1 /* 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "code/icBuffer.hpp" 27 #include "gc_implementation/g1/bufferingOopClosure.hpp" 28 #include "gc_implementation/g1/concurrentG1Refine.hpp" 29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp" 30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp" 31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp" 32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 33 #include "gc_implementation/g1/g1CollectorPolicy.hpp" 34 #include "gc_implementation/g1/g1ErgoVerbose.hpp" 35 #include "gc_implementation/g1/g1EvacFailure.hpp" 36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp" 37 #include "gc_implementation/g1/g1Log.hpp" 38 #include "gc_implementation/g1/g1MarkSweep.hpp" 39 #include "gc_implementation/g1/g1OopClosures.inline.hpp" 40 #include "gc_implementation/g1/g1RemSet.inline.hpp" 41 #include "gc_implementation/g1/heapRegion.inline.hpp" 42 #include "gc_implementation/g1/heapRegionRemSet.hpp" 43 #include "gc_implementation/g1/heapRegionSeq.inline.hpp" 44 #include "gc_implementation/g1/vm_operations_g1.hpp" 45 #include "gc_implementation/shared/isGCActiveMark.hpp" 46 #include "memory/gcLocker.inline.hpp" 47 #include "memory/genOopClosures.inline.hpp" 48 #include "memory/generationSpec.hpp" 49 #include "memory/referenceProcessor.hpp" 50 #include "oops/oop.inline.hpp" 51 #include "oops/oop.pcgc.inline.hpp" 52 #include "runtime/aprofiler.hpp" 53 #include "runtime/vmThread.hpp" 54 55 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 56 57 // turn it on so that the contents of the young list (scan-only / 58 // to-be-collected) are printed at "strategic" points before / during 59 // / after the collection --- this is useful for debugging 60 #define YOUNG_LIST_VERBOSE 0 61 // CURRENT STATUS 62 // This file is under construction. Search for "FIXME". 63 64 // INVARIANTS/NOTES 65 // 66 // All allocation activity covered by the G1CollectedHeap interface is 67 // serialized by acquiring the HeapLock. This happens in mem_allocate 68 // and allocate_new_tlab, which are the "entry" points to the 69 // allocation code from the rest of the JVM. (Note that this does not 70 // apply to TLAB allocation, which is not part of this interface: it 71 // is done by clients of this interface.) 72 73 // Notes on implementation of parallelism in different tasks. 74 // 75 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism. 76 // The number of GC workers is passed to heap_region_par_iterate_chunked(). 77 // It does use run_task() which sets _n_workers in the task. 78 // G1ParTask executes g1_process_strong_roots() -> 79 // SharedHeap::process_strong_roots() which calls eventuall to 80 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses 81 // SequentialSubTasksDone. SharedHeap::process_strong_roots() also 82 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap). 83 // 84 85 // Local to this file. 86 87 class RefineCardTableEntryClosure: public CardTableEntryClosure { 88 SuspendibleThreadSet* _sts; 89 G1RemSet* _g1rs; 90 ConcurrentG1Refine* _cg1r; 91 bool _concurrent; 92 public: 93 RefineCardTableEntryClosure(SuspendibleThreadSet* sts, 94 G1RemSet* g1rs, 95 ConcurrentG1Refine* cg1r) : 96 _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true) 97 {} 98 bool do_card_ptr(jbyte* card_ptr, int worker_i) { 99 bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false); 100 // This path is executed by the concurrent refine or mutator threads, 101 // concurrently, and so we do not care if card_ptr contains references 102 // that point into the collection set. 103 assert(!oops_into_cset, "should be"); 104 105 if (_concurrent && _sts->should_yield()) { 106 // Caller will actually yield. 107 return false; 108 } 109 // Otherwise, we finished successfully; return true. 110 return true; 111 } 112 void set_concurrent(bool b) { _concurrent = b; } 113 }; 114 115 116 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure { 117 int _calls; 118 G1CollectedHeap* _g1h; 119 CardTableModRefBS* _ctbs; 120 int _histo[256]; 121 public: 122 ClearLoggedCardTableEntryClosure() : 123 _calls(0) 124 { 125 _g1h = G1CollectedHeap::heap(); 126 _ctbs = (CardTableModRefBS*)_g1h->barrier_set(); 127 for (int i = 0; i < 256; i++) _histo[i] = 0; 128 } 129 bool do_card_ptr(jbyte* card_ptr, int worker_i) { 130 if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) { 131 _calls++; 132 unsigned char* ujb = (unsigned char*)card_ptr; 133 int ind = (int)(*ujb); 134 _histo[ind]++; 135 *card_ptr = -1; 136 } 137 return true; 138 } 139 int calls() { return _calls; } 140 void print_histo() { 141 gclog_or_tty->print_cr("Card table value histogram:"); 142 for (int i = 0; i < 256; i++) { 143 if (_histo[i] != 0) { 144 gclog_or_tty->print_cr(" %d: %d", i, _histo[i]); 145 } 146 } 147 } 148 }; 149 150 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure { 151 int _calls; 152 G1CollectedHeap* _g1h; 153 CardTableModRefBS* _ctbs; 154 public: 155 RedirtyLoggedCardTableEntryClosure() : 156 _calls(0) 157 { 158 _g1h = G1CollectedHeap::heap(); 159 _ctbs = (CardTableModRefBS*)_g1h->barrier_set(); 160 } 161 bool do_card_ptr(jbyte* card_ptr, int worker_i) { 162 if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) { 163 _calls++; 164 *card_ptr = 0; 165 } 166 return true; 167 } 168 int calls() { return _calls; } 169 }; 170 171 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure { 172 public: 173 bool do_card_ptr(jbyte* card_ptr, int worker_i) { 174 *card_ptr = CardTableModRefBS::dirty_card_val(); 175 return true; 176 } 177 }; 178 179 YoungList::YoungList(G1CollectedHeap* g1h) : 180 _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0), 181 _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) { 182 guarantee(check_list_empty(false), "just making sure..."); 183 } 184 185 void YoungList::push_region(HeapRegion *hr) { 186 assert(!hr->is_young(), "should not already be young"); 187 assert(hr->get_next_young_region() == NULL, "cause it should!"); 188 189 hr->set_next_young_region(_head); 190 _head = hr; 191 192 _g1h->g1_policy()->set_region_eden(hr, (int) _length); 193 ++_length; 194 } 195 196 void YoungList::add_survivor_region(HeapRegion* hr) { 197 assert(hr->is_survivor(), "should be flagged as survivor region"); 198 assert(hr->get_next_young_region() == NULL, "cause it should!"); 199 200 hr->set_next_young_region(_survivor_head); 201 if (_survivor_head == NULL) { 202 _survivor_tail = hr; 203 } 204 _survivor_head = hr; 205 ++_survivor_length; 206 } 207 208 void YoungList::empty_list(HeapRegion* list) { 209 while (list != NULL) { 210 HeapRegion* next = list->get_next_young_region(); 211 list->set_next_young_region(NULL); 212 list->uninstall_surv_rate_group(); 213 list->set_not_young(); 214 list = next; 215 } 216 } 217 218 void YoungList::empty_list() { 219 assert(check_list_well_formed(), "young list should be well formed"); 220 221 empty_list(_head); 222 _head = NULL; 223 _length = 0; 224 225 empty_list(_survivor_head); 226 _survivor_head = NULL; 227 _survivor_tail = NULL; 228 _survivor_length = 0; 229 230 _last_sampled_rs_lengths = 0; 231 232 assert(check_list_empty(false), "just making sure..."); 233 } 234 235 bool YoungList::check_list_well_formed() { 236 bool ret = true; 237 238 uint length = 0; 239 HeapRegion* curr = _head; 240 HeapRegion* last = NULL; 241 while (curr != NULL) { 242 if (!curr->is_young()) { 243 gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" " 244 "incorrectly tagged (y: %d, surv: %d)", 245 curr->bottom(), curr->end(), 246 curr->is_young(), curr->is_survivor()); 247 ret = false; 248 } 249 ++length; 250 last = curr; 251 curr = curr->get_next_young_region(); 252 } 253 ret = ret && (length == _length); 254 255 if (!ret) { 256 gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!"); 257 gclog_or_tty->print_cr("### list has %u entries, _length is %u", 258 length, _length); 259 } 260 261 return ret; 262 } 263 264 bool YoungList::check_list_empty(bool check_sample) { 265 bool ret = true; 266 267 if (_length != 0) { 268 gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u", 269 _length); 270 ret = false; 271 } 272 if (check_sample && _last_sampled_rs_lengths != 0) { 273 gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths"); 274 ret = false; 275 } 276 if (_head != NULL) { 277 gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head"); 278 ret = false; 279 } 280 if (!ret) { 281 gclog_or_tty->print_cr("### YOUNG LIST does not seem empty"); 282 } 283 284 return ret; 285 } 286 287 void 288 YoungList::rs_length_sampling_init() { 289 _sampled_rs_lengths = 0; 290 _curr = _head; 291 } 292 293 bool 294 YoungList::rs_length_sampling_more() { 295 return _curr != NULL; 296 } 297 298 void 299 YoungList::rs_length_sampling_next() { 300 assert( _curr != NULL, "invariant" ); 301 size_t rs_length = _curr->rem_set()->occupied(); 302 303 _sampled_rs_lengths += rs_length; 304 305 // The current region may not yet have been added to the 306 // incremental collection set (it gets added when it is 307 // retired as the current allocation region). 308 if (_curr->in_collection_set()) { 309 // Update the collection set policy information for this region 310 _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length); 311 } 312 313 _curr = _curr->get_next_young_region(); 314 if (_curr == NULL) { 315 _last_sampled_rs_lengths = _sampled_rs_lengths; 316 // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths); 317 } 318 } 319 320 void 321 YoungList::reset_auxilary_lists() { 322 guarantee( is_empty(), "young list should be empty" ); 323 assert(check_list_well_formed(), "young list should be well formed"); 324 325 // Add survivor regions to SurvRateGroup. 326 _g1h->g1_policy()->note_start_adding_survivor_regions(); 327 _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */); 328 329 int young_index_in_cset = 0; 330 for (HeapRegion* curr = _survivor_head; 331 curr != NULL; 332 curr = curr->get_next_young_region()) { 333 _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset); 334 335 // The region is a non-empty survivor so let's add it to 336 // the incremental collection set for the next evacuation 337 // pause. 338 _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr); 339 young_index_in_cset += 1; 340 } 341 assert((uint) young_index_in_cset == _survivor_length, "post-condition"); 342 _g1h->g1_policy()->note_stop_adding_survivor_regions(); 343 344 _head = _survivor_head; 345 _length = _survivor_length; 346 if (_survivor_head != NULL) { 347 assert(_survivor_tail != NULL, "cause it shouldn't be"); 348 assert(_survivor_length > 0, "invariant"); 349 _survivor_tail->set_next_young_region(NULL); 350 } 351 352 // Don't clear the survivor list handles until the start of 353 // the next evacuation pause - we need it in order to re-tag 354 // the survivor regions from this evacuation pause as 'young' 355 // at the start of the next. 356 357 _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */); 358 359 assert(check_list_well_formed(), "young list should be well formed"); 360 } 361 362 void YoungList::print() { 363 HeapRegion* lists[] = {_head, _survivor_head}; 364 const char* names[] = {"YOUNG", "SURVIVOR"}; 365 366 for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) { 367 gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]); 368 HeapRegion *curr = lists[list]; 369 if (curr == NULL) 370 gclog_or_tty->print_cr(" empty"); 371 while (curr != NULL) { 372 gclog_or_tty->print_cr(" "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d", 373 HR_FORMAT_PARAMS(curr), 374 curr->prev_top_at_mark_start(), 375 curr->next_top_at_mark_start(), 376 curr->age_in_surv_rate_group_cond()); 377 curr = curr->get_next_young_region(); 378 } 379 } 380 381 gclog_or_tty->print_cr(""); 382 } 383 384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr) 385 { 386 // Claim the right to put the region on the dirty cards region list 387 // by installing a self pointer. 388 HeapRegion* next = hr->get_next_dirty_cards_region(); 389 if (next == NULL) { 390 HeapRegion* res = (HeapRegion*) 391 Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(), 392 NULL); 393 if (res == NULL) { 394 HeapRegion* head; 395 do { 396 // Put the region to the dirty cards region list. 397 head = _dirty_cards_region_list; 398 next = (HeapRegion*) 399 Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head); 400 if (next == head) { 401 assert(hr->get_next_dirty_cards_region() == hr, 402 "hr->get_next_dirty_cards_region() != hr"); 403 if (next == NULL) { 404 // The last region in the list points to itself. 405 hr->set_next_dirty_cards_region(hr); 406 } else { 407 hr->set_next_dirty_cards_region(next); 408 } 409 } 410 } while (next != head); 411 } 412 } 413 } 414 415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region() 416 { 417 HeapRegion* head; 418 HeapRegion* hr; 419 do { 420 head = _dirty_cards_region_list; 421 if (head == NULL) { 422 return NULL; 423 } 424 HeapRegion* new_head = head->get_next_dirty_cards_region(); 425 if (head == new_head) { 426 // The last region. 427 new_head = NULL; 428 } 429 hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list, 430 head); 431 } while (hr != head); 432 assert(hr != NULL, "invariant"); 433 hr->set_next_dirty_cards_region(NULL); 434 return hr; 435 } 436 437 void G1CollectedHeap::stop_conc_gc_threads() { 438 _cg1r->stop(); 439 _cmThread->stop(); 440 } 441 442 #ifdef ASSERT 443 // A region is added to the collection set as it is retired 444 // so an address p can point to a region which will be in the 445 // collection set but has not yet been retired. This method 446 // therefore is only accurate during a GC pause after all 447 // regions have been retired. It is used for debugging 448 // to check if an nmethod has references to objects that can 449 // be move during a partial collection. Though it can be 450 // inaccurate, it is sufficient for G1 because the conservative 451 // implementation of is_scavengable() for G1 will indicate that 452 // all nmethods must be scanned during a partial collection. 453 bool G1CollectedHeap::is_in_partial_collection(const void* p) { 454 HeapRegion* hr = heap_region_containing(p); 455 return hr != NULL && hr->in_collection_set(); 456 } 457 #endif 458 459 // Returns true if the reference points to an object that 460 // can move in an incremental collecction. 461 bool G1CollectedHeap::is_scavengable(const void* p) { 462 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 463 G1CollectorPolicy* g1p = g1h->g1_policy(); 464 HeapRegion* hr = heap_region_containing(p); 465 if (hr == NULL) { 466 // null 467 assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p)); 468 return false; 469 } else { 470 return !hr->isHumongous(); 471 } 472 } 473 474 void G1CollectedHeap::check_ct_logs_at_safepoint() { 475 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 476 CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set(); 477 478 // Count the dirty cards at the start. 479 CountNonCleanMemRegionClosure count1(this); 480 ct_bs->mod_card_iterate(&count1); 481 int orig_count = count1.n(); 482 483 // First clear the logged cards. 484 ClearLoggedCardTableEntryClosure clear; 485 dcqs.set_closure(&clear); 486 dcqs.apply_closure_to_all_completed_buffers(); 487 dcqs.iterate_closure_all_threads(false); 488 clear.print_histo(); 489 490 // Now ensure that there's no dirty cards. 491 CountNonCleanMemRegionClosure count2(this); 492 ct_bs->mod_card_iterate(&count2); 493 if (count2.n() != 0) { 494 gclog_or_tty->print_cr("Card table has %d entries; %d originally", 495 count2.n(), orig_count); 496 } 497 guarantee(count2.n() == 0, "Card table should be clean."); 498 499 RedirtyLoggedCardTableEntryClosure redirty; 500 JavaThread::dirty_card_queue_set().set_closure(&redirty); 501 dcqs.apply_closure_to_all_completed_buffers(); 502 dcqs.iterate_closure_all_threads(false); 503 gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.", 504 clear.calls(), orig_count); 505 guarantee(redirty.calls() == clear.calls(), 506 "Or else mechanism is broken."); 507 508 CountNonCleanMemRegionClosure count3(this); 509 ct_bs->mod_card_iterate(&count3); 510 if (count3.n() != orig_count) { 511 gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.", 512 orig_count, count3.n()); 513 guarantee(count3.n() >= orig_count, "Should have restored them all."); 514 } 515 516 JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl); 517 } 518 519 // Private class members. 520 521 G1CollectedHeap* G1CollectedHeap::_g1h; 522 523 // Private methods. 524 525 HeapRegion* 526 G1CollectedHeap::new_region_try_secondary_free_list() { 527 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 528 while (!_secondary_free_list.is_empty() || free_regions_coming()) { 529 if (!_secondary_free_list.is_empty()) { 530 if (G1ConcRegionFreeingVerbose) { 531 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 532 "secondary_free_list has %u entries", 533 _secondary_free_list.length()); 534 } 535 // It looks as if there are free regions available on the 536 // secondary_free_list. Let's move them to the free_list and try 537 // again to allocate from it. 538 append_secondary_free_list(); 539 540 assert(!_free_list.is_empty(), "if the secondary_free_list was not " 541 "empty we should have moved at least one entry to the free_list"); 542 HeapRegion* res = _free_list.remove_head(); 543 if (G1ConcRegionFreeingVerbose) { 544 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 545 "allocated "HR_FORMAT" from secondary_free_list", 546 HR_FORMAT_PARAMS(res)); 547 } 548 return res; 549 } 550 551 // Wait here until we get notifed either when (a) there are no 552 // more free regions coming or (b) some regions have been moved on 553 // the secondary_free_list. 554 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 555 } 556 557 if (G1ConcRegionFreeingVerbose) { 558 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 559 "could not allocate from secondary_free_list"); 560 } 561 return NULL; 562 } 563 564 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) { 565 assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords, 566 "the only time we use this to allocate a humongous region is " 567 "when we are allocating a single humongous region"); 568 569 HeapRegion* res; 570 if (G1StressConcRegionFreeing) { 571 if (!_secondary_free_list.is_empty()) { 572 if (G1ConcRegionFreeingVerbose) { 573 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 574 "forced to look at the secondary_free_list"); 575 } 576 res = new_region_try_secondary_free_list(); 577 if (res != NULL) { 578 return res; 579 } 580 } 581 } 582 res = _free_list.remove_head_or_null(); 583 if (res == NULL) { 584 if (G1ConcRegionFreeingVerbose) { 585 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 586 "res == NULL, trying the secondary_free_list"); 587 } 588 res = new_region_try_secondary_free_list(); 589 } 590 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 591 // Currently, only attempts to allocate GC alloc regions set 592 // do_expand to true. So, we should only reach here during a 593 // safepoint. If this assumption changes we might have to 594 // reconsider the use of _expand_heap_after_alloc_failure. 595 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 596 597 ergo_verbose1(ErgoHeapSizing, 598 "attempt heap expansion", 599 ergo_format_reason("region allocation request failed") 600 ergo_format_byte("allocation request"), 601 word_size * HeapWordSize); 602 if (expand(word_size * HeapWordSize)) { 603 // Given that expand() succeeded in expanding the heap, and we 604 // always expand the heap by an amount aligned to the heap 605 // region size, the free list should in theory not be empty. So 606 // it would probably be OK to use remove_head(). But the extra 607 // check for NULL is unlikely to be a performance issue here (we 608 // just expanded the heap!) so let's just be conservative and 609 // use remove_head_or_null(). 610 res = _free_list.remove_head_or_null(); 611 } else { 612 _expand_heap_after_alloc_failure = false; 613 } 614 } 615 return res; 616 } 617 618 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions, 619 size_t word_size) { 620 assert(isHumongous(word_size), "word_size should be humongous"); 621 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 622 623 uint first = G1_NULL_HRS_INDEX; 624 if (num_regions == 1) { 625 // Only one region to allocate, no need to go through the slower 626 // path. The caller will attempt the expasion if this fails, so 627 // let's not try to expand here too. 628 HeapRegion* hr = new_region(word_size, false /* do_expand */); 629 if (hr != NULL) { 630 first = hr->hrs_index(); 631 } else { 632 first = G1_NULL_HRS_INDEX; 633 } 634 } else { 635 // We can't allocate humongous regions while cleanupComplete() is 636 // running, since some of the regions we find to be empty might not 637 // yet be added to the free list and it is not straightforward to 638 // know which list they are on so that we can remove them. Note 639 // that we only need to do this if we need to allocate more than 640 // one region to satisfy the current humongous allocation 641 // request. If we are only allocating one region we use the common 642 // region allocation code (see above). 643 wait_while_free_regions_coming(); 644 append_secondary_free_list_if_not_empty_with_lock(); 645 646 if (free_regions() >= num_regions) { 647 first = _hrs.find_contiguous(num_regions); 648 if (first != G1_NULL_HRS_INDEX) { 649 for (uint i = first; i < first + num_regions; ++i) { 650 HeapRegion* hr = region_at(i); 651 assert(hr->is_empty(), "sanity"); 652 assert(is_on_master_free_list(hr), "sanity"); 653 hr->set_pending_removal(true); 654 } 655 _free_list.remove_all_pending(num_regions); 656 } 657 } 658 } 659 return first; 660 } 661 662 HeapWord* 663 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, 664 uint num_regions, 665 size_t word_size) { 666 assert(first != G1_NULL_HRS_INDEX, "pre-condition"); 667 assert(isHumongous(word_size), "word_size should be humongous"); 668 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 669 670 // Index of last region in the series + 1. 671 uint last = first + num_regions; 672 673 // We need to initialize the region(s) we just discovered. This is 674 // a bit tricky given that it can happen concurrently with 675 // refinement threads refining cards on these regions and 676 // potentially wanting to refine the BOT as they are scanning 677 // those cards (this can happen shortly after a cleanup; see CR 678 // 6991377). So we have to set up the region(s) carefully and in 679 // a specific order. 680 681 // The word size sum of all the regions we will allocate. 682 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 683 assert(word_size <= word_size_sum, "sanity"); 684 685 // This will be the "starts humongous" region. 686 HeapRegion* first_hr = region_at(first); 687 // The header of the new object will be placed at the bottom of 688 // the first region. 689 HeapWord* new_obj = first_hr->bottom(); 690 // This will be the new end of the first region in the series that 691 // should also match the end of the last region in the seriers. 692 HeapWord* new_end = new_obj + word_size_sum; 693 // This will be the new top of the first region that will reflect 694 // this allocation. 695 HeapWord* new_top = new_obj + word_size; 696 697 // First, we need to zero the header of the space that we will be 698 // allocating. When we update top further down, some refinement 699 // threads might try to scan the region. By zeroing the header we 700 // ensure that any thread that will try to scan the region will 701 // come across the zero klass word and bail out. 702 // 703 // NOTE: It would not have been correct to have used 704 // CollectedHeap::fill_with_object() and make the space look like 705 // an int array. The thread that is doing the allocation will 706 // later update the object header to a potentially different array 707 // type and, for a very short period of time, the klass and length 708 // fields will be inconsistent. This could cause a refinement 709 // thread to calculate the object size incorrectly. 710 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 711 712 // We will set up the first region as "starts humongous". This 713 // will also update the BOT covering all the regions to reflect 714 // that there is a single object that starts at the bottom of the 715 // first region. 716 first_hr->set_startsHumongous(new_top, new_end); 717 718 // Then, if there are any, we will set up the "continues 719 // humongous" regions. 720 HeapRegion* hr = NULL; 721 for (uint i = first + 1; i < last; ++i) { 722 hr = region_at(i); 723 hr->set_continuesHumongous(first_hr); 724 } 725 // If we have "continues humongous" regions (hr != NULL), then the 726 // end of the last one should match new_end. 727 assert(hr == NULL || hr->end() == new_end, "sanity"); 728 729 // Up to this point no concurrent thread would have been able to 730 // do any scanning on any region in this series. All the top 731 // fields still point to bottom, so the intersection between 732 // [bottom,top] and [card_start,card_end] will be empty. Before we 733 // update the top fields, we'll do a storestore to make sure that 734 // no thread sees the update to top before the zeroing of the 735 // object header and the BOT initialization. 736 OrderAccess::storestore(); 737 738 // Now that the BOT and the object header have been initialized, 739 // we can update top of the "starts humongous" region. 740 assert(first_hr->bottom() < new_top && new_top <= first_hr->end(), 741 "new_top should be in this region"); 742 first_hr->set_top(new_top); 743 if (_hr_printer.is_active()) { 744 HeapWord* bottom = first_hr->bottom(); 745 HeapWord* end = first_hr->orig_end(); 746 if ((first + 1) == last) { 747 // the series has a single humongous region 748 _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top); 749 } else { 750 // the series has more than one humongous regions 751 _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end); 752 } 753 } 754 755 // Now, we will update the top fields of the "continues humongous" 756 // regions. The reason we need to do this is that, otherwise, 757 // these regions would look empty and this will confuse parts of 758 // G1. For example, the code that looks for a consecutive number 759 // of empty regions will consider them empty and try to 760 // re-allocate them. We can extend is_empty() to also include 761 // !continuesHumongous(), but it is easier to just update the top 762 // fields here. The way we set top for all regions (i.e., top == 763 // end for all regions but the last one, top == new_top for the 764 // last one) is actually used when we will free up the humongous 765 // region in free_humongous_region(). 766 hr = NULL; 767 for (uint i = first + 1; i < last; ++i) { 768 hr = region_at(i); 769 if ((i + 1) == last) { 770 // last continues humongous region 771 assert(hr->bottom() < new_top && new_top <= hr->end(), 772 "new_top should fall on this region"); 773 hr->set_top(new_top); 774 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top); 775 } else { 776 // not last one 777 assert(new_top > hr->end(), "new_top should be above this region"); 778 hr->set_top(hr->end()); 779 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end()); 780 } 781 } 782 // If we have continues humongous regions (hr != NULL), then the 783 // end of the last one should match new_end and its top should 784 // match new_top. 785 assert(hr == NULL || 786 (hr->end() == new_end && hr->top() == new_top), "sanity"); 787 788 assert(first_hr->used() == word_size * HeapWordSize, "invariant"); 789 _summary_bytes_used += first_hr->used(); 790 _humongous_set.add(first_hr); 791 792 return new_obj; 793 } 794 795 // If could fit into free regions w/o expansion, try. 796 // Otherwise, if can expand, do so. 797 // Otherwise, if using ex regions might help, try with ex given back. 798 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) { 799 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 800 801 verify_region_sets_optional(); 802 803 size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords); 804 uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords); 805 uint x_num = expansion_regions(); 806 uint fs = _hrs.free_suffix(); 807 uint first = humongous_obj_allocate_find_first(num_regions, word_size); 808 if (first == G1_NULL_HRS_INDEX) { 809 // The only thing we can do now is attempt expansion. 810 if (fs + x_num >= num_regions) { 811 // If the number of regions we're trying to allocate for this 812 // object is at most the number of regions in the free suffix, 813 // then the call to humongous_obj_allocate_find_first() above 814 // should have succeeded and we wouldn't be here. 815 // 816 // We should only be trying to expand when the free suffix is 817 // not sufficient for the object _and_ we have some expansion 818 // room available. 819 assert(num_regions > fs, "earlier allocation should have succeeded"); 820 821 ergo_verbose1(ErgoHeapSizing, 822 "attempt heap expansion", 823 ergo_format_reason("humongous allocation request failed") 824 ergo_format_byte("allocation request"), 825 word_size * HeapWordSize); 826 if (expand((num_regions - fs) * HeapRegion::GrainBytes)) { 827 // Even though the heap was expanded, it might not have 828 // reached the desired size. So, we cannot assume that the 829 // allocation will succeed. 830 first = humongous_obj_allocate_find_first(num_regions, word_size); 831 } 832 } 833 } 834 835 HeapWord* result = NULL; 836 if (first != G1_NULL_HRS_INDEX) { 837 result = 838 humongous_obj_allocate_initialize_regions(first, num_regions, word_size); 839 assert(result != NULL, "it should always return a valid result"); 840 841 // A successful humongous object allocation changes the used space 842 // information of the old generation so we need to recalculate the 843 // sizes and update the jstat counters here. 844 g1mm()->update_sizes(); 845 } 846 847 verify_region_sets_optional(); 848 849 return result; 850 } 851 852 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) { 853 assert_heap_not_locked_and_not_at_safepoint(); 854 assert(!isHumongous(word_size), "we do not allow humongous TLABs"); 855 856 unsigned int dummy_gc_count_before; 857 int dummy_gclocker_retry_count = 0; 858 return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count); 859 } 860 861 HeapWord* 862 G1CollectedHeap::mem_allocate(size_t word_size, 863 bool* gc_overhead_limit_was_exceeded) { 864 assert_heap_not_locked_and_not_at_safepoint(); 865 866 // Loop until the allocation is satisified, or unsatisfied after GC. 867 for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 868 unsigned int gc_count_before; 869 870 HeapWord* result = NULL; 871 if (!isHumongous(word_size)) { 872 result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count); 873 } else { 874 result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count); 875 } 876 if (result != NULL) { 877 return result; 878 } 879 880 // Create the garbage collection operation... 881 VM_G1CollectForAllocation op(gc_count_before, word_size); 882 // ...and get the VM thread to execute it. 883 VMThread::execute(&op); 884 885 if (op.prologue_succeeded() && op.pause_succeeded()) { 886 // If the operation was successful we'll return the result even 887 // if it is NULL. If the allocation attempt failed immediately 888 // after a Full GC, it's unlikely we'll be able to allocate now. 889 HeapWord* result = op.result(); 890 if (result != NULL && !isHumongous(word_size)) { 891 // Allocations that take place on VM operations do not do any 892 // card dirtying and we have to do it here. We only have to do 893 // this for non-humongous allocations, though. 894 dirty_young_block(result, word_size); 895 } 896 return result; 897 } else { 898 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 899 return NULL; 900 } 901 assert(op.result() == NULL, 902 "the result should be NULL if the VM op did not succeed"); 903 } 904 905 // Give a warning if we seem to be looping forever. 906 if ((QueuedAllocationWarningCount > 0) && 907 (try_count % QueuedAllocationWarningCount == 0)) { 908 warning("G1CollectedHeap::mem_allocate retries %d times", try_count); 909 } 910 } 911 912 ShouldNotReachHere(); 913 return NULL; 914 } 915 916 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size, 917 unsigned int *gc_count_before_ret, 918 int* gclocker_retry_count_ret) { 919 // Make sure you read the note in attempt_allocation_humongous(). 920 921 assert_heap_not_locked_and_not_at_safepoint(); 922 assert(!isHumongous(word_size), "attempt_allocation_slow() should not " 923 "be called for humongous allocation requests"); 924 925 // We should only get here after the first-level allocation attempt 926 // (attempt_allocation()) failed to allocate. 927 928 // We will loop until a) we manage to successfully perform the 929 // allocation or b) we successfully schedule a collection which 930 // fails to perform the allocation. b) is the only case when we'll 931 // return NULL. 932 HeapWord* result = NULL; 933 for (int try_count = 1; /* we'll return */; try_count += 1) { 934 bool should_try_gc; 935 unsigned int gc_count_before; 936 937 { 938 MutexLockerEx x(Heap_lock); 939 940 result = _mutator_alloc_region.attempt_allocation_locked(word_size, 941 false /* bot_updates */); 942 if (result != NULL) { 943 return result; 944 } 945 946 // If we reach here, attempt_allocation_locked() above failed to 947 // allocate a new region. So the mutator alloc region should be NULL. 948 assert(_mutator_alloc_region.get() == NULL, "only way to get here"); 949 950 if (GC_locker::is_active_and_needs_gc()) { 951 if (g1_policy()->can_expand_young_list()) { 952 // No need for an ergo verbose message here, 953 // can_expand_young_list() does this when it returns true. 954 result = _mutator_alloc_region.attempt_allocation_force(word_size, 955 false /* bot_updates */); 956 if (result != NULL) { 957 return result; 958 } 959 } 960 should_try_gc = false; 961 } else { 962 // The GCLocker may not be active but the GCLocker initiated 963 // GC may not yet have been performed (GCLocker::needs_gc() 964 // returns true). In this case we do not try this GC and 965 // wait until the GCLocker initiated GC is performed, and 966 // then retry the allocation. 967 if (GC_locker::needs_gc()) { 968 should_try_gc = false; 969 } else { 970 // Read the GC count while still holding the Heap_lock. 971 gc_count_before = total_collections(); 972 should_try_gc = true; 973 } 974 } 975 } 976 977 if (should_try_gc) { 978 bool succeeded; 979 result = do_collection_pause(word_size, gc_count_before, &succeeded); 980 if (result != NULL) { 981 assert(succeeded, "only way to get back a non-NULL result"); 982 return result; 983 } 984 985 if (succeeded) { 986 // If we get here we successfully scheduled a collection which 987 // failed to allocate. No point in trying to allocate 988 // further. We'll just return NULL. 989 MutexLockerEx x(Heap_lock); 990 *gc_count_before_ret = total_collections(); 991 return NULL; 992 } 993 } else { 994 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 995 MutexLockerEx x(Heap_lock); 996 *gc_count_before_ret = total_collections(); 997 return NULL; 998 } 999 // The GCLocker is either active or the GCLocker initiated 1000 // GC has not yet been performed. Stall until it is and 1001 // then retry the allocation. 1002 GC_locker::stall_until_clear(); 1003 (*gclocker_retry_count_ret) += 1; 1004 } 1005 1006 // We can reach here if we were unsuccessul in scheduling a 1007 // collection (because another thread beat us to it) or if we were 1008 // stalled due to the GC locker. In either can we should retry the 1009 // allocation attempt in case another thread successfully 1010 // performed a collection and reclaimed enough space. We do the 1011 // first attempt (without holding the Heap_lock) here and the 1012 // follow-on attempt will be at the start of the next loop 1013 // iteration (after taking the Heap_lock). 1014 result = _mutator_alloc_region.attempt_allocation(word_size, 1015 false /* bot_updates */); 1016 if (result != NULL) { 1017 return result; 1018 } 1019 1020 // Give a warning if we seem to be looping forever. 1021 if ((QueuedAllocationWarningCount > 0) && 1022 (try_count % QueuedAllocationWarningCount == 0)) { 1023 warning("G1CollectedHeap::attempt_allocation_slow() " 1024 "retries %d times", try_count); 1025 } 1026 } 1027 1028 ShouldNotReachHere(); 1029 return NULL; 1030 } 1031 1032 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size, 1033 unsigned int * gc_count_before_ret, 1034 int* gclocker_retry_count_ret) { 1035 // The structure of this method has a lot of similarities to 1036 // attempt_allocation_slow(). The reason these two were not merged 1037 // into a single one is that such a method would require several "if 1038 // allocation is not humongous do this, otherwise do that" 1039 // conditional paths which would obscure its flow. In fact, an early 1040 // version of this code did use a unified method which was harder to 1041 // follow and, as a result, it had subtle bugs that were hard to 1042 // track down. So keeping these two methods separate allows each to 1043 // be more readable. It will be good to keep these two in sync as 1044 // much as possible. 1045 1046 assert_heap_not_locked_and_not_at_safepoint(); 1047 assert(isHumongous(word_size), "attempt_allocation_humongous() " 1048 "should only be called for humongous allocations"); 1049 1050 // Humongous objects can exhaust the heap quickly, so we should check if we 1051 // need to start a marking cycle at each humongous object allocation. We do 1052 // the check before we do the actual allocation. The reason for doing it 1053 // before the allocation is that we avoid having to keep track of the newly 1054 // allocated memory while we do a GC. 1055 if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation", 1056 word_size)) { 1057 collect(GCCause::_g1_humongous_allocation); 1058 } 1059 1060 // We will loop until a) we manage to successfully perform the 1061 // allocation or b) we successfully schedule a collection which 1062 // fails to perform the allocation. b) is the only case when we'll 1063 // return NULL. 1064 HeapWord* result = NULL; 1065 for (int try_count = 1; /* we'll return */; try_count += 1) { 1066 bool should_try_gc; 1067 unsigned int gc_count_before; 1068 1069 { 1070 MutexLockerEx x(Heap_lock); 1071 1072 // Given that humongous objects are not allocated in young 1073 // regions, we'll first try to do the allocation without doing a 1074 // collection hoping that there's enough space in the heap. 1075 result = humongous_obj_allocate(word_size); 1076 if (result != NULL) { 1077 return result; 1078 } 1079 1080 if (GC_locker::is_active_and_needs_gc()) { 1081 should_try_gc = false; 1082 } else { 1083 // The GCLocker may not be active but the GCLocker initiated 1084 // GC may not yet have been performed (GCLocker::needs_gc() 1085 // returns true). In this case we do not try this GC and 1086 // wait until the GCLocker initiated GC is performed, and 1087 // then retry the allocation. 1088 if (GC_locker::needs_gc()) { 1089 should_try_gc = false; 1090 } else { 1091 // Read the GC count while still holding the Heap_lock. 1092 gc_count_before = total_collections(); 1093 should_try_gc = true; 1094 } 1095 } 1096 } 1097 1098 if (should_try_gc) { 1099 // If we failed to allocate the humongous object, we should try to 1100 // do a collection pause (if we're allowed) in case it reclaims 1101 // enough space for the allocation to succeed after the pause. 1102 1103 bool succeeded; 1104 result = do_collection_pause(word_size, gc_count_before, &succeeded); 1105 if (result != NULL) { 1106 assert(succeeded, "only way to get back a non-NULL result"); 1107 return result; 1108 } 1109 1110 if (succeeded) { 1111 // If we get here we successfully scheduled a collection which 1112 // failed to allocate. No point in trying to allocate 1113 // further. We'll just return NULL. 1114 MutexLockerEx x(Heap_lock); 1115 *gc_count_before_ret = total_collections(); 1116 return NULL; 1117 } 1118 } else { 1119 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 1120 MutexLockerEx x(Heap_lock); 1121 *gc_count_before_ret = total_collections(); 1122 return NULL; 1123 } 1124 // The GCLocker is either active or the GCLocker initiated 1125 // GC has not yet been performed. Stall until it is and 1126 // then retry the allocation. 1127 GC_locker::stall_until_clear(); 1128 (*gclocker_retry_count_ret) += 1; 1129 } 1130 1131 // We can reach here if we were unsuccessul in scheduling a 1132 // collection (because another thread beat us to it) or if we were 1133 // stalled due to the GC locker. In either can we should retry the 1134 // allocation attempt in case another thread successfully 1135 // performed a collection and reclaimed enough space. Give a 1136 // warning if we seem to be looping forever. 1137 1138 if ((QueuedAllocationWarningCount > 0) && 1139 (try_count % QueuedAllocationWarningCount == 0)) { 1140 warning("G1CollectedHeap::attempt_allocation_humongous() " 1141 "retries %d times", try_count); 1142 } 1143 } 1144 1145 ShouldNotReachHere(); 1146 return NULL; 1147 } 1148 1149 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 1150 bool expect_null_mutator_alloc_region) { 1151 assert_at_safepoint(true /* should_be_vm_thread */); 1152 assert(_mutator_alloc_region.get() == NULL || 1153 !expect_null_mutator_alloc_region, 1154 "the current alloc region was unexpectedly found to be non-NULL"); 1155 1156 if (!isHumongous(word_size)) { 1157 return _mutator_alloc_region.attempt_allocation_locked(word_size, 1158 false /* bot_updates */); 1159 } else { 1160 HeapWord* result = humongous_obj_allocate(word_size); 1161 if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) { 1162 g1_policy()->set_initiate_conc_mark_if_possible(); 1163 } 1164 return result; 1165 } 1166 1167 ShouldNotReachHere(); 1168 } 1169 1170 class PostMCRemSetClearClosure: public HeapRegionClosure { 1171 G1CollectedHeap* _g1h; 1172 ModRefBarrierSet* _mr_bs; 1173 public: 1174 PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) : 1175 _g1h(g1h), _mr_bs(mr_bs) { } 1176 bool doHeapRegion(HeapRegion* r) { 1177 if (r->continuesHumongous()) { 1178 return false; 1179 } 1180 _g1h->reset_gc_time_stamps(r); 1181 HeapRegionRemSet* hrrs = r->rem_set(); 1182 if (hrrs != NULL) hrrs->clear(); 1183 // You might think here that we could clear just the cards 1184 // corresponding to the used region. But no: if we leave a dirty card 1185 // in a region we might allocate into, then it would prevent that card 1186 // from being enqueued, and cause it to be missed. 1187 // Re: the performance cost: we shouldn't be doing full GC anyway! 1188 _mr_bs->clear(MemRegion(r->bottom(), r->end())); 1189 return false; 1190 } 1191 }; 1192 1193 void G1CollectedHeap::clear_rsets_post_compaction() { 1194 PostMCRemSetClearClosure rs_clear(this, mr_bs()); 1195 heap_region_iterate(&rs_clear); 1196 } 1197 1198 class RebuildRSOutOfRegionClosure: public HeapRegionClosure { 1199 G1CollectedHeap* _g1h; 1200 UpdateRSOopClosure _cl; 1201 int _worker_i; 1202 public: 1203 RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) : 1204 _cl(g1->g1_rem_set(), worker_i), 1205 _worker_i(worker_i), 1206 _g1h(g1) 1207 { } 1208 1209 bool doHeapRegion(HeapRegion* r) { 1210 if (!r->continuesHumongous()) { 1211 _cl.set_from(r); 1212 r->oop_iterate(&_cl); 1213 } 1214 return false; 1215 } 1216 }; 1217 1218 class ParRebuildRSTask: public AbstractGangTask { 1219 G1CollectedHeap* _g1; 1220 public: 1221 ParRebuildRSTask(G1CollectedHeap* g1) 1222 : AbstractGangTask("ParRebuildRSTask"), 1223 _g1(g1) 1224 { } 1225 1226 void work(uint worker_id) { 1227 RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id); 1228 _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id, 1229 _g1->workers()->active_workers(), 1230 HeapRegion::RebuildRSClaimValue); 1231 } 1232 }; 1233 1234 class PostCompactionPrinterClosure: public HeapRegionClosure { 1235 private: 1236 G1HRPrinter* _hr_printer; 1237 public: 1238 bool doHeapRegion(HeapRegion* hr) { 1239 assert(!hr->is_young(), "not expecting to find young regions"); 1240 // We only generate output for non-empty regions. 1241 if (!hr->is_empty()) { 1242 if (!hr->isHumongous()) { 1243 _hr_printer->post_compaction(hr, G1HRPrinter::Old); 1244 } else if (hr->startsHumongous()) { 1245 if (hr->region_num() == 1) { 1246 // single humongous region 1247 _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous); 1248 } else { 1249 _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous); 1250 } 1251 } else { 1252 assert(hr->continuesHumongous(), "only way to get here"); 1253 _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous); 1254 } 1255 } 1256 return false; 1257 } 1258 1259 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 1260 : _hr_printer(hr_printer) { } 1261 }; 1262 1263 void G1CollectedHeap::print_hrs_post_compaction() { 1264 PostCompactionPrinterClosure cl(hr_printer()); 1265 heap_region_iterate(&cl); 1266 } 1267 1268 double G1CollectedHeap::verify(bool guard, const char* msg) { 1269 double verify_time_ms = 0.0; 1270 1271 if (guard && total_collections() >= VerifyGCStartAt) { 1272 double verify_start = os::elapsedTime(); 1273 HandleMark hm; // Discard invalid handles created during verification 1274 prepare_for_verify(); 1275 Universe::verify(VerifyOption_G1UsePrevMarking, msg); 1276 verify_time_ms = (os::elapsedTime() - verify_start) * 1000; 1277 } 1278 1279 return verify_time_ms; 1280 } 1281 1282 void G1CollectedHeap::verify_before_gc() { 1283 double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:"); 1284 g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms); 1285 } 1286 1287 void G1CollectedHeap::verify_after_gc() { 1288 double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:"); 1289 g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms); 1290 } 1291 1292 bool G1CollectedHeap::do_collection(bool explicit_gc, 1293 bool clear_all_soft_refs, 1294 size_t word_size) { 1295 assert_at_safepoint(true /* should_be_vm_thread */); 1296 1297 if (GC_locker::check_active_before_gc()) { 1298 return false; 1299 } 1300 1301 SvcGCMarker sgcm(SvcGCMarker::FULL); 1302 ResourceMark rm; 1303 1304 print_heap_before_gc(); 1305 1306 size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes(); 1307 1308 HRSPhaseSetter x(HRSPhaseFullGC); 1309 verify_region_sets_optional(); 1310 1311 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1312 collector_policy()->should_clear_all_soft_refs(); 1313 1314 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy()); 1315 1316 { 1317 IsGCActiveMark x; 1318 1319 // Timing 1320 assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant"); 1321 gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps); 1322 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 1323 1324 { 1325 TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty); 1326 TraceCollectorStats tcs(g1mm()->full_collection_counters()); 1327 TraceMemoryManagerStats tms(true /* fullGC */, gc_cause()); 1328 1329 double start = os::elapsedTime(); 1330 g1_policy()->record_full_collection_start(); 1331 1332 // Note: When we have a more flexible GC logging framework that 1333 // allows us to add optional attributes to a GC log record we 1334 // could consider timing and reporting how long we wait in the 1335 // following two methods. 1336 wait_while_free_regions_coming(); 1337 // If we start the compaction before the CM threads finish 1338 // scanning the root regions we might trip them over as we'll 1339 // be moving objects / updating references. So let's wait until 1340 // they are done. By telling them to abort, they should complete 1341 // early. 1342 _cm->root_regions()->abort(); 1343 _cm->root_regions()->wait_until_scan_finished(); 1344 append_secondary_free_list_if_not_empty_with_lock(); 1345 1346 gc_prologue(true); 1347 increment_total_collections(true /* full gc */); 1348 increment_old_marking_cycles_started(); 1349 1350 assert(used() == recalculate_used(), "Should be equal"); 1351 1352 verify_before_gc(); 1353 1354 pre_full_gc_dump(); 1355 1356 COMPILER2_PRESENT(DerivedPointerTable::clear()); 1357 1358 // Disable discovery and empty the discovered lists 1359 // for the CM ref processor. 1360 ref_processor_cm()->disable_discovery(); 1361 ref_processor_cm()->abandon_partial_discovery(); 1362 ref_processor_cm()->verify_no_references_recorded(); 1363 1364 // Abandon current iterations of concurrent marking and concurrent 1365 // refinement, if any are in progress. We have to do this before 1366 // wait_until_scan_finished() below. 1367 concurrent_mark()->abort(); 1368 1369 // Make sure we'll choose a new allocation region afterwards. 1370 release_mutator_alloc_region(); 1371 abandon_gc_alloc_regions(); 1372 g1_rem_set()->cleanupHRRS(); 1373 1374 // We should call this after we retire any currently active alloc 1375 // regions so that all the ALLOC / RETIRE events are generated 1376 // before the start GC event. 1377 _hr_printer.start_gc(true /* full */, (size_t) total_collections()); 1378 1379 // We may have added regions to the current incremental collection 1380 // set between the last GC or pause and now. We need to clear the 1381 // incremental collection set and then start rebuilding it afresh 1382 // after this full GC. 1383 abandon_collection_set(g1_policy()->inc_cset_head()); 1384 g1_policy()->clear_incremental_cset(); 1385 g1_policy()->stop_incremental_cset_building(); 1386 1387 tear_down_region_sets(false /* free_list_only */); 1388 g1_policy()->set_gcs_are_young(true); 1389 1390 // See the comments in g1CollectedHeap.hpp and 1391 // G1CollectedHeap::ref_processing_init() about 1392 // how reference processing currently works in G1. 1393 1394 // Temporarily make discovery by the STW ref processor single threaded (non-MT). 1395 ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false); 1396 1397 // Temporarily clear the STW ref processor's _is_alive_non_header field. 1398 ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL); 1399 1400 ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/); 1401 ref_processor_stw()->setup_policy(do_clear_all_soft_refs); 1402 1403 // Do collection work 1404 { 1405 HandleMark hm; // Discard invalid handles created during gc 1406 G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs); 1407 } 1408 1409 assert(free_regions() == 0, "we should not have added any free regions"); 1410 rebuild_region_sets(false /* free_list_only */); 1411 1412 // Enqueue any discovered reference objects that have 1413 // not been removed from the discovered lists. 1414 ref_processor_stw()->enqueue_discovered_references(); 1415 1416 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 1417 1418 MemoryService::track_memory_usage(); 1419 1420 verify_after_gc(); 1421 1422 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 1423 ref_processor_stw()->verify_no_references_recorded(); 1424 1425 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1426 ClassLoaderDataGraph::purge(); 1427 MetaspaceAux::verify_metrics(); 1428 1429 // Note: since we've just done a full GC, concurrent 1430 // marking is no longer active. Therefore we need not 1431 // re-enable reference discovery for the CM ref processor. 1432 // That will be done at the start of the next marking cycle. 1433 assert(!ref_processor_cm()->discovery_enabled(), "Postcondition"); 1434 ref_processor_cm()->verify_no_references_recorded(); 1435 1436 reset_gc_time_stamp(); 1437 // Since everything potentially moved, we will clear all remembered 1438 // sets, and clear all cards. Later we will rebuild remebered 1439 // sets. We will also reset the GC time stamps of the regions. 1440 clear_rsets_post_compaction(); 1441 check_gc_time_stamps(); 1442 1443 // Resize the heap if necessary. 1444 resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size); 1445 1446 if (_hr_printer.is_active()) { 1447 // We should do this after we potentially resize the heap so 1448 // that all the COMMIT / UNCOMMIT events are generated before 1449 // the end GC event. 1450 1451 print_hrs_post_compaction(); 1452 _hr_printer.end_gc(true /* full */, (size_t) total_collections()); 1453 } 1454 1455 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 1456 if (hot_card_cache->use_cache()) { 1457 hot_card_cache->reset_card_counts(); 1458 hot_card_cache->reset_hot_cache(); 1459 } 1460 1461 // Rebuild remembered sets of all regions. 1462 if (G1CollectedHeap::use_parallel_gc_threads()) { 1463 uint n_workers = 1464 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 1465 workers()->active_workers(), 1466 Threads::number_of_non_daemon_threads()); 1467 assert(UseDynamicNumberOfGCThreads || 1468 n_workers == workers()->total_workers(), 1469 "If not dynamic should be using all the workers"); 1470 workers()->set_active_workers(n_workers); 1471 // Set parallel threads in the heap (_n_par_threads) only 1472 // before a parallel phase and always reset it to 0 after 1473 // the phase so that the number of parallel threads does 1474 // no get carried forward to a serial phase where there 1475 // may be code that is "possibly_parallel". 1476 set_par_threads(n_workers); 1477 1478 ParRebuildRSTask rebuild_rs_task(this); 1479 assert(check_heap_region_claim_values( 1480 HeapRegion::InitialClaimValue), "sanity check"); 1481 assert(UseDynamicNumberOfGCThreads || 1482 workers()->active_workers() == workers()->total_workers(), 1483 "Unless dynamic should use total workers"); 1484 // Use the most recent number of active workers 1485 assert(workers()->active_workers() > 0, 1486 "Active workers not properly set"); 1487 set_par_threads(workers()->active_workers()); 1488 workers()->run_task(&rebuild_rs_task); 1489 set_par_threads(0); 1490 assert(check_heap_region_claim_values( 1491 HeapRegion::RebuildRSClaimValue), "sanity check"); 1492 reset_heap_region_claim_values(); 1493 } else { 1494 RebuildRSOutOfRegionClosure rebuild_rs(this); 1495 heap_region_iterate(&rebuild_rs); 1496 } 1497 1498 if (true) { // FIXME 1499 MetaspaceGC::compute_new_size(); 1500 } 1501 1502 #ifdef TRACESPINNING 1503 ParallelTaskTerminator::print_termination_counts(); 1504 #endif 1505 1506 // Discard all rset updates 1507 JavaThread::dirty_card_queue_set().abandon_logs(); 1508 assert(!G1DeferredRSUpdate 1509 || (G1DeferredRSUpdate && 1510 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any"); 1511 1512 _young_list->reset_sampled_info(); 1513 // At this point there should be no regions in the 1514 // entire heap tagged as young. 1515 assert(check_young_list_empty(true /* check_heap */), 1516 "young list should be empty at this point"); 1517 1518 // Update the number of full collections that have been completed. 1519 increment_old_marking_cycles_completed(false /* concurrent */); 1520 1521 _hrs.verify_optional(); 1522 verify_region_sets_optional(); 1523 1524 // Start a new incremental collection set for the next pause 1525 assert(g1_policy()->collection_set() == NULL, "must be"); 1526 g1_policy()->start_incremental_cset_building(); 1527 1528 // Clear the _cset_fast_test bitmap in anticipation of adding 1529 // regions to the incremental collection set for the next 1530 // evacuation pause. 1531 clear_cset_fast_test(); 1532 1533 init_mutator_alloc_region(); 1534 1535 double end = os::elapsedTime(); 1536 g1_policy()->record_full_collection_end(); 1537 1538 if (G1Log::fine()) { 1539 g1_policy()->print_heap_transition(); 1540 } 1541 1542 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 1543 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 1544 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 1545 // before any GC notifications are raised. 1546 g1mm()->update_sizes(); 1547 1548 gc_epilogue(true); 1549 } 1550 1551 if (G1Log::finer()) { 1552 g1_policy()->print_detailed_heap_transition(); 1553 } 1554 1555 print_heap_after_gc(); 1556 1557 post_full_gc_dump(); 1558 } 1559 1560 return true; 1561 } 1562 1563 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1564 // do_collection() will return whether it succeeded in performing 1565 // the GC. Currently, there is no facility on the 1566 // do_full_collection() API to notify the caller than the collection 1567 // did not succeed (e.g., because it was locked out by the GC 1568 // locker). So, right now, we'll ignore the return value. 1569 bool dummy = do_collection(true, /* explicit_gc */ 1570 clear_all_soft_refs, 1571 0 /* word_size */); 1572 } 1573 1574 // This code is mostly copied from TenuredGeneration. 1575 void 1576 G1CollectedHeap:: 1577 resize_if_necessary_after_full_collection(size_t word_size) { 1578 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check"); 1579 1580 // Include the current allocation, if any, and bytes that will be 1581 // pre-allocated to support collections, as "used". 1582 const size_t used_after_gc = used(); 1583 const size_t capacity_after_gc = capacity(); 1584 const size_t free_after_gc = capacity_after_gc - used_after_gc; 1585 1586 // This is enforced in arguments.cpp. 1587 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, 1588 "otherwise the code below doesn't make sense"); 1589 1590 // We don't have floating point command-line arguments 1591 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0; 1592 const double maximum_used_percentage = 1.0 - minimum_free_percentage; 1593 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0; 1594 const double minimum_used_percentage = 1.0 - maximum_free_percentage; 1595 1596 const size_t min_heap_size = collector_policy()->min_heap_byte_size(); 1597 const size_t max_heap_size = collector_policy()->max_heap_byte_size(); 1598 1599 // We have to be careful here as these two calculations can overflow 1600 // 32-bit size_t's. 1601 double used_after_gc_d = (double) used_after_gc; 1602 double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage; 1603 double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage; 1604 1605 // Let's make sure that they are both under the max heap size, which 1606 // by default will make them fit into a size_t. 1607 double desired_capacity_upper_bound = (double) max_heap_size; 1608 minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d, 1609 desired_capacity_upper_bound); 1610 maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d, 1611 desired_capacity_upper_bound); 1612 1613 // We can now safely turn them into size_t's. 1614 size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d; 1615 size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d; 1616 1617 // This assert only makes sense here, before we adjust them 1618 // with respect to the min and max heap size. 1619 assert(minimum_desired_capacity <= maximum_desired_capacity, 1620 err_msg("minimum_desired_capacity = "SIZE_FORMAT", " 1621 "maximum_desired_capacity = "SIZE_FORMAT, 1622 minimum_desired_capacity, maximum_desired_capacity)); 1623 1624 // Should not be greater than the heap max size. No need to adjust 1625 // it with respect to the heap min size as it's a lower bound (i.e., 1626 // we'll try to make the capacity larger than it, not smaller). 1627 minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size); 1628 // Should not be less than the heap min size. No need to adjust it 1629 // with respect to the heap max size as it's an upper bound (i.e., 1630 // we'll try to make the capacity smaller than it, not greater). 1631 maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size); 1632 1633 if (capacity_after_gc < minimum_desired_capacity) { 1634 // Don't expand unless it's significant 1635 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; 1636 ergo_verbose4(ErgoHeapSizing, 1637 "attempt heap expansion", 1638 ergo_format_reason("capacity lower than " 1639 "min desired capacity after Full GC") 1640 ergo_format_byte("capacity") 1641 ergo_format_byte("occupancy") 1642 ergo_format_byte_perc("min desired capacity"), 1643 capacity_after_gc, used_after_gc, 1644 minimum_desired_capacity, (double) MinHeapFreeRatio); 1645 expand(expand_bytes); 1646 1647 // No expansion, now see if we want to shrink 1648 } else if (capacity_after_gc > maximum_desired_capacity) { 1649 // Capacity too large, compute shrinking size 1650 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; 1651 ergo_verbose4(ErgoHeapSizing, 1652 "attempt heap shrinking", 1653 ergo_format_reason("capacity higher than " 1654 "max desired capacity after Full GC") 1655 ergo_format_byte("capacity") 1656 ergo_format_byte("occupancy") 1657 ergo_format_byte_perc("max desired capacity"), 1658 capacity_after_gc, used_after_gc, 1659 maximum_desired_capacity, (double) MaxHeapFreeRatio); 1660 shrink(shrink_bytes); 1661 } 1662 } 1663 1664 1665 HeapWord* 1666 G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1667 bool* succeeded) { 1668 assert_at_safepoint(true /* should_be_vm_thread */); 1669 1670 *succeeded = true; 1671 // Let's attempt the allocation first. 1672 HeapWord* result = 1673 attempt_allocation_at_safepoint(word_size, 1674 false /* expect_null_mutator_alloc_region */); 1675 if (result != NULL) { 1676 assert(*succeeded, "sanity"); 1677 return result; 1678 } 1679 1680 // In a G1 heap, we're supposed to keep allocation from failing by 1681 // incremental pauses. Therefore, at least for now, we'll favor 1682 // expansion over collection. (This might change in the future if we can 1683 // do something smarter than full collection to satisfy a failed alloc.) 1684 result = expand_and_allocate(word_size); 1685 if (result != NULL) { 1686 assert(*succeeded, "sanity"); 1687 return result; 1688 } 1689 1690 // Expansion didn't work, we'll try to do a Full GC. 1691 bool gc_succeeded = do_collection(false, /* explicit_gc */ 1692 false, /* clear_all_soft_refs */ 1693 word_size); 1694 if (!gc_succeeded) { 1695 *succeeded = false; 1696 return NULL; 1697 } 1698 1699 // Retry the allocation 1700 result = attempt_allocation_at_safepoint(word_size, 1701 true /* expect_null_mutator_alloc_region */); 1702 if (result != NULL) { 1703 assert(*succeeded, "sanity"); 1704 return result; 1705 } 1706 1707 // Then, try a Full GC that will collect all soft references. 1708 gc_succeeded = do_collection(false, /* explicit_gc */ 1709 true, /* clear_all_soft_refs */ 1710 word_size); 1711 if (!gc_succeeded) { 1712 *succeeded = false; 1713 return NULL; 1714 } 1715 1716 // Retry the allocation once more 1717 result = attempt_allocation_at_safepoint(word_size, 1718 true /* expect_null_mutator_alloc_region */); 1719 if (result != NULL) { 1720 assert(*succeeded, "sanity"); 1721 return result; 1722 } 1723 1724 assert(!collector_policy()->should_clear_all_soft_refs(), 1725 "Flag should have been handled and cleared prior to this point"); 1726 1727 // What else? We might try synchronous finalization later. If the total 1728 // space available is large enough for the allocation, then a more 1729 // complete compaction phase than we've tried so far might be 1730 // appropriate. 1731 assert(*succeeded, "sanity"); 1732 return NULL; 1733 } 1734 1735 // Attempting to expand the heap sufficiently 1736 // to support an allocation of the given "word_size". If 1737 // successful, perform the allocation and return the address of the 1738 // allocated block, or else "NULL". 1739 1740 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { 1741 assert_at_safepoint(true /* should_be_vm_thread */); 1742 1743 verify_region_sets_optional(); 1744 1745 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1746 ergo_verbose1(ErgoHeapSizing, 1747 "attempt heap expansion", 1748 ergo_format_reason("allocation request failed") 1749 ergo_format_byte("allocation request"), 1750 word_size * HeapWordSize); 1751 if (expand(expand_bytes)) { 1752 _hrs.verify_optional(); 1753 verify_region_sets_optional(); 1754 return attempt_allocation_at_safepoint(word_size, 1755 false /* expect_null_mutator_alloc_region */); 1756 } 1757 return NULL; 1758 } 1759 1760 void G1CollectedHeap::update_committed_space(HeapWord* old_end, 1761 HeapWord* new_end) { 1762 assert(old_end != new_end, "don't call this otherwise"); 1763 assert((HeapWord*) _g1_storage.high() == new_end, "invariant"); 1764 1765 // Update the committed mem region. 1766 _g1_committed.set_end(new_end); 1767 // Tell the card table about the update. 1768 Universe::heap()->barrier_set()->resize_covered_region(_g1_committed); 1769 // Tell the BOT about the update. 1770 _bot_shared->resize(_g1_committed.word_size()); 1771 // Tell the hot card cache about the update 1772 _cg1r->hot_card_cache()->resize_card_counts(capacity()); 1773 } 1774 1775 bool G1CollectedHeap::expand(size_t expand_bytes) { 1776 size_t old_mem_size = _g1_storage.committed_size(); 1777 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1778 aligned_expand_bytes = align_size_up(aligned_expand_bytes, 1779 HeapRegion::GrainBytes); 1780 ergo_verbose2(ErgoHeapSizing, 1781 "expand the heap", 1782 ergo_format_byte("requested expansion amount") 1783 ergo_format_byte("attempted expansion amount"), 1784 expand_bytes, aligned_expand_bytes); 1785 1786 // First commit the memory. 1787 HeapWord* old_end = (HeapWord*) _g1_storage.high(); 1788 bool successful = _g1_storage.expand_by(aligned_expand_bytes); 1789 if (successful) { 1790 // Then propagate this update to the necessary data structures. 1791 HeapWord* new_end = (HeapWord*) _g1_storage.high(); 1792 update_committed_space(old_end, new_end); 1793 1794 FreeRegionList expansion_list("Local Expansion List"); 1795 MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list); 1796 assert(mr.start() == old_end, "post-condition"); 1797 // mr might be a smaller region than what was requested if 1798 // expand_by() was unable to allocate the HeapRegion instances 1799 assert(mr.end() <= new_end, "post-condition"); 1800 1801 size_t actual_expand_bytes = mr.byte_size(); 1802 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1803 assert(actual_expand_bytes == expansion_list.total_capacity_bytes(), 1804 "post-condition"); 1805 if (actual_expand_bytes < aligned_expand_bytes) { 1806 // We could not expand _hrs to the desired size. In this case we 1807 // need to shrink the committed space accordingly. 1808 assert(mr.end() < new_end, "invariant"); 1809 1810 size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes; 1811 // First uncommit the memory. 1812 _g1_storage.shrink_by(diff_bytes); 1813 // Then propagate this update to the necessary data structures. 1814 update_committed_space(new_end, mr.end()); 1815 } 1816 _free_list.add_as_tail(&expansion_list); 1817 1818 if (_hr_printer.is_active()) { 1819 HeapWord* curr = mr.start(); 1820 while (curr < mr.end()) { 1821 HeapWord* curr_end = curr + HeapRegion::GrainWords; 1822 _hr_printer.commit(curr, curr_end); 1823 curr = curr_end; 1824 } 1825 assert(curr == mr.end(), "post-condition"); 1826 } 1827 g1_policy()->record_new_heap_size(n_regions()); 1828 } else { 1829 ergo_verbose0(ErgoHeapSizing, 1830 "did not expand the heap", 1831 ergo_format_reason("heap expansion operation failed")); 1832 // The expansion of the virtual storage space was unsuccessful. 1833 // Let's see if it was because we ran out of swap. 1834 if (G1ExitOnExpansionFailure && 1835 _g1_storage.uncommitted_size() >= aligned_expand_bytes) { 1836 // We had head room... 1837 vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion"); 1838 } 1839 } 1840 return successful; 1841 } 1842 1843 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1844 size_t old_mem_size = _g1_storage.committed_size(); 1845 size_t aligned_shrink_bytes = 1846 ReservedSpace::page_align_size_down(shrink_bytes); 1847 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, 1848 HeapRegion::GrainBytes); 1849 uint num_regions_deleted = 0; 1850 MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted); 1851 HeapWord* old_end = (HeapWord*) _g1_storage.high(); 1852 assert(mr.end() == old_end, "post-condition"); 1853 1854 ergo_verbose3(ErgoHeapSizing, 1855 "shrink the heap", 1856 ergo_format_byte("requested shrinking amount") 1857 ergo_format_byte("aligned shrinking amount") 1858 ergo_format_byte("attempted shrinking amount"), 1859 shrink_bytes, aligned_shrink_bytes, mr.byte_size()); 1860 if (mr.byte_size() > 0) { 1861 if (_hr_printer.is_active()) { 1862 HeapWord* curr = mr.end(); 1863 while (curr > mr.start()) { 1864 HeapWord* curr_end = curr; 1865 curr -= HeapRegion::GrainWords; 1866 _hr_printer.uncommit(curr, curr_end); 1867 } 1868 assert(curr == mr.start(), "post-condition"); 1869 } 1870 1871 _g1_storage.shrink_by(mr.byte_size()); 1872 HeapWord* new_end = (HeapWord*) _g1_storage.high(); 1873 assert(mr.start() == new_end, "post-condition"); 1874 1875 _expansion_regions += num_regions_deleted; 1876 update_committed_space(old_end, new_end); 1877 HeapRegionRemSet::shrink_heap(n_regions()); 1878 g1_policy()->record_new_heap_size(n_regions()); 1879 } else { 1880 ergo_verbose0(ErgoHeapSizing, 1881 "did not shrink the heap", 1882 ergo_format_reason("heap shrinking operation failed")); 1883 } 1884 } 1885 1886 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1887 verify_region_sets_optional(); 1888 1889 // We should only reach here at the end of a Full GC which means we 1890 // should not not be holding to any GC alloc regions. The method 1891 // below will make sure of that and do any remaining clean up. 1892 abandon_gc_alloc_regions(); 1893 1894 // Instead of tearing down / rebuilding the free lists here, we 1895 // could instead use the remove_all_pending() method on free_list to 1896 // remove only the ones that we need to remove. 1897 tear_down_region_sets(true /* free_list_only */); 1898 shrink_helper(shrink_bytes); 1899 rebuild_region_sets(true /* free_list_only */); 1900 1901 _hrs.verify_optional(); 1902 verify_region_sets_optional(); 1903 } 1904 1905 // Public methods. 1906 1907 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away 1908 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 1909 #endif // _MSC_VER 1910 1911 1912 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) : 1913 SharedHeap(policy_), 1914 _g1_policy(policy_), 1915 _dirty_card_queue_set(false), 1916 _into_cset_dirty_card_queue_set(false), 1917 _is_alive_closure_cm(this), 1918 _is_alive_closure_stw(this), 1919 _ref_processor_cm(NULL), 1920 _ref_processor_stw(NULL), 1921 _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)), 1922 _bot_shared(NULL), 1923 _evac_failure_scan_stack(NULL) , 1924 _mark_in_progress(false), 1925 _cg1r(NULL), _summary_bytes_used(0), 1926 _g1mm(NULL), 1927 _refine_cte_cl(NULL), 1928 _full_collection(false), 1929 _free_list("Master Free List"), 1930 _secondary_free_list("Secondary Free List"), 1931 _old_set("Old Set"), 1932 _humongous_set("Master Humongous Set"), 1933 _free_regions_coming(false), 1934 _young_list(new YoungList(this)), 1935 _gc_time_stamp(0), 1936 _retained_old_gc_alloc_region(NULL), 1937 _survivor_plab_stats(YoungPLABSize, PLABWeight), 1938 _old_plab_stats(OldPLABSize, PLABWeight), 1939 _expand_heap_after_alloc_failure(true), 1940 _surviving_young_words(NULL), 1941 _old_marking_cycles_started(0), 1942 _old_marking_cycles_completed(0), 1943 _in_cset_fast_test(NULL), 1944 _in_cset_fast_test_base(NULL), 1945 _dirty_cards_region_list(NULL), 1946 _worker_cset_start_region(NULL), 1947 _worker_cset_start_region_time_stamp(NULL) { 1948 _g1h = this; // To catch bugs. 1949 if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) { 1950 vm_exit_during_initialization("Failed necessary allocation."); 1951 } 1952 1953 _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2; 1954 1955 int n_queues = MAX2((int)ParallelGCThreads, 1); 1956 _task_queues = new RefToScanQueueSet(n_queues); 1957 1958 int n_rem_sets = HeapRegionRemSet::num_par_rem_sets(); 1959 assert(n_rem_sets > 0, "Invariant."); 1960 1961 _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC); 1962 _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC); 1963 1964 for (int i = 0; i < n_queues; i++) { 1965 RefToScanQueue* q = new RefToScanQueue(); 1966 q->initialize(); 1967 _task_queues->register_queue(i, q); 1968 } 1969 1970 clear_cset_start_regions(); 1971 1972 // Initialize the G1EvacuationFailureALot counters and flags. 1973 NOT_PRODUCT(reset_evacuation_should_fail();) 1974 1975 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1976 } 1977 1978 jint G1CollectedHeap::initialize() { 1979 CollectedHeap::pre_initialize(); 1980 os::enable_vtime(); 1981 1982 G1Log::init(); 1983 1984 // Necessary to satisfy locking discipline assertions. 1985 1986 MutexLocker x(Heap_lock); 1987 1988 // We have to initialize the printer before committing the heap, as 1989 // it will be used then. 1990 _hr_printer.set_active(G1PrintHeapRegions); 1991 1992 // While there are no constraints in the GC code that HeapWordSize 1993 // be any particular value, there are multiple other areas in the 1994 // system which believe this to be true (e.g. oop->object_size in some 1995 // cases incorrectly returns the size in wordSize units rather than 1996 // HeapWordSize). 1997 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 1998 1999 size_t init_byte_size = collector_policy()->initial_heap_byte_size(); 2000 size_t max_byte_size = collector_policy()->max_heap_byte_size(); 2001 2002 // Ensure that the sizes are properly aligned. 2003 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 2004 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 2005 2006 _cg1r = new ConcurrentG1Refine(this); 2007 2008 // Reserve the maximum. 2009 2010 // When compressed oops are enabled, the preferred heap base 2011 // is calculated by subtracting the requested size from the 2012 // 32Gb boundary and using the result as the base address for 2013 // heap reservation. If the requested size is not aligned to 2014 // HeapRegion::GrainBytes (i.e. the alignment that is passed 2015 // into the ReservedHeapSpace constructor) then the actual 2016 // base of the reserved heap may end up differing from the 2017 // address that was requested (i.e. the preferred heap base). 2018 // If this happens then we could end up using a non-optimal 2019 // compressed oops mode. 2020 2021 // Since max_byte_size is aligned to the size of a heap region (checked 2022 // above). 2023 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 2024 2025 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, 2026 HeapRegion::GrainBytes); 2027 2028 // It is important to do this in a way such that concurrent readers can't 2029 // temporarily think somethings in the heap. (I've actually seen this 2030 // happen in asserts: DLD.) 2031 _reserved.set_word_size(0); 2032 _reserved.set_start((HeapWord*)heap_rs.base()); 2033 _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size())); 2034 2035 _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes); 2036 2037 // Create the gen rem set (and barrier set) for the entire reserved region. 2038 _rem_set = collector_policy()->create_rem_set(_reserved, 2); 2039 set_barrier_set(rem_set()->bs()); 2040 if (barrier_set()->is_a(BarrierSet::ModRef)) { 2041 _mr_bs = (ModRefBarrierSet*)_barrier_set; 2042 } else { 2043 vm_exit_during_initialization("G1 requires a mod ref bs."); 2044 return JNI_ENOMEM; 2045 } 2046 2047 // Also create a G1 rem set. 2048 if (mr_bs()->is_a(BarrierSet::CardTableModRef)) { 2049 _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs()); 2050 } else { 2051 vm_exit_during_initialization("G1 requires a cardtable mod ref bs."); 2052 return JNI_ENOMEM; 2053 } 2054 2055 // Carve out the G1 part of the heap. 2056 2057 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); 2058 _g1_reserved = MemRegion((HeapWord*)g1_rs.base(), 2059 g1_rs.size()/HeapWordSize); 2060 2061 _g1_storage.initialize(g1_rs, 0); 2062 _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0); 2063 _hrs.initialize((HeapWord*) _g1_reserved.start(), 2064 (HeapWord*) _g1_reserved.end(), 2065 _expansion_regions); 2066 2067 // Do later initialization work for concurrent refinement. 2068 _cg1r->init(); 2069 2070 // 6843694 - ensure that the maximum region index can fit 2071 // in the remembered set structures. 2072 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 2073 guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); 2074 2075 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 2076 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 2077 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 2078 "too many cards per region"); 2079 2080 HeapRegionSet::set_unrealistically_long_length(max_regions() + 1); 2081 2082 _bot_shared = new G1BlockOffsetSharedArray(_reserved, 2083 heap_word_size(init_byte_size)); 2084 2085 _g1h = this; 2086 2087 _in_cset_fast_test_length = max_regions(); 2088 _in_cset_fast_test_base = 2089 NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC); 2090 2091 // We're biasing _in_cset_fast_test to avoid subtracting the 2092 // beginning of the heap every time we want to index; basically 2093 // it's the same with what we do with the card table. 2094 _in_cset_fast_test = _in_cset_fast_test_base - 2095 ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes); 2096 2097 // Clear the _cset_fast_test bitmap in anticipation of adding 2098 // regions to the incremental collection set for the first 2099 // evacuation pause. 2100 clear_cset_fast_test(); 2101 2102 // Create the ConcurrentMark data structure and thread. 2103 // (Must do this late, so that "max_regions" is defined.) 2104 _cm = new ConcurrentMark(this, heap_rs); 2105 if (_cm == NULL || !_cm->completed_initialization()) { 2106 vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark"); 2107 return JNI_ENOMEM; 2108 } 2109 _cmThread = _cm->cmThread(); 2110 2111 // Initialize the from_card cache structure of HeapRegionRemSet. 2112 HeapRegionRemSet::init_heap(max_regions()); 2113 2114 // Now expand into the initial heap size. 2115 if (!expand(init_byte_size)) { 2116 vm_shutdown_during_initialization("Failed to allocate initial heap."); 2117 return JNI_ENOMEM; 2118 } 2119 2120 // Perform any initialization actions delegated to the policy. 2121 g1_policy()->init(); 2122 2123 _refine_cte_cl = 2124 new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(), 2125 g1_rem_set(), 2126 concurrent_g1_refine()); 2127 JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl); 2128 2129 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, 2130 SATB_Q_FL_lock, 2131 G1SATBProcessCompletedThreshold, 2132 Shared_SATB_Q_lock); 2133 2134 JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, 2135 DirtyCardQ_FL_lock, 2136 concurrent_g1_refine()->yellow_zone(), 2137 concurrent_g1_refine()->red_zone(), 2138 Shared_DirtyCardQ_lock); 2139 2140 if (G1DeferredRSUpdate) { 2141 dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, 2142 DirtyCardQ_FL_lock, 2143 -1, // never trigger processing 2144 -1, // no limit on length 2145 Shared_DirtyCardQ_lock, 2146 &JavaThread::dirty_card_queue_set()); 2147 } 2148 2149 // Initialize the card queue set used to hold cards containing 2150 // references into the collection set. 2151 _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon, 2152 DirtyCardQ_FL_lock, 2153 -1, // never trigger processing 2154 -1, // no limit on length 2155 Shared_DirtyCardQ_lock, 2156 &JavaThread::dirty_card_queue_set()); 2157 2158 // In case we're keeping closure specialization stats, initialize those 2159 // counts and that mechanism. 2160 SpecializationStats::clear(); 2161 2162 // Here we allocate the dummy full region that is required by the 2163 // G1AllocRegion class. If we don't pass an address in the reserved 2164 // space here, lots of asserts fire. 2165 2166 HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */, 2167 _g1_reserved.start()); 2168 // We'll re-use the same region whether the alloc region will 2169 // require BOT updates or not and, if it doesn't, then a non-young 2170 // region will complain that it cannot support allocations without 2171 // BOT updates. So we'll tag the dummy region as young to avoid that. 2172 dummy_region->set_young(); 2173 // Make sure it's full. 2174 dummy_region->set_top(dummy_region->end()); 2175 G1AllocRegion::setup(this, dummy_region); 2176 2177 init_mutator_alloc_region(); 2178 2179 // Do create of the monitoring and management support so that 2180 // values in the heap have been properly initialized. 2181 _g1mm = new G1MonitoringSupport(this); 2182 2183 return JNI_OK; 2184 } 2185 2186 void G1CollectedHeap::ref_processing_init() { 2187 // Reference processing in G1 currently works as follows: 2188 // 2189 // * There are two reference processor instances. One is 2190 // used to record and process discovered references 2191 // during concurrent marking; the other is used to 2192 // record and process references during STW pauses 2193 // (both full and incremental). 2194 // * Both ref processors need to 'span' the entire heap as 2195 // the regions in the collection set may be dotted around. 2196 // 2197 // * For the concurrent marking ref processor: 2198 // * Reference discovery is enabled at initial marking. 2199 // * Reference discovery is disabled and the discovered 2200 // references processed etc during remarking. 2201 // * Reference discovery is MT (see below). 2202 // * Reference discovery requires a barrier (see below). 2203 // * Reference processing may or may not be MT 2204 // (depending on the value of ParallelRefProcEnabled 2205 // and ParallelGCThreads). 2206 // * A full GC disables reference discovery by the CM 2207 // ref processor and abandons any entries on it's 2208 // discovered lists. 2209 // 2210 // * For the STW processor: 2211 // * Non MT discovery is enabled at the start of a full GC. 2212 // * Processing and enqueueing during a full GC is non-MT. 2213 // * During a full GC, references are processed after marking. 2214 // 2215 // * Discovery (may or may not be MT) is enabled at the start 2216 // of an incremental evacuation pause. 2217 // * References are processed near the end of a STW evacuation pause. 2218 // * For both types of GC: 2219 // * Discovery is atomic - i.e. not concurrent. 2220 // * Reference discovery will not need a barrier. 2221 2222 SharedHeap::ref_processing_init(); 2223 MemRegion mr = reserved_region(); 2224 2225 // Concurrent Mark ref processor 2226 _ref_processor_cm = 2227 new ReferenceProcessor(mr, // span 2228 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2229 // mt processing 2230 (int) ParallelGCThreads, 2231 // degree of mt processing 2232 (ParallelGCThreads > 1) || (ConcGCThreads > 1), 2233 // mt discovery 2234 (int) MAX2(ParallelGCThreads, ConcGCThreads), 2235 // degree of mt discovery 2236 false, 2237 // Reference discovery is not atomic 2238 &_is_alive_closure_cm, 2239 // is alive closure 2240 // (for efficiency/performance) 2241 true); 2242 // Setting next fields of discovered 2243 // lists requires a barrier. 2244 2245 // STW ref processor 2246 _ref_processor_stw = 2247 new ReferenceProcessor(mr, // span 2248 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2249 // mt processing 2250 MAX2((int)ParallelGCThreads, 1), 2251 // degree of mt processing 2252 (ParallelGCThreads > 1), 2253 // mt discovery 2254 MAX2((int)ParallelGCThreads, 1), 2255 // degree of mt discovery 2256 true, 2257 // Reference discovery is atomic 2258 &_is_alive_closure_stw, 2259 // is alive closure 2260 // (for efficiency/performance) 2261 false); 2262 // Setting next fields of discovered 2263 // lists requires a barrier. 2264 } 2265 2266 size_t G1CollectedHeap::capacity() const { 2267 return _g1_committed.byte_size(); 2268 } 2269 2270 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) { 2271 assert(!hr->continuesHumongous(), "pre-condition"); 2272 hr->reset_gc_time_stamp(); 2273 if (hr->startsHumongous()) { 2274 uint first_index = hr->hrs_index() + 1; 2275 uint last_index = hr->last_hc_index(); 2276 for (uint i = first_index; i < last_index; i += 1) { 2277 HeapRegion* chr = region_at(i); 2278 assert(chr->continuesHumongous(), "sanity"); 2279 chr->reset_gc_time_stamp(); 2280 } 2281 } 2282 } 2283 2284 #ifndef PRODUCT 2285 class CheckGCTimeStampsHRClosure : public HeapRegionClosure { 2286 private: 2287 unsigned _gc_time_stamp; 2288 bool _failures; 2289 2290 public: 2291 CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) : 2292 _gc_time_stamp(gc_time_stamp), _failures(false) { } 2293 2294 virtual bool doHeapRegion(HeapRegion* hr) { 2295 unsigned region_gc_time_stamp = hr->get_gc_time_stamp(); 2296 if (_gc_time_stamp != region_gc_time_stamp) { 2297 gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, " 2298 "expected %d", HR_FORMAT_PARAMS(hr), 2299 region_gc_time_stamp, _gc_time_stamp); 2300 _failures = true; 2301 } 2302 return false; 2303 } 2304 2305 bool failures() { return _failures; } 2306 }; 2307 2308 void G1CollectedHeap::check_gc_time_stamps() { 2309 CheckGCTimeStampsHRClosure cl(_gc_time_stamp); 2310 heap_region_iterate(&cl); 2311 guarantee(!cl.failures(), "all GC time stamps should have been reset"); 2312 } 2313 #endif // PRODUCT 2314 2315 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, 2316 DirtyCardQueue* into_cset_dcq, 2317 bool concurrent, 2318 int worker_i) { 2319 // Clean cards in the hot card cache 2320 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 2321 hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq); 2322 2323 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2324 int n_completed_buffers = 0; 2325 while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) { 2326 n_completed_buffers++; 2327 } 2328 g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers); 2329 dcqs.clear_n_completed_buffers(); 2330 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); 2331 } 2332 2333 2334 // Computes the sum of the storage used by the various regions. 2335 2336 size_t G1CollectedHeap::used() const { 2337 assert(Heap_lock->owner() != NULL, 2338 "Should be owned on this thread's behalf."); 2339 size_t result = _summary_bytes_used; 2340 // Read only once in case it is set to NULL concurrently 2341 HeapRegion* hr = _mutator_alloc_region.get(); 2342 if (hr != NULL) 2343 result += hr->used(); 2344 return result; 2345 } 2346 2347 size_t G1CollectedHeap::used_unlocked() const { 2348 size_t result = _summary_bytes_used; 2349 return result; 2350 } 2351 2352 class SumUsedClosure: public HeapRegionClosure { 2353 size_t _used; 2354 public: 2355 SumUsedClosure() : _used(0) {} 2356 bool doHeapRegion(HeapRegion* r) { 2357 if (!r->continuesHumongous()) { 2358 _used += r->used(); 2359 } 2360 return false; 2361 } 2362 size_t result() { return _used; } 2363 }; 2364 2365 size_t G1CollectedHeap::recalculate_used() const { 2366 SumUsedClosure blk; 2367 heap_region_iterate(&blk); 2368 return blk.result(); 2369 } 2370 2371 size_t G1CollectedHeap::unsafe_max_alloc() { 2372 if (free_regions() > 0) return HeapRegion::GrainBytes; 2373 // otherwise, is there space in the current allocation region? 2374 2375 // We need to store the current allocation region in a local variable 2376 // here. The problem is that this method doesn't take any locks and 2377 // there may be other threads which overwrite the current allocation 2378 // region field. attempt_allocation(), for example, sets it to NULL 2379 // and this can happen *after* the NULL check here but before the call 2380 // to free(), resulting in a SIGSEGV. Note that this doesn't appear 2381 // to be a problem in the optimized build, since the two loads of the 2382 // current allocation region field are optimized away. 2383 HeapRegion* hr = _mutator_alloc_region.get(); 2384 if (hr == NULL) { 2385 return 0; 2386 } 2387 return hr->free(); 2388 } 2389 2390 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 2391 switch (cause) { 2392 case GCCause::_gc_locker: return GCLockerInvokesConcurrent; 2393 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 2394 case GCCause::_g1_humongous_allocation: return true; 2395 default: return false; 2396 } 2397 } 2398 2399 #ifndef PRODUCT 2400 void G1CollectedHeap::allocate_dummy_regions() { 2401 // Let's fill up most of the region 2402 size_t word_size = HeapRegion::GrainWords - 1024; 2403 // And as a result the region we'll allocate will be humongous. 2404 guarantee(isHumongous(word_size), "sanity"); 2405 2406 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 2407 // Let's use the existing mechanism for the allocation 2408 HeapWord* dummy_obj = humongous_obj_allocate(word_size); 2409 if (dummy_obj != NULL) { 2410 MemRegion mr(dummy_obj, word_size); 2411 CollectedHeap::fill_with_object(mr); 2412 } else { 2413 // If we can't allocate once, we probably cannot allocate 2414 // again. Let's get out of the loop. 2415 break; 2416 } 2417 } 2418 } 2419 #endif // !PRODUCT 2420 2421 void G1CollectedHeap::increment_old_marking_cycles_started() { 2422 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 2423 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 2424 err_msg("Wrong marking cycle count (started: %d, completed: %d)", 2425 _old_marking_cycles_started, _old_marking_cycles_completed)); 2426 2427 _old_marking_cycles_started++; 2428 } 2429 2430 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) { 2431 MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 2432 2433 // We assume that if concurrent == true, then the caller is a 2434 // concurrent thread that was joined the Suspendible Thread 2435 // Set. If there's ever a cheap way to check this, we should add an 2436 // assert here. 2437 2438 // Given that this method is called at the end of a Full GC or of a 2439 // concurrent cycle, and those can be nested (i.e., a Full GC can 2440 // interrupt a concurrent cycle), the number of full collections 2441 // completed should be either one (in the case where there was no 2442 // nesting) or two (when a Full GC interrupted a concurrent cycle) 2443 // behind the number of full collections started. 2444 2445 // This is the case for the inner caller, i.e. a Full GC. 2446 assert(concurrent || 2447 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 2448 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 2449 err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u " 2450 "is inconsistent with _old_marking_cycles_completed = %u", 2451 _old_marking_cycles_started, _old_marking_cycles_completed)); 2452 2453 // This is the case for the outer caller, i.e. the concurrent cycle. 2454 assert(!concurrent || 2455 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 2456 err_msg("for outer caller (concurrent cycle): " 2457 "_old_marking_cycles_started = %u " 2458 "is inconsistent with _old_marking_cycles_completed = %u", 2459 _old_marking_cycles_started, _old_marking_cycles_completed)); 2460 2461 _old_marking_cycles_completed += 1; 2462 2463 // We need to clear the "in_progress" flag in the CM thread before 2464 // we wake up any waiters (especially when ExplicitInvokesConcurrent 2465 // is set) so that if a waiter requests another System.gc() it doesn't 2466 // incorrectly see that a marking cyle is still in progress. 2467 if (concurrent) { 2468 _cmThread->clear_in_progress(); 2469 } 2470 2471 // This notify_all() will ensure that a thread that called 2472 // System.gc() with (with ExplicitGCInvokesConcurrent set or not) 2473 // and it's waiting for a full GC to finish will be woken up. It is 2474 // waiting in VM_G1IncCollectionPause::doit_epilogue(). 2475 FullGCCount_lock->notify_all(); 2476 } 2477 2478 void G1CollectedHeap::collect(GCCause::Cause cause) { 2479 assert_heap_not_locked(); 2480 2481 unsigned int gc_count_before; 2482 unsigned int old_marking_count_before; 2483 bool retry_gc; 2484 2485 do { 2486 retry_gc = false; 2487 2488 { 2489 MutexLocker ml(Heap_lock); 2490 2491 // Read the GC count while holding the Heap_lock 2492 gc_count_before = total_collections(); 2493 old_marking_count_before = _old_marking_cycles_started; 2494 } 2495 2496 if (should_do_concurrent_full_gc(cause)) { 2497 // Schedule an initial-mark evacuation pause that will start a 2498 // concurrent cycle. We're setting word_size to 0 which means that 2499 // we are not requesting a post-GC allocation. 2500 VM_G1IncCollectionPause op(gc_count_before, 2501 0, /* word_size */ 2502 true, /* should_initiate_conc_mark */ 2503 g1_policy()->max_pause_time_ms(), 2504 cause); 2505 2506 VMThread::execute(&op); 2507 if (!op.pause_succeeded()) { 2508 if (old_marking_count_before == _old_marking_cycles_started) { 2509 retry_gc = op.should_retry_gc(); 2510 } else { 2511 // A Full GC happened while we were trying to schedule the 2512 // initial-mark GC. No point in starting a new cycle given 2513 // that the whole heap was collected anyway. 2514 } 2515 2516 if (retry_gc) { 2517 if (GC_locker::is_active_and_needs_gc()) { 2518 GC_locker::stall_until_clear(); 2519 } 2520 } 2521 } 2522 } else { 2523 if (cause == GCCause::_gc_locker 2524 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2525 2526 // Schedule a standard evacuation pause. We're setting word_size 2527 // to 0 which means that we are not requesting a post-GC allocation. 2528 VM_G1IncCollectionPause op(gc_count_before, 2529 0, /* word_size */ 2530 false, /* should_initiate_conc_mark */ 2531 g1_policy()->max_pause_time_ms(), 2532 cause); 2533 VMThread::execute(&op); 2534 } else { 2535 // Schedule a Full GC. 2536 VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause); 2537 VMThread::execute(&op); 2538 } 2539 } 2540 } while (retry_gc); 2541 } 2542 2543 bool G1CollectedHeap::is_in(const void* p) const { 2544 if (_g1_committed.contains(p)) { 2545 // Given that we know that p is in the committed space, 2546 // heap_region_containing_raw() should successfully 2547 // return the containing region. 2548 HeapRegion* hr = heap_region_containing_raw(p); 2549 return hr->is_in(p); 2550 } else { 2551 return false; 2552 } 2553 } 2554 2555 // Iteration functions. 2556 2557 // Iterates an OopClosure over all ref-containing fields of objects 2558 // within a HeapRegion. 2559 2560 class IterateOopClosureRegionClosure: public HeapRegionClosure { 2561 MemRegion _mr; 2562 ExtendedOopClosure* _cl; 2563 public: 2564 IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl) 2565 : _mr(mr), _cl(cl) {} 2566 bool doHeapRegion(HeapRegion* r) { 2567 if (!r->continuesHumongous()) { 2568 r->oop_iterate(_cl); 2569 } 2570 return false; 2571 } 2572 }; 2573 2574 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) { 2575 IterateOopClosureRegionClosure blk(_g1_committed, cl); 2576 heap_region_iterate(&blk); 2577 } 2578 2579 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) { 2580 IterateOopClosureRegionClosure blk(mr, cl); 2581 heap_region_iterate(&blk); 2582 } 2583 2584 // Iterates an ObjectClosure over all objects within a HeapRegion. 2585 2586 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2587 ObjectClosure* _cl; 2588 public: 2589 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2590 bool doHeapRegion(HeapRegion* r) { 2591 if (! r->continuesHumongous()) { 2592 r->object_iterate(_cl); 2593 } 2594 return false; 2595 } 2596 }; 2597 2598 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2599 IterateObjectClosureRegionClosure blk(cl); 2600 heap_region_iterate(&blk); 2601 } 2602 2603 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) { 2604 // FIXME: is this right? 2605 guarantee(false, "object_iterate_since_last_GC not supported by G1 heap"); 2606 } 2607 2608 // Calls a SpaceClosure on a HeapRegion. 2609 2610 class SpaceClosureRegionClosure: public HeapRegionClosure { 2611 SpaceClosure* _cl; 2612 public: 2613 SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {} 2614 bool doHeapRegion(HeapRegion* r) { 2615 _cl->do_space(r); 2616 return false; 2617 } 2618 }; 2619 2620 void G1CollectedHeap::space_iterate(SpaceClosure* cl) { 2621 SpaceClosureRegionClosure blk(cl); 2622 heap_region_iterate(&blk); 2623 } 2624 2625 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2626 _hrs.iterate(cl); 2627 } 2628 2629 void 2630 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl, 2631 uint worker_id, 2632 uint no_of_par_workers, 2633 jint claim_value) { 2634 const uint regions = n_regions(); 2635 const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 2636 no_of_par_workers : 2637 1); 2638 assert(UseDynamicNumberOfGCThreads || 2639 no_of_par_workers == workers()->total_workers(), 2640 "Non dynamic should use fixed number of workers"); 2641 // try to spread out the starting points of the workers 2642 const HeapRegion* start_hr = 2643 start_region_for_worker(worker_id, no_of_par_workers); 2644 const uint start_index = start_hr->hrs_index(); 2645 2646 // each worker will actually look at all regions 2647 for (uint count = 0; count < regions; ++count) { 2648 const uint index = (start_index + count) % regions; 2649 assert(0 <= index && index < regions, "sanity"); 2650 HeapRegion* r = region_at(index); 2651 // we'll ignore "continues humongous" regions (we'll process them 2652 // when we come across their corresponding "start humongous" 2653 // region) and regions already claimed 2654 if (r->claim_value() == claim_value || r->continuesHumongous()) { 2655 continue; 2656 } 2657 // OK, try to claim it 2658 if (r->claimHeapRegion(claim_value)) { 2659 // success! 2660 assert(!r->continuesHumongous(), "sanity"); 2661 if (r->startsHumongous()) { 2662 // If the region is "starts humongous" we'll iterate over its 2663 // "continues humongous" first; in fact we'll do them 2664 // first. The order is important. In on case, calling the 2665 // closure on the "starts humongous" region might de-allocate 2666 // and clear all its "continues humongous" regions and, as a 2667 // result, we might end up processing them twice. So, we'll do 2668 // them first (notice: most closures will ignore them anyway) and 2669 // then we'll do the "starts humongous" region. 2670 for (uint ch_index = index + 1; ch_index < regions; ++ch_index) { 2671 HeapRegion* chr = region_at(ch_index); 2672 2673 // if the region has already been claimed or it's not 2674 // "continues humongous" we're done 2675 if (chr->claim_value() == claim_value || 2676 !chr->continuesHumongous()) { 2677 break; 2678 } 2679 2680 // Noone should have claimed it directly. We can given 2681 // that we claimed its "starts humongous" region. 2682 assert(chr->claim_value() != claim_value, "sanity"); 2683 assert(chr->humongous_start_region() == r, "sanity"); 2684 2685 if (chr->claimHeapRegion(claim_value)) { 2686 // we should always be able to claim it; noone else should 2687 // be trying to claim this region 2688 2689 bool res2 = cl->doHeapRegion(chr); 2690 assert(!res2, "Should not abort"); 2691 2692 // Right now, this holds (i.e., no closure that actually 2693 // does something with "continues humongous" regions 2694 // clears them). We might have to weaken it in the future, 2695 // but let's leave these two asserts here for extra safety. 2696 assert(chr->continuesHumongous(), "should still be the case"); 2697 assert(chr->humongous_start_region() == r, "sanity"); 2698 } else { 2699 guarantee(false, "we should not reach here"); 2700 } 2701 } 2702 } 2703 2704 assert(!r->continuesHumongous(), "sanity"); 2705 bool res = cl->doHeapRegion(r); 2706 assert(!res, "Should not abort"); 2707 } 2708 } 2709 } 2710 2711 class ResetClaimValuesClosure: public HeapRegionClosure { 2712 public: 2713 bool doHeapRegion(HeapRegion* r) { 2714 r->set_claim_value(HeapRegion::InitialClaimValue); 2715 return false; 2716 } 2717 }; 2718 2719 void G1CollectedHeap::reset_heap_region_claim_values() { 2720 ResetClaimValuesClosure blk; 2721 heap_region_iterate(&blk); 2722 } 2723 2724 void G1CollectedHeap::reset_cset_heap_region_claim_values() { 2725 ResetClaimValuesClosure blk; 2726 collection_set_iterate(&blk); 2727 } 2728 2729 #ifdef ASSERT 2730 // This checks whether all regions in the heap have the correct claim 2731 // value. I also piggy-backed on this a check to ensure that the 2732 // humongous_start_region() information on "continues humongous" 2733 // regions is correct. 2734 2735 class CheckClaimValuesClosure : public HeapRegionClosure { 2736 private: 2737 jint _claim_value; 2738 uint _failures; 2739 HeapRegion* _sh_region; 2740 2741 public: 2742 CheckClaimValuesClosure(jint claim_value) : 2743 _claim_value(claim_value), _failures(0), _sh_region(NULL) { } 2744 bool doHeapRegion(HeapRegion* r) { 2745 if (r->claim_value() != _claim_value) { 2746 gclog_or_tty->print_cr("Region " HR_FORMAT ", " 2747 "claim value = %d, should be %d", 2748 HR_FORMAT_PARAMS(r), 2749 r->claim_value(), _claim_value); 2750 ++_failures; 2751 } 2752 if (!r->isHumongous()) { 2753 _sh_region = NULL; 2754 } else if (r->startsHumongous()) { 2755 _sh_region = r; 2756 } else if (r->continuesHumongous()) { 2757 if (r->humongous_start_region() != _sh_region) { 2758 gclog_or_tty->print_cr("Region " HR_FORMAT ", " 2759 "HS = "PTR_FORMAT", should be "PTR_FORMAT, 2760 HR_FORMAT_PARAMS(r), 2761 r->humongous_start_region(), 2762 _sh_region); 2763 ++_failures; 2764 } 2765 } 2766 return false; 2767 } 2768 uint failures() { return _failures; } 2769 }; 2770 2771 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) { 2772 CheckClaimValuesClosure cl(claim_value); 2773 heap_region_iterate(&cl); 2774 return cl.failures() == 0; 2775 } 2776 2777 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure { 2778 private: 2779 jint _claim_value; 2780 uint _failures; 2781 2782 public: 2783 CheckClaimValuesInCSetHRClosure(jint claim_value) : 2784 _claim_value(claim_value), _failures(0) { } 2785 2786 uint failures() { return _failures; } 2787 2788 bool doHeapRegion(HeapRegion* hr) { 2789 assert(hr->in_collection_set(), "how?"); 2790 assert(!hr->isHumongous(), "H-region in CSet"); 2791 if (hr->claim_value() != _claim_value) { 2792 gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", " 2793 "claim value = %d, should be %d", 2794 HR_FORMAT_PARAMS(hr), 2795 hr->claim_value(), _claim_value); 2796 _failures += 1; 2797 } 2798 return false; 2799 } 2800 }; 2801 2802 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) { 2803 CheckClaimValuesInCSetHRClosure cl(claim_value); 2804 collection_set_iterate(&cl); 2805 return cl.failures() == 0; 2806 } 2807 #endif // ASSERT 2808 2809 // Clear the cached CSet starting regions and (more importantly) 2810 // the time stamps. Called when we reset the GC time stamp. 2811 void G1CollectedHeap::clear_cset_start_regions() { 2812 assert(_worker_cset_start_region != NULL, "sanity"); 2813 assert(_worker_cset_start_region_time_stamp != NULL, "sanity"); 2814 2815 int n_queues = MAX2((int)ParallelGCThreads, 1); 2816 for (int i = 0; i < n_queues; i++) { 2817 _worker_cset_start_region[i] = NULL; 2818 _worker_cset_start_region_time_stamp[i] = 0; 2819 } 2820 } 2821 2822 // Given the id of a worker, obtain or calculate a suitable 2823 // starting region for iterating over the current collection set. 2824 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) { 2825 assert(get_gc_time_stamp() > 0, "should have been updated by now"); 2826 2827 HeapRegion* result = NULL; 2828 unsigned gc_time_stamp = get_gc_time_stamp(); 2829 2830 if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) { 2831 // Cached starting region for current worker was set 2832 // during the current pause - so it's valid. 2833 // Note: the cached starting heap region may be NULL 2834 // (when the collection set is empty). 2835 result = _worker_cset_start_region[worker_i]; 2836 assert(result == NULL || result->in_collection_set(), "sanity"); 2837 return result; 2838 } 2839 2840 // The cached entry was not valid so let's calculate 2841 // a suitable starting heap region for this worker. 2842 2843 // We want the parallel threads to start their collection 2844 // set iteration at different collection set regions to 2845 // avoid contention. 2846 // If we have: 2847 // n collection set regions 2848 // p threads 2849 // Then thread t will start at region floor ((t * n) / p) 2850 2851 result = g1_policy()->collection_set(); 2852 if (G1CollectedHeap::use_parallel_gc_threads()) { 2853 uint cs_size = g1_policy()->cset_region_length(); 2854 uint active_workers = workers()->active_workers(); 2855 assert(UseDynamicNumberOfGCThreads || 2856 active_workers == workers()->total_workers(), 2857 "Unless dynamic should use total workers"); 2858 2859 uint end_ind = (cs_size * worker_i) / active_workers; 2860 uint start_ind = 0; 2861 2862 if (worker_i > 0 && 2863 _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) { 2864 // Previous workers starting region is valid 2865 // so let's iterate from there 2866 start_ind = (cs_size * (worker_i - 1)) / active_workers; 2867 result = _worker_cset_start_region[worker_i - 1]; 2868 } 2869 2870 for (uint i = start_ind; i < end_ind; i++) { 2871 result = result->next_in_collection_set(); 2872 } 2873 } 2874 2875 // Note: the calculated starting heap region may be NULL 2876 // (when the collection set is empty). 2877 assert(result == NULL || result->in_collection_set(), "sanity"); 2878 assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp, 2879 "should be updated only once per pause"); 2880 _worker_cset_start_region[worker_i] = result; 2881 OrderAccess::storestore(); 2882 _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp; 2883 return result; 2884 } 2885 2886 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i, 2887 uint no_of_par_workers) { 2888 uint worker_num = 2889 G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U; 2890 assert(UseDynamicNumberOfGCThreads || 2891 no_of_par_workers == workers()->total_workers(), 2892 "Non dynamic should use fixed number of workers"); 2893 const uint start_index = n_regions() * worker_i / worker_num; 2894 return region_at(start_index); 2895 } 2896 2897 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { 2898 HeapRegion* r = g1_policy()->collection_set(); 2899 while (r != NULL) { 2900 HeapRegion* next = r->next_in_collection_set(); 2901 if (cl->doHeapRegion(r)) { 2902 cl->incomplete(); 2903 return; 2904 } 2905 r = next; 2906 } 2907 } 2908 2909 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r, 2910 HeapRegionClosure *cl) { 2911 if (r == NULL) { 2912 // The CSet is empty so there's nothing to do. 2913 return; 2914 } 2915 2916 assert(r->in_collection_set(), 2917 "Start region must be a member of the collection set."); 2918 HeapRegion* cur = r; 2919 while (cur != NULL) { 2920 HeapRegion* next = cur->next_in_collection_set(); 2921 if (cl->doHeapRegion(cur) && false) { 2922 cl->incomplete(); 2923 return; 2924 } 2925 cur = next; 2926 } 2927 cur = g1_policy()->collection_set(); 2928 while (cur != r) { 2929 HeapRegion* next = cur->next_in_collection_set(); 2930 if (cl->doHeapRegion(cur) && false) { 2931 cl->incomplete(); 2932 return; 2933 } 2934 cur = next; 2935 } 2936 } 2937 2938 CompactibleSpace* G1CollectedHeap::first_compactible_space() { 2939 return n_regions() > 0 ? region_at(0) : NULL; 2940 } 2941 2942 2943 Space* G1CollectedHeap::space_containing(const void* addr) const { 2944 Space* res = heap_region_containing(addr); 2945 return res; 2946 } 2947 2948 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2949 Space* sp = space_containing(addr); 2950 if (sp != NULL) { 2951 return sp->block_start(addr); 2952 } 2953 return NULL; 2954 } 2955 2956 size_t G1CollectedHeap::block_size(const HeapWord* addr) const { 2957 Space* sp = space_containing(addr); 2958 assert(sp != NULL, "block_size of address outside of heap"); 2959 return sp->block_size(addr); 2960 } 2961 2962 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2963 Space* sp = space_containing(addr); 2964 return sp->block_is_obj(addr); 2965 } 2966 2967 bool G1CollectedHeap::supports_tlab_allocation() const { 2968 return true; 2969 } 2970 2971 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2972 return HeapRegion::GrainBytes; 2973 } 2974 2975 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 2976 // Return the remaining space in the cur alloc region, but not less than 2977 // the min TLAB size. 2978 2979 // Also, this value can be at most the humongous object threshold, 2980 // since we can't allow tlabs to grow big enough to accomodate 2981 // humongous objects. 2982 2983 HeapRegion* hr = _mutator_alloc_region.get(); 2984 size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize; 2985 if (hr == NULL) { 2986 return max_tlab_size; 2987 } else { 2988 return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size); 2989 } 2990 } 2991 2992 size_t G1CollectedHeap::max_capacity() const { 2993 return _g1_reserved.byte_size(); 2994 } 2995 2996 jlong G1CollectedHeap::millis_since_last_gc() { 2997 // assert(false, "NYI"); 2998 return 0; 2999 } 3000 3001 void G1CollectedHeap::prepare_for_verify() { 3002 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { 3003 ensure_parsability(false); 3004 } 3005 g1_rem_set()->prepare_for_verify(); 3006 } 3007 3008 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr, 3009 VerifyOption vo) { 3010 switch (vo) { 3011 case VerifyOption_G1UsePrevMarking: 3012 return hr->obj_allocated_since_prev_marking(obj); 3013 case VerifyOption_G1UseNextMarking: 3014 return hr->obj_allocated_since_next_marking(obj); 3015 case VerifyOption_G1UseMarkWord: 3016 return false; 3017 default: 3018 ShouldNotReachHere(); 3019 } 3020 return false; // keep some compilers happy 3021 } 3022 3023 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) { 3024 switch (vo) { 3025 case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start(); 3026 case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start(); 3027 case VerifyOption_G1UseMarkWord: return NULL; 3028 default: ShouldNotReachHere(); 3029 } 3030 return NULL; // keep some compilers happy 3031 } 3032 3033 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) { 3034 switch (vo) { 3035 case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj); 3036 case VerifyOption_G1UseNextMarking: return isMarkedNext(obj); 3037 case VerifyOption_G1UseMarkWord: return obj->is_gc_marked(); 3038 default: ShouldNotReachHere(); 3039 } 3040 return false; // keep some compilers happy 3041 } 3042 3043 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) { 3044 switch (vo) { 3045 case VerifyOption_G1UsePrevMarking: return "PTAMS"; 3046 case VerifyOption_G1UseNextMarking: return "NTAMS"; 3047 case VerifyOption_G1UseMarkWord: return "NONE"; 3048 default: ShouldNotReachHere(); 3049 } 3050 return NULL; // keep some compilers happy 3051 } 3052 3053 class VerifyLivenessOopClosure: public OopClosure { 3054 G1CollectedHeap* _g1h; 3055 VerifyOption _vo; 3056 public: 3057 VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo): 3058 _g1h(g1h), _vo(vo) 3059 { } 3060 void do_oop(narrowOop *p) { do_oop_work(p); } 3061 void do_oop( oop *p) { do_oop_work(p); } 3062 3063 template <class T> void do_oop_work(T *p) { 3064 oop obj = oopDesc::load_decode_heap_oop(p); 3065 guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo), 3066 "Dead object referenced by a not dead object"); 3067 } 3068 }; 3069 3070 class VerifyObjsInRegionClosure: public ObjectClosure { 3071 private: 3072 G1CollectedHeap* _g1h; 3073 size_t _live_bytes; 3074 HeapRegion *_hr; 3075 VerifyOption _vo; 3076 public: 3077 // _vo == UsePrevMarking -> use "prev" marking information, 3078 // _vo == UseNextMarking -> use "next" marking information, 3079 // _vo == UseMarkWord -> use mark word from object header. 3080 VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo) 3081 : _live_bytes(0), _hr(hr), _vo(vo) { 3082 _g1h = G1CollectedHeap::heap(); 3083 } 3084 void do_object(oop o) { 3085 VerifyLivenessOopClosure isLive(_g1h, _vo); 3086 assert(o != NULL, "Huh?"); 3087 if (!_g1h->is_obj_dead_cond(o, _vo)) { 3088 // If the object is alive according to the mark word, 3089 // then verify that the marking information agrees. 3090 // Note we can't verify the contra-positive of the 3091 // above: if the object is dead (according to the mark 3092 // word), it may not be marked, or may have been marked 3093 // but has since became dead, or may have been allocated 3094 // since the last marking. 3095 if (_vo == VerifyOption_G1UseMarkWord) { 3096 guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch"); 3097 } 3098 3099 o->oop_iterate_no_header(&isLive); 3100 if (!_hr->obj_allocated_since_prev_marking(o)) { 3101 size_t obj_size = o->size(); // Make sure we don't overflow 3102 _live_bytes += (obj_size * HeapWordSize); 3103 } 3104 } 3105 } 3106 size_t live_bytes() { return _live_bytes; } 3107 }; 3108 3109 class PrintObjsInRegionClosure : public ObjectClosure { 3110 HeapRegion *_hr; 3111 G1CollectedHeap *_g1; 3112 public: 3113 PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) { 3114 _g1 = G1CollectedHeap::heap(); 3115 }; 3116 3117 void do_object(oop o) { 3118 if (o != NULL) { 3119 HeapWord *start = (HeapWord *) o; 3120 size_t word_sz = o->size(); 3121 gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT 3122 " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n", 3123 (void*) o, word_sz, 3124 _g1->isMarkedPrev(o), 3125 _g1->isMarkedNext(o), 3126 _hr->obj_allocated_since_prev_marking(o)); 3127 HeapWord *end = start + word_sz; 3128 HeapWord *cur; 3129 int *val; 3130 for (cur = start; cur < end; cur++) { 3131 val = (int *) cur; 3132 gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val); 3133 } 3134 } 3135 } 3136 }; 3137 3138 class VerifyRegionClosure: public HeapRegionClosure { 3139 private: 3140 bool _par; 3141 VerifyOption _vo; 3142 bool _failures; 3143 public: 3144 // _vo == UsePrevMarking -> use "prev" marking information, 3145 // _vo == UseNextMarking -> use "next" marking information, 3146 // _vo == UseMarkWord -> use mark word from object header. 3147 VerifyRegionClosure(bool par, VerifyOption vo) 3148 : _par(par), 3149 _vo(vo), 3150 _failures(false) {} 3151 3152 bool failures() { 3153 return _failures; 3154 } 3155 3156 bool doHeapRegion(HeapRegion* r) { 3157 if (!r->continuesHumongous()) { 3158 bool failures = false; 3159 r->verify(_vo, &failures); 3160 if (failures) { 3161 _failures = true; 3162 } else { 3163 VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo); 3164 r->object_iterate(¬_dead_yet_cl); 3165 if (_vo != VerifyOption_G1UseNextMarking) { 3166 if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) { 3167 gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] " 3168 "max_live_bytes "SIZE_FORMAT" " 3169 "< calculated "SIZE_FORMAT, 3170 r->bottom(), r->end(), 3171 r->max_live_bytes(), 3172 not_dead_yet_cl.live_bytes()); 3173 _failures = true; 3174 } 3175 } else { 3176 // When vo == UseNextMarking we cannot currently do a sanity 3177 // check on the live bytes as the calculation has not been 3178 // finalized yet. 3179 } 3180 } 3181 } 3182 return false; // stop the region iteration if we hit a failure 3183 } 3184 }; 3185 3186 class YoungRefCounterClosure : public OopClosure { 3187 G1CollectedHeap* _g1h; 3188 int _count; 3189 public: 3190 YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {} 3191 void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } } 3192 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 3193 3194 int count() { return _count; } 3195 void reset_count() { _count = 0; }; 3196 }; 3197 3198 class VerifyKlassClosure: public KlassClosure { 3199 YoungRefCounterClosure _young_ref_counter_closure; 3200 OopClosure *_oop_closure; 3201 public: 3202 VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {} 3203 void do_klass(Klass* k) { 3204 k->oops_do(_oop_closure); 3205 3206 _young_ref_counter_closure.reset_count(); 3207 k->oops_do(&_young_ref_counter_closure); 3208 if (_young_ref_counter_closure.count() > 0) { 3209 guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k)); 3210 } 3211 } 3212 }; 3213 3214 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can 3215 // pass it as the perm_blk to SharedHeap::process_strong_roots. 3216 // When process_strong_roots stop calling perm_blk->younger_refs_iterate 3217 // we can change this closure to extend the simpler OopClosure. 3218 class VerifyRootsClosure: public OopsInGenClosure { 3219 private: 3220 G1CollectedHeap* _g1h; 3221 VerifyOption _vo; 3222 bool _failures; 3223 public: 3224 // _vo == UsePrevMarking -> use "prev" marking information, 3225 // _vo == UseNextMarking -> use "next" marking information, 3226 // _vo == UseMarkWord -> use mark word from object header. 3227 VerifyRootsClosure(VerifyOption vo) : 3228 _g1h(G1CollectedHeap::heap()), 3229 _vo(vo), 3230 _failures(false) { } 3231 3232 bool failures() { return _failures; } 3233 3234 template <class T> void do_oop_nv(T* p) { 3235 T heap_oop = oopDesc::load_heap_oop(p); 3236 if (!oopDesc::is_null(heap_oop)) { 3237 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 3238 if (_g1h->is_obj_dead_cond(obj, _vo)) { 3239 gclog_or_tty->print_cr("Root location "PTR_FORMAT" " 3240 "points to dead obj "PTR_FORMAT, p, (void*) obj); 3241 if (_vo == VerifyOption_G1UseMarkWord) { 3242 gclog_or_tty->print_cr(" Mark word: "PTR_FORMAT, (void*)(obj->mark())); 3243 } 3244 obj->print_on(gclog_or_tty); 3245 _failures = true; 3246 } 3247 } 3248 } 3249 3250 void do_oop(oop* p) { do_oop_nv(p); } 3251 void do_oop(narrowOop* p) { do_oop_nv(p); } 3252 }; 3253 3254 // This is the task used for parallel heap verification. 3255 3256 class G1ParVerifyTask: public AbstractGangTask { 3257 private: 3258 G1CollectedHeap* _g1h; 3259 VerifyOption _vo; 3260 bool _failures; 3261 3262 public: 3263 // _vo == UsePrevMarking -> use "prev" marking information, 3264 // _vo == UseNextMarking -> use "next" marking information, 3265 // _vo == UseMarkWord -> use mark word from object header. 3266 G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) : 3267 AbstractGangTask("Parallel verify task"), 3268 _g1h(g1h), 3269 _vo(vo), 3270 _failures(false) { } 3271 3272 bool failures() { 3273 return _failures; 3274 } 3275 3276 void work(uint worker_id) { 3277 HandleMark hm; 3278 VerifyRegionClosure blk(true, _vo); 3279 _g1h->heap_region_par_iterate_chunked(&blk, worker_id, 3280 _g1h->workers()->active_workers(), 3281 HeapRegion::ParVerifyClaimValue); 3282 if (blk.failures()) { 3283 _failures = true; 3284 } 3285 } 3286 }; 3287 3288 void G1CollectedHeap::verify(bool silent) { 3289 verify(silent, VerifyOption_G1UsePrevMarking); 3290 } 3291 3292 void G1CollectedHeap::verify(bool silent, 3293 VerifyOption vo) { 3294 if (SafepointSynchronize::is_at_safepoint()) { 3295 if (!silent) { gclog_or_tty->print("Roots "); } 3296 VerifyRootsClosure rootsCl(vo); 3297 3298 assert(Thread::current()->is_VM_thread(), 3299 "Expected to be executed serially by the VM thread at this point"); 3300 3301 CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false); 3302 VerifyKlassClosure klassCl(this, &rootsCl); 3303 3304 // We apply the relevant closures to all the oops in the 3305 // system dictionary, the string table and the code cache. 3306 const int so = SO_AllClasses | SO_Strings | SO_CodeCache; 3307 3308 // Need cleared claim bits for the strong roots processing 3309 ClassLoaderDataGraph::clear_claimed_marks(); 3310 3311 process_strong_roots(true, // activate StrongRootsScope 3312 false, // we set "is scavenging" to false, 3313 // so we don't reset the dirty cards. 3314 ScanningOption(so), // roots scanning options 3315 &rootsCl, 3316 &blobsCl, 3317 &klassCl 3318 ); 3319 3320 bool failures = rootsCl.failures(); 3321 3322 if (vo != VerifyOption_G1UseMarkWord) { 3323 // If we're verifying during a full GC then the region sets 3324 // will have been torn down at the start of the GC. Therefore 3325 // verifying the region sets will fail. So we only verify 3326 // the region sets when not in a full GC. 3327 if (!silent) { gclog_or_tty->print("HeapRegionSets "); } 3328 verify_region_sets(); 3329 } 3330 3331 if (!silent) { gclog_or_tty->print("HeapRegions "); } 3332 if (GCParallelVerificationEnabled && ParallelGCThreads > 1) { 3333 assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), 3334 "sanity check"); 3335 3336 G1ParVerifyTask task(this, vo); 3337 assert(UseDynamicNumberOfGCThreads || 3338 workers()->active_workers() == workers()->total_workers(), 3339 "If not dynamic should be using all the workers"); 3340 int n_workers = workers()->active_workers(); 3341 set_par_threads(n_workers); 3342 workers()->run_task(&task); 3343 set_par_threads(0); 3344 if (task.failures()) { 3345 failures = true; 3346 } 3347 3348 // Checks that the expected amount of parallel work was done. 3349 // The implication is that n_workers is > 0. 3350 assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue), 3351 "sanity check"); 3352 3353 reset_heap_region_claim_values(); 3354 3355 assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), 3356 "sanity check"); 3357 } else { 3358 VerifyRegionClosure blk(false, vo); 3359 heap_region_iterate(&blk); 3360 if (blk.failures()) { 3361 failures = true; 3362 } 3363 } 3364 if (!silent) gclog_or_tty->print("RemSet "); 3365 rem_set()->verify(); 3366 3367 if (failures) { 3368 gclog_or_tty->print_cr("Heap:"); 3369 // It helps to have the per-region information in the output to 3370 // help us track down what went wrong. This is why we call 3371 // print_extended_on() instead of print_on(). 3372 print_extended_on(gclog_or_tty); 3373 gclog_or_tty->print_cr(""); 3374 #ifndef PRODUCT 3375 if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) { 3376 concurrent_mark()->print_reachable("at-verification-failure", 3377 vo, false /* all */); 3378 } 3379 #endif 3380 gclog_or_tty->flush(); 3381 } 3382 guarantee(!failures, "there should not have been any failures"); 3383 } else { 3384 if (!silent) 3385 gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) "); 3386 } 3387 } 3388 3389 class PrintRegionClosure: public HeapRegionClosure { 3390 outputStream* _st; 3391 public: 3392 PrintRegionClosure(outputStream* st) : _st(st) {} 3393 bool doHeapRegion(HeapRegion* r) { 3394 r->print_on(_st); 3395 return false; 3396 } 3397 }; 3398 3399 void G1CollectedHeap::print_on(outputStream* st) const { 3400 st->print(" %-20s", "garbage-first heap"); 3401 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 3402 capacity()/K, used_unlocked()/K); 3403 st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")", 3404 _g1_storage.low_boundary(), 3405 _g1_storage.high(), 3406 _g1_storage.high_boundary()); 3407 st->cr(); 3408 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 3409 uint young_regions = _young_list->length(); 3410 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 3411 (size_t) young_regions * HeapRegion::GrainBytes / K); 3412 uint survivor_regions = g1_policy()->recorded_survivor_regions(); 3413 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 3414 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 3415 st->cr(); 3416 MetaspaceAux::print_on(st); 3417 } 3418 3419 void G1CollectedHeap::print_extended_on(outputStream* st) const { 3420 print_on(st); 3421 3422 // Print the per-region information. 3423 st->cr(); 3424 st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), " 3425 "HS=humongous(starts), HC=humongous(continues), " 3426 "CS=collection set, F=free, TS=gc time stamp, " 3427 "PTAMS=previous top-at-mark-start, " 3428 "NTAMS=next top-at-mark-start)"); 3429 PrintRegionClosure blk(st); 3430 heap_region_iterate(&blk); 3431 } 3432 3433 void G1CollectedHeap::print_on_error(outputStream* st) const { 3434 this->CollectedHeap::print_on_error(st); 3435 3436 if (_cm != NULL) { 3437 st->cr(); 3438 _cm->print_on_error(st); 3439 } 3440 } 3441 3442 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { 3443 if (G1CollectedHeap::use_parallel_gc_threads()) { 3444 workers()->print_worker_threads_on(st); 3445 } 3446 _cmThread->print_on(st); 3447 st->cr(); 3448 _cm->print_worker_threads_on(st); 3449 _cg1r->print_worker_threads_on(st); 3450 } 3451 3452 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 3453 if (G1CollectedHeap::use_parallel_gc_threads()) { 3454 workers()->threads_do(tc); 3455 } 3456 tc->do_thread(_cmThread); 3457 _cg1r->threads_do(tc); 3458 } 3459 3460 void G1CollectedHeap::print_tracing_info() const { 3461 // We'll overload this to mean "trace GC pause statistics." 3462 if (TraceGen0Time || TraceGen1Time) { 3463 // The "G1CollectorPolicy" is keeping track of these stats, so delegate 3464 // to that. 3465 g1_policy()->print_tracing_info(); 3466 } 3467 if (G1SummarizeRSetStats) { 3468 g1_rem_set()->print_summary_info(); 3469 } 3470 if (G1SummarizeConcMark) { 3471 concurrent_mark()->print_summary_info(); 3472 } 3473 g1_policy()->print_yg_surv_rate_info(); 3474 SpecializationStats::print(); 3475 } 3476 3477 #ifndef PRODUCT 3478 // Helpful for debugging RSet issues. 3479 3480 class PrintRSetsClosure : public HeapRegionClosure { 3481 private: 3482 const char* _msg; 3483 size_t _occupied_sum; 3484 3485 public: 3486 bool doHeapRegion(HeapRegion* r) { 3487 HeapRegionRemSet* hrrs = r->rem_set(); 3488 size_t occupied = hrrs->occupied(); 3489 _occupied_sum += occupied; 3490 3491 gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT, 3492 HR_FORMAT_PARAMS(r)); 3493 if (occupied == 0) { 3494 gclog_or_tty->print_cr(" RSet is empty"); 3495 } else { 3496 hrrs->print(); 3497 } 3498 gclog_or_tty->print_cr("----------"); 3499 return false; 3500 } 3501 3502 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 3503 gclog_or_tty->cr(); 3504 gclog_or_tty->print_cr("========================================"); 3505 gclog_or_tty->print_cr(msg); 3506 gclog_or_tty->cr(); 3507 } 3508 3509 ~PrintRSetsClosure() { 3510 gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum); 3511 gclog_or_tty->print_cr("========================================"); 3512 gclog_or_tty->cr(); 3513 } 3514 }; 3515 3516 void G1CollectedHeap::print_cset_rsets() { 3517 PrintRSetsClosure cl("Printing CSet RSets"); 3518 collection_set_iterate(&cl); 3519 } 3520 3521 void G1CollectedHeap::print_all_rsets() { 3522 PrintRSetsClosure cl("Printing All RSets");; 3523 heap_region_iterate(&cl); 3524 } 3525 #endif // PRODUCT 3526 3527 G1CollectedHeap* G1CollectedHeap::heap() { 3528 assert(_sh->kind() == CollectedHeap::G1CollectedHeap, 3529 "not a garbage-first heap"); 3530 return _g1h; 3531 } 3532 3533 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) { 3534 // always_do_update_barrier = false; 3535 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 3536 // Call allocation profiler 3537 AllocationProfiler::iterate_since_last_gc(); 3538 // Fill TLAB's and such 3539 ensure_parsability(true); 3540 } 3541 3542 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) { 3543 // FIXME: what is this about? 3544 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" 3545 // is set. 3546 COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), 3547 "derived pointer present")); 3548 // always_do_update_barrier = true; 3549 3550 // We have just completed a GC. Update the soft reference 3551 // policy with the new heap occupancy 3552 Universe::update_heap_info_at_gc(); 3553 } 3554 3555 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 3556 unsigned int gc_count_before, 3557 bool* succeeded) { 3558 assert_heap_not_locked_and_not_at_safepoint(); 3559 g1_policy()->record_stop_world_start(); 3560 VM_G1IncCollectionPause op(gc_count_before, 3561 word_size, 3562 false, /* should_initiate_conc_mark */ 3563 g1_policy()->max_pause_time_ms(), 3564 GCCause::_g1_inc_collection_pause); 3565 VMThread::execute(&op); 3566 3567 HeapWord* result = op.result(); 3568 bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded(); 3569 assert(result == NULL || ret_succeeded, 3570 "the result should be NULL if the VM did not succeed"); 3571 *succeeded = ret_succeeded; 3572 3573 assert_heap_not_locked(); 3574 return result; 3575 } 3576 3577 void 3578 G1CollectedHeap::doConcurrentMark() { 3579 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 3580 if (!_cmThread->in_progress()) { 3581 _cmThread->set_started(); 3582 CGC_lock->notify(); 3583 } 3584 } 3585 3586 size_t G1CollectedHeap::pending_card_num() { 3587 size_t extra_cards = 0; 3588 JavaThread *curr = Threads::first(); 3589 while (curr != NULL) { 3590 DirtyCardQueue& dcq = curr->dirty_card_queue(); 3591 extra_cards += dcq.size(); 3592 curr = curr->next(); 3593 } 3594 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 3595 size_t buffer_size = dcqs.buffer_size(); 3596 size_t buffer_num = dcqs.completed_buffers_num(); 3597 3598 // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes 3599 // in bytes - not the number of 'entries'. We need to convert 3600 // into a number of cards. 3601 return (buffer_size * buffer_num + extra_cards) / oopSize; 3602 } 3603 3604 size_t G1CollectedHeap::cards_scanned() { 3605 return g1_rem_set()->cardsScanned(); 3606 } 3607 3608 void 3609 G1CollectedHeap::setup_surviving_young_words() { 3610 assert(_surviving_young_words == NULL, "pre-condition"); 3611 uint array_length = g1_policy()->young_cset_region_length(); 3612 _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC); 3613 if (_surviving_young_words == NULL) { 3614 vm_exit_out_of_memory(sizeof(size_t) * array_length, 3615 "Not enough space for young surv words summary."); 3616 } 3617 memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t)); 3618 #ifdef ASSERT 3619 for (uint i = 0; i < array_length; ++i) { 3620 assert( _surviving_young_words[i] == 0, "memset above" ); 3621 } 3622 #endif // !ASSERT 3623 } 3624 3625 void 3626 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) { 3627 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 3628 uint array_length = g1_policy()->young_cset_region_length(); 3629 for (uint i = 0; i < array_length; ++i) { 3630 _surviving_young_words[i] += surv_young_words[i]; 3631 } 3632 } 3633 3634 void 3635 G1CollectedHeap::cleanup_surviving_young_words() { 3636 guarantee( _surviving_young_words != NULL, "pre-condition" ); 3637 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC); 3638 _surviving_young_words = NULL; 3639 } 3640 3641 #ifdef ASSERT 3642 class VerifyCSetClosure: public HeapRegionClosure { 3643 public: 3644 bool doHeapRegion(HeapRegion* hr) { 3645 // Here we check that the CSet region's RSet is ready for parallel 3646 // iteration. The fields that we'll verify are only manipulated 3647 // when the region is part of a CSet and is collected. Afterwards, 3648 // we reset these fields when we clear the region's RSet (when the 3649 // region is freed) so they are ready when the region is 3650 // re-allocated. The only exception to this is if there's an 3651 // evacuation failure and instead of freeing the region we leave 3652 // it in the heap. In that case, we reset these fields during 3653 // evacuation failure handling. 3654 guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification"); 3655 3656 // Here's a good place to add any other checks we'd like to 3657 // perform on CSet regions. 3658 return false; 3659 } 3660 }; 3661 #endif // ASSERT 3662 3663 #if TASKQUEUE_STATS 3664 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 3665 st->print_raw_cr("GC Task Stats"); 3666 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 3667 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 3668 } 3669 3670 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const { 3671 print_taskqueue_stats_hdr(st); 3672 3673 TaskQueueStats totals; 3674 const int n = workers() != NULL ? workers()->total_workers() : 1; 3675 for (int i = 0; i < n; ++i) { 3676 st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr(); 3677 totals += task_queue(i)->stats; 3678 } 3679 st->print_raw("tot "); totals.print(st); st->cr(); 3680 3681 DEBUG_ONLY(totals.verify()); 3682 } 3683 3684 void G1CollectedHeap::reset_taskqueue_stats() { 3685 const int n = workers() != NULL ? workers()->total_workers() : 1; 3686 for (int i = 0; i < n; ++i) { 3687 task_queue(i)->stats.reset(); 3688 } 3689 } 3690 #endif // TASKQUEUE_STATS 3691 3692 void G1CollectedHeap::log_gc_header() { 3693 if (!G1Log::fine()) { 3694 return; 3695 } 3696 3697 gclog_or_tty->date_stamp(PrintGCDateStamps); 3698 gclog_or_tty->stamp(PrintGCTimeStamps); 3699 3700 GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause()) 3701 .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)") 3702 .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : ""); 3703 3704 gclog_or_tty->print("[%s", (const char*)gc_cause_str); 3705 } 3706 3707 void G1CollectedHeap::log_gc_footer(double pause_time_sec) { 3708 if (!G1Log::fine()) { 3709 return; 3710 } 3711 3712 if (G1Log::finer()) { 3713 if (evacuation_failed()) { 3714 gclog_or_tty->print(" (to-space exhausted)"); 3715 } 3716 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3717 g1_policy()->phase_times()->note_gc_end(); 3718 g1_policy()->phase_times()->print(pause_time_sec); 3719 g1_policy()->print_detailed_heap_transition(); 3720 } else { 3721 if (evacuation_failed()) { 3722 gclog_or_tty->print("--"); 3723 } 3724 g1_policy()->print_heap_transition(); 3725 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3726 } 3727 gclog_or_tty->flush(); 3728 } 3729 3730 bool 3731 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 3732 assert_at_safepoint(true /* should_be_vm_thread */); 3733 guarantee(!is_gc_active(), "collection is not reentrant"); 3734 3735 if (GC_locker::check_active_before_gc()) { 3736 return false; 3737 } 3738 3739 SvcGCMarker sgcm(SvcGCMarker::MINOR); 3740 ResourceMark rm; 3741 3742 print_heap_before_gc(); 3743 3744 HRSPhaseSetter x(HRSPhaseEvacuation); 3745 verify_region_sets_optional(); 3746 verify_dirty_young_regions(); 3747 3748 // This call will decide whether this pause is an initial-mark 3749 // pause. If it is, during_initial_mark_pause() will return true 3750 // for the duration of this pause. 3751 g1_policy()->decide_on_conc_mark_initiation(); 3752 3753 // We do not allow initial-mark to be piggy-backed on a mixed GC. 3754 assert(!g1_policy()->during_initial_mark_pause() || 3755 g1_policy()->gcs_are_young(), "sanity"); 3756 3757 // We also do not allow mixed GCs during marking. 3758 assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity"); 3759 3760 // Record whether this pause is an initial mark. When the current 3761 // thread has completed its logging output and it's safe to signal 3762 // the CM thread, the flag's value in the policy has been reset. 3763 bool should_start_conc_mark = g1_policy()->during_initial_mark_pause(); 3764 3765 // Inner scope for scope based logging, timers, and stats collection 3766 { 3767 if (g1_policy()->during_initial_mark_pause()) { 3768 // We are about to start a marking cycle, so we increment the 3769 // full collection counter. 3770 increment_old_marking_cycles_started(); 3771 } 3772 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 3773 3774 int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 3775 workers()->active_workers() : 1); 3776 double pause_start_sec = os::elapsedTime(); 3777 g1_policy()->phase_times()->note_gc_start(active_workers); 3778 log_gc_header(); 3779 3780 TraceCollectorStats tcs(g1mm()->incremental_collection_counters()); 3781 TraceMemoryManagerStats tms(false /* fullGC */, gc_cause()); 3782 3783 // If the secondary_free_list is not empty, append it to the 3784 // free_list. No need to wait for the cleanup operation to finish; 3785 // the region allocation code will check the secondary_free_list 3786 // and wait if necessary. If the G1StressConcRegionFreeing flag is 3787 // set, skip this step so that the region allocation code has to 3788 // get entries from the secondary_free_list. 3789 if (!G1StressConcRegionFreeing) { 3790 append_secondary_free_list_if_not_empty_with_lock(); 3791 } 3792 3793 assert(check_young_list_well_formed(), 3794 "young list should be well formed"); 3795 3796 // Don't dynamically change the number of GC threads this early. A value of 3797 // 0 is used to indicate serial work. When parallel work is done, 3798 // it will be set. 3799 3800 { // Call to jvmpi::post_class_unload_events must occur outside of active GC 3801 IsGCActiveMark x; 3802 3803 gc_prologue(false); 3804 increment_total_collections(false /* full gc */); 3805 increment_gc_time_stamp(); 3806 3807 verify_before_gc(); 3808 3809 COMPILER2_PRESENT(DerivedPointerTable::clear()); 3810 3811 // Please see comment in g1CollectedHeap.hpp and 3812 // G1CollectedHeap::ref_processing_init() to see how 3813 // reference processing currently works in G1. 3814 3815 // Enable discovery in the STW reference processor 3816 ref_processor_stw()->enable_discovery(true /*verify_disabled*/, 3817 true /*verify_no_refs*/); 3818 3819 { 3820 // We want to temporarily turn off discovery by the 3821 // CM ref processor, if necessary, and turn it back on 3822 // on again later if we do. Using a scoped 3823 // NoRefDiscovery object will do this. 3824 NoRefDiscovery no_cm_discovery(ref_processor_cm()); 3825 3826 // Forget the current alloc region (we might even choose it to be part 3827 // of the collection set!). 3828 release_mutator_alloc_region(); 3829 3830 // We should call this after we retire the mutator alloc 3831 // region(s) so that all the ALLOC / RETIRE events are generated 3832 // before the start GC event. 3833 _hr_printer.start_gc(false /* full */, (size_t) total_collections()); 3834 3835 // This timing is only used by the ergonomics to handle our pause target. 3836 // It is unclear why this should not include the full pause. We will 3837 // investigate this in CR 7178365. 3838 // 3839 // Preserving the old comment here if that helps the investigation: 3840 // 3841 // The elapsed time induced by the start time below deliberately elides 3842 // the possible verification above. 3843 double sample_start_time_sec = os::elapsedTime(); 3844 3845 #if YOUNG_LIST_VERBOSE 3846 gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:"); 3847 _young_list->print(); 3848 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3849 #endif // YOUNG_LIST_VERBOSE 3850 3851 g1_policy()->record_collection_pause_start(sample_start_time_sec); 3852 3853 double scan_wait_start = os::elapsedTime(); 3854 // We have to wait until the CM threads finish scanning the 3855 // root regions as it's the only way to ensure that all the 3856 // objects on them have been correctly scanned before we start 3857 // moving them during the GC. 3858 bool waited = _cm->root_regions()->wait_until_scan_finished(); 3859 double wait_time_ms = 0.0; 3860 if (waited) { 3861 double scan_wait_end = os::elapsedTime(); 3862 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 3863 } 3864 g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms); 3865 3866 #if YOUNG_LIST_VERBOSE 3867 gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:"); 3868 _young_list->print(); 3869 #endif // YOUNG_LIST_VERBOSE 3870 3871 if (g1_policy()->during_initial_mark_pause()) { 3872 concurrent_mark()->checkpointRootsInitialPre(); 3873 } 3874 3875 #if YOUNG_LIST_VERBOSE 3876 gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:"); 3877 _young_list->print(); 3878 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3879 #endif // YOUNG_LIST_VERBOSE 3880 3881 g1_policy()->finalize_cset(target_pause_time_ms); 3882 3883 _cm->note_start_of_gc(); 3884 // We should not verify the per-thread SATB buffers given that 3885 // we have not filtered them yet (we'll do so during the 3886 // GC). We also call this after finalize_cset() to 3887 // ensure that the CSet has been finalized. 3888 _cm->verify_no_cset_oops(true /* verify_stacks */, 3889 true /* verify_enqueued_buffers */, 3890 false /* verify_thread_buffers */, 3891 true /* verify_fingers */); 3892 3893 if (_hr_printer.is_active()) { 3894 HeapRegion* hr = g1_policy()->collection_set(); 3895 while (hr != NULL) { 3896 G1HRPrinter::RegionType type; 3897 if (!hr->is_young()) { 3898 type = G1HRPrinter::Old; 3899 } else if (hr->is_survivor()) { 3900 type = G1HRPrinter::Survivor; 3901 } else { 3902 type = G1HRPrinter::Eden; 3903 } 3904 _hr_printer.cset(hr); 3905 hr = hr->next_in_collection_set(); 3906 } 3907 } 3908 3909 #ifdef ASSERT 3910 VerifyCSetClosure cl; 3911 collection_set_iterate(&cl); 3912 #endif // ASSERT 3913 3914 setup_surviving_young_words(); 3915 3916 // Initialize the GC alloc regions. 3917 init_gc_alloc_regions(); 3918 3919 // Actually do the work... 3920 evacuate_collection_set(); 3921 3922 // We do this to mainly verify the per-thread SATB buffers 3923 // (which have been filtered by now) since we didn't verify 3924 // them earlier. No point in re-checking the stacks / enqueued 3925 // buffers given that the CSet has not changed since last time 3926 // we checked. 3927 _cm->verify_no_cset_oops(false /* verify_stacks */, 3928 false /* verify_enqueued_buffers */, 3929 true /* verify_thread_buffers */, 3930 true /* verify_fingers */); 3931 3932 free_collection_set(g1_policy()->collection_set()); 3933 g1_policy()->clear_collection_set(); 3934 3935 cleanup_surviving_young_words(); 3936 3937 // Start a new incremental collection set for the next pause. 3938 g1_policy()->start_incremental_cset_building(); 3939 3940 // Clear the _cset_fast_test bitmap in anticipation of adding 3941 // regions to the incremental collection set for the next 3942 // evacuation pause. 3943 clear_cset_fast_test(); 3944 3945 _young_list->reset_sampled_info(); 3946 3947 // Don't check the whole heap at this point as the 3948 // GC alloc regions from this pause have been tagged 3949 // as survivors and moved on to the survivor list. 3950 // Survivor regions will fail the !is_young() check. 3951 assert(check_young_list_empty(false /* check_heap */), 3952 "young list should be empty"); 3953 3954 #if YOUNG_LIST_VERBOSE 3955 gclog_or_tty->print_cr("Before recording survivors.\nYoung List:"); 3956 _young_list->print(); 3957 #endif // YOUNG_LIST_VERBOSE 3958 3959 g1_policy()->record_survivor_regions(_young_list->survivor_length(), 3960 _young_list->first_survivor_region(), 3961 _young_list->last_survivor_region()); 3962 3963 _young_list->reset_auxilary_lists(); 3964 3965 if (evacuation_failed()) { 3966 _summary_bytes_used = recalculate_used(); 3967 } else { 3968 // The "used" of the the collection set have already been subtracted 3969 // when they were freed. Add in the bytes evacuated. 3970 _summary_bytes_used += g1_policy()->bytes_copied_during_gc(); 3971 } 3972 3973 if (g1_policy()->during_initial_mark_pause()) { 3974 // We have to do this before we notify the CM threads that 3975 // they can start working to make sure that all the 3976 // appropriate initialization is done on the CM object. 3977 concurrent_mark()->checkpointRootsInitialPost(); 3978 set_marking_started(); 3979 // Note that we don't actually trigger the CM thread at 3980 // this point. We do that later when we're sure that 3981 // the current thread has completed its logging output. 3982 } 3983 3984 allocate_dummy_regions(); 3985 3986 #if YOUNG_LIST_VERBOSE 3987 gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:"); 3988 _young_list->print(); 3989 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3990 #endif // YOUNG_LIST_VERBOSE 3991 3992 init_mutator_alloc_region(); 3993 3994 { 3995 size_t expand_bytes = g1_policy()->expansion_amount(); 3996 if (expand_bytes > 0) { 3997 size_t bytes_before = capacity(); 3998 // No need for an ergo verbose message here, 3999 // expansion_amount() does this when it returns a value > 0. 4000 if (!expand(expand_bytes)) { 4001 // We failed to expand the heap so let's verify that 4002 // committed/uncommitted amount match the backing store 4003 assert(capacity() == _g1_storage.committed_size(), "committed size mismatch"); 4004 assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch"); 4005 } 4006 } 4007 } 4008 4009 // We redo the verificaiton but now wrt to the new CSet which 4010 // has just got initialized after the previous CSet was freed. 4011 _cm->verify_no_cset_oops(true /* verify_stacks */, 4012 true /* verify_enqueued_buffers */, 4013 true /* verify_thread_buffers */, 4014 true /* verify_fingers */); 4015 _cm->note_end_of_gc(); 4016 4017 // This timing is only used by the ergonomics to handle our pause target. 4018 // It is unclear why this should not include the full pause. We will 4019 // investigate this in CR 7178365. 4020 double sample_end_time_sec = os::elapsedTime(); 4021 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 4022 g1_policy()->record_collection_pause_end(pause_time_ms); 4023 4024 MemoryService::track_memory_usage(); 4025 4026 // In prepare_for_verify() below we'll need to scan the deferred 4027 // update buffers to bring the RSets up-to-date if 4028 // G1HRRSFlushLogBuffersOnVerify has been set. While scanning 4029 // the update buffers we'll probably need to scan cards on the 4030 // regions we just allocated to (i.e., the GC alloc 4031 // regions). However, during the last GC we called 4032 // set_saved_mark() on all the GC alloc regions, so card 4033 // scanning might skip the [saved_mark_word()...top()] area of 4034 // those regions (i.e., the area we allocated objects into 4035 // during the last GC). But it shouldn't. Given that 4036 // saved_mark_word() is conditional on whether the GC time stamp 4037 // on the region is current or not, by incrementing the GC time 4038 // stamp here we invalidate all the GC time stamps on all the 4039 // regions and saved_mark_word() will simply return top() for 4040 // all the regions. This is a nicer way of ensuring this rather 4041 // than iterating over the regions and fixing them. In fact, the 4042 // GC time stamp increment here also ensures that 4043 // saved_mark_word() will return top() between pauses, i.e., 4044 // during concurrent refinement. So we don't need the 4045 // is_gc_active() check to decided which top to use when 4046 // scanning cards (see CR 7039627). 4047 increment_gc_time_stamp(); 4048 4049 verify_after_gc(); 4050 4051 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 4052 ref_processor_stw()->verify_no_references_recorded(); 4053 4054 // CM reference discovery will be re-enabled if necessary. 4055 } 4056 4057 // We should do this after we potentially expand the heap so 4058 // that all the COMMIT events are generated before the end GC 4059 // event, and after we retire the GC alloc regions so that all 4060 // RETIRE events are generated before the end GC event. 