1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  38 #include "gc_implementation/parNew/parNewGeneration.hpp"
  39 #include "gc_implementation/shared/collectorCounters.hpp"
  40 #include "gc_implementation/shared/isGCActiveMark.hpp"
  41 #include "gc_interface/collectedHeap.inline.hpp"
  42 #include "memory/cardTableRS.hpp"
  43 #include "memory/collectorPolicy.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/genCollectedHeap.hpp"
  46 #include "memory/genMarkSweep.hpp"
  47 #include "memory/genOopClosures.inline.hpp"
  48 #include "memory/iterator.hpp"
  49 #include "memory/referencePolicy.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "runtime/globals_extension.hpp"
  54 #include "runtime/handles.inline.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/vmThread.hpp"
  57 #include "services/memoryService.hpp"
  58 #include "services/runtimeService.hpp"
  59 
  60 // statics
  61 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  62 bool          CMSCollector::_full_gc_requested          = false;
  63 
  64 //////////////////////////////////////////////////////////////////
  65 // In support of CMS/VM thread synchronization
  66 //////////////////////////////////////////////////////////////////
  67 // We split use of the CGC_lock into 2 "levels".
  68 // The low-level locking is of the usual CGC_lock monitor. We introduce
  69 // a higher level "token" (hereafter "CMS token") built on top of the
  70 // low level monitor (hereafter "CGC lock").
  71 // The token-passing protocol gives priority to the VM thread. The
  72 // CMS-lock doesn't provide any fairness guarantees, but clients
  73 // should ensure that it is only held for very short, bounded
  74 // durations.
  75 //
  76 // When either of the CMS thread or the VM thread is involved in
  77 // collection operations during which it does not want the other
  78 // thread to interfere, it obtains the CMS token.
  79 //
  80 // If either thread tries to get the token while the other has
  81 // it, that thread waits. However, if the VM thread and CMS thread
  82 // both want the token, then the VM thread gets priority while the
  83 // CMS thread waits. This ensures, for instance, that the "concurrent"
  84 // phases of the CMS thread's work do not block out the VM thread
  85 // for long periods of time as the CMS thread continues to hog
  86 // the token. (See bug 4616232).
  87 //
  88 // The baton-passing functions are, however, controlled by the
  89 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  90 // and here the low-level CMS lock, not the high level token,
  91 // ensures mutual exclusion.
  92 //
  93 // Two important conditions that we have to satisfy:
  94 // 1. if a thread does a low-level wait on the CMS lock, then it
  95 //    relinquishes the CMS token if it were holding that token
  96 //    when it acquired the low-level CMS lock.
  97 // 2. any low-level notifications on the low-level lock
  98 //    should only be sent when a thread has relinquished the token.
  99 //
 100 // In the absence of either property, we'd have potential deadlock.
 101 //
 102 // We protect each of the CMS (concurrent and sequential) phases
 103 // with the CMS _token_, not the CMS _lock_.
 104 //
 105 // The only code protected by CMS lock is the token acquisition code
 106 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 107 // baton-passing code.
 108 //
 109 // Unfortunately, i couldn't come up with a good abstraction to factor and
 110 // hide the naked CGC_lock manipulation in the baton-passing code
 111 // further below. That's something we should try to do. Also, the proof
 112 // of correctness of this 2-level locking scheme is far from obvious,
 113 // and potentially quite slippery. We have an uneasy supsicion, for instance,
 114 // that there may be a theoretical possibility of delay/starvation in the
 115 // low-level lock/wait/notify scheme used for the baton-passing because of
 116 // potential intereference with the priority scheme embodied in the
 117 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 118 // invocation further below and marked with "XXX 20011219YSR".
 119 // Indeed, as we note elsewhere, this may become yet more slippery
 120 // in the presence of multiple CMS and/or multiple VM threads. XXX
 121 
 122 class CMSTokenSync: public StackObj {
 123  private:
 124   bool _is_cms_thread;
 125  public:
 126   CMSTokenSync(bool is_cms_thread):
 127     _is_cms_thread(is_cms_thread) {
 128     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 129            "Incorrect argument to constructor");
 130     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 131   }
 132 
 133   ~CMSTokenSync() {
 134     assert(_is_cms_thread ?
 135              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 136              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 137           "Incorrect state");
 138     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 139   }
 140 };
 141 
 142 // Convenience class that does a CMSTokenSync, and then acquires
 143 // upto three locks.
 144 class CMSTokenSyncWithLocks: public CMSTokenSync {
 145  private:
 146   // Note: locks are acquired in textual declaration order
 147   // and released in the opposite order
 148   MutexLockerEx _locker1, _locker2, _locker3;
 149  public:
 150   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 151                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 152     CMSTokenSync(is_cms_thread),
 153     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 154     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 155     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 156   { }
 157 };
 158 
 159 
 160 // Wrapper class to temporarily disable icms during a foreground cms collection.
 161 class ICMSDisabler: public StackObj {
 162  public:
 163   // The ctor disables icms and wakes up the thread so it notices the change;
 164   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 165   // CMSIncrementalMode.
 166   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 167   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 168 };
 169 
 170 //////////////////////////////////////////////////////////////////
 171 //  Concurrent Mark-Sweep Generