we
 608       // just expanded the heap!) so let's just be conservative and
 609       // use remove_head_or_null().
 610       res = _free_list.remove_head_or_null();
 611     } else {
 612       _expand_heap_after_alloc_failure = false;
 613     }
 614   }
 615   return res;
 616 }
 617 
 618 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 619                                                         size_t word_size) {
 620   assert(isHumongous(word_size), "word_size should be humongous");
 621   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 622 
 623   uint first = G1_NULL_HRS_INDEX;
 624   if (num_regions == 1) {
 625     // Only one region to allocate, no need to go through the slower
 626     // path. The caller will attempt the expasion if this fails, so
 627     // let's not try to expand here too.
 628     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 629     if (hr != NULL) {
 630       first = hr->hrs_index();
 631     } else {
 632       first = G1_NULL_HRS_INDEX;
 633     }
 634   } else {
 635     // We can't allocate humongous regions while cleanupComplete() is
 636     // running, since some of the regions we find to be empty might not
 637     // yet be added to the free list and it is not straightforward to
 638     // know which list they are on so that we can remove them. Note
 639     // that we only need to do this if we need to allocate more than
 640     // one region to satisfy the current humongous allocation
 641     // request. If we are only allocating one region we use the common
 642     // region allocation code (see above).
 643     wait_while_free_regions_coming();
 644     append_secondary_free_list_if_not_empty_with_lock();
 645 
 646     if (free_regions() >= num_regions) {
 647       first = _hrs.find_contiguous(num_regions);
 648       if (first != G1_NULL_HRS_INDEX) {
 649         for (uint i = first; i < first + num_regions; ++i) {
 650           HeapRegion* hr = region_at(i);
 651           assert(hr->is_empty(), "sanity");
 652           assert(is_on_master_free_list(hr), "sanity");
 653           hr->set_pending_removal(true);
 654         }
 655         _free_list.remove_all_pending(num_regions);
 656       }
 657     }
 658   }
 659   return first;
 660 }
 661 
 662 HeapWord*
 663 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 664                                                            uint num_regions,
 665                                                            size_t word_size) {
 666   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 667   assert(isHumongous(word_size), "word_size should be humongous");
 668   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 669 
 670   // Index of last region in the series + 1.
 671   uint last = first + num_regions;
 672 
 673   // We need to initialize the region(s) we just discovered. This is
 674   // a bit tricky given that it can happen concurrently with
 675   // refinement threads refining cards on these regions and
 676   // potentially wanting to refine the BOT as they are scanning
 677   // those cards (this can happen shortly after a cleanup; see CR
 678   // 6991377). So we have to set up the region(s) carefully and in
 679   // a specific order.
 680 
 681   // The word size sum of all the regions we will allocate.
 682   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 683   assert(word_size <= word_size_sum, "sanity");
 684 
 685   // This will be the "starts humongous" region.
 686   HeapRegion* first_hr = region_at(first);
 687   // The header of the new object will be placed at the bottom of
 688   // the first region.
 689   HeapWord* new_obj = first_hr->bottom();
 690   // This will be the new end of the first region in the series that
 691   // should also match the end of the last region in the seriers.
 692   HeapWord* new_end = new_obj + word_size_sum;
 693   // This will be the new top of the first region that will reflect
 694   // this allocation.
 695   HeapWord* new_top = new_obj + word_size;
 696 
 697   // First, we need to zero the header of the space that we will be
 698   // allocating. When we update top further down, some refinement
 699   // threads might try to scan the region. By zeroing the header we
 700   // ensure that any thread that will try to scan the region will
 701   // come across the zero klass word and bail out.
 702   //
 703   // NOTE: It would not have been correct to have used
 704   // CollectedHeap::fill_with_object() and make the space look like
 705   // an int array. The thread that is doing the allocation will
 706   // later update the object header to a potentially different array
 707   // type and, for a very short period of time, the klass and length
 708   // fields will be inconsistent. This could cause a refinement
 709   // thread to calculate the object size incorrectly.
 710   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 711 
 712   // We will set up the first region as "starts humongous". This
 713   // will also update the BOT covering all the regions to reflect
 714   // that there is a single object that starts at the bottom of the
 715   // first region.
 716   first_hr->set_startsHumongous(new_top, new_end);
 717 
 718   // Then, if there are any, we will set up the "continues
 719   // humongous" regions.
 720   HeapRegion* hr = NULL;
 721   for (uint i = first + 1; i < last; ++i) {
 722     hr = region_at(i);
 723     hr->set_continuesHumongous(first_hr);
 724   }
 725   // If we have "continues humongous" regions (hr != NULL), then the
 726   // end of the last one should match new_end.
 727   assert(hr == NULL || hr->end() == new_end, "sanity");
 728 
 729   // Up to this point no concurrent thread would have been able to
 730   // do any scanning on any region in this series. All the top
 731   // fields still point to bottom, so the intersection between
 732   // [bottom,top] and [card_start,card_end] will be empty. Before we
 733   // update the top fields, we'll do a storestore to make sure that
 734   // no thread sees the update to top before the zeroing of the
 735   // object header and the BOT initialization.
 736   OrderAccess::storestore();
 737 
 738   // Now that the BOT and the object header have been initialized,
 739   // we can update top of the "starts humongous" region.
 740   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 741          "new_top should be in this region");
 742   first_hr->set_top(new_top);
 743   if (_hr_printer.is_active()) {
 744     HeapWord* bottom = first_hr->bottom();
 745     HeapWord* end = first_hr->orig_end();
 746     if ((first + 1) == last) {
 747       // the series has a single humongous region
 748       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 749     } else {
 750       // the series has more than one humongous regions
 751       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 752     }
 753   }
 754 
 755   // Now, we will update the top fields of the "continues humongous"
 756   // regions. The reason we need to do this is that, otherwise,
 757   // these regions would look empty and this will confuse parts of
 758   // G1. For example, the code that looks for a consecutive number
 759   // of empty regions will consider them empty and try to
 760   // re-allocate them. We can extend is_empty() to also include
 761   // !continuesHumongous(), but it is easier to just update the top
 762   // fields here. The way we set top for all regions (i.e., top ==
 763   // end for all regions but the last one, top == new_top for the
 764   // last one) is actually used when we will free up the humongous
 765   // region in free_humongous_region().
 766   hr = NULL;
 767   for (uint i = first + 1; i < last; ++i) {
 768     hr = region_at(i);
 769     if ((i + 1) == last) {
 770       // last continues humongous region
 771       assert(hr->bottom() < new_top && new_top <= hr->end(),
 772              "new_top should fall on this region");
 773       hr->set_top(new_top);
 774       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 775     } else {
 776       // not last one
 777       assert(new_top > hr->end(), "new_top should be above this region");
 778       hr->set_top(hr->end());
 779       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 780     }
 781   }
 782   // If we have continues humongous regions (hr != NULL), then the
 783   // end of the last one should match new_end and its top should
 784   // match new_top.
 785   assert(hr == NULL ||
 786          (hr->end() == new_end && hr->top() == new_top), "sanity");
 787 
 788   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 789   _summary_bytes_used += first_hr->used();
 790   _humongous_set.add(first_hr);
 791 
 792   return new_obj;
 793 }
 794 
 795 // If could fit into free regions w/o expansion, try.
 796 // Otherwise, if can expand, do so.
 797 // Otherwise, if using ex regions might help, try with ex given back.
 798 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 799   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 800 
 801   verify_region_sets_optional();
 802 
 803   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 804   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 805   uint x_num = expansion_regions();
 806   uint fs = _hrs.free_suffix();
 807   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 808   if (first == G1_NULL_HRS_INDEX) {
 809     // The only thing we can do now is attempt expansion.
 810     if (fs + x_num >= num_regions) {
 811       // If the number of regions we're trying to allocate for this
 812       // object is at most the number of regions in the free suffix,
 813       // then the call to humongous_obj_allocate_find_first() above
 814       // should have succeeded and we wouldn't be here.
 815       //
 816       // We should only be trying to expand when the free suffix is
 817       // not sufficient for the object _and_ we have some expansion
 818       // room available.
 819       assert(num_regions > fs, "earlier allocation should have succeeded");
 820 
 821       ergo_verbose1(ErgoHeapSizing,
 822                     "attempt heap expansion",
 823                     ergo_format_reason("humongous allocation request failed")
 824                     ergo_format_byte("allocation request"),
 825                     word_size * HeapWordSize);
 826       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 827         // Even though the heap was expanded, it might not have
 828         // reached the desired size. So, we cannot assume that the
 829         // allocation will succeed.
 830         first = humongous_obj_allocate_find_first(num_regions, word_size);
 831       }
 832     }
 833   }
 834 
 835   HeapWord* result = NULL;
 836   if (first != G1_NULL_HRS_INDEX) {
 837     result =
 838       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 839     assert(result != NULL, "it should always return a valid result");
 840 
 841     // A successful humongous object allocation changes the used space
 842     // information of the old generation so we need to recalculate the
 843     // sizes and update the jstat counters here.
 844     g1mm()->update_sizes();
 845   }
 846 
 847   verify_region_sets_optional();
 848 
 849   return result;
 850 }
 851 
 852 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 853   assert_heap_not_locked_and_not_at_safepoint();
 854   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 855 
 856   unsigned int dummy_gc_count_before;
 857   return attempt_allocation(word_size, &dummy_gc_count_before);
 858 }
 859 
 860 HeapWord*
 861 G1CollectedHeap::mem_allocate(size_t word_size,
 862                               bool*  gc_overhead_limit_was_exceeded) {
 863   assert_heap_not_locked_and_not_at_safepoint();
 864 
 865   // Loop until the allocation is satisified, or unsatisfied after GC.
 866   for (int try_count = 1; /* we'll return */; try_count += 1) {
 867     unsigned int gc_count_before;
 868 
 869     HeapWord* result = NULL;
 870     if (!isHumongous(word_size)) {
 871       result = attempt_allocation(word_size, &gc_count_before);
 872     } else {
 873       result = attempt_allocation_humongous(word_size, &gc_count_before);
 874     }
 875     if (result != NULL) {
 876       return result;
 877     }
 878 
 879     // Create the garbage collection operation...
 880     VM_G1CollectForAllocation op(gc_count_before, word_size);
 881     // ...and get the VM thread to execute it.
 882     VMThread::execute(&op);
 883 
 884     if (op.prologue_succeeded() && op.pause_succeeded()) {
 885       // If the operation was successful we'll return the result even
 886       // if it is NULL. If the allocation attempt failed immediately
 887       // after a Full GC, it's unlikely we'll be able to allocate now.
 888       HeapWord* result = op.result();
 889       if (result != NULL && !isHumongous(word_size)) {
 890         // Allocations that take place on VM operations do not do any
 891         // card dirtying and we have to do it here. We only have to do
 892         // this for non-humongous allocations, though.
 893         dirty_young_block(result, word_size);
 894       }
 895       return result;
 896     } else {
 897       assert(op.result() == NULL,
 898              "the result should be NULL if the VM op did not succeed");
 899     }
 900 
 901     // Give a warning if we seem to be looping forever.
 902     if ((QueuedAllocationWarningCount > 0) &&
 903         (try_count % QueuedAllocationWarningCount == 0)) {
 904       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 905     }
 906   }
 907 
 908   ShouldNotReachHere();
 909   return NULL;
 910 }
 911 
 912 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 913                                            unsigned int *gc_count_before_ret) {
 914   // Make sure you read the note in attempt_allocation_humongous().
 915 
 916   assert_heap_not_locked_and_not_at_safepoint();
 917   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 918          "be called for humongous allocation requests");
 919 
 920   // We should only get here after the first-level allocation attempt
 921   // (attempt_allocation()) failed to allocate.
 922 
 923   // We will loop until a) we manage to successfully perform the
 924   // allocation or b) we successfully schedule a collection which
 925   // fails to perform the allocation. b) is the only case when we'll
 926   // return NULL.
 927   HeapWord* result = NULL;
 928   for (int try_count = 1; /* we'll return */; try_count += 1) {
 929     bool should_try_gc;
 930     unsigned int gc_count_before;
 931 
 932     {
 933       MutexLockerEx x(Heap_lock);
 934 
 935       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 936                                                       false /* bot_updates */);
 937       if (result != NULL) {
 938         return result;
 939       }
 940 
 941       // If we reach here, attempt_allocation_locked() above failed to
 942       // allocate a new region. So the mutator alloc region should be NULL.
 943       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 944 
 945       if (GC_locker::is_active_and_needs_gc()) {
 946         if (g1_policy()->can_expand_young_list()) {
 947           // No need for an ergo verbose message here,
 948           // can_expand_young_list() does this when it returns true.
 949           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 950                                                       false /* bot_updates */);
 951           if (result != NULL) {
 952             return result;
 953           }
 954         }
 955         should_try_gc = false;
 956       } else {
 957         // The GCLocker may not be active but the GCLocker initiated
 958         // GC may not yet have been performed (GCLocker::needs_gc()
 959         // returns true). In this case we do not try this GC and
 960         // wait until the GCLocker initiated GC is performed, and
 961         // then retry the allocation.
 962         if (GC_locker::needs_gc()) {
 963           should_try_gc = false;
 964         } else {
 965           // Read the GC count while still holding the Heap_lock.
 966           gc_count_before = total_collections();
 967           should_try_gc = true;
 968         }
 969       }
 970     }
 971 
 972     if (should_try_gc) {
 973       bool succeeded;
 974       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 975       if (result != NULL) {
 976         assert(succeeded, "only way to get back a non-NULL result");
 977         return result;
 978       }
 979 
 980       if (succeeded) {
 981         // If we get here we successfully scheduled a collection which
 982         // failed to allocate. No point in trying to allocate
 983         // further. We'll just return NULL.
 984         MutexLockerEx x(Heap_lock);
 985         *gc_count_before_ret = total_collections();
 986         return NULL;
 987       }
 988     } else {
 989       // The GCLocker is either active or the GCLocker initiated
 990       // GC has not yet been performed. Stall until it is and
 991       // then retry the allocation.
 992       GC_locker::stall_until_clear();
 993     }
 994 
 995     // We can reach here if we were unsuccessul in scheduling a
 996     // collection (because another thread beat us to it) or if we were
 997     // stalled due to the GC locker. In either can we should retry the
 998     // allocation attempt in case another thread successfully
 999     // performed a collection and reclaimed enough space. We do the
1000     // first attempt (without holding the Heap_lock) here and the
1001     // follow-on attempt will be at the start of the next loop
1002     // iteration (after taking the Heap_lock).
1003     result = _mutator_alloc_region.attempt_allocation(word_size,
1004                                                       false /* bot_updates */);
1005     if (result != NULL) {
1006       return result;
1007     }
1008 
1009     // Give a warning if we seem to be looping forever.
1010     if ((QueuedAllocationWarningCount > 0) &&
1011         (try_count % QueuedAllocationWarningCount == 0)) {
1012       warning("G1CollectedHeap::attempt_allocation_slow() "
1013               "retries %d times", try_count);
1014     }
1015   }
1016 
1017   ShouldNotReachHere();
1018   return NULL;
1019 }
1020 
1021 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1022                                           unsigned int * gc_count_before_ret) {
1023   // The structure of this method has a lot of similarities to
1024   // attempt_allocation_slow(). The reason these two were not merged
1025   // into a single one is that such a method would require several "if
1026   // allocation is not humongous do this, otherwise do that"
1027   // conditional paths which would obscure its flow. In fact, an early
1028   // version of this code did use a unified method which was harder to
1029   // follow and, as a result, it had subtle bugs that were hard to
1030   // track down. So keeping these two methods separate allows each to
1031   // be more readable. It will be good to keep these two in sync as
1032   // much as possible.
1033 
1034   assert_heap_not_locked_and_not_at_safepoint();
1035   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1036          "should only be called for humongous allocations");
1037 
1038   // Humongous objects can exhaust the heap quickly, so we should check if we
1039   // need to start a marking cycle at each humongous object allocation. We do
1040   // the check before we do the actual allocation. The reason for doing it
1041   // before the allocation is that we avoid having to keep track of the newly
1042   // allocated memory while we do a GC.
1043   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1044                                            word_size)) {
1045     collect(GCCause::_g1_humongous_allocation);
1046   }
1047 
1048   // We will loop until a) we manage to successfully perform the
1049   // allocation or b) we successfully schedule a collection which
1050   // fails to perform the allocation. b) is the only case when we'll
1051   // return NULL.
1052   HeapWord* result = NULL;
1053   for (int try_count = 1; /* we'll return */; try_count += 1) {
1054     bool should_try_gc;
1055     unsigned int gc_count_before;
1056 
1057     {
1058       MutexLockerEx x(Heap_lock);
1059 
1060       // Given that humongous objects are not allocated in young
1061       // regions, we'll first try to do the allocation without doing a
1062       // collection hoping that there's enough space in the heap.
1063       result = humongous_obj_allocate(word_size);
1064       if (result != NULL) {
1065         return result;
1066       }
1067 
1068       if (GC_locker::is_active_and_needs_gc()) {
1069         should_try_gc = false;
1070       } else {
1071          // The GCLocker may not be active but the GCLocker initiated
1072         // GC may not yet have been performed (GCLocker::needs_gc()
1073         // returns true). In this case we do not try this GC and
1074         // wait until the GCLocker initiated GC is performed, and
1075         // then retry the allocation.
1076         if (GC_locker::needs_gc()) {
1077           should_try_gc = false;
1078         } else {
1079           // Read the GC count while still holding the Heap_lock.
1080           gc_count_before = total_collections();
1081           should_try_gc = true;
1082         }
1083       }
1084     }
1085 
1086     if (should_try_gc) {
1087       // If we failed to allocate the humongous object, we should try to
1088       // do a collection pause (if we're allowed) in case it reclaims
1089       // enough space for the allocation to succeed after the pause.
1090 
1091       bool succeeded;
1092       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1093       if (result != NULL) {
1094         assert(succeeded, "only way to get back a non-NULL result");
1095         return result;
1096       }
1097 
1098       if (succeeded) {
1099         // If we get here we successfully scheduled a collection which
1100         // failed to allocate. No point in trying to allocate
1101         // further. We'll just return NULL.
1102         MutexLockerEx x(Heap_lock);
1103         *gc_count_before_ret = total_collections();
1104         return NULL;
1105       }
1106     } else {
1107       // The GCLocker is either active or the GCLocker initiated
1108       // GC has not yet been performed. Stall until it is and
1109       // then retry the allocation.
1110       GC_locker::stall_until_clear();
1111     }
1112 
1113     // We can reach here if we were unsuccessul in scheduling a
1114     // collection (because another thread beat us to it) or if we were
1115     // stalled due to the GC locker. In either can we should retry the
1116     // allocation attempt in case another thread successfully
1117     // performed a collection and reclaimed enough space.  Give a
1118     // warning if we seem to be looping forever.
1119 
1120     if ((QueuedAllocationWarningCount > 0) &&
1121         (try_count % QueuedAllocationWarningCount == 0)) {
1122       warning("G1CollectedHeap::attempt_allocation_humongous() "
1123               "retries %d times", try_count);
1124     }
1125   }
1126 
1127   ShouldNotReachHere();
1128   return NULL;
1129 }
1130 
1131 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1132                                        bool expect_null_mutator_alloc_region) {
1133   assert_at_safepoint(true /* should_be_vm_thread */);
1134   assert(_mutator_alloc_region.get() == NULL ||
1135                                              !expect_null_mutator_alloc_region,
1136          "the current alloc region was unexpectedly found to be non-NULL");
1137 
1138   if (!isHumongous(word_size)) {
1139     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1140                                                       false /* bot_updates */);
1141   } else {
1142     HeapWord* result = humongous_obj_allocate(word_size);
1143     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1144       g1_policy()->set_initiate_conc_mark_if_possible();
1145     }
1146     return result;
1147   }
1148 
1149   ShouldNotReachHere();
1150 }
1151 
1152 class PostMCRemSetClearClosure: public HeapRegionClosure {
1153   G1CollectedHeap* _g1h;
1154   ModRefBarrierSet* _mr_bs;
1155 public:
1156   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1157     _g1h(g1h), _mr_bs(mr_bs) { }
1158   bool doHeapRegion(HeapRegion* r) {
1159     if (r->continuesHumongous()) {
1160       return false;
1161     }
1162     _g1h->reset_gc_time_stamps(r);
1163     HeapRegionRemSet* hrrs = r->rem_set();
1164     if (hrrs != NULL) hrrs->clear();
1165     // You might think here that we could clear just the cards
1166     // corresponding to the used region.  But no: if we leave a dirty card
1167     // in a region we might allocate into, then it would prevent that card
1168     // from being enqueued, and cause it to be missed.
1169     // Re: the performance cost: we shouldn't be doing full GC anyway!
1170     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1171     return false;
1172   }
1173 };
1174 
1175 void G1CollectedHeap::clear_rsets_post_compaction() {
1176   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1177   heap_region_iterate(&rs_clear);
1178 }
1179 
1180 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1181   G1CollectedHeap*   _g1h;
1182   UpdateRSOopClosure _cl;
1183   int                _worker_i;
1184 public:
1185   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1186     _cl(g1->g1_rem_set(), worker_i),
1187     _worker_i(worker_i),
1188     _g1h(g1)
1189   { }
1190 
1191   bool doHeapRegion(HeapRegion* r) {
1192     if (!r->continuesHumongous()) {
1193       _cl.set_from(r);
1194       r->oop_iterate(&_cl);
1195     }
1196     return false;
1197   }
1198 };
1199 
1200 class ParRebuildRSTask: public AbstractGangTask {
1201   G1CollectedHeap* _g1;
1202 public:
1203   ParRebuildRSTask(G1CollectedHeap* g1)
1204     : AbstractGangTask("ParRebuildRSTask"),
1205       _g1(g1)
1206   { }
1207 
1208   void work(uint worker_id) {
1209     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1210     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1211                                           _g1->workers()->active_workers(),
1212                                          HeapRegion::RebuildRSClaimValue);
1213   }
1214 };
1215 
1216 class PostCompactionPrinterClosure: public HeapRegionClosure {
1217 private:
1218   G1HRPrinter* _hr_printer;
1219 public:
1220   bool doHeapRegion(HeapRegion* hr) {
1221     assert(!hr->is_young(), "not expecting to find young regions");
1222     // We only generate output for non-empty regions.
1223     if (!hr->is_empty()) {
1224       if (!hr->isHumongous()) {
1225         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1226       } else if (hr->startsHumongous()) {
1227         if (hr->region_num() == 1) {
1228           // single humongous region
1229           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1230         } else {
1231           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1232         }
1233       } else {
1234         assert(hr->continuesHumongous(), "only way to get here");
1235         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1236       }
1237     }
1238     return false;
1239   }
1240 
1241   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1242     : _hr_printer(hr_printer) { }
1243 };
1244 
1245 void G1CollectedHeap::print_hrs_post_compaction() {
1246   PostCompactionPrinterClosure cl(hr_printer());
1247   heap_region_iterate(&cl);
1248 }
1249 
1250 double G1CollectedHeap::verify(bool guard, const char* msg) {
1251   double verify_time_ms = 0.0;
1252 
1253   if (guard && total_collections() >= VerifyGCStartAt) {
1254     double verify_start = os::elapsedTime();
1255     HandleMark hm;  // Discard invalid handles created during verification
1256     gclog_or_tty->print(msg);
1257     prepare_for_verify();
1258     Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking);
1259     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
1260   }
1261 
1262   return verify_time_ms;
1263 }
1264 
1265 void G1CollectedHeap::verify_before_gc() {
1266   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
1267   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
1268 }
1269 
1270 void G1CollectedHeap::verify_after_gc() {
1271   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
1272   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
1273 }
1274 
1275 bool G1CollectedHeap::do_collection(bool explicit_gc,
1276                                     bool clear_all_soft_refs,
1277                                     size_t word_size) {
1278   assert_at_safepoint(true /* should_be_vm_thread */);
1279 
1280   if (GC_locker::check_active_before_gc()) {
1281     return false;
1282   }
1283 
1284   SvcGCMarker sgcm(SvcGCMarker::FULL);
1285   ResourceMark rm;
1286 
1287   print_heap_before_gc();
1288 
1289   size_t metadata_prev_used = MetaspaceAux::used_in_bytes();
1290 
1291   HRSPhaseSetter x(HRSPhaseFullGC);
1292   verify_region_sets_optional();
1293 
1294   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1295                            collector_policy()->should_clear_all_soft_refs();
1296 
1297   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1298 
1299   {
1300     IsGCActiveMark x;
1301 
1302     // Timing
1303     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1304     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1305     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1306 
1307     TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
1308     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1309     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1310 
1311     double start = os::elapsedTime();
1312     g1_policy()->record_full_collection_start();
1313 
1314     // Note: When we have a more flexible GC logging framework that
1315     // allows us to add optional attributes to a GC log record we
1316     // could consider timing and reporting how long we wait in the
1317     // following two methods.
1318     wait_while_free_regions_coming();
1319     // If we start the compaction before the CM threads finish
1320     // scanning the root regions we might trip them over as we'll
1321     // be moving objects / updating references. So let's wait until
1322     // they are done. By telling them to abort, they should complete
1323     // early.
1324     _cm->root_regions()->abort();
1325     _cm->root_regions()->wait_until_scan_finished();
1326     append_secondary_free_list_if_not_empty_with_lock();
1327 
1328     gc_prologue(true);
1329     increment_total_collections(true /* full gc */);
1330     increment_old_marking_cycles_started();
1331 
1332     size_t g1h_prev_used = used();
1333     assert(used() == recalculate_used(), "Should be equal");
1334 
1335     verify_before_gc();
1336 
1337     pre_full_gc_dump();
1338 
1339     COMPILER2_PRESENT(DerivedPointerTable::clear());
1340 
1341     // Disable discovery and empty the discovered lists
1342     // for the CM ref processor.
1343     ref_processor_cm()->disable_discovery();
1344     ref_processor_cm()->abandon_partial_discovery();
1345     ref_processor_cm()->verify_no_references_recorded();
1346 
1347     // Abandon current iterations of concurrent marking and concurrent
1348     // refinement, if any are in progress. We have to do this before
1349     // wait_until_scan_finished() below.
1350     concurrent_mark()->abort();
1351 
1352     // Make sure we'll choose a new allocation region afterwards.
1353     release_mutator_alloc_region();
1354     abandon_gc_alloc_regions();
1355     g1_rem_set()->cleanupHRRS();
1356 
1357     // We should call this after we retire any currently active alloc
1358     // regions so that all the ALLOC / RETIRE events are generated
1359     // before the start GC event.
1360     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1361 
1362     // We may have added regions to the current incremental collection
1363     // set between the last GC or pause and now. We need to clear the
1364     // incremental collection set and then start rebuilding it afresh
1365     // after this full GC.
1366     abandon_collection_set(g1_policy()->inc_cset_head());
1367     g1_policy()->clear_incremental_cset();
1368     g1_policy()->stop_incremental_cset_building();
1369 
1370     tear_down_region_sets(false /* free_list_only */);
1371     g1_policy()->set_gcs_are_young(true);
1372 
1373     // See the comments in g1CollectedHeap.hpp and
1374     // G1CollectedHeap::ref_processing_init() about
1375     // how reference processing currently works in G1.
1376 
1377     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1378     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1379 
1380     // Temporarily clear the STW ref processor's _is_alive_non_header field.
1381     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1382 
1383     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1384     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1385 
1386     // Do collection work
1387     {
1388       HandleMark hm;  // Discard invalid handles created during gc
1389       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1390     }
1391 
1392     assert(free_regions() == 0, "we should not have added any free regions");
1393     rebuild_region_sets(false /* free_list_only */);
1394 
1395     // Enqueue any discovered reference objects that have
1396     // not been removed from the discovered lists.
1397     ref_processor_stw()->enqueue_discovered_references();
1398 
1399     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1400 
1401     MemoryService::track_memory_usage();
1402 
1403     verify_after_gc();
1404 
1405     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1406     ref_processor_stw()->verify_no_references_recorded();
1407 
1408     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1409     ClassLoaderDataGraph::purge();
1410 
1411     // Note: since we've just done a full GC, concurrent
1412     // marking is no longer active. Therefore we need not
1413     // re-enable reference discovery for the CM ref processor.
1414     // That will be done at the start of the next marking cycle.
1415     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1416     ref_processor_cm()->verify_no_references_recorded();
1417 
1418     reset_gc_time_stamp();
1419     // Since everything potentially moved, we will clear all remembered
1420     // sets, and clear all cards.  Later we will rebuild remebered
1421     // sets. We will also reset the GC time stamps of the regions.
1422     clear_rsets_post_compaction();
1423     check_gc_time_stamps();
1424 
1425     // Resize the heap if necessary.
1426     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1427 
1428     if (_hr_printer.is_active()) {
1429       // We should do this after we potentially resize the heap so
1430       // that all the COMMIT / UNCOMMIT events are generated before
1431       // the end GC event.
1432 
1433       print_hrs_post_compaction();
1434       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1435     }
1436 
1437     if (_cg1r->use_cache()) {
1438       _cg1r->clear_and_record_card_counts();
1439       _cg1r->clear_hot_cache();
1440     }
1441 
1442     // Rebuild remembered sets of all regions.
1443     if (G1CollectedHeap::use_parallel_gc_threads()) {
1444       uint n_workers =
1445         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1446                                        workers()->active_workers(),
1447                                        Threads::number_of_non_daemon_threads());
1448       assert(UseDynamicNumberOfGCThreads ||
1449              n_workers == workers()->total_workers(),
1450              "If not dynamic should be using all the  workers");
1451       workers()->set_active_workers(n_workers);
1452       // Set parallel threads in the heap (_n_par_threads) only
1453       // before a parallel phase and always reset it to 0 after
1454       // the phase so that the number of parallel threads does
1455       // no get carried forward to a serial phase where there
1456       // may be code that is "possibly_parallel".
1457       set_par_threads(n_workers);
1458 
1459       ParRebuildRSTask rebuild_rs_task(this);
1460       assert(check_heap_region_claim_values(
1461              HeapRegion::InitialClaimValue), "sanity check");
1462       assert(UseDynamicNumberOfGCThreads ||
1463              workers()->active_workers() == workers()->total_workers(),
1464         "Unless dynamic should use total workers");
1465       // Use the most recent number of  active workers
1466       assert(workers()->active_workers() > 0,
1467         "Active workers not properly set");
1468       set_par_threads(workers()->active_workers());
1469       workers()->run_task(&rebuild_rs_task);
1470       set_par_threads(0);
1471       assert(check_heap_region_claim_values(
1472              HeapRegion::RebuildRSClaimValue), "sanity check");
1473       reset_heap_region_claim_values();
1474     } else {
1475       RebuildRSOutOfRegionClosure rebuild_rs(this);
1476       heap_region_iterate(&rebuild_rs);
1477     }
1478 
1479     if (G1Log::fine()) {
1480       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1481     }
1482 
1483     if (true) { // FIXME
1484       MetaspaceGC::compute_new_size();
1485     }
1486 
1487     // Start a new incremental collection set for the next pause
1488     assert(g1_policy()->collection_set() == NULL, "must be");
1489     g1_policy()->start_incremental_cset_building();
1490 
1491     // Clear the _cset_fast_test bitmap in anticipation of adding
1492     // regions to the incremental collection set for the next
1493     // evacuation pause.
1494     clear_cset_fast_test();
1495 
1496     init_mutator_alloc_region();
1497 
1498     double end = os::elapsedTime();
1499     g1_policy()->record_full_collection_end();
1500 
1501 #ifdef TRACESPINNING
1502     ParallelTaskTerminator::print_termination_counts();
1503 #endif
1504 
1505     gc_epilogue(true);
1506 
1507     // Discard all rset updates
1508     JavaThread::dirty_card_queue_set().abandon_logs();
1509     assert(!G1DeferredRSUpdate
1510            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1511 
1512     _young_list->reset_sampled_info();
1513     // At this point there should be no regions in the
1514     // entire heap tagged as young.
1515     assert( check_young_list_empty(true /* check_heap */),
1516       "young list should be empty at this point");
1517 
1518     // Update the number of full collections that have been completed.
1519     increment_old_marking_cycles_completed(false /* concurrent */);
1520 
1521     _hrs.verify_optional();
1522     verify_region_sets_optional();
1523 
1524     print_heap_after_gc();
1525 
1526     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1527     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1528     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1529     // before any GC notifications are raised.
1530     g1mm()->update_sizes();
1531   }
1532 
1533   post_full_gc_dump();
1534 
1535   return true;
1536 }
1537 
1538 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1539   // do_collection() will return whether it succeeded in performing
1540   // the GC. Currently, there is no facility on the
1541   // do_full_collection() API to notify the caller than the collection
1542   // did not succeed (e.g., because it was locked out by the GC
1543   // locker). So, right now, we'll ignore the return value.
1544   bool dummy = do_collection(true,                /* explicit_gc */
1545                              clear_all_soft_refs,
1546                              0                    /* word_size */);
1547 }
1548 
1549 // This code is mostly copied from TenuredGeneration.
1550 void
1551 G1CollectedHeap::
1552 resize_if_necessary_after_full_collection(size_t word_size) {
1553   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1554 
1555   // Include the current allocation, if any, and bytes that will be
1556   // pre-allocated to support collections, as "used".
1557   const size_t used_after_gc = used();
1558   const size_t capacity_after_gc = capacity();
1559   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1560 
1561   // This is enforced in arguments.cpp.
1562   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1563          "otherwise the code below doesn't make sense");
1564 
1565   // We don't have floating point command-line arguments
1566   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1567   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1568   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1569   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1570 
1571   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1572   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1573 
1574   // We have to be careful here as these two calculations can overflow
1575   // 32-bit size_t's.
1576   double used_after_gc_d = (double) used_after_gc;
1577   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1578   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1579 
1580   // Let's make sure that they are both under the max heap size, which
1581   // by default will make them fit into a size_t.
1582   double desired_capacity_upper_bound = (double) max_heap_size;
1583   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1584                                     desired_capacity_upper_bound);
1585   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1586                                     desired_capacity_upper_bound);
1587 
1588   // We can now safely turn them into size_t's.
1589   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1590   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1591 
1592   // This assert only makes sense here, before we adjust them
1593   // with respect to the min and max heap size.
1594   assert(minimum_desired_capacity <= maximum_desired_capacity,
1595          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1596                  "maximum_desired_capacity = "SIZE_FORMAT,
1597                  minimum_desired_capacity, maximum_desired_capacity));
1598 
1599   // Should not be greater than the heap max size. No need to adjust
1600   // it with respect to the heap min size as it's a lower bound (i.e.,
1601   // we'll try to make the capacity larger than it, not smaller).
1602   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1603   // Should not be less than the heap min size. No need to adjust it
1604   // with respect to the heap max size as it's an upper bound (i.e.,
1605   // we'll try to make the capacity smaller than it, not greater).
1606   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1607 
1608   if (capacity_after_gc < minimum_desired_capacity) {
1609     // Don't expand unless it's significant
1610     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1611     ergo_verbose4(ErgoHeapSizing,
1612                   "attempt heap expansion",
1613                   ergo_format_reason("capacity lower than "
1614                                      "min desired capacity after Full GC")
1615                   ergo_format_byte("capacity")
1616                   ergo_format_byte("occupancy")
1617                   ergo_format_byte_perc("min desired capacity"),
1618                   capacity_after_gc, used_after_gc,
1619                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1620     expand(expand_bytes);
1621 
1622     // No expansion, now see if we want to shrink
1623   } else if (capacity_after_gc > maximum_desired_capacity) {
1624     // Capacity too large, compute shrinking size
1625     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1626     ergo_verbose4(ErgoHeapSizing,
1627                   "attempt heap shrinking",
1628                   ergo_format_reason("capacity higher than "
1629                                      "max desired capacity after Full GC")
1630                   ergo_format_byte("capacity")
1631                   ergo_format_byte("occupancy")
1632                   ergo_format_byte_perc("max desired capacity"),
1633                   capacity_after_gc, used_after_gc,
1634                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1635     shrink(shrink_bytes);
1636   }
1637 }
1638 
1639 
1640 HeapWord*
1641 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1642                                            bool* succeeded) {
1643   assert_at_safepoint(true /* should_be_vm_thread */);
1644 
1645   *succeeded = true;
1646   // Let's attempt the allocation first.
1647   HeapWord* result =
1648     attempt_allocation_at_safepoint(word_size,
1649                                  false /* expect_null_mutator_alloc_region */);
1650   if (result != NULL) {
1651     assert(*succeeded, "sanity");
1652     return result;
1653   }
1654 
1655   // In a G1 heap, we're supposed to keep allocation from failing by
1656   // incremental pauses.  Therefore, at least for now, we'll favor
1657   // expansion over collection.  (This might change in the future if we can
1658   // do something smarter than full collection to satisfy a failed alloc.)
1659   result = expand_and_allocate(word_size);
1660   if (result != NULL) {
1661     assert(*succeeded, "sanity");
1662     return result;
1663   }
1664 
1665   // Expansion didn't work, we'll try to do a Full GC.
1666   bool gc_succeeded = do_collection(false, /* explicit_gc */
1667                                     false, /* clear_all_soft_refs */
1668                                     word_size);
1669   if (!gc_succeeded) {
1670     *succeeded = false;
1671     return NULL;
1672   }
1673 
1674   // Retry the allocation
1675   result = attempt_allocation_at_safepoint(word_size,
1676                                   true /* expect_null_mutator_alloc_region */);
1677   if (result != NULL) {
1678     assert(*succeeded, "sanity");
1679     return result;
1680   }
1681 
1682   // Then, try a Full GC that will collect all soft references.
1683   gc_succeeded = do_collection(false, /* explicit_gc */
1684                                true,  /* clear_all_soft_refs */
1685                                word_size);
1686   if (!gc_succeeded) {
1687     *succeeded = false;
1688     return NULL;
1689   }
1690 
1691   // Retry the allocation once more
1692   result = attempt_allocation_at_safepoint(word_size,
1693                                   true /* expect_null_mutator_alloc_region */);
1694   if (result != NULL) {
1695     assert(*succeeded, "sanity");
1696     return result;
1697   }
1698 
1699   assert(!collector_policy()->should_clear_all_soft_refs(),
1700          "Flag should have been handled and cleared prior to this point");
1701 
1702   // What else?  We might try synchronous finalization later.  If the total
1703   // space available is large enough for the allocation, then a more
1704   // complete compaction phase than we've tried so far might be
1705   // appropriate.
1706   assert(*succeeded, "sanity");
1707   return NULL;
1708 }
1709 
1710 // Attempting to expand the heap sufficiently
1711 // to support an allocation of the given "word_size".  If
1712 // successful, perform the allocation and return the address of the
1713 // allocated block, or else "NULL".
1714 
1715 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1716   assert_at_safepoint(true /* should_be_vm_thread */);
1717 
1718   verify_region_sets_optional();
1719 
1720   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1721   ergo_verbose1(ErgoHeapSizing,
1722                 "attempt heap expansion",
1723                 ergo_format_reason("allocation request failed")
1724                 ergo_format_byte("allocation request"),
1725                 word_size * HeapWordSize);
1726   if (expand(expand_bytes)) {
1727     _hrs.verify_optional();
1728     verify_region_sets_optional();
1729     return attempt_allocation_at_safepoint(word_size,
1730                                  false /* expect_null_mutator_alloc_region */);
1731   }
1732   return NULL;
1733 }
1734 
1735 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1736                                              HeapWord* new_end) {
1737   assert(old_end != new_end, "don't call this otherwise");
1738   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1739 
1740   // Update the committed mem region.
1741   _g1_committed.set_end(new_end);
1742   // Tell the card table about the update.
1743   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1744   // Tell the BOT about the update.
1745   _bot_shared->resize(_g1_committed.word_size());
1746 }
1747 
1748 bool G1CollectedHeap::expand(size_t expand_bytes) {
1749   size_t old_mem_size = _g1_storage.committed_size();
1750   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1751   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1752                                        HeapRegion::GrainBytes);
1753   ergo_verbose2(ErgoHeapSizing,
1754                 "expand the heap",
1755                 ergo_format_byte("requested expansion amount")
1756                 ergo_format_byte("attempted expansion amount"),
1757                 expand_bytes, aligned_expand_bytes);
1758 
1759   // First commit the memory.
1760   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1761   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1762   if (successful) {
1763     // Then propagate this update to the necessary data structures.
1764     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1765     update_committed_space(old_end, new_end);
1766 
1767     FreeRegionList expansion_list("Local Expansion List");
1768     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1769     assert(mr.start() == old_end, "post-condition");
1770     // mr might be a smaller region than what was requested if
1771     // expand_by() was unable to allocate the HeapRegion instances
1772     assert(mr.end() <= new_end, "post-condition");
1773 
1774     size_t actual_expand_bytes = mr.byte_size();
1775     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1776     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1777            "post-condition");
1778     if (actual_expand_bytes < aligned_expand_bytes) {
1779       // We could not expand _hrs to the desired size. In this case we
1780       // need to shrink the committed space accordingly.
1781       assert(mr.end() < new_end, "invariant");
1782 
1783       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1784       // First uncommit the memory.
1785       _g1_storage.shrink_by(diff_bytes);
1786       // Then propagate this update to the necessary data structures.
1787       update_committed_space(new_end, mr.end());
1788     }
1789     _free_list.add_as_tail(&expansion_list);
1790 
1791     if (_hr_printer.is_active()) {
1792       HeapWord* curr = mr.start();
1793       while (curr < mr.end()) {
1794         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1795         _hr_printer.commit(curr, curr_end);
1796         curr = curr_end;
1797       }
1798       assert(curr == mr.end(), "post-condition");
1799     }
1800     g1_policy()->record_new_heap_size(n_regions());
1801   } else {
1802     ergo_verbose0(ErgoHeapSizing,
1803                   "did not expand the heap",
1804                   ergo_format_reason("heap expansion operation failed"));
1805     // The expansion of the virtual storage space was unsuccessful.
1806     // Let's see if it was because we ran out of swap.
1807     if (G1ExitOnExpansionFailure &&
1808         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1809       // We had head room...
1810       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1811     }
1812   }
1813   return successful;
1814 }
1815 
1816 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1817   size_t old_mem_size = _g1_storage.committed_size();
1818   size_t aligned_shrink_bytes =
1819     ReservedSpace::page_align_size_down(shrink_bytes);
1820   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1821                                          HeapRegion::GrainBytes);
1822   uint num_regions_deleted = 0;
1823   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1824   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1825   assert(mr.end() == old_end, "post-condition");
1826 
1827   ergo_verbose3(ErgoHeapSizing,
1828                 "shrink the heap",
1829                 ergo_format_byte("requested shrinking amount")
1830                 ergo_format_byte("aligned shrinking amount")
1831                 ergo_format_byte("attempted shrinking amount"),
1832                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1833   if (mr.byte_size() > 0) {
1834     if (_hr_printer.is_active()) {
1835       HeapWord* curr = mr.end();
1836       while (curr > mr.start()) {
1837         HeapWord* curr_end = curr;
1838         curr -= HeapRegion::GrainWords;
1839         _hr_printer.uncommit(curr, curr_end);
1840       }
1841       assert(curr == mr.start(), "post-condition");
1842     }
1843 
1844     _g1_storage.shrink_by(mr.byte_size());
1845     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1846     assert(mr.start() == new_end, "post-condition");
1847 
1848     _expansion_regions += num_regions_deleted;
1849     update_committed_space(old_end, new_end);
1850     HeapRegionRemSet::shrink_heap(n_regions());
1851     g1_policy()->record_new_heap_size(n_regions());
1852   } else {
1853     ergo_verbose0(ErgoHeapSizing,
1854                   "did not shrink the heap",
1855                   ergo_format_reason("heap shrinking operation failed"));
1856   }
1857 }
1858 
1859 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1860   verify_region_sets_optional();
1861 
1862   // We should only reach here at the end of a Full GC which means we
1863   // should not not be holding to any GC alloc regions. The method
1864   // below will make sure of that and do any remaining clean up.
1865   abandon_gc_alloc_regions();
1866 
1867   // Instead of tearing down / rebuilding the free lists here, we
1868   // could instead use the remove_all_pending() method on free_list to
1869   // remove only the ones that we need to remove.
1870   tear_down_region_sets(true /* free_list_only */);
1871   shrink_helper(shrink_bytes);
1872   rebuild_region_sets(true /* free_list_only */);
1873 
1874   _hrs.verify_optional();
1875   verify_region_sets_optional();
1876 }
1877 
1878 // Public methods.
1879 
1880 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1881 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1882 #endif // _MSC_VER
1883 
1884 
1885 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1886   SharedHeap(policy_),
1887   _g1_policy(policy_),
1888   _dirty_card_queue_set(false),
1889   _into_cset_dirty_card_queue_set(false),
1890   _is_alive_closure_cm(this),
1891   _is_alive_closure_stw(this),
1892   _ref_processor_cm(NULL),
1893   _ref_processor_stw(NULL),
1894   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1895   _bot_shared(NULL),
1896   _evac_failure_scan_stack(NULL) ,
1897   _mark_in_progress(false),
1898   _cg1r(NULL), _summary_bytes_used(0),
1899   _g1mm(NULL),
1900   _refine_cte_cl(NULL),
1901   _full_collection(false),
1902   _free_list("Master Free List"),
1903   _secondary_free_list("Secondary Free List"),
1904   _old_set("Old Set"),
1905   _humongous_set("Master Humongous Set"),
1906   _free_regions_coming(false),
1907   _young_list(new YoungList(this)),
1908   _gc_time_stamp(0),
1909   _retained_old_gc_alloc_region(NULL),
1910   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1911   _old_plab_stats(OldPLABSize, PLABWeight),
1912   _expand_heap_after_alloc_failure(true),
1913   _surviving_young_words(NULL),
1914   _old_marking_cycles_started(0),
1915   _old_marking_cycles_completed(0),
1916   _in_cset_fast_test(NULL),
1917   _in_cset_fast_test_base(NULL),
1918   _dirty_cards_region_list(NULL),
1919   _worker_cset_start_region(NULL),
1920   _worker_cset_start_region_time_stamp(NULL) {
1921   _g1h = this; // To catch bugs.
1922   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1923     vm_exit_during_initialization("Failed necessary allocation.");
1924   }
1925 
1926   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1927 
1928   int n_queues = MAX2((int)ParallelGCThreads, 1);
1929   _task_queues = new RefToScanQueueSet(n_queues);
1930 
1931   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1932   assert(n_rem_sets > 0, "Invariant.");
1933 
1934   HeapRegionRemSetIterator** iter_arr =
1935     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
1936   for (int i = 0; i < n_queues; i++) {
1937     iter_arr[i] = new HeapRegionRemSetIterator();
1938   }
1939   _rem_set_iterator = iter_arr;
1940 
1941   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1942   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1943 
1944   for (int i = 0; i < n_queues; i++) {
1945     RefToScanQueue* q = new RefToScanQueue();
1946     q->initialize();
1947     _task_queues->register_queue(i, q);
1948   }
1949 
1950   clear_cset_start_regions();
1951 
1952   // Initialize the G1EvacuationFailureALot counters and flags.
1953   NOT_PRODUCT(reset_evacuation_should_fail();)
1954 
1955   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1956 }
1957 
1958 jint G1CollectedHeap::initialize() {
1959   CollectedHeap::pre_initialize();
1960   os::enable_vtime();
1961 
1962   G1Log::init();
1963 
1964   // Necessary to satisfy locking discipline assertions.
1965 
1966   MutexLocker x(Heap_lock);
1967 
1968   // We have to initialize the printer before committing the heap, as
1969   // it will be used then.
1970   _hr_printer.set_active(G1PrintHeapRegions);
1971 
1972   // While there are no constraints in the GC code that HeapWordSize
1973   // be any particular value, there are multiple other areas in the
1974   // system which believe this to be true (e.g. oop->object_size in some
1975   // cases incorrectly returns the size in wordSize units rather than
1976   // HeapWordSize).