4061 _hr_printer.end_gc(false /* full */, (size_t) total_collections()); 4062 4063 if (mark_in_progress()) { 4064 concurrent_mark()->update_g1_committed(); 4065 } 4066 4067 #ifdef TRACESPINNING 4068 ParallelTaskTerminator::print_termination_counts(); 4069 #endif 4070 4071 gc_epilogue(false); 4072 } 4073 4074 // Print the remainder of the GC log output. 4075 log_gc_footer(os::elapsedTime() - pause_start_sec); 4076 4077 // It is not yet to safe to tell the concurrent mark to 4078 // start as we have some optional output below. We don't want the 4079 // output from the concurrent mark thread interfering with this 4080 // logging output either. 4081 4082 _hrs.verify_optional(); 4083 verify_region_sets_optional(); 4084 4085 TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats()); 4086 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 4087 4088 print_heap_after_gc(); 4089 4090 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 4091 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 4092 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 4093 // before any GC notifications are raised. 4094 g1mm()->update_sizes(); 4095 } 4096 4097 if (G1SummarizeRSetStats && 4098 (G1SummarizeRSetStatsPeriod > 0) && 4099 (total_collections() % G1SummarizeRSetStatsPeriod == 0)) { 4100 g1_rem_set()->print_summary_info(); 4101 } 4102 4103 // It should now be safe to tell the concurrent mark thread to start 4104 // without its logging output interfering with the logging output 4105 // that came from the pause. 4106 4107 if (should_start_conc_mark) { 4108 // CAUTION: after the doConcurrentMark() call below, 4109 // the concurrent marking thread(s) could be running 4110 // concurrently with us. Make sure that anything after 4111 // this point does not assume that we are the only GC thread 4112 // running. Note: of course, the actual marking work will 4113 // not start until the safepoint itself is released in 4114 // ConcurrentGCThread::safepoint_desynchronize(). 4115 doConcurrentMark(); 4116 } 4117 4118 return true; 4119 } 4120 4121 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose) 4122 { 4123 size_t gclab_word_size; 4124 switch (purpose) { 4125 case GCAllocForSurvived: 4126 gclab_word_size = _survivor_plab_stats.desired_plab_sz(); 4127 break; 4128 case GCAllocForTenured: 4129 gclab_word_size = _old_plab_stats.desired_plab_sz(); 4130 break; 4131 default: 4132 assert(false, "unknown GCAllocPurpose"); 4133 gclab_word_size = _old_plab_stats.desired_plab_sz(); 4134 break; 4135 } 4136 4137 // Prevent humongous PLAB sizes for two reasons: 4138 // * PLABs are allocated using a similar paths as oops, but should 4139 // never be in a humongous region 4140 // * Allowing humongous PLABs needlessly churns the region free lists 4141 return MIN2(_humongous_object_threshold_in_words, gclab_word_size); 4142 } 4143 4144 void G1CollectedHeap::init_mutator_alloc_region() { 4145 assert(_mutator_alloc_region.get() == NULL, "pre-condition"); 4146 _mutator_alloc_region.init(); 4147 } 4148 4149 void G1CollectedHeap::release_mutator_alloc_region() { 4150 _mutator_alloc_region.release(); 4151 assert(_mutator_alloc_region.get() == NULL, "post-condition"); 4152 } 4153 4154 void G1CollectedHeap::init_gc_alloc_regions() { 4155 assert_at_safepoint(true /* should_be_vm_thread */); 4156 4157 _survivor_gc_alloc_region.init(); 4158 _old_gc_alloc_region.init(); 4159 HeapRegion* retained_region = _retained_old_gc_alloc_region; 4160 _retained_old_gc_alloc_region = NULL; 4161 4162 // We will discard the current GC alloc region if: 4163 // a) it's in the collection set (it can happen!), 4164 // b) it's already full (no point in using it), 4165 // c) it's empty (this means that it was emptied during 4166 // a cleanup and it should be on the free list now), or 4167 // d) it's humongous (this means that it was emptied 4168 // during a cleanup and was added to the free list, but 4169 // has been subseqently used to allocate a humongous 4170 // object that may be less than the region size). 4171 if (retained_region != NULL && 4172 !retained_region->in_collection_set() && 4173 !(retained_region->top() == retained_region->end()) && 4174 !retained_region->is_empty() && 4175 !retained_region->isHumongous()) { 4176 retained_region->set_saved_mark(); 4177 // The retained region was added to the old region set when it was 4178 // retired. We have to remove it now, since we don't allow regions 4179 // we allocate to in the region sets. We'll re-add it later, when 4180 // it's retired again. 4181 _old_set.remove(retained_region); 4182 bool during_im = g1_policy()->during_initial_mark_pause(); 4183 retained_region->note_start_of_copying(during_im); 4184 _old_gc_alloc_region.set(retained_region); 4185 _hr_printer.reuse(retained_region); 4186 } 4187 } 4188 4189 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers) { 4190 _survivor_gc_alloc_region.release(); 4191 // If we have an old GC alloc region to release, we'll save it in 4192 // _retained_old_gc_alloc_region. If we don't 4193 // _retained_old_gc_alloc_region will become NULL. This is what we 4194 // want either way so no reason to check explicitly for either 4195 // condition. 4196 _retained_old_gc_alloc_region = _old_gc_alloc_region.release(); 4197 4198 if (ResizePLAB) { 4199 _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers); 4200 _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers); 4201 } 4202 } 4203 4204 void G1CollectedHeap::abandon_gc_alloc_regions() { 4205 assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition"); 4206 assert(_old_gc_alloc_region.get() == NULL, "pre-condition"); 4207 _retained_old_gc_alloc_region = NULL; 4208 } 4209 4210 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) { 4211 _drain_in_progress = false; 4212 set_evac_failure_closure(cl); 4213 _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true); 4214 } 4215 4216 void G1CollectedHeap::finalize_for_evac_failure() { 4217 assert(_evac_failure_scan_stack != NULL && 4218 _evac_failure_scan_stack->length() == 0, 4219 "Postcondition"); 4220 assert(!_drain_in_progress, "Postcondition"); 4221 delete _evac_failure_scan_stack; 4222 _evac_failure_scan_stack = NULL; 4223 } 4224 4225 void G1CollectedHeap::remove_self_forwarding_pointers() { 4226 assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity"); 4227 4228 G1ParRemoveSelfForwardPtrsTask rsfp_task(this); 4229 4230 if (G1CollectedHeap::use_parallel_gc_threads()) { 4231 set_par_threads(); 4232 workers()->run_task(&rsfp_task); 4233 set_par_threads(0); 4234 } else { 4235 rsfp_task.work(0); 4236 } 4237 4238 assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity"); 4239 4240 // Reset the claim values in the regions in the collection set. 4241 reset_cset_heap_region_claim_values(); 4242 4243 assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity"); 4244 4245 // Now restore saved marks, if any. 4246 assert(_objs_with_preserved_marks.size() == 4247 _preserved_marks_of_objs.size(), "Both or none."); 4248 while (!_objs_with_preserved_marks.is_empty()) { 4249 oop obj = _objs_with_preserved_marks.pop(); 4250 markOop m = _preserved_marks_of_objs.pop(); 4251 obj->set_mark(m); 4252 } 4253 _objs_with_preserved_marks.clear(true); 4254 _preserved_marks_of_objs.clear(true); 4255 } 4256 4257 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) { 4258 _evac_failure_scan_stack->push(obj); 4259 } 4260 4261 void G1CollectedHeap::drain_evac_failure_scan_stack() { 4262 assert(_evac_failure_scan_stack != NULL, "precondition"); 4263 4264 while (_evac_failure_scan_stack->length() > 0) { 4265 oop obj = _evac_failure_scan_stack->pop(); 4266 _evac_failure_closure->set_region(heap_region_containing(obj)); 4267 obj->oop_iterate_backwards(_evac_failure_closure); 4268 } 4269 } 4270 4271 oop 4272 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, 4273 oop old) { 4274 assert(obj_in_cs(old), 4275 err_msg("obj: "PTR_FORMAT" should still be in the CSet", 4276 (HeapWord*) old)); 4277 markOop m = old->mark(); 4278 oop forward_ptr = old->forward_to_atomic(old); 4279 if (forward_ptr == NULL) { 4280 // Forward-to-self succeeded. 4281 4282 if (_evac_failure_closure != cl) { 4283 MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag); 4284 assert(!_drain_in_progress, 4285 "Should only be true while someone holds the lock."); 4286 // Set the global evac-failure closure to the current thread's. 4287 assert(_evac_failure_closure == NULL, "Or locking has failed."); 4288 set_evac_failure_closure(cl); 4289 // Now do the common part. 4290 handle_evacuation_failure_common(old, m); 4291 // Reset to NULL. 4292 set_evac_failure_closure(NULL); 4293 } else { 4294 // The lock is already held, and this is recursive. 4295 assert(_drain_in_progress, "This should only be the recursive case."); 4296 handle_evacuation_failure_common(old, m); 4297 } 4298 return old; 4299 } else { 4300 // Forward-to-self failed. Either someone else managed to allocate 4301 // space for this object (old != forward_ptr) or they beat us in 4302 // self-forwarding it (old == forward_ptr). 4303 assert(old == forward_ptr || !obj_in_cs(forward_ptr), 4304 err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" " 4305 "should not be in the CSet", 4306 (HeapWord*) old, (HeapWord*) forward_ptr)); 4307 return forward_ptr; 4308 } 4309 } 4310 4311 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) { 4312 set_evacuation_failed(true); 4313 4314 preserve_mark_if_necessary(old, m); 4315 4316 HeapRegion* r = heap_region_containing(old); 4317 if (!r->evacuation_failed()) { 4318 r->set_evacuation_failed(true); 4319 _hr_printer.evac_failure(r); 4320 } 4321 4322 push_on_evac_failure_scan_stack(old); 4323 4324 if (!_drain_in_progress) { 4325 // prevent recursion in copy_to_survivor_space() 4326 _drain_in_progress = true; 4327 drain_evac_failure_scan_stack(); 4328 _drain_in_progress = false; 4329 } 4330 } 4331 4332 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) { 4333 assert(evacuation_failed(), "Oversaving!"); 4334 // We want to call the "for_promotion_failure" version only in the 4335 // case of a promotion failure. 4336 if (m->must_be_preserved_for_promotion_failure(obj)) { 4337 _objs_with_preserved_marks.push(obj); 4338 _preserved_marks_of_objs.push(m); 4339 } 4340 } 4341 4342 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose, 4343 size_t word_size) { 4344 if (purpose == GCAllocForSurvived) { 4345 HeapWord* result = survivor_attempt_allocation(word_size); 4346 if (result != NULL) { 4347 return result; 4348 } else { 4349 // Let's try to allocate in the old gen in case we can fit the 4350 // object there. 4351 return old_attempt_allocation(word_size); 4352 } 4353 } else { 4354 assert(purpose == GCAllocForTenured, "sanity"); 4355 HeapWord* result = old_attempt_allocation(word_size); 4356 if (result != NULL) { 4357 return result; 4358 } else { 4359 // Let's try to allocate in the survivors in case we can fit the 4360 // object there. 4361 return survivor_attempt_allocation(word_size); 4362 } 4363 } 4364 4365 ShouldNotReachHere(); 4366 // Trying to keep some compilers happy. 4367 return NULL; 4368 } 4369 4370 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) : 4371 ParGCAllocBuffer(gclab_word_size), _retired(false) { } 4372 4373 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num) 4374 : _g1h(g1h), 4375 _refs(g1h->task_queue(queue_num)), 4376 _dcq(&g1h->dirty_card_queue_set()), 4377 _ct_bs((CardTableModRefBS*)_g1h->barrier_set()), 4378 _g1_rem(g1h->g1_rem_set()), 4379 _hash_seed(17), _queue_num(queue_num), 4380 _term_attempts(0), 4381 _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)), 4382 _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)), 4383 _age_table(false), 4384 _strong_roots_time(0), _term_time(0), 4385 _alloc_buffer_waste(0), _undo_waste(0) { 4386 // we allocate G1YoungSurvRateNumRegions plus one entries, since 4387 // we "sacrifice" entry 0 to keep track of surviving bytes for 4388 // non-young regions (where the age is -1) 4389 // We also add a few elements at the beginning and at the end in 4390 // an attempt to eliminate cache contention 4391 uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length(); 4392 uint array_length = PADDING_ELEM_NUM + 4393 real_length + 4394 PADDING_ELEM_NUM; 4395 _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC); 4396 if (_surviving_young_words_base == NULL) 4397 vm_exit_out_of_memory(array_length * sizeof(size_t), 4398 "Not enough space for young surv histo."); 4399 _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM; 4400 memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t)); 4401 4402 _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer; 4403 _alloc_buffers[GCAllocForTenured] = &_tenured_alloc_buffer; 4404 4405 _start = os::elapsedTime(); 4406 } 4407 4408 void 4409 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st) 4410 { 4411 st->print_raw_cr("GC Termination Stats"); 4412 st->print_raw_cr(" elapsed --strong roots-- -------termination-------" 4413 " ------waste (KiB)------"); 4414 st->print_raw_cr("thr ms ms % ms % attempts" 4415 " total alloc undo"); 4416 st->print_raw_cr("--- --------- --------- ------ --------- ------ --------" 4417 " ------- ------- -------"); 4418 } 4419 4420 void 4421 G1ParScanThreadState::print_termination_stats(int i, 4422 outputStream* const st) const 4423 { 4424 const double elapsed_ms = elapsed_time() * 1000.0; 4425 const double s_roots_ms = strong_roots_time() * 1000.0; 4426 const double term_ms = term_time() * 1000.0; 4427 st->print_cr("%3d %9.2f %9.2f %6.2f " 4428 "%9.2f %6.2f " SIZE_FORMAT_W(8) " " 4429 SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7), 4430 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms, 4431 term_ms, term_ms * 100 / elapsed_ms, term_attempts(), 4432 (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K, 4433 alloc_buffer_waste() * HeapWordSize / K, 4434 undo_waste() * HeapWordSize / K); 4435 } 4436 4437 #ifdef ASSERT 4438 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const { 4439 assert(ref != NULL, "invariant"); 4440 assert(UseCompressedOops, "sanity"); 4441 assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref)); 4442 oop p = oopDesc::load_decode_heap_oop(ref); 4443 assert(_g1h->is_in_g1_reserved(p), 4444 err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p))); 4445 return true; 4446 } 4447 4448 bool G1ParScanThreadState::verify_ref(oop* ref) const { 4449 assert(ref != NULL, "invariant"); 4450 if (has_partial_array_mask(ref)) { 4451 // Must be in the collection set--it's already been copied. 4452 oop p = clear_partial_array_mask(ref); 4453 assert(_g1h->obj_in_cs(p), 4454 err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p))); 4455 } else { 4456 oop p = oopDesc::load_decode_heap_oop(ref); 4457 assert(_g1h->is_in_g1_reserved(p), 4458 err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p))); 4459 } 4460 return true; 4461 } 4462 4463 bool G1ParScanThreadState::verify_task(StarTask ref) const { 4464 if (ref.is_narrow()) { 4465 return verify_ref((narrowOop*) ref); 4466 } else { 4467 return verify_ref((oop*) ref); 4468 } 4469 } 4470 #endif // ASSERT 4471 4472 void G1ParScanThreadState::trim_queue() { 4473 assert(_evac_cl != NULL, "not set"); 4474 assert(_evac_failure_cl != NULL, "not set"); 4475 assert(_partial_scan_cl != NULL, "not set"); 4476 4477 StarTask ref; 4478 do { 4479 // Drain the overflow stack first, so other threads can steal. 4480 while (refs()->pop_overflow(ref)) { 4481 deal_with_reference(ref); 4482 } 4483 4484 while (refs()->pop_local(ref)) { 4485 deal_with_reference(ref); 4486 } 4487 } while (!refs()->is_empty()); 4488 } 4489 4490 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, 4491 G1ParScanThreadState* par_scan_state) : 4492 _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()), 4493 _par_scan_state(par_scan_state), 4494 _worker_id(par_scan_state->queue_num()), 4495 _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()), 4496 _mark_in_progress(_g1->mark_in_progress()) { } 4497 4498 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object> 4499 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) { 4500 #ifdef ASSERT 4501 HeapRegion* hr = _g1->heap_region_containing(obj); 4502 assert(hr != NULL, "sanity"); 4503 assert(!hr->in_collection_set(), "should not mark objects in the CSet"); 4504 #endif // ASSERT 4505 4506 // We know that the object is not moving so it's safe to read its size. 4507 _cm->grayRoot(obj, (size_t) obj->size(), _worker_id); 4508 } 4509 4510 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object> 4511 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object> 4512 ::mark_forwarded_object(oop from_obj, oop to_obj) { 4513 #ifdef ASSERT 4514 assert(from_obj->is_forwarded(), "from obj should be forwarded"); 4515 assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee"); 4516 assert(from_obj != to_obj, "should not be self-forwarded"); 4517 4518 HeapRegion* from_hr = _g1->heap_region_containing(from_obj); 4519 assert(from_hr != NULL, "sanity"); 4520 assert(from_hr->in_collection_set(), "from obj should be in the CSet"); 4521 4522 HeapRegion* to_hr = _g1->heap_region_containing(to_obj); 4523 assert(to_hr != NULL, "sanity"); 4524 assert(!to_hr->in_collection_set(), "should not mark objects in the CSet"); 4525 #endif // ASSERT 4526 4527 // The object might be in the process of being copied by another 4528 // worker so we cannot trust that its to-space image is 4529 // well-formed. So we have to read its size from its from-space 4530 // image which we know should not be changing. 4531 _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id); 4532 } 4533 4534 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object> 4535 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object> 4536 ::copy_to_survivor_space(oop old) { 4537 size_t word_sz = old->size(); 4538 HeapRegion* from_region = _g1->heap_region_containing_raw(old); 4539 // +1 to make the -1 indexes valid... 4540 int young_index = from_region->young_index_in_cset()+1; 4541 assert( (from_region->is_young() && young_index > 0) || 4542 (!from_region->is_young() && young_index == 0), "invariant" ); 4543 G1CollectorPolicy* g1p = _g1->g1_policy(); 4544 markOop m = old->mark(); 4545 int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age() 4546 : m->age(); 4547 GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age, 4548 word_sz); 4549 HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz); 4550 #ifndef PRODUCT 4551 // Should this evacuation fail? 4552 if (_g1->evacuation_should_fail()) { 4553 if (obj_ptr != NULL) { 4554 _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz); 4555 obj_ptr = NULL; 4556 } 4557 } 4558 #endif // !PRODUCT 4559 4560 if (obj_ptr == NULL) { 4561 // This will either forward-to-self, or detect that someone else has 4562 // installed a forwarding pointer. 4563 OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure(); 4564 return _g1->handle_evacuation_failure_par(cl, old); 4565 } 4566 4567 oop obj = oop(obj_ptr); 4568 4569 // We're going to allocate linearly, so might as well prefetch ahead. 4570 Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); 4571 4572 oop forward_ptr = old->forward_to_atomic(obj); 4573 if (forward_ptr == NULL) { 4574 Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz); 4575 if (g1p->track_object_age(alloc_purpose)) { 4576 // We could simply do obj->incr_age(). However, this causes a 4577 // performance issue. obj->incr_age() will first check whether 4578 // the object has a displaced mark by checking its mark word; 4579 // getting the mark word from the new location of the object 4580 // stalls. So, given that we already have the mark word and we 4581 // are about to install it anyway, it's better to increase the 4582 // age on the mark word, when the object does not have a 4583 // displaced mark word. We're not expecting many objects to have 4584 // a displaced marked word, so that case is not optimized 4585 // further (it could be...) and we simply call obj->incr_age(). 4586 4587 if (m->has_displaced_mark_helper()) { 4588 // in this case, we have to install the mark word first, 4589 // otherwise obj looks to be forwarded (the old mark word, 4590 // which contains the forward pointer, was copied) 4591 obj->set_mark(m); 4592 obj->incr_age(); 4593 } else { 4594 m = m->incr_age(); 4595 obj->set_mark(m); 4596 } 4597 _par_scan_state->age_table()->add(obj, word_sz); 4598 } else { 4599 obj->set_mark(m); 4600 } 4601 4602 size_t* surv_young_words = _par_scan_state->surviving_young_words(); 4603 surv_young_words[young_index] += word_sz; 4604 4605 if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) { 4606 // We keep track of the next start index in the length field of 4607 // the to-space object. The actual length can be found in the 4608 // length field of the from-space object. 4609 arrayOop(obj)->set_length(0); 4610 oop* old_p = set_partial_array_mask(old); 4611 _par_scan_state->push_on_queue(old_p); 4612 } else { 4613 // No point in using the slower heap_region_containing() method, 4614 // given that we know obj is in the heap. 4615 _scanner.set_region(_g1->heap_region_containing_raw(obj)); 4616 obj->oop_iterate_backwards(&_scanner); 4617 } 4618 } else { 4619 _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz); 4620 obj = forward_ptr; 4621 } 4622 return obj; 4623 } 4624 4625 template <class T> 4626 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) { 4627 if (_g1->heap_region_containing_raw(new_obj)->is_young()) { 4628 _scanned_klass->record_modified_oops(); 4629 } 4630 } 4631 4632 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object> 4633 template <class T> 4634 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object> 4635 ::do_oop_work(T* p) { 4636 oop obj = oopDesc::load_decode_heap_oop(p); 4637 assert(barrier != G1BarrierRS || obj != NULL, 4638 "Precondition: G1BarrierRS implies obj is non-NULL"); 4639 4640 assert(_worker_id == _par_scan_state->queue_num(), "sanity"); 4641 4642 // here the null check is implicit in the cset_fast_test() test 4643 if (_g1->in_cset_fast_test(obj)) { 4644 oop forwardee; 4645 if (obj->is_forwarded()) { 4646 forwardee = obj->forwardee(); 4647 } else { 4648 forwardee = copy_to_survivor_space(obj); 4649 } 4650 assert(forwardee != NULL, "forwardee should not be NULL"); 4651 oopDesc::encode_store_heap_oop(p, forwardee); 4652 if (do_mark_object && forwardee != obj) { 4653 // If the object is self-forwarded we don't need to explicitly 4654 // mark it, the evacuation failure protocol will do so. 4655 mark_forwarded_object(obj, forwardee); 4656 } 4657 4658 // When scanning the RS, we only care about objs in CS. 4659 if (barrier == G1BarrierRS) { 4660 _par_scan_state->update_rs(_from, p, _worker_id); 4661 } else if (barrier == G1BarrierKlass) { 4662 do_klass_barrier(p, forwardee); 4663 } 4664 } else { 4665 // The object is not in collection set. If we're a root scanning 4666 // closure during an initial mark pause (i.e. do_mark_object will 4667 // be true) then attempt to mark the object. 4668 if (do_mark_object && _g1->is_in_g1_reserved(obj)) { 4669 mark_object(obj); 4670 } 4671 } 4672 4673 if (barrier == G1BarrierEvac && obj != NULL) { 4674 _par_scan_state->update_rs(_from, p, _worker_id); 4675 } 4676 4677 if (do_gen_barrier && obj != NULL) { 4678 par_do_barrier(p); 4679 } 4680 } 4681 4682 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p); 4683 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p); 4684 4685 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) { 4686 assert(has_partial_array_mask(p), "invariant"); 4687 oop from_obj = clear_partial_array_mask(p); 4688 4689 assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap."); 4690 assert(from_obj->is_objArray(), "must be obj array"); 4691 objArrayOop from_obj_array = objArrayOop(from_obj); 4692 // The from-space object contains the real length. 4693 int length = from_obj_array->length(); 4694 4695 assert(from_obj->is_forwarded(), "must be forwarded"); 4696 oop to_obj = from_obj->forwardee(); 4697 assert(from_obj != to_obj, "should not be chunking self-forwarded objects"); 4698 objArrayOop to_obj_array = objArrayOop(to_obj); 4699 // We keep track of the next start index in the length field of the 4700 // to-space object. 4701 int next_index = to_obj_array->length(); 4702 assert(0 <= next_index && next_index < length, 4703 err_msg("invariant, next index: %d, length: %d", next_index, length)); 4704 4705 int start = next_index; 4706 int end = length; 4707 int remainder = end - start; 4708 // We'll try not to push a range that's smaller than ParGCArrayScanChunk. 4709 if (remainder > 2 * ParGCArrayScanChunk) { 4710 end = start + ParGCArrayScanChunk; 4711 to_obj_array->set_length(end); 4712 // Push the remainder before we process the range in case another 4713 // worker has run out of things to do and can steal it. 4714 oop* from_obj_p = set_partial_array_mask(from_obj); 4715 _par_scan_state->push_on_queue(from_obj_p); 4716 } else { 4717 assert(length == end, "sanity"); 4718 // We'll process the final range for this object. Restore the length 4719 // so that the heap remains parsable in case of evacuation failure. 4720 to_obj_array->set_length(end); 4721 } 4722 _scanner.set_region(_g1->heap_region_containing_raw(to_obj)); 4723 // Process indexes [start,end). It will also process the header 4724 // along with the first chunk (i.e., the chunk with start == 0). 4725 // Note that at this point the length field of to_obj_array is not 4726 // correct given that we are using it to keep track of the next 4727 // start index. oop_iterate_range() (thankfully!) ignores the length 4728 // field and only relies on the start / end parameters. It does 4729 // however return the size of the object which will be incorrect. So 4730 // we have to ignore it even if we wanted to use it. 4731 to_obj_array->oop_iterate_range(&_scanner, start, end); 4732 } 4733 4734 class G1ParEvacuateFollowersClosure : public VoidClosure { 4735 protected: 4736 G1CollectedHeap* _g1h; 4737 G1ParScanThreadState* _par_scan_state; 4738 RefToScanQueueSet* _queues; 4739 ParallelTaskTerminator* _terminator; 4740 4741 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 4742 RefToScanQueueSet* queues() { return _queues; } 4743 ParallelTaskTerminator* terminator() { return _terminator; } 4744 4745 public: 4746 G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h, 4747 G1ParScanThreadState* par_scan_state, 4748 RefToScanQueueSet* queues, 4749 ParallelTaskTerminator* terminator) 4750 : _g1h(g1h), _par_scan_state(par_scan_state), 4751 _queues(queues), _terminator(terminator) {} 4752 4753 void do_void(); 4754 4755 private: 4756 inline bool offer_termination(); 4757 }; 4758 4759 bool G1ParEvacuateFollowersClosure::offer_termination() { 4760 G1ParScanThreadState* const pss = par_scan_state(); 4761 pss->start_term_time(); 4762 const bool res = terminator()->offer_termination(); 4763 pss->end_term_time(); 4764 return res; 4765 } 4766 4767 void G1ParEvacuateFollowersClosure::do_void() { 4768 StarTask stolen_task; 4769 G1ParScanThreadState* const pss = par_scan_state(); 4770 pss->trim_queue(); 4771 4772 do { 4773 while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) { 4774 assert(pss->verify_task(stolen_task), "sanity"); 4775 if (stolen_task.is_narrow()) { 4776 pss->deal_with_reference((narrowOop*) stolen_task); 4777 } else { 4778 pss->deal_with_reference((oop*) stolen_task); 4779 } 4780 4781 // We've just processed a reference and we might have made 4782 // available new entries on the queues. So we have to make sure 4783 // we drain the queues as necessary. 4784 pss->trim_queue(); 4785 } 4786 } while (!offer_termination()); 4787 4788 pss->retire_alloc_buffers(); 4789 } 4790 4791 class G1KlassScanClosure : public KlassClosure { 4792 G1ParCopyHelper* _closure; 4793 bool _process_only_dirty; 4794 int _count; 4795 public: 4796 G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty) 4797 : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {} 4798 void do_klass(Klass* klass) { 4799 // If the klass has not been dirtied we know that there's 4800 // no references into the young gen and we can skip it. 4801 if (!_process_only_dirty || klass->has_modified_oops()) { 4802 // Clean the klass since we're going to scavenge all the metadata. 4803 klass->clear_modified_oops(); 4804 4805 // Tell the closure that this klass is the Klass to scavenge 4806 // and is the one to dirty if oops are left pointing into the young gen. 4807 _closure->set_scanned_klass(klass); 4808 4809 klass->oops_do(_closure); 4810 4811 _closure->set_scanned_klass(NULL); 4812 } 4813 _count++; 4814 } 4815 }; 4816 4817 class G1ParTask : public AbstractGangTask { 4818 protected: 4819 G1CollectedHeap* _g1h; 4820 RefToScanQueueSet *_queues; 4821 ParallelTaskTerminator _terminator; 4822 uint _n_workers; 4823 4824 Mutex _stats_lock; 4825 Mutex* stats_lock() { return &_stats_lock; } 4826 4827 size_t getNCards() { 4828 return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1) 4829 / G1BlockOffsetSharedArray::N_bytes; 4830 } 4831 4832 public: 4833 G1ParTask(G1CollectedHeap* g1h, 4834 RefToScanQueueSet *task_queues) 4835 : AbstractGangTask("G1 collection"), 4836 _g1h(g1h), 4837 _queues(task_queues), 4838 _terminator(0, _queues), 4839 _stats_lock(Mutex::leaf, "parallel G1 stats lock", true) 4840 {} 4841 4842 RefToScanQueueSet* queues() { return _queues; } 4843 4844 RefToScanQueue *work_queue(int i) { 4845 return queues()->queue(i); 4846 } 4847 4848 ParallelTaskTerminator* terminator() { return &_terminator; } 4849 4850 virtual void set_for_termination(int active_workers) { 4851 // This task calls set_n_termination() in par_non_clean_card_iterate_work() 4852 // in the young space (_par_seq_tasks) in the G1 heap 4853 // for SequentialSubTasksDone. 4854 // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap 4855 // both of which need setting by set_n_termination(). 4856 _g1h->SharedHeap::set_n_termination(active_workers); 4857 _g1h->set_n_termination(active_workers); 4858 terminator()->reset_for_reuse(active_workers); 4859 _n_workers = active_workers; 4860 } 4861 4862 void work(uint worker_id) { 4863 if (worker_id >= _n_workers) return; // no work needed this round 4864 4865 double start_time_ms = os::elapsedTime() * 1000.0; 4866 _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms); 4867 4868 { 4869 ResourceMark rm; 4870 HandleMark hm; 4871 4872 ReferenceProcessor* rp = _g1h->ref_processor_stw(); 4873 4874 G1ParScanThreadState pss(_g1h, worker_id); 4875 G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, rp); 4876 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp); 4877 G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, rp); 4878 4879 pss.set_evac_closure(&scan_evac_cl); 4880 pss.set_evac_failure_closure(&evac_failure_cl); 4881 pss.set_partial_scan_closure(&partial_scan_cl); 4882 4883 G1ParScanExtRootClosure only_scan_root_cl(_g1h, &pss, rp); 4884 G1ParScanMetadataClosure only_scan_metadata_cl(_g1h, &pss, rp); 4885 4886 G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp); 4887 G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp); 4888 4889 bool only_young = _g1h->g1_policy()->gcs_are_young(); 4890 G1KlassScanClosure scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false); 4891 G1KlassScanClosure only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young); 4892 4893 OopClosure* scan_root_cl = &only_scan_root_cl; 4894 G1KlassScanClosure* scan_klasses_cl = &only_scan_klasses_cl_s; 4895 4896 if (_g1h->g1_policy()->during_initial_mark_pause()) { 4897 // We also need to mark copied objects. 4898 scan_root_cl = &scan_mark_root_cl; 4899 scan_klasses_cl = &scan_mark_klasses_cl_s; 4900 } 4901 4902 G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss); 4903 4904 int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache; 4905 4906 pss.start_strong_roots(); 4907 _g1h->g1_process_strong_roots(/* is scavenging */ true, 4908 SharedHeap::ScanningOption(so), 4909 scan_root_cl, 4910 &push_heap_rs_cl, 4911 scan_klasses_cl, 4912 worker_id); 4913 pss.end_strong_roots(); 4914 4915 { 4916 double start = os::elapsedTime(); 4917 G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator); 4918 evac.do_void(); 4919 double elapsed_ms = (os::elapsedTime()-start)*1000.0; 4920 double term_ms = pss.term_time()*1000.0; 4921 _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms); 4922 _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts()); 4923 } 4924 _g1h->g1_policy()->record_thread_age_table(pss.age_table()); 4925 _g1h->update_surviving_young_words(pss.surviving_young_words()+1); 4926 4927 if (ParallelGCVerbose) { 4928 MutexLocker x(stats_lock()); 4929 pss.print_termination_stats(worker_id); 4930 } 4931 4932 assert(pss.refs()->is_empty(), "should be empty"); 4933 4934 // Close the inner scope so that the ResourceMark and HandleMark 4935 // destructors are executed here and are included as part of the 4936 // "GC Worker Time". 4937 } 4938 4939 double end_time_ms = os::elapsedTime() * 1000.0; 4940 _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms); 4941 } 4942 }; 4943 4944 // *** Common G1 Evacuation Stuff 4945 4946 // Closures that support the filtering of CodeBlobs scanned during 4947 // external root scanning. 4948 4949 // Closure applied to reference fields in code blobs (specifically nmethods) 4950 // to determine whether an nmethod contains references that point into 4951 // the collection set. Used as a predicate when walking code roots so 4952 // that only nmethods that point into the collection set are added to the 4953 // 'marked' list. 4954 4955 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure { 4956 4957 class G1PointsIntoCSOopClosure : public OopClosure { 4958 G1CollectedHeap* _g1; 4959 bool _points_into_cs; 4960 public: 4961 G1PointsIntoCSOopClosure(G1CollectedHeap* g1) : 4962 _g1(g1), _points_into_cs(false) { } 4963 4964 bool points_into_cs() const { return _points_into_cs; } 4965 4966 template <class T> 4967 void do_oop_nv(T* p) { 4968 if (!_points_into_cs) { 4969 T heap_oop = oopDesc::load_heap_oop(p); 4970 if (!oopDesc::is_null(heap_oop) && 4971 _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) { 4972 _points_into_cs = true; 4973 } 4974 } 4975 } 4976 4977 virtual void do_oop(oop* p) { do_oop_nv(p); } 4978 virtual void do_oop(narrowOop* p) { do_oop_nv(p); } 4979 }; 4980 4981 G1CollectedHeap* _g1; 4982 4983 public: 4984 G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) : 4985 CodeBlobToOopClosure(cl, true), _g1(g1) { } 4986 4987 virtual void do_code_blob(CodeBlob* cb) { 4988 nmethod* nm = cb->as_nmethod_or_null(); 4989 if (nm != NULL && !(nm->test_oops_do_mark())) { 4990 G1PointsIntoCSOopClosure predicate_cl(_g1); 4991 nm->oops_do(&predicate_cl); 4992 4993 if (predicate_cl.points_into_cs()) { 4994 // At least one of the reference fields or the oop relocations 4995 // in the nmethod points into the collection set. We have to 4996 // 'mark' this nmethod. 4997 // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob() 4998 // or MarkingCodeBlobClosure::do_code_blob() change. 4999 if (!nm->test_set_oops_do_mark()) { 5000 do_newly_marked_nmethod(nm); 5001 } 5002 } 5003 } 5004 } 5005 }; 5006 5007 // This method is run in a GC worker. 5008 5009 void 5010 G1CollectedHeap:: 5011 g1_process_strong_roots(bool is_scavenging, 5012 ScanningOption so, 5013 OopClosure* scan_non_heap_roots, 5014 OopsInHeapRegionClosure* scan_rs, 5015 G1KlassScanClosure* scan_klasses, 5016 int worker_i) { 5017 5018 // First scan the strong roots 5019 double ext_roots_start = os::elapsedTime(); 5020 double closure_app_time_sec = 0.0; 5021 5022 BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots); 5023 5024 // Walk the code cache w/o buffering, because StarTask cannot handle 5025 // unaligned oop locations. 5026 G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots); 5027 5028 process_strong_roots(false, // no scoping; this is parallel code 5029 is_scavenging, so, 5030 &buf_scan_non_heap_roots, 5031 &eager_scan_code_roots, 5032 scan_klasses 5033 ); 5034 5035 // Now the CM ref_processor roots. 5036 if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) { 5037 // We need to treat the discovered reference lists of the 5038 // concurrent mark ref processor as roots and keep entries 5039 // (which are added by the marking threads) on them live 5040 // until they can be processed at the end of marking. 5041 ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots); 5042 } 5043 5044 // Finish up any enqueued closure apps (attributed as object copy time). 5045 buf_scan_non_heap_roots.done(); 5046 5047 double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds(); 5048 5049 g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0); 5050 5051 double ext_root_time_ms = 5052 ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0; 5053 5054 g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms); 5055 5056 // During conc marking we have to filter the per-thread SATB buffers 5057 // to make sure we remove any oops into the CSet (which will show up 5058 // as implicitly live). 5059 double satb_filtering_ms = 0.0; 5060 if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) { 5061 if (mark_in_progress()) { 5062 double satb_filter_start = os::elapsedTime(); 5063 5064 JavaThread::satb_mark_queue_set().filter_thread_buffers(); 5065 5066 satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0; 5067 } 5068 } 5069 g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms); 5070 5071 // Now scan the complement of the collection set. 5072 if (scan_rs != NULL) { 5073 g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i); 5074 } 5075 _process_strong_tasks->all_tasks_completed(); 5076 } 5077 5078 void 5079 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) { 5080 CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false); 5081 SharedHeap::process_weak_roots(root_closure, &roots_in_blobs); 5082 } 5083 5084 // Weak Reference Processing support 5085 5086 // An always "is_alive" closure that is used to preserve referents. 5087 // If the object is non-null then it's alive. Used in the preservation 5088 // of referent objects that are pointed to by reference objects 5089 // discovered by the CM ref processor. 5090 class G1AlwaysAliveClosure: public BoolObjectClosure { 5091 G1CollectedHeap* _g1; 5092 public: 5093 G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 5094 void do_object(oop p) { assert(false, "Do not call."); } 5095 bool do_object_b(oop p) { 5096 if (p != NULL) { 5097 return true; 5098 } 5099 return false; 5100 } 5101 }; 5102 5103 bool G1STWIsAliveClosure::do_object_b(oop p) { 5104 // An object is reachable if it is outside the collection set, 5105 // or is inside and copied. 5106 return !_g1->obj_in_cs(p) || p->is_forwarded(); 5107 } 5108 5109 // Non Copying Keep Alive closure 5110 class G1KeepAliveClosure: public OopClosure { 5111 G1CollectedHeap* _g1; 5112 public: 5113 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 5114 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 5115 void do_oop( oop* p) { 5116 oop obj = *p; 5117 5118 if (_g1->obj_in_cs(obj)) { 5119 assert( obj->is_forwarded(), "invariant" ); 5120 *p = obj->forwardee(); 5121 } 5122 } 5123 }; 5124 5125 // Copying Keep Alive closure - can be called from both 5126 // serial and parallel code as long as different worker 5127 // threads utilize different G1ParScanThreadState instances 5128 // and different queues. 5129 5130 class G1CopyingKeepAliveClosure: public OopClosure { 5131 G1CollectedHeap* _g1h; 5132 OopClosure* _copy_non_heap_obj_cl; 5133 OopsInHeapRegionClosure* _copy_metadata_obj_cl; 5134 G1ParScanThreadState* _par_scan_state; 5135 5136 public: 5137 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 5138 OopClosure* non_heap_obj_cl, 5139 OopsInHeapRegionClosure* metadata_obj_cl, 5140 G1ParScanThreadState* pss): 5141 _g1h(g1h), 5142 _copy_non_heap_obj_cl(non_heap_obj_cl), 5143 _copy_metadata_obj_cl(metadata_obj_cl), 5144 _par_scan_state(pss) 5145 {} 5146 5147 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 5148 virtual void do_oop( oop* p) { do_oop_work(p); } 5149 5150 template <class T> void do_oop_work(T* p) { 5151 oop obj = oopDesc::load_decode_heap_oop(p); 5152 5153 if (_g1h->obj_in_cs(obj)) { 5154 // If the referent object has been forwarded (either copied 5155 // to a new location or to itself in the event of an 5156 // evacuation failure) then we need to update the reference 5157 // field and, if both reference and referent are in the G1 5158 // heap, update the RSet for the referent. 5159 // 5160 // If the referent has not been forwarded then we have to keep 5161 // it alive by policy. Therefore we have copy the referent. 5162 // 5163 // If the reference field is in the G1 heap then we can push 5164 // on the PSS queue. When the queue is drained (after each 5165 // phase of reference processing) the object and it's followers 5166 // will be copied, the reference field set to point to the 5167 // new location, and the RSet updated. Otherwise we need to 5168 // use the the non-heap or metadata closures directly to copy 5169 // the refernt object and update the pointer, while avoiding 5170 // updating the RSet. 5171 5172 if (_g1h->is_in_g1_reserved(p)) { 5173 _par_scan_state->push_on_queue(p); 5174 } else { 5175 assert(!ClassLoaderDataGraph::contains((address)p), 5176 err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) " 5177 PTR_FORMAT, p)); 5178 _copy_non_heap_obj_cl->do_oop(p); 5179 } 5180 } 5181 } 5182 }; 5183 5184 // Serial drain queue closure. Called as the 'complete_gc' 5185 // closure for each discovered list in some of the 5186 // reference processing phases. 5187 5188 class G1STWDrainQueueClosure: public VoidClosure { 5189 protected: 5190 G1CollectedHeap* _g1h; 5191 G1ParScanThreadState* _par_scan_state; 5192 5193 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 5194 5195 public: 5196 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 5197 _g1h(g1h), 5198 _par_scan_state(pss) 5199 { } 5200 5201 void do_void() { 5202 G1ParScanThreadState* const pss = par_scan_state(); 5203 pss->trim_queue(); 5204 } 5205 }; 5206 5207 // Parallel Reference Processing closures 5208 5209 // Implementation of AbstractRefProcTaskExecutor for parallel reference 5210 // processing during G1 evacuation pauses. 5211 5212 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { 5213 private: 5214 G1CollectedHeap* _g1h; 5215 RefToScanQueueSet* _queues; 5216 FlexibleWorkGang* _workers; 5217 int _active_workers; 5218 5219 public: 5220 G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, 5221 FlexibleWorkGang* workers, 5222 RefToScanQueueSet *task_queues, 5223 int n_workers) : 5224 _g1h(g1h), 5225 _queues(task_queues), 5226 _workers(workers), 5227 _active_workers(n_workers) 5228 { 5229 assert(n_workers > 0, "shouldn't call this otherwise"); 5230 } 5231 5232 // Executes the given task using concurrent marking worker threads. 5233 virtual void execute(ProcessTask& task); 5234 virtual void execute(EnqueueTask& task); 5235 }; 5236 5237 // Gang task for possibly parallel reference processing 5238 5239 class G1STWRefProcTaskProxy: public AbstractGangTask { 5240 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 5241 ProcessTask& _proc_task; 5242 G1CollectedHeap* _g1h; 5243 RefToScanQueueSet *_task_queues; 5244 ParallelTaskTerminator* _terminator; 5245 5246 public: 5247 G1STWRefProcTaskProxy(ProcessTask& proc_task, 5248 G1CollectedHeap* g1h, 5249 RefToScanQueueSet *task_queues, 5250 ParallelTaskTerminator* terminator) : 5251 AbstractGangTask("Process reference objects in parallel"), 5252 _proc_task(proc_task), 5253 _g1h(g1h), 5254 _task_queues(task_queues), 5255 _terminator(terminator) 5256 {} 5257 5258 virtual void work(uint worker_id) { 5259 // The reference processing task executed by a single worker. 5260 ResourceMark rm; 5261 HandleMark hm; 5262 5263 G1STWIsAliveClosure is_alive(_g1h); 5264 5265 G1ParScanThreadState pss(_g1h, worker_id); 5266 5267 G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, NULL); 5268 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5269 G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, NULL); 5270 5271 pss.set_evac_closure(&scan_evac_cl); 5272 pss.set_evac_failure_closure(&evac_failure_cl); 5273 pss.set_partial_scan_closure(&partial_scan_cl); 5274 5275 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5276 G1ParScanMetadataClosure only_copy_metadata_cl(_g1h, &pss, NULL); 5277 5278 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5279 G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL); 5280 5281 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5282 OopsInHeapRegionClosure* copy_metadata_cl = &only_copy_metadata_cl; 5283 5284 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5285 // We also need to mark copied objects. 5286 copy_non_heap_cl = ©_mark_non_heap_cl; 5287 copy_metadata_cl = ©_mark_metadata_cl; 5288 } 5289 5290 // Keep alive closure. 5291 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss); 5292 5293 // Complete GC closure 5294 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator); 5295 5296 // Call the reference processing task's work routine. 5297 _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); 5298 5299 // Note we cannot assert that the refs array is empty here as not all 5300 // of the processing tasks (specifically phase2 - pp2_work) execute 5301 // the complete_gc closure (which ordinarily would drain the queue) so 5302 // the queue may not be empty. 5303 } 5304 }; 5305 5306 // Driver routine for parallel reference processing. 5307 // Creates an instance of the ref processing gang 5308 // task and has the worker threads execute it. 5309 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) { 5310 assert(_workers != NULL, "Need parallel worker threads."); 5311 5312 ParallelTaskTerminator terminator(_active_workers, _queues); 5313 G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator); 5314 5315 _g1h->set_par_threads(_active_workers); 5316 _workers->run_task(&proc_task_proxy); 5317 _g1h->set_par_threads(0); 5318 } 5319 5320 // Gang task for parallel reference enqueueing. 5321 5322 class G1STWRefEnqueueTaskProxy: public AbstractGangTask { 5323 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 5324 EnqueueTask& _enq_task; 5325 5326 public: 5327 G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) : 5328 AbstractGangTask("Enqueue reference objects in parallel"), 5329 _enq_task(enq_task) 5330 { } 5331 5332 virtual void work(uint worker_id) { 5333 _enq_task.work(worker_id); 5334 } 5335 }; 5336 5337 // Driver routine for parallel reference enqueing. 5338 // Creates an instance of the ref enqueueing gang 5339 // task and has the worker threads execute it. 5340 5341 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) { 5342 assert(_workers != NULL, "Need parallel worker threads."); 5343 5344 G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task); 5345 5346 _g1h->set_par_threads(_active_workers); 5347 _workers->run_task(&enq_task_proxy); 5348 _g1h->set_par_threads(0); 5349 } 5350 5351 // End of weak reference support closures 5352 5353 // Abstract task used to preserve (i.e. copy) any referent objects 5354 // that are in the collection set and are pointed to by reference 5355 // objects discovered by the CM ref processor. 5356 5357 class G1ParPreserveCMReferentsTask: public AbstractGangTask { 5358 protected: 5359 G1CollectedHeap* _g1h; 5360 RefToScanQueueSet *_queues; 5361 ParallelTaskTerminator _terminator; 5362 uint _n_workers; 5363 5364 public: 5365 G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) : 5366 AbstractGangTask("ParPreserveCMReferents"), 5367 _g1h(g1h), 5368 _queues(task_queues), 5369 _terminator(workers, _queues), 5370 _n_workers(workers) 5371 { } 5372 5373 void work(uint worker_id) { 5374 ResourceMark rm; 5375 HandleMark hm; 5376 5377 G1ParScanThreadState pss(_g1h, worker_id); 5378 G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, NULL); 5379 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5380 G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, NULL); 5381 5382 pss.set_evac_closure(&scan_evac_cl); 5383 pss.set_evac_failure_closure(&evac_failure_cl); 5384 pss.set_partial_scan_closure(&partial_scan_cl); 5385 5386 assert(pss.refs()->is_empty(), "both queue and overflow should be empty"); 5387 5388 5389 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5390 G1ParScanMetadataClosure only_copy_metadata_cl(_g1h, &pss, NULL); 5391 5392 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5393 G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL); 5394 5395 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5396 OopsInHeapRegionClosure* copy_metadata_cl = &only_copy_metadata_cl; 5397 5398 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5399 // We also need to mark copied objects. 5400 copy_non_heap_cl = ©_mark_non_heap_cl; 5401 copy_metadata_cl = ©_mark_metadata_cl; 5402 } 5403 5404 // Is alive closure 5405 G1AlwaysAliveClosure always_alive(_g1h); 5406 5407 // Copying keep alive closure. Applied to referent objects that need 5408 // to be copied. 5409 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss); 5410 5411 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 5412 5413 uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q(); 5414 uint stride = MIN2(MAX2(_n_workers, 1U), limit); 5415 5416 // limit is set using max_num_q() - which was set using ParallelGCThreads. 5417 // So this must be true - but assert just in case someone decides to 5418 // change the worker ids. 5419 assert(0 <= worker_id && worker_id < limit, "sanity"); 5420 assert(!rp->discovery_is_atomic(), "check this code"); 5421 5422 // Select discovered lists [i, i+stride, i+2*stride,...,limit) 5423 for (uint idx = worker_id; idx < limit; idx += stride) { 5424 DiscoveredList& ref_list = rp->discovered_refs()[idx]; 5425 5426 DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive); 5427 while (iter.has_next()) { 5428 // Since discovery is not atomic for the CM ref processor, we 5429 // can see some null referent objects. 5430 iter.load_ptrs(DEBUG_ONLY(true)); 5431 oop ref = iter.obj(); 5432 5433 // This will filter nulls. 5434 if (iter.is_referent_alive()) { 5435 iter.make_referent_alive(); 5436 } 5437 iter.move_to_next(); 5438 } 5439 } 5440 5441 // Drain the queue - which may cause stealing 5442 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator); 5443 drain_queue.do_void(); 5444 // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure 5445 assert(pss.refs()->is_empty(), "should be"); 5446 } 5447 }; 5448 5449 // Weak Reference processing during an evacuation pause (part 1). 5450 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) { 5451 double ref_proc_start = os::elapsedTime(); 5452 5453 ReferenceProcessor* rp = _ref_processor_stw; 5454 assert(rp->discovery_enabled(), "should have been enabled"); 5455 5456 // Any reference objects, in the collection set, that were 'discovered' 5457 // by the CM ref processor should have already been copied (either by 5458 // applying the external root copy closure to the discovered lists, or 5459 // by following an RSet entry). 5460 // 5461 // But some of the referents, that are in the collection set, that these 5462 // reference objects point to may not have been copied: the STW ref 5463 // processor would have seen that the reference object had already 5464 // been 'discovered' and would have skipped discovering the reference, 5465 // but would not have treated the reference object as a regular oop. 5466 // As a reult the copy closure would not have been applied to the 5467 // referent object. 5468 // 5469 // We need to explicitly copy these referent objects - the references 5470 // will be processed at the end of remarking. 5471 // 5472 // We also need to do this copying before we process the reference 5473 // objects discovered by the STW ref processor in case one of these 5474 // referents points to another object which is also referenced by an 5475 // object discovered by the STW ref processor. 5476 5477 assert(!G1CollectedHeap::use_parallel_gc_threads() || 5478 no_of_gc_workers == workers()->active_workers(), 5479 "Need to reset active GC workers"); 5480 5481 set_par_threads(no_of_gc_workers); 5482 G1ParPreserveCMReferentsTask keep_cm_referents(this, 5483 no_of_gc_workers, 5484 _task_queues); 5485 5486 if (G1CollectedHeap::use_parallel_gc_threads()) { 5487 workers()->run_task(&keep_cm_referents); 5488 } else { 5489 keep_cm_referents.work(0); 5490 } 5491 5492 set_par_threads(0); 5493 5494 // Closure to test whether a referent is alive. 5495 G1STWIsAliveClosure is_alive(this); 5496 5497 // Even when parallel reference processing is enabled, the processing 5498 // of JNI refs is serial and performed serially by the current thread 5499 // rather than by a worker. The following PSS will be used for processing 5500 // JNI refs. 5501 5502 // Use only a single queue for this PSS. 5503 G1ParScanThreadState pss(this, 0); 5504 5505 // We do not embed a reference processor in the copying/scanning 5506 // closures while we're actually processing the discovered 5507 // reference objects. 5508 G1ParScanHeapEvacClosure scan_evac_cl(this, &pss, NULL); 5509 G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL); 5510 G1ParScanPartialArrayClosure partial_scan_cl(this, &pss, NULL); 5511 5512 pss.set_evac_closure(&scan_evac_cl); 5513 pss.set_evac_failure_closure(&evac_failure_cl); 5514 pss.set_partial_scan_closure(&partial_scan_cl); 5515 5516 assert(pss.refs()->is_empty(), "pre-condition"); 5517 5518 G1ParScanExtRootClosure only_copy_non_heap_cl(this, &pss, NULL); 5519 G1ParScanMetadataClosure only_copy_metadata_cl(this, &pss, NULL); 5520 5521 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL); 5522 G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL); 5523 5524 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5525 OopsInHeapRegionClosure* copy_metadata_cl = &only_copy_metadata_cl; 5526 5527 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5528 // We also need to mark copied objects. 5529 copy_non_heap_cl = ©_mark_non_heap_cl; 5530 copy_metadata_cl = ©_mark_metadata_cl; 5531 } 5532 5533 // Keep alive closure. 5534 G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss); 5535 5536 // Serial Complete GC closure 5537 G1STWDrainQueueClosure drain_queue(this, &pss); 5538 5539 // Setup the soft refs policy... 5540 rp->setup_policy(false); 5541 5542 if (!rp->processing_is_mt()) { 5543 // Serial reference processing... 5544 rp->process_discovered_references(&is_alive, 5545 &keep_alive, 5546 &drain_queue, 5547 NULL); 5548 } else { 5549 // Parallel reference processing 5550 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5551 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5552 5553 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5554 rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor); 5555 } 5556 5557 // We have completed copying any necessary live referent objects 5558 // (that were not copied during the actual pause) so we can 5559 // retire any active alloc buffers 5560 pss.retire_alloc_buffers(); 5561 assert(pss.refs()->is_empty(), "both queue and overflow should be empty"); 5562 5563 double ref_proc_time = os::elapsedTime() - ref_proc_start; 5564 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 5565 } 5566 5567 // Weak Reference processing during an evacuation pause (part 2). 5568 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) { 5569 double ref_enq_start = os::elapsedTime(); 5570 5571 ReferenceProcessor* rp = _ref_processor_stw; 5572 assert(!rp->discovery_enabled(), "should have been disabled as part of processing"); 5573 5574 // Now enqueue any remaining on the discovered lists on to 5575 // the pending list. 5576 if (!rp->processing_is_mt()) { 5577 // Serial reference processing... 5578 rp->enqueue_discovered_references(); 5579 } else { 5580 // Parallel reference enqueuing 5581 5582 assert(no_of_gc_workers == workers()->active_workers(), 5583 "Need to reset active workers"); 5584 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5585 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5586 5587 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5588 rp->enqueue_discovered_references(&par_task_executor); 5589 } 5590 5591 rp->verify_no_references_recorded(); 5592 assert(!rp->discovery_enabled(), "should have been disabled"); 5593 5594 // FIXME 5595 // CM's reference processing also cleans up the string and symbol tables. 5596 // Should we do that here also? We could, but it is a serial operation 5597 // and could signicantly increase the pause time. 5598 5599 double ref_enq_time = os::elapsedTime() - ref_enq_start; 5600 g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0); 5601 } 5602 5603 void G1CollectedHeap::evacuate_collection_set() { 5604 _expand_heap_after_alloc_failure = true; 5605 set_evacuation_failed(false); 5606 5607 // Should G1EvacuationFailureALot be in effect for this GC? 5608 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 5609 5610 g1_rem_set()->prepare_for_oops_into_collection_set_do(); 5611 5612 // Disable the hot card cache. 5613 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 5614 hot_card_cache->reset_hot_cache_claimed_index(); 5615 hot_card_cache->set_use_cache(false); 5616 5617 uint n_workers; 5618 if (G1CollectedHeap::use_parallel_gc_threads()) { 5619 n_workers = 5620 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 5621 workers()->active_workers(), 5622 Threads::number_of_non_daemon_threads()); 5623 assert(UseDynamicNumberOfGCThreads || 5624 n_workers == workers()->total_workers(), 5625 "If not dynamic should be using all the workers"); 5626 workers()->set_active_workers(n_workers); 5627 set_par_threads(n_workers); 5628 } else { 5629 assert(n_par_threads() == 0, 5630 "Should be the original non-parallel value"); 5631 n_workers = 1; 5632 } 5633 5634 G1ParTask g1_par_task(this, _task_queues); 5635 5636 init_for_evac_failure(NULL); 5637 5638 rem_set()->prepare_for_younger_refs_iterate(true); 5639 5640 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty"); 5641 double start_par_time_sec = os::elapsedTime(); 5642 double end_par_time_sec; 5643 5644 { 5645 StrongRootsScope srs(this); 5646 5647 if (G1CollectedHeap::use_parallel_gc_threads()) { 5648 // The individual threads will set their evac-failure closures. 