1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  37 #include "gc_implementation/g1/g1Log.hpp"
  38 #include "gc_implementation/g1/g1MarkSweep.hpp"
  39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  41 #include "gc_implementation/g1/heapRegion.inline.hpp"
  42 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  43 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  44 #include "gc_implementation/g1/vm_operations_g1.hpp"
  45 #include "gc_implementation/shared/isGCActiveMark.hpp"
  46 #include "memory/gcLocker.inline.hpp"
  47 #include "memory/genOopClosures.inline.hpp"
  48 #include "memory/generationSpec.hpp"
  49 #include "memory/referenceProcessor.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/oop.pcgc.inline.hpp"
  52 #include "runtime/aprofiler.hpp"
  53 #include "runtime/vmThread.hpp"
  54 
  55 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  56 
  57 // turn it on so that the contents of the young list (scan-only /
  58 // to-be-collected) are printed at "strategic" points before / during
  59 // / after the collection --- this is useful for debugging
  60 #define YOUNG_LIST_VERBOSE 0
  61 // CURRENT STATUS
  62 // This file is under construction.  Search for "FIXME".
  63 
  64 // INVARIANTS/NOTES
  65 //
  66 // All allocation activity covered by the G1CollectedHeap interface is
  67 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  68 // and allocate_new_tlab, which are the "entry" points to the
  69 // allocation code from the rest of the JVM.  (Note that this does not
  70 // apply to TLAB allocation, which is not part of this interface: it
  71 // is done by clients of this interface.)
  72 
  73 // Notes on implementation of parallelism in different tasks.
  74 //
  75 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  76 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  77 // It does use run_task() which sets _n_workers in the task.
  78 // G1ParTask executes g1_process_strong_roots() ->
  79 // SharedHeap::process_strong_roots() which calls eventuall to
  80 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  81 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  82 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  83 //
  84 
  85 // Local to this file.
  86 
  87 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  88   SuspendibleThreadSet* _sts;
  89   G1RemSet* _g1rs;
  90   ConcurrentG1Refine* _cg1r;
  91   bool _concurrent;
  92 public:
  93   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  94                               G1RemSet* g1rs,
  95                               ConcurrentG1Refine* cg1r) :
  96     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  97   {}
  98   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  99     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
 100     // This path is executed by the concurrent refine or mutator threads,
 101     // concurrently, and so we do not care if card_ptr contains references
 102     // that point into the collection set.
 103     assert(!oops_into_cset, "should be");
 104 
 105     if (_concurrent && _sts->should_yield()) {
 106       // Caller will actually yield.
 107       return false;
 108     }
 109     // Otherwise, we finished successfully; return true.
 110     return true;
 111   }
 112   void set_concurrent(bool b) { _concurrent = b; }
 113 };
 114 
 115 
 116 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 117   int _calls;
 118   G1CollectedHeap* _g1h;
 119   CardTableModRefBS* _ctbs;
 120   int _histo[256];
 121 public:
 122   ClearLoggedCardTableEntryClosure() :
 123     _calls(0)
 124   {
 125     _g1h = G1CollectedHeap::heap();
 126     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 127     for (int i = 0; i < 256; i++) _histo[i] = 0;
 128   }
 129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 131       _calls++;
 132       unsigned char* ujb = (unsigned char*)card_ptr;
 133       int ind = (int)(*ujb);
 134       _histo[ind]++;
 135       *card_ptr = -1;
 136     }
 137     return true;
 138   }
 139   int calls() { return _calls; }
 140   void print_histo() {
 141     gclog_or_tty->print_cr("Card table value histogram:");
 142     for (int i = 0; i < 256; i++) {
 143       if (_histo[i] != 0) {
 144         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 145       }
 146     }
 147   }
 148 };
 149 
 150 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 151   int _calls;
 152   G1CollectedHeap* _g1h;
 153   CardTableModRefBS* _ctbs;
 154 public:
 155   RedirtyLoggedCardTableEntryClosure() :
 156     _calls(0)
 157   {
 158     _g1h = G1CollectedHeap::heap();
 159     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 160   }
 161   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 162     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 163       _calls++;
 164       *card_ptr = 0;
 165     }
 166     return true;
 167   }
 168   int calls() { return _calls; }
 169 };
 170 
 171 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 172 public:
 173   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 174     *card_ptr = CardTableModRefBS::dirty_card_val();
 175     return true;
 176   }
 177 };
 178 
 179 YoungList::YoungList(G1CollectedHeap* g1h) :
 180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 182   guarantee(check_list_empty(false), "just making sure...");
 183 }
 184 
 185 void YoungList::push_region(HeapRegion *hr) {
 186   assert(!hr->is_young(), "should not already be young");
 187   assert(hr->get_next_young_region() == NULL, "cause it should!");
 188 
 189   hr->set_next_young_region(_head);
 190   _head = hr;
 191 
 192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 193   ++_length;
 194 }
 195 
 196 void YoungList::add_survivor_region(HeapRegion* hr) {
 197   assert(hr->is_survivor(), "should be flagged as survivor region");
 198   assert(hr->get_next_young_region() == NULL, "cause it should!");
 199 
 200   hr->set_next_young_region(_survivor_head);
 201   if (_survivor_head == NULL) {
 202     _survivor_tail = hr;
 203   }
 204   _survivor_head = hr;
 205   ++_survivor_length;
 206 }
 207 
 208 void YoungList::empty_list(HeapRegion* list) {
 209   while (list != NULL) {
 210     HeapRegion* next = list->get_next_young_region();
 211     list->set_next_young_region(NULL);
 212     list->uninstall_surv_rate_group();
 213     list->set_not_young();
 214     list = next;
 215   }
 216 }
 217 
 218 void YoungList::empty_list() {
 219   assert(check_list_well_formed(), "young list should be well formed");
 220 
 221   empty_list(_head);
 222   _head = NULL;
 223   _length = 0;
 224 
 225   empty_list(_survivor_head);
 226   _survivor_head = NULL;
 227   _survivor_tail = NULL;
 228   _survivor_length = 0;
 229 
 230   _last_sampled_rs_lengths = 0;
 231 
 232   assert(check_list_empty(false), "just making sure...");
 233 }
 234 
 235 bool YoungList::check_list_well_formed() {
 236   bool ret = true;
 237 
 238   uint length = 0;
 239   HeapRegion* curr = _head;
 240   HeapRegion* last = NULL;
 241   while (curr != NULL) {
 242     if (!curr->is_young()) {
 243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 244                              "incorrectly tagged (y: %d, surv: %d)",
 245                              curr->bottom(), curr->end(),
 246                              curr->is_young(), curr->is_survivor());
 247       ret = false;
 248     }
 249     ++length;
 250     last = curr;
 251     curr = curr->get_next_young_region();
 252   }
 253   ret = ret && (length == _length);
 254 
 255   if (!ret) {
 256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 258                            length, _length);
 259   }
 260 
 261   return ret;
 262 }
 263 
 264 bool YoungList::check_list_empty(bool check_sample) {
 265   bool ret = true;
 266 
 267   if (_length != 0) {
 268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 269                   _length);
 270     ret = false;
 271   }
 272   if (check_sample && _last_sampled_rs_lengths != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 274     ret = false;
 275   }
 276   if (_head != NULL) {
 277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 278     ret = false;
 279   }
 280   if (!ret) {
 281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 282   }
 283 
 284   return ret;
 285 }
 286 
 287 void
 288 YoungList::rs_length_sampling_init() {
 289   _sampled_rs_lengths = 0;
 290   _curr               = _head;
 291 }
 292 
 293 bool
 294 YoungList::rs_length_sampling_more() {
 295   return _curr != NULL;
 296 }
 297 
 298 void
 299 YoungList::rs_length_sampling_next() {
 300   assert( _curr != NULL, "invariant" );
 301   size_t rs_length = _curr->rem_set()->occupied();
 302 
 303   _sampled_rs_lengths += rs_length;
 304 
 305   // The current region may not yet have been added to the
 306   // incremental collection set (it gets added when it is
 307   // retired as the current allocation region).
 308   if (_curr->in_collection_set()) {
 309     // Update the collection set policy information for this region
 310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 311   }
 312 
 313   _curr = _curr->get_next_young_region();
 314   if (_curr == NULL) {
 315     _last_sampled_rs_lengths = _sampled_rs_lengths;
 316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 317   }
 318 }
 319 
 320 void
 321 YoungList::reset_auxilary_lists() {
 322   guarantee( is_empty(), "young list should be empty" );
 323   assert(check_list_well_formed(), "young list should be well formed");
 324 
 325   // Add survivor regions to SurvRateGroup.
 326   _g1h->g1_policy()->note_start_adding_survivor_regions();
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 328 
 329   int young_index_in_cset = 0;
 330   for (HeapRegion* curr = _survivor_head;
 331        curr != NULL;
 332        curr = curr->get_next_young_region()) {
 333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 334 
 335     // The region is a non-empty survivor so let's add it to
 336     // the incremental collection set for the next evacuation
 337     // pause.
 338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 339     young_index_in_cset += 1;
 340   }
 341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 343 
 344   _head   = _survivor_head;
 345   _length = _survivor_length;
 346   if (_survivor_head != NULL) {
 347     assert(_survivor_tail != NULL, "cause it shouldn't be");
 348     assert(_survivor_length > 0, "invariant");
 349     _survivor_tail->set_next_young_region(NULL);
 350   }
 351 
 352   // Don't clear the survivor list handles until the start of
 353   // the next evacuation pause - we need it in order to re-tag
 354   // the survivor regions from this evacuation pause as 'young'
 355   // at the start of the next.
 356 
 357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 358 
 359   assert(check_list_well_formed(), "young list should be well formed");
 360 }
 361 
 362 void YoungList::print() {
 363   HeapRegion* lists[] = {_head,   _survivor_head};
 364   const char* names[] = {"YOUNG", "SURVIVOR"};
 365 
 366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 368     HeapRegion *curr = lists[list];
 369     if (curr == NULL)
 370       gclog_or_tty->print_cr("  empty");
 371     while (curr != NULL) {
 372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 373                              HR_FORMAT_PARAMS(curr),
 374                              curr->prev_top_at_mark_start(),
 375                              curr->next_top_at_mark_start(),
 376                              curr->age_in_surv_rate_group_cond());
 377       curr = curr->get_next_young_region();
 378     }
 379   }
 380 
 381   gclog_or_tty->print_cr("");
 382 }
 383 
 384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 385 {
 386   // Claim the right to put the region on the dirty cards region list
 387   // by installing a self pointer.
 388   HeapRegion* next = hr->get_next_dirty_cards_region();
 389   if (next == NULL) {
 390     HeapRegion* res = (HeapRegion*)
 391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 392                           NULL);
 393     if (res == NULL) {
 394       HeapRegion* head;
 395       do {
 396         // Put the region to the dirty cards region list.
 397         head = _dirty_cards_region_list;
 398         next = (HeapRegion*)
 399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 400         if (next == head) {
 401           assert(hr->get_next_dirty_cards_region() == hr,
 402                  "hr->get_next_dirty_cards_region() != hr");
 403           if (next == NULL) {
 404             // The last region in the list points to itself.
 405             hr->set_next_dirty_cards_region(hr);
 406           } else {
 407             hr->set_next_dirty_cards_region(next);
 408           }
 409         }
 410       } while (next != head);
 411     }
 412   }
 413 }
 414 
 415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 416 {
 417   HeapRegion* head;
 418   HeapRegion* hr;
 419   do {
 420     head = _dirty_cards_region_list;
 421     if (head == NULL) {
 422       return NULL;
 423     }
 424     HeapRegion* new_head = head->get_next_dirty_cards_region();
 425     if (head == new_head) {
 426       // The last region.
 427       new_head = NULL;
 428     }
 429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 430                                           head);
 431   } while (hr != head);
 432   assert(hr != NULL, "invariant");
 433   hr->set_next_dirty_cards_region(NULL);
 434   return hr;
 435 }
 436 
 437 void G1CollectedHeap::stop_conc_gc_threads() {
 438   _cg1r->stop();
 439   _cmThread->stop();
 440 }
 441 
 442 #ifdef ASSERT
 443 // A region is added to the collection set as it is retired
 444 // so an address p can point to a region which will be in the
 445 // collection set but has not yet been retired.  This method
 446 // therefore is only accurate during a GC pause after all
 447 // regions have been retired.  It is used for debugging
 448 // to check if an nmethod has references to objects that can
 449 // be move during a partial collection.  Though it can be
 450 // inaccurate, it is sufficient for G1 because the conservative
 451 // implementation of is_scavengable() for G1 will indicate that
 452 // all nmethods must be scanned during a partial collection.
 453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 454   HeapRegion* hr = heap_region_containing(p);
 455   return hr != NULL && hr->in_collection_set();
 456 }
 457 #endif
 458 
 459 // Returns true if the reference points to an object that
 460 // can move in an incremental collecction.
 461 bool G1CollectedHeap::is_scavengable(const void* p) {
 462   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 463   G1CollectorPolicy* g1p = g1h->g1_policy();
 464   HeapRegion* hr = heap_region_containing(p);
 465   if (hr == NULL) {
 466      // perm gen (or null)
 467      return false;
 468   } else {
 469     return !hr->isHumongous();
 470   }
 471 }
 472 
 473 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 474   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 475   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 476 
 477   // Count the dirty cards at the start.
 478   CountNonCleanMemRegionClosure count1(this);
 479   ct_bs->mod_card_iterate(&count1);
 480   int orig_count = count1.n();
 481 
 482   // First clear the logged cards.
 483   ClearLoggedCardTableEntryClosure clear;
 484   dcqs.set_closure(&clear);
 485   dcqs.apply_closure_to_all_completed_buffers();
 486   dcqs.iterate_closure_all_threads(false);
 487   clear.print_histo();
 488 
 489   // Now ensure that there's no dirty cards.
 490   CountNonCleanMemRegionClosure count2(this);
 491   ct_bs->mod_card_iterate(&count2);
 492   if (count2.n() != 0) {
 493     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 494                            count2.n(), orig_count);
 495   }
 496   guarantee(count2.n() == 0, "Card table should be clean.");
 497 
 498   RedirtyLoggedCardTableEntryClosure redirty;
 499   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 500   dcqs.apply_closure_to_all_completed_buffers();
 501   dcqs.iterate_closure_all_threads(false);
 502   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 503                          clear.calls(), orig_count);
 504   guarantee(redirty.calls() == clear.calls(),
 505             "Or else mechanism is broken.");
 506 
 507   CountNonCleanMemRegionClosure count3(this);
 508   ct_bs->mod_card_iterate(&count3);
 509   if (count3.n() != orig_count) {
 510     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 511                            orig_count, count3.n());
 512     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 513   }
 514 
 515   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 516 }
 517 
 518 // Private class members.
 519 
 520 G1CollectedHeap* G1CollectedHeap::_g1h;
 521 
 522 // Private methods.
 523 
 524 HeapRegion*
 525 G1CollectedHeap::new_region_try_secondary_free_list() {
 526   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 527   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 528     if (!_secondary_free_list.is_empty()) {
 529       if (G1ConcRegionFreeingVerbose) {
 530         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 531                                "secondary_free_list has %u entries",
 532                                _secondary_free_list.length());
 533       }
 534       // It looks as if there are free regions available on the
 535       // secondary_free_list. Let's move them to the free_list and try
 536       // again to allocate from it.
 537       append_secondary_free_list();
 538 
 539       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 540              "empty we should have moved at least one entry to the free_list");
 541       HeapRegion* res = _free_list.remove_head();
 542       if (G1ConcRegionFreeingVerbose) {
 543         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 544                                "allocated "HR_FORMAT" from secondary_free_list",
 545                                HR_FORMAT_PARAMS(res));
 546       }
 547       return res;
 548     }
 549 
 550     // Wait here until we get notifed either when (a) there are no
 551     // more free regions coming or (b) some regions have been moved on
 552     // the secondary_free_list.
 553     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 554   }
 555 
 556   if (G1ConcRegionFreeingVerbose) {
 557     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 558                            "could not allocate from secondary_free_list");
 559   }
 560   return NULL;
 561 }
 562 
 563 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 564   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 565          "the only time we use this to allocate a humongous region is "
 566          "when we are allocating a single humongous region");
 567 
 568   HeapRegion* res;
 569   if (G1StressConcRegionFreeing) {
 570     if (!_secondary_free_list.is_empty()) {
 571       if (G1ConcRegionFreeingVerbose) {
 572         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 573                                "forced to look at the secondary_free_list");
 574       }
 575       res = new_region_try_secondary_free_list();
 576       if (res != NULL) {
 577         return res;
 578       }
 579     }
 580   }
 581   res = _free_list.remove_head_or_null();
 582   if (res == NULL) {
 583     if (G1ConcRegionFreeingVerbose) {
 584       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 585                              "res == NULL, trying the secondary_free_list");
 586     }
 587     res = new_region_try_secondary_free_list();
 588   }
 589   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 590     // Currently, only attempts to allocate GC alloc regions set
 591     // do_expand to true. So, we should only reach here during a
 592     // safepoint. If this assumption changes we might have to
 593     // reconsider the use of _expand_heap_after_alloc_failure.
 594     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 595 
 596     ergo_verbose1(ErgoHeapSizing,
 597                   "attempt heap expansion",
 598                   ergo_format_reason("region allocation request failed")
 599                   ergo_format_byte("allocation request"),
 600                   word_size * HeapWordSize);
 601     if (expand(word_size * HeapWordSize)) {
 602       // Given that expand() succeeded in expanding the heap, and we
 603       // always expand the heap by an amount aligned to the heap
 604       // region size, the free list should in theory not be empty. So
 605       // it would probably be OK to use remove_head(). But the extra
 606       // check for NULL is unlikely to be a performance issue here (we
 607       // just expanded the heap!) so let's just be conservative and
 608       // use remove_head_or_null().
 609       res = _free_list.remove_head_or_null();
 610     } else {
 611       _expand_heap_after_alloc_failure = false;
 612     }
 613   }
 614   return res;
 615 }
 616 
 617 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 618                                                         size_t word_size) {
 619   assert(isHumongous(word_size), "word_size should be humongous");
 620   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 621 
 622   uint first = G1_NULL_HRS_INDEX;
 623   if (num_regions == 1) {
 624     // Only one region to allocate, no need to go through the slower
 625     // path. The caller will attempt the expasion if this fails, so
 626     // let's not try to expand here too.
 627     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 628     if (hr != NULL) {
 629       first = hr->hrs_index();
 630     } else {
 631       first = G1_NULL_HRS_INDEX;
 632     }
 633   } else {
 634     // We can't allocate humongous regions while cleanupComplete() is
 635     // running, since some of the regions we find to be empty might not
 636     // yet be added to the free list and it is not straightforward to
 637     // know which list they are on so that we can remove them. Note
 638     // that we only need to do this if we need to allocate more than
 639     // one region to satisfy the current humongous allocation
 640     // request. If we are only allocating one region we use the common
 641     // region allocation code (see above).
 642     wait_while_free_regions_coming();
 643     append_secondary_free_list_if_not_empty_with_lock();
 644 
 645     if (free_regions() >= num_regions) {
 646       first = _hrs.find_contiguous(num_regions);
 647       if (first != G1_NULL_HRS_INDEX) {
 648         for (uint i = first; i < first + num_regions; ++i) {
 649           HeapRegion* hr = region_at(i);
 650           assert(hr->is_empty(), "sanity");
 651           assert(is_on_master_free_list(hr), "sanity");
 652           hr->set_pending_removal(true);
 653         }
 654         _free_list.remove_all_pending(num_regions);
 655       }
 656     }
 657   }
 658   return first;
 659 }
 660 
 661 HeapWord*
 662 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 663                                                            uint num_regions,
 664                                                            size_t word_size) {
 665   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 666   assert(isHumongous(word_size), "word_size should be humongous");
 667   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 668 
 669   // Index of last region in the series + 1.
 670   uint last = first + num_regions;
 671 
 672   // We need to initialize the region(s) we just discovered. This is
 673   // a bit tricky given that it can happen concurrently with
 674   // refinement threads refining cards on these regions and
 675   // potentially wanting to refine the BOT as they are scanning
 676   // those cards (this can happen shortly after a cleanup; see CR
 677   // 6991377). So we have to set up the region(s) carefully and in
 678   // a specific order.
 679 
 680   // The word size sum of all the regions we will allocate.
 681   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 682   assert(word_size <= word_size_sum, "sanity");
 683 
 684   // This will be the "starts humongous" region.
 685   HeapRegion* first_hr = region_at(first);
 686   // The header of the new object will be placed at the bottom of
 687   // the first region.
 688   HeapWord* new_obj = first_hr->bottom();
 689   // This will be the new end of the first region in the series that
 690   // should also match the end of the last region in the seriers.
 691   HeapWord* new_end = new_obj + word_size_sum;
 692   // This will be the new top of the first region that will reflect
 693   // this allocation.
 694   HeapWord* new_top = new_obj + word_size;
 695 
 696   // First, we need to zero the header of the space that we will be
 697   // allocating. When we update top further down, some refinement
 698   // threads might try to scan the region. By zeroing the header we
 699   // ensure that any thread that will try to scan the region will
 700   // come across the zero klass word and bail out.
 701   //
 702   // NOTE: It would not have been correct to have used
 703   // CollectedHeap::fill_with_object() and make the space look like
 704   // an int array. The thread that is doing the allocation will
 705   // later update the object header to a potentially different array
 706   // type and, for a very short period of time, the klass and length
 707   // fields will be inconsistent. This could cause a refinement
 708   // thread to calculate the object size incorrectly.
 709   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 710 
 711   // We will set up the first region as "starts humongous". This
 712   // will also update the BOT covering all the regions to reflect
 713   // that there is a single object that starts at the bottom of the
 714   // first region.
 715   first_hr->set_startsHumongous(new_top, new_end);
 716 
 717   // Then, if there are any, we will set up the "continues
 718   // humongous" regions.
 719   HeapRegion* hr = NULL;
 720   for (uint i = first + 1; i < last; ++i) {
 721     hr = region_at(i);
 722     hr->set_continuesHumongous(first_hr);
 723   }
 724   // If we have "continues humongous" regions (hr != NULL), then the
 725   // end of the last one should match new_end.
 726   assert(hr == NULL || hr->end() == new_end, "sanity");
 727 
 728   // Up to this point no concurrent thread would have been able to
 729   // do any scanning on any region in this series. All the top
 730   // fields still point to bottom, so the intersection between
 731   // [bottom,top] and [card_start,card_end] will be empty. Before we
 732   // update the top fields, we'll do a storestore to make sure that
 733   // no thread sees the update to top before the zeroing of the
 734   // object header and the BOT initialization.
 735   OrderAccess::storestore();
 736 
 737   // Now that the BOT and the object header have been initialized,
 738   // we can update top of the "starts humongous" region.
 739   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 740          "new_top should be in this region");
 741   first_hr->set_top(new_top);
 742   if (_hr_printer.is_active()) {
 743     HeapWord* bottom = first_hr->bottom();
 744     HeapWord* end = first_hr->orig_end();
 745     if ((first + 1) == last) {
 746       // the series has a single humongous region
 747       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 748     } else {
 749       // the series has more than one humongous regions
 750       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 751     }
 752   }
 753 
 754   // Now, we will update the top fields of the "continues humongous"
 755   // regions. The reason we need to do this is that, otherwise,
 756   // these regions would look empty and this will confuse parts of
 757   // G1. For example, the code that looks for a consecutive number
 758   // of empty regions will consider them empty and try to
 759   // re-allocate them. We can extend is_empty() to also include
 760   // !continuesHumongous(), but it is easier to just update the top
 761   // fields here. The way we set top for all regions (i.e., top ==
 762   // end for all regions but the last one, top == new_top for the
 763   // last one) is actually used when we will free up the humongous
 764   // region in free_humongous_region().
 765   hr = NULL;
 766   for (uint i = first + 1; i < last; ++i) {
 767     hr = region_at(i);
 768     if ((i + 1) == last) {
 769       // last continues humongous region
 770       assert(hr->bottom() < new_top && new_top <= hr->end(),
 771              "new_top should fall on this region");
 772       hr->set_top(new_top);
 773       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 774     } else {
 775       // not last one
 776       assert(new_top > hr->end(), "new_top should be above this region");
 777       hr->set_top(hr->end());
 778       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 779     }
 780   }
 781   // If we have continues humongous regions (hr != NULL), then the
 782   // end of the last one should match new_end and its top should
 783   // match new_top.
 784   assert(hr == NULL ||
 785          (hr->end() == new_end && hr->top() == new_top), "sanity");
 786 
 787   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 788   _summary_bytes_used += first_hr->used();
 789   _humongous_set.add(first_hr);
 790 
 791   return new_obj;
 792 }
 793 
 794 // If could fit into free regions w/o expansion, try.
 795 // Otherwise, if can expand, do so.
 796 // Otherwise, if using ex regions might help, try with ex given back.
 797 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 798   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 799 
 800   verify_region_sets_optional();
 801 
 802   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 803   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 804   uint x_num = expansion_regions();
 805   uint fs = _hrs.free_suffix();
 806   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 807   if (first == G1_NULL_HRS_INDEX) {
 808     // The only thing we can do now is attempt expansion.
 809     if (fs + x_num >= num_regions) {
 810       // If the number of regions we're trying to allocate for this
 811       // object is at most the number of regions in the free suffix,
 812       // then the call to humongous_obj_allocate_find_first() above
 813       // should have succeeded and we wouldn't be here.
 814       //
 815       // We should only be trying to expand when the free suffix is
 816       // not sufficient for the object _and_ we have some expansion
 817       // room available.
 818       assert(num_regions > fs, "earlier allocation should have succeeded");
 819 
 820       ergo_verbose1(ErgoHeapSizing,
 821                     "attempt heap expansion",
 822                     ergo_format_reason("humongous allocation request failed")
 823                     ergo_format_byte("allocation request"),
 824                     word_size * HeapWordSize);
 825       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 826         // Even though the heap was expanded, it might not have
 827         // reached the desired size. So, we cannot assume that the
 828         // allocation will succeed.
 829         first = humongous_obj_allocate_find_first(num_regions, word_size);
 830       }
 831     }
 832   }
 833 
 834   HeapWord* result = NULL;
 835   if (first != G1_NULL_HRS_INDEX) {
 836     result =
 837       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 838     assert(result != NULL, "it should always return a valid result");
 839 
 840     // A successful humongous object allocation changes the used space
 841     // information of the old generation so we need to recalculate the
 842     // sizes and update the jstat counters here.
 843     g1mm()->update_sizes();
 844   }
 845 
 846   verify_region_sets_optional();
 847 
 848   return result;
 849 }
 850 
 851 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 852   assert_heap_not_locked_and_not_at_safepoint();
 853   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 854 
 855   unsigned int dummy_gc_count_before;
 856   return attempt_allocation(word_size, &dummy_gc_count_before);
 857 }
 858 
 859 HeapWord*
 860 G1CollectedHeap::mem_allocate(size_t word_size,
 861                               bool*  gc_overhead_limit_was_exceeded) {
 862   assert_heap_not_locked_and_not_at_safepoint();
 863 
 864   // Loop until the allocation is satisified, or unsatisfied after GC.
 865   for (int try_count = 1; /* we'll return */; try_count += 1) {
 866     unsigned int gc_count_before;
 867 
 868     HeapWord* result = NULL;
 869     if (!isHumongous(word_size)) {
 870       result = attempt_allocation(word_size, &gc_count_before);
 871     } else {
 872       result = attempt_allocation_humongous(word_size, &gc_count_before);
 873     }
 874     if (result != NULL) {
 875       return result;
 876     }
 877 
 878     // Create the garbage collection operation...
 879     VM_G1CollectForAllocation op(gc_count_before, word_size);
 880     // ...and get the VM thread to execute it.
 881     VMThread::execute(&op);
 882 
 883     if (op.prologue_succeeded() && op.pause_succeeded()) {
 884       // If the operation was successful we'll return the result even
 885       // if it is NULL. If the allocation attempt failed immediately
 886       // after a Full GC, it's unlikely we'll be able to allocate now.
 887       HeapWord* result = op.result();
 888       if (result != NULL && !isHumongous(word_size)) {
 889         // Allocations that take place on VM operations do not do any
 890         // card dirtying and we have to do it here. We only have to do
 891         // this for non-humongous allocations, though.
 892         dirty_young_block(result, word_size);
 893       }
 894       return result;
 895     } else {
 896       assert(op.result() == NULL,
 897              "the result should be NULL if the VM op did not succeed");
 898     }
 899 
 900     // Give a warning if we seem to be looping forever.
 901     if ((QueuedAllocationWarningCount > 0) &&
 902         (try_count % QueuedAllocationWarningCount == 0)) {
 903       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 904     }
 905   }
 906 
 907   ShouldNotReachHere();
 908   return NULL;
 909 }
 910 
 911 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 912                                            unsigned int *gc_count_before_ret) {
 913   // Make sure you read the note in attempt_allocation_humongous().
 914 
 915   assert_heap_not_locked_and_not_at_safepoint();
 916   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 917          "be called for humongous allocation requests");
 918 
 919   // We should only get here after the first-level allocation attempt
 920   // (attempt_allocation()) failed to allocate.
 921 
 922   // We will loop until a) we manage to successfully perform the
 923   // allocation or b) we successfully schedule a collection which
 924   // fails to perform the allocation. b) is the only case when we'll
 925   // return NULL.
 926   HeapWord* result = NULL;
 927   for (int try_count = 1; /* we'll return */; try_count += 1) {
 928     bool should_try_gc;
 929     unsigned int gc_count_before;
 930 
 931     {
 932       MutexLockerEx x(Heap_lock);
 933 
 934       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 935                                                       false /* bot_updates */);
 936       if (result != NULL) {
 937         return result;
 938       }
 939 
 940       // If we reach here, attempt_allocation_locked() above failed to
 941       // allocate a new region. So the mutator alloc region should be NULL.
 942       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 943 
 944       if (GC_locker::is_active_and_needs_gc()) {
 945         if (g1_policy()->can_expand_young_list()) {
 946           // No need for an ergo verbose message here,
 947           // can_expand_young_list() does this when it returns true.
 948           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 949                                                       false /* bot_updates */);
 950           if (result != NULL) {
 951             return result;
 952           }
 953         }
 954         should_try_gc = false;
 955       } else {
 956         // The GCLocker may not be active but the GCLocker initiated
 957         // GC may not yet have been performed (GCLocker::needs_gc()
 958         // returns true). In this case we do not try this GC and
 959         // wait until the GCLocker initiated GC is performed, and
 960         // then retry the allocation.
 961         if (GC_locker::needs_gc()) {
 962           should_try_gc = false;
 963         } else {
 964           // Read the GC count while still holding the Heap_lock.
 965           gc_count_before = total_collections();
 966           should_try_gc = true;
 967         }
 968       }
 969     }
 970 
 971     if (should_try_gc) {
 972       bool succeeded;
 973       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 974       if (result != NULL) {
 975         assert(succeeded, "only way to get back a non-NULL result");
 976         return result;
 977       }
 978 
 979       if (succeeded) {
 980         // If we get here we successfully scheduled a collection which
 981         // failed to allocate. No point in trying to allocate
 982         // further. We'll just return NULL.
 983         MutexLockerEx x(Heap_lock);
 984         *gc_count_before_ret = total_collections();
 985         return NULL;
 986       }
 987     } else {
 988       // The GCLocker is either active or the GCLocker initiated
 989       // GC has not yet been performed. Stall until it is and
 990       // then retry the allocation.
 991       GC_locker::stall_until_clear();
 992     }
 993 
 994     // We can reach here if we were unsuccessul in scheduling a
 995     // collection (because another thread beat us to it) or if we were
 996     // stalled due to the GC locker. In either can we should retry the
 997     // allocation attempt in case another thread successfully
 998     // performed a collection and reclaimed enough space. We do the
 999     // first attempt (without holding the Heap_lock) here and the
1000     // follow-on attempt will be at the start of the next loop
1001     // iteration (after taking the Heap_lock).
1002     result = _mutator_alloc_region.attempt_allocation(word_size,
1003                                                       false /* bot_updates */);
1004     if (result != NULL) {
1005       return result;
1006     }
1007 
1008     // Give a warning if we seem to be looping forever.
1009     if ((QueuedAllocationWarningCount > 0) &&
1010         (try_count % QueuedAllocationWarningCount == 0)) {
1011       warning("G1CollectedHeap::attempt_allocation_slow() "
1012               "retries %d times", try_count);
1013     }
1014   }
1015 
1016   ShouldNotReachHere();
1017   return NULL;
1018 }
1019 
1020 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1021                                           unsigned int * gc_count_before_ret) {
1022   // The structure of this method has a lot of similarities to
1023   // attempt_allocation_slow(). The reason these two were not merged
1024   // into a single one is that such a method would require several "if
1025   // allocation is not humongous do this, otherwise do that"
1026   // conditional paths which would obscure its flow. In fact, an early
1027   // version of this code did use a unified method which was harder to
1028   // follow and, as a result, it had subtle bugs that were hard to
1029   // track down. So keeping these two methods separate allows each to
1030   // be more readable. It will be good to keep these two in sync as
1031   // much as possible.
1032 
1033   assert_heap_not_locked_and_not_at_safepoint();
1034   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1035          "should only be called for humongous allocations");
1036 
1037   // Humongous objects can exhaust the heap quickly, so we should check if we
1038   // need to start a marking cycle at each humongous object allocation. We do
1039   // the check before we do the actual allocation. The reason for doing it
1040   // before the allocation is that we avoid having to keep track of the newly
1041   // allocated memory while we do a GC.
1042   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1043                                            word_size)) {
1044     collect(GCCause::_g1_humongous_allocation);
1045   }
1046 
1047   // We will loop until a) we manage to successfully perform the
1048   // allocation or b) we successfully schedule a collection which
1049   // fails to perform the allocation. b) is the only case when we'll
1050   // return NULL.
1051   HeapWord* result = NULL;
1052   for (int try_count = 1; /* we'll return */; try_count += 1) {
1053     bool should_try_gc;
1054     unsigned int gc_count_before;
1055 
1056     {
1057       MutexLockerEx x(Heap_lock);
1058 
1059       // Given that humongous objects are not allocated in young
1060       // regions, we'll first try to do the allocation without doing a
1061       // collection hoping that there's enough space in the heap.
1062       result = humongous_obj_allocate(word_size);
1063       if (result != NULL) {
1064         return result;
1065       }
1066 
1067       if (GC_locker::is_active_and_needs_gc()) {
1068         should_try_gc = false;
1069       } else {
1070          // The GCLocker may not be active but the GCLocker initiated
1071         // GC may not yet have been performed (GCLocker::needs_gc()
1072         // returns true). In this case we do not try this GC and
1073         // wait until the GCLocker initiated GC is performed, and
1074         // then retry the allocation.
1075         if (GC_locker::needs_gc()) {
1076           should_try_gc = false;
1077         } else {
1078           // Read the GC count while still holding the Heap_lock.
1079           gc_count_before = total_collections();
1080           should_try_gc = true;
1081         }
1082       }
1083     }
1084 
1085     if (should_try_gc) {
1086       // If we failed to allocate the humongous object, we should try to
1087       // do a collection pause (if we're allowed) in case it reclaims
1088       // enough space for the allocation to succeed after the pause.
1089 
1090       bool succeeded;
1091       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1092       if (result != NULL) {
1093         assert(succeeded, "only way to get back a non-NULL result");
1094         return result;
1095       }
1096 
1097       if (succeeded) {
1098         // If we get here we successfully scheduled a collection which
1099         // failed to allocate. No point in trying to allocate
1100         // further. We'll just return NULL.
1101         MutexLockerEx x(Heap_lock);
1102         *gc_count_before_ret = total_collections();
1103         return NULL;
1104       }
1105     } else {
1106       // The GCLocker is either active or the GCLocker initiated
1107       // GC has not yet been performed. Stall until it is and
1108       // then retry the allocation.
1109       GC_locker::stall_until_clear();
1110     }
1111 
1112     // We can reach here if we were unsuccessul in scheduling a
1113     // collection (because another thread beat us to it) or if we were
1114     // stalled due to the GC locker. In either can we should retry the
1115     // allocation attempt in case another thread successfully
1116     // performed a collection and reclaimed enough space.  Give a
1117     // warning if we seem to be looping forever.
1118 
1119     if ((QueuedAllocationWarningCount > 0) &&
1120         (try_count % QueuedAllocationWarningCount == 0)) {
1121       warning("G1CollectedHeap::attempt_allocation_humongous() "
1122               "retries %d times", try_count);
1123     }
1124   }
1125 
1126   ShouldNotReachHere();
1127   return NULL;
1128 }
1129 
1130 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1131                                        bool expect_null_mutator_alloc_region) {
1132   assert_at_safepoint(true /* should_be_vm_thread */);
1133   assert(_mutator_alloc_region.get() == NULL ||
1134                                              !expect_null_mutator_alloc_region,
1135          "the current alloc region was unexpectedly found to be non-NULL");
1136 
1137   if (!isHumongous(word_size)) {
1138     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1139                                                       false /* bot_updates */);
1140   } else {
1141     HeapWord* result = humongous_obj_allocate(word_size);
1142     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1143       g1_policy()->set_initiate_conc_mark_if_possible();
1144     }
1145     return result;
1146   }
1147 
1148   ShouldNotReachHere();
1149 }
1150 
1151 class PostMCRemSetClearClosure: public HeapRegionClosure {
1152   G1CollectedHeap* _g1h;
1153   ModRefBarrierSet* _mr_bs;
1154 public:
1155   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1156     _g1h(g1h), _mr_bs(mr_bs) { }
1157   bool doHeapRegion(HeapRegion* r) {
1158     if (r->continuesHumongous()) {
1159       return false;
1160     }
1161     _g1h->reset_gc_time_stamps(r);
1162     HeapRegionRemSet* hrrs = r->rem_set();
1163     if (hrrs != NULL) hrrs->clear();
1164     // You might think here that we could clear just the cards
1165     // corresponding to the used region.  But no: if we leave a dirty card
1166     // in a region we might allocate into, then it would prevent that card
1167     // from being enqueued, and cause it to be missed.
1168     // Re: the performance cost: we shouldn't be doing full GC anyway!
1169     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1170     return false;
1171   }
1172 };
1173 
1174 void G1CollectedHeap::clear_rsets_post_compaction() {
1175   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1176   heap_region_iterate(&rs_clear);
1177 }
1178 
1179 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1180   G1CollectedHeap*   _g1h;
1181   UpdateRSOopClosure _cl;
1182   int                _worker_i;
1183 public:
1184   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1185     _cl(g1->g1_rem_set(), worker_i),
1186     _worker_i(worker_i),
1187     _g1h(g1)
1188   { }
1189 
1190   bool doHeapRegion(HeapRegion* r) {
1191     if (!r->continuesHumongous()) {
1192       _cl.set_from(r);
1193       r->oop_iterate(&_cl);
1194     }
1195     return false;
1196   }
1197 };
1198 
1199 class ParRebuildRSTask: public AbstractGangTask {
1200   G1CollectedHeap* _g1;
1201 public:
1202   ParRebuildRSTask(G1CollectedHeap* g1)
1203     : AbstractGangTask("ParRebuildRSTask"),
1204       _g1(g1)
1205   { }
1206 
1207   void work(uint worker_id) {
1208     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1209     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1210                                           _g1->workers()->active_workers(),
1211                                          HeapRegion::RebuildRSClaimValue);
1212   }
1213 };
1214 
1215 class PostCompactionPrinterClosure: public HeapRegionClosure {
1216 private:
1217   G1HRPrinter* _hr_printer;
1218 public:
1219   bool doHeapRegion(HeapRegion* hr) {
1220     assert(!hr->is_young(), "not expecting to find young regions");
1221     // We only generate output for non-empty regions.
1222     if (!hr->is_empty()) {
1223       if (!hr->isHumongous()) {
1224         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1225       } else if (hr->startsHumongous()) {
1226         if (hr->region_num() == 1) {
1227           // single humongous region
1228           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1229         } else {
1230           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1231         }
1232       } else {
1233         assert(hr->continuesHumongous(), "only way to get here");
1234         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1235       }
1236     }
1237     return false;
1238   }
1239 
1240   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1241     : _hr_printer(hr_printer) { }
1242 };
1243 
1244 void G1CollectedHeap::print_hrs_post_compaction() {
1245   PostCompactionPrinterClosure cl(hr_printer());
1246   heap_region_iterate(&cl);
1247 }
1248 
1249 bool G1CollectedHeap::do_collection(bool explicit_gc,
1250                                     bool clear_all_soft_refs,
1251                                     size_t word_size) {
1252   assert_at_safepoint(true /* should_be_vm_thread */);
1253 
1254   if (GC_locker::check_active_before_gc()) {
1255     return false;
1256   }
1257 
1258   SvcGCMarker sgcm(SvcGCMarker::FULL);
1259   ResourceMark rm;
1260 
1261   print_heap_before_gc();
1262 
1263   HRSPhaseSetter x(HRSPhaseFullGC);
1264   verify_region_sets_optional();
1265 
1266   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1267                            collector_policy()->should_clear_all_soft_refs();
1268 
1269   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1270 
1271   {
1272     IsGCActiveMark x;
1273 
1274     // Timing
1275     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1276     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1277     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1278 
1279     TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
1280     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1281     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1282 
1283     double start = os::elapsedTime();
1284     g1_policy()->record_full_collection_start();
1285 
1286     // Note: When we have a more flexible GC logging framework that
1287     // allows us to add optional attributes to a GC log record we
1288     // could consider timing and reporting how long we wait in the
1289     // following two methods.
1290     wait_while_free_regions_coming();
1291     // If we start the compaction before the CM threads finish
1292     // scanning the root regions we might trip them over as we'll
1293     // be moving objects / updating references. So let's wait until
1294     // they are done. By telling them to abort, they should complete
1295     // early.
1296     _cm->root_regions()->abort();
1297     _cm->root_regions()->wait_until_scan_finished();
1298     append_secondary_free_list_if_not_empty_with_lock();
1299 
1300     gc_prologue(true);
1301     increment_total_collections(true /* full gc */);
1302     increment_old_marking_cycles_started();
1303 
1304     size_t g1h_prev_used = used();
1305     assert(used() == recalculate_used(), "Should be equal");
1306 
1307     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
1308       HandleMark hm;  // Discard invalid handles created during verification
1309       gclog_or_tty->print(" VerifyBeforeGC:");
1310       prepare_for_verify();
1311       Universe::verify(/* silent      */ false,
1312                        /* option      */ VerifyOption_G1UsePrevMarking);
1313 
1314     }
1315     pre_full_gc_dump();
1316 
1317     COMPILER2_PRESENT(DerivedPointerTable::clear());
1318 
1319     // Disable discovery and empty the discovered lists
1320     // for the CM ref processor.
1321     ref_processor_cm()->disable_discovery();
1322     ref_processor_cm()->abandon_partial_discovery();
1323     ref_processor_cm()->verify_no_references_recorded();
1324 
1325     // Abandon current iterations of concurrent marking and concurrent
1326     // refinement, if any are in progress. We have to do this before
1327     // wait_until_scan_finished() below.
1328     concurrent_mark()->abort();
1329 
1330     // Make sure we'll choose a new allocation region afterwards.
1331     release_mutator_alloc_region();
1332     abandon_gc_alloc_regions();
1333     g1_rem_set()->cleanupHRRS();
1334 
1335     // We should call this after we retire any currently active alloc
1336     // regions so that all the ALLOC / RETIRE events are generated
1337     // before the start GC event.
1338     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1339 
1340     // We may have added regions to the current incremental collection
1341     // set between the last GC or pause and now. We need to clear the
1342     // incremental collection set and then start rebuilding it afresh
1343     // after this full GC.
1344     abandon_collection_set(g1_policy()->inc_cset_head());
1345     g1_policy()->clear_incremental_cset();
1346     g1_policy()->stop_incremental_cset_building();
1347 
1348     tear_down_region_sets(false /* free_list_only */);
1349     g1_policy()->set_gcs_are_young(true);
1350 
1351     // See the comments in g1CollectedHeap.hpp and
1352     // G1CollectedHeap::ref_processing_init() about
1353     // how reference processing currently works in G1.
1354 
1355     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1356     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1357 
1358     // Temporarily clear the STW ref processor's _is_alive_non_header field.
1359     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1360 
1361     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1362     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1363 
1364     // Do collection work
1365     {
1366       HandleMark hm;  // Discard invalid handles created during gc
1367       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1368     }
1369 
1370     assert(free_regions() == 0, "we should not have added any free regions");
1371     rebuild_region_sets(false /* free_list_only */);
1372 
1373     // Enqueue any discovered reference objects that have
1374     // not been removed from the discovered lists.
1375     ref_processor_stw()->enqueue_discovered_references();
1376 
1377     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1378 
1379     MemoryService::track_memory_usage();
1380 
1381     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
1382       HandleMark hm;  // Discard invalid handles created during verification
1383       gclog_or_tty->print(" VerifyAfterGC:");
1384       prepare_for_verify();
1385       Universe::verify(/* silent      */ false,
1386                        /* option      */ VerifyOption_G1UsePrevMarking);
1387 
1388     }
1389 
1390     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1391     ref_processor_stw()->verify_no_references_recorded();
1392 
1393     // Note: since we've just done a full GC, concurrent
1394     // marking is no longer active. Therefore we need not
1395     // re-enable reference discovery for the CM ref processor.
1396     // That will be done at the start of the next marking cycle.
1397     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1398     ref_processor_cm()->verify_no_references_recorded();
1399 
1400     reset_gc_time_stamp();
1401     // Since everything potentially moved, we will clear all remembered
1402     // sets, and clear all cards.  Later we will rebuild remebered
1403     // sets. We will also reset the GC time stamps of the regions.
1404     clear_rsets_post_compaction();
1405     check_gc_time_stamps();
1406 
1407     // Resize the heap if necessary.
1408     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1409 
1410     if (_hr_printer.is_active()) {
1411       // We should do this after we potentially resize the heap so
1412       // that all the COMMIT / UNCOMMIT events are generated before
1413       // the end GC event.
1414 
1415       print_hrs_post_compaction();
1416       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1417     }
1418 
1419     if (_cg1r->use_cache()) {
1420       _cg1r->clear_and_record_card_counts();
1421       _cg1r->clear_hot_cache();
1422     }
1423 
1424     // Rebuild remembered sets of all regions.
1425     if (G1CollectedHeap::use_parallel_gc_threads()) {
1426       uint n_workers =
1427         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1428                                        workers()->active_workers(),
1429                                        Threads::number_of_non_daemon_threads());
1430       assert(UseDynamicNumberOfGCThreads ||
1431              n_workers == workers()->total_workers(),
1432              "If not dynamic should be using all the  workers");
1433       workers()->set_active_workers(n_workers);
1434       // Set parallel threads in the heap (_n_par_threads) only
1435       // before a parallel phase and always reset it to 0 after
1436       // the phase so that the number of parallel threads does
1437       // no get carried forward to a serial phase where there
1438       // may be code that is "possibly_parallel".
1439       set_par_threads(n_workers);
1440 
1441       ParRebuildRSTask rebuild_rs_task(this);
1442       assert(check_heap_region_claim_values(
1443              HeapRegion::InitialClaimValue), "sanity check");
1444       assert(UseDynamicNumberOfGCThreads ||
1445              workers()->active_workers() == workers()->total_workers(),
1446         "Unless dynamic should use total workers");
1447       // Use the most recent number of  active workers
1448       assert(workers()->active_workers() > 0,
1449         "Active workers not properly set");
1450       set_par_threads(workers()->active_workers());
1451       workers()->run_task(&rebuild_rs_task);
1452       set_par_threads(0);
1453       assert(check_heap_region_claim_values(
1454              HeapRegion::RebuildRSClaimValue), "sanity check");
1455       reset_heap_region_claim_values();
1456     } else {
1457       RebuildRSOutOfRegionClosure rebuild_rs(this);
1458       heap_region_iterate(&rebuild_rs);
1459     }
1460 
1461     if (G1Log::fine()) {
1462       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1463     }
1464 
1465     if (true) { // FIXME
1466       // Ask the permanent generation to adjust size for full collections
1467       perm()->compute_new_size();
1468     }
1469 
1470     // Start a new incremental collection set for the next pause
1471     assert(g1_policy()->collection_set() == NULL, "must be");
1472     g1_policy()->start_incremental_cset_building();
1473 
1474     // Clear the _cset_fast_test bitmap in anticipation of adding
1475     // regions to the incremental collection set for the next
1476     // evacuation pause.
1477     clear_cset_fast_test();
1478 
1479     init_mutator_alloc_region();
1480 
1481     double end = os::elapsedTime();
1482     g1_policy()->record_full_collection_end();
1483 
1484 #ifdef TRACESPINNING
1485     ParallelTaskTerminator::print_termination_counts();
1486 #endif
1487 
1488     gc_epilogue(true);
1489 
1490     // Discard all rset updates
1491     JavaThread::dirty_card_queue_set().abandon_logs();
1492     assert(!G1DeferredRSUpdate
1493            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1494 
1495     _young_list->reset_sampled_info();
1496     // At this point there should be no regions in the
1497     // entire heap tagged as young.
1498     assert( check_young_list_empty(true /* check_heap */),
1499       "young list should be empty at this point");
1500 
1501     // Update the number of full collections that have been completed.
1502     increment_old_marking_cycles_completed(false /* concurrent */);
1503 
1504     _hrs.verify_optional();
1505     verify_region_sets_optional();
1506 
1507     print_heap_after_gc();
1508 
1509     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1510     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1511     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1512     // before any GC notifications are raised.
1513     g1mm()->update_sizes();
1514   }
1515 
1516   post_full_gc_dump();
1517 
1518   return true;
1519 }
1520 
1521 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1522   // do_collection() will return whether it succeeded in performing
1523   // the GC. Currently, there is no facility on the
1524   // do_full_collection() API to notify the caller than the collection
1525   // did not succeed (e.g., because it was locked out by the GC
1526   // locker). So, right now, we'll ignore the return value.
1527   bool dummy = do_collection(true,                /* explicit_gc */
1528                              clear_all_soft_refs,
1529                              0                    /* word_size */);
1530 }
1531 
1532 // This code is mostly copied from TenuredGeneration.
1533 void
1534 G1CollectedHeap::
1535 resize_if_necessary_after_full_collection(size_t word_size) {
1536   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1537 
1538   // Include the current allocation, if any, and bytes that will be
1539   // pre-allocated to support collections, as "used".
1540   const size_t used_after_gc = used();
1541   const size_t capacity_after_gc = capacity();
1542   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1543 
1544   // This is enforced in arguments.cpp.
1545   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1546          "otherwise the code below doesn't make sense");
1547 
1548   // We don't have floating point command-line arguments
1549   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1550   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1551   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1552   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1553 
1554   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1555   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1556 
1557   // We have to be careful here as these two calculations can overflow
1558   // 32-bit size_t's.
1559   double used_after_gc_d = (double) used_after_gc;
1560   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1561   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1562 
1563   // Let's make sure that they are both under the max heap size, which
1564   // by default will make them fit into a size_t.
1565   double desired_capacity_upper_bound = (double) max_heap_size;
1566   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1567                                     desired_capacity_upper_bound);
1568   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1569                                     desired_capacity_upper_bound);
1570 
1571   // We can now safely turn them into size_t's.
1572   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1573   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1574 
1575   // This assert only makes sense here, before we adjust them
1576   // with respect to the min and max heap size.
1577   assert(minimum_desired_capacity <= maximum_desired_capacity,
1578          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1579                  "maximum_desired_capacity = "SIZE_FORMAT,
1580                  minimum_desired_capacity, maximum_desired_capacity));
1581 
1582   // Should not be greater than the heap max size. No need to adjust
1583   // it with respect to the heap min size as it's a lower bound (i.e.,
1584   // we'll try to make the capacity larger than it, not smaller).
1585   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1586   // Should not be less than the heap min size. No need to adjust it
1587   // with respect to the heap max size as it's an upper bound (i.e.,
1588   // we'll try to make the capacity smaller than it, not greater).