1977   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1978 
1979   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1980   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1981 
1982   // Ensure that the sizes are properly aligned.
1983   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1984   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1985 
1986   _cg1r = new ConcurrentG1Refine();
1987 
1988   // Reserve the maximum.
1989 
1990   // When compressed oops are enabled, the preferred heap base
1991   // is calculated by subtracting the requested size from the
1992   // 32Gb boundary and using the result as the base address for
1993   // heap reservation. If the requested size is not aligned to
1994   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1995   // into the ReservedHeapSpace constructor) then the actual
1996   // base of the reserved heap may end up differing from the
1997   // address that was requested (i.e. the preferred heap base).
1998   // If this happens then we could end up using a non-optimal
1999   // compressed oops mode.
2000 
2001   // Since max_byte_size is aligned to the size of a heap region (checked
2002   // above).
2003   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2004 
2005   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2006                                                  HeapRegion::GrainBytes);
2007 
2008   // It is important to do this in a way such that concurrent readers can't
2009   // temporarily think somethings in the heap.  (I've actually seen this
2010   // happen in asserts: DLD.)
2011   _reserved.set_word_size(0);
2012   _reserved.set_start((HeapWord*)heap_rs.base());
2013   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2014 
2015   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2016 
2017   // Create the gen rem set (and barrier set) for the entire reserved region.
2018   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2019   set_barrier_set(rem_set()->bs());
2020   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2021     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2022   } else {
2023     vm_exit_during_initialization("G1 requires a mod ref bs.");
2024     return JNI_ENOMEM;
2025   }
2026 
2027   // Also create a G1 rem set.
2028   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2029     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2030   } else {
2031     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2032     return JNI_ENOMEM;
2033   }
2034 
2035   // Carve out the G1 part of the heap.
2036 
2037   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2038   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2039                            g1_rs.size()/HeapWordSize);
2040 
2041   _g1_storage.initialize(g1_rs, 0);
2042   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2043   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2044                   (HeapWord*) _g1_reserved.end(),
2045                   _expansion_regions);
2046 
2047   // 6843694 - ensure that the maximum region index can fit
2048   // in the remembered set structures.
2049   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2050   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2051 
2052   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2053   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2054   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2055             "too many cards per region");
2056 
2057   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2058 
2059   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2060                                              heap_word_size(init_byte_size));
2061 
2062   _g1h = this;
2063 
2064    _in_cset_fast_test_length = max_regions();
2065    _in_cset_fast_test_base =
2066                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2067 
2068    // We're biasing _in_cset_fast_test to avoid subtracting the
2069    // beginning of the heap every time we want to index; basically
2070    // it's the same with what we do with the card table.
2071    _in_cset_fast_test = _in_cset_fast_test_base -
2072                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2073 
2074    // Clear the _cset_fast_test bitmap in anticipation of adding
2075    // regions to the incremental collection set for the first
2076    // evacuation pause.
2077    clear_cset_fast_test();
2078 
2079   // Create the ConcurrentMark data structure and thread.
2080   // (Must do this late, so that "max_regions" is defined.)
2081   _cm = new ConcurrentMark(this, heap_rs);
2082   if (_cm == NULL || !_cm->completed_initialization()) {
2083     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2084     return JNI_ENOMEM;
2085   }
2086   _cmThread = _cm->cmThread();
2087 
2088   // Initialize the from_card cache structure of HeapRegionRemSet.
2089   HeapRegionRemSet::init_heap(max_regions());
2090 
2091   // Now expand into the initial heap size.
2092   if (!expand(init_byte_size)) {
2093     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2094     return JNI_ENOMEM;
2095   }
2096 
2097   // Perform any initialization actions delegated to the policy.
2098   g1_policy()->init();
2099 
2100   _refine_cte_cl =
2101     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2102                                     g1_rem_set(),
2103                                     concurrent_g1_refine());
2104   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2105 
2106   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2107                                                SATB_Q_FL_lock,
2108                                                G1SATBProcessCompletedThreshold,
2109                                                Shared_SATB_Q_lock);
2110 
2111   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2112                                                 DirtyCardQ_FL_lock,
2113                                                 concurrent_g1_refine()->yellow_zone(),
2114                                                 concurrent_g1_refine()->red_zone(),
2115                                                 Shared_DirtyCardQ_lock);
2116 
2117   if (G1DeferredRSUpdate) {
2118     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2119                                       DirtyCardQ_FL_lock,
2120                                       -1, // never trigger processing
2121                                       -1, // no limit on length
2122                                       Shared_DirtyCardQ_lock,
2123                                       &JavaThread::dirty_card_queue_set());
2124   }
2125 
2126   // Initialize the card queue set used to hold cards containing
2127   // references into the collection set.
2128   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2129                                              DirtyCardQ_FL_lock,
2130                                              -1, // never trigger processing
2131                                              -1, // no limit on length
2132                                              Shared_DirtyCardQ_lock,
2133                                              &JavaThread::dirty_card_queue_set());
2134 
2135   // In case we're keeping closure specialization stats, initialize those
2136   // counts and that mechanism.
2137   SpecializationStats::clear();
2138 
2139   // Do later initialization work for concurrent refinement.
2140   _cg1r->init();
2141 
2142   // Here we allocate the dummy full region that is required by the
2143   // G1AllocRegion class. If we don't pass an address in the reserved
2144   // space here, lots of asserts fire.
2145 
2146   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2147                                              _g1_reserved.start());
2148   // We'll re-use the same region whether the alloc region will
2149   // require BOT updates or not and, if it doesn't, then a non-young
2150   // region will complain that it cannot support allocations without
2151   // BOT updates. So we'll tag the dummy region as young to avoid that.
2152   dummy_region->set_young();
2153   // Make sure it's full.
2154   dummy_region->set_top(dummy_region->end());
2155   G1AllocRegion::setup(this, dummy_region);
2156 
2157   init_mutator_alloc_region();
2158 
2159   // Do create of the monitoring and management support so that
2160   // values in the heap have been properly initialized.
2161   _g1mm = new G1MonitoringSupport(this);
2162 
2163   return JNI_OK;
2164 }
2165 
2166 void G1CollectedHeap::ref_processing_init() {
2167   // Reference processing in G1 currently works as follows:
2168   //
2169   // * There are two reference processor instances. One is
2170   //   used to record and process discovered references
2171   //   during concurrent marking; the other is used to
2172   //   record and process references during STW pauses
2173   //   (both full and incremental).
2174   // * Both ref processors need to 'span' the entire heap as
2175   //   the regions in the collection set may be dotted around.
2176   //
2177   // * For the concurrent marking ref processor:
2178   //   * Reference discovery is enabled at initial marking.
2179   //   * Reference discovery is disabled and the discovered
2180   //     references processed etc during remarking.
2181   //   * Reference discovery is MT (see below).
2182   //   * Reference discovery requires a barrier (see below).
2183   //   * Reference processing may or may not be MT
2184   //     (depending on the value of ParallelRefProcEnabled
2185   //     and ParallelGCThreads).
2186   //   * A full GC disables reference discovery by the CM
2187   //     ref processor and abandons any entries on it's
2188   //     discovered lists.
2189   //
2190   // * For the STW processor:
2191   //   * Non MT discovery is enabled at the start of a full GC.
2192   //   * Processing and enqueueing during a full GC is non-MT.
2193   //   * During a full GC, references are processed after marking.
2194   //
2195   //   * Discovery (may or may not be MT) is enabled at the start
2196   //     of an incremental evacuation pause.
2197   //   * References are processed near the end of a STW evacuation pause.
2198   //   * For both types of GC:
2199   //     * Discovery is atomic - i.e. not concurrent.
2200   //     * Reference discovery will not need a barrier.
2201 
2202   SharedHeap::ref_processing_init();
2203   MemRegion mr = reserved_region();
2204 
2205   // Concurrent Mark ref processor
2206   _ref_processor_cm =
2207     new ReferenceProcessor(mr,    // span
2208                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2209                                 // mt processing
2210                            (int) ParallelGCThreads,
2211                                 // degree of mt processing
2212                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2213                                 // mt discovery
2214                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2215                                 // degree of mt discovery
2216                            false,
2217                                 // Reference discovery is not atomic
2218                            &_is_alive_closure_cm,
2219                                 // is alive closure
2220                                 // (for efficiency/performance)
2221                            true);
2222                                 // Setting next fields of discovered
2223                                 // lists requires a barrier.
2224 
2225   // STW ref processor
2226   _ref_processor_stw =
2227     new ReferenceProcessor(mr,    // span
2228                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2229                                 // mt processing
2230                            MAX2((int)ParallelGCThreads, 1),
2231                                 // degree of mt processing
2232                            (ParallelGCThreads > 1),
2233                                 // mt discovery
2234                            MAX2((int)ParallelGCThreads, 1),
2235                                 // degree of mt discovery
2236                            true,
2237                                 // Reference discovery is atomic
2238                            &_is_alive_closure_stw,
2239                                 // is alive closure
2240                                 // (for efficiency/performance)
2241                            false);
2242                                 // Setting next fields of discovered
2243                                 // lists requires a barrier.
2244 }
2245 
2246 size_t G1CollectedHeap::capacity() const {
2247   return _g1_committed.byte_size();
2248 }
2249 
2250 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2251   assert(!hr->continuesHumongous(), "pre-condition");
2252   hr->reset_gc_time_stamp();
2253   if (hr->startsHumongous()) {
2254     uint first_index = hr->hrs_index() + 1;
2255     uint last_index = hr->last_hc_index();
2256     for (uint i = first_index; i < last_index; i += 1) {
2257       HeapRegion* chr = region_at(i);
2258       assert(chr->continuesHumongous(), "sanity");
2259       chr->reset_gc_time_stamp();
2260     }
2261   }
2262 }
2263 
2264 #ifndef PRODUCT
2265 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2266 private:
2267   unsigned _gc_time_stamp;
2268   bool _failures;
2269 
2270 public:
2271   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2272     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2273 
2274   virtual bool doHeapRegion(HeapRegion* hr) {
2275     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2276     if (_gc_time_stamp != region_gc_time_stamp) {
2277       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2278                              "expected %d", HR_FORMAT_PARAMS(hr),
2279                              region_gc_time_stamp, _gc_time_stamp);
2280       _failures = true;
2281     }
2282     return false;
2283   }
2284 
2285   bool failures() { return _failures; }
2286 };
2287 
2288 void G1CollectedHeap::check_gc_time_stamps() {
2289   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2290   heap_region_iterate(&cl);
2291   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2292 }
2293 #endif // PRODUCT
2294 
2295 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2296                                                  DirtyCardQueue* into_cset_dcq,
2297                                                  bool concurrent,
2298                                                  int worker_i) {
2299   // Clean cards in the hot card cache
2300   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2301 
2302   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2303   int n_completed_buffers = 0;
2304   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2305     n_completed_buffers++;
2306   }
2307   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2308   dcqs.clear_n_completed_buffers();
2309   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2310 }
2311 
2312 
2313 // Computes the sum of the storage used by the various regions.
2314 
2315 size_t G1CollectedHeap::used() const {
2316   assert(Heap_lock->owner() != NULL,
2317          "Should be owned on this thread's behalf.");
2318   size_t result = _summary_bytes_used;
2319   // Read only once in case it is set to NULL concurrently
2320   HeapRegion* hr = _mutator_alloc_region.get();
2321   if (hr != NULL)
2322     result += hr->used();
2323   return result;
2324 }
2325 
2326 size_t G1CollectedHeap::used_unlocked() const {
2327   size_t result = _summary_bytes_used;
2328   return result;
2329 }
2330 
2331 class SumUsedClosure: public HeapRegionClosure {
2332   size_t _used;
2333 public:
2334   SumUsedClosure() : _used(0) {}
2335   bool doHeapRegion(HeapRegion* r) {
2336     if (!r->continuesHumongous()) {
2337       _used += r->used();
2338     }
2339     return false;
2340   }
2341   size_t result() { return _used; }
2342 };
2343 
2344 size_t G1CollectedHeap::recalculate_used() const {
2345   SumUsedClosure blk;
2346   heap_region_iterate(&blk);
2347   return blk.result();
2348 }
2349 
2350 size_t G1CollectedHeap::unsafe_max_alloc() {
2351   if (free_regions() > 0) return HeapRegion::GrainBytes;
2352   // otherwise, is there space in the current allocation region?
2353 
2354   // We need to store the current allocation region in a local variable
2355   // here. The problem is that this method doesn't take any locks and
2356   // there may be other threads which overwrite the current allocation
2357   // region field. attempt_allocation(), for example, sets it to NULL
2358   // and this can happen *after* the NULL check here but before the call
2359   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2360   // to be a problem in the optimized build, since the two loads of the
2361   // current allocation region field are optimized away.
2362   HeapRegion* hr = _mutator_alloc_region.get();
2363   if (hr == NULL) {
2364     return 0;
2365   }
2366   return hr->free();
2367 }
2368 
2369 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2370   switch (cause) {
2371     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2372     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2373     case GCCause::_g1_humongous_allocation: return true;
2374     default:                                return false;
2375   }
2376 }
2377 
2378 #ifndef PRODUCT
2379 void G1CollectedHeap::allocate_dummy_regions() {
2380   // Let's fill up most of the region
2381   size_t word_size = HeapRegion::GrainWords - 1024;
2382   // And as a result the region we'll allocate will be humongous.
2383   guarantee(isHumongous(word_size), "sanity");
2384 
2385   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2386     // Let's use the existing mechanism for the allocation
2387     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2388     if (dummy_obj != NULL) {
2389       MemRegion mr(dummy_obj, word_size);
2390       CollectedHeap::fill_with_object(mr);
2391     } else {
2392       // If we can't allocate once, we probably cannot allocate
2393       // again. Let's get out of the loop.
2394       break;
2395     }
2396   }
2397 }
2398 #endif // !PRODUCT
2399 
2400 void G1CollectedHeap::increment_old_marking_cycles_started() {
2401   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2402     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2403     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2404     _old_marking_cycles_started, _old_marking_cycles_completed));
2405 
2406   _old_marking_cycles_started++;
2407 }
2408 
2409 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2410   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2411 
2412   // We assume that if concurrent == true, then the caller is a
2413   // concurrent thread that was joined the Suspendible Thread
2414   // Set. If there's ever a cheap way to check this, we should add an
2415   // assert here.
2416 
2417   // Given that this method is called at the end of a Full GC or of a
2418   // concurrent cycle, and those can be nested (i.e., a Full GC can
2419   // interrupt a concurrent cycle), the number of full collections
2420   // completed should be either one (in the case where there was no
2421   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2422   // behind the number of full collections started.
2423 
2424   // This is the case for the inner caller, i.e. a Full GC.
2425   assert(concurrent ||
2426          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2427          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2428          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2429                  "is inconsistent with _old_marking_cycles_completed = %u",
2430                  _old_marking_cycles_started, _old_marking_cycles_completed));
2431 
2432   // This is the case for the outer caller, i.e. the concurrent cycle.
2433   assert(!concurrent ||
2434          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2435          err_msg("for outer caller (concurrent cycle): "
2436                  "_old_marking_cycles_started = %u "
2437                  "is inconsistent with _old_marking_cycles_completed = %u",
2438                  _old_marking_cycles_started, _old_marking_cycles_completed));
2439 
2440   _old_marking_cycles_completed += 1;
2441 
2442   // We need to clear the "in_progress" flag in the CM thread before
2443   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2444   // is set) so that if a waiter requests another System.gc() it doesn't
2445   // incorrectly see that a marking cyle is still in progress.
2446   if (concurrent) {
2447     _cmThread->clear_in_progress();
2448   }
2449 
2450   // This notify_all() will ensure that a thread that called
2451   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2452   // and it's waiting for a full GC to finish will be woken up. It is
2453   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2454   FullGCCount_lock->notify_all();
2455 }
2456 
2457 void G1CollectedHeap::collect(GCCause::Cause cause) {
2458   assert_heap_not_locked();
2459 
2460   unsigned int gc_count_before;
2461   unsigned int old_marking_count_before;
2462   bool retry_gc;
2463 
2464   do {
2465     retry_gc = false;
2466 
2467     {
2468       MutexLocker ml(Heap_lock);
2469 
2470       // Read the GC count while holding the Heap_lock
2471       gc_count_before = total_collections();
2472       old_marking_count_before = _old_marking_cycles_started;
2473     }
2474 
2475     if (should_do_concurrent_full_gc(cause)) {
2476       // Schedule an initial-mark evacuation pause that will start a
2477       // concurrent cycle. We're setting word_size to 0 which means that
2478       // we are not requesting a post-GC allocation.
2479       VM_G1IncCollectionPause op(gc_count_before,
2480                                  0,     /* word_size */
2481                                  true,  /* should_initiate_conc_mark */
2482                                  g1_policy()->max_pause_time_ms(),
2483                                  cause);
2484 
2485       VMThread::execute(&op);
2486       if (!op.pause_succeeded()) {
2487         if (old_marking_count_before == _old_marking_cycles_started) {
2488           retry_gc = op.should_retry_gc();
2489         } else {
2490           // A Full GC happened while we were trying to schedule the
2491           // initial-mark GC. No point in starting a new cycle given
2492           // that the whole heap was collected anyway.
2493         }
2494 
2495         if (retry_gc) {
2496           if (GC_locker::is_active_and_needs_gc()) {
2497             GC_locker::stall_until_clear();
2498           }
2499         }
2500       }
2501     } else {
2502       if (cause == GCCause::_gc_locker
2503           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2504 
2505         // Schedule a standard evacuation pause. We're setting word_size
2506         // to 0 which means that we are not requesting a post-GC allocation.
2507         VM_G1IncCollectionPause op(gc_count_before,
2508                                    0,     /* word_size */
2509                                    false, /* should_initiate_conc_mark */
2510                                    g1_policy()->max_pause_time_ms(),
2511                                    cause);
2512         VMThread::execute(&op);
2513       } else {
2514         // Schedule a Full GC.
2515         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2516         VMThread::execute(&op);
2517       }
2518     }
2519   } while (retry_gc);
2520 }
2521 
2522 bool G1CollectedHeap::is_in(const void* p) const {
2523   if (_g1_committed.contains(p)) {
2524     // Given that we know that p is in the committed space,
2525     // heap_region_containing_raw() should successfully
2526     // return the containing region.
2527     HeapRegion* hr = heap_region_containing_raw(p);
2528     return hr->is_in(p);
2529   } else {
2530     return false;
2531   }
2532 }
2533 
2534 // Iteration functions.
2535 
2536 // Iterates an OopClosure over all ref-containing fields of objects
2537 // within a HeapRegion.
2538 
2539 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2540   MemRegion _mr;
2541   ExtendedOopClosure* _cl;
2542 public:
2543   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2544     : _mr(mr), _cl(cl) {}
2545   bool doHeapRegion(HeapRegion* r) {
2546     if (!r->continuesHumongous()) {
2547       r->oop_iterate(_cl);
2548     }
2549     return false;
2550   }
2551 };
2552 
2553 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2554   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2555   heap_region_iterate(&blk);
2556 }
2557 
2558 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2559   IterateOopClosureRegionClosure blk(mr, cl);
2560   heap_region_iterate(&blk);
2561 }
2562 
2563 // Iterates an ObjectClosure over all objects within a HeapRegion.
2564 
2565 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2566   ObjectClosure* _cl;
2567 public:
2568   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2569   bool doHeapRegion(HeapRegion* r) {
2570     if (! r->continuesHumongous()) {
2571       r->object_iterate(_cl);
2572     }
2573     return false;
2574   }
2575 };
2576 
2577 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2578   IterateObjectClosureRegionClosure blk(cl);
2579   heap_region_iterate(&blk);
2580 }
2581 
2582 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2583   // FIXME: is this right?
2584   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2585 }
2586 
2587 // Calls a SpaceClosure on a HeapRegion.
2588 
2589 class SpaceClosureRegionClosure: public HeapRegionClosure {
2590   SpaceClosure* _cl;
2591 public:
2592   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2593   bool doHeapRegion(HeapRegion* r) {
2594     _cl->do_space(r);
2595     return false;
2596   }
2597 };
2598 
2599 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2600   SpaceClosureRegionClosure blk(cl);
2601   heap_region_iterate(&blk);
2602 }
2603 
2604 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2605   _hrs.iterate(cl);
2606 }
2607 
2608 void
2609 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2610                                                  uint worker_id,
2611                                                  uint no_of_par_workers,
2612                                                  jint claim_value) {
2613   const uint regions = n_regions();
2614   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2615                              no_of_par_workers :
2616                              1);
2617   assert(UseDynamicNumberOfGCThreads ||
2618          no_of_par_workers == workers()->total_workers(),
2619          "Non dynamic should use fixed number of workers");
2620   // try to spread out the starting points of the workers
2621   const HeapRegion* start_hr =
2622                         start_region_for_worker(worker_id, no_of_par_workers);
2623   const uint start_index = start_hr->hrs_index();
2624 
2625   // each worker will actually look at all regions
2626   for (uint count = 0; count < regions; ++count) {
2627     const uint index = (start_index + count) % regions;
2628     assert(0 <= index && index < regions, "sanity");
2629     HeapRegion* r = region_at(index);
2630     // we'll ignore "continues humongous" regions (we'll process them
2631     // when we come across their corresponding "start humongous"
2632     // region) and regions already claimed
2633     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2634       continue;
2635     }
2636     // OK, try to claim it
2637     if (r->claimHeapRegion(claim_value)) {
2638       // success!
2639       assert(!r->continuesHumongous(), "sanity");
2640       if (r->startsHumongous()) {
2641         // If the region is "starts humongous" we'll iterate over its
2642         // "continues humongous" first; in fact we'll do them
2643         // first. The order is important. In on case, calling the
2644         // closure on the "starts humongous" region might de-allocate
2645         // and clear all its "continues humongous" regions and, as a
2646         // result, we might end up processing them twice. So, we'll do
2647         // them first (notice: most closures will ignore them anyway) and
2648         // then we'll do the "starts humongous" region.
2649         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2650           HeapRegion* chr = region_at(ch_index);
2651 
2652           // if the region has already been claimed or it's not
2653           // "continues humongous" we're done
2654           if (chr->claim_value() == claim_value ||
2655               !chr->continuesHumongous()) {
2656             break;
2657           }
2658 
2659           // Noone should have claimed it directly. We can given
2660           // that we claimed its "starts humongous" region.
2661           assert(chr->claim_value() != claim_value, "sanity");
2662           assert(chr->humongous_start_region() == r, "sanity");
2663 
2664           if (chr->claimHeapRegion(claim_value)) {
2665             // we should always be able to claim it; noone else should
2666             // be trying to claim this region
2667 
2668             bool res2 = cl->doHeapRegion(chr);
2669             assert(!res2, "Should not abort");
2670 
2671             // Right now, this holds (i.e., no closure that actually
2672             // does something with "continues humongous" regions
2673             // clears them). We might have to weaken it in the future,
2674             // but let's leave these two asserts here for extra safety.
2675             assert(chr->continuesHumongous(), "should still be the case");
2676             assert(chr->humongous_start_region() == r, "sanity");
2677           } else {
2678             guarantee(false, "we should not reach here");
2679           }
2680         }
2681       }
2682 
2683       assert(!r->continuesHumongous(), "sanity");
2684       bool res = cl->doHeapRegion(r);
2685       assert(!res, "Should not abort");
2686     }
2687   }
2688 }
2689 
2690 class ResetClaimValuesClosure: public HeapRegionClosure {
2691 public:
2692   bool doHeapRegion(HeapRegion* r) {
2693     r->set_claim_value(HeapRegion::InitialClaimValue);
2694     return false;
2695   }
2696 };
2697 
2698 void G1CollectedHeap::reset_heap_region_claim_values() {
2699   ResetClaimValuesClosure blk;
2700   heap_region_iterate(&blk);
2701 }
2702 
2703 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2704   ResetClaimValuesClosure blk;
2705   collection_set_iterate(&blk);
2706 }
2707 
2708 #ifdef ASSERT
2709 // This checks whether all regions in the heap have the correct claim
2710 // value. I also piggy-backed on this a check to ensure that the
2711 // humongous_start_region() information on "continues humongous"
2712 // regions is correct.
2713 
2714 class CheckClaimValuesClosure : public HeapRegionClosure {
2715 private:
2716   jint _claim_value;
2717   uint _failures;
2718   HeapRegion* _sh_region;
2719 
2720 public:
2721   CheckClaimValuesClosure(jint claim_value) :
2722     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2723   bool doHeapRegion(HeapRegion* r) {
2724     if (r->claim_value() != _claim_value) {
2725       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2726                              "claim value = %d, should be %d",
2727                              HR_FORMAT_PARAMS(r),
2728                              r->claim_value(), _claim_value);
2729       ++_failures;
2730     }
2731     if (!r->isHumongous()) {
2732       _sh_region = NULL;
2733     } else if (r->startsHumongous()) {
2734       _sh_region = r;
2735     } else if (r->continuesHumongous()) {
2736       if (r->humongous_start_region() != _sh_region) {
2737         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2738                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2739                                HR_FORMAT_PARAMS(r),
2740                                r->humongous_start_region(),
2741                                _sh_region);
2742         ++_failures;
2743       }
2744     }
2745     return false;
2746   }
2747   uint failures() { return _failures; }
2748 };
2749 
2750 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2751   CheckClaimValuesClosure cl(claim_value);
2752   heap_region_iterate(&cl);
2753   return cl.failures() == 0;
2754 }
2755 
2756 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2757 private:
2758   jint _claim_value;
2759   uint _failures;
2760 
2761 public:
2762   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2763     _claim_value(claim_value), _failures(0) { }
2764 
2765   uint failures() { return _failures; }
2766 
2767   bool doHeapRegion(HeapRegion* hr) {
2768     assert(hr->in_collection_set(), "how?");
2769     assert(!hr->isHumongous(), "H-region in CSet");
2770     if (hr->claim_value() != _claim_value) {
2771       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2772                              "claim value = %d, should be %d",
2773                              HR_FORMAT_PARAMS(hr),
2774                              hr->claim_value(), _claim_value);
2775       _failures += 1;
2776     }
2777     return false;
2778   }
2779 };
2780 
2781 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2782   CheckClaimValuesInCSetHRClosure cl(claim_value);
2783   collection_set_iterate(&cl);
2784   return cl.failures() == 0;
2785 }
2786 #endif // ASSERT
2787 
2788 // Clear the cached CSet starting regions and (more importantly)
2789 // the time stamps. Called when we reset the GC time stamp.
2790 void G1CollectedHeap::clear_cset_start_regions() {
2791   assert(_worker_cset_start_region != NULL, "sanity");
2792   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2793 
2794   int n_queues = MAX2((int)ParallelGCThreads, 1);
2795   for (int i = 0; i < n_queues; i++) {
2796     _worker_cset_start_region[i] = NULL;
2797     _worker_cset_start_region_time_stamp[i] = 0;
2798   }
2799 }
2800 
2801 // Given the id of a worker, obtain or calculate a suitable
2802 // starting region for iterating over the current collection set.
2803 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2804   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2805 
2806   HeapRegion* result = NULL;
2807   unsigned gc_time_stamp = get_gc_time_stamp();
2808 
2809   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2810     // Cached starting region for current worker was set
2811     // during the current pause - so it's valid.
2812     // Note: the cached starting heap region may be NULL
2813     // (when the collection set is empty).
2814     result = _worker_cset_start_region[worker_i];
2815     assert(result == NULL || result->in_collection_set(), "sanity");
2816     return result;
2817   }
2818 
2819   // The cached entry was not valid so let's calculate
2820   // a suitable starting heap region for this worker.
2821 
2822   // We want the parallel threads to start their collection
2823   // set iteration at different collection set regions to
2824   // avoid contention.
2825   // If we have:
2826   //          n collection set regions
2827   //          p threads
2828   // Then thread t will start at region floor ((t * n) / p)
2829 
2830   result = g1_policy()->collection_set();
2831   if (G1CollectedHeap::use_parallel_gc_threads()) {
2832     uint cs_size = g1_policy()->cset_region_length();
2833     uint active_workers = workers()->active_workers();
2834     assert(UseDynamicNumberOfGCThreads ||
2835              active_workers == workers()->total_workers(),
2836              "Unless dynamic should use total workers");
2837 
2838     uint end_ind   = (cs_size * worker_i) / active_workers;
2839     uint start_ind = 0;
2840 
2841     if (worker_i > 0 &&
2842         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2843       // Previous workers starting region is valid
2844       // so let's iterate from there
2845       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2846       result = _worker_cset_start_region[worker_i - 1];
2847     }
2848 
2849     for (uint i = start_ind; i < end_ind; i++) {
2850       result = result->next_in_collection_set();
2851     }
2852   }
2853 
2854   // Note: the calculated starting heap region may be NULL
2855   // (when the collection set is empty).
2856   assert(result == NULL || result->in_collection_set(), "sanity");
2857   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2858          "should be updated only once per pause");
2859   _worker_cset_start_region[worker_i] = result;
2860   OrderAccess::storestore();
2861   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2862   return result;
2863 }
2864 
2865 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2866                                                      uint no_of_par_workers) {
2867   uint worker_num =
2868            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2869   assert(UseDynamicNumberOfGCThreads ||
2870          no_of_par_workers == workers()->total_workers(),
2871          "Non dynamic should use fixed number of workers");
2872   const uint start_index = n_regions() * worker_i / worker_num;
2873   return region_at(start_index);
2874 }
2875 
2876 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2877   HeapRegion* r = g1_policy()->collection_set();
2878   while (r != NULL) {
2879     HeapRegion* next = r->next_in_collection_set();
2880     if (cl->doHeapRegion(r)) {
2881       cl->incomplete();
2882       return;
2883     }
2884     r = next;
2885   }
2886 }
2887 
2888 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2889                                                   HeapRegionClosure *cl) {
2890   if (r == NULL) {
2891     // The CSet is empty so there's nothing to do.
2892     return;
2893   }
2894 
2895   assert(r->in_collection_set(),
2896          "Start region must be a member of the collection set.");
2897   HeapRegion* cur = r;
2898   while (cur != NULL) {
2899     HeapRegion* next = cur->next_in_collection_set();
2900     if (cl->doHeapRegion(cur) && false) {
2901       cl->incomplete();
2902       return;
2903     }
2904     cur = next;
2905   }
2906   cur = g1_policy()->collection_set();
2907   while (cur != r) {
2908     HeapRegion* next = cur->next_in_collection_set();
2909     if (cl->doHeapRegion(cur) && false) {
2910       cl->incomplete();
2911       return;
2912     }
2913     cur = next;
2914   }
2915 }
2916 
2917 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2918   return n_regions() > 0 ? region_at(0) : NULL;
2919 }
2920 
2921 
2922 Space* G1CollectedHeap::space_containing(const void* addr) const {
2923   Space* res = heap_region_containing(addr);
2924   return res;
2925 }
2926 
2927 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2928   Space* sp = space_containing(addr);
2929   if (sp != NULL) {
2930     return sp->block_start(addr);
2931   }
2932   return NULL;
2933 }
2934 
2935 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2936   Space* sp = space_containing(addr);
2937   assert(sp != NULL, "block_size of address outside of heap");
2938   return sp->block_size(addr);
2939 }
2940 
2941 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2942   Space* sp = space_containing(addr);
2943   return sp->block_is_obj(addr);
2944 }
2945 
2946 bool G1CollectedHeap::supports_tlab_allocation() const {
2947   return true;
2948 }
2949 
2950 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2951   return HeapRegion::GrainBytes;
2952 }
2953 
2954 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2955   // Return the remaining space in the cur alloc region, but not less than
2956   // the min TLAB size.
2957 
2958   // Also, this value can be at most the humongous object threshold,
2959   // since we can't allow tlabs to grow big enough to accomodate
2960   // humongous objects.
2961 
2962   HeapRegion* hr = _mutator_alloc_region.get();
2963   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2964   if (hr == NULL) {
2965     return max_tlab_size;
2966   } else {
2967     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2968   }
2969 }
2970 
2971 size_t G1CollectedHeap::max_capacity() const {
2972   return _g1_reserved.byte_size();
2973 }
2974 
2975 jlong G1CollectedHeap::millis_since_last_gc() {
2976   // assert(false, "NYI");
2977   return 0;
2978 }
2979 
2980 void G1CollectedHeap::prepare_for_verify() {
2981   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2982     ensure_parsability(false);
2983   }
2984   g1_rem_set()->prepare_for_verify();
2985 }
2986 
2987 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2988                                               VerifyOption vo) {
2989   switch (vo) {
2990   case VerifyOption_G1UsePrevMarking:
2991     return hr->obj_allocated_since_prev_marking(obj);
2992   case VerifyOption_G1UseNextMarking:
2993     return hr->obj_allocated_since_next_marking(obj);
2994   case VerifyOption_G1UseMarkWord:
2995     return false;
2996   default:
2997     ShouldNotReachHere();
2998   }
2999   return false; // keep some compilers happy
3000 }
3001 
3002 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3003   switch (vo) {
3004   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3005   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3006   case VerifyOption_G1UseMarkWord:    return NULL;
3007   default:                            ShouldNotReachHere();
3008   }
3009   return NULL; // keep some compilers happy
3010 }
3011 
3012 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3013   switch (vo) {
3014   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3015   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3016   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3017   default:                            ShouldNotReachHere();
3018   }
3019   return false; // keep some compilers happy
3020 }
3021 
3022 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3023   switch (vo) {
3024   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3025   case VerifyOption_G1UseNextMarking: return "NTAMS";
3026   case VerifyOption_G1UseMarkWord:    return "NONE";
3027   default:                            ShouldNotReachHere();
3028   }
3029   return NULL; // keep some compilers happy
3030 }
3031 
3032 class VerifyLivenessOopClosure: public OopClosure {
3033   G1CollectedHeap* _g1h;
3034   VerifyOption _vo;
3035 public:
3036   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3037     _g1h(g1h), _vo(vo)
3038   { }
3039   void do_oop(narrowOop *p) { do_oop_work(p); }
3040   void do_oop(      oop *p) { do_oop_work(p); }
3041 
3042   template <class T> void do_oop_work(T *p) {
3043     oop obj = oopDesc::load_decode_heap_oop(p);
3044     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3045               "Dead object referenced by a not dead object");
3046   }
3047 };
3048 
3049 class VerifyObjsInRegionClosure: public ObjectClosure {
3050 private:
3051   G1CollectedHeap* _g1h;
3052   size_t _live_bytes;
3053   HeapRegion *_hr;
3054   VerifyOption _vo;
3055 public:
3056   // _vo == UsePrevMarking -> use "prev" marking information,
3057   // _vo == UseNextMarking -> use "next" marking information,
3058   // _vo == UseMarkWord    -> use mark word from object header.
3059   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3060     : _live_bytes(0), _hr(hr), _vo(vo) {
3061     _g1h = G1CollectedHeap::heap();
3062   }
3063   void do_object(oop o) {
3064     VerifyLivenessOopClosure isLive(_g1h, _vo);
3065     assert(o != NULL, "Huh?");
3066     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3067       // If the object is alive according to the mark word,
3068       // then verify that the marking information agrees.
3069       // Note we can't verify the contra-positive of the
3070       // above: if the object is dead (according to the mark
3071       // word), it may not be marked, or may have been marked
3072       // but has since became dead, or may have been allocated
3073       // since the last marking.
3074       if (_vo == VerifyOption_G1UseMarkWord) {
3075         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3076       }
3077 
3078       o->oop_iterate_no_header(&isLive);
3079       if (!_hr->obj_allocated_since_prev_marking(o)) {
3080         size_t obj_size = o->size();    // Make sure we don't overflow
3081         _live_bytes += (obj_size * HeapWordSize);
3082       }
3083     }
3084   }
3085   size_t live_bytes() { return _live_bytes; }
3086 };
3087 
3088 class PrintObjsInRegionClosure : public ObjectClosure {
3089   HeapRegion *_hr;
3090   G1CollectedHeap *_g1;
3091 public:
3092   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3093     _g1 = G1CollectedHeap::heap();
3094   };
3095 
3096   void do_object(oop o) {
3097     if (o != NULL) {
3098       HeapWord *start = (HeapWord *) o;
3099       size_t word_sz = o->size();
3100       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3101                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3102                           (void*) o, word_sz,
3103                           _g1->isMarkedPrev(o),
3104                           _g1->isMarkedNext(o),
3105                           _hr->obj_allocated_since_prev_marking(o));
3106       HeapWord *end = start + word_sz;
3107       HeapWord *cur;
3108       int *val;
3109       for (cur = start; cur < end; cur++) {
3110         val = (int *) cur;
3111         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3112       }
3113     }
3114   }
3115 };
3116 
3117 class VerifyRegionClosure: public HeapRegionClosure {
3118 private:
3119   bool             _par;
3120   VerifyOption     _vo;
3121   bool             _failures;
3122 public:
3123   // _vo == UsePrevMarking -> use "prev" marking information,
3124   // _vo == UseNextMarking -> use "next" marking information,
3125   // _vo == UseMarkWord    -> use mark word from object header.
3126   VerifyRegionClosure(bool par, VerifyOption vo)
3127     : _par(par),
3128       _vo(vo),
3129       _failures(false) {}
3130 
3131   bool failures() {
3132     return _failures;
3133   }
3134 
3135   bool doHeapRegion(HeapRegion* r) {
3136     if (!r->continuesHumongous()) {
3137       bool failures = false;
3138       r->verify(_vo, &failures);
3139       if (failures) {
3140         _failures = true;
3141       } else {
3142         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3143         r->object_iterate(&not_dead_yet_cl);
3144         if (_vo != VerifyOption_G1UseNextMarking) {
3145           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3146             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3147                                    "max_live_bytes "SIZE_FORMAT" "
3148                                    "< calculated "SIZE_FORMAT,
3149                                    r->bottom(), r->end(),
3150                                    r->max_live_bytes(),
3151                                  not_dead_yet_cl.live_bytes());
3152             _failures = true;
3153           }
3154         } else {
3155           // When vo == UseNextMarking we cannot currently do a sanity
3156           // check on the live bytes as the calculation has not been
3157           // finalized yet.
3158         }
3159       }
3160     }
3161     return false; // stop the region iteration if we hit a failure
3162   }
3163 };
3164 
3165 class YoungRefCounterClosure : public OopClosure {
3166   G1CollectedHeap* _g1h;
3167   int              _count;
3168  public:
3169   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3170   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3171   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3172 
3173   int count() { return _count; }
3174   void reset_count() { _count = 0; };
3175 };
3176 
3177 class VerifyKlassClosure: public KlassClosure {
3178   YoungRefCounterClosure _young_ref_counter_closure;
3179   OopClosure *_oop_closure;
3180  public:
3181   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3182   void do_klass(Klass* k) {
3183     k->oops_do(_oop_closure);
3184 
3185     _young_ref_counter_closure.reset_count();
3186     k->oops_do(&_young_ref_counter_closure);
3187     if (_young_ref_counter_closure.count() > 0) {
3188       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3189     }
3190   }
3191 };
3192 
3193 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
3194 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
3195 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
3196 //       we can change this closure to extend the simpler OopClosure.
3197 class VerifyRootsClosure: public OopsInGenClosure {
3198 private:
3199   G1CollectedHeap* _g1h;
3200   VerifyOption     _vo;
3201   bool             _failures;
3202 public:
3203   // _vo == UsePrevMarking -> use "prev" marking information,
3204   // _vo == UseNextMarking -> use "next" marking information,
3205   // _vo == UseMarkWord    -> use mark word from object header.
3206   VerifyRootsClosure(VerifyOption vo) :
3207     _g1h(G1CollectedHeap::heap()),
3208     _vo(vo),
3209     _failures(false) { }
3210 
3211   bool failures() { return _failures; }
3212 
3213   template <class T> void do_oop_nv(T* p) {
3214     T heap_oop = oopDesc::load_heap_oop(p);
3215     if (!oopDesc::is_null(heap_oop)) {
3216       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3217       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3218         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3219                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3220         if (_vo == VerifyOption_G1UseMarkWord) {
3221           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3222         }
3223         obj->print_on(gclog_or_tty);
3224         _failures = true;
3225       }
3226     }
3227   }
3228 
3229   void do_oop(oop* p)       { do_oop_nv(p); }
3230   void do_oop(narrowOop* p) { do_oop_nv(p); }
3231 };
3232 
3233 // This is the task used for parallel heap verification.
3234 
3235 class G1ParVerifyTask: public AbstractGangTask {
3236 private:
3237   G1CollectedHeap* _g1h;
3238   VerifyOption     _vo;
3239   bool             _failures;
3240 
3241 public:
3242   // _vo == UsePrevMarking -> use "prev" marking information,
3243   // _vo == UseNextMarking -> use "next" marking information,
3244   // _vo == UseMarkWord    -> use mark word from object header.
3245   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3246     AbstractGangTask("Parallel verify task"),
3247     _g1h(g1h),
3248     _vo(vo),
3249     _failures(false) { }
3250 
3251   bool failures() {
3252     return _failures;
3253   }
3254 
3255   void work(uint worker_id) {
3256     HandleMark hm;
3257     VerifyRegionClosure blk(true, _vo);
3258     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3259                                           _g1h->workers()->active_workers(),
3260                                           HeapRegion::ParVerifyClaimValue);
3261     if (blk.failures()) {
3262       _failures = true;
3263     }
3264   }
3265 };
3266 
3267 void G1CollectedHeap::verify(bool silent) {
3268   verify(silent, VerifyOption_G1UsePrevMarking);
3269 }
3270 
3271 void G1CollectedHeap::verify(bool silent,
3272                              VerifyOption vo) {
3273   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3274     if (!silent) { gclog_or_tty->print("Roots "); }
3275     VerifyRootsClosure rootsCl(vo);
3276 
3277     assert(Thread::current()->is_VM_thread(),
3278       "Expected to be executed serially by the VM thread at this point");
3279 
3280     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3281     VerifyKlassClosure klassCl(this, &rootsCl);
3282 
3283     // We apply the relevant closures to all the oops in the
3284     // system dictionary, the string table and the code cache.
3285     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3286 
3287     // Need cleared claim bits for the strong roots processing
3288     ClassLoaderDataGraph::clear_claimed_marks();
3289 
3290     process_strong_roots(true,      // activate StrongRootsScope
3291                          false,     // we set "is scavenging" to false,
3292                                     // so we don't reset the dirty cards.
3293                          ScanningOption(so),  // roots scanning options
3294                          &rootsCl,
3295                          &blobsCl,
3296                          &klassCl
3297                          );
3298 
3299     bool failures = rootsCl.failures();
3300 
3301     if (vo != VerifyOption_G1UseMarkWord) {
3302       // If we're verifying during a full GC then the region sets
3303       // will have been torn down at the start of the GC. Therefore
3304       // verifying the region sets will fail. So we only verify
3305       // the region sets when not in a full GC.
3306       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3307       verify_region_sets();
3308     }
3309 
3310     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3311     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3312       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3313              "sanity check");
3314 
3315       G1ParVerifyTask task(this, vo);
3316       assert(UseDynamicNumberOfGCThreads ||
3317         workers()->active_workers() == workers()->total_workers(),
3318         "If not dynamic should be using all the workers");
3319       int n_workers = workers()->active_workers();
3320       set_par_threads(n_workers);
3321       workers()->run_task(&task);
3322       set_par_threads(0);
3323       if (task.failures()) {
3324         failures = true;
3325       }
3326 
3327       // Checks that the expected amount of parallel work was done.
3328       // The implication is that n_workers is > 0.
3329       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3330              "sanity check");
3331 
3332       reset_heap_region_claim_values();
3333 
3334       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3335              "sanity check");
3336     } else {
3337       VerifyRegionClosure blk(false, vo);
3338       heap_region_iterate(&blk);
3339       if (blk.failures()) {
3340         failures = true;
3341       }
3342     }
3343     if (!silent) gclog_or_tty->print("RemSet ");
3344     rem_set()->verify();
3345 
3346     if (failures) {
3347       gclog_or_tty->print_cr("Heap:");
3348       // It helps to have the per-region information in the output to
3349       // help us track down what went wrong. This is why we call
3350       // print_extended_on() instead of print_on().
3351       print_extended_on(gclog_or_tty);
3352       gclog_or_tty->print_cr("");
3353 #ifndef PRODUCT
3354       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3355         concurrent_mark()->print_reachable("at-verification-failure",
3356                                            vo, false /* all */);
3357       }
3358 #endif
3359       gclog_or_tty->flush();
3360     }
3361     guarantee(!failures, "there should not have been any failures");
3362   } else {
3363     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
3364   }
3365 }
3366 
3367 class PrintRegionClosure: public HeapRegionClosure {
3368   outputStream* _st;
3369 public:
3370   PrintRegionClosure(outputStream* st) : _st(st) {}
3371   bool doHeapRegion(HeapRegion* r) {
3372     r->print_on(_st);
3373     return false;
3374   }
3375 };
3376 
3377 void G1CollectedHeap::print_on(outputStream* st) const {
3378   st->print(" %-20s", "garbage-first heap");
3379   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3380             capacity()/K, used_unlocked()/K);
3381   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3382             _g1_storage.low_boundary(),
3383             _g1_storage.high(),
3384             _g1_storage.high_boundary());
3385   st->cr();
3386   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3387   uint young_regions = _young_list->length();
3388   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3389             (size_t) young_regions * HeapRegion::GrainBytes / K);
3390   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3391   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3392             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3393   st->cr();
3394   MetaspaceAux::print_on(st);
3395 }
3396 
3397 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3398   print_on(st);
3399 
3400   // Print the per-region information.
3401   st->cr();
3402   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3403                "HS=humongous(starts), HC=humongous(continues), "
3404                "CS=collection set, F=free, TS=gc time stamp, "
3405                "PTAMS=previous top-at-mark-start, "
3406                "NTAMS=next top-at-mark-start)");
3407   PrintRegionClosure blk(st);
3408   heap_region_iterate(&blk);
3409 }
3410 
3411 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3412   if (G1CollectedHeap::use_parallel_gc_threads()) {
3413     workers()->print_worker_threads_on(st);
3414   }
3415   _cmThread->print_on(st);
3416   st->cr();
3417   _cm->print_worker_threads_on(st);
3418   _cg1r->print_worker_threads_on(st);
3419 }
3420 
3421 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3422   if (G1CollectedHeap::use_parallel_gc_threads()) {
3423     workers()->threads_do(tc);
3424   }
3425   tc->do_thread(_cmThread);
3426   _cg1r->threads_do(tc);
3427 }
3428 
3429 void G1CollectedHeap::print_tracing_info() const {
3430   // We'll overload this to mean "trace GC pause statistics."
3431   if (TraceGen0Time || TraceGen1Time) {
3432     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3433     // to that.
3434     g1_policy()->print_tracing_info();
3435   }
3436   if (G1SummarizeRSetStats) {
3437     g1_rem_set()->print_summary_info();
3438   }
3439   if (G1SummarizeConcMark) {
3440     concurrent_mark()->print_summary_info();
3441   }
3442   g1_policy()->print_yg_surv_rate_info();
3443   SpecializationStats::print();
3444 }
3445 
3446 #ifndef PRODUCT
3447 // Helpful for debugging RSet issues.