5649 if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr(); 5650 // These tasks use ShareHeap::_process_strong_tasks 5651 assert(UseDynamicNumberOfGCThreads || 5652 workers()->active_workers() == workers()->total_workers(), 5653 "If not dynamic should be using all the workers"); 5654 workers()->run_task(&g1_par_task); 5655 } else { 5656 g1_par_task.set_for_termination(n_workers); 5657 g1_par_task.work(0); 5658 } 5659 end_par_time_sec = os::elapsedTime(); 5660 5661 // Closing the inner scope will execute the destructor 5662 // for the StrongRootsScope object. We record the current 5663 // elapsed time before closing the scope so that time 5664 // taken for the SRS destructor is NOT included in the 5665 // reported parallel time. 5666 } 5667 5668 double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0; 5669 g1_policy()->phase_times()->record_par_time(par_time_ms); 5670 5671 double code_root_fixup_time_ms = 5672 (os::elapsedTime() - end_par_time_sec) * 1000.0; 5673 g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms); 5674 5675 set_par_threads(0); 5676 5677 // Process any discovered reference objects - we have 5678 // to do this _before_ we retire the GC alloc regions 5679 // as we may have to copy some 'reachable' referent 5680 // objects (and their reachable sub-graphs) that were 5681 // not copied during the pause. 5682 process_discovered_references(n_workers); 5683 5684 // Weak root processing. 5685 // Note: when JSR 292 is enabled and code blobs can contain 5686 // non-perm oops then we will need to process the code blobs 5687 // here too. 5688 { 5689 G1STWIsAliveClosure is_alive(this); 5690 G1KeepAliveClosure keep_alive(this); 5691 JNIHandles::weak_oops_do(&is_alive, &keep_alive); 5692 } 5693 5694 release_gc_alloc_regions(n_workers); 5695 g1_rem_set()->cleanup_after_oops_into_collection_set_do(); 5696 5697 // Reset and re-enable the hot card cache. 5698 // Note the counts for the cards in the regions in the 5699 // collection set are reset when the collection set is freed. 5700 hot_card_cache->reset_hot_cache(); 5701 hot_card_cache->set_use_cache(true); 5702 5703 finalize_for_evac_failure(); 5704 5705 if (evacuation_failed()) { 5706 remove_self_forwarding_pointers(); 5707 5708 // Reset the G1EvacuationFailureALot counters and flags 5709 // Note: the values are reset only when an actual 5710 // evacuation failure occurs. 5711 NOT_PRODUCT(reset_evacuation_should_fail();) 5712 } 5713 5714 // Enqueue any remaining references remaining on the STW 5715 // reference processor's discovered lists. We need to do 5716 // this after the card table is cleaned (and verified) as 5717 // the act of enqueuing entries on to the pending list 5718 // will log these updates (and dirty their associated 5719 // cards). We need these updates logged to update any 5720 // RSets. 5721 enqueue_discovered_references(n_workers); 5722 5723 if (G1DeferredRSUpdate) { 5724 RedirtyLoggedCardTableEntryFastClosure redirty; 5725 dirty_card_queue_set().set_closure(&redirty); 5726 dirty_card_queue_set().apply_closure_to_all_completed_buffers(); 5727 5728 DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set(); 5729 dcq.merge_bufferlists(&dirty_card_queue_set()); 5730 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); 5731 } 5732 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 5733 } 5734 5735 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr, 5736 size_t* pre_used, 5737 FreeRegionList* free_list, 5738 OldRegionSet* old_proxy_set, 5739 HumongousRegionSet* humongous_proxy_set, 5740 HRRSCleanupTask* hrrs_cleanup_task, 5741 bool par) { 5742 if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) { 5743 if (hr->isHumongous()) { 5744 assert(hr->startsHumongous(), "we should only see starts humongous"); 5745 free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par); 5746 } else { 5747 _old_set.remove_with_proxy(hr, old_proxy_set); 5748 free_region(hr, pre_used, free_list, par); 5749 } 5750 } else { 5751 hr->rem_set()->do_cleanup_work(hrrs_cleanup_task); 5752 } 5753 } 5754 5755 void G1CollectedHeap::free_region(HeapRegion* hr, 5756 size_t* pre_used, 5757 FreeRegionList* free_list, 5758 bool par) { 5759 assert(!hr->isHumongous(), "this is only for non-humongous regions"); 5760 assert(!hr->is_empty(), "the region should not be empty"); 5761 assert(free_list != NULL, "pre-condition"); 5762 5763 // Clear the card counts for this region. 5764 // Note: we only need to do this if the region is not young 5765 // (since we don't refine cards in young regions). 5766 if (!hr->is_young()) { 5767 _cg1r->hot_card_cache()->reset_card_counts(hr); 5768 } 5769 *pre_used += hr->used(); 5770 hr->hr_clear(par, true /* clear_space */); 5771 free_list->add_as_head(hr); 5772 } 5773 5774 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 5775 size_t* pre_used, 5776 FreeRegionList* free_list, 5777 HumongousRegionSet* humongous_proxy_set, 5778 bool par) { 5779 assert(hr->startsHumongous(), "this is only for starts humongous regions"); 5780 assert(free_list != NULL, "pre-condition"); 5781 assert(humongous_proxy_set != NULL, "pre-condition"); 5782 5783 size_t hr_used = hr->used(); 5784 size_t hr_capacity = hr->capacity(); 5785 size_t hr_pre_used = 0; 5786 _humongous_set.remove_with_proxy(hr, humongous_proxy_set); 5787 // We need to read this before we make the region non-humongous, 5788 // otherwise the information will be gone. 5789 uint last_index = hr->last_hc_index(); 5790 hr->set_notHumongous(); 5791 free_region(hr, &hr_pre_used, free_list, par); 5792 5793 uint i = hr->hrs_index() + 1; 5794 while (i < last_index) { 5795 HeapRegion* curr_hr = region_at(i); 5796 assert(curr_hr->continuesHumongous(), "invariant"); 5797 curr_hr->set_notHumongous(); 5798 free_region(curr_hr, &hr_pre_used, free_list, par); 5799 i += 1; 5800 } 5801 assert(hr_pre_used == hr_used, 5802 err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" " 5803 "should be the same", hr_pre_used, hr_used)); 5804 *pre_used += hr_pre_used; 5805 } 5806 5807 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used, 5808 FreeRegionList* free_list, 5809 OldRegionSet* old_proxy_set, 5810 HumongousRegionSet* humongous_proxy_set, 5811 bool par) { 5812 if (pre_used > 0) { 5813 Mutex* lock = (par) ? ParGCRareEvent_lock : NULL; 5814 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag); 5815 assert(_summary_bytes_used >= pre_used, 5816 err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" " 5817 "should be >= pre_used: "SIZE_FORMAT, 5818 _summary_bytes_used, pre_used)); 5819 _summary_bytes_used -= pre_used; 5820 } 5821 if (free_list != NULL && !free_list->is_empty()) { 5822 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 5823 _free_list.add_as_head(free_list); 5824 } 5825 if (old_proxy_set != NULL && !old_proxy_set->is_empty()) { 5826 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 5827 _old_set.update_from_proxy(old_proxy_set); 5828 } 5829 if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) { 5830 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 5831 _humongous_set.update_from_proxy(humongous_proxy_set); 5832 } 5833 } 5834 5835 class G1ParCleanupCTTask : public AbstractGangTask { 5836 CardTableModRefBS* _ct_bs; 5837 G1CollectedHeap* _g1h; 5838 HeapRegion* volatile _su_head; 5839 public: 5840 G1ParCleanupCTTask(CardTableModRefBS* ct_bs, 5841 G1CollectedHeap* g1h) : 5842 AbstractGangTask("G1 Par Cleanup CT Task"), 5843 _ct_bs(ct_bs), _g1h(g1h) { } 5844 5845 void work(uint worker_id) { 5846 HeapRegion* r; 5847 while (r = _g1h->pop_dirty_cards_region()) { 5848 clear_cards(r); 5849 } 5850 } 5851 5852 void clear_cards(HeapRegion* r) { 5853 // Cards of the survivors should have already been dirtied. 5854 if (!r->is_survivor()) { 5855 _ct_bs->clear(MemRegion(r->bottom(), r->end())); 5856 } 5857 } 5858 }; 5859 5860 #ifndef PRODUCT 5861 class G1VerifyCardTableCleanup: public HeapRegionClosure { 5862 G1CollectedHeap* _g1h; 5863 CardTableModRefBS* _ct_bs; 5864 public: 5865 G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs) 5866 : _g1h(g1h), _ct_bs(ct_bs) { } 5867 virtual bool doHeapRegion(HeapRegion* r) { 5868 if (r->is_survivor()) { 5869 _g1h->verify_dirty_region(r); 5870 } else { 5871 _g1h->verify_not_dirty_region(r); 5872 } 5873 return false; 5874 } 5875 }; 5876 5877 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) { 5878 // All of the region should be clean. 5879 CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set(); 5880 MemRegion mr(hr->bottom(), hr->end()); 5881 ct_bs->verify_not_dirty_region(mr); 5882 } 5883 5884 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) { 5885 // We cannot guarantee that [bottom(),end()] is dirty. Threads 5886 // dirty allocated blocks as they allocate them. The thread that 5887 // retires each region and replaces it with a new one will do a 5888 // maximal allocation to fill in [pre_dummy_top(),end()] but will 5889 // not dirty that area (one less thing to have to do while holding 5890 // a lock). So we can only verify that [bottom(),pre_dummy_top()] 5891 // is dirty. 5892 CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set(); 5893 MemRegion mr(hr->bottom(), hr->pre_dummy_top()); 5894 ct_bs->verify_dirty_region(mr); 5895 } 5896 5897 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) { 5898 CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set(); 5899 for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) { 5900 verify_dirty_region(hr); 5901 } 5902 } 5903 5904 void G1CollectedHeap::verify_dirty_young_regions() { 5905 verify_dirty_young_list(_young_list->first_region()); 5906 } 5907 #endif 5908 5909 void G1CollectedHeap::cleanUpCardTable() { 5910 CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set()); 5911 double start = os::elapsedTime(); 5912 5913 { 5914 // Iterate over the dirty cards region list. 5915 G1ParCleanupCTTask cleanup_task(ct_bs, this); 5916 5917 if (G1CollectedHeap::use_parallel_gc_threads()) { 5918 set_par_threads(); 5919 workers()->run_task(&cleanup_task); 5920 set_par_threads(0); 5921 } else { 5922 while (_dirty_cards_region_list) { 5923 HeapRegion* r = _dirty_cards_region_list; 5924 cleanup_task.clear_cards(r); 5925 _dirty_cards_region_list = r->get_next_dirty_cards_region(); 5926 if (_dirty_cards_region_list == r) { 5927 // The last region. 5928 _dirty_cards_region_list = NULL; 5929 } 5930 r->set_next_dirty_cards_region(NULL); 5931 } 5932 } 5933 #ifndef PRODUCT 5934 if (G1VerifyCTCleanup || VerifyAfterGC) { 5935 G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs); 5936 heap_region_iterate(&cleanup_verifier); 5937 } 5938 #endif 5939 } 5940 5941 double elapsed = os::elapsedTime() - start; 5942 g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0); 5943 } 5944 5945 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) { 5946 size_t pre_used = 0; 5947 FreeRegionList local_free_list("Local List for CSet Freeing"); 5948 5949 double young_time_ms = 0.0; 5950 double non_young_time_ms = 0.0; 5951 5952 // Since the collection set is a superset of the the young list, 5953 // all we need to do to clear the young list is clear its 5954 // head and length, and unlink any young regions in the code below 5955 _young_list->clear(); 5956 5957 G1CollectorPolicy* policy = g1_policy(); 5958 5959 double start_sec = os::elapsedTime(); 5960 bool non_young = true; 5961 5962 HeapRegion* cur = cs_head; 5963 int age_bound = -1; 5964 size_t rs_lengths = 0; 5965 5966 while (cur != NULL) { 5967 assert(!is_on_master_free_list(cur), "sanity"); 5968 if (non_young) { 5969 if (cur->is_young()) { 5970 double end_sec = os::elapsedTime(); 5971 double elapsed_ms = (end_sec - start_sec) * 1000.0; 5972 non_young_time_ms += elapsed_ms; 5973 5974 start_sec = os::elapsedTime(); 5975 non_young = false; 5976 } 5977 } else { 5978 if (!cur->is_young()) { 5979 double end_sec = os::elapsedTime(); 5980 double elapsed_ms = (end_sec - start_sec) * 1000.0; 5981 young_time_ms += elapsed_ms; 5982 5983 start_sec = os::elapsedTime(); 5984 non_young = true; 5985 } 5986 } 5987 5988 rs_lengths += cur->rem_set()->occupied(); 5989 5990 HeapRegion* next = cur->next_in_collection_set(); 5991 assert(cur->in_collection_set(), "bad CS"); 5992 cur->set_next_in_collection_set(NULL); 5993 cur->set_in_collection_set(false); 5994 5995 if (cur->is_young()) { 5996 int index = cur->young_index_in_cset(); 5997 assert(index != -1, "invariant"); 5998 assert((uint) index < policy->young_cset_region_length(), "invariant"); 5999 size_t words_survived = _surviving_young_words[index]; 6000 cur->record_surv_words_in_group(words_survived); 6001 6002 // At this point the we have 'popped' cur from the collection set 6003 // (linked via next_in_collection_set()) but it is still in the 6004 // young list (linked via next_young_region()). Clear the 6005 // _next_young_region field. 6006 cur->set_next_young_region(NULL); 6007 } else { 6008 int index = cur->young_index_in_cset(); 6009 assert(index == -1, "invariant"); 6010 } 6011 6012 assert( (cur->is_young() && cur->young_index_in_cset() > -1) || 6013 (!cur->is_young() && cur->young_index_in_cset() == -1), 6014 "invariant" ); 6015 6016 if (!cur->evacuation_failed()) { 6017 MemRegion used_mr = cur->used_region(); 6018 6019 // And the region is empty. 6020 assert(!used_mr.is_empty(), "Should not have empty regions in a CS."); 6021 free_region(cur, &pre_used, &local_free_list, false /* par */); 6022 } else { 6023 cur->uninstall_surv_rate_group(); 6024 if (cur->is_young()) { 6025 cur->set_young_index_in_cset(-1); 6026 } 6027 cur->set_not_young(); 6028 cur->set_evacuation_failed(false); 6029 // The region is now considered to be old. 6030 _old_set.add(cur); 6031 } 6032 cur = next; 6033 } 6034 6035 policy->record_max_rs_lengths(rs_lengths); 6036 policy->cset_regions_freed(); 6037 6038 double end_sec = os::elapsedTime(); 6039 double elapsed_ms = (end_sec - start_sec) * 1000.0; 6040 6041 if (non_young) { 6042 non_young_time_ms += elapsed_ms; 6043 } else { 6044 young_time_ms += elapsed_ms; 6045 } 6046 6047 update_sets_after_freeing_regions(pre_used, &local_free_list, 6048 NULL /* old_proxy_set */, 6049 NULL /* humongous_proxy_set */, 6050 false /* par */); 6051 policy->phase_times()->record_young_free_cset_time_ms(young_time_ms); 6052 policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms); 6053 } 6054 6055 // This routine is similar to the above but does not record 6056 // any policy statistics or update free lists; we are abandoning 6057 // the current incremental collection set in preparation of a 6058 // full collection. After the full GC we will start to build up 6059 // the incremental collection set again. 6060 // This is only called when we're doing a full collection 6061 // and is immediately followed by the tearing down of the young list. 6062 6063 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) { 6064 HeapRegion* cur = cs_head; 6065 6066 while (cur != NULL) { 6067 HeapRegion* next = cur->next_in_collection_set(); 6068 assert(cur->in_collection_set(), "bad CS"); 6069 cur->set_next_in_collection_set(NULL); 6070 cur->set_in_collection_set(false); 6071 cur->set_young_index_in_cset(-1); 6072 cur = next; 6073 } 6074 } 6075 6076 void G1CollectedHeap::set_free_regions_coming() { 6077 if (G1ConcRegionFreeingVerbose) { 6078 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6079 "setting free regions coming"); 6080 } 6081 6082 assert(!free_regions_coming(), "pre-condition"); 6083 _free_regions_coming = true; 6084 } 6085 6086 void G1CollectedHeap::reset_free_regions_coming() { 6087 assert(free_regions_coming(), "pre-condition"); 6088 6089 { 6090 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6091 _free_regions_coming = false; 6092 SecondaryFreeList_lock->notify_all(); 6093 } 6094 6095 if (G1ConcRegionFreeingVerbose) { 6096 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6097 "reset free regions coming"); 6098 } 6099 } 6100 6101 void G1CollectedHeap::wait_while_free_regions_coming() { 6102 // Most of the time we won't have to wait, so let's do a quick test 6103 // first before we take the lock. 6104 if (!free_regions_coming()) { 6105 return; 6106 } 6107 6108 if (G1ConcRegionFreeingVerbose) { 6109 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6110 "waiting for free regions"); 6111 } 6112 6113 { 6114 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6115 while (free_regions_coming()) { 6116 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 6117 } 6118 } 6119 6120 if (G1ConcRegionFreeingVerbose) { 6121 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6122 "done waiting for free regions"); 6123 } 6124 } 6125 6126 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 6127 assert(heap_lock_held_for_gc(), 6128 "the heap lock should already be held by or for this thread"); 6129 _young_list->push_region(hr); 6130 } 6131 6132 class NoYoungRegionsClosure: public HeapRegionClosure { 6133 private: 6134 bool _success; 6135 public: 6136 NoYoungRegionsClosure() : _success(true) { } 6137 bool doHeapRegion(HeapRegion* r) { 6138 if (r->is_young()) { 6139 gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young", 6140 r->bottom(), r->end()); 6141 _success = false; 6142 } 6143 return false; 6144 } 6145 bool success() { return _success; } 6146 }; 6147 6148 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) { 6149 bool ret = _young_list->check_list_empty(check_sample); 6150 6151 if (check_heap) { 6152 NoYoungRegionsClosure closure; 6153 heap_region_iterate(&closure); 6154 ret = ret && closure.success(); 6155 } 6156 6157 return ret; 6158 } 6159 6160 class TearDownRegionSetsClosure : public HeapRegionClosure { 6161 private: 6162 OldRegionSet *_old_set; 6163 6164 public: 6165 TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { } 6166 6167 bool doHeapRegion(HeapRegion* r) { 6168 if (r->is_empty()) { 6169 // We ignore empty regions, we'll empty the free list afterwards 6170 } else if (r->is_young()) { 6171 // We ignore young regions, we'll empty the young list afterwards 6172 } else if (r->isHumongous()) { 6173 // We ignore humongous regions, we're not tearing down the 6174 // humongous region set 6175 } else { 6176 // The rest should be old 6177 _old_set->remove(r); 6178 } 6179 return false; 6180 } 6181 6182 ~TearDownRegionSetsClosure() { 6183 assert(_old_set->is_empty(), "post-condition"); 6184 } 6185 }; 6186 6187 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { 6188 assert_at_safepoint(true /* should_be_vm_thread */); 6189 6190 if (!free_list_only) { 6191 TearDownRegionSetsClosure cl(&_old_set); 6192 heap_region_iterate(&cl); 6193 6194 // Need to do this after the heap iteration to be able to 6195 // recognize the young regions and ignore them during the iteration. 6196 _young_list->empty_list(); 6197 } 6198 _free_list.remove_all(); 6199 } 6200 6201 class RebuildRegionSetsClosure : public HeapRegionClosure { 6202 private: 6203 bool _free_list_only; 6204 OldRegionSet* _old_set; 6205 FreeRegionList* _free_list; 6206 size_t _total_used; 6207 6208 public: 6209 RebuildRegionSetsClosure(bool free_list_only, 6210 OldRegionSet* old_set, FreeRegionList* free_list) : 6211 _free_list_only(free_list_only), 6212 _old_set(old_set), _free_list(free_list), _total_used(0) { 6213 assert(_free_list->is_empty(), "pre-condition"); 6214 if (!free_list_only) { 6215 assert(_old_set->is_empty(), "pre-condition"); 6216 } 6217 } 6218 6219 bool doHeapRegion(HeapRegion* r) { 6220 if (r->continuesHumongous()) { 6221 return false; 6222 } 6223 6224 if (r->is_empty()) { 6225 // Add free regions to the free list 6226 _free_list->add_as_tail(r); 6227 } else if (!_free_list_only) { 6228 assert(!r->is_young(), "we should not come across young regions"); 6229 6230 if (r->isHumongous()) { 6231 // We ignore humongous regions, we left the humongous set unchanged 6232 } else { 6233 // The rest should be old, add them to the old set 6234 _old_set->add(r); 6235 } 6236 _total_used += r->used(); 6237 } 6238 6239 return false; 6240 } 6241 6242 size_t total_used() { 6243 return _total_used; 6244 } 6245 }; 6246 6247 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 6248 assert_at_safepoint(true /* should_be_vm_thread */); 6249 6250 RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list); 6251 heap_region_iterate(&cl); 6252 6253 if (!free_list_only) { 6254 _summary_bytes_used = cl.total_used(); 6255 } 6256 assert(_summary_bytes_used == recalculate_used(), 6257 err_msg("inconsistent _summary_bytes_used, " 6258 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT, 6259 _summary_bytes_used, recalculate_used())); 6260 } 6261 6262 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { 6263 _refine_cte_cl->set_concurrent(concurrent); 6264 } 6265 6266 bool G1CollectedHeap::is_in_closed_subset(const void* p) const { 6267 HeapRegion* hr = heap_region_containing(p); 6268 if (hr == NULL) { 6269 return false; 6270 } else { 6271 return hr->is_in(p); 6272 } 6273 } 6274 6275 // Methods for the mutator alloc region 6276 6277 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 6278 bool force) { 6279 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6280 assert(!force || g1_policy()->can_expand_young_list(), 6281 "if force is true we should be able to expand the young list"); 6282 bool young_list_full = g1_policy()->is_young_list_full(); 6283 if (force || !young_list_full) { 6284 HeapRegion* new_alloc_region = new_region(word_size, 6285 false /* do_expand */); 6286 if (new_alloc_region != NULL) { 6287 set_region_short_lived_locked(new_alloc_region); 6288 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full); 6289 return new_alloc_region; 6290 } 6291 } 6292 return NULL; 6293 } 6294 6295 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 6296 size_t allocated_bytes) { 6297 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6298 assert(alloc_region->is_young(), "all mutator alloc regions should be young"); 6299 6300 g1_policy()->add_region_to_incremental_cset_lhs(alloc_region); 6301 _summary_bytes_used += allocated_bytes; 6302 _hr_printer.retire(alloc_region); 6303 // We update the eden sizes here, when the region is retired, 6304 // instead of when it's allocated, since this is the point that its 6305 // used space has been recored in _summary_bytes_used. 6306 g1mm()->update_eden_size(); 6307 } 6308 6309 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size, 6310 bool force) { 6311 return _g1h->new_mutator_alloc_region(word_size, force); 6312 } 6313 6314 void G1CollectedHeap::set_par_threads() { 6315 // Don't change the number of workers. Use the value previously set 6316 // in the workgroup. 6317 assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise"); 6318 uint n_workers = workers()->active_workers(); 6319 assert(UseDynamicNumberOfGCThreads || 6320 n_workers == workers()->total_workers(), 6321 "Otherwise should be using the total number of workers"); 6322 if (n_workers == 0) { 6323 assert(false, "Should have been set in prior evacuation pause."); 6324 n_workers = ParallelGCThreads; 6325 workers()->set_active_workers(n_workers); 6326 } 6327 set_par_threads(n_workers); 6328 } 6329 6330 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region, 6331 size_t allocated_bytes) { 6332 _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes); 6333 } 6334 6335 // Methods for the GC alloc regions 6336 6337 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, 6338 uint count, 6339 GCAllocPurpose ap) { 6340 assert(FreeList_lock->owned_by_self(), "pre-condition"); 6341 6342 if (count < g1_policy()->max_regions(ap)) { 6343 HeapRegion* new_alloc_region = new_region(word_size, 6344 true /* do_expand */); 6345 if (new_alloc_region != NULL) { 6346 // We really only need to do this for old regions given that we 6347 // should never scan survivors. But it doesn't hurt to do it 6348 // for survivors too. 6349 new_alloc_region->set_saved_mark(); 6350 if (ap == GCAllocForSurvived) { 6351 new_alloc_region->set_survivor(); 6352 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor); 6353 } else { 6354 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old); 6355 } 6356 bool during_im = g1_policy()->during_initial_mark_pause(); 6357 new_alloc_region->note_start_of_copying(during_im); 6358 return new_alloc_region; 6359 } else { 6360 g1_policy()->note_alloc_region_limit_reached(ap); 6361 } 6362 } 6363 return NULL; 6364 } 6365 6366 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 6367 size_t allocated_bytes, 6368 GCAllocPurpose ap) { 6369 bool during_im = g1_policy()->during_initial_mark_pause(); 6370 alloc_region->note_end_of_copying(during_im); 6371 g1_policy()->record_bytes_copied_during_gc(allocated_bytes); 6372 if (ap == GCAllocForSurvived) { 6373 young_list()->add_survivor_region(alloc_region); 6374 } else { 6375 _old_set.add(alloc_region); 6376 } 6377 _hr_printer.retire(alloc_region); 6378 } 6379 6380 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size, 6381 bool force) { 6382 assert(!force, "not supported for GC alloc regions"); 6383 return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived); 6384 } 6385 6386 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region, 6387 size_t allocated_bytes) { 6388 _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, 6389 GCAllocForSurvived); 6390 } 6391 6392 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size, 6393 bool force) { 6394 assert(!force, "not supported for GC alloc regions"); 6395 return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured); 6396 } 6397 6398 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region, 6399 size_t allocated_bytes) { 6400 _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, 6401 GCAllocForTenured); 6402 } 6403 // Heap region set verification 6404 6405 class VerifyRegionListsClosure : public HeapRegionClosure { 6406 private: 6407 FreeRegionList* _free_list; 6408 OldRegionSet* _old_set; 6409 HumongousRegionSet* _humongous_set; 6410 uint _region_count; 6411 6412 public: 6413 VerifyRegionListsClosure(OldRegionSet* old_set, 6414 HumongousRegionSet* humongous_set, 6415 FreeRegionList* free_list) : 6416 _old_set(old_set), _humongous_set(humongous_set), 6417 _free_list(free_list), _region_count(0) { } 6418 6419 uint region_count() { return _region_count; } 6420 6421 bool doHeapRegion(HeapRegion* hr) { 6422 _region_count += 1; 6423 6424 if (hr->continuesHumongous()) { 6425 return false; 6426 } 6427 6428 if (hr->is_young()) { 6429 // TODO 6430 } else if (hr->startsHumongous()) { 6431 _humongous_set->verify_next_region(hr); 6432 } else if (hr->is_empty()) { 6433 _free_list->verify_next_region(hr); 6434 } else { 6435 _old_set->verify_next_region(hr); 6436 } 6437 return false; 6438 } 6439 }; 6440 6441 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index, 6442 HeapWord* bottom) { 6443 HeapWord* end = bottom + HeapRegion::GrainWords; 6444 MemRegion mr(bottom, end); 6445 assert(_g1_reserved.contains(mr), "invariant"); 6446 // This might return NULL if the allocation fails 6447 return new HeapRegion(hrs_index, _bot_shared, mr); 6448 } 6449 6450 void G1CollectedHeap::verify_region_sets() { 6451 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6452 6453 // First, check the explicit lists. 6454 _free_list.verify(); 6455 { 6456 // Given that a concurrent operation might be adding regions to 6457 // the secondary free list we have to take the lock before 6458 // verifying it. 6459 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6460 _secondary_free_list.verify(); 6461 } 6462 _old_set.verify(); 6463 _humongous_set.verify(); 6464 6465 // If a concurrent region freeing operation is in progress it will 6466 // be difficult to correctly attributed any free regions we come 6467 // across to the correct free list given that they might belong to 6468 // one of several (free_list, secondary_free_list, any local lists, 6469 // etc.). So, if that's the case we will skip the rest of the 6470 // verification operation. Alternatively, waiting for the concurrent 6471 // operation to complete will have a non-trivial effect on the GC's 6472 // operation (no concurrent operation will last longer than the 6473 // interval between two calls to verification) and it might hide 6474 // any issues that we would like to catch during testing. 6475 if (free_regions_coming()) { 6476 return; 6477 } 6478 6479 // Make sure we append the secondary_free_list on the free_list so 6480 // that all free regions we will come across can be safely 6481 // attributed to the free_list. 6482 append_secondary_free_list_if_not_empty_with_lock(); 6483 6484 // Finally, make sure that the region accounting in the lists is 6485 // consistent with what we see in the heap. 6486 _old_set.verify_start(); 6487 _humongous_set.verify_start(); 6488 _free_list.verify_start(); 6489 6490 VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list); 6491 heap_region_iterate(&cl); 6492 6493 _old_set.verify_end(); 6494 _humongous_set.verify_end(); 6495 _free_list.verify_end(); 6496 }