1589   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1590 
1591   if (capacity_after_gc < minimum_desired_capacity) {
1592     // Don't expand unless it's significant
1593     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1594     ergo_verbose4(ErgoHeapSizing,
1595                   "attempt heap expansion",
1596                   ergo_format_reason("capacity lower than "
1597                                      "min desired capacity after Full GC")
1598                   ergo_format_byte("capacity")
1599                   ergo_format_byte("occupancy")
1600                   ergo_format_byte_perc("min desired capacity"),
1601                   capacity_after_gc, used_after_gc,
1602                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1603     expand(expand_bytes);
1604 
1605     // No expansion, now see if we want to shrink
1606   } else if (capacity_after_gc > maximum_desired_capacity) {
1607     // Capacity too large, compute shrinking size
1608     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1609     ergo_verbose4(ErgoHeapSizing,
1610                   "attempt heap shrinking",
1611                   ergo_format_reason("capacity higher than "
1612                                      "max desired capacity after Full GC")
1613                   ergo_format_byte("capacity")
1614                   ergo_format_byte("occupancy")
1615                   ergo_format_byte_perc("max desired capacity"),
1616                   capacity_after_gc, used_after_gc,
1617                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1618     shrink(shrink_bytes);
1619   }
1620 }
1621 
1622 
1623 HeapWord*
1624 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1625                                            bool* succeeded) {
1626   assert_at_safepoint(true /* should_be_vm_thread */);
1627 
1628   *succeeded = true;
1629   // Let's attempt the allocation first.
1630   HeapWord* result =
1631     attempt_allocation_at_safepoint(word_size,
1632                                  false /* expect_null_mutator_alloc_region */);
1633   if (result != NULL) {
1634     assert(*succeeded, "sanity");
1635     return result;
1636   }
1637 
1638   // In a G1 heap, we're supposed to keep allocation from failing by
1639   // incremental pauses.  Therefore, at least for now, we'll favor
1640   // expansion over collection.  (This might change in the future if we can
1641   // do something smarter than full collection to satisfy a failed alloc.)
1642   result = expand_and_allocate(word_size);
1643   if (result != NULL) {
1644     assert(*succeeded, "sanity");
1645     return result;
1646   }
1647 
1648   // Expansion didn't work, we'll try to do a Full GC.
1649   bool gc_succeeded = do_collection(false, /* explicit_gc */
1650                                     false, /* clear_all_soft_refs */
1651                                     word_size);
1652   if (!gc_succeeded) {
1653     *succeeded = false;
1654     return NULL;
1655   }
1656 
1657   // Retry the allocation
1658   result = attempt_allocation_at_safepoint(word_size,
1659                                   true /* expect_null_mutator_alloc_region */);
1660   if (result != NULL) {
1661     assert(*succeeded, "sanity");
1662     return result;
1663   }
1664 
1665   // Then, try a Full GC that will collect all soft references.
1666   gc_succeeded = do_collection(false, /* explicit_gc */
1667                                true,  /* clear_all_soft_refs */
1668                                word_size);
1669   if (!gc_succeeded) {
1670     *succeeded = false;
1671     return NULL;
1672   }
1673 
1674   // Retry the allocation once more
1675   result = attempt_allocation_at_safepoint(word_size,
1676                                   true /* expect_null_mutator_alloc_region */);
1677   if (result != NULL) {
1678     assert(*succeeded, "sanity");
1679     return result;
1680   }
1681 
1682   assert(!collector_policy()->should_clear_all_soft_refs(),
1683          "Flag should have been handled and cleared prior to this point");
1684 
1685   // What else?  We might try synchronous finalization later.  If the total
1686   // space available is large enough for the allocation, then a more
1687   // complete compaction phase than we've tried so far might be
1688   // appropriate.
1689   assert(*succeeded, "sanity");
1690   return NULL;
1691 }
1692 
1693 // Attempting to expand the heap sufficiently
1694 // to support an allocation of the given "word_size".  If
1695 // successful, perform the allocation and return the address of the
1696 // allocated block, or else "NULL".
1697 
1698 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1699   assert_at_safepoint(true /* should_be_vm_thread */);
1700 
1701   verify_region_sets_optional();
1702 
1703   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1704   ergo_verbose1(ErgoHeapSizing,
1705                 "attempt heap expansion",
1706                 ergo_format_reason("allocation request failed")
1707                 ergo_format_byte("allocation request"),
1708                 word_size * HeapWordSize);
1709   if (expand(expand_bytes)) {
1710     _hrs.verify_optional();
1711     verify_region_sets_optional();
1712     return attempt_allocation_at_safepoint(word_size,
1713                                  false /* expect_null_mutator_alloc_region */);
1714   }
1715   return NULL;
1716 }
1717 
1718 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1719                                              HeapWord* new_end) {
1720   assert(old_end != new_end, "don't call this otherwise");
1721   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1722 
1723   // Update the committed mem region.
1724   _g1_committed.set_end(new_end);
1725   // Tell the card table about the update.
1726   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1727   // Tell the BOT about the update.
1728   _bot_shared->resize(_g1_committed.word_size());
1729 }
1730 
1731 bool G1CollectedHeap::expand(size_t expand_bytes) {
1732   size_t old_mem_size = _g1_storage.committed_size();
1733   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1734   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1735                                        HeapRegion::GrainBytes);
1736   ergo_verbose2(ErgoHeapSizing,
1737                 "expand the heap",
1738                 ergo_format_byte("requested expansion amount")
1739                 ergo_format_byte("attempted expansion amount"),
1740                 expand_bytes, aligned_expand_bytes);
1741 
1742   // First commit the memory.
1743   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1744   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1745   if (successful) {
1746     // Then propagate this update to the necessary data structures.
1747     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1748     update_committed_space(old_end, new_end);
1749 
1750     FreeRegionList expansion_list("Local Expansion List");
1751     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1752     assert(mr.start() == old_end, "post-condition");
1753     // mr might be a smaller region than what was requested if
1754     // expand_by() was unable to allocate the HeapRegion instances
1755     assert(mr.end() <= new_end, "post-condition");
1756 
1757     size_t actual_expand_bytes = mr.byte_size();
1758     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1759     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1760            "post-condition");
1761     if (actual_expand_bytes < aligned_expand_bytes) {
1762       // We could not expand _hrs to the desired size. In this case we
1763       // need to shrink the committed space accordingly.
1764       assert(mr.end() < new_end, "invariant");
1765 
1766       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1767       // First uncommit the memory.
1768       _g1_storage.shrink_by(diff_bytes);
1769       // Then propagate this update to the necessary data structures.
1770       update_committed_space(new_end, mr.end());
1771     }
1772     _free_list.add_as_tail(&expansion_list);
1773 
1774     if (_hr_printer.is_active()) {
1775       HeapWord* curr = mr.start();
1776       while (curr < mr.end()) {
1777         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1778         _hr_printer.commit(curr, curr_end);
1779         curr = curr_end;
1780       }
1781       assert(curr == mr.end(), "post-condition");
1782     }
1783     g1_policy()->record_new_heap_size(n_regions());
1784   } else {
1785     ergo_verbose0(ErgoHeapSizing,
1786                   "did not expand the heap",
1787                   ergo_format_reason("heap expansion operation failed"));
1788     // The expansion of the virtual storage space was unsuccessful.
1789     // Let's see if it was because we ran out of swap.
1790     if (G1ExitOnExpansionFailure &&
1791         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1792       // We had head room...
1793       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1794     }
1795   }
1796   return successful;
1797 }
1798 
1799 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1800   size_t old_mem_size = _g1_storage.committed_size();
1801   size_t aligned_shrink_bytes =
1802     ReservedSpace::page_align_size_down(shrink_bytes);
1803   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1804                                          HeapRegion::GrainBytes);
1805   uint num_regions_deleted = 0;
1806   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1807   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1808   assert(mr.end() == old_end, "post-condition");
1809 
1810   ergo_verbose3(ErgoHeapSizing,
1811                 "shrink the heap",
1812                 ergo_format_byte("requested shrinking amount")
1813                 ergo_format_byte("aligned shrinking amount")
1814                 ergo_format_byte("attempted shrinking amount"),
1815                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1816   if (mr.byte_size() > 0) {
1817     if (_hr_printer.is_active()) {
1818       HeapWord* curr = mr.end();
1819       while (curr > mr.start()) {
1820         HeapWord* curr_end = curr;
1821         curr -= HeapRegion::GrainWords;
1822         _hr_printer.uncommit(curr, curr_end);
1823       }
1824       assert(curr == mr.start(), "post-condition");
1825     }
1826 
1827     _g1_storage.shrink_by(mr.byte_size());
1828     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1829     assert(mr.start() == new_end, "post-condition");
1830 
1831     _expansion_regions += num_regions_deleted;
1832     update_committed_space(old_end, new_end);
1833     HeapRegionRemSet::shrink_heap(n_regions());
1834     g1_policy()->record_new_heap_size(n_regions());
1835   } else {
1836     ergo_verbose0(ErgoHeapSizing,
1837                   "did not shrink the heap",
1838                   ergo_format_reason("heap shrinking operation failed"));
1839   }
1840 }
1841 
1842 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1843   verify_region_sets_optional();
1844 
1845   // We should only reach here at the end of a Full GC which means we
1846   // should not not be holding to any GC alloc regions. The method
1847   // below will make sure of that and do any remaining clean up.
1848   abandon_gc_alloc_regions();
1849 
1850   // Instead of tearing down / rebuilding the free lists here, we
1851   // could instead use the remove_all_pending() method on free_list to
1852   // remove only the ones that we need to remove.
1853   tear_down_region_sets(true /* free_list_only */);
1854   shrink_helper(shrink_bytes);
1855   rebuild_region_sets(true /* free_list_only */);
1856 
1857   _hrs.verify_optional();
1858   verify_region_sets_optional();
1859 }
1860 
1861 // Public methods.
1862 
1863 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1864 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1865 #endif // _MSC_VER
1866 
1867 
1868 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1869   SharedHeap(policy_),
1870   _g1_policy(policy_),
1871   _dirty_card_queue_set(false),
1872   _into_cset_dirty_card_queue_set(false),
1873   _is_alive_closure_cm(this),
1874   _is_alive_closure_stw(this),
1875   _ref_processor_cm(NULL),
1876   _ref_processor_stw(NULL),
1877   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1878   _bot_shared(NULL),
1879   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1880   _evac_failure_scan_stack(NULL) ,
1881   _mark_in_progress(false),
1882   _cg1r(NULL), _summary_bytes_used(0),
1883   _g1mm(NULL),
1884   _refine_cte_cl(NULL),
1885   _full_collection(false),
1886   _free_list("Master Free List"),
1887   _secondary_free_list("Secondary Free List"),
1888   _old_set("Old Set"),
1889   _humongous_set("Master Humongous Set"),
1890   _free_regions_coming(false),
1891   _young_list(new YoungList(this)),
1892   _gc_time_stamp(0),
1893   _retained_old_gc_alloc_region(NULL),
1894   _expand_heap_after_alloc_failure(true),
1895   _surviving_young_words(NULL),
1896   _old_marking_cycles_started(0),
1897   _old_marking_cycles_completed(0),
1898   _in_cset_fast_test(NULL),
1899   _in_cset_fast_test_base(NULL),
1900   _dirty_cards_region_list(NULL),
1901   _worker_cset_start_region(NULL),
1902   _worker_cset_start_region_time_stamp(NULL) {
1903   _g1h = this; // To catch bugs.
1904   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1905     vm_exit_during_initialization("Failed necessary allocation.");
1906   }
1907 
1908   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1909 
1910   int n_queues = MAX2((int)ParallelGCThreads, 1);
1911   _task_queues = new RefToScanQueueSet(n_queues);
1912 
1913   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1914   assert(n_rem_sets > 0, "Invariant.");
1915 
1916   HeapRegionRemSetIterator** iter_arr =
1917     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
1918   for (int i = 0; i < n_queues; i++) {
1919     iter_arr[i] = new HeapRegionRemSetIterator();
1920   }
1921   _rem_set_iterator = iter_arr;
1922 
1923   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1924   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1925 
1926   for (int i = 0; i < n_queues; i++) {
1927     RefToScanQueue* q = new RefToScanQueue();
1928     q->initialize();
1929     _task_queues->register_queue(i, q);
1930   }
1931 
1932   clear_cset_start_regions();
1933 
1934   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1935 }
1936 
1937 jint G1CollectedHeap::initialize() {
1938   CollectedHeap::pre_initialize();
1939   os::enable_vtime();
1940 
1941   G1Log::init();
1942 
1943   // Necessary to satisfy locking discipline assertions.
1944 
1945   MutexLocker x(Heap_lock);
1946 
1947   // We have to initialize the printer before committing the heap, as
1948   // it will be used then.
1949   _hr_printer.set_active(G1PrintHeapRegions);
1950 
1951   // While there are no constraints in the GC code that HeapWordSize
1952   // be any particular value, there are multiple other areas in the
1953   // system which believe this to be true (e.g. oop->object_size in some
1954   // cases incorrectly returns the size in wordSize units rather than
1955   // HeapWordSize).
1956   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1957 
1958   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1959   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1960 
1961   // Ensure that the sizes are properly aligned.
1962   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1963   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1964 
1965   _cg1r = new ConcurrentG1Refine();
1966 
1967   // Reserve the maximum.
1968   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1969   // Includes the perm-gen.
1970 
1971   // When compressed oops are enabled, the preferred heap base
1972   // is calculated by subtracting the requested size from the
1973   // 32Gb boundary and using the result as the base address for
1974   // heap reservation. If the requested size is not aligned to
1975   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1976   // into the ReservedHeapSpace constructor) then the actual
1977   // base of the reserved heap may end up differing from the
1978   // address that was requested (i.e. the preferred heap base).
1979   // If this happens then we could end up using a non-optimal
1980   // compressed oops mode.
1981 
1982   // Since max_byte_size is aligned to the size of a heap region (checked
1983   // above), we also need to align the perm gen size as it might not be.
1984   const size_t total_reserved = max_byte_size +
1985                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
1986   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
1987 
1988   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1989 
1990   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
1991                             UseLargePages, addr);
1992 
1993   if (UseCompressedOops) {
1994     if (addr != NULL && !heap_rs.is_reserved()) {
1995       // Failed to reserve at specified address - the requested memory
1996       // region is taken already, for example, by 'java' launcher.
1997       // Try again to reserver heap higher.
1998       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1999 
2000       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
2001                                  UseLargePages, addr);
2002 
2003       if (addr != NULL && !heap_rs0.is_reserved()) {
2004         // Failed to reserve at specified address again - give up.
2005         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
2006         assert(addr == NULL, "");
2007 
2008         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
2009                                    UseLargePages, addr);
2010         heap_rs = heap_rs1;
2011       } else {
2012         heap_rs = heap_rs0;
2013       }
2014     }
2015   }
2016 
2017   if (!heap_rs.is_reserved()) {
2018     vm_exit_during_initialization("Could not reserve enough space for object heap");
2019     return JNI_ENOMEM;
2020   }
2021 
2022   // It is important to do this in a way such that concurrent readers can't
2023   // temporarily think somethings in the heap.  (I've actually seen this
2024   // happen in asserts: DLD.)
2025   _reserved.set_word_size(0);
2026   _reserved.set_start((HeapWord*)heap_rs.base());
2027   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2028 
2029   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2030 
2031   // Create the gen rem set (and barrier set) for the entire reserved region.
2032   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2033   set_barrier_set(rem_set()->bs());
2034   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2035     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2036   } else {
2037     vm_exit_during_initialization("G1 requires a mod ref bs.");
2038     return JNI_ENOMEM;
2039   }
2040 
2041   // Also create a G1 rem set.
2042   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2043     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2044   } else {
2045     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2046     return JNI_ENOMEM;
2047   }
2048 
2049   // Carve out the G1 part of the heap.
2050 
2051   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2052   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2053                            g1_rs.size()/HeapWordSize);
2054   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
2055 
2056   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
2057 
2058   _g1_storage.initialize(g1_rs, 0);
2059   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2060   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2061                   (HeapWord*) _g1_reserved.end(),
2062                   _expansion_regions);
2063 
2064   // 6843694 - ensure that the maximum region index can fit
2065   // in the remembered set structures.
2066   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2067   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2068 
2069   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2070   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2071   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2072             "too many cards per region");
2073 
2074   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2075 
2076   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2077                                              heap_word_size(init_byte_size));
2078 
2079   _g1h = this;
2080 
2081    _in_cset_fast_test_length = max_regions();
2082    _in_cset_fast_test_base =
2083                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2084 
2085    // We're biasing _in_cset_fast_test to avoid subtracting the
2086    // beginning of the heap every time we want to index; basically
2087    // it's the same with what we do with the card table.
2088    _in_cset_fast_test = _in_cset_fast_test_base -
2089                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2090 
2091    // Clear the _cset_fast_test bitmap in anticipation of adding
2092    // regions to the incremental collection set for the first
2093    // evacuation pause.
2094    clear_cset_fast_test();
2095 
2096   // Create the ConcurrentMark data structure and thread.
2097   // (Must do this late, so that "max_regions" is defined.)
2098   _cm       = new ConcurrentMark(heap_rs, max_regions());
2099   _cmThread = _cm->cmThread();
2100 
2101   // Initialize the from_card cache structure of HeapRegionRemSet.
2102   HeapRegionRemSet::init_heap(max_regions());
2103 
2104   // Now expand into the initial heap size.
2105   if (!expand(init_byte_size)) {
2106     vm_exit_during_initialization("Failed to allocate initial heap.");
2107     return JNI_ENOMEM;
2108   }
2109 
2110   // Perform any initialization actions delegated to the policy.
2111   g1_policy()->init();
2112 
2113   _refine_cte_cl =
2114     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2115                                     g1_rem_set(),
2116                                     concurrent_g1_refine());
2117   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2118 
2119   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2120                                                SATB_Q_FL_lock,
2121                                                G1SATBProcessCompletedThreshold,
2122                                                Shared_SATB_Q_lock);
2123 
2124   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2125                                                 DirtyCardQ_FL_lock,
2126                                                 concurrent_g1_refine()->yellow_zone(),
2127                                                 concurrent_g1_refine()->red_zone(),
2128                                                 Shared_DirtyCardQ_lock);
2129 
2130   if (G1DeferredRSUpdate) {
2131     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2132                                       DirtyCardQ_FL_lock,
2133                                       -1, // never trigger processing
2134                                       -1, // no limit on length
2135                                       Shared_DirtyCardQ_lock,
2136                                       &JavaThread::dirty_card_queue_set());
2137   }
2138 
2139   // Initialize the card queue set used to hold cards containing
2140   // references into the collection set.
2141   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2142                                              DirtyCardQ_FL_lock,
2143                                              -1, // never trigger processing
2144                                              -1, // no limit on length
2145                                              Shared_DirtyCardQ_lock,
2146                                              &JavaThread::dirty_card_queue_set());
2147 
2148   // In case we're keeping closure specialization stats, initialize those
2149   // counts and that mechanism.
2150   SpecializationStats::clear();
2151 
2152   // Do later initialization work for concurrent refinement.
2153   _cg1r->init();
2154 
2155   // Here we allocate the dummy full region that is required by the
2156   // G1AllocRegion class. If we don't pass an address in the reserved
2157   // space here, lots of asserts fire.
2158 
2159   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2160                                              _g1_reserved.start());
2161   // We'll re-use the same region whether the alloc region will
2162   // require BOT updates or not and, if it doesn't, then a non-young
2163   // region will complain that it cannot support allocations without
2164   // BOT updates. So we'll tag the dummy region as young to avoid that.
2165   dummy_region->set_young();
2166   // Make sure it's full.
2167   dummy_region->set_top(dummy_region->end());
2168   G1AllocRegion::setup(this, dummy_region);
2169 
2170   init_mutator_alloc_region();
2171 
2172   // Do create of the monitoring and management support so that
2173   // values in the heap have been properly initialized.
2174   _g1mm = new G1MonitoringSupport(this);
2175 
2176   return JNI_OK;
2177 }
2178 
2179 void G1CollectedHeap::ref_processing_init() {
2180   // Reference processing in G1 currently works as follows:
2181   //
2182   // * There are two reference processor instances. One is
2183   //   used to record and process discovered references
2184   //   during concurrent marking; the other is used to
2185   //   record and process references during STW pauses
2186   //   (both full and incremental).
2187   // * Both ref processors need to 'span' the entire heap as
2188   //   the regions in the collection set may be dotted around.
2189   //
2190   // * For the concurrent marking ref processor:
2191   //   * Reference discovery is enabled at initial marking.
2192   //   * Reference discovery is disabled and the discovered
2193   //     references processed etc during remarking.
2194   //   * Reference discovery is MT (see below).
2195   //   * Reference discovery requires a barrier (see below).
2196   //   * Reference processing may or may not be MT
2197   //     (depending on the value of ParallelRefProcEnabled
2198   //     and ParallelGCThreads).
2199   //   * A full GC disables reference discovery by the CM
2200   //     ref processor and abandons any entries on it's
2201   //     discovered lists.
2202   //
2203   // * For the STW processor:
2204   //   * Non MT discovery is enabled at the start of a full GC.
2205   //   * Processing and enqueueing during a full GC is non-MT.
2206   //   * During a full GC, references are processed after marking.
2207   //
2208   //   * Discovery (may or may not be MT) is enabled at the start
2209   //     of an incremental evacuation pause.
2210   //   * References are processed near the end of a STW evacuation pause.
2211   //   * For both types of GC:
2212   //     * Discovery is atomic - i.e. not concurrent.
2213   //     * Reference discovery will not need a barrier.
2214 
2215   SharedHeap::ref_processing_init();
2216   MemRegion mr = reserved_region();
2217 
2218   // Concurrent Mark ref processor
2219   _ref_processor_cm =
2220     new ReferenceProcessor(mr,    // span
2221                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2222                                 // mt processing
2223                            (int) ParallelGCThreads,
2224                                 // degree of mt processing
2225                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2226                                 // mt discovery
2227                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2228                                 // degree of mt discovery
2229                            false,
2230                                 // Reference discovery is not atomic
2231                            &_is_alive_closure_cm,
2232                                 // is alive closure
2233                                 // (for efficiency/performance)
2234                            true);
2235                                 // Setting next fields of discovered
2236                                 // lists requires a barrier.
2237 
2238   // STW ref processor
2239   _ref_processor_stw =
2240     new ReferenceProcessor(mr,    // span
2241                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2242                                 // mt processing
2243                            MAX2((int)ParallelGCThreads, 1),
2244                                 // degree of mt processing
2245                            (ParallelGCThreads > 1),
2246                                 // mt discovery
2247                            MAX2((int)ParallelGCThreads, 1),
2248                                 // degree of mt discovery
2249                            true,
2250                                 // Reference discovery is atomic
2251                            &_is_alive_closure_stw,
2252                                 // is alive closure
2253                                 // (for efficiency/performance)
2254                            false);
2255                                 // Setting next fields of discovered
2256                                 // lists requires a barrier.
2257 }
2258 
2259 size_t G1CollectedHeap::capacity() const {
2260   return _g1_committed.byte_size();
2261 }
2262 
2263 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2264   assert(!hr->continuesHumongous(), "pre-condition");
2265   hr->reset_gc_time_stamp();
2266   if (hr->startsHumongous()) {
2267     uint first_index = hr->hrs_index() + 1;
2268     uint last_index = hr->last_hc_index();
2269     for (uint i = first_index; i < last_index; i += 1) {
2270       HeapRegion* chr = region_at(i);
2271       assert(chr->continuesHumongous(), "sanity");
2272       chr->reset_gc_time_stamp();
2273     }
2274   }
2275 }
2276 
2277 #ifndef PRODUCT
2278 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2279 private:
2280   unsigned _gc_time_stamp;
2281   bool _failures;
2282 
2283 public:
2284   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2285     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2286 
2287   virtual bool doHeapRegion(HeapRegion* hr) {
2288     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2289     if (_gc_time_stamp != region_gc_time_stamp) {
2290       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2291                              "expected %d", HR_FORMAT_PARAMS(hr),
2292                              region_gc_time_stamp, _gc_time_stamp);
2293       _failures = true;
2294     }
2295     return false;
2296   }
2297 
2298   bool failures() { return _failures; }
2299 };
2300 
2301 void G1CollectedHeap::check_gc_time_stamps() {
2302   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2303   heap_region_iterate(&cl);
2304   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2305 }
2306 #endif // PRODUCT
2307 
2308 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2309                                                  DirtyCardQueue* into_cset_dcq,
2310                                                  bool concurrent,
2311                                                  int worker_i) {
2312   // Clean cards in the hot card cache
2313   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2314 
2315   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2316   int n_completed_buffers = 0;
2317   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2318     n_completed_buffers++;
2319   }
2320   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i,
2321                                                   (double) n_completed_buffers);
2322   dcqs.clear_n_completed_buffers();
2323   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2324 }
2325 
2326 
2327 // Computes the sum of the storage used by the various regions.
2328 
2329 size_t G1CollectedHeap::used() const {
2330   assert(Heap_lock->owner() != NULL,
2331          "Should be owned on this thread's behalf.");
2332   size_t result = _summary_bytes_used;
2333   // Read only once in case it is set to NULL concurrently
2334   HeapRegion* hr = _mutator_alloc_region.get();
2335   if (hr != NULL)
2336     result += hr->used();
2337   return result;
2338 }
2339 
2340 size_t G1CollectedHeap::used_unlocked() const {
2341   size_t result = _summary_bytes_used;
2342   return result;
2343 }
2344 
2345 class SumUsedClosure: public HeapRegionClosure {
2346   size_t _used;
2347 public:
2348   SumUsedClosure() : _used(0) {}
2349   bool doHeapRegion(HeapRegion* r) {
2350     if (!r->continuesHumongous()) {
2351       _used += r->used();
2352     }
2353     return false;
2354   }
2355   size_t result() { return _used; }
2356 };
2357 
2358 size_t G1CollectedHeap::recalculate_used() const {
2359   SumUsedClosure blk;
2360   heap_region_iterate(&blk);
2361   return blk.result();
2362 }
2363 
2364 size_t G1CollectedHeap::unsafe_max_alloc() {
2365   if (free_regions() > 0) return HeapRegion::GrainBytes;
2366   // otherwise, is there space in the current allocation region?
2367 
2368   // We need to store the current allocation region in a local variable
2369   // here. The problem is that this method doesn't take any locks and
2370   // there may be other threads which overwrite the current allocation
2371   // region field. attempt_allocation(), for example, sets it to NULL
2372   // and this can happen *after* the NULL check here but before the call
2373   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2374   // to be a problem in the optimized build, since the two loads of the
2375   // current allocation region field are optimized away.