3448 
3449 class PrintRSetsClosure : public HeapRegionClosure {
3450 private:
3451   const char* _msg;
3452   size_t _occupied_sum;
3453 
3454 public:
3455   bool doHeapRegion(HeapRegion* r) {
3456     HeapRegionRemSet* hrrs = r->rem_set();
3457     size_t occupied = hrrs->occupied();
3458     _occupied_sum += occupied;
3459 
3460     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3461                            HR_FORMAT_PARAMS(r));
3462     if (occupied == 0) {
3463       gclog_or_tty->print_cr("  RSet is empty");
3464     } else {
3465       hrrs->print();
3466     }
3467     gclog_or_tty->print_cr("----------");
3468     return false;
3469   }
3470 
3471   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3472     gclog_or_tty->cr();
3473     gclog_or_tty->print_cr("========================================");
3474     gclog_or_tty->print_cr(msg);
3475     gclog_or_tty->cr();
3476   }
3477 
3478   ~PrintRSetsClosure() {
3479     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3480     gclog_or_tty->print_cr("========================================");
3481     gclog_or_tty->cr();
3482   }
3483 };
3484 
3485 void G1CollectedHeap::print_cset_rsets() {
3486   PrintRSetsClosure cl("Printing CSet RSets");
3487   collection_set_iterate(&cl);
3488 }
3489 
3490 void G1CollectedHeap::print_all_rsets() {
3491   PrintRSetsClosure cl("Printing All RSets");;
3492   heap_region_iterate(&cl);
3493 }
3494 #endif // PRODUCT
3495 
3496 G1CollectedHeap* G1CollectedHeap::heap() {
3497   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3498          "not a garbage-first heap");
3499   return _g1h;
3500 }
3501 
3502 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3503   // always_do_update_barrier = false;
3504   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3505   // Call allocation profiler
3506   AllocationProfiler::iterate_since_last_gc();
3507   // Fill TLAB's and such
3508   ensure_parsability(true);
3509 }
3510 
3511 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3512   // FIXME: what is this about?
3513   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3514   // is set.
3515   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3516                         "derived pointer present"));
3517   // always_do_update_barrier = true;
3518 
3519   // We have just completed a GC. Update the soft reference
3520   // policy with the new heap occupancy
3521   Universe::update_heap_info_at_gc();
3522 }
3523 
3524 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3525                                                unsigned int gc_count_before,
3526                                                bool* succeeded) {
3527   assert_heap_not_locked_and_not_at_safepoint();
3528   g1_policy()->record_stop_world_start();
3529   VM_G1IncCollectionPause op(gc_count_before,
3530                              word_size,
3531                              false, /* should_initiate_conc_mark */
3532                              g1_policy()->max_pause_time_ms(),
3533                              GCCause::_g1_inc_collection_pause);
3534   VMThread::execute(&op);
3535 
3536   HeapWord* result = op.result();
3537   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3538   assert(result == NULL || ret_succeeded,
3539          "the result should be NULL if the VM did not succeed");
3540   *succeeded = ret_succeeded;
3541 
3542   assert_heap_not_locked();
3543   return result;
3544 }
3545 
3546 void
3547 G1CollectedHeap::doConcurrentMark() {
3548   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3549   if (!_cmThread->in_progress()) {
3550     _cmThread->set_started();
3551     CGC_lock->notify();
3552   }
3553 }
3554 
3555 size_t G1CollectedHeap::pending_card_num() {
3556   size_t extra_cards = 0;
3557   JavaThread *curr = Threads::first();
3558   while (curr != NULL) {
3559     DirtyCardQueue& dcq = curr->dirty_card_queue();
3560     extra_cards += dcq.size();
3561     curr = curr->next();
3562   }
3563   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3564   size_t buffer_size = dcqs.buffer_size();
3565   size_t buffer_num = dcqs.completed_buffers_num();
3566 
3567   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3568   // in bytes - not the number of 'entries'. We need to convert
3569   // into a number of cards.
3570   return (buffer_size * buffer_num + extra_cards) / oopSize;
3571 }
3572 
3573 size_t G1CollectedHeap::cards_scanned() {
3574   return g1_rem_set()->cardsScanned();
3575 }
3576 
3577 void
3578 G1CollectedHeap::setup_surviving_young_words() {
3579   assert(_surviving_young_words == NULL, "pre-condition");
3580   uint array_length = g1_policy()->young_cset_region_length();
3581   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3582   if (_surviving_young_words == NULL) {
3583     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3584                           "Not enough space for young surv words summary.");
3585   }
3586   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3587 #ifdef ASSERT
3588   for (uint i = 0;  i < array_length; ++i) {
3589     assert( _surviving_young_words[i] == 0, "memset above" );
3590   }
3591 #endif // !ASSERT
3592 }
3593 
3594 void
3595 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3596   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3597   uint array_length = g1_policy()->young_cset_region_length();
3598   for (uint i = 0; i < array_length; ++i) {
3599     _surviving_young_words[i] += surv_young_words[i];
3600   }
3601 }
3602 
3603 void
3604 G1CollectedHeap::cleanup_surviving_young_words() {
3605   guarantee( _surviving_young_words != NULL, "pre-condition" );
3606   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3607   _surviving_young_words = NULL;
3608 }
3609 
3610 #ifdef ASSERT
3611 class VerifyCSetClosure: public HeapRegionClosure {
3612 public:
3613   bool doHeapRegion(HeapRegion* hr) {
3614     // Here we check that the CSet region's RSet is ready for parallel
3615     // iteration. The fields that we'll verify are only manipulated
3616     // when the region is part of a CSet and is collected. Afterwards,
3617     // we reset these fields when we clear the region's RSet (when the
3618     // region is freed) so they are ready when the region is
3619     // re-allocated. The only exception to this is if there's an
3620     // evacuation failure and instead of freeing the region we leave
3621     // it in the heap. In that case, we reset these fields during
3622     // evacuation failure handling.
3623     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3624 
3625     // Here's a good place to add any other checks we'd like to
3626     // perform on CSet regions.
3627     return false;
3628   }
3629 };
3630 #endif // ASSERT
3631 
3632 #if TASKQUEUE_STATS
3633 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3634   st->print_raw_cr("GC Task Stats");
3635   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3636   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3637 }
3638 
3639 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3640   print_taskqueue_stats_hdr(st);
3641 
3642   TaskQueueStats totals;
3643   const int n = workers() != NULL ? workers()->total_workers() : 1;
3644   for (int i = 0; i < n; ++i) {
3645     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3646     totals += task_queue(i)->stats;
3647   }
3648   st->print_raw("tot "); totals.print(st); st->cr();
3649 
3650   DEBUG_ONLY(totals.verify());
3651 }
3652 
3653 void G1CollectedHeap::reset_taskqueue_stats() {
3654   const int n = workers() != NULL ? workers()->total_workers() : 1;
3655   for (int i = 0; i < n; ++i) {
3656     task_queue(i)->stats.reset();
3657   }
3658 }
3659 #endif // TASKQUEUE_STATS
3660 
3661 void G1CollectedHeap::log_gc_header() {
3662   if (!G1Log::fine()) {
3663     return;
3664   }
3665 
3666   gclog_or_tty->date_stamp(PrintGCDateStamps);
3667   gclog_or_tty->stamp(PrintGCTimeStamps);
3668 
3669   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3670     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3671     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3672 
3673   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3674 }
3675 
3676 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3677   if (!G1Log::fine()) {
3678     return;
3679   }
3680 
3681   if (G1Log::finer()) {
3682     if (evacuation_failed()) {
3683       gclog_or_tty->print(" (to-space exhausted)");
3684     }
3685     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3686     g1_policy()->phase_times()->note_gc_end();
3687     g1_policy()->phase_times()->print(pause_time_sec);
3688     g1_policy()->print_detailed_heap_transition();
3689   } else {
3690     if (evacuation_failed()) {
3691       gclog_or_tty->print("--");
3692     }
3693     g1_policy()->print_heap_transition();
3694     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3695   }
3696   gclog_or_tty->flush();
3697 }
3698 
3699 bool
3700 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3701   assert_at_safepoint(true /* should_be_vm_thread */);
3702   guarantee(!is_gc_active(), "collection is not reentrant");
3703 
3704   if (GC_locker::check_active_before_gc()) {
3705     return false;
3706   }
3707 
3708   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3709   ResourceMark rm;
3710 
3711   print_heap_before_gc();
3712 
3713   HRSPhaseSetter x(HRSPhaseEvacuation);
3714   verify_region_sets_optional();
3715   verify_dirty_young_regions();
3716 
3717   // This call will decide whether this pause is an initial-mark
3718   // pause. If it is, during_initial_mark_pause() will return true
3719   // for the duration of this pause.
3720   g1_policy()->decide_on_conc_mark_initiation();
3721 
3722   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3723   assert(!g1_policy()->during_initial_mark_pause() ||
3724           g1_policy()->gcs_are_young(), "sanity");
3725 
3726   // We also do not allow mixed GCs during marking.
3727   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3728 
3729   // Record whether this pause is an initial mark. When the current
3730   // thread has completed its logging output and it's safe to signal
3731   // the CM thread, the flag's value in the policy has been reset.
3732   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3733 
3734   // Inner scope for scope based logging, timers, and stats collection
3735   {
3736     if (g1_policy()->during_initial_mark_pause()) {
3737       // We are about to start a marking cycle, so we increment the
3738       // full collection counter.
3739       increment_old_marking_cycles_started();
3740     }
3741     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3742 
3743     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3744                                 workers()->active_workers() : 1);
3745     double pause_start_sec = os::elapsedTime();
3746     g1_policy()->phase_times()->note_gc_start(active_workers);
3747     log_gc_header();
3748 
3749     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3750     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3751 
3752     // If the secondary_free_list is not empty, append it to the
3753     // free_list. No need to wait for the cleanup operation to finish;
3754     // the region allocation code will check the secondary_free_list
3755     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3756     // set, skip this step so that the region allocation code has to
3757     // get entries from the secondary_free_list.
3758     if (!G1StressConcRegionFreeing) {
3759       append_secondary_free_list_if_not_empty_with_lock();
3760     }
3761 
3762     assert(check_young_list_well_formed(),
3763       "young list should be well formed");
3764 
3765     // Don't dynamically change the number of GC threads this early.  A value of
3766     // 0 is used to indicate serial work.  When parallel work is done,
3767     // it will be set.
3768 
3769     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3770       IsGCActiveMark x;
3771 
3772       gc_prologue(false);
3773       increment_total_collections(false /* full gc */);
3774       increment_gc_time_stamp();
3775 
3776       verify_before_gc();
3777 
3778       COMPILER2_PRESENT(DerivedPointerTable::clear());
3779 
3780       // Please see comment in g1CollectedHeap.hpp and
3781       // G1CollectedHeap::ref_processing_init() to see how
3782       // reference processing currently works in G1.
3783 
3784       // Enable discovery in the STW reference processor
3785       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3786                                             true /*verify_no_refs*/);
3787 
3788       {
3789         // We want to temporarily turn off discovery by the
3790         // CM ref processor, if necessary, and turn it back on
3791         // on again later if we do. Using a scoped
3792         // NoRefDiscovery object will do this.
3793         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3794 
3795         // Forget the current alloc region (we might even choose it to be part
3796         // of the collection set!).
3797         release_mutator_alloc_region();
3798 
3799         // We should call this after we retire the mutator alloc
3800         // region(s) so that all the ALLOC / RETIRE events are generated
3801         // before the start GC event.
3802         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3803 
3804         // This timing is only used by the ergonomics to handle our pause target.
3805         // It is unclear why this should not include the full pause. We will
3806         // investigate this in CR 7178365.
3807         //
3808         // Preserving the old comment here if that helps the investigation:
3809         //
3810         // The elapsed time induced by the start time below deliberately elides
3811         // the possible verification above.
3812         double sample_start_time_sec = os::elapsedTime();
3813         size_t start_used_bytes = used();
3814 
3815 #if YOUNG_LIST_VERBOSE
3816         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3817         _young_list->print();
3818         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3819 #endif // YOUNG_LIST_VERBOSE
3820 
3821         g1_policy()->record_collection_pause_start(sample_start_time_sec,
3822                                                    start_used_bytes);
3823 
3824         double scan_wait_start = os::elapsedTime();
3825         // We have to wait until the CM threads finish scanning the
3826         // root regions as it's the only way to ensure that all the
3827         // objects on them have been correctly scanned before we start
3828         // moving them during the GC.
3829         bool waited = _cm->root_regions()->wait_until_scan_finished();
3830         double wait_time_ms = 0.0;
3831         if (waited) {
3832           double scan_wait_end = os::elapsedTime();
3833           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3834         }
3835         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3836 
3837 #if YOUNG_LIST_VERBOSE
3838         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3839         _young_list->print();
3840 #endif // YOUNG_LIST_VERBOSE
3841 
3842         if (g1_policy()->during_initial_mark_pause()) {
3843           concurrent_mark()->checkpointRootsInitialPre();
3844         }
3845 
3846 #if YOUNG_LIST_VERBOSE
3847         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3848         _young_list->print();
3849         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3850 #endif // YOUNG_LIST_VERBOSE
3851 
3852         g1_policy()->finalize_cset(target_pause_time_ms);
3853 
3854         _cm->note_start_of_gc();
3855         // We should not verify the per-thread SATB buffers given that
3856         // we have not filtered them yet (we'll do so during the
3857         // GC). We also call this after finalize_cset() to
3858         // ensure that the CSet has been finalized.
3859         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3860                                  true  /* verify_enqueued_buffers */,
3861                                  false /* verify_thread_buffers */,
3862                                  true  /* verify_fingers */);
3863 
3864         if (_hr_printer.is_active()) {
3865           HeapRegion* hr = g1_policy()->collection_set();
3866           while (hr != NULL) {
3867             G1HRPrinter::RegionType type;
3868             if (!hr->is_young()) {
3869               type = G1HRPrinter::Old;
3870             } else if (hr->is_survivor()) {
3871               type = G1HRPrinter::Survivor;
3872             } else {
3873               type = G1HRPrinter::Eden;
3874             }
3875             _hr_printer.cset(hr);
3876             hr = hr->next_in_collection_set();
3877           }
3878         }
3879 
3880 #ifdef ASSERT
3881         VerifyCSetClosure cl;
3882         collection_set_iterate(&cl);
3883 #endif // ASSERT
3884 
3885         setup_surviving_young_words();
3886 
3887         // Initialize the GC alloc regions.
3888         init_gc_alloc_regions();
3889 
3890         // Actually do the work...
3891         evacuate_collection_set();
3892 
3893         // We do this to mainly verify the per-thread SATB buffers
3894         // (which have been filtered by now) since we didn't verify
3895         // them earlier. No point in re-checking the stacks / enqueued
3896         // buffers given that the CSet has not changed since last time
3897         // we checked.
3898         _cm->verify_no_cset_oops(false /* verify_stacks */,
3899                                  false /* verify_enqueued_buffers */,
3900                                  true  /* verify_thread_buffers */,
3901                                  true  /* verify_fingers */);
3902 
3903         free_collection_set(g1_policy()->collection_set());
3904         g1_policy()->clear_collection_set();
3905 
3906         cleanup_surviving_young_words();
3907 
3908         // Start a new incremental collection set for the next pause.
3909         g1_policy()->start_incremental_cset_building();
3910 
3911         // Clear the _cset_fast_test bitmap in anticipation of adding
3912         // regions to the incremental collection set for the next
3913         // evacuation pause.
3914         clear_cset_fast_test();
3915 
3916         _young_list->reset_sampled_info();
3917 
3918         // Don't check the whole heap at this point as the
3919         // GC alloc regions from this pause have been tagged
3920         // as survivors and moved on to the survivor list.
3921         // Survivor regions will fail the !is_young() check.
3922         assert(check_young_list_empty(false /* check_heap */),
3923           "young list should be empty");
3924 
3925 #if YOUNG_LIST_VERBOSE
3926         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3927         _young_list->print();
3928 #endif // YOUNG_LIST_VERBOSE
3929 
3930         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3931                                             _young_list->first_survivor_region(),
3932                                             _young_list->last_survivor_region());
3933 
3934         _young_list->reset_auxilary_lists();
3935 
3936         if (evacuation_failed()) {
3937           _summary_bytes_used = recalculate_used();
3938         } else {
3939           // The "used" of the the collection set have already been subtracted
3940           // when they were freed.  Add in the bytes evacuated.
3941           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3942         }
3943 
3944         if (g1_policy()->during_initial_mark_pause()) {
3945           // We have to do this before we notify the CM threads that
3946           // they can start working to make sure that all the
3947           // appropriate initialization is done on the CM object.
3948           concurrent_mark()->checkpointRootsInitialPost();
3949           set_marking_started();
3950           // Note that we don't actually trigger the CM thread at
3951           // this point. We do that later when we're sure that
3952           // the current thread has completed its logging output.
3953         }
3954 
3955         allocate_dummy_regions();
3956 
3957 #if YOUNG_LIST_VERBOSE
3958         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3959         _young_list->print();
3960         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3961 #endif // YOUNG_LIST_VERBOSE
3962 
3963         init_mutator_alloc_region();
3964 
3965         {
3966           size_t expand_bytes = g1_policy()->expansion_amount();
3967           if (expand_bytes > 0) {
3968             size_t bytes_before = capacity();
3969             // No need for an ergo verbose message here,
3970             // expansion_amount() does this when it returns a value > 0.
3971             if (!expand(expand_bytes)) {
3972               // We failed to expand the heap so let's verify that
3973               // committed/uncommitted amount match the backing store
3974               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3975               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3976             }
3977           }
3978         }
3979 
3980         // We redo the verificaiton but now wrt to the new CSet which
3981         // has just got initialized after the previous CSet was freed.
3982         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3983                                  true  /* verify_enqueued_buffers */,
3984                                  true  /* verify_thread_buffers */,
3985                                  true  /* verify_fingers */);
3986         _cm->note_end_of_gc();
3987 
3988         // This timing is only used by the ergonomics to handle our pause target.
3989         // It is unclear why this should not include the full pause. We will
3990         // investigate this in CR 7178365.
3991         double sample_end_time_sec = os::elapsedTime();
3992         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3993         g1_policy()->record_collection_pause_end(pause_time_ms);
3994 
3995         MemoryService::track_memory_usage();
3996 
3997         // In prepare_for_verify() below we'll need to scan the deferred
3998         // update buffers to bring the RSets up-to-date if
3999         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4000         // the update buffers we'll probably need to scan cards on the
4001         // regions we just allocated to (i.e., the GC alloc
4002         // regions). However, during the last GC we called
4003         // set_saved_mark() on all the GC alloc regions, so card
4004         // scanning might skip the [saved_mark_word()...top()] area of
4005         // those regions (i.e., the area we allocated objects into
4006         // during the last GC). But it shouldn't. Given that
4007         // saved_mark_word() is conditional on whether the GC time stamp
4008         // on the region is current or not, by incrementing the GC time
4009         // stamp here we invalidate all the GC time stamps on all the
4010         // regions and saved_mark_word() will simply return top() for
4011         // all the regions. This is a nicer way of ensuring this rather
4012         // than iterating over the regions and fixing them. In fact, the
4013         // GC time stamp increment here also ensures that
4014         // saved_mark_word() will return top() between pauses, i.e.,
4015         // during concurrent refinement. So we don't need the
4016         // is_gc_active() check to decided which top to use when
4017         // scanning cards (see CR 7039627).
4018         increment_gc_time_stamp();
4019 
4020         verify_after_gc();
4021 
4022         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4023         ref_processor_stw()->verify_no_references_recorded();
4024 
4025         // CM reference discovery will be re-enabled if necessary.
4026       }
4027 
4028       // We should do this after we potentially expand the heap so
4029       // that all the COMMIT events are generated before the end GC
4030       // event, and after we retire the GC alloc regions so that all
4031       // RETIRE events are generated before the end GC event.
4032       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4033 
4034       if (mark_in_progress()) {
4035         concurrent_mark()->update_g1_committed();
4036       }
4037 
4038 #ifdef TRACESPINNING
4039       ParallelTaskTerminator::print_termination_counts();
4040 #endif
4041 
4042       gc_epilogue(false);
4043     }
4044 
4045     // Print the remainder of the GC log output.
4046     log_gc_footer(os::elapsedTime() - pause_start_sec);
4047 
4048     // It is not yet to safe to tell the concurrent mark to
4049     // start as we have some optional output below. We don't want the
4050     // output from the concurrent mark thread interfering with this
4051     // logging output either.
4052 
4053     _hrs.verify_optional();
4054     verify_region_sets_optional();
4055 
4056     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4057     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4058 
4059     print_heap_after_gc();
4060 
4061     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4062     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4063     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4064     // before any GC notifications are raised.
4065     g1mm()->update_sizes();
4066   }
4067 
4068   if (G1SummarizeRSetStats &&
4069       (G1SummarizeRSetStatsPeriod > 0) &&
4070       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
4071     g1_rem_set()->print_summary_info();
4072   }
4073 
4074   // It should now be safe to tell the concurrent mark thread to start
4075   // without its logging output interfering with the logging output
4076   // that came from the pause.
4077 
4078   if (should_start_conc_mark) {
4079     // CAUTION: after the doConcurrentMark() call below,
4080     // the concurrent marking thread(s) could be running
4081     // concurrently with us. Make sure that anything after
4082     // this point does not assume that we are the only GC thread
4083     // running. Note: of course, the actual marking work will
4084     // not start until the safepoint itself is released in
4085     // ConcurrentGCThread::safepoint_desynchronize().
4086     doConcurrentMark();
4087   }
4088 
4089   return true;
4090 }
4091 
4092 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4093 {
4094   size_t gclab_word_size;
4095   switch (purpose) {
4096     case GCAllocForSurvived:
4097       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4098       break;
4099     case GCAllocForTenured:
4100       gclab_word_size = _old_plab_stats.desired_plab_sz();
4101       break;
4102     default:
4103       assert(false, "unknown GCAllocPurpose");
4104       gclab_word_size = _old_plab_stats.desired_plab_sz();
4105       break;
4106   }
4107 
4108   // Prevent humongous PLAB sizes for two reasons:
4109   // * PLABs are allocated using a similar paths as oops, but should
4110   //   never be in a humongous region
4111   // * Allowing humongous PLABs needlessly churns the region free lists
4112   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4113 }
4114 
4115 void G1CollectedHeap::init_mutator_alloc_region() {
4116   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4117   _mutator_alloc_region.init();
4118 }
4119 
4120 void G1CollectedHeap::release_mutator_alloc_region() {
4121   _mutator_alloc_region.release();
4122   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4123 }
4124 
4125 void G1CollectedHeap::init_gc_alloc_regions() {
4126   assert_at_safepoint(true /* should_be_vm_thread */);
4127 
4128   _survivor_gc_alloc_region.init();
4129   _old_gc_alloc_region.init();
4130   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4131   _retained_old_gc_alloc_region = NULL;
4132 
4133   // We will discard the current GC alloc region if:
4134   // a) it's in the collection set (it can happen!),
4135   // b) it's already full (no point in using it),
4136   // c) it's empty (this means that it was emptied during
4137   // a cleanup and it should be on the free list now), or
4138   // d) it's humongous (this means that it was emptied
4139   // during a cleanup and was added to the free list, but
4140   // has been subseqently used to allocate a humongous
4141   // object that may be less than the region size).
4142   if (retained_region != NULL &&
4143       !retained_region->in_collection_set() &&
4144       !(retained_region->top() == retained_region->end()) &&
4145       !retained_region->is_empty() &&
4146       !retained_region->isHumongous()) {
4147     retained_region->set_saved_mark();
4148     // The retained region was added to the old region set when it was
4149     // retired. We have to remove it now, since we don't allow regions
4150     // we allocate to in the region sets. We'll re-add it later, when
4151     // it's retired again.
4152     _old_set.remove(retained_region);
4153     bool during_im = g1_policy()->during_initial_mark_pause();
4154     retained_region->note_start_of_copying(during_im);
4155     _old_gc_alloc_region.set(retained_region);
4156     _hr_printer.reuse(retained_region);
4157   }
4158 }
4159 
4160 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers) {
4161   _survivor_gc_alloc_region.release();
4162   // If we have an old GC alloc region to release, we'll save it in
4163   // _retained_old_gc_alloc_region. If we don't
4164   // _retained_old_gc_alloc_region will become NULL. This is what we
4165   // want either way so no reason to check explicitly for either
4166   // condition.