2376   HeapRegion* hr = _mutator_alloc_region.get();
2377   if (hr == NULL) {
2378     return 0;
2379   }
2380   return hr->free();
2381 }
2382 
2383 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2384   switch (cause) {
2385     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2386     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2387     case GCCause::_g1_humongous_allocation: return true;
2388     default:                                return false;
2389   }
2390 }
2391 
2392 #ifndef PRODUCT
2393 void G1CollectedHeap::allocate_dummy_regions() {
2394   // Let's fill up most of the region
2395   size_t word_size = HeapRegion::GrainWords - 1024;
2396   // And as a result the region we'll allocate will be humongous.
2397   guarantee(isHumongous(word_size), "sanity");
2398 
2399   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2400     // Let's use the existing mechanism for the allocation
2401     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2402     if (dummy_obj != NULL) {
2403       MemRegion mr(dummy_obj, word_size);
2404       CollectedHeap::fill_with_object(mr);
2405     } else {
2406       // If we can't allocate once, we probably cannot allocate
2407       // again. Let's get out of the loop.
2408       break;
2409     }
2410   }
2411 }
2412 #endif // !PRODUCT
2413 
2414 void G1CollectedHeap::increment_old_marking_cycles_started() {
2415   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2416     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2417     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2418     _old_marking_cycles_started, _old_marking_cycles_completed));
2419 
2420   _old_marking_cycles_started++;
2421 }
2422 
2423 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2424   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2425 
2426   // We assume that if concurrent == true, then the caller is a
2427   // concurrent thread that was joined the Suspendible Thread
2428   // Set. If there's ever a cheap way to check this, we should add an
2429   // assert here.
2430 
2431   // Given that this method is called at the end of a Full GC or of a
2432   // concurrent cycle, and those can be nested (i.e., a Full GC can
2433   // interrupt a concurrent cycle), the number of full collections
2434   // completed should be either one (in the case where there was no
2435   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2436   // behind the number of full collections started.
2437 
2438   // This is the case for the inner caller, i.e. a Full GC.
2439   assert(concurrent ||
2440          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2441          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2442          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2443                  "is inconsistent with _old_marking_cycles_completed = %u",
2444                  _old_marking_cycles_started, _old_marking_cycles_completed));
2445 
2446   // This is the case for the outer caller, i.e. the concurrent cycle.
2447   assert(!concurrent ||
2448          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2449          err_msg("for outer caller (concurrent cycle): "
2450                  "_old_marking_cycles_started = %u "
2451                  "is inconsistent with _old_marking_cycles_completed = %u",
2452                  _old_marking_cycles_started, _old_marking_cycles_completed));
2453 
2454   _old_marking_cycles_completed += 1;
2455 
2456   // We need to clear the "in_progress" flag in the CM thread before
2457   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2458   // is set) so that if a waiter requests another System.gc() it doesn't
2459   // incorrectly see that a marking cyle is still in progress.
2460   if (concurrent) {
2461     _cmThread->clear_in_progress();
2462   }
2463 
2464   // This notify_all() will ensure that a thread that called
2465   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2466   // and it's waiting for a full GC to finish will be woken up. It is
2467   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2468   FullGCCount_lock->notify_all();
2469 }
2470 
2471 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2472   assert_at_safepoint(true /* should_be_vm_thread */);
2473   GCCauseSetter gcs(this, cause);
2474   switch (cause) {
2475     case GCCause::_heap_inspection:
2476     case GCCause::_heap_dump: {
2477       HandleMark hm;
2478       do_full_collection(false);         // don't clear all soft refs
2479       break;
2480     }
2481     default: // XXX FIX ME
2482       ShouldNotReachHere(); // Unexpected use of this function
2483   }
2484 }
2485 
2486 void G1CollectedHeap::collect(GCCause::Cause cause) {
2487   assert_heap_not_locked();
2488 
2489   unsigned int gc_count_before;
2490   unsigned int old_marking_count_before;
2491   bool retry_gc;
2492 
2493   do {
2494     retry_gc = false;
2495 
2496     {
2497       MutexLocker ml(Heap_lock);
2498 
2499       // Read the GC count while holding the Heap_lock
2500       gc_count_before = total_collections();
2501       old_marking_count_before = _old_marking_cycles_started;
2502     }
2503 
2504     if (should_do_concurrent_full_gc(cause)) {
2505       // Schedule an initial-mark evacuation pause that will start a
2506       // concurrent cycle. We're setting word_size to 0 which means that
2507       // we are not requesting a post-GC allocation.
2508       VM_G1IncCollectionPause op(gc_count_before,
2509                                  0,     /* word_size */
2510                                  true,  /* should_initiate_conc_mark */
2511                                  g1_policy()->max_pause_time_ms(),
2512                                  cause);
2513 
2514       VMThread::execute(&op);
2515       if (!op.pause_succeeded()) {
2516         if (old_marking_count_before == _old_marking_cycles_started) {
2517           retry_gc = op.should_retry_gc();
2518         } else {
2519           // A Full GC happened while we were trying to schedule the
2520           // initial-mark GC. No point in starting a new cycle given
2521           // that the whole heap was collected anyway.
2522         }
2523 
2524         if (retry_gc) {
2525           if (GC_locker::is_active_and_needs_gc()) {
2526             GC_locker::stall_until_clear();
2527           }
2528         }
2529       }
2530     } else {
2531       if (cause == GCCause::_gc_locker
2532           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2533 
2534         // Schedule a standard evacuation pause. We're setting word_size
2535         // to 0 which means that we are not requesting a post-GC allocation.
2536         VM_G1IncCollectionPause op(gc_count_before,
2537                                    0,     /* word_size */
2538                                    false, /* should_initiate_conc_mark */
2539                                    g1_policy()->max_pause_time_ms(),
2540                                    cause);
2541         VMThread::execute(&op);
2542       } else {
2543         // Schedule a Full GC.
2544         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2545         VMThread::execute(&op);
2546       }
2547     }
2548   } while (retry_gc);
2549 }
2550 
2551 bool G1CollectedHeap::is_in(const void* p) const {
2552   if (_g1_committed.contains(p)) {
2553     // Given that we know that p is in the committed space,
2554     // heap_region_containing_raw() should successfully
2555     // return the containing region.
2556     HeapRegion* hr = heap_region_containing_raw(p);
2557     return hr->is_in(p);
2558   } else {
2559     return _perm_gen->as_gen()->is_in(p);
2560   }
2561 }
2562 
2563 // Iteration functions.
2564 
2565 // Iterates an OopClosure over all ref-containing fields of objects
2566 // within a HeapRegion.
2567 
2568 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2569   MemRegion _mr;
2570   OopClosure* _cl;
2571 public:
2572   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2573     : _mr(mr), _cl(cl) {}
2574   bool doHeapRegion(HeapRegion* r) {
2575     if (!r->continuesHumongous()) {
2576       r->oop_iterate(_cl);
2577     }
2578     return false;
2579   }
2580 };
2581 
2582 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2583   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2584   heap_region_iterate(&blk);
2585   if (do_perm) {
2586     perm_gen()->oop_iterate(cl);
2587   }
2588 }
2589 
2590 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2591   IterateOopClosureRegionClosure blk(mr, cl);
2592   heap_region_iterate(&blk);
2593   if (do_perm) {
2594     perm_gen()->oop_iterate(cl);
2595   }
2596 }
2597 
2598 // Iterates an ObjectClosure over all objects within a HeapRegion.
2599 
2600 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2601   ObjectClosure* _cl;
2602 public:
2603   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2604   bool doHeapRegion(HeapRegion* r) {
2605     if (! r->continuesHumongous()) {
2606       r->object_iterate(_cl);
2607     }
2608     return false;
2609   }
2610 };
2611 
2612 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2613   IterateObjectClosureRegionClosure blk(cl);
2614   heap_region_iterate(&blk);
2615   if (do_perm) {
2616     perm_gen()->object_iterate(cl);
2617   }
2618 }
2619 
2620 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2621   // FIXME: is this right?
2622   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2623 }
2624 
2625 // Calls a SpaceClosure on a HeapRegion.
2626 
2627 class SpaceClosureRegionClosure: public HeapRegionClosure {
2628   SpaceClosure* _cl;
2629 public:
2630   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2631   bool doHeapRegion(HeapRegion* r) {
2632     _cl->do_space(r);
2633     return false;
2634   }
2635 };
2636 
2637 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2638   SpaceClosureRegionClosure blk(cl);
2639   heap_region_iterate(&blk);
2640 }
2641 
2642 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2643   _hrs.iterate(cl);
2644 }
2645 
2646 void
2647 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2648                                                  uint worker_id,
2649                                                  uint no_of_par_workers,
2650                                                  jint claim_value) {
2651   const uint regions = n_regions();
2652   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2653                              no_of_par_workers :
2654                              1);
2655   assert(UseDynamicNumberOfGCThreads ||
2656          no_of_par_workers == workers()->total_workers(),
2657          "Non dynamic should use fixed number of workers");
2658   // try to spread out the starting points of the workers
2659   const HeapRegion* start_hr =
2660                         start_region_for_worker(worker_id, no_of_par_workers);
2661   const uint start_index = start_hr->hrs_index();
2662 
2663   // each worker will actually look at all regions
2664   for (uint count = 0; count < regions; ++count) {
2665     const uint index = (start_index + count) % regions;
2666     assert(0 <= index && index < regions, "sanity");
2667     HeapRegion* r = region_at(index);
2668     // we'll ignore "continues humongous" regions (we'll process them
2669     // when we come across their corresponding "start humongous"
2670     // region) and regions already claimed
2671     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2672       continue;
2673     }
2674     // OK, try to claim it
2675     if (r->claimHeapRegion(claim_value)) {
2676       // success!
2677       assert(!r->continuesHumongous(), "sanity");
2678       if (r->startsHumongous()) {
2679         // If the region is "starts humongous" we'll iterate over its
2680         // "continues humongous" first; in fact we'll do them
2681         // first. The order is important. In on case, calling the
2682         // closure on the "starts humongous" region might de-allocate
2683         // and clear all its "continues humongous" regions and, as a
2684         // result, we might end up processing them twice. So, we'll do
2685         // them first (notice: most closures will ignore them anyway) and
2686         // then we'll do the "starts humongous" region.
2687         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2688           HeapRegion* chr = region_at(ch_index);
2689 
2690           // if the region has already been claimed or it's not
2691           // "continues humongous" we're done
2692           if (chr->claim_value() == claim_value ||
2693               !chr->continuesHumongous()) {
2694             break;
2695           }
2696 
2697           // Noone should have claimed it directly. We can given
2698           // that we claimed its "starts humongous" region.
2699           assert(chr->claim_value() != claim_value, "sanity");
2700           assert(chr->humongous_start_region() == r, "sanity");
2701 
2702           if (chr->claimHeapRegion(claim_value)) {
2703             // we should always be able to claim it; noone else should
2704             // be trying to claim this region
2705 
2706             bool res2 = cl->doHeapRegion(chr);
2707             assert(!res2, "Should not abort");
2708 
2709             // Right now, this holds (i.e., no closure that actually
2710             // does something with "continues humongous" regions
2711             // clears them). We might have to weaken it in the future,
2712             // but let's leave these two asserts here for extra safety.
2713             assert(chr->continuesHumongous(), "should still be the case");
2714             assert(chr->humongous_start_region() == r, "sanity");
2715           } else {
2716             guarantee(false, "we should not reach here");
2717           }
2718         }
2719       }
2720 
2721       assert(!r->continuesHumongous(), "sanity");
2722       bool res = cl->doHeapRegion(r);
2723       assert(!res, "Should not abort");
2724     }
2725   }
2726 }
2727 
2728 class ResetClaimValuesClosure: public HeapRegionClosure {
2729 public:
2730   bool doHeapRegion(HeapRegion* r) {
2731     r->set_claim_value(HeapRegion::InitialClaimValue);
2732     return false;
2733   }
2734 };
2735 
2736 void G1CollectedHeap::reset_heap_region_claim_values() {
2737   ResetClaimValuesClosure blk;
2738   heap_region_iterate(&blk);
2739 }
2740 
2741 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2742   ResetClaimValuesClosure blk;
2743   collection_set_iterate(&blk);
2744 }
2745 
2746 #ifdef ASSERT
2747 // This checks whether all regions in the heap have the correct claim
2748 // value. I also piggy-backed on this a check to ensure that the
2749 // humongous_start_region() information on "continues humongous"
2750 // regions is correct.
2751 
2752 class CheckClaimValuesClosure : public HeapRegionClosure {
2753 private:
2754   jint _claim_value;
2755   uint _failures;
2756   HeapRegion* _sh_region;
2757 
2758 public:
2759   CheckClaimValuesClosure(jint claim_value) :
2760     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2761   bool doHeapRegion(HeapRegion* r) {
2762     if (r->claim_value() != _claim_value) {
2763       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2764                              "claim value = %d, should be %d",
2765                              HR_FORMAT_PARAMS(r),
2766                              r->claim_value(), _claim_value);
2767       ++_failures;
2768     }
2769     if (!r->isHumongous()) {
2770       _sh_region = NULL;
2771     } else if (r->startsHumongous()) {
2772       _sh_region = r;
2773     } else if (r->continuesHumongous()) {
2774       if (r->humongous_start_region() != _sh_region) {
2775         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2776                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2777                                HR_FORMAT_PARAMS(r),
2778                                r->humongous_start_region(),
2779                                _sh_region);
2780         ++_failures;
2781       }
2782     }
2783     return false;
2784   }
2785   uint failures() { return _failures; }
2786 };
2787 
2788 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2789   CheckClaimValuesClosure cl(claim_value);
2790   heap_region_iterate(&cl);
2791   return cl.failures() == 0;
2792 }
2793 
2794 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2795 private:
2796   jint _claim_value;
2797   uint _failures;
2798 
2799 public:
2800   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2801     _claim_value(claim_value), _failures(0) { }
2802 
2803   uint failures() { return _failures; }
2804 
2805   bool doHeapRegion(HeapRegion* hr) {
2806     assert(hr->in_collection_set(), "how?");
2807     assert(!hr->isHumongous(), "H-region in CSet");
2808     if (hr->claim_value() != _claim_value) {
2809       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2810                              "claim value = %d, should be %d",
2811                              HR_FORMAT_PARAMS(hr),
2812                              hr->claim_value(), _claim_value);
2813       _failures += 1;
2814     }
2815     return false;
2816   }
2817 };
2818 
2819 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2820   CheckClaimValuesInCSetHRClosure cl(claim_value);
2821   collection_set_iterate(&cl);
2822   return cl.failures() == 0;
2823 }
2824 #endif // ASSERT
2825 
2826 // Clear the cached CSet starting regions and (more importantly)
2827 // the time stamps. Called when we reset the GC time stamp.
2828 void G1CollectedHeap::clear_cset_start_regions() {
2829   assert(_worker_cset_start_region != NULL, "sanity");
2830   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2831 
2832   int n_queues = MAX2((int)ParallelGCThreads, 1);
2833   for (int i = 0; i < n_queues; i++) {
2834     _worker_cset_start_region[i] = NULL;
2835     _worker_cset_start_region_time_stamp[i] = 0;
2836   }
2837 }
2838 
2839 // Given the id of a worker, obtain or calculate a suitable
2840 // starting region for iterating over the current collection set.
2841 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2842   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2843 
2844   HeapRegion* result = NULL;
2845   unsigned gc_time_stamp = get_gc_time_stamp();
2846 
2847   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2848     // Cached starting region for current worker was set
2849     // during the current pause - so it's valid.
2850     // Note: the cached starting heap region may be NULL
2851     // (when the collection set is empty).
2852     result = _worker_cset_start_region[worker_i];
2853     assert(result == NULL || result->in_collection_set(), "sanity");
2854     return result;
2855   }
2856 
2857   // The cached entry was not valid so let's calculate
2858   // a suitable starting heap region for this worker.
2859 
2860   // We want the parallel threads to start their collection
2861   // set iteration at different collection set regions to
2862   // avoid contention.
2863   // If we have:
2864   //          n collection set regions
2865   //          p threads
2866   // Then thread t will start at region floor ((t * n) / p)
2867 
2868   result = g1_policy()->collection_set();
2869   if (G1CollectedHeap::use_parallel_gc_threads()) {
2870     uint cs_size = g1_policy()->cset_region_length();
2871     uint active_workers = workers()->active_workers();
2872     assert(UseDynamicNumberOfGCThreads ||
2873              active_workers == workers()->total_workers(),
2874              "Unless dynamic should use total workers");
2875 
2876     uint end_ind   = (cs_size * worker_i) / active_workers;
2877     uint start_ind = 0;
2878 
2879     if (worker_i > 0 &&
2880         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2881       // Previous workers starting region is valid
2882       // so let's iterate from there
2883       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2884       result = _worker_cset_start_region[worker_i - 1];
2885     }
2886 
2887     for (uint i = start_ind; i < end_ind; i++) {
2888       result = result->next_in_collection_set();
2889     }
2890   }
2891 
2892   // Note: the calculated starting heap region may be NULL
2893   // (when the collection set is empty).
2894   assert(result == NULL || result->in_collection_set(), "sanity");
2895   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2896          "should be updated only once per pause");
2897   _worker_cset_start_region[worker_i] = result;
2898   OrderAccess::storestore();
2899   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2900   return result;
2901 }
2902 
2903 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2904                                                      uint no_of_par_workers) {
2905   uint worker_num =
2906            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2907   assert(UseDynamicNumberOfGCThreads ||
2908          no_of_par_workers == workers()->total_workers(),
2909          "Non dynamic should use fixed number of workers");
2910   const uint start_index = n_regions() * worker_i / worker_num;
2911   return region_at(start_index);
2912 }
2913 
2914 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2915   HeapRegion* r = g1_policy()->collection_set();
2916   while (r != NULL) {
2917     HeapRegion* next = r->next_in_collection_set();
2918     if (cl->doHeapRegion(r)) {
2919       cl->incomplete();
2920       return;
2921     }
2922     r = next;
2923   }
2924 }
2925 
2926 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2927                                                   HeapRegionClosure *cl) {
2928   if (r == NULL) {
2929     // The CSet is empty so there's nothing to do.
2930     return;
2931   }
2932 
2933   assert(r->in_collection_set(),
2934          "Start region must be a member of the collection set.");
2935   HeapRegion* cur = r;
2936   while (cur != NULL) {
2937     HeapRegion* next = cur->next_in_collection_set();
2938     if (cl->doHeapRegion(cur) && false) {
2939       cl->incomplete();
2940       return;
2941     }
2942     cur = next;
2943   }
2944   cur = g1_policy()->collection_set();
2945   while (cur != r) {
2946     HeapRegion* next = cur->next_in_collection_set();
2947     if (cl->doHeapRegion(cur) && false) {
2948       cl->incomplete();
2949       return;
2950     }
2951     cur = next;
2952   }
2953 }
2954 
2955 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2956   return n_regions() > 0 ? region_at(0) : NULL;
2957 }
2958 
2959 
2960 Space* G1CollectedHeap::space_containing(const void* addr) const {
2961   Space* res = heap_region_containing(addr);
2962   if (res == NULL)
2963     res = perm_gen()->space_containing(addr);
2964   return res;
2965 }
2966 
2967 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2968   Space* sp = space_containing(addr);
2969   if (sp != NULL) {
2970     return sp->block_start(addr);
2971   }
2972   return NULL;
2973 }
2974 
2975 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2976   Space* sp = space_containing(addr);
2977   assert(sp != NULL, "block_size of address outside of heap");
2978   return sp->block_size(addr);
2979 }
2980 
2981 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2982   Space* sp = space_containing(addr);
2983   return sp->block_is_obj(addr);
2984 }
2985 
2986 bool G1CollectedHeap::supports_tlab_allocation() const {
2987   return true;
2988 }
2989 
2990 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2991   return HeapRegion::GrainBytes;
2992 }
2993 
2994 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2995   // Return the remaining space in the cur alloc region, but not less than
2996   // the min TLAB size.
2997 
2998   // Also, this value can be at most the humongous object threshold,
2999   // since we can't allow tlabs to grow big enough to accomodate
3000   // humongous objects.
3001 
3002   HeapRegion* hr = _mutator_alloc_region.get();
3003   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
3004   if (hr == NULL) {
3005     return max_tlab_size;
3006   } else {
3007     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
3008   }
3009 }
3010 
3011 size_t G1CollectedHeap::max_capacity() const {
3012   return _g1_reserved.byte_size();
3013 }
3014 
3015 jlong G1CollectedHeap::millis_since_last_gc() {
3016   // assert(false, "NYI");
3017   return 0;
3018 }
3019 
3020 void G1CollectedHeap::prepare_for_verify() {
3021   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3022     ensure_parsability(false);
3023   }
3024   g1_rem_set()->prepare_for_verify();
3025 }
3026 
3027 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3028                                               VerifyOption vo) {
3029   switch (vo) {
3030   case VerifyOption_G1UsePrevMarking:
3031     return hr->obj_allocated_since_prev_marking(obj);
3032   case VerifyOption_G1UseNextMarking:
3033     return hr->obj_allocated_since_next_marking(obj);
3034   case VerifyOption_G1UseMarkWord:
3035     return false;
3036   default:
3037     ShouldNotReachHere();
3038   }
3039   return false; // keep some compilers happy
3040 }
3041 
3042 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3043   switch (vo) {
3044   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3045   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3046   case VerifyOption_G1UseMarkWord:    return NULL;
3047   default:                            ShouldNotReachHere();
3048   }
3049   return NULL; // keep some compilers happy
3050 }
3051 
3052 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3053   switch (vo) {
3054   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3055   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3056   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3057   default:                            ShouldNotReachHere();
3058   }
3059   return false; // keep some compilers happy
3060 }
3061 
3062 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3063   switch (vo) {
3064   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3065   case VerifyOption_G1UseNextMarking: return "NTAMS";
3066   case VerifyOption_G1UseMarkWord:    return "NONE";
3067   default:                            ShouldNotReachHere();
3068   }
3069   return NULL; // keep some compilers happy
3070 }
3071 
3072 class VerifyLivenessOopClosure: public OopClosure {
3073   G1CollectedHeap* _g1h;
3074   VerifyOption _vo;
3075 public:
3076   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3077     _g1h(g1h), _vo(vo)
3078   { }
3079   void do_oop(narrowOop *p) { do_oop_work(p); }
3080   void do_oop(      oop *p) { do_oop_work(p); }
3081 
3082   template <class T> void do_oop_work(T *p) {
3083     oop obj = oopDesc::load_decode_heap_oop(p);
3084     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3085               "Dead object referenced by a not dead object");
3086   }
3087 };
3088 
3089 class VerifyObjsInRegionClosure: public ObjectClosure {
3090 private:
3091   G1CollectedHeap* _g1h;
3092   size_t _live_bytes;
3093   HeapRegion *_hr;
3094   VerifyOption _vo;
3095 public:
3096   // _vo == UsePrevMarking -> use "prev" marking information,
3097   // _vo == UseNextMarking -> use "next" marking information,
3098   // _vo == UseMarkWord    -> use mark word from object header.
3099   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3100     : _live_bytes(0), _hr(hr), _vo(vo) {
3101     _g1h = G1CollectedHeap::heap();
3102   }
3103   void do_object(oop o) {
3104     VerifyLivenessOopClosure isLive(_g1h, _vo);
3105     assert(o != NULL, "Huh?");
3106     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3107       // If the object is alive according to the mark word,
3108       // then verify that the marking information agrees.
3109       // Note we can't verify the contra-positive of the
3110       // above: if the object is dead (according to the mark
3111       // word), it may not be marked, or may have been marked
3112       // but has since became dead, or may have been allocated
3113       // since the last marking.
3114       if (_vo == VerifyOption_G1UseMarkWord) {
3115         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3116       }
3117 
3118       o->oop_iterate(&isLive);
3119       if (!_hr->obj_allocated_since_prev_marking(o)) {
3120         size_t obj_size = o->size();    // Make sure we don't overflow
3121         _live_bytes += (obj_size * HeapWordSize);
3122       }
3123     }
3124   }
3125   size_t live_bytes() { return _live_bytes; }
3126 };
3127 
3128 class PrintObjsInRegionClosure : public ObjectClosure {
3129   HeapRegion *_hr;
3130   G1CollectedHeap *_g1;
3131 public:
3132   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3133     _g1 = G1CollectedHeap::heap();
3134   };
3135 
3136   void do_object(oop o) {
3137     if (o != NULL) {
3138       HeapWord *start = (HeapWord *) o;
3139       size_t word_sz = o->size();
3140       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3141                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3142                           (void*) o, word_sz,
3143                           _g1->isMarkedPrev(o),
3144                           _g1->isMarkedNext(o),
3145                           _hr->obj_allocated_since_prev_marking(o));
3146       HeapWord *end = start + word_sz;
3147       HeapWord *cur;
3148       int *val;
3149       for (cur = start; cur < end; cur++) {
3150         val = (int *) cur;
3151         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3152       }
3153     }
3154   }
3155 };
3156 
3157 class VerifyRegionClosure: public HeapRegionClosure {
3158 private:
3159   bool             _par;
3160   VerifyOption     _vo;
3161   bool             _failures;
3162 public:
3163   // _vo == UsePrevMarking -> use "prev" marking information,
3164   // _vo == UseNextMarking -> use "next" marking information,
3165   // _vo == UseMarkWord    -> use mark word from object header.
3166   VerifyRegionClosure(bool par, VerifyOption vo)
3167     : _par(par),
3168       _vo(vo),
3169       _failures(false) {}
3170 
3171   bool failures() {
3172     return _failures;
3173   }
3174 
3175   bool doHeapRegion(HeapRegion* r) {
3176     if (!r->continuesHumongous()) {
3177       bool failures = false;
3178       r->verify(_vo, &failures);
3179       if (failures) {
3180         _failures = true;
3181       } else {
3182         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3183         r->object_iterate(&not_dead_yet_cl);
3184         if (_vo != VerifyOption_G1UseNextMarking) {
3185           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3186             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3187                                    "max_live_bytes "SIZE_FORMAT" "
3188                                    "< calculated "SIZE_FORMAT,
3189                                    r->bottom(), r->end(),
3190                                    r->max_live_bytes(),
3191                                  not_dead_yet_cl.live_bytes());
3192             _failures = true;
3193           }
3194         } else {
3195           // When vo == UseNextMarking we cannot currently do a sanity
3196           // check on the live bytes as the calculation has not been
3197           // finalized yet.
3198         }
3199       }
3200     }
3201     return false; // stop the region iteration if we hit a failure
3202   }
3203 };
3204 
3205 class VerifyRootsClosure: public OopsInGenClosure {
3206 private:
3207   G1CollectedHeap* _g1h;
3208   VerifyOption     _vo;
3209   bool             _failures;
3210 public:
3211   // _vo == UsePrevMarking -> use "prev" marking information,
3212   // _vo == UseNextMarking -> use "next" marking information,
3213   // _vo == UseMarkWord    -> use mark word from object header.
3214   VerifyRootsClosure(VerifyOption vo) :
3215     _g1h(G1CollectedHeap::heap()),
3216     _vo(vo),
3217     _failures(false) { }
3218 
3219   bool failures() { return _failures; }
3220 
3221   template <class T> void do_oop_nv(T* p) {
3222     T heap_oop = oopDesc::load_heap_oop(p);
3223     if (!oopDesc::is_null(heap_oop)) {
3224       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3225       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3226         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3227                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3228         if (_vo == VerifyOption_G1UseMarkWord) {
3229           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3230         }
3231         obj->print_on(gclog_or_tty);
3232         _failures = true;
3233       }
3234     }
3235   }
3236 
3237   void do_oop(oop* p)       { do_oop_nv(p); }
3238   void do_oop(narrowOop* p) { do_oop_nv(p); }
3239 };
3240 
3241 // This is the task used for parallel heap verification.
3242 
3243 class G1ParVerifyTask: public AbstractGangTask {
3244 private:
3245   G1CollectedHeap* _g1h;
3246   VerifyOption     _vo;
3247   bool             _failures;
3248 
3249 public:
3250   // _vo == UsePrevMarking -> use "prev" marking information,
3251   // _vo == UseNextMarking -> use "next" marking information,
3252   // _vo == UseMarkWord    -> use mark word from object header.
3253   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3254     AbstractGangTask("Parallel verify task"),
3255     _g1h(g1h),
3256     _vo(vo),
3257     _failures(false) { }
3258 
3259   bool failures() {
3260     return _failures;
3261   }
3262 
3263   void work(uint worker_id) {
3264     HandleMark hm;
3265     VerifyRegionClosure blk(true, _vo);
3266     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3267                                           _g1h->workers()->active_workers(),
3268                                           HeapRegion::ParVerifyClaimValue);
3269     if (blk.failures()) {
3270       _failures = true;
3271     }
3272   }
3273 };
3274 
3275 void G1CollectedHeap::verify(bool silent) {
3276   verify(silent, VerifyOption_G1UsePrevMarking);
3277 }
3278 
3279 void G1CollectedHeap::verify(bool silent,
3280                              VerifyOption vo) {
3281   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3282     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3283     VerifyRootsClosure rootsCl(vo);
3284 
3285     assert(Thread::current()->is_VM_thread(),
3286       "Expected to be executed serially by the VM thread at this point");
3287 
3288     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3289 
3290     // We apply the relevant closures to all the oops in the
3291     // system dictionary, the string table and the code cache.
3292     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3293 
3294     process_strong_roots(true,      // activate StrongRootsScope
3295                          true,      // we set "collecting perm gen" to true,
3296                                     // so we don't reset the dirty cards in the perm gen.
3297                          ScanningOption(so),  // roots scanning options
3298                          &rootsCl,
3299                          &blobsCl,
3300                          &rootsCl);
3301 
3302     // If we're verifying after the marking phase of a Full GC then we can't
3303     // treat the perm gen as roots into the G1 heap. Some of the objects in
3304     // the perm gen may be dead and hence not marked. If one of these dead
3305     // objects is considered to be a root then we may end up with a false
3306     // "Root location <x> points to dead ob <y>" failure.
3307     if (vo != VerifyOption_G1UseMarkWord) {
3308       // Since we used "collecting_perm_gen" == true above, we will not have
3309       // checked the refs from perm into the G1-collected heap. We check those
3310       // references explicitly below. Whether the relevant cards are dirty
3311       // is checked further below in the rem set verification.
3312       if (!silent) { gclog_or_tty->print("Permgen roots "); }
3313       perm_gen()->oop_iterate(&rootsCl);
3314     }
3315     bool failures = rootsCl.failures();
3316 
3317     if (vo != VerifyOption_G1UseMarkWord) {
3318       // If we're verifying during a full GC then the region sets
3319       // will have been torn down at the start of the GC. Therefore
3320       // verifying the region sets will fail. So we only verify
3321       // the region sets when not in a full GC.
3322       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3323       verify_region_sets();
3324     }
3325 
3326     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3327     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3328       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3329              "sanity check");
3330 
3331       G1ParVerifyTask task(this, vo);
3332       assert(UseDynamicNumberOfGCThreads ||
3333         workers()->active_workers() == workers()->total_workers(),
3334         "If not dynamic should be using all the workers");
3335       int n_workers = workers()->active_workers();
3336       set_par_threads(n_workers);
3337       workers()->run_task(&task);
3338       set_par_threads(0);
3339       if (task.failures()) {
3340         failures = true;
3341       }
3342 
3343       // Checks that the expected amount of parallel work was done.
3344       // The implication is that n_workers is > 0.
3345       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3346              "sanity check");
3347 
3348       reset_heap_region_claim_values();
3349 
3350       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3351              "sanity check");
3352     } else {
3353       VerifyRegionClosure blk(false, vo);
3354       heap_region_iterate(&blk);
3355       if (blk.failures()) {
3356         failures = true;
3357       }
3358     }
3359     if (!silent) gclog_or_tty->print("RemSet ");
3360     rem_set()->verify();
3361 
3362     if (failures) {
3363       gclog_or_tty->print_cr("Heap:");
3364       // It helps to have the per-region information in the output to
3365       // help us track down what went wrong. This is why we call
3366       // print_extended_on() instead of print_on().
3367       print_extended_on(gclog_or_tty);
3368       gclog_or_tty->print_cr("");
3369 #ifndef PRODUCT
3370       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3371         concurrent_mark()->print_reachable("at-verification-failure",
3372                                            vo, false /* all */);
3373       }
3374 #endif
3375       gclog_or_tty->flush();
3376     }
3377     guarantee(!failures, "there should not have been any failures");
3378   } else {
3379     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
3380   }
3381 }
3382 
3383 class PrintRegionClosure: public HeapRegionClosure {
3384   outputStream* _st;
3385 public:
3386   PrintRegionClosure(outputStream* st) : _st(st) {}
3387   bool doHeapRegion(HeapRegion* r) {
3388     r->print_on(_st);
3389     return false;
3390   }
3391 };
3392 
3393 void G1CollectedHeap::print_on(outputStream* st) const {
3394   st->print(" %-20s", "garbage-first heap");
3395   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3396             capacity()/K, used_unlocked()/K);
3397   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3398             _g1_storage.low_boundary(),
3399             _g1_storage.high(),
3400             _g1_storage.high_boundary());
3401   st->cr();
3402   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3403   uint young_regions = _young_list->length();
3404   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3405             (size_t) young_regions * HeapRegion::GrainBytes / K);
3406   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3407   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3408             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3409   st->cr();
3410   perm()->as_gen()->print_on(st);
3411 }
3412 
3413 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3414   print_on(st);
3415 
3416   // Print the per-region information.
3417   st->cr();
3418   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3419                "HS=humongous(starts), HC=humongous(continues), "
3420                "CS=collection set, F=free, TS=gc time stamp, "
3421                "PTAMS=previous top-at-mark-start, "
3422                "NTAMS=next top-at-mark-start)");
3423   PrintRegionClosure blk(st);
3424   heap_region_iterate(&blk);
3425 }
3426 
3427 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3428   if (G1CollectedHeap::use_parallel_gc_threads()) {
3429     workers()->print_worker_threads_on(st);
3430   }
3431   _cmThread->print_on(st);
3432   st->cr();
3433   _cm->print_worker_threads_on(st);
3434   _cg1r->print_worker_threads_on(st);
3435   st->cr();
3436 }
3437 
3438 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3439   if (G1CollectedHeap::use_parallel_gc_threads()) {
3440     workers()->threads_do(tc);
3441   }
3442   tc->do_thread(_cmThread);
3443   _cg1r->threads_do(tc);
3444 }
3445 
3446 void G1CollectedHeap::print_tracing_info() const {
3447   // We'll overload this to mean "trace GC pause statistics."
3448   if (TraceGen0Time || TraceGen1Time) {
3449     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3450     // to that.
3451     g1_policy()->print_tracing_info();
3452   }
3453   if (G1SummarizeRSetStats) {
3454     g1_rem_set()->print_summary_info();
3455   }
3456   if (G1SummarizeConcMark) {
3457     concurrent_mark()->print_summary_info();
3458   }
3459   g1_policy()->print_yg_surv_rate_info();
3460   SpecializationStats::print();
3461 }
3462 
3463 #ifndef PRODUCT
3464 // Helpful for debugging RSet issues.
3465 
3466 class PrintRSetsClosure : public HeapRegionClosure {
3467 private:
3468   const char* _msg;
3469   size_t _occupied_sum;
3470 
3471 public:
3472   bool doHeapRegion(HeapRegion* r) {
3473     HeapRegionRemSet* hrrs = r->rem_set();
3474     size_t occupied = hrrs->occupied();
3475     _occupied_sum += occupied;
3476 
3477     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3478                            HR_FORMAT_PARAMS(r));
3479     if (occupied == 0) {
3480       gclog_or_tty->print_cr("  RSet is empty");
3481     } else {
3482       hrrs->print();
3483     }
3484     gclog_or_tty->print_cr("----------");
3485     return false;
3486   }
3487 
3488   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3489     gclog_or_tty->cr();
3490     gclog_or_tty->print_cr("========================================");
3491     gclog_or_tty->print_cr(msg);
3492     gclog_or_tty->cr();
3493   }
3494 
3495   ~PrintRSetsClosure() {
3496     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3497     gclog_or_tty->print_cr("========================================");
3498     gclog_or_tty->cr();
3499   }
3500 };
3501 
3502 void G1CollectedHeap::print_cset_rsets() {
3503   PrintRSetsClosure cl("Printing CSet RSets");
3504   collection_set_iterate(&cl);
3505 }
3506 
3507 void G1CollectedHeap::print_all_rsets() {
3508   PrintRSetsClosure cl("Printing All RSets");;
3509   heap_region_iterate(&cl);
3510 }
3511 #endif // PRODUCT
3512 
3513 G1CollectedHeap* G1CollectedHeap::heap() {
3514   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3515          "not a garbage-first heap");
3516   return _g1h;
3517 }
3518 
3519 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3520   // always_do_update_barrier = false;
3521   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3522   // Call allocation profiler
3523   AllocationProfiler::iterate_since_last_gc();
3524   // Fill TLAB's and such
3525   ensure_parsability(true);
3526 }
3527 
3528 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3529   // FIXME: what is this about?
3530   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3531   // is set.
3532   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3533                         "derived pointer present"));
3534   // always_do_update_barrier = true;
3535 
3536   // We have just completed a GC. Update the soft reference
3537   // policy with the new heap occupancy
3538   Universe::update_heap_info_at_gc();
3539 }
3540 
3541 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3542                                                unsigned int gc_count_before,
3543                                                bool* succeeded) {
3544   assert_heap_not_locked_and_not_at_safepoint();
3545   g1_policy()->record_stop_world_start();
3546   VM_G1IncCollectionPause op(gc_count_before,
3547                              word_size,
3548                              false, /* should_initiate_conc_mark */
3549                              g1_policy()->max_pause_time_ms(),
3550                              GCCause::_g1_inc_collection_pause);
3551   VMThread::execute(&op);
3552 
3553   HeapWord* result = op.result();
3554   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3555   assert(result == NULL || ret_succeeded,
3556          "the result should be NULL if the VM did not succeed");
3557   *succeeded = ret_succeeded;
3558 
3559   assert_heap_not_locked();
3560   return result;
3561 }
3562 
3563 void
3564 G1CollectedHeap::doConcurrentMark() {
3565   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3566   if (!_cmThread->in_progress()) {
3567     _cmThread->set_started();
3568     CGC_lock->notify();
3569   }
3570 }
3571 
3572 size_t G1CollectedHeap::pending_card_num() {
3573   size_t extra_cards = 0;
3574   JavaThread *curr = Threads::first();
3575   while (curr != NULL) {
3576     DirtyCardQueue& dcq = curr->dirty_card_queue();
3577     extra_cards += dcq.size();
3578     curr = curr->next();
3579   }
3580   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3581   size_t buffer_size = dcqs.buffer_size();
3582   size_t buffer_num = dcqs.completed_buffers_num();
3583 
3584   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3585   // in bytes - not the number of 'entries'. We need to convert
3586   // into a number of cards.
3587   return (buffer_size * buffer_num + extra_cards) / oopSize;
3588 }
3589 
3590 size_t G1CollectedHeap::max_pending_card_num() {
3591   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3592   size_t buffer_size = dcqs.buffer_size();
3593   size_t buffer_num  = dcqs.completed_buffers_num();
3594   int thread_num  = Threads::number_of_threads();
3595   return (buffer_num + thread_num) * buffer_size;
3596 }
3597 
3598 size_t G1CollectedHeap::cards_scanned() {
3599   return g1_rem_set()->cardsScanned();
3600 }
3601 
3602 void
3603 G1CollectedHeap::setup_surviving_young_words() {
3604   assert(_surviving_young_words == NULL, "pre-condition");
3605   uint array_length = g1_policy()->young_cset_region_length();
3606   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3607   if (_surviving_young_words == NULL) {
3608     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3609                           "Not enough space for young surv words summary.");
3610   }
3611   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3612 #ifdef ASSERT
3613   for (uint i = 0;  i < array_length; ++i) {
3614     assert( _surviving_young_words[i] == 0, "memset above" );
3615   }
3616 #endif // !ASSERT
3617 }
3618 
3619 void
3620 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3621   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3622   uint array_length = g1_policy()->young_cset_region_length();
3623   for (uint i = 0; i < array_length; ++i) {
3624     _surviving_young_words[i] += surv_young_words[i];
3625   }
3626 }
3627 
3628 void
3629 G1CollectedHeap::cleanup_surviving_young_words() {
3630   guarantee( _surviving_young_words != NULL, "pre-condition" );
3631   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3632   _surviving_young_words = NULL;
3633 }
3634 
3635 #ifdef ASSERT
3636 class VerifyCSetClosure: public HeapRegionClosure {
3637 public:
3638   bool doHeapRegion(HeapRegion* hr) {
3639     // Here we check that the CSet region's RSet is ready for parallel
3640     // iteration. The fields that we'll verify are only manipulated
3641     // when the region is part of a CSet and is collected. Afterwards,
3642     // we reset these fields when we clear the region's RSet (when the
3643     // region is freed) so they are ready when the region is
3644     // re-allocated. The only exception to this is if there's an
3645     // evacuation failure and instead of freeing the region we leave
3646     // it in the heap. In that case, we reset these fields during
3647     // evacuation failure handling.
3648     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3649 
3650     // Here's a good place to add any other checks we'd like to
3651     // perform on CSet regions.
3652     return false;
3653   }
3654 };
3655 #endif // ASSERT
3656 
3657 #if TASKQUEUE_STATS
3658 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3659   st->print_raw_cr("GC Task Stats");
3660   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3661   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3662 }
3663 
3664 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3665   print_taskqueue_stats_hdr(st);
3666 
3667   TaskQueueStats totals;
3668   const int n = workers() != NULL ? workers()->total_workers() : 1;
3669   for (int i = 0; i < n; ++i) {
3670     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3671     totals += task_queue(i)->stats;
3672   }
3673   st->print_raw("tot "); totals.print(st); st->cr();
3674 
3675   DEBUG_ONLY(totals.verify());
3676 }
3677 
3678 void G1CollectedHeap::reset_taskqueue_stats() {
3679   const int n = workers() != NULL ? workers()->total_workers() : 1;
3680   for (int i = 0; i < n; ++i) {
3681     task_queue(i)->stats.reset();
3682   }
3683 }
3684 #endif // TASKQUEUE_STATS
3685 
3686 bool
3687 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3688   assert_at_safepoint(true /* should_be_vm_thread */);
3689   guarantee(!is_gc_active(), "collection is not reentrant");
3690 
3691   if (GC_locker::check_active_before_gc()) {
3692     return false;
3693   }
3694 
3695   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3696   ResourceMark rm;
3697 
3698   print_heap_before_gc();
3699 
3700   HRSPhaseSetter x(HRSPhaseEvacuation);
3701   verify_region_sets_optional();
3702   verify_dirty_young_regions();
3703 
3704   // This call will decide whether this pause is an initial-mark
3705   // pause. If it is, during_initial_mark_pause() will return true
3706   // for the duration of this pause.
3707   g1_policy()->decide_on_conc_mark_initiation();
3708 
3709   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3710   assert(!g1_policy()->during_initial_mark_pause() ||
3711           g1_policy()->gcs_are_young(), "sanity");
3712 
3713   // We also do not allow mixed GCs during marking.
3714   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3715 
3716   // Record whether this pause is an initial mark. When the current
3717   // thread has completed its logging output and it's safe to signal
3718   // the CM thread, the flag's value in the policy has been reset.
3719   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3720 
3721   // Inner scope for scope based logging, timers, and stats collection
3722   {
3723     if (g1_policy()->during_initial_mark_pause()) {
3724       // We are about to start a marking cycle, so we increment the
3725       // full collection counter.
3726       increment_old_marking_cycles_started();
3727     }
3728     // if the log level is "finer" is on, we'll print long statistics information
3729     // in the collector policy code, so let's not print this as the output
3730     // is messy if we do.
3731     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
3732     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3733 
3734     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3735                                 workers()->active_workers() : 1);
3736     g1_policy()->phase_times()->note_gc_start(os::elapsedTime(), active_workers,
3737       g1_policy()->gcs_are_young(), g1_policy()->during_initial_mark_pause(), gc_cause());
3738 
3739     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3740     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3741 
3742     // If the secondary_free_list is not empty, append it to the
3743     // free_list. No need to wait for the cleanup operation to finish;
3744     // the region allocation code will check the secondary_free_list
3745     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3746     // set, skip this step so that the region allocation code has to
3747     // get entries from the secondary_free_list.
3748     if (!G1StressConcRegionFreeing) {
3749       append_secondary_free_list_if_not_empty_with_lock();
3750     }
3751 
3752     assert(check_young_list_well_formed(),
3753       "young list should be well formed");
3754 
3755     // Don't dynamically change the number of GC threads this early.  A value of
3756     // 0 is used to indicate serial work.  When parallel work is done,
3757     // it will be set.
3758 
3759     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3760       IsGCActiveMark x;
3761 
3762       gc_prologue(false);
3763       increment_total_collections(false /* full gc */);
3764       increment_gc_time_stamp();
3765 
3766       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
3767         HandleMark hm;  // Discard invalid handles created during verification
3768         gclog_or_tty->print(" VerifyBeforeGC:");
3769         prepare_for_verify();
3770         Universe::verify(/* silent      */ false,
3771                          /* option      */ VerifyOption_G1UsePrevMarking);
3772       }
3773 
3774       COMPILER2_PRESENT(DerivedPointerTable::clear());
3775 
3776       // Please see comment in g1CollectedHeap.hpp and
3777       // G1CollectedHeap::ref_processing_init() to see how
3778       // reference processing currently works in G1.
3779 
3780       // Enable discovery in the STW reference processor
3781       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3782                                             true /*verify_no_refs*/);
3783 
3784       {
3785         // We want to temporarily turn off discovery by the
3786         // CM ref processor, if necessary, and turn it back on
3787         // on again later if we do. Using a scoped
3788         // NoRefDiscovery object will do this.
3789         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3790 
3791         // Forget the current alloc region (we might even choose it to be part
3792         // of the collection set!).
3793         release_mutator_alloc_region();
3794 
3795         // We should call this after we retire the mutator alloc
3796         // region(s) so that all the ALLOC / RETIRE events are generated
3797         // before the start GC event.
3798         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3799 
3800         // This timing is only used by the ergonomics to handle our pause target.
3801         // It is unclear why this should not include the full pause. We will
3802         // investigate this in CR 7178365.
3803         //
3804         // Preserving the old comment here if that helps the investigation:
3805         //
3806         // The elapsed time induced by the start time below deliberately elides
3807         // the possible verification above.
3808         double sample_start_time_sec = os::elapsedTime();
3809         size_t start_used_bytes = used();
3810 
3811 #if YOUNG_LIST_VERBOSE
3812         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3813         _young_list->print();
3814         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3815 #endif // YOUNG_LIST_VERBOSE
3816 
3817         g1_policy()->record_collection_pause_start(sample_start_time_sec,
3818                                                    start_used_bytes);
3819 
3820         double scan_wait_start = os::elapsedTime();
3821         // We have to wait until the CM threads finish scanning the
3822         // root regions as it's the only way to ensure that all the
3823         // objects on them have been correctly scanned before we start
3824         // moving them during the GC.
3825         bool waited = _cm->root_regions()->wait_until_scan_finished();
3826         double wait_time_ms = 0.0;
3827         if (waited) {
3828           double scan_wait_end = os::elapsedTime();
3829           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3830         }
3831         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3832 
3833 #if YOUNG_LIST_VERBOSE
3834         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3835         _young_list->print();
3836 #endif // YOUNG_LIST_VERBOSE
3837 
3838         if (g1_policy()->during_initial_mark_pause()) {
3839           concurrent_mark()->checkpointRootsInitialPre();
3840         }
3841         perm_gen()->save_marks();
3842 
3843 #if YOUNG_LIST_VERBOSE
3844         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3845         _young_list->print();
3846         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3847 #endif // YOUNG_LIST_VERBOSE
3848 
3849         g1_policy()->finalize_cset(target_pause_time_ms);
3850 
3851         _cm->note_start_of_gc();
3852         // We should not verify the per-thread SATB buffers given that
3853         // we have not filtered them yet (we'll do so during the
3854         // GC). We also call this after finalize_cset() to
3855         // ensure that the CSet has been finalized.
3856         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3857                                  true  /* verify_enqueued_buffers */,
3858                                  false /* verify_thread_buffers */,
3859                                  true  /* verify_fingers */);
3860 
3861         if (_hr_printer.is_active()) {
3862           HeapRegion* hr = g1_policy()->collection_set();
3863           while (hr != NULL) {
3864             G1HRPrinter::RegionType type;
3865             if (!hr->is_young()) {
3866               type = G1HRPrinter::Old;
3867             } else if (hr->is_survivor()) {
3868               type = G1HRPrinter::Survivor;
3869             } else {
3870               type = G1HRPrinter::Eden;
3871             }
3872             _hr_printer.cset(hr);
3873             hr = hr->next_in_collection_set();
3874           }
3875         }
3876 
3877 #ifdef ASSERT
3878         VerifyCSetClosure cl;
3879         collection_set_iterate(&cl);
3880 #endif // ASSERT
3881 
3882         setup_surviving_young_words();
3883 
3884         // Initialize the GC alloc regions.
3885         init_gc_alloc_regions();
3886 
3887         // Actually do the work...
3888         evacuate_collection_set();
3889 
3890         // We do this to mainly verify the per-thread SATB buffers
3891         // (which have been filtered by now) since we didn't verify
3892         // them earlier. No point in re-checking the stacks / enqueued
3893         // buffers given that the CSet has not changed since last time
3894         // we checked.
3895         _cm->verify_no_cset_oops(false /* verify_stacks */,
3896                                  false /* verify_enqueued_buffers */,
3897                                  true  /* verify_thread_buffers */,
3898                                  true  /* verify_fingers */);
3899 
3900         free_collection_set(g1_policy()->collection_set());
3901         g1_policy()->clear_collection_set();
3902 
3903         cleanup_surviving_young_words();
3904 
3905         // Start a new incremental collection set for the next pause.
3906         g1_policy()->start_incremental_cset_building();
3907 
3908         // Clear the _cset_fast_test bitmap in anticipation of adding
3909         // regions to the incremental collection set for the next
3910         // evacuation pause.
3911         clear_cset_fast_test();
3912 
3913         _young_list->reset_sampled_info();
3914 
3915         // Don't check the whole heap at this point as the
3916         // GC alloc regions from this pause have been tagged
3917         // as survivors and moved on to the survivor list.
3918         // Survivor regions will fail the !is_young() check.
3919         assert(check_young_list_empty(false /* check_heap */),
3920           "young list should be empty");
3921 
3922 #if YOUNG_LIST_VERBOSE
3923         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3924         _young_list->print();
3925 #endif // YOUNG_LIST_VERBOSE
3926 
3927         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3928                                             _young_list->first_survivor_region(),
3929                                             _young_list->last_survivor_region());
3930 
3931         _young_list->reset_auxilary_lists();
3932 
3933         if (evacuation_failed()) {
3934           _summary_bytes_used = recalculate_used();
3935         } else {
3936           // The "used" of the the collection set have already been subtracted
3937           // when they were freed.  Add in the bytes evacuated.
3938           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3939         }
3940 
3941         if (g1_policy()->during_initial_mark_pause()) {
3942           // We have to do this before we notify the CM threads that
3943           // they can start working to make sure that all the
3944           // appropriate initialization is done on the CM object.
3945           concurrent_mark()->checkpointRootsInitialPost();
3946           set_marking_started();
3947           // Note that we don't actually trigger the CM thread at
3948           // this point. We do that later when we're sure that
3949           // the current thread has completed its logging output.
3950         }
3951 
3952         allocate_dummy_regions();
3953 
3954 #if YOUNG_LIST_VERBOSE
3955         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3956         _young_list->print();
3957         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3958 #endif // YOUNG_LIST_VERBOSE
3959 
3960         init_mutator_alloc_region();
3961 
3962         {
3963           size_t expand_bytes = g1_policy()->expansion_amount();
3964           if (expand_bytes > 0) {
3965             size_t bytes_before = capacity();
3966             // No need for an ergo verbose message here,
3967             // expansion_amount() does this when it returns a value > 0.
3968             if (!expand(expand_bytes)) {
3969               // We failed to expand the heap so let's verify that
3970               // committed/uncommitted amount match the backing store
3971               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3972               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3973             }
3974           }
3975         }
3976 
3977         // We redo the verificaiton but now wrt to the new CSet which
3978         // has just got initialized after the previous CSet was freed.
3979         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3980                                  true  /* verify_enqueued_buffers */,
3981                                  true  /* verify_thread_buffers */,
3982                                  true  /* verify_fingers */);
3983         _cm->note_end_of_gc();
3984 
3985         // Collect thread local data to allow the ergonomics to use
3986         // the collected information
3987         g1_policy()->phase_times()->collapse_par_times();
3988 
3989         // This timing is only used by the ergonomics to handle our pause target.
3990         // It is unclear why this should not include the full pause. We will
3991         // investigate this in CR 7178365.
3992         double sample_end_time_sec = os::elapsedTime();
3993         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3994         g1_policy()->record_collection_pause_end(pause_time_ms);
3995 
3996         MemoryService::track_memory_usage();
3997 
3998         // In prepare_for_verify() below we'll need to scan the deferred
3999         // update buffers to bring the RSets up-to-date if
4000         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4001         // the update buffers we'll probably need to scan cards on the
4002         // regions we just allocated to (i.e., the GC alloc
4003         // regions). However, during the last GC we called
4004         // set_saved_mark() on all the GC alloc regions, so card
4005         // scanning might skip the [saved_mark_word()...top()] area of
4006         // those regions (i.e., the area we allocated objects into
4007         // during the last GC). But it shouldn't. Given that
4008         // saved_mark_word() is conditional on whether the GC time stamp
4009         // on the region is current or not, by incrementing the GC time
4010         // stamp here we invalidate all the GC time stamps on all the
4011         // regions and saved_mark_word() will simply return top() for
4012         // all the regions. This is a nicer way of ensuring this rather
4013         // than iterating over the regions and fixing them. In fact, the
4014         // GC time stamp increment here also ensures that
4015         // saved_mark_word() will return top() between pauses, i.e.,
4016         // during concurrent refinement. So we don't need the
4017         // is_gc_active() check to decided which top to use when
4018         // scanning cards (see CR 7039627).
4019         increment_gc_time_stamp();
4020 
4021         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
4022           HandleMark hm;  // Discard invalid handles created during verification
4023           gclog_or_tty->print(" VerifyAfterGC:");
4024           prepare_for_verify();
4025           Universe::verify(/* silent      */ false,
4026                            /* option      */ VerifyOption_G1UsePrevMarking);
4027         }
4028 
4029         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4030         ref_processor_stw()->verify_no_references_recorded();
4031 
4032         // CM reference discovery will be re-enabled if necessary.
4033       }
4034 
4035       // We should do this after we potentially expand the heap so
4036       // that all the COMMIT events are generated before the end GC
4037       // event, and after we retire the GC alloc regions so that all
4038       // RETIRE events are generated before the end GC event.
4039       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4040 
4041       if (mark_in_progress()) {
4042         concurrent_mark()->update_g1_committed();
4043       }
4044 
4045 #ifdef TRACESPINNING
4046       ParallelTaskTerminator::print_termination_counts();
4047 #endif
4048 
4049       gc_epilogue(false);
4050 
4051       g1_policy()->phase_times()->note_gc_end(os::elapsedTime());
4052 
4053       // We have to do this after we decide whether to expand the heap or not.
4054       g1_policy()->print_heap_transition();
4055     }
4056 
4057     // It is not yet to safe to tell the concurrent mark to
4058     // start as we have some optional output below. We don't want the
4059     // output from the concurrent mark thread interfering with this
4060     // logging output either.
4061 
4062     _hrs.verify_optional();
4063     verify_region_sets_optional();
4064 
4065     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4066     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4067 
4068     print_heap_after_gc();
4069 
4070     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4071     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4072     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4073     // before any GC notifications are raised.
4074     g1mm()->update_sizes();
4075   }
4076 
4077   if (G1SummarizeRSetStats &&
4078       (G1SummarizeRSetStatsPeriod > 0) &&
4079       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
4080     g1_rem_set()->print_summary_info();
4081   }
4082 
4083   // It should now be safe to tell the concurrent mark thread to start
4084   // without its logging output interfering with the logging output
4085   // that came from the pause.
4086 
4087   if (should_start_conc_mark) {
4088     // CAUTION: after the doConcurrentMark() call below,
4089     // the concurrent marking thread(s) could be running
4090     // concurrently with us. Make sure that anything after
4091     // this point does not assume that we are the only GC thread
4092     // running. Note: of course, the actual marking work will
4093     // not start until the safepoint itself is released in
4094     // ConcurrentGCThread::safepoint_desynchronize().
4095     doConcurrentMark();
4096   }
4097 
4098   return true;
4099 }
4100 
4101 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4102 {
4103   size_t gclab_word_size;
4104   switch (purpose) {
4105     case GCAllocForSurvived:
4106       gclab_word_size = YoungPLABSize;
4107       break;
4108     case GCAllocForTenured:
4109       gclab_word_size = OldPLABSize;
4110       break;
4111     default:
4112       assert(false, "unknown GCAllocPurpose");
4113       gclab_word_size = OldPLABSize;
4114       break;
4115   }
4116   return gclab_word_size;
4117 }
4118 
4119 void G1CollectedHeap::init_mutator_alloc_region() {
4120   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4121   _mutator_alloc_region.init();
4122 }
4123 
4124 void G1CollectedHeap::release_mutator_alloc_region() {
4125   _mutator_alloc_region.release();
4126   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4127 }
4128 
4129 void G1CollectedHeap::init_gc_alloc_regions() {
4130   assert_at_safepoint(true /* should_be_vm_thread */);
4131 
4132   _survivor_gc_alloc_region.init();
4133   _old_gc_alloc_region.init();
4134   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4135   _retained_old_gc_alloc_region = NULL;
4136 
4137   // We will discard the current GC alloc region if:
4138   // a) it's in the collection set (it can happen!),
4139   // b) it's already full (no point in using it),
4140   // c) it's empty (this means that it was emptied during
4141   // a cleanup and it should be on the free list now), or
4142   // d) it's humongous (this means that it was emptied
4143   // during a cleanup and was added to the free list, but
4144   // has been subseqently used to allocate a humongous
4145   // object that may be less than the region size).
4146   if (retained_region != NULL &&
4147       !retained_region->in_collection_set() &&
4148       !(retained_region->top() == retained_region->end()) &&
4149       !retained_region->is_empty() &&
4150       !retained_region->isHumongous()) {
4151     retained_region->set_saved_mark();
4152     // The retained region was added to the old region set when it was
4153     // retired. We have to remove it now, since we don't allow regions
4154     // we allocate to in the region sets. We'll re-add it later, when
4155     // it's retired again.
4156     _old_set.remove(retained_region);
4157     bool during_im = g1_policy()->during_initial_mark_pause();
4158     retained_region->note_start_of_copying(during_im);
4159     _old_gc_alloc_region.set(retained_region);
4160     _hr_printer.reuse(retained_region);
4161   }
4162 }
4163 
4164 void G1CollectedHeap::release_gc_alloc_regions() {
4165   _survivor_gc_alloc_region.release();
4166   // If we have an old GC alloc region to release, we'll save it in
4167   // _retained_old_gc_alloc_region. If we don't
4168   // _retained_old_gc_alloc_region will become NULL. This is what we
4169   // want either way so no reason to check explicitly for either
4170   // condition.
4171   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4172 }
4173 
4174 void G1CollectedHeap::abandon_gc_alloc_regions() {
4175   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4176   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4177   _retained_old_gc_alloc_region = NULL;
4178 }
4179 
4180 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4181   _drain_in_progress = false;
4182   set_evac_failure_closure(cl);
4183   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4184 }
4185 
4186 void G1CollectedHeap::finalize_for_evac_failure() {
4187   assert(_evac_failure_scan_stack != NULL &&
4188          _evac_failure_scan_stack->length() == 0,
4189          "Postcondition");
4190   assert(!_drain_in_progress, "Postcondition");
4191   delete _evac_failure_scan_stack;
4192   _evac_failure_scan_stack = NULL;
4193 }
4194 
4195 void G1CollectedHeap::remove_self_forwarding_pointers() {
4196   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4197 
4198   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4199 
4200   if (G1CollectedHeap::use_parallel_gc_threads()) {
4201     set_par_threads();
4202     workers()->run_task(&rsfp_task);
4203     set_par_threads(0);
4204   } else {
4205     rsfp_task.work(0);
4206   }
4207 
4208   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4209 
4210   // Reset the claim values in the regions in the collection set.
4211   reset_cset_heap_region_claim_values();
4212 
4213   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4214 
4215   // Now restore saved marks, if any.
4216   if (_objs_with_preserved_marks != NULL) {
4217     assert(_preserved_marks_of_objs != NULL, "Both or none.");
4218     guarantee(_objs_with_preserved_marks->length() ==
4219               _preserved_marks_of_objs->length(), "Both or none.");
4220     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
4221       oop obj   = _objs_with_preserved_marks->at(i);
4222       markOop m = _preserved_marks_of_objs->at(i);
4223       obj->set_mark(m);
4224     }
4225 
4226     // Delete the preserved marks growable arrays (allocated on the C heap).
4227     delete _objs_with_preserved_marks;
4228     delete _preserved_marks_of_objs;
4229     _objs_with_preserved_marks = NULL;
4230     _preserved_marks_of_objs = NULL;
4231   }
4232 }
4233 
4234 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4235   _evac_failure_scan_stack->push(obj);
4236 }
4237 
4238 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4239   assert(_evac_failure_scan_stack != NULL, "precondition");
4240 
4241   while (_evac_failure_scan_stack->length() > 0) {
4242      oop obj = _evac_failure_scan_stack->pop();
4243      _evac_failure_closure->set_region(heap_region_containing(obj));
4244      obj->oop_iterate_backwards(_evac_failure_closure);
4245   }
4246 }
4247 
4248 oop
4249 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4250                                                oop old) {
4251   assert(obj_in_cs(old),
4252          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4253                  (HeapWord*) old));
4254   markOop m = old->mark();
4255   oop forward_ptr = old->forward_to_atomic(old);
4256   if (forward_ptr == NULL) {
4257     // Forward-to-self succeeded.
4258 
4259     if (_evac_failure_closure != cl) {
4260       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4261       assert(!_drain_in_progress,
4262              "Should only be true while someone holds the lock.");
4263       // Set the global evac-failure closure to the current thread's.
4264       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4265       set_evac_failure_closure(cl);
4266       // Now do the common part.
4267       handle_evacuation_failure_common(old, m);
4268       // Reset to NULL.
4269       set_evac_failure_closure(NULL);
4270     } else {
4271       // The lock is already held, and this is recursive.
4272       assert(_drain_in_progress, "This should only be the recursive case.");
4273       handle_evacuation_failure_common(old, m);
4274     }
4275     return old;
4276   } else {
4277     // Forward-to-self failed. Either someone else managed to allocate
4278     // space for this object (old != forward_ptr) or they beat us in
4279     // self-forwarding it (old == forward_ptr).
4280     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4281            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4282                    "should not be in the CSet",
4283                    (HeapWord*) old, (HeapWord*) forward_ptr));
4284     return forward_ptr;
4285   }
4286 }
4287 
4288 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4289   set_evacuation_failed(true);
4290 
4291   preserve_mark_if_necessary(old, m);
4292 
4293   HeapRegion* r = heap_region_containing(old);
4294   if (!r->evacuation_failed()) {
4295     r->set_evacuation_failed(true);
4296     _hr_printer.evac_failure(r);
4297   }
4298 
4299   push_on_evac_failure_scan_stack(old);
4300 
4301   if (!_drain_in_progress) {
4302     // prevent recursion in copy_to_survivor_space()
4303     _drain_in_progress = true;
4304     drain_evac_failure_scan_stack();
4305     _drain_in_progress = false;
4306   }
4307 }
4308 
4309 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4310   assert(evacuation_failed(), "Oversaving!");
4311   // We want to call the "for_promotion_failure" version only in the
4312   // case of a promotion failure.
4313   if (m->must_be_preserved_for_promotion_failure(obj)) {
4314     if (_objs_with_preserved_marks == NULL) {
4315       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4316       _objs_with_preserved_marks =
4317         new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4318       _preserved_marks_of_objs =
4319         new (ResourceObj::C_HEAP, mtGC) GrowableArray<markOop>(40, true);
4320     }
4321     _objs_with_preserved_marks->push(obj);
4322     _preserved_marks_of_objs->push(m);
4323   }
4324 }
4325 
4326 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4327                                                   size_t word_size) {
4328   if (purpose == GCAllocForSurvived) {
4329     HeapWord* result = survivor_attempt_allocation(word_size);
4330     if (result != NULL) {
4331       return result;
4332     } else {
4333       // Let's try to allocate in the old gen in case we can fit the
4334       // object there.
4335       return old_attempt_allocation(word_size);
4336     }
4337   } else {
4338     assert(purpose ==  GCAllocForTenured, "sanity");
4339     HeapWord* result = old_attempt_allocation(word_size);
4340     if (result != NULL) {
4341       return result;
4342     } else {
4343       // Let's try to allocate in the survivors in case we can fit the
4344       // object there.
4345       return survivor_attempt_allocation(word_size);
4346     }
4347   }
4348 
4349   ShouldNotReachHere();
4350   // Trying to keep some compilers happy.
4351   return NULL;
4352 }
4353 
4354 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4355   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4356 
4357 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4358   : _g1h(g1h),
4359     _refs(g1h->task_queue(queue_num)),
4360     _dcq(&g1h->dirty_card_queue_set()),
4361     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4362     _g1_rem(g1h->g1_rem_set()),
4363     _hash_seed(17), _queue_num(queue_num),
4364     _term_attempts(0),
4365     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4366     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4367     _age_table(false),
4368     _strong_roots_time(0), _term_time(0),
4369     _alloc_buffer_waste(0), _undo_waste(0) {
4370   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4371   // we "sacrifice" entry 0 to keep track of surviving bytes for
4372   // non-young regions (where the age is -1)
4373   // We also add a few elements at the beginning and at the end in
4374   // an attempt to eliminate cache contention
4375   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4376   uint array_length = PADDING_ELEM_NUM +
4377                       real_length +
4378                       PADDING_ELEM_NUM;
4379   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4380   if (_surviving_young_words_base == NULL)
4381     vm_exit_out_of_memory(array_length * sizeof(size_t),
4382                           "Not enough space for young surv histo.");
4383   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4384   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4385 
4386   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4387   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4388 
4389   _start = os::elapsedTime();
4390 }
4391 
4392 void
4393 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4394 {
4395   st->print_raw_cr("GC Termination Stats");
4396   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4397                    " ------waste (KiB)------");
4398   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4399                    "  total   alloc    undo");
4400   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4401                    " ------- ------- -------");
4402 }
4403 
4404 void
4405 G1ParScanThreadState::print_termination_stats(int i,
4406                                               outputStream* const st) const
4407 {
4408   const double elapsed_ms = elapsed_time() * 1000.0;
4409   const double s_roots_ms = strong_roots_time() * 1000.0;
4410   const double term_ms    = term_time() * 1000.0;
4411   st->print_cr("%3d %9.2f %9.2f %6.2f "
4412                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4413                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4414                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4415                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4416                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4417                alloc_buffer_waste() * HeapWordSize / K,
4418                undo_waste() * HeapWordSize / K);
4419 }
4420 
4421 #ifdef ASSERT
4422 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4423   assert(ref != NULL, "invariant");
4424   assert(UseCompressedOops, "sanity");
4425   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4426   oop p = oopDesc::load_decode_heap_oop(ref);
4427   assert(_g1h->is_in_g1_reserved(p),
4428          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4429   return true;
4430 }
4431 
4432 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4433   assert(ref != NULL, "invariant");
4434   if (has_partial_array_mask(ref)) {
4435     // Must be in the collection set--it's already been copied.
4436     oop p = clear_partial_array_mask(ref);
4437     assert(_g1h->obj_in_cs(p),
4438            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4439   } else {
4440     oop p = oopDesc::load_decode_heap_oop(ref);
4441     assert(_g1h->is_in_g1_reserved(p),
4442            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4443   }
4444   return true;
4445 }
4446 
4447 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4448   if (ref.is_narrow()) {
4449     return verify_ref((narrowOop*) ref);
4450   } else {
4451     return verify_ref((oop*) ref);
4452   }
4453 }
4454 #endif // ASSERT
4455 
4456 void G1ParScanThreadState::trim_queue() {
4457   assert(_evac_cl != NULL, "not set");
4458   assert(_evac_failure_cl != NULL, "not set");
4459   assert(_partial_scan_cl != NULL, "not set");
4460 
4461   StarTask ref;
4462   do {
4463     // Drain the overflow stack first, so other threads can steal.
4464     while (refs()->pop_overflow(ref)) {
4465       deal_with_reference(ref);
4466     }
4467 
4468     while (refs()->pop_local(ref)) {
4469       deal_with_reference(ref);
4470     }
4471   } while (!refs()->is_empty());
4472 }
4473 
4474 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4475                                      G1ParScanThreadState* par_scan_state) :
4476   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4477   _par_scan_state(par_scan_state),
4478   _worker_id(par_scan_state->queue_num()),
4479   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4480   _mark_in_progress(_g1->mark_in_progress()) { }
4481 
4482 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4483 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4484 #ifdef ASSERT
4485   HeapRegion* hr = _g1->heap_region_containing(obj);
4486   assert(hr != NULL, "sanity");
4487   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4488 #endif // ASSERT
4489 
4490   // We know that the object is not moving so it's safe to read its size.
4491   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4492 }
4493 
4494 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4495 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4496   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4497 #ifdef ASSERT
4498   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4499   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4500   assert(from_obj != to_obj, "should not be self-forwarded");
4501 
4502   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4503   assert(from_hr != NULL, "sanity");
4504   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4505 
4506   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4507   assert(to_hr != NULL, "sanity");
4508   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4509 #endif // ASSERT
4510 
4511   // The object might be in the process of being copied by another
4512   // worker so we cannot trust that its to-space image is
4513   // well-formed. So we have to read its size from its from-space
4514   // image which we know should not be changing.
4515   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4516 }
4517 
4518 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4519 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4520   ::copy_to_survivor_space(oop old) {
4521   size_t word_sz = old->size();
4522   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4523   // +1 to make the -1 indexes valid...
4524   int       young_index = from_region->young_index_in_cset()+1;
4525   assert( (from_region->is_young() && young_index >  0) ||
4526          (!from_region->is_young() && young_index == 0), "invariant" );
4527   G1CollectorPolicy* g1p = _g1->g1_policy();
4528   markOop m = old->mark();
4529   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4530                                            : m->age();
4531   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4532                                                              word_sz);
4533   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4534   oop       obj     = oop(obj_ptr);
4535 
4536   if (obj_ptr == NULL) {
4537     // This will either forward-to-self, or detect that someone else has
4538     // installed a forwarding pointer.
4539     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4540     return _g1->handle_evacuation_failure_par(cl, old);
4541   }
4542 
4543   // We're going to allocate linearly, so might as well prefetch ahead.
4544   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4545 
4546   oop forward_ptr = old->forward_to_atomic(obj);
4547   if (forward_ptr == NULL) {
4548     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4549     if (g1p->track_object_age(alloc_purpose)) {
4550       // We could simply do obj->incr_age(). However, this causes a
4551       // performance issue. obj->incr_age() will first check whether
4552       // the object has a displaced mark by checking its mark word;
4553       // getting the mark word from the new location of the object
4554       // stalls. So, given that we already have the mark word and we
4555       // are about to install it anyway, it's better to increase the
4556       // age on the mark word, when the object does not have a
4557       // displaced mark word. We're not expecting many objects to have
4558       // a displaced marked word, so that case is not optimized
4559       // further (it could be...) and we simply call obj->incr_age().
4560 
4561       if (m->has_displaced_mark_helper()) {
4562         // in this case, we have to install the mark word first,
4563         // otherwise obj looks to be forwarded (the old mark word,
4564         // which contains the forward pointer, was copied)
4565         obj->set_mark(m);
4566         obj->incr_age();
4567       } else {
4568         m = m->incr_age();
4569         obj->set_mark(m);
4570       }
4571       _par_scan_state->age_table()->add(obj, word_sz);
4572     } else {
4573       obj->set_mark(m);
4574     }
4575 
4576     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4577     surv_young_words[young_index] += word_sz;
4578 
4579     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4580       // We keep track of the next start index in the length field of
4581       // the to-space object. The actual length can be found in the
4582       // length field of the from-space object.
4583       arrayOop(obj)->set_length(0);
4584       oop* old_p = set_partial_array_mask(old);
4585       _par_scan_state->push_on_queue(old_p);
4586     } else {
4587       // No point in using the slower heap_region_containing() method,
4588       // given that we know obj is in the heap.
4589       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4590       obj->oop_iterate_backwards(&_scanner);
4591     }
4592   } else {
4593     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4594     obj = forward_ptr;
4595   }
4596   return obj;
4597 }
4598 
4599 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4600 template <class T>
4601 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4602 ::do_oop_work(T* p) {
4603   oop obj = oopDesc::load_decode_heap_oop(p);
4604   assert(barrier != G1BarrierRS || obj != NULL,
4605          "Precondition: G1BarrierRS implies obj is non-NULL");
4606 
4607   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4608 
4609   // here the null check is implicit in the cset_fast_test() test
4610   if (_g1->in_cset_fast_test(obj)) {
4611     oop forwardee;
4612     if (obj->is_forwarded()) {
4613       forwardee = obj->forwardee();
4614     } else {
4615       forwardee = copy_to_survivor_space(obj);
4616     }
4617     assert(forwardee != NULL, "forwardee should not be NULL");
4618     oopDesc::encode_store_heap_oop(p, forwardee);
4619     if (do_mark_object && forwardee != obj) {
4620       // If the object is self-forwarded we don't need to explicitly
4621       // mark it, the evacuation failure protocol will do so.
4622       mark_forwarded_object(obj, forwardee);
4623     }
4624 
4625     // When scanning the RS, we only care about objs in CS.
4626     if (barrier == G1BarrierRS) {
4627       _par_scan_state->update_rs(_from, p, _worker_id);
4628     }
4629   } else {
4630     // The object is not in collection set. If we're a root scanning
4631     // closure during an initial mark pause (i.e. do_mark_object will
4632     // be true) then attempt to mark the object.
4633     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4634       mark_object(obj);
4635     }
4636   }
4637 
4638   if (barrier == G1BarrierEvac && obj != NULL) {
4639     _par_scan_state->update_rs(_from, p, _worker_id);
4640   }
4641 
4642   if (do_gen_barrier && obj != NULL) {
4643     par_do_barrier(p);
4644   }
4645 }
4646 
4647 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4648 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4649 
4650 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4651   assert(has_partial_array_mask(p), "invariant");
4652   oop from_obj = clear_partial_array_mask(p);
4653 
4654   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4655   assert(from_obj->is_objArray(), "must be obj array");
4656   objArrayOop from_obj_array = objArrayOop(from_obj);
4657   // The from-space object contains the real length.
4658   int length                 = from_obj_array->length();
4659 
4660   assert(from_obj->is_forwarded(), "must be forwarded");
4661   oop to_obj                 = from_obj->forwardee();
4662   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4663   objArrayOop to_obj_array   = objArrayOop(to_obj);
4664   // We keep track of the next start index in the length field of the
4665   // to-space object.
4666   int next_index             = to_obj_array->length();
4667   assert(0 <= next_index && next_index < length,
4668          err_msg("invariant, next index: %d, length: %d", next_index, length));
4669 
4670   int start                  = next_index;
4671   int end                    = length;
4672   int remainder              = end - start;
4673   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4674   if (remainder > 2 * ParGCArrayScanChunk) {
4675     end = start + ParGCArrayScanChunk;
4676     to_obj_array->set_length(end);
4677     // Push the remainder before we process the range in case another
4678     // worker has run out of things to do and can steal it.
4679     oop* from_obj_p = set_partial_array_mask(from_obj);
4680     _par_scan_state->push_on_queue(from_obj_p);
4681   } else {
4682     assert(length == end, "sanity");
4683     // We'll process the final range for this object. Restore the length
4684     // so that the heap remains parsable in case of evacuation failure.
4685     to_obj_array->set_length(end);
4686   }
4687   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4688   // Process indexes [start,end). It will also process the header
4689   // along with the first chunk (i.e., the chunk with start == 0).
4690   // Note that at this point the length field of to_obj_array is not
4691   // correct given that we are using it to keep track of the next
4692   // start index. oop_iterate_range() (thankfully!) ignores the length
4693   // field and only relies on the start / end parameters.  It does
4694   // however return the size of the object which will be incorrect. So
4695   // we have to ignore it even if we wanted to use it.
4696   to_obj_array->oop_iterate_range(&_scanner, start, end);
4697 }
4698 
4699 class G1ParEvacuateFollowersClosure : public VoidClosure {
4700 protected:
4701   G1CollectedHeap*              _g1h;
4702   G1ParScanThreadState*         _par_scan_state;
4703   RefToScanQueueSet*            _queues;
4704   ParallelTaskTerminator*       _terminator;
4705 
4706   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4707   RefToScanQueueSet*      queues()         { return _queues; }
4708   ParallelTaskTerminator* terminator()     { return _terminator; }
4709 
4710 public:
4711   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4712                                 G1ParScanThreadState* par_scan_state,
4713                                 RefToScanQueueSet* queues,
4714                                 ParallelTaskTerminator* terminator)
4715     : _g1h(g1h), _par_scan_state(par_scan_state),
4716       _queues(queues), _terminator(terminator) {}
4717 
4718   void do_void();
4719 
4720 private:
4721   inline bool offer_termination();
4722 };
4723 
4724 bool G1ParEvacuateFollowersClosure::offer_termination() {
4725   G1ParScanThreadState* const pss = par_scan_state();
4726   pss->start_term_time();
4727   const bool res = terminator()->offer_termination();
4728   pss->end_term_time();
4729   return res;
4730 }
4731 
4732 void G1ParEvacuateFollowersClosure::do_void() {
4733   StarTask stolen_task;
4734   G1ParScanThreadState* const pss = par_scan_state();
4735   pss->trim_queue();
4736 
4737   do {
4738     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4739       assert(pss->verify_task(stolen_task), "sanity");
4740       if (stolen_task.is_narrow()) {
4741         pss->deal_with_reference((narrowOop*) stolen_task);
4742       } else {
4743         pss->deal_with_reference((oop*) stolen_task);
4744       }
4745 
4746       // We've just processed a reference and we might have made
4747       // available new entries on the queues. So we have to make sure
4748       // we drain the queues as necessary.