4167   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4168 
4169   if (ResizePLAB) {
4170     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4171     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4172   }
4173 }
4174 
4175 void G1CollectedHeap::abandon_gc_alloc_regions() {
4176   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4177   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4178   _retained_old_gc_alloc_region = NULL;
4179 }
4180 
4181 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4182   _drain_in_progress = false;
4183   set_evac_failure_closure(cl);
4184   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4185 }
4186 
4187 void G1CollectedHeap::finalize_for_evac_failure() {
4188   assert(_evac_failure_scan_stack != NULL &&
4189          _evac_failure_scan_stack->length() == 0,
4190          "Postcondition");
4191   assert(!_drain_in_progress, "Postcondition");
4192   delete _evac_failure_scan_stack;
4193   _evac_failure_scan_stack = NULL;
4194 }
4195 
4196 void G1CollectedHeap::remove_self_forwarding_pointers() {
4197   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4198 
4199   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4200 
4201   if (G1CollectedHeap::use_parallel_gc_threads()) {
4202     set_par_threads();
4203     workers()->run_task(&rsfp_task);
4204     set_par_threads(0);
4205   } else {
4206     rsfp_task.work(0);
4207   }
4208 
4209   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4210 
4211   // Reset the claim values in the regions in the collection set.
4212   reset_cset_heap_region_claim_values();
4213 
4214   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4215 
4216   // Now restore saved marks, if any.
4217   assert(_objs_with_preserved_marks.size() ==
4218             _preserved_marks_of_objs.size(), "Both or none.");
4219   while (!_objs_with_preserved_marks.is_empty()) {
4220     oop obj = _objs_with_preserved_marks.pop();
4221     markOop m = _preserved_marks_of_objs.pop();
4222     obj->set_mark(m);
4223   }
4224   _objs_with_preserved_marks.clear(true);
4225   _preserved_marks_of_objs.clear(true);
4226 }
4227 
4228 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4229   _evac_failure_scan_stack->push(obj);
4230 }
4231 
4232 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4233   assert(_evac_failure_scan_stack != NULL, "precondition");
4234 
4235   while (_evac_failure_scan_stack->length() > 0) {
4236      oop obj = _evac_failure_scan_stack->pop();
4237      _evac_failure_closure->set_region(heap_region_containing(obj));
4238      obj->oop_iterate_backwards(_evac_failure_closure);
4239   }
4240 }
4241 
4242 oop
4243 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4244                                                oop old) {
4245   assert(obj_in_cs(old),
4246          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4247                  (HeapWord*) old));
4248   markOop m = old->mark();
4249   oop forward_ptr = old->forward_to_atomic(old);
4250   if (forward_ptr == NULL) {
4251     // Forward-to-self succeeded.
4252 
4253     if (_evac_failure_closure != cl) {
4254       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4255       assert(!_drain_in_progress,
4256              "Should only be true while someone holds the lock.");
4257       // Set the global evac-failure closure to the current thread's.
4258       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4259       set_evac_failure_closure(cl);
4260       // Now do the common part.
4261       handle_evacuation_failure_common(old, m);
4262       // Reset to NULL.
4263       set_evac_failure_closure(NULL);
4264     } else {
4265       // The lock is already held, and this is recursive.
4266       assert(_drain_in_progress, "This should only be the recursive case.");
4267       handle_evacuation_failure_common(old, m);
4268     }
4269     return old;
4270   } else {
4271     // Forward-to-self failed. Either someone else managed to allocate
4272     // space for this object (old != forward_ptr) or they beat us in
4273     // self-forwarding it (old == forward_ptr).
4274     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4275            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4276                    "should not be in the CSet",
4277                    (HeapWord*) old, (HeapWord*) forward_ptr));
4278     return forward_ptr;
4279   }
4280 }
4281 
4282 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4283   set_evacuation_failed(true);
4284 
4285   preserve_mark_if_necessary(old, m);
4286 
4287   HeapRegion* r = heap_region_containing(old);
4288   if (!r->evacuation_failed()) {
4289     r->set_evacuation_failed(true);
4290     _hr_printer.evac_failure(r);
4291   }
4292 
4293   push_on_evac_failure_scan_stack(old);
4294 
4295   if (!_drain_in_progress) {
4296     // prevent recursion in copy_to_survivor_space()
4297     _drain_in_progress = true;
4298     drain_evac_failure_scan_stack();
4299     _drain_in_progress = false;
4300   }
4301 }
4302 
4303 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4304   assert(evacuation_failed(), "Oversaving!");
4305   // We want to call the "for_promotion_failure" version only in the
4306   // case of a promotion failure.
4307   if (m->must_be_preserved_for_promotion_failure(obj)) {
4308     _objs_with_preserved_marks.push(obj);
4309     _preserved_marks_of_objs.push(m);
4310   }
4311 }
4312 
4313 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4314                                                   size_t word_size) {
4315   if (purpose == GCAllocForSurvived) {
4316     HeapWord* result = survivor_attempt_allocation(word_size);
4317     if (result != NULL) {
4318       return result;
4319     } else {
4320       // Let's try to allocate in the old gen in case we can fit the
4321       // object there.
4322       return old_attempt_allocation(word_size);
4323     }
4324   } else {
4325     assert(purpose ==  GCAllocForTenured, "sanity");
4326     HeapWord* result = old_attempt_allocation(word_size);
4327     if (result != NULL) {
4328       return result;
4329     } else {
4330       // Let's try to allocate in the survivors in case we can fit the
4331       // object there.
4332       return survivor_attempt_allocation(word_size);
4333     }
4334   }
4335 
4336   ShouldNotReachHere();
4337   // Trying to keep some compilers happy.
4338   return NULL;
4339 }
4340 
4341 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4342   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4343 
4344 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4345   : _g1h(g1h),
4346     _refs(g1h->task_queue(queue_num)),
4347     _dcq(&g1h->dirty_card_queue_set()),
4348     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4349     _g1_rem(g1h->g1_rem_set()),
4350     _hash_seed(17), _queue_num(queue_num),
4351     _term_attempts(0),
4352     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4353     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4354     _age_table(false),
4355     _strong_roots_time(0), _term_time(0),
4356     _alloc_buffer_waste(0), _undo_waste(0) {
4357   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4358   // we "sacrifice" entry 0 to keep track of surviving bytes for
4359   // non-young regions (where the age is -1)
4360   // We also add a few elements at the beginning and at the end in
4361   // an attempt to eliminate cache contention
4362   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4363   uint array_length = PADDING_ELEM_NUM +
4364                       real_length +
4365                       PADDING_ELEM_NUM;
4366   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4367   if (_surviving_young_words_base == NULL)
4368     vm_exit_out_of_memory(array_length * sizeof(size_t),
4369                           "Not enough space for young surv histo.");
4370   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4371   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4372 
4373   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4374   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4375 
4376   _start = os::elapsedTime();
4377 }
4378 
4379 void
4380 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4381 {
4382   st->print_raw_cr("GC Termination Stats");
4383   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4384                    " ------waste (KiB)------");
4385   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4386                    "  total   alloc    undo");
4387   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4388                    " ------- ------- -------");
4389 }
4390 
4391 void
4392 G1ParScanThreadState::print_termination_stats(int i,
4393                                               outputStream* const st) const
4394 {
4395   const double elapsed_ms = elapsed_time() * 1000.0;
4396   const double s_roots_ms = strong_roots_time() * 1000.0;
4397   const double term_ms    = term_time() * 1000.0;
4398   st->print_cr("%3d %9.2f %9.2f %6.2f "
4399                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4400                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4401                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4402                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4403                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4404                alloc_buffer_waste() * HeapWordSize / K,
4405                undo_waste() * HeapWordSize / K);
4406 }
4407 
4408 #ifdef ASSERT
4409 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4410   assert(ref != NULL, "invariant");
4411   assert(UseCompressedOops, "sanity");
4412   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4413   oop p = oopDesc::load_decode_heap_oop(ref);
4414   assert(_g1h->is_in_g1_reserved(p),
4415          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4416   return true;
4417 }
4418 
4419 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4420   assert(ref != NULL, "invariant");
4421   if (has_partial_array_mask(ref)) {
4422     // Must be in the collection set--it's already been copied.
4423     oop p = clear_partial_array_mask(ref);
4424     assert(_g1h->obj_in_cs(p),
4425            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4426   } else {
4427     oop p = oopDesc::load_decode_heap_oop(ref);
4428     assert(_g1h->is_in_g1_reserved(p),
4429            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4430   }
4431   return true;
4432 }
4433 
4434 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4435   if (ref.is_narrow()) {
4436     return verify_ref((narrowOop*) ref);
4437   } else {
4438     return verify_ref((oop*) ref);
4439   }
4440 }
4441 #endif // ASSERT
4442 
4443 void G1ParScanThreadState::trim_queue() {
4444   assert(_evac_cl != NULL, "not set");
4445   assert(_evac_failure_cl != NULL, "not set");
4446   assert(_partial_scan_cl != NULL, "not set");
4447 
4448   StarTask ref;
4449   do {
4450     // Drain the overflow stack first, so other threads can steal.
4451     while (refs()->pop_overflow(ref)) {
4452       deal_with_reference(ref);
4453     }
4454 
4455     while (refs()->pop_local(ref)) {
4456       deal_with_reference(ref);
4457     }
4458   } while (!refs()->is_empty());
4459 }
4460 
4461 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4462                                      G1ParScanThreadState* par_scan_state) :
4463   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4464   _par_scan_state(par_scan_state),
4465   _worker_id(par_scan_state->queue_num()),
4466   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4467   _mark_in_progress(_g1->mark_in_progress()) { }
4468 
4469 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4470 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4471 #ifdef ASSERT
4472   HeapRegion* hr = _g1->heap_region_containing(obj);
4473   assert(hr != NULL, "sanity");
4474   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4475 #endif // ASSERT
4476 
4477   // We know that the object is not moving so it's safe to read its size.
4478   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4479 }
4480 
4481 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4482 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4483   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4484 #ifdef ASSERT
4485   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4486   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4487   assert(from_obj != to_obj, "should not be self-forwarded");
4488 
4489   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4490   assert(from_hr != NULL, "sanity");
4491   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4492 
4493   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4494   assert(to_hr != NULL, "sanity");
4495   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4496 #endif // ASSERT
4497 
4498   // The object might be in the process of being copied by another
4499   // worker so we cannot trust that its to-space image is
4500   // well-formed. So we have to read its size from its from-space
4501   // image which we know should not be changing.
4502   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4503 }
4504 
4505 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4506 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4507   ::copy_to_survivor_space(oop old) {
4508   size_t word_sz = old->size();
4509   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4510   // +1 to make the -1 indexes valid...
4511   int       young_index = from_region->young_index_in_cset()+1;
4512   assert( (from_region->is_young() && young_index >  0) ||
4513          (!from_region->is_young() && young_index == 0), "invariant" );
4514   G1CollectorPolicy* g1p = _g1->g1_policy();
4515   markOop m = old->mark();
4516   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4517                                            : m->age();
4518   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4519                                                              word_sz);
4520   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4521 #ifndef PRODUCT
4522   // Should this evacuation fail?
4523   if (_g1->evacuation_should_fail()) {
4524     if (obj_ptr != NULL) {
4525       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4526       obj_ptr = NULL;
4527     }
4528   }
4529 #endif // !PRODUCT
4530 
4531   if (obj_ptr == NULL) {
4532     // This will either forward-to-self, or detect that someone else has
4533     // installed a forwarding pointer.
4534     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4535     return _g1->handle_evacuation_failure_par(cl, old);
4536   }
4537 
4538   oop obj = oop(obj_ptr);
4539 
4540   // We're going to allocate linearly, so might as well prefetch ahead.
4541   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4542 
4543   oop forward_ptr = old->forward_to_atomic(obj);
4544   if (forward_ptr == NULL) {
4545     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4546     if (g1p->track_object_age(alloc_purpose)) {
4547       // We could simply do obj->incr_age(). However, this causes a
4548       // performance issue. obj->incr_age() will first check whether
4549       // the object has a displaced mark by checking its mark word;
4550       // getting the mark word from the new location of the object
4551       // stalls. So, given that we already have the mark word and we
4552       // are about to install it anyway, it's better to increase the
4553       // age on the mark word, when the object does not have a
4554       // displaced mark word. We're not expecting many objects to have
4555       // a displaced marked word, so that case is not optimized
4556       // further (it could be...) and we simply call obj->incr_age().
4557 
4558       if (m->has_displaced_mark_helper()) {
4559         // in this case, we have to install the mark word first,
4560         // otherwise obj looks to be forwarded (the old mark word,
4561         // which contains the forward pointer, was copied)
4562         obj->set_mark(m);
4563         obj->incr_age();
4564       } else {
4565         m = m->incr_age();
4566         obj->set_mark(m);
4567       }
4568       _par_scan_state->age_table()->add(obj, word_sz);
4569     } else {
4570       obj->set_mark(m);
4571     }
4572 
4573     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4574     surv_young_words[young_index] += word_sz;
4575 
4576     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4577       // We keep track of the next start index in the length field of
4578       // the to-space object. The actual length can be found in the
4579       // length field of the from-space object.
4580       arrayOop(obj)->set_length(0);
4581       oop* old_p = set_partial_array_mask(old);
4582       _par_scan_state->push_on_queue(old_p);
4583     } else {
4584       // No point in using the slower heap_region_containing() method,
4585       // given that we know obj is in the heap.
4586       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4587       obj->oop_iterate_backwards(&_scanner);
4588     }
4589   } else {
4590     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4591     obj = forward_ptr;
4592   }
4593   return obj;
4594 }
4595 
4596 template <class T>
4597 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4598   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4599     _scanned_klass->record_modified_oops();
4600   }
4601 }
4602 
4603 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4604 template <class T>
4605 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4606 ::do_oop_work(T* p) {
4607   oop obj = oopDesc::load_decode_heap_oop(p);
4608   assert(barrier != G1BarrierRS || obj != NULL,
4609          "Precondition: G1BarrierRS implies obj is non-NULL");
4610 
4611   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4612 
4613   // here the null check is implicit in the cset_fast_test() test
4614   if (_g1->in_cset_fast_test(obj)) {
4615     oop forwardee;
4616     if (obj->is_forwarded()) {
4617       forwardee = obj->forwardee();
4618     } else {
4619       forwardee = copy_to_survivor_space(obj);
4620     }
4621     assert(forwardee != NULL, "forwardee should not be NULL");
4622     oopDesc::encode_store_heap_oop(p, forwardee);
4623     if (do_mark_object && forwardee != obj) {
4624       // If the object is self-forwarded we don't need to explicitly
4625       // mark it, the evacuation failure protocol will do so.
4626       mark_forwarded_object(obj, forwardee);
4627     }
4628 
4629     // When scanning the RS, we only care about objs in CS.
4630     if (barrier == G1BarrierRS) {
4631       _par_scan_state->update_rs(_from, p, _worker_id);
4632     } else if (barrier == G1BarrierKlass) {
4633       do_klass_barrier(p, forwardee);
4634     }
4635   } else {
4636     // The object is not in collection set. If we're a root scanning
4637     // closure during an initial mark pause (i.e. do_mark_object will
4638     // be true) then attempt to mark the object.
4639     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4640       mark_object(obj);
4641     }
4642   }
4643 
4644   if (barrier == G1BarrierEvac && obj != NULL) {
4645     _par_scan_state->update_rs(_from, p, _worker_id);
4646   }
4647 
4648   if (do_gen_barrier && obj != NULL) {
4649     par_do_barrier(p);
4650   }
4651 }
4652 
4653 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4654 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4655 
4656 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4657   assert(has_partial_array_mask(p), "invariant");
4658   oop from_obj = clear_partial_array_mask(p);
4659 
4660   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4661   assert(from_obj->is_objArray(), "must be obj array");
4662   objArrayOop from_obj_array = objArrayOop(from_obj);
4663   // The from-space object contains the real length.
4664   int length                 = from_obj_array->length();
4665 
4666   assert(from_obj->is_forwarded(), "must be forwarded");
4667   oop to_obj                 = from_obj->forwardee();
4668   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4669   objArrayOop to_obj_array   = objArrayOop(to_obj);
4670   // We keep track of the next start index in the length field of the
4671   // to-space object.
4672   int next_index             = to_obj_array->length();
4673   assert(0 <= next_index && next_index < length,
4674          err_msg("invariant, next index: %d, length: %d", next_index, length));
4675 
4676   int start                  = next_index;
4677   int end                    = length;
4678   int remainder              = end - start;
4679   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4680   if (remainder > 2 * ParGCArrayScanChunk) {
4681     end = start + ParGCArrayScanChunk;
4682     to_obj_array->set_length(end);
4683     // Push the remainder before we process the range in case another
4684     // worker has run out of things to do and can steal it.
4685     oop* from_obj_p = set_partial_array_mask(from_obj);
4686     _par_scan_state->push_on_queue(from_obj_p);
4687   } else {
4688     assert(length == end, "sanity");
4689     // We'll process the final range for this object. Restore the length
4690     // so that the heap remains parsable in case of evacuation failure.
4691     to_obj_array->set_length(end);
4692   }
4693   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4694   // Process indexes [start,end). It will also process the header
4695   // along with the first chunk (i.e., the chunk with start == 0).
4696   // Note that at this point the length field of to_obj_array is not
4697   // correct given that we are using it to keep track of the next
4698   // start index. oop_iterate_range() (thankfully!) ignores the length
4699   // field and only relies on the start / end parameters.  It does
4700   // however return the size of the object which will be incorrect. So
4701   // we have to ignore it even if we wanted to use it.
4702   to_obj_array->oop_iterate_range(&_scanner, start, end);
4703 }
4704 
4705 class G1ParEvacuateFollowersClosure : public VoidClosure {
4706 protected:
4707   G1CollectedHeap*              _g1h;
4708   G1ParScanThreadState*         _par_scan_state;
4709   RefToScanQueueSet*            _queues;
4710   ParallelTaskTerminator*       _terminator;
4711 
4712   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4713   RefToScanQueueSet*      queues()         { return _queues; }
4714   ParallelTaskTerminator* terminator()     { return _terminator; }
4715 
4716 public:
4717   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4718                                 G1ParScanThreadState* par_scan_state,
4719                                 RefToScanQueueSet* queues,
4720                                 ParallelTaskTerminator* terminator)
4721     : _g1h(g1h), _par_scan_state(par_scan_state),
4722       _queues(queues), _terminator(terminator) {}
4723 
4724   void do_void();
4725 
4726 private:
4727   inline bool offer_termination();
4728 };
4729 
4730 bool G1ParEvacuateFollowersClosure::offer_termination() {
4731   G1ParScanThreadState* const pss = par_scan_state();
4732   pss->start_term_time();
4733   const bool res = terminator()->offer_termination();
4734   pss->end_term_time();
4735   return res;
4736 }
4737 
4738 void G1ParEvacuateFollowersClosure::do_void() {
4739   StarTask stolen_task;
4740   G1ParScanThreadState* const pss = par_scan_state();
4741   pss->trim_queue();
4742 
4743   do {
4744     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4745       assert(pss->verify_task(stolen_task), "sanity");
4746       if (stolen_task.is_narrow()) {
4747         pss->deal_with_reference((narrowOop*) stolen_task);
4748       } else {
4749         pss->deal_with_reference((oop*) stolen_task);
4750       }
4751 
4752       // We've just processed a reference and we might have made
4753       // available new entries on the queues. So we have to make sure
4754       // we drain the queues as necessary.
4755       pss->trim_queue();
4756     }
4757   } while (!offer_termination());
4758 
4759   pss->retire_alloc_buffers();
4760 }
4761 
4762 class G1KlassScanClosure : public KlassClosure {
4763  G1ParCopyHelper* _closure;
4764  bool             _process_only_dirty;
4765  int              _count;
4766  public:
4767   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4768       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4769   void do_klass(Klass* klass) {
4770     // If the klass has not been dirtied we know that there's
4771     // no references into  the young gen and we can skip it.
4772    if (!_process_only_dirty || klass->has_modified_oops()) {
4773       // Clean the klass since we're going to scavenge all the metadata.
4774       klass->clear_modified_oops();
4775 
4776       // Tell the closure that this klass is the Klass to scavenge
4777       // and is the one to dirty if oops are left pointing into the young gen.
4778       _closure->set_scanned_klass(klass);
4779 
4780       klass->oops_do(_closure);
4781 
4782       _closure->set_scanned_klass(NULL);
4783     }
4784     _count++;
4785   }
4786 };
4787 
4788 class G1ParTask : public AbstractGangTask {
4789 protected:
4790   G1CollectedHeap*       _g1h;
4791   RefToScanQueueSet      *_queues;
4792   ParallelTaskTerminator _terminator;
4793   uint _n_workers;
4794 
4795   Mutex _stats_lock;
4796   Mutex* stats_lock() { return &_stats_lock; }
4797 
4798   size_t getNCards() {
4799     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4800       / G1BlockOffsetSharedArray::N_bytes;
4801   }
4802 
4803 public:
4804   G1ParTask(G1CollectedHeap* g1h,
4805             RefToScanQueueSet *task_queues)
4806     : AbstractGangTask("G1 collection"),
4807       _g1h(g1h),
4808       _queues(task_queues),
4809       _terminator(0, _queues),
4810       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4811   {}
4812 
4813   RefToScanQueueSet* queues() { return _queues; }
4814 
4815   RefToScanQueue *work_queue(int i) {
4816     return queues()->queue(i);
4817   }
4818 
4819   ParallelTaskTerminator* terminator() { return &_terminator; }
4820 
4821   virtual void set_for_termination(int active_workers) {
4822     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4823     // in the young space (_par_seq_tasks) in the G1 heap
4824     // for SequentialSubTasksDone.
4825     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4826     // both of which need setting by set_n_termination().
4827     _g1h->SharedHeap::set_n_termination(active_workers);
4828     _g1h->set_n_termination(active_workers);
4829     terminator()->reset_for_reuse(active_workers);
4830     _n_workers = active_workers;
4831   }
4832 
4833   void work(uint worker_id) {
4834     if (worker_id >= _n_workers) return;  // no work needed this round
4835 
4836     double start_time_ms = os::elapsedTime() * 1000.0;
4837     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4838 
4839     {
4840       ResourceMark rm;
4841       HandleMark   hm;
4842 
4843       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4844 
4845       G1ParScanThreadState            pss(_g1h, worker_id);
4846       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4847       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4848       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4849 
4850       pss.set_evac_closure(&scan_evac_cl);
4851       pss.set_evac_failure_closure(&evac_failure_cl);
4852       pss.set_partial_scan_closure(&partial_scan_cl);
4853 
4854       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4855       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
4856 
4857       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4858       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
4859 
4860       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
4861       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
4862       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
4863 
4864       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4865       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
4866 
4867       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4868         // We also need to mark copied objects.
4869         scan_root_cl = &scan_mark_root_cl;
4870         scan_klasses_cl = &scan_mark_klasses_cl_s;
4871       }
4872 
4873       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4874 
4875       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
4876 
4877       pss.start_strong_roots();
4878       _g1h->g1_process_strong_roots(/* is scavenging */ true,
4879                                     SharedHeap::ScanningOption(so),
4880                                     scan_root_cl,
4881                                     &push_heap_rs_cl,
4882                                     scan_klasses_cl,
4883                                     worker_id);
4884       pss.end_strong_roots();
4885 
4886       {
4887         double start = os::elapsedTime();
4888         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4889         evac.do_void();
4890         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4891         double term_ms = pss.term_time()*1000.0;
4892         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4893         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4894       }
4895       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4896       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4897 
4898       if (ParallelGCVerbose) {
4899         MutexLocker x(stats_lock());
4900         pss.print_termination_stats(worker_id);
4901       }
4902 
4903       assert(pss.refs()->is_empty(), "should be empty");
4904 
4905       // Close the inner scope so that the ResourceMark and HandleMark
4906       // destructors are executed here and are included as part of the
4907       // "GC Worker Time".
4908     }
4909 
4910     double end_time_ms = os::elapsedTime() * 1000.0;
4911     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4912   }
4913 };
4914 
4915 // *** Common G1 Evacuation Stuff
4916 
4917 // Closures that support the filtering of CodeBlobs scanned during
4918 // external root scanning.
4919 
4920 // Closure applied to reference fields in code blobs (specifically nmethods)
4921 // to determine whether an nmethod contains references that point into
4922 // the collection set. Used as a predicate when walking code roots so
4923 // that only nmethods that point into the collection set are added to the
4924 // 'marked' list.
4925 
4926 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
4927 
4928   class G1PointsIntoCSOopClosure : public OopClosure {
4929     G1CollectedHeap* _g1;
4930     bool _points_into_cs;
4931   public:
4932     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
4933       _g1(g1), _points_into_cs(false) { }
4934 
4935     bool points_into_cs() const { return _points_into_cs; }
4936 
4937     template <class T>
4938     void do_oop_nv(T* p) {
4939       if (!_points_into_cs) {
4940         T heap_oop = oopDesc::load_heap_oop(p);
4941         if (!oopDesc::is_null(heap_oop) &&
4942             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
4943           _points_into_cs = true;
4944         }
4945       }
4946     }
4947 
4948     virtual void do_oop(oop* p)        { do_oop_nv(p); }
4949     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
4950   };
4951 
4952   G1CollectedHeap* _g1;
4953 
4954 public:
4955   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
4956     CodeBlobToOopClosure(cl, true), _g1(g1) { }
4957 
4958   virtual void do_code_blob(CodeBlob* cb) {
4959     nmethod* nm = cb->as_nmethod_or_null();
4960     if (nm != NULL && !(nm->test_oops_do_mark())) {
4961       G1PointsIntoCSOopClosure predicate_cl(_g1);
4962       nm->oops_do(&predicate_cl);
4963 
4964       if (predicate_cl.points_into_cs()) {
4965         // At least one of the reference fields or the oop relocations
4966         // in the nmethod points into the collection set. We have to
4967         // 'mark' this nmethod.
4968         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
4969         // or MarkingCodeBlobClosure::do_code_blob() change.
4970         if (!nm->test_set_oops_do_mark()) {
4971           do_newly_marked_nmethod(nm);
4972         }
4973       }
4974     }
4975   }
4976 };
4977 
4978 // This method is run in a GC worker.
4979 
4980 void
4981 G1CollectedHeap::
4982 g1_process_strong_roots(bool is_scavenging,
4983                         ScanningOption so,
4984                         OopClosure* scan_non_heap_roots,
4985                         OopsInHeapRegionClosure* scan_rs,
4986                         G1KlassScanClosure* scan_klasses,
4987                         int worker_i) {
4988 
4989   // First scan the strong roots
4990   double ext_roots_start = os::elapsedTime();
4991   double closure_app_time_sec = 0.0;
4992 
4993   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4994 
4995   // Walk the code cache w/o buffering, because StarTask cannot handle
4996   // unaligned oop locations.
4997   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
4998 
4999   process_strong_roots(false, // no scoping; this is parallel code
5000                        is_scavenging, so,
5001                        &buf_scan_non_heap_roots,
5002                        &eager_scan_code_roots,
5003                        scan_klasses
5004                        );
5005 
5006   // Now the CM ref_processor roots.
5007   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5008     // We need to treat the discovered reference lists of the
5009     // concurrent mark ref processor as roots and keep entries
5010     // (which are added by the marking threads) on them live
5011     // until they can be processed at the end of marking.
5012     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5013   }
5014 
5015   // Finish up any enqueued closure apps (attributed as object copy time).
5016   buf_scan_non_heap_roots.done();
5017 
5018   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5019 
5020   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5021 
5022   double ext_root_time_ms =
5023     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5024 
5025   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5026 
5027   // During conc marking we have to filter the per-thread SATB buffers
5028   // to make sure we remove any oops into the CSet (which will show up
5029   // as implicitly live).
5030   double satb_filtering_ms = 0.0;
5031   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5032     if (mark_in_progress()) {
5033       double satb_filter_start = os::elapsedTime();
5034 
5035       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5036 
5037       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5038     }
5039   }
5040   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5041 
5042   // Now scan the complement of the collection set.
5043   if (scan_rs != NULL) {
5044     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
5045   }
5046   _process_strong_tasks->all_tasks_completed();
5047 }
5048 
5049 void
5050 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
5051                                        OopClosure* non_root_closure) {
5052   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5053   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
5054 }
5055 
5056 // Weak Reference Processing support
5057 
5058 // An always "is_alive" closure that is used to preserve referents.
5059 // If the object is non-null then it's alive.  Used in the preservation
5060 // of referent objects that are pointed to by reference objects
5061 // discovered by the CM ref processor.
5062 class G1AlwaysAliveClosure: public BoolObjectClosure {
5063   G1CollectedHeap* _g1;
5064 public:
5065   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5066   void do_object(oop p) { assert(false, "Do not call."); }
5067   bool do_object_b(oop p) {
5068     if (p != NULL) {
5069       return true;
5070     }
5071     return false;
5072   }
5073 };
5074 
5075 bool G1STWIsAliveClosure::do_object_b(oop p) {
5076   // An object is reachable if it is outside the collection set,
5077   // or is inside and copied.
5078   return !_g1->obj_in_cs(p) || p->is_forwarded();
5079 }
5080 
5081 // Non Copying Keep Alive closure
5082 class G1KeepAliveClosure: public OopClosure {
5083   G1CollectedHeap* _g1;
5084 public:
5085   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5086   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5087   void do_oop(      oop* p) {
5088     oop obj = *p;
5089 
5090     if (_g1->obj_in_cs(obj)) {
5091       assert( obj->is_forwarded(), "invariant" );
5092       *p = obj->forwardee();
5093     }
5094   }
5095 };
5096 
5097 // Copying Keep Alive closure - can be called from both
5098 // serial and parallel code as long as different worker
5099 // threads utilize different G1ParScanThreadState instances
5100 // and different queues.
5101 
5102 class G1CopyingKeepAliveClosure: public OopClosure {
5103   G1CollectedHeap*         _g1h;
5104   OopClosure*              _copy_non_heap_obj_cl;
5105   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5106   G1ParScanThreadState*    _par_scan_state;
5107 
5108 public:
5109   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5110                             OopClosure* non_heap_obj_cl,
5111                             OopsInHeapRegionClosure* metadata_obj_cl,
5112                             G1ParScanThreadState* pss):
5113     _g1h(g1h),
5114     _copy_non_heap_obj_cl(non_heap_obj_cl),
5115     _copy_metadata_obj_cl(metadata_obj_cl),
5116     _par_scan_state(pss)
5117   {}
5118 
5119   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5120   virtual void do_oop(      oop* p) { do_oop_work(p); }
5121 
5122   template <class T> void do_oop_work(T* p) {
5123     oop obj = oopDesc::load_decode_heap_oop(p);
5124 
5125     if (_g1h->obj_in_cs(obj)) {
5126       // If the referent object has been forwarded (either copied
5127       // to a new location or to itself in the event of an
5128       // evacuation failure) then we need to update the reference
5129       // field and, if both reference and referent are in the G1
5130       // heap, update the RSet for the referent.
5131       //
5132       // If the referent has not been forwarded then we have to keep
5133       // it alive by policy. Therefore we have copy the referent.
5134       //
5135       // If the reference field is in the G1 heap then we can push
5136       // on the PSS queue. When the queue is drained (after each
5137       // phase of reference processing) the object and it's followers
5138       // will be copied, the reference field set to point to the
5139       // new location, and the RSet updated. Otherwise we need to
5140       // use the the non-heap or metadata closures directly to copy
5141       // the refernt object and update the pointer, while avoiding
5142       // updating the RSet.
5143 
5144       if (_g1h->is_in_g1_reserved(p)) {
5145         _par_scan_state->push_on_queue(p);
5146       } else {
5147         assert(!ClassLoaderDataGraph::contains((address)p),
5148                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5149                               PTR_FORMAT, p));
5150           _copy_non_heap_obj_cl->do_oop(p);
5151         }
5152       }
5153     }
5154 };
5155 
5156 // Serial drain queue closure. Called as the 'complete_gc'
5157 // closure for each discovered list in some of the
5158 // reference processing phases.
5159 
5160 class G1STWDrainQueueClosure: public VoidClosure {
5161 protected:
5162   G1CollectedHeap* _g1h;
5163   G1ParScanThreadState* _par_scan_state;
5164 
5165   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5166 
5167 public:
5168   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5169     _g1h(g1h),
5170     _par_scan_state(pss)
5171   { }
5172 
5173   void do_void() {
5174     G1ParScanThreadState* const pss = par_scan_state();
5175     pss->trim_queue();
5176   }
5177 };
5178 
5179 // Parallel Reference Processing closures
5180 
5181 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5182 // processing during G1 evacuation pauses.
5183 
5184 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5185 private:
5186   G1CollectedHeap*   _g1h;
5187   RefToScanQueueSet* _queues;
5188   FlexibleWorkGang*  _workers;
5189   int                _active_workers;
5190 
5191 public:
5192   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5193                         FlexibleWorkGang* workers,
5194                         RefToScanQueueSet *task_queues,
5195                         int n_workers) :
5196     _g1h(g1h),
5197     _queues(task_queues),
5198     _workers(workers),
5199     _active_workers(n_workers)
5200   {
5201     assert(n_workers > 0, "shouldn't call this otherwise");
5202   }
5203 
5204   // Executes the given task using concurrent marking worker threads.
5205   virtual void execute(ProcessTask& task);
5206   virtual void execute(EnqueueTask& task);
5207 };
5208 
5209 // Gang task for possibly parallel reference processing
5210 
5211 class G1STWRefProcTaskProxy: public AbstractGangTask {
5212   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5213   ProcessTask&     _proc_task;
5214   G1CollectedHeap* _g1h;
5215   RefToScanQueueSet *_task_queues;
5216   ParallelTaskTerminator* _terminator;
5217 
5218 public:
5219   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5220                      G1CollectedHeap* g1h,
5221                      RefToScanQueueSet *task_queues,
5222                      ParallelTaskTerminator* terminator) :
5223     AbstractGangTask("Process reference objects in parallel"),
5224     _proc_task(proc_task),
5225     _g1h(g1h),
5226     _task_queues(task_queues),
5227     _terminator(terminator)
5228   {}
5229 
5230   virtual void work(uint worker_id) {
5231     // The reference processing task executed by a single worker.
5232     ResourceMark rm;
5233     HandleMark   hm;
5234 
5235     G1STWIsAliveClosure is_alive(_g1h);
5236 
5237     G1ParScanThreadState pss(_g1h, worker_id);
5238 
5239     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5240     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5241     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5242 
5243     pss.set_evac_closure(&scan_evac_cl);
5244     pss.set_evac_failure_closure(&evac_failure_cl);
5245     pss.set_partial_scan_closure(&partial_scan_cl);
5246 
5247     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5248     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5249 
5250     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5251     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5252 
5253     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5254     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5255 
5256     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5257       // We also need to mark copied objects.
5258       copy_non_heap_cl = &copy_mark_non_heap_cl;
5259       copy_metadata_cl = &copy_mark_metadata_cl;
5260     }
5261 
5262     // Keep alive closure.
5263     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5264 
5265     // Complete GC closure
5266     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5267 
5268     // Call the reference processing task's work routine.
5269     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5270 
5271     // Note we cannot assert that the refs array is empty here as not all
5272     // of the processing tasks (specifically phase2 - pp2_work) execute
5273     // the complete_gc closure (which ordinarily would drain the queue) so
5274     // the queue may not be empty.
5275   }
5276 };
5277 
5278 // Driver routine for parallel reference processing.
5279 // Creates an instance of the ref processing gang
5280 // task and has the worker threads execute it.
5281 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5282   assert(_workers != NULL, "Need parallel worker threads.");
5283 
5284   ParallelTaskTerminator terminator(_active_workers, _queues);
5285   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5286 
5287   _g1h->set_par_threads(_active_workers);
5288   _workers->run_task(&proc_task_proxy);
5289   _g1h->set_par_threads(0);
5290 }
5291 
5292 // Gang task for parallel reference enqueueing.
5293 
5294 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5295   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5296   EnqueueTask& _enq_task;
5297 
5298 public:
5299   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5300     AbstractGangTask("Enqueue reference objects in parallel"),
5301     _enq_task(enq_task)
5302   { }
5303 
5304   virtual void work(uint worker_id) {
5305     _enq_task.work(worker_id);
5306   }
5307 };
5308 
5309 // Driver routine for parallel reference enqueing.
5310 // Creates an instance of the ref enqueueing gang
5311 // task and has the worker threads execute it.
5312 
5313 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5314   assert(_workers != NULL, "Need parallel worker threads.");
5315 
5316   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5317 
5318   _g1h->set_par_threads(_active_workers);
5319   _workers->run_task(&enq_task_proxy);
5320   _g1h->set_par_threads(0);
5321 }
5322 
5323 // End of weak reference support closures
5324 
5325 // Abstract task used to preserve (i.e. copy) any referent objects
5326 // that are in the collection set and are pointed to by reference
5327 // objects discovered by the CM ref processor.
5328 
5329 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5330 protected:
5331   G1CollectedHeap* _g1h;
5332   RefToScanQueueSet      *_queues;
5333   ParallelTaskTerminator _terminator;
5334   uint _n_workers;
5335 
5336 public:
5337   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5338     AbstractGangTask("ParPreserveCMReferents"),
5339     _g1h(g1h),
5340     _queues(task_queues),
5341     _terminator(workers, _queues),
5342     _n_workers(workers)
5343   { }
5344 
5345   void work(uint worker_id) {
5346     ResourceMark rm;
5347     HandleMark   hm;
5348 
5349     G1ParScanThreadState            pss(_g1h, worker_id);
5350     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5351     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5352     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5353 
5354     pss.set_evac_closure(&scan_evac_cl);
5355     pss.set_evac_failure_closure(&evac_failure_cl);
5356     pss.set_partial_scan_closure(&partial_scan_cl);
5357 
5358     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5359 
5360 
5361     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5362     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5363 
5364     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5365     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5366 
5367     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5368     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5369 
5370     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5371       // We also need to mark copied objects.
5372       copy_non_heap_cl = &copy_mark_non_heap_cl;
5373       copy_metadata_cl = &copy_mark_metadata_cl;
5374     }
5375 
5376     // Is alive closure
5377     G1AlwaysAliveClosure always_alive(_g1h);
5378 
5379     // Copying keep alive closure. Applied to referent objects that need
5380     // to be copied.
5381     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5382 
5383     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5384 
5385     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5386     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5387 
5388     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5389     // So this must be true - but assert just in case someone decides to
5390     // change the worker ids.
5391     assert(0 <= worker_id && worker_id < limit, "sanity");
5392     assert(!rp->discovery_is_atomic(), "check this code");
5393 
5394     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5395     for (uint idx = worker_id; idx < limit; idx += stride) {
5396       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5397 
5398       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5399       while (iter.has_next()) {
5400         // Since discovery is not atomic for the CM ref processor, we
5401         // can see some null referent objects.
5402         iter.load_ptrs(DEBUG_ONLY(true));
5403         oop ref = iter.obj();
5404 
5405         // This will filter nulls.
5406         if (iter.is_referent_alive()) {
5407           iter.make_referent_alive();
5408         }
5409         iter.move_to_next();
5410       }
5411     }
5412 
5413     // Drain the queue - which may cause stealing
5414     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5415     drain_queue.do_void();
5416     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5417     assert(pss.refs()->is_empty(), "should be");
5418   }
5419 };
5420 
5421 // Weak Reference processing during an evacuation pause (part 1).
5422 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5423   double ref_proc_start = os::elapsedTime();
5424 
5425   ReferenceProcessor* rp = _ref_processor_stw;
5426   assert(rp->discovery_enabled(), "should have been enabled");
5427 
5428   // Any reference objects, in the collection set, that were 'discovered'
5429   // by the CM ref processor should have already been copied (either by
5430   // applying the external root copy closure to the discovered lists, or
5431   // by following an RSet entry).
5432   //
5433   // But some of the referents, that are in the collection set, that these
5434   // reference objects point to may not have been copied: the STW ref
5435   // processor would have seen that the reference object had already
5436   // been 'discovered' and would have skipped discovering the reference,
5437   // but would not have treated the reference object as a regular oop.
5438   // As a reult the copy closure would not have been applied to the
5439   // referent object.
5440   //
5441   // We need to explicitly copy these referent objects - the references
5442   // will be processed at the end of remarking.
5443   //
5444   // We also need to do this copying before we process the reference
5445   // objects discovered by the STW ref processor in case one of these
5446   // referents points to another object which is also referenced by an
5447   // object discovered by the STW ref processor.
5448 
5449   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5450            no_of_gc_workers == workers()->active_workers(),
5451            "Need to reset active GC workers");
5452 
5453   set_par_threads(no_of_gc_workers);
5454   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5455                                                  no_of_gc_workers,
5456                                                  _task_queues);
5457 
5458   if (G1CollectedHeap::use_parallel_gc_threads()) {
5459     workers()->run_task(&keep_cm_referents);
5460   } else {
5461     keep_cm_referents.work(0);
5462   }
5463 
5464   set_par_threads(0);
5465 
5466   // Closure to test whether a referent is alive.
5467   G1STWIsAliveClosure is_alive(this);
5468 
5469   // Even when parallel reference processing is enabled, the processing
5470   // of JNI refs is serial and performed serially by the current thread
5471   // rather than by a worker. The following PSS will be used for processing
5472   // JNI refs.
5473 
5474   // Use only a single queue for this PSS.
5475   G1ParScanThreadState pss(this, 0);
5476 
5477   // We do not embed a reference processor in the copying/scanning
5478   // closures while we're actually processing the discovered
5479   // reference objects.
5480   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5481   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5482   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5483 
5484   pss.set_evac_closure(&scan_evac_cl);
5485   pss.set_evac_failure_closure(&evac_failure_cl);
5486   pss.set_partial_scan_closure(&partial_scan_cl);
5487 
5488   assert(pss.refs()->is_empty(), "pre-condition");
5489 
5490   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5491   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5492 
5493   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5494   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5495 
5496   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5497   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5498 
5499   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5500     // We also need to mark copied objects.
5501     copy_non_heap_cl = &copy_mark_non_heap_cl;
5502     copy_metadata_cl = &copy_mark_metadata_cl;
5503   }
5504 
5505   // Keep alive closure.
5506   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5507 
5508   // Serial Complete GC closure
5509   G1STWDrainQueueClosure drain_queue(this, &pss);
5510 
5511   // Setup the soft refs policy...
5512   rp->setup_policy(false);
5513 
5514   if (!rp->processing_is_mt()) {
5515     // Serial reference processing...
5516     rp->process_discovered_references(&is_alive,
5517                                       &keep_alive,
5518                                       &drain_queue,
5519                                       NULL);
5520   } else {
5521     // Parallel reference processing
5522     assert(rp->num_q() == no_of_gc_workers, "sanity");
5523     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5524 
5525     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5526     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
5527   }
5528 
5529   // We have completed copying any necessary live referent objects
5530   // (that were not copied during the actual pause) so we can
5531   // retire any active alloc buffers
5532   pss.retire_alloc_buffers();
5533   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5534 
5535   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5536   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5537 }
5538 
5539 // Weak Reference processing during an evacuation pause (part 2).
5540 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5541   double ref_enq_start = os::elapsedTime();
5542 
5543   ReferenceProcessor* rp = _ref_processor_stw;
5544   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5545 
5546   // Now enqueue any remaining on the discovered lists on to
5547   // the pending list.
5548   if (!rp->processing_is_mt()) {
5549     // Serial reference processing...
5550     rp->enqueue_discovered_references();
5551   } else {
5552     // Parallel reference enqueuing
5553 
5554     assert(no_of_gc_workers == workers()->active_workers(),
5555            "Need to reset active workers");
5556     assert(rp->num_q() == no_of_gc_workers, "sanity");
5557     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5558 
5559     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5560     rp->enqueue_discovered_references(&par_task_executor);
5561   }
5562 
5563   rp->verify_no_references_recorded();
5564   assert(!rp->discovery_enabled(), "should have been disabled");
5565 
5566   // FIXME
5567   // CM's reference processing also cleans up the string and symbol tables.
5568   // Should we do that here also? We could, but it is a serial operation
5569   // and could signicantly increase the pause time.
5570 
5571   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5572   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5573 }
5574 
5575 void G1CollectedHeap::evacuate_collection_set() {
5576   _expand_heap_after_alloc_failure = true;
5577   set_evacuation_failed(false);
5578 
5579   // Should G1EvacuationFailureALot be in effect for this GC?
5580   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5581 
5582   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5583   concurrent_g1_refine()->set_use_cache(false);
5584   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5585 
5586   uint n_workers;
5587   if (G1CollectedHeap::use_parallel_gc_threads()) {
5588     n_workers =
5589       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5590                                      workers()->active_workers(),
5591                                      Threads::number_of_non_daemon_threads());
5592     assert(UseDynamicNumberOfGCThreads ||
5593            n_workers == workers()->total_workers(),
5594            "If not dynamic should be using all the  workers");
5595     workers()->set_active_workers(n_workers);
5596     set_par_threads(n_workers);
5597   } else {
5598     assert(n_par_threads() == 0,
5599            "Should be the original non-parallel value");
5600     n_workers = 1;
5601   }
5602 
5603   G1ParTask g1_par_task(this, _task_queues);
5604 
5605   init_for_evac_failure(NULL);
5606 
5607   rem_set()->prepare_for_younger_refs_iterate(true);
5608 
5609   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5610   double start_par_time_sec = os::elapsedTime();
5611   double end_par_time_sec;
5612 
5613   {
5614     StrongRootsScope srs(this);
5615 
5616     if (G1CollectedHeap::use_parallel_gc_threads()) {
5617       // The individual threads will set their evac-failure closures.
5618       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5619       // These tasks use ShareHeap::_process_strong_tasks
5620       assert(UseDynamicNumberOfGCThreads ||
5621              workers()->active_workers() == workers()->total_workers(),
5622              "If not dynamic should be using all the  workers");
5623       workers()->run_task(&g1_par_task);
5624     } else {
5625       g1_par_task.set_for_termination(n_workers);
5626       g1_par_task.work(0);
5627     }
5628     end_par_time_sec = os::elapsedTime();
5629 
5630     // Closing the inner scope will execute the destructor
5631     // for the StrongRootsScope object. We record the current
5632     // elapsed time before closing the scope so that time
5633     // taken for the SRS destructor is NOT included in the
5634     // reported parallel time.
5635   }
5636 
5637   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5638   g1_policy()->phase_times()->record_par_time(par_time_ms);
5639 
5640   double code_root_fixup_time_ms =
5641         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5642   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5643 
5644   set_par_threads(0);
5645 
5646   // Process any discovered reference objects - we have
5647   // to do this _before_ we retire the GC alloc regions
5648   // as we may have to copy some 'reachable' referent
5649   // objects (and their reachable sub-graphs) that were
5650   // not copied during the pause.
5651   process_discovered_references(n_workers);
5652 
5653   // Weak root processing.
5654   // Note: when JSR 292 is enabled and code blobs can contain
5655   // non-perm oops then we will need to process the code blobs
5656   // here too.
5657   {
5658     G1STWIsAliveClosure is_alive(this);
5659     G1KeepAliveClosure keep_alive(this);
5660     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5661   }
5662 
5663   release_gc_alloc_regions(n_workers);
5664   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5665 
5666   concurrent_g1_refine()->clear_hot_cache();
5667   concurrent_g1_refine()->set_use_cache(true);
5668 
5669   finalize_for_evac_failure();
5670 
5671   if (evacuation_failed()) {
5672     remove_self_forwarding_pointers();
5673 
5674     // Reset the G1EvacuationFailureALot counters and flags
5675     // Note: the values are reset only when an actual
5676     // evacuation failure occurs.
5677     NOT_PRODUCT(reset_evacuation_should_fail();)
5678   }
5679 
5680   // Enqueue any remaining references remaining on the STW
5681   // reference processor's discovered lists. We need to do
5682   // this after the card table is cleaned (and verified) as
5683   // the act of enqueuing entries on to the pending list
5684   // will log these updates (and dirty their associated
5685   // cards). We need these updates logged to update any
5686   // RSets.