4749       pss->trim_queue();
4750     }
4751   } while (!offer_termination());
4752 
4753   pss->retire_alloc_buffers();
4754 }
4755 
4756 class G1ParTask : public AbstractGangTask {
4757 protected:
4758   G1CollectedHeap*       _g1h;
4759   RefToScanQueueSet      *_queues;
4760   ParallelTaskTerminator _terminator;
4761   uint _n_workers;
4762 
4763   Mutex _stats_lock;
4764   Mutex* stats_lock() { return &_stats_lock; }
4765 
4766   size_t getNCards() {
4767     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4768       / G1BlockOffsetSharedArray::N_bytes;
4769   }
4770 
4771 public:
4772   G1ParTask(G1CollectedHeap* g1h,
4773             RefToScanQueueSet *task_queues)
4774     : AbstractGangTask("G1 collection"),
4775       _g1h(g1h),
4776       _queues(task_queues),
4777       _terminator(0, _queues),
4778       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4779   {}
4780 
4781   RefToScanQueueSet* queues() { return _queues; }
4782 
4783   RefToScanQueue *work_queue(int i) {
4784     return queues()->queue(i);
4785   }
4786 
4787   ParallelTaskTerminator* terminator() { return &_terminator; }
4788 
4789   virtual void set_for_termination(int active_workers) {
4790     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4791     // in the young space (_par_seq_tasks) in the G1 heap
4792     // for SequentialSubTasksDone.
4793     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4794     // both of which need setting by set_n_termination().
4795     _g1h->SharedHeap::set_n_termination(active_workers);
4796     _g1h->set_n_termination(active_workers);
4797     terminator()->reset_for_reuse(active_workers);
4798     _n_workers = active_workers;
4799   }
4800 
4801   void work(uint worker_id) {
4802     if (worker_id >= _n_workers) return;  // no work needed this round
4803 
4804     double start_time_ms = os::elapsedTime() * 1000.0;
4805     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4806 
4807     {
4808       ResourceMark rm;
4809       HandleMark   hm;
4810 
4811       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4812 
4813       G1ParScanThreadState            pss(_g1h, worker_id);
4814       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4815       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4816       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4817 
4818       pss.set_evac_closure(&scan_evac_cl);
4819       pss.set_evac_failure_closure(&evac_failure_cl);
4820       pss.set_partial_scan_closure(&partial_scan_cl);
4821 
4822       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4823       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4824 
4825       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4826       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4827 
4828       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4829       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4830 
4831       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4832         // We also need to mark copied objects.
4833         scan_root_cl = &scan_mark_root_cl;
4834         scan_perm_cl = &scan_mark_perm_cl;
4835       }
4836 
4837       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4838 
4839       pss.start_strong_roots();
4840       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4841                                     SharedHeap::SO_AllClasses,
4842                                     scan_root_cl,
4843                                     &push_heap_rs_cl,
4844                                     scan_perm_cl,
4845                                     worker_id);
4846       pss.end_strong_roots();
4847 
4848       {
4849         double start = os::elapsedTime();
4850         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4851         evac.do_void();
4852         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4853         double term_ms = pss.term_time()*1000.0;
4854         _g1h->g1_policy()->phase_times()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
4855         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4856       }
4857       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4858       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4859 
4860       if (ParallelGCVerbose) {
4861         MutexLocker x(stats_lock());
4862         pss.print_termination_stats(worker_id);
4863       }
4864 
4865       assert(pss.refs()->is_empty(), "should be empty");
4866 
4867       // Close the inner scope so that the ResourceMark and HandleMark
4868       // destructors are executed here and are included as part of the
4869       // "GC Worker Time".
4870     }
4871 
4872     double end_time_ms = os::elapsedTime() * 1000.0;
4873     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4874   }
4875 };
4876 
4877 // *** Common G1 Evacuation Stuff
4878 
4879 // Closures that support the filtering of CodeBlobs scanned during
4880 // external root scanning.
4881 
4882 // Closure applied to reference fields in code blobs (specifically nmethods)
4883 // to determine whether an nmethod contains references that point into
4884 // the collection set. Used as a predicate when walking code roots so
4885 // that only nmethods that point into the collection set are added to the
4886 // 'marked' list.
4887 
4888 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
4889 
4890   class G1PointsIntoCSOopClosure : public OopClosure {
4891     G1CollectedHeap* _g1;
4892     bool _points_into_cs;
4893   public:
4894     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
4895       _g1(g1), _points_into_cs(false) { }
4896 
4897     bool points_into_cs() const { return _points_into_cs; }
4898 
4899     template <class T>
4900     void do_oop_nv(T* p) {
4901       if (!_points_into_cs) {
4902         T heap_oop = oopDesc::load_heap_oop(p);
4903         if (!oopDesc::is_null(heap_oop) &&
4904             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
4905           _points_into_cs = true;
4906         }
4907       }
4908     }
4909 
4910     virtual void do_oop(oop* p)        { do_oop_nv(p); }
4911     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
4912   };
4913 
4914   G1CollectedHeap* _g1;
4915 
4916 public:
4917   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
4918     CodeBlobToOopClosure(cl, true), _g1(g1) { }
4919 
4920   virtual void do_code_blob(CodeBlob* cb) {
4921     nmethod* nm = cb->as_nmethod_or_null();
4922     if (nm != NULL && !(nm->test_oops_do_mark())) {
4923       G1PointsIntoCSOopClosure predicate_cl(_g1);
4924       nm->oops_do(&predicate_cl);
4925 
4926       if (predicate_cl.points_into_cs()) {
4927         // At least one of the reference fields or the oop relocations
4928         // in the nmethod points into the collection set. We have to
4929         // 'mark' this nmethod.
4930         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
4931         // or MarkingCodeBlobClosure::do_code_blob() change.
4932         if (!nm->test_set_oops_do_mark()) {
4933           do_newly_marked_nmethod(nm);
4934         }
4935       }
4936     }
4937   }
4938 };
4939 
4940 // This method is run in a GC worker.
4941 
4942 void
4943 G1CollectedHeap::
4944 g1_process_strong_roots(bool collecting_perm_gen,
4945                         ScanningOption so,
4946                         OopClosure* scan_non_heap_roots,
4947                         OopsInHeapRegionClosure* scan_rs,
4948                         OopsInGenClosure* scan_perm,
4949                         int worker_i) {
4950 
4951   // First scan the strong roots, including the perm gen.
4952   double ext_roots_start = os::elapsedTime();
4953   double closure_app_time_sec = 0.0;
4954 
4955   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4956   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4957   buf_scan_perm.set_generation(perm_gen());
4958 
4959   // Walk the code cache w/o buffering, because StarTask cannot handle
4960   // unaligned oop locations.
4961   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
4962 
4963   process_strong_roots(false, // no scoping; this is parallel code
4964                        collecting_perm_gen, so,
4965                        &buf_scan_non_heap_roots,
4966                        &eager_scan_code_roots,
4967                        &buf_scan_perm);
4968 
4969   // Now the CM ref_processor roots.
4970   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4971     // We need to treat the discovered reference lists of the
4972     // concurrent mark ref processor as roots and keep entries
4973     // (which are added by the marking threads) on them live
4974     // until they can be processed at the end of marking.
4975     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4976   }
4977 
4978   // Finish up any enqueued closure apps (attributed as object copy time).
4979   buf_scan_non_heap_roots.done();
4980   buf_scan_perm.done();
4981 
4982   double ext_roots_end = os::elapsedTime();
4983 
4984   g1_policy()->phase_times()->reset_obj_copy_time(worker_i);
4985   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
4986                                 buf_scan_non_heap_roots.closure_app_seconds();
4987   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4988 
4989   double ext_root_time_ms =
4990     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4991 
4992   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4993 
4994   // During conc marking we have to filter the per-thread SATB buffers
4995   // to make sure we remove any oops into the CSet (which will show up
4996   // as implicitly live).
4997   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4998     if (mark_in_progress()) {
4999       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5000     }
5001   }
5002   double satb_filtering_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
5003   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5004 
5005   // Now scan the complement of the collection set.
5006   if (scan_rs != NULL) {
5007     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
5008   }
5009 
5010   _process_strong_tasks->all_tasks_completed();
5011 }
5012 
5013 void
5014 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
5015                                        OopClosure* non_root_closure) {
5016   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5017   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
5018 }
5019 
5020 // Weak Reference Processing support
5021 
5022 // An always "is_alive" closure that is used to preserve referents.
5023 // If the object is non-null then it's alive.  Used in the preservation
5024 // of referent objects that are pointed to by reference objects
5025 // discovered by the CM ref processor.
5026 class G1AlwaysAliveClosure: public BoolObjectClosure {
5027   G1CollectedHeap* _g1;
5028 public:
5029   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5030   void do_object(oop p) { assert(false, "Do not call."); }
5031   bool do_object_b(oop p) {
5032     if (p != NULL) {
5033       return true;
5034     }
5035     return false;
5036   }
5037 };
5038 
5039 bool G1STWIsAliveClosure::do_object_b(oop p) {
5040   // An object is reachable if it is outside the collection set,
5041   // or is inside and copied.
5042   return !_g1->obj_in_cs(p) || p->is_forwarded();
5043 }
5044 
5045 // Non Copying Keep Alive closure
5046 class G1KeepAliveClosure: public OopClosure {
5047   G1CollectedHeap* _g1;
5048 public:
5049   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5050   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5051   void do_oop(      oop* p) {
5052     oop obj = *p;
5053 
5054     if (_g1->obj_in_cs(obj)) {
5055       assert( obj->is_forwarded(), "invariant" );
5056       *p = obj->forwardee();
5057     }
5058   }
5059 };
5060 
5061 // Copying Keep Alive closure - can be called from both
5062 // serial and parallel code as long as different worker
5063 // threads utilize different G1ParScanThreadState instances
5064 // and different queues.
5065 
5066 class G1CopyingKeepAliveClosure: public OopClosure {
5067   G1CollectedHeap*         _g1h;
5068   OopClosure*              _copy_non_heap_obj_cl;
5069   OopsInHeapRegionClosure* _copy_perm_obj_cl;
5070   G1ParScanThreadState*    _par_scan_state;
5071 
5072 public:
5073   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5074                             OopClosure* non_heap_obj_cl,
5075                             OopsInHeapRegionClosure* perm_obj_cl,
5076                             G1ParScanThreadState* pss):
5077     _g1h(g1h),
5078     _copy_non_heap_obj_cl(non_heap_obj_cl),
5079     _copy_perm_obj_cl(perm_obj_cl),
5080     _par_scan_state(pss)
5081   {}
5082 
5083   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5084   virtual void do_oop(      oop* p) { do_oop_work(p); }
5085 
5086   template <class T> void do_oop_work(T* p) {
5087     oop obj = oopDesc::load_decode_heap_oop(p);
5088 
5089     if (_g1h->obj_in_cs(obj)) {
5090       // If the referent object has been forwarded (either copied
5091       // to a new location or to itself in the event of an
5092       // evacuation failure) then we need to update the reference
5093       // field and, if both reference and referent are in the G1
5094       // heap, update the RSet for the referent.
5095       //
5096       // If the referent has not been forwarded then we have to keep
5097       // it alive by policy. Therefore we have copy the referent.
5098       //
5099       // If the reference field is in the G1 heap then we can push
5100       // on the PSS queue. When the queue is drained (after each
5101       // phase of reference processing) the object and it's followers
5102       // will be copied, the reference field set to point to the
5103       // new location, and the RSet updated. Otherwise we need to
5104       // use the the non-heap or perm closures directly to copy
5105       // the refernt object and update the pointer, while avoiding
5106       // updating the RSet.
5107 
5108       if (_g1h->is_in_g1_reserved(p)) {
5109         _par_scan_state->push_on_queue(p);
5110       } else {
5111         // The reference field is not in the G1 heap.
5112         if (_g1h->perm_gen()->is_in(p)) {
5113           _copy_perm_obj_cl->do_oop(p);
5114         } else {
5115           _copy_non_heap_obj_cl->do_oop(p);
5116         }
5117       }
5118     }
5119   }
5120 };
5121 
5122 // Serial drain queue closure. Called as the 'complete_gc'
5123 // closure for each discovered list in some of the
5124 // reference processing phases.
5125 
5126 class G1STWDrainQueueClosure: public VoidClosure {
5127 protected:
5128   G1CollectedHeap* _g1h;
5129   G1ParScanThreadState* _par_scan_state;
5130 
5131   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5132 
5133 public:
5134   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5135     _g1h(g1h),
5136     _par_scan_state(pss)
5137   { }
5138 
5139   void do_void() {
5140     G1ParScanThreadState* const pss = par_scan_state();
5141     pss->trim_queue();
5142   }
5143 };
5144 
5145 // Parallel Reference Processing closures
5146 
5147 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5148 // processing during G1 evacuation pauses.
5149 
5150 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5151 private:
5152   G1CollectedHeap*   _g1h;
5153   RefToScanQueueSet* _queues;
5154   FlexibleWorkGang*  _workers;
5155   int                _active_workers;
5156 
5157 public:
5158   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5159                         FlexibleWorkGang* workers,
5160                         RefToScanQueueSet *task_queues,
5161                         int n_workers) :
5162     _g1h(g1h),
5163     _queues(task_queues),
5164     _workers(workers),
5165     _active_workers(n_workers)
5166   {
5167     assert(n_workers > 0, "shouldn't call this otherwise");
5168   }
5169 
5170   // Executes the given task using concurrent marking worker threads.
5171   virtual void execute(ProcessTask& task);
5172   virtual void execute(EnqueueTask& task);
5173 };
5174 
5175 // Gang task for possibly parallel reference processing
5176 
5177 class G1STWRefProcTaskProxy: public AbstractGangTask {
5178   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5179   ProcessTask&     _proc_task;
5180   G1CollectedHeap* _g1h;
5181   RefToScanQueueSet *_task_queues;
5182   ParallelTaskTerminator* _terminator;
5183 
5184 public:
5185   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5186                      G1CollectedHeap* g1h,
5187                      RefToScanQueueSet *task_queues,
5188                      ParallelTaskTerminator* terminator) :
5189     AbstractGangTask("Process reference objects in parallel"),
5190     _proc_task(proc_task),
5191     _g1h(g1h),
5192     _task_queues(task_queues),
5193     _terminator(terminator)
5194   {}
5195 
5196   virtual void work(uint worker_id) {
5197     // The reference processing task executed by a single worker.
5198     ResourceMark rm;
5199     HandleMark   hm;
5200 
5201     G1STWIsAliveClosure is_alive(_g1h);
5202 
5203     G1ParScanThreadState pss(_g1h, worker_id);
5204 
5205     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5206     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5207     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5208 
5209     pss.set_evac_closure(&scan_evac_cl);
5210     pss.set_evac_failure_closure(&evac_failure_cl);
5211     pss.set_partial_scan_closure(&partial_scan_cl);
5212 
5213     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5214     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5215 
5216     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5217     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5218 
5219     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5220     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5221 
5222     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5223       // We also need to mark copied objects.
5224       copy_non_heap_cl = &copy_mark_non_heap_cl;
5225       copy_perm_cl = &copy_mark_perm_cl;
5226     }
5227 
5228     // Keep alive closure.
5229     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5230 
5231     // Complete GC closure
5232     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5233 
5234     // Call the reference processing task's work routine.
5235     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5236 
5237     // Note we cannot assert that the refs array is empty here as not all
5238     // of the processing tasks (specifically phase2 - pp2_work) execute
5239     // the complete_gc closure (which ordinarily would drain the queue) so
5240     // the queue may not be empty.
5241   }
5242 };
5243 
5244 // Driver routine for parallel reference processing.
5245 // Creates an instance of the ref processing gang
5246 // task and has the worker threads execute it.
5247 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5248   assert(_workers != NULL, "Need parallel worker threads.");
5249 
5250   ParallelTaskTerminator terminator(_active_workers, _queues);
5251   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5252 
5253   _g1h->set_par_threads(_active_workers);
5254   _workers->run_task(&proc_task_proxy);
5255   _g1h->set_par_threads(0);
5256 }
5257 
5258 // Gang task for parallel reference enqueueing.
5259 
5260 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5261   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5262   EnqueueTask& _enq_task;
5263 
5264 public:
5265   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5266     AbstractGangTask("Enqueue reference objects in parallel"),
5267     _enq_task(enq_task)
5268   { }
5269 
5270   virtual void work(uint worker_id) {
5271     _enq_task.work(worker_id);
5272   }
5273 };
5274 
5275 // Driver routine for parallel reference enqueing.
5276 // Creates an instance of the ref enqueueing gang
5277 // task and has the worker threads execute it.
5278 
5279 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5280   assert(_workers != NULL, "Need parallel worker threads.");
5281 
5282   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5283 
5284   _g1h->set_par_threads(_active_workers);
5285   _workers->run_task(&enq_task_proxy);
5286   _g1h->set_par_threads(0);
5287 }
5288 
5289 // End of weak reference support closures
5290 
5291 // Abstract task used to preserve (i.e. copy) any referent objects
5292 // that are in the collection set and are pointed to by reference
5293 // objects discovered by the CM ref processor.
5294 
5295 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5296 protected:
5297   G1CollectedHeap* _g1h;
5298   RefToScanQueueSet      *_queues;
5299   ParallelTaskTerminator _terminator;
5300   uint _n_workers;
5301 
5302 public:
5303   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5304     AbstractGangTask("ParPreserveCMReferents"),
5305     _g1h(g1h),
5306     _queues(task_queues),
5307     _terminator(workers, _queues),
5308     _n_workers(workers)
5309   { }
5310 
5311   void work(uint worker_id) {
5312     ResourceMark rm;
5313     HandleMark   hm;
5314 
5315     G1ParScanThreadState            pss(_g1h, worker_id);
5316     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5317     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5318     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5319 
5320     pss.set_evac_closure(&scan_evac_cl);
5321     pss.set_evac_failure_closure(&evac_failure_cl);
5322     pss.set_partial_scan_closure(&partial_scan_cl);
5323 
5324     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5325 
5326 
5327     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5328     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5329 
5330     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5331     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5332 
5333     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5334     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5335 
5336     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5337       // We also need to mark copied objects.
5338       copy_non_heap_cl = &copy_mark_non_heap_cl;
5339       copy_perm_cl = &copy_mark_perm_cl;
5340     }
5341 
5342     // Is alive closure
5343     G1AlwaysAliveClosure always_alive(_g1h);
5344 
5345     // Copying keep alive closure. Applied to referent objects that need
5346     // to be copied.
5347     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5348 
5349     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5350 
5351     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5352     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5353 
5354     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5355     // So this must be true - but assert just in case someone decides to
5356     // change the worker ids.
5357     assert(0 <= worker_id && worker_id < limit, "sanity");
5358     assert(!rp->discovery_is_atomic(), "check this code");
5359 
5360     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5361     for (uint idx = worker_id; idx < limit; idx += stride) {
5362       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5363 
5364       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5365       while (iter.has_next()) {
5366         // Since discovery is not atomic for the CM ref processor, we
5367         // can see some null referent objects.
5368         iter.load_ptrs(DEBUG_ONLY(true));
5369         oop ref = iter.obj();
5370 
5371         // This will filter nulls.
5372         if (iter.is_referent_alive()) {
5373           iter.make_referent_alive();
5374         }
5375         iter.move_to_next();
5376       }
5377     }
5378 
5379     // Drain the queue - which may cause stealing
5380     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5381     drain_queue.do_void();
5382     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5383     assert(pss.refs()->is_empty(), "should be");
5384   }
5385 };
5386 
5387 // Weak Reference processing during an evacuation pause (part 1).
5388 void G1CollectedHeap::process_discovered_references() {
5389   double ref_proc_start = os::elapsedTime();
5390 
5391   ReferenceProcessor* rp = _ref_processor_stw;
5392   assert(rp->discovery_enabled(), "should have been enabled");
5393 
5394   // Any reference objects, in the collection set, that were 'discovered'
5395   // by the CM ref processor should have already been copied (either by
5396   // applying the external root copy closure to the discovered lists, or
5397   // by following an RSet entry).
5398   //
5399   // But some of the referents, that are in the collection set, that these
5400   // reference objects point to may not have been copied: the STW ref
5401   // processor would have seen that the reference object had already
5402   // been 'discovered' and would have skipped discovering the reference,
5403   // but would not have treated the reference object as a regular oop.
5404   // As a reult the copy closure would not have been applied to the
5405   // referent object.
5406   //
5407   // We need to explicitly copy these referent objects - the references
5408   // will be processed at the end of remarking.
5409   //
5410   // We also need to do this copying before we process the reference
5411   // objects discovered by the STW ref processor in case one of these
5412   // referents points to another object which is also referenced by an
5413   // object discovered by the STW ref processor.
5414 
5415   uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5416                         workers()->active_workers() : 1);
5417 
5418   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5419            active_workers == workers()->active_workers(),
5420            "Need to reset active_workers");
5421 
5422   set_par_threads(active_workers);
5423   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
5424 
5425   if (G1CollectedHeap::use_parallel_gc_threads()) {
5426     workers()->run_task(&keep_cm_referents);
5427   } else {
5428     keep_cm_referents.work(0);
5429   }
5430 
5431   set_par_threads(0);
5432 
5433   // Closure to test whether a referent is alive.
5434   G1STWIsAliveClosure is_alive(this);
5435 
5436   // Even when parallel reference processing is enabled, the processing
5437   // of JNI refs is serial and performed serially by the current thread
5438   // rather than by a worker. The following PSS will be used for processing
5439   // JNI refs.
5440 
5441   // Use only a single queue for this PSS.
5442   G1ParScanThreadState pss(this, 0);
5443 
5444   // We do not embed a reference processor in the copying/scanning
5445   // closures while we're actually processing the discovered
5446   // reference objects.
5447   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5448   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5449   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5450 
5451   pss.set_evac_closure(&scan_evac_cl);
5452   pss.set_evac_failure_closure(&evac_failure_cl);
5453   pss.set_partial_scan_closure(&partial_scan_cl);
5454 
5455   assert(pss.refs()->is_empty(), "pre-condition");
5456 
5457   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5458   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
5459 
5460   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5461   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
5462 
5463   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5464   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5465 
5466   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5467     // We also need to mark copied objects.
5468     copy_non_heap_cl = &copy_mark_non_heap_cl;
5469     copy_perm_cl = &copy_mark_perm_cl;
5470   }
5471 
5472   // Keep alive closure.
5473   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
5474 
5475   // Serial Complete GC closure
5476   G1STWDrainQueueClosure drain_queue(this, &pss);
5477 
5478   // Setup the soft refs policy...
5479   rp->setup_policy(false);
5480 
5481   if (!rp->processing_is_mt()) {
5482     // Serial reference processing...
5483     rp->process_discovered_references(&is_alive,
5484                                       &keep_alive,
5485                                       &drain_queue,
5486                                       NULL);
5487   } else {
5488     // Parallel reference processing
5489     assert(rp->num_q() == active_workers, "sanity");
5490     assert(active_workers <= rp->max_num_q(), "sanity");
5491 
5492     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5493     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
5494   }
5495 
5496   // We have completed copying any necessary live referent objects
5497   // (that were not copied during the actual pause) so we can
5498   // retire any active alloc buffers
5499   pss.retire_alloc_buffers();
5500   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5501 
5502   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5503   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5504 }
5505 
5506 // Weak Reference processing during an evacuation pause (part 2).
5507 void G1CollectedHeap::enqueue_discovered_references() {
5508   double ref_enq_start = os::elapsedTime();
5509 
5510   ReferenceProcessor* rp = _ref_processor_stw;
5511   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5512 
5513   // Now enqueue any remaining on the discovered lists on to
5514   // the pending list.
5515   if (!rp->processing_is_mt()) {
5516     // Serial reference processing...
5517     rp->enqueue_discovered_references();
5518   } else {
5519     // Parallel reference enqueuing
5520 
5521     uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
5522     assert(active_workers == workers()->active_workers(),
5523            "Need to reset active_workers");
5524     assert(rp->num_q() == active_workers, "sanity");
5525     assert(active_workers <= rp->max_num_q(), "sanity");
5526 
5527     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5528     rp->enqueue_discovered_references(&par_task_executor);
5529   }
5530 
5531   rp->verify_no_references_recorded();
5532   assert(!rp->discovery_enabled(), "should have been disabled");
5533 
5534   // FIXME
5535   // CM's reference processing also cleans up the string and symbol tables.
5536   // Should we do that here also? We could, but it is a serial operation
5537   // and could signicantly increase the pause time.
5538 
5539   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5540   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5541 }
5542 
5543 void G1CollectedHeap::evacuate_collection_set() {
5544   _expand_heap_after_alloc_failure = true;
5545   set_evacuation_failed(false);
5546 
5547   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5548   concurrent_g1_refine()->set_use_cache(false);
5549   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5550 
5551   uint n_workers;
5552   if (G1CollectedHeap::use_parallel_gc_threads()) {
5553     n_workers =
5554       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5555                                      workers()->active_workers(),
5556                                      Threads::number_of_non_daemon_threads());
5557     assert(UseDynamicNumberOfGCThreads ||
5558            n_workers == workers()->total_workers(),
5559            "If not dynamic should be using all the  workers");
5560     workers()->set_active_workers(n_workers);
5561     set_par_threads(n_workers);
5562   } else {
5563     assert(n_par_threads() == 0,
5564            "Should be the original non-parallel value");
5565     n_workers = 1;
5566   }
5567 
5568   G1ParTask g1_par_task(this, _task_queues);
5569 
5570   init_for_evac_failure(NULL);
5571 
5572   rem_set()->prepare_for_younger_refs_iterate(true);
5573 
5574   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5575   double start_par_time_sec = os::elapsedTime();
5576   double end_par_time_sec;
5577 
5578   {
5579     StrongRootsScope srs(this);
5580 
5581     if (G1CollectedHeap::use_parallel_gc_threads()) {
5582       // The individual threads will set their evac-failure closures.
5583       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5584       // These tasks use ShareHeap::_process_strong_tasks
5585       assert(UseDynamicNumberOfGCThreads ||
5586              workers()->active_workers() == workers()->total_workers(),
5587              "If not dynamic should be using all the  workers");
5588       workers()->run_task(&g1_par_task);
5589     } else {
5590       g1_par_task.set_for_termination(n_workers);
5591       g1_par_task.work(0);
5592     }
5593     end_par_time_sec = os::elapsedTime();
5594 
5595     // Closing the inner scope will execute the destructor
5596     // for the StrongRootsScope object. We record the current
5597     // elapsed time before closing the scope so that time
5598     // taken for the SRS destructor is NOT included in the
5599     // reported parallel time.
5600   }
5601 
5602   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5603   g1_policy()->phase_times()->record_par_time(par_time_ms);
5604 
5605   double code_root_fixup_time_ms =
5606         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5607   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5608 
5609   set_par_threads(0);
5610 
5611   // Process any discovered reference objects - we have
5612   // to do this _before_ we retire the GC alloc regions
5613   // as we may have to copy some 'reachable' referent
5614   // objects (and their reachable sub-graphs) that were
5615   // not copied during the pause.
5616   process_discovered_references();
5617 
5618   // Weak root processing.
5619   // Note: when JSR 292 is enabled and code blobs can contain
5620   // non-perm oops then we will need to process the code blobs
5621   // here too.
5622   {
5623     G1STWIsAliveClosure is_alive(this);
5624     G1KeepAliveClosure keep_alive(this);
5625     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5626   }
5627 
5628   release_gc_alloc_regions();
5629   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5630 
5631   concurrent_g1_refine()->clear_hot_cache();
5632   concurrent_g1_refine()->set_use_cache(true);
5633 
5634   finalize_for_evac_failure();
5635 
5636   if (evacuation_failed()) {
5637     remove_self_forwarding_pointers();
5638     if (G1Log::finer()) {
5639       gclog_or_tty->print(" (to-space exhausted)");
5640     } else if (G1Log::fine()) {
5641       gclog_or_tty->print("--");
5642     }
5643   }
5644 
5645   // Enqueue any remaining references remaining on the STW
5646   // reference processor's discovered lists. We need to do
5647   // this after the card table is cleaned (and verified) as
5648   // the act of enqueuing entries on to the pending list
5649   // will log these updates (and dirty their associated
5650   // cards). We need these updates logged to update any
5651   // RSets.
5652   enqueue_discovered_references();
5653 
5654   if (G1DeferredRSUpdate) {
5655     RedirtyLoggedCardTableEntryFastClosure redirty;
5656     dirty_card_queue_set().set_closure(&redirty);
5657     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5658 
5659     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5660     dcq.merge_bufferlists(&dirty_card_queue_set());
5661     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5662   }
5663   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5664 }
5665 
5666 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5667                                      size_t* pre_used,
5668                                      FreeRegionList* free_list,
5669                                      OldRegionSet* old_proxy_set,
5670                                      HumongousRegionSet* humongous_proxy_set,
5671                                      HRRSCleanupTask* hrrs_cleanup_task,
5672                                      bool par) {
5673   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5674     if (hr->isHumongous()) {
5675       assert(hr->startsHumongous(), "we should only see starts humongous");
5676       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5677     } else {
5678       _old_set.remove_with_proxy(hr, old_proxy_set);
5679       free_region(hr, pre_used, free_list, par);
5680     }
5681   } else {
5682     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5683   }
5684 }
5685 
5686 void G1CollectedHeap::free_region(HeapRegion* hr,
5687                                   size_t* pre_used,
5688                                   FreeRegionList* free_list,
5689                                   bool par) {
5690   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5691   assert(!hr->is_empty(), "the region should not be empty");
5692   assert(free_list != NULL, "pre-condition");
5693 
5694   *pre_used += hr->used();
5695   hr->hr_clear(par, true /* clear_space */);
5696   free_list->add_as_head(hr);
5697 }
5698 
5699 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5700                                      size_t* pre_used,
5701                                      FreeRegionList* free_list,
5702                                      HumongousRegionSet* humongous_proxy_set,
5703                                      bool par) {
5704   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5705   assert(free_list != NULL, "pre-condition");
5706   assert(humongous_proxy_set != NULL, "pre-condition");
5707 
5708   size_t hr_used = hr->used();
5709   size_t hr_capacity = hr->capacity();
5710   size_t hr_pre_used = 0;
5711   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5712   // We need to read this before we make the region non-humongous,
5713   // otherwise the information will be gone.
5714   uint last_index = hr->last_hc_index();
5715   hr->set_notHumongous();
5716   free_region(hr, &hr_pre_used, free_list, par);
5717 
5718   uint i = hr->hrs_index() + 1;
5719   while (i < last_index) {
5720     HeapRegion* curr_hr = region_at(i);
5721     assert(curr_hr->continuesHumongous(), "invariant");
5722     curr_hr->set_notHumongous();
5723     free_region(curr_hr, &hr_pre_used, free_list, par);
5724     i += 1;
5725   }
5726   assert(hr_pre_used == hr_used,
5727          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5728                  "should be the same", hr_pre_used, hr_used));
5729   *pre_used += hr_pre_used;
5730 }
5731 
5732 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5733                                        FreeRegionList* free_list,
5734                                        OldRegionSet* old_proxy_set,
5735                                        HumongousRegionSet* humongous_proxy_set,
5736                                        bool par) {
5737   if (pre_used > 0) {
5738     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5739     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5740     assert(_summary_bytes_used >= pre_used,
5741            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5742                    "should be >= pre_used: "SIZE_FORMAT,
5743                    _summary_bytes_used, pre_used));
5744     _summary_bytes_used -= pre_used;
5745   }
5746   if (free_list != NULL && !free_list->is_empty()) {
5747     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5748     _free_list.add_as_head(free_list);
5749   }
5750   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5751     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5752     _old_set.update_from_proxy(old_proxy_set);
5753   }
5754   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5755     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5756     _humongous_set.update_from_proxy(humongous_proxy_set);
5757   }
5758 }
5759 
5760 class G1ParCleanupCTTask : public AbstractGangTask {
5761   CardTableModRefBS* _ct_bs;
5762   G1CollectedHeap* _g1h;
5763   HeapRegion* volatile _su_head;
5764 public:
5765   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5766                      G1CollectedHeap* g1h) :
5767     AbstractGangTask("G1 Par Cleanup CT Task"),
5768     _ct_bs(ct_bs), _g1h(g1h) { }
5769 
5770   void work(uint worker_id) {
5771     HeapRegion* r;
5772     while (r = _g1h->pop_dirty_cards_region()) {
5773       clear_cards(r);
5774     }
5775   }
5776 
5777   void clear_cards(HeapRegion* r) {
5778     // Cards of the survivors should have already been dirtied.
5779     if (!r->is_survivor()) {
5780       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5781     }
5782   }
5783 };
5784 
5785 #ifndef PRODUCT
5786 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5787   G1CollectedHeap* _g1h;
5788   CardTableModRefBS* _ct_bs;
5789 public:
5790   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5791     : _g1h(g1h), _ct_bs(ct_bs) { }
5792   virtual bool doHeapRegion(HeapRegion* r) {
5793     if (r->is_survivor()) {
5794       _g1h->verify_dirty_region(r);
5795     } else {
5796       _g1h->verify_not_dirty_region(r);
5797     }
5798     return false;
5799   }
5800 };
5801 
5802 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5803   // All of the region should be clean.
5804   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5805   MemRegion mr(hr->bottom(), hr->end());
5806   ct_bs->verify_not_dirty_region(mr);
5807 }
5808 
5809 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5810   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5811   // dirty allocated blocks as they allocate them. The thread that
5812   // retires each region and replaces it with a new one will do a
5813   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5814   // not dirty that area (one less thing to have to do while holding
5815   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5816   // is dirty.
5817   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5818   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5819   ct_bs->verify_dirty_region(mr);
5820 }
5821 
5822 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5823   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5824   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5825     verify_dirty_region(hr);
5826   }
5827 }
5828 
5829 void G1CollectedHeap::verify_dirty_young_regions() {
5830   verify_dirty_young_list(_young_list->first_region());
5831 }
5832 #endif
5833 
5834 void G1CollectedHeap::cleanUpCardTable() {
5835   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5836   double start = os::elapsedTime();
5837 
5838   {
5839     // Iterate over the dirty cards region list.
5840     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5841 
5842     if (G1CollectedHeap::use_parallel_gc_threads()) {
5843       set_par_threads();
5844       workers()->run_task(&cleanup_task);
5845       set_par_threads(0);
5846     } else {
5847       while (_dirty_cards_region_list) {
5848         HeapRegion* r = _dirty_cards_region_list;
5849         cleanup_task.clear_cards(r);
5850         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5851         if (_dirty_cards_region_list == r) {
5852           // The last region.
5853           _dirty_cards_region_list = NULL;
5854         }
5855         r->set_next_dirty_cards_region(NULL);
5856       }
5857     }
5858 #ifndef PRODUCT
5859     if (G1VerifyCTCleanup || VerifyAfterGC) {
5860       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5861       heap_region_iterate(&cleanup_verifier);
5862     }
5863 #endif
5864   }
5865 
5866   double elapsed = os::elapsedTime() - start;
5867   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5868 }
5869 
5870 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5871   size_t pre_used = 0;
5872   FreeRegionList local_free_list("Local List for CSet Freeing");
5873 
5874   double young_time_ms     = 0.0;
5875   double non_young_time_ms = 0.0;
5876 
5877   // Since the collection set is a superset of the the young list,
5878   // all we need to do to clear the young list is clear its
5879   // head and length, and unlink any young regions in the code below
5880   _young_list->clear();
5881 
5882   G1CollectorPolicy* policy = g1_policy();
5883 
5884   double start_sec = os::elapsedTime();
5885   bool non_young = true;
5886 
5887   HeapRegion* cur = cs_head;
5888   int age_bound = -1;
5889   size_t rs_lengths = 0;
5890 
5891   while (cur != NULL) {
5892     assert(!is_on_master_free_list(cur), "sanity");
5893     if (non_young) {
5894       if (cur->is_young()) {
5895         double end_sec = os::elapsedTime();
5896         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5897         non_young_time_ms += elapsed_ms;
5898 
5899         start_sec = os::elapsedTime();
5900         non_young = false;
5901       }
5902     } else {
5903       if (!cur->is_young()) {
5904         double end_sec = os::elapsedTime();
5905         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5906         young_time_ms += elapsed_ms;
5907 
5908         start_sec = os::elapsedTime();
5909         non_young = true;
5910       }
5911     }
5912 
5913     rs_lengths += cur->rem_set()->occupied();
5914 
5915     HeapRegion* next = cur->next_in_collection_set();
5916     assert(cur->in_collection_set(), "bad CS");
5917     cur->set_next_in_collection_set(NULL);
5918     cur->set_in_collection_set(false);
5919 
5920     if (cur->is_young()) {
5921       int index = cur->young_index_in_cset();
5922       assert(index != -1, "invariant");
5923       assert((uint) index < policy->young_cset_region_length(), "invariant");
5924       size_t words_survived = _surviving_young_words[index];
5925       cur->record_surv_words_in_group(words_survived);
5926 
5927       // At this point the we have 'popped' cur from the collection set
5928       // (linked via next_in_collection_set()) but it is still in the
5929       // young list (linked via next_young_region()). Clear the
5930       // _next_young_region field.
5931       cur->set_next_young_region(NULL);
5932     } else {
5933       int index = cur->young_index_in_cset();
5934       assert(index == -1, "invariant");
5935     }
5936 
5937     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5938             (!cur->is_young() && cur->young_index_in_cset() == -1),
5939             "invariant" );
5940 
5941     if (!cur->evacuation_failed()) {
5942       MemRegion used_mr = cur->used_region();
5943 
5944       // And the region is empty.
5945       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5946       free_region(cur, &pre_used, &local_free_list, false /* par */);
5947     } else {
5948       cur->uninstall_surv_rate_group();
5949       if (cur->is_young()) {
5950         cur->set_young_index_in_cset(-1);
5951       }
5952       cur->set_not_young();
5953       cur->set_evacuation_failed(false);
5954       // The region is now considered to be old.
5955       _old_set.add(cur);
5956     }
5957     cur = next;
5958   }
5959 
5960   policy->record_max_rs_lengths(rs_lengths);
5961   policy->cset_regions_freed();
5962 
5963   double end_sec = os::elapsedTime();
5964   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5965 
5966   if (non_young) {
5967     non_young_time_ms += elapsed_ms;
5968   } else {
5969     young_time_ms += elapsed_ms;
5970   }
5971 
5972   update_sets_after_freeing_regions(pre_used, &local_free_list,
5973                                     NULL /* old_proxy_set */,
5974                                     NULL /* humongous_proxy_set */,
5975                                     false /* par */);
5976   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5977   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5978 }
5979 
5980 // This routine is similar to the above but does not record
5981 // any policy statistics or update free lists; we are abandoning
5982 // the current incremental collection set in preparation of a
5983 // full collection. After the full GC we will start to build up
5984 // the incremental collection set again.
5985 // This is only called when we're doing a full collection
5986 // and is immediately followed by the tearing down of the young list.
5987 
5988 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5989   HeapRegion* cur = cs_head;
5990 
5991   while (cur != NULL) {
5992     HeapRegion* next = cur->next_in_collection_set();
5993     assert(cur->in_collection_set(), "bad CS");
5994     cur->set_next_in_collection_set(NULL);
5995     cur->set_in_collection_set(false);
5996     cur->set_young_index_in_cset(-1);
5997     cur = next;
5998   }
5999 }
6000 
6001 void G1CollectedHeap::set_free_regions_coming() {
6002   if (G1ConcRegionFreeingVerbose) {
6003     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6004                            "setting free regions coming");
6005   }
6006 
6007   assert(!free_regions_coming(), "pre-condition");
6008   _free_regions_coming = true;
6009 }
6010 
6011 void G1CollectedHeap::reset_free_regions_coming() {
6012   assert(free_regions_coming(), "pre-condition");
6013 
6014   {
6015     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6016     _free_regions_coming = false;
6017     SecondaryFreeList_lock->notify_all();
6018   }
6019 
6020   if (G1ConcRegionFreeingVerbose) {
6021     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6022                            "reset free regions coming");
6023   }
6024 }
6025 
6026 void G1CollectedHeap::wait_while_free_regions_coming() {
6027   // Most of the time we won't have to wait, so let's do a quick test
6028   // first before we take the lock.
6029   if (!free_regions_coming()) {
6030     return;
6031   }
6032 
6033   if (G1ConcRegionFreeingVerbose) {
6034     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6035                            "waiting for free regions");
6036   }
6037 
6038   {
6039     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6040     while (free_regions_coming()) {
6041       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6042     }
6043   }
6044 
6045   if (G1ConcRegionFreeingVerbose) {
6046     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6047                            "done waiting for free regions");
6048   }
6049 }
6050 
6051 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6052   assert(heap_lock_held_for_gc(),
6053               "the heap lock should already be held by or for this thread");
6054   _young_list->push_region(hr);
6055 }
6056 
6057 class NoYoungRegionsClosure: public HeapRegionClosure {
6058 private:
6059   bool _success;
6060 public:
6061   NoYoungRegionsClosure() : _success(true) { }
6062   bool doHeapRegion(HeapRegion* r) {
6063     if (r->is_young()) {
6064       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6065                              r->bottom(), r->end());
6066       _success = false;
6067     }
6068     return false;
6069   }
6070   bool success() { return _success; }
6071 };
6072 
6073 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6074   bool ret = _young_list->check_list_empty(check_sample);
6075 
6076   if (check_heap) {
6077     NoYoungRegionsClosure closure;
6078     heap_region_iterate(&closure);
6079     ret = ret && closure.success();
6080   }
6081 
6082   return ret;
6083 }
6084 
6085 class TearDownRegionSetsClosure : public HeapRegionClosure {
6086 private:
6087   OldRegionSet *_old_set;
6088 
6089 public:
6090   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6091 
6092   bool doHeapRegion(HeapRegion* r) {
6093     if (r->is_empty()) {
6094       // We ignore empty regions, we'll empty the free list afterwards
6095     } else if (r->is_young()) {
6096       // We ignore young regions, we'll empty the young list afterwards
6097     } else if (r->isHumongous()) {
6098       // We ignore humongous regions, we're not tearing down the
6099       // humongous region set
6100     } else {
6101       // The rest should be old
6102       _old_set->remove(r);
6103     }
6104     return false;
6105   }
6106 
6107   ~TearDownRegionSetsClosure() {
6108     assert(_old_set->is_empty(), "post-condition");
6109   }
6110 };
6111 
6112 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6113   assert_at_safepoint(true /* should_be_vm_thread */);
6114 
6115   if (!free_list_only) {
6116     TearDownRegionSetsClosure cl(&_old_set);
6117     heap_region_iterate(&cl);
6118 
6119     // Need to do this after the heap iteration to be able to
6120     // recognize the young regions and ignore them during the iteration.
6121     _young_list->empty_list();
6122   }
6123   _free_list.remove_all();
6124 }
6125 
6126 class RebuildRegionSetsClosure : public HeapRegionClosure {
6127 private:
6128   bool            _free_list_only;
6129   OldRegionSet*   _old_set;
6130   FreeRegionList* _free_list;
6131   size_t          _total_used;
6132 
6133 public:
6134   RebuildRegionSetsClosure(bool free_list_only,
6135                            OldRegionSet* old_set, FreeRegionList* free_list) :
6136     _free_list_only(free_list_only),
6137     _old_set(old_set), _free_list(free_list), _total_used(0) {
6138     assert(_free_list->is_empty(), "pre-condition");
6139     if (!free_list_only) {
6140       assert(_old_set->is_empty(), "pre-condition");
6141     }
6142   }
6143 
6144   bool doHeapRegion(HeapRegion* r) {
6145     if (r->continuesHumongous()) {
6146       return false;
6147     }
6148 
6149     if (r->is_empty()) {
6150       // Add free regions to the free list
6151       _free_list->add_as_tail(r);
6152     } else if (!_free_list_only) {
6153       assert(!r->is_young(), "we should not come across young regions");
6154 
6155       if (r->isHumongous()) {
6156         // We ignore humongous regions, we left the humongous set unchanged
6157       } else {
6158         // The rest should be old, add them to the old set
6159         _old_set->add(r);
6160       }
6161       _total_used += r->used();
6162     }
6163 
6164     return false;
6165   }
6166 
6167   size_t total_used() {
6168     return _total_used;
6169   }
6170 };
6171 
6172 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6173   assert_at_safepoint(true /* should_be_vm_thread */);
6174 
6175   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6176   heap_region_iterate(&cl);
6177 
6178   if (!free_list_only) {
6179     _summary_bytes_used = cl.total_used();
6180   }
6181   assert(_summary_bytes_used == recalculate_used(),
6182          err_msg("inconsistent _summary_bytes_used, "
6183                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6184                  _summary_bytes_used, recalculate_used()));
6185 }
6186 
6187 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6188   _refine_cte_cl->set_concurrent(concurrent);
6189 }
6190 
6191 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6192   HeapRegion* hr = heap_region_containing(p);
6193   if (hr == NULL) {
6194     return is_in_permanent(p);
6195   } else {
6196     return hr->is_in(p);
6197   }
6198 }
6199 
6200 // Methods for the mutator alloc region
6201 
6202 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6203                                                       bool force) {
6204   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6205   assert(!force || g1_policy()->can_expand_young_list(),
6206          "if force is true we should be able to expand the young list");
6207   bool young_list_full = g1_policy()->is_young_list_full();
6208   if (force || !young_list_full) {
6209     HeapRegion* new_alloc_region = new_region(word_size,
6210                                               false /* do_expand */);
6211     if (new_alloc_region != NULL) {
6212       set_region_short_lived_locked(new_alloc_region);
6213       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6214       return new_alloc_region;
6215     }
6216   }
6217   return NULL;
6218 }
6219 
6220 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6221                                                   size_t allocated_bytes) {
6222   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6223   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6224 
6225   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6226   _summary_bytes_used += allocated_bytes;
6227   _hr_printer.retire(alloc_region);
6228   // We update the eden sizes here, when the region is retired,
6229   // instead of when it's allocated, since this is the point that its
6230   // used space has been recored in _summary_bytes_used.
6231   g1mm()->update_eden_size();
6232 }
6233 
6234 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6235                                                     bool force) {
6236   return _g1h->new_mutator_alloc_region(word_size, force);
6237 }
6238 
6239 void G1CollectedHeap::set_par_threads() {
6240   // Don't change the number of workers.  Use the value previously set
6241   // in the workgroup.
6242   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6243   uint n_workers = workers()->active_workers();
6244   assert(UseDynamicNumberOfGCThreads ||
6245            n_workers == workers()->total_workers(),
6246       "Otherwise should be using the total number of workers");
6247   if (n_workers == 0) {
6248     assert(false, "Should have been set in prior evacuation pause.");
6249     n_workers = ParallelGCThreads;
6250     workers()->set_active_workers(n_workers);
6251   }
6252   set_par_threads(n_workers);
6253 }
6254 
6255 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6256                                        size_t allocated_bytes) {
6257   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6258 }
6259 
6260 // Methods for the GC alloc regions
6261 
6262 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6263                                                  uint count,
6264                                                  GCAllocPurpose ap) {
6265   assert(FreeList_lock->owned_by_self(), "pre-condition");
6266 
6267   if (count < g1_policy()->max_regions(ap)) {
6268     HeapRegion* new_alloc_region = new_region(word_size,
6269                                               true /* do_expand */);
6270     if (new_alloc_region != NULL) {
6271       // We really only need to do this for old regions given that we
6272       // should never scan survivors. But it doesn't hurt to do it
6273       // for survivors too.
6274       new_alloc_region->set_saved_mark();
6275       if (ap == GCAllocForSurvived) {
6276         new_alloc_region->set_survivor();
6277         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6278       } else {
6279         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6280       }
6281       bool during_im = g1_policy()->during_initial_mark_pause();
6282       new_alloc_region->note_start_of_copying(during_im);
6283       return new_alloc_region;
6284     } else {
6285       g1_policy()->note_alloc_region_limit_reached(ap);
6286     }
6287   }
6288   return NULL;
6289 }
6290 
6291 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6292                                              size_t allocated_bytes,
6293                                              GCAllocPurpose ap) {
6294   bool during_im = g1_policy()->during_initial_mark_pause();
6295   alloc_region->note_end_of_copying(during_im);
6296   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6297   if (ap == GCAllocForSurvived) {
6298     young_list()->add_survivor_region(alloc_region);
6299   } else {
6300     _old_set.add(alloc_region);
6301   }
6302   _hr_printer.retire(alloc_region);
6303 }
6304 
6305 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6306                                                        bool force) {
6307   assert(!force, "not supported for GC alloc regions");
6308   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6309 }
6310 
6311 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6312                                           size_t allocated_bytes) {
6313   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6314                                GCAllocForSurvived);
6315 }
6316 
6317 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6318                                                   bool force) {
6319   assert(!force, "not supported for GC alloc regions");
6320   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6321 }
6322 
6323 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6324                                      size_t allocated_bytes) {
6325   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6326                                GCAllocForTenured);
6327 }
6328 // Heap region set verification
6329 
6330 class VerifyRegionListsClosure : public HeapRegionClosure {
6331 private:
6332   FreeRegionList*     _free_list;
6333   OldRegionSet*       _old_set;
6334   HumongousRegionSet* _humongous_set;
6335   uint                _region_count;
6336 
6337 public:
6338   VerifyRegionListsClosure(OldRegionSet* old_set,
6339                            HumongousRegionSet* humongous_set,
6340                            FreeRegionList* free_list) :
6341     _old_set(old_set), _humongous_set(humongous_set),
6342     _free_list(free_list), _region_count(0) { }
6343 
6344   uint region_count() { return _region_count; }
6345 
6346   bool doHeapRegion(HeapRegion* hr) {
6347     _region_count += 1;
6348 
6349     if (hr->continuesHumongous()) {
6350       return false;
6351     }
6352 
6353     if (hr->is_young()) {
6354       // TODO
6355     } else if (hr->startsHumongous()) {
6356       _humongous_set->verify_next_region(hr);
6357     } else if (hr->is_empty()) {
6358       _free_list->verify_next_region(hr);
6359     } else {
6360       _old_set->verify_next_region(hr);
6361     }
6362     return false;
6363   }
6364 };
6365 
6366 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6367                                              HeapWord* bottom) {
6368   HeapWord* end = bottom + HeapRegion::GrainWords;
6369   MemRegion mr(bottom, end);
6370   assert(_g1_reserved.contains(mr), "invariant");
6371   // This might return NULL if the allocation fails
6372   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
6373 }
6374 
6375 void G1CollectedHeap::verify_region_sets() {
6376   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6377 
6378   // First, check the explicit lists.
6379   _free_list.verify();
6380   {
6381     // Given that a concurrent operation might be adding regions to
6382     // the secondary free list we have to take the lock before
6383     // verifying it.
6384     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6385     _secondary_free_list.verify();
6386   }
6387   _old_set.verify();
6388   _humongous_set.verify();
6389 
6390   // If a concurrent region freeing operation is in progress it will
6391   // be difficult to correctly attributed any free regions we come
6392   // across to the correct free list given that they might belong to
6393   // one of several (free_list, secondary_free_list, any local lists,
6394   // etc.). So, if that's the case we will skip the rest of the
6395   // verification operation. Alternatively, waiting for the concurrent
6396   // operation to complete will have a non-trivial effect on the GC's
6397   // operation (no concurrent operation will last longer than the
6398   // interval between two calls to verification) and it might hide
6399   // any issues that we would like to catch during testing.
6400   if (free_regions_coming()) {
6401     return;
6402   }
6403 
6404   // Make sure we append the secondary_free_list on the free_list so
6405   // that all free regions we will come across can be safely
6406   // attributed to the free_list.
6407   append_secondary_free_list_if_not_empty_with_lock();
6408 
6409   // Finally, make sure that the region accounting in the lists is
6410   // consistent with what we see in the heap.
6411   _old_set.verify_start();
6412   _humongous_set.verify_start();
6413   _free_list.verify_start();
6414 
6415   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6416   heap_region_iterate(&cl);
6417 
6418   _old_set.verify_end();
6419   _humongous_set.verify_end();
6420   _free_list.verify_end();
6421 }