5687   enqueue_discovered_references(n_workers);
5688 
5689   if (G1DeferredRSUpdate) {
5690     RedirtyLoggedCardTableEntryFastClosure redirty;
5691     dirty_card_queue_set().set_closure(&redirty);
5692     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5693 
5694     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5695     dcq.merge_bufferlists(&dirty_card_queue_set());
5696     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5697   }
5698   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5699 }
5700 
5701 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5702                                      size_t* pre_used,
5703                                      FreeRegionList* free_list,
5704                                      OldRegionSet* old_proxy_set,
5705                                      HumongousRegionSet* humongous_proxy_set,
5706                                      HRRSCleanupTask* hrrs_cleanup_task,
5707                                      bool par) {
5708   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5709     if (hr->isHumongous()) {
5710       assert(hr->startsHumongous(), "we should only see starts humongous");
5711       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5712     } else {
5713       _old_set.remove_with_proxy(hr, old_proxy_set);
5714       free_region(hr, pre_used, free_list, par);
5715     }
5716   } else {
5717     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5718   }
5719 }
5720 
5721 void G1CollectedHeap::free_region(HeapRegion* hr,
5722                                   size_t* pre_used,
5723                                   FreeRegionList* free_list,
5724                                   bool par) {
5725   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5726   assert(!hr->is_empty(), "the region should not be empty");
5727   assert(free_list != NULL, "pre-condition");
5728 
5729   *pre_used += hr->used();
5730   hr->hr_clear(par, true /* clear_space */);
5731   free_list->add_as_head(hr);
5732 }
5733 
5734 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5735                                      size_t* pre_used,
5736                                      FreeRegionList* free_list,
5737                                      HumongousRegionSet* humongous_proxy_set,
5738                                      bool par) {
5739   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5740   assert(free_list != NULL, "pre-condition");
5741   assert(humongous_proxy_set != NULL, "pre-condition");
5742 
5743   size_t hr_used = hr->used();
5744   size_t hr_capacity = hr->capacity();
5745   size_t hr_pre_used = 0;
5746   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5747   // We need to read this before we make the region non-humongous,
5748   // otherwise the information will be gone.
5749   uint last_index = hr->last_hc_index();
5750   hr->set_notHumongous();
5751   free_region(hr, &hr_pre_used, free_list, par);
5752 
5753   uint i = hr->hrs_index() + 1;
5754   while (i < last_index) {
5755     HeapRegion* curr_hr = region_at(i);
5756     assert(curr_hr->continuesHumongous(), "invariant");
5757     curr_hr->set_notHumongous();
5758     free_region(curr_hr, &hr_pre_used, free_list, par);
5759     i += 1;
5760   }
5761   assert(hr_pre_used == hr_used,
5762          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5763                  "should be the same", hr_pre_used, hr_used));
5764   *pre_used += hr_pre_used;
5765 }
5766 
5767 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5768                                        FreeRegionList* free_list,
5769                                        OldRegionSet* old_proxy_set,
5770                                        HumongousRegionSet* humongous_proxy_set,
5771                                        bool par) {
5772   if (pre_used > 0) {
5773     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5774     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5775     assert(_summary_bytes_used >= pre_used,
5776            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5777                    "should be >= pre_used: "SIZE_FORMAT,
5778                    _summary_bytes_used, pre_used));
5779     _summary_bytes_used -= pre_used;
5780   }
5781   if (free_list != NULL && !free_list->is_empty()) {
5782     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5783     _free_list.add_as_head(free_list);
5784   }
5785   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5786     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5787     _old_set.update_from_proxy(old_proxy_set);
5788   }
5789   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5790     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5791     _humongous_set.update_from_proxy(humongous_proxy_set);
5792   }
5793 }
5794 
5795 class G1ParCleanupCTTask : public AbstractGangTask {
5796   CardTableModRefBS* _ct_bs;
5797   G1CollectedHeap* _g1h;
5798   HeapRegion* volatile _su_head;
5799 public:
5800   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5801                      G1CollectedHeap* g1h) :
5802     AbstractGangTask("G1 Par Cleanup CT Task"),
5803     _ct_bs(ct_bs), _g1h(g1h) { }
5804 
5805   void work(uint worker_id) {
5806     HeapRegion* r;
5807     while (r = _g1h->pop_dirty_cards_region()) {
5808       clear_cards(r);
5809     }
5810   }
5811 
5812   void clear_cards(HeapRegion* r) {
5813     // Cards of the survivors should have already been dirtied.
5814     if (!r->is_survivor()) {
5815       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5816     }
5817   }
5818 };
5819 
5820 #ifndef PRODUCT
5821 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5822   G1CollectedHeap* _g1h;
5823   CardTableModRefBS* _ct_bs;
5824 public:
5825   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5826     : _g1h(g1h), _ct_bs(ct_bs) { }
5827   virtual bool doHeapRegion(HeapRegion* r) {
5828     if (r->is_survivor()) {
5829       _g1h->verify_dirty_region(r);
5830     } else {
5831       _g1h->verify_not_dirty_region(r);
5832     }
5833     return false;
5834   }
5835 };
5836 
5837 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5838   // All of the region should be clean.
5839   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5840   MemRegion mr(hr->bottom(), hr->end());
5841   ct_bs->verify_not_dirty_region(mr);
5842 }
5843 
5844 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5845   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5846   // dirty allocated blocks as they allocate them. The thread that
5847   // retires each region and replaces it with a new one will do a
5848   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5849   // not dirty that area (one less thing to have to do while holding
5850   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5851   // is dirty.
5852   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5853   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5854   ct_bs->verify_dirty_region(mr);
5855 }
5856 
5857 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5858   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5859   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5860     verify_dirty_region(hr);
5861   }
5862 }
5863 
5864 void G1CollectedHeap::verify_dirty_young_regions() {
5865   verify_dirty_young_list(_young_list->first_region());
5866 }
5867 #endif
5868 
5869 void G1CollectedHeap::cleanUpCardTable() {
5870   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5871   double start = os::elapsedTime();
5872 
5873   {
5874     // Iterate over the dirty cards region list.
5875     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5876 
5877     if (G1CollectedHeap::use_parallel_gc_threads()) {
5878       set_par_threads();
5879       workers()->run_task(&cleanup_task);
5880       set_par_threads(0);
5881     } else {
5882       while (_dirty_cards_region_list) {
5883         HeapRegion* r = _dirty_cards_region_list;
5884         cleanup_task.clear_cards(r);
5885         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5886         if (_dirty_cards_region_list == r) {
5887           // The last region.
5888           _dirty_cards_region_list = NULL;
5889         }
5890         r->set_next_dirty_cards_region(NULL);
5891       }
5892     }
5893 #ifndef PRODUCT
5894     if (G1VerifyCTCleanup || VerifyAfterGC) {
5895       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5896       heap_region_iterate(&cleanup_verifier);
5897     }
5898 #endif
5899   }
5900 
5901   double elapsed = os::elapsedTime() - start;
5902   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5903 }
5904 
5905 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5906   size_t pre_used = 0;
5907   FreeRegionList local_free_list("Local List for CSet Freeing");
5908 
5909   double young_time_ms     = 0.0;
5910   double non_young_time_ms = 0.0;
5911 
5912   // Since the collection set is a superset of the the young list,
5913   // all we need to do to clear the young list is clear its
5914   // head and length, and unlink any young regions in the code below
5915   _young_list->clear();
5916 
5917   G1CollectorPolicy* policy = g1_policy();
5918 
5919   double start_sec = os::elapsedTime();
5920   bool non_young = true;
5921 
5922   HeapRegion* cur = cs_head;
5923   int age_bound = -1;
5924   size_t rs_lengths = 0;
5925 
5926   while (cur != NULL) {
5927     assert(!is_on_master_free_list(cur), "sanity");
5928     if (non_young) {
5929       if (cur->is_young()) {
5930         double end_sec = os::elapsedTime();
5931         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5932         non_young_time_ms += elapsed_ms;
5933 
5934         start_sec = os::elapsedTime();
5935         non_young = false;
5936       }
5937     } else {
5938       if (!cur->is_young()) {
5939         double end_sec = os::elapsedTime();
5940         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5941         young_time_ms += elapsed_ms;
5942 
5943         start_sec = os::elapsedTime();
5944         non_young = true;
5945       }
5946     }
5947 
5948     rs_lengths += cur->rem_set()->occupied();
5949 
5950     HeapRegion* next = cur->next_in_collection_set();
5951     assert(cur->in_collection_set(), "bad CS");
5952     cur->set_next_in_collection_set(NULL);
5953     cur->set_in_collection_set(false);
5954 
5955     if (cur->is_young()) {
5956       int index = cur->young_index_in_cset();
5957       assert(index != -1, "invariant");
5958       assert((uint) index < policy->young_cset_region_length(), "invariant");
5959       size_t words_survived = _surviving_young_words[index];
5960       cur->record_surv_words_in_group(words_survived);
5961 
5962       // At this point the we have 'popped' cur from the collection set
5963       // (linked via next_in_collection_set()) but it is still in the
5964       // young list (linked via next_young_region()). Clear the
5965       // _next_young_region field.
5966       cur->set_next_young_region(NULL);
5967     } else {
5968       int index = cur->young_index_in_cset();
5969       assert(index == -1, "invariant");
5970     }
5971 
5972     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5973             (!cur->is_young() && cur->young_index_in_cset() == -1),
5974             "invariant" );
5975 
5976     if (!cur->evacuation_failed()) {
5977       MemRegion used_mr = cur->used_region();
5978 
5979       // And the region is empty.
5980       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5981       free_region(cur, &pre_used, &local_free_list, false /* par */);
5982     } else {
5983       cur->uninstall_surv_rate_group();
5984       if (cur->is_young()) {
5985         cur->set_young_index_in_cset(-1);
5986       }
5987       cur->set_not_young();
5988       cur->set_evacuation_failed(false);
5989       // The region is now considered to be old.
5990       _old_set.add(cur);
5991     }
5992     cur = next;
5993   }
5994 
5995   policy->record_max_rs_lengths(rs_lengths);
5996   policy->cset_regions_freed();
5997 
5998   double end_sec = os::elapsedTime();
5999   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6000 
6001   if (non_young) {
6002     non_young_time_ms += elapsed_ms;
6003   } else {
6004     young_time_ms += elapsed_ms;
6005   }
6006 
6007   update_sets_after_freeing_regions(pre_used, &local_free_list,
6008                                     NULL /* old_proxy_set */,
6009                                     NULL /* humongous_proxy_set */,
6010                                     false /* par */);
6011   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6012   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6013 }
6014 
6015 // This routine is similar to the above but does not record
6016 // any policy statistics or update free lists; we are abandoning
6017 // the current incremental collection set in preparation of a
6018 // full collection. After the full GC we will start to build up
6019 // the incremental collection set again.
6020 // This is only called when we're doing a full collection
6021 // and is immediately followed by the tearing down of the young list.
6022 
6023 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6024   HeapRegion* cur = cs_head;
6025 
6026   while (cur != NULL) {
6027     HeapRegion* next = cur->next_in_collection_set();
6028     assert(cur->in_collection_set(), "bad CS");
6029     cur->set_next_in_collection_set(NULL);
6030     cur->set_in_collection_set(false);
6031     cur->set_young_index_in_cset(-1);
6032     cur = next;
6033   }
6034 }
6035 
6036 void G1CollectedHeap::set_free_regions_coming() {
6037   if (G1ConcRegionFreeingVerbose) {
6038     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6039                            "setting free regions coming");
6040   }
6041 
6042   assert(!free_regions_coming(), "pre-condition");
6043   _free_regions_coming = true;
6044 }
6045 
6046 void G1CollectedHeap::reset_free_regions_coming() {
6047   assert(free_regions_coming(), "pre-condition");
6048 
6049   {
6050     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6051     _free_regions_coming = false;
6052     SecondaryFreeList_lock->notify_all();
6053   }
6054 
6055   if (G1ConcRegionFreeingVerbose) {
6056     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6057                            "reset free regions coming");
6058   }
6059 }
6060 
6061 void G1CollectedHeap::wait_while_free_regions_coming() {
6062   // Most of the time we won't have to wait, so let's do a quick test
6063   // first before we take the lock.
6064   if (!free_regions_coming()) {
6065     return;
6066   }
6067 
6068   if (G1ConcRegionFreeingVerbose) {
6069     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6070                            "waiting for free regions");
6071   }
6072 
6073   {
6074     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6075     while (free_regions_coming()) {
6076       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6077     }
6078   }
6079 
6080   if (G1ConcRegionFreeingVerbose) {
6081     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6082                            "done waiting for free regions");
6083   }
6084 }
6085 
6086 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6087   assert(heap_lock_held_for_gc(),
6088               "the heap lock should already be held by or for this thread");
6089   _young_list->push_region(hr);
6090 }
6091 
6092 class NoYoungRegionsClosure: public HeapRegionClosure {
6093 private:
6094   bool _success;
6095 public:
6096   NoYoungRegionsClosure() : _success(true) { }
6097   bool doHeapRegion(HeapRegion* r) {
6098     if (r->is_young()) {
6099       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6100                              r->bottom(), r->end());
6101       _success = false;
6102     }
6103     return false;
6104   }
6105   bool success() { return _success; }
6106 };
6107 
6108 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6109   bool ret = _young_list->check_list_empty(check_sample);
6110 
6111   if (check_heap) {
6112     NoYoungRegionsClosure closure;
6113     heap_region_iterate(&closure);
6114     ret = ret && closure.success();
6115   }
6116 
6117   return ret;
6118 }
6119 
6120 class TearDownRegionSetsClosure : public HeapRegionClosure {
6121 private:
6122   OldRegionSet *_old_set;
6123 
6124 public:
6125   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6126 
6127   bool doHeapRegion(HeapRegion* r) {
6128     if (r->is_empty()) {
6129       // We ignore empty regions, we'll empty the free list afterwards
6130     } else if (r->is_young()) {
6131       // We ignore young regions, we'll empty the young list afterwards
6132     } else if (r->isHumongous()) {
6133       // We ignore humongous regions, we're not tearing down the
6134       // humongous region set
6135     } else {
6136       // The rest should be old
6137       _old_set->remove(r);
6138     }
6139     return false;
6140   }
6141 
6142   ~TearDownRegionSetsClosure() {
6143     assert(_old_set->is_empty(), "post-condition");
6144   }
6145 };
6146 
6147 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6148   assert_at_safepoint(true /* should_be_vm_thread */);
6149 
6150   if (!free_list_only) {
6151     TearDownRegionSetsClosure cl(&_old_set);
6152     heap_region_iterate(&cl);
6153 
6154     // Need to do this after the heap iteration to be able to
6155     // recognize the young regions and ignore them during the iteration.
6156     _young_list->empty_list();
6157   }
6158   _free_list.remove_all();
6159 }
6160 
6161 class RebuildRegionSetsClosure : public HeapRegionClosure {
6162 private:
6163   bool            _free_list_only;
6164   OldRegionSet*   _old_set;
6165   FreeRegionList* _free_list;
6166   size_t          _total_used;
6167 
6168 public:
6169   RebuildRegionSetsClosure(bool free_list_only,
6170                            OldRegionSet* old_set, FreeRegionList* free_list) :
6171     _free_list_only(free_list_only),
6172     _old_set(old_set), _free_list(free_list), _total_used(0) {
6173     assert(_free_list->is_empty(), "pre-condition");
6174     if (!free_list_only) {
6175       assert(_old_set->is_empty(), "pre-condition");
6176     }
6177   }
6178 
6179   bool doHeapRegion(HeapRegion* r) {
6180     if (r->continuesHumongous()) {
6181       return false;
6182     }
6183 
6184     if (r->is_empty()) {
6185       // Add free regions to the free list
6186       _free_list->add_as_tail(r);
6187     } else if (!_free_list_only) {
6188       assert(!r->is_young(), "we should not come across young regions");
6189 
6190       if (r->isHumongous()) {
6191         // We ignore humongous regions, we left the humongous set unchanged
6192       } else {
6193         // The rest should be old, add them to the old set
6194         _old_set->add(r);
6195       }
6196       _total_used += r->used();
6197     }
6198 
6199     return false;
6200   }
6201 
6202   size_t total_used() {
6203     return _total_used;
6204   }
6205 };
6206 
6207 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6208   assert_at_safepoint(true /* should_be_vm_thread */);
6209 
6210   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6211   heap_region_iterate(&cl);
6212 
6213   if (!free_list_only) {
6214     _summary_bytes_used = cl.total_used();
6215   }
6216   assert(_summary_bytes_used == recalculate_used(),
6217          err_msg("inconsistent _summary_bytes_used, "
6218                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6219                  _summary_bytes_used, recalculate_used()));
6220 }
6221 
6222 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6223   _refine_cte_cl->set_concurrent(concurrent);
6224 }
6225 
6226 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6227   HeapRegion* hr = heap_region_containing(p);
6228   if (hr == NULL) {
6229     return false;
6230   } else {
6231     return hr->is_in(p);
6232   }
6233 }
6234 
6235 // Methods for the mutator alloc region
6236 
6237 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6238                                                       bool force) {
6239   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6240   assert(!force || g1_policy()->can_expand_young_list(),
6241          "if force is true we should be able to expand the young list");
6242   bool young_list_full = g1_policy()->is_young_list_full();
6243   if (force || !young_list_full) {
6244     HeapRegion* new_alloc_region = new_region(word_size,
6245                                               false /* do_expand */);
6246     if (new_alloc_region != NULL) {
6247       set_region_short_lived_locked(new_alloc_region);
6248       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6249       return new_alloc_region;
6250     }
6251   }
6252   return NULL;
6253 }
6254 
6255 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6256                                                   size_t allocated_bytes) {
6257   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6258   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6259 
6260   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6261   _summary_bytes_used += allocated_bytes;
6262   _hr_printer.retire(alloc_region);
6263   // We update the eden sizes here, when the region is retired,
6264   // instead of when it's allocated, since this is the point that its
6265   // used space has been recored in _summary_bytes_used.
6266   g1mm()->update_eden_size();
6267 }
6268 
6269 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6270                                                     bool force) {
6271   return _g1h->new_mutator_alloc_region(word_size, force);
6272 }
6273 
6274 void G1CollectedHeap::set_par_threads() {
6275   // Don't change the number of workers.  Use the value previously set
6276   // in the workgroup.
6277   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6278   uint n_workers = workers()->active_workers();
6279   assert(UseDynamicNumberOfGCThreads ||
6280            n_workers == workers()->total_workers(),
6281       "Otherwise should be using the total number of workers");
6282   if (n_workers == 0) {
6283     assert(false, "Should have been set in prior evacuation pause.");
6284     n_workers = ParallelGCThreads;
6285     workers()->set_active_workers(n_workers);
6286   }
6287   set_par_threads(n_workers);
6288 }
6289 
6290 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6291                                        size_t allocated_bytes) {
6292   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6293 }
6294 
6295 // Methods for the GC alloc regions
6296 
6297 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6298                                                  uint count,
6299                                                  GCAllocPurpose ap) {
6300   assert(FreeList_lock->owned_by_self(), "pre-condition");
6301 
6302   if (count < g1_policy()->max_regions(ap)) {
6303     HeapRegion* new_alloc_region = new_region(word_size,
6304                                               true /* do_expand */);
6305     if (new_alloc_region != NULL) {
6306       // We really only need to do this for old regions given that we
6307       // should never scan survivors. But it doesn't hurt to do it
6308       // for survivors too.
6309       new_alloc_region->set_saved_mark();
6310       if (ap == GCAllocForSurvived) {
6311         new_alloc_region->set_survivor();
6312         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6313       } else {
6314         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6315       }
6316       bool during_im = g1_policy()->during_initial_mark_pause();
6317       new_alloc_region->note_start_of_copying(during_im);
6318       return new_alloc_region;
6319     } else {
6320       g1_policy()->note_alloc_region_limit_reached(ap);
6321     }
6322   }
6323   return NULL;
6324 }
6325 
6326 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6327                                              size_t allocated_bytes,
6328                                              GCAllocPurpose ap) {
6329   bool during_im = g1_policy()->during_initial_mark_pause();
6330   alloc_region->note_end_of_copying(during_im);
6331   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6332   if (ap == GCAllocForSurvived) {
6333     young_list()->add_survivor_region(alloc_region);
6334   } else {
6335     _old_set.add(alloc_region);
6336   }
6337   _hr_printer.retire(alloc_region);
6338 }
6339 
6340 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6341                                                        bool force) {
6342   assert(!force, "not supported for GC alloc regions");
6343   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6344 }
6345 
6346 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6347                                           size_t allocated_bytes) {
6348   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6349                                GCAllocForSurvived);
6350 }
6351 
6352 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6353                                                   bool force) {
6354   assert(!force, "not supported for GC alloc regions");
6355   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6356 }
6357 
6358 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6359                                      size_t allocated_bytes) {
6360   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6361                                GCAllocForTenured);
6362 }
6363 // Heap region set verification
6364 
6365 class VerifyRegionListsClosure : public HeapRegionClosure {
6366 private:
6367   FreeRegionList*     _free_list;
6368   OldRegionSet*       _old_set;
6369   HumongousRegionSet* _humongous_set;
6370   uint                _region_count;
6371 
6372 public:
6373   VerifyRegionListsClosure(OldRegionSet* old_set,
6374                            HumongousRegionSet* humongous_set,
6375                            FreeRegionList* free_list) :
6376     _old_set(old_set), _humongous_set(humongous_set),
6377     _free_list(free_list), _region_count(0) { }
6378 
6379   uint region_count() { return _region_count; }
6380 
6381   bool doHeapRegion(HeapRegion* hr) {
6382     _region_count += 1;
6383 
6384     if (hr->continuesHumongous()) {
6385       return false;
6386     }
6387 
6388     if (hr->is_young()) {
6389       // TODO
6390     } else if (hr->startsHumongous()) {
6391       _humongous_set->verify_next_region(hr);
6392     } else if (hr->is_empty()) {
6393       _free_list->verify_next_region(hr);
6394     } else {
6395       _old_set->verify_next_region(hr);
6396     }
6397     return false;
6398   }
6399 };
6400 
6401 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6402                                              HeapWord* bottom) {
6403   HeapWord* end = bottom + HeapRegion::GrainWords;
6404   MemRegion mr(bottom, end);
6405   assert(_g1_reserved.contains(mr), "invariant");
6406   // This might return NULL if the allocation fails
6407   return new HeapRegion(hrs_index, _bot_shared, mr);
6408 }
6409 
6410 void G1CollectedHeap::verify_region_sets() {
6411   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6412 
6413   // First, check the explicit lists.
6414   _free_list.verify();
6415   {
6416     // Given that a concurrent operation might be adding regions to
6417     // the secondary free list we have to take the lock before
6418     // verifying it.
6419     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6420     _secondary_free_list.verify();
6421   }
6422   _old_set.verify();
6423   _humongous_set.verify();
6424 
6425   // If a concurrent region freeing operation is in progress it will
6426   // be difficult to correctly attributed any free regions we come
6427   // across to the correct free list given that they might belong to
6428   // one of several (free_list, secondary_free_list, any local lists,
6429   // etc.). So, if that's the case we will skip the rest of the
6430   // verification operation. Alternatively, waiting for the concurrent
6431   // operation to complete will have a non-trivial effect on the GC's
6432   // operation (no concurrent operation will last longer than the
6433   // interval between two calls to verification) and it might hide
6434   // any issues that we would like to catch during testing.
6435   if (free_regions_coming()) {
6436     return;
6437   }
6438 
6439   // Make sure we append the secondary_free_list on the free_list so
6440   // that all free regions we will come across can be safely
6441   // attributed to the free_list.
6442   append_secondary_free_list_if_not_empty_with_lock();
6443 
6444   // Finally, make sure that the region accounting in the lists is
6445   // consistent with what we see in the heap.
6446   _old_set.verify_start();
6447   _humongous_set.verify_start();
6448   _free_list.verify_start();
6449 
6450   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6451   heap_region_iterate(&cl);
6452 
6453   _old_set.verify_end();
6454   _humongous_set.verify_end();
6455   _free_list.verify_end();
6456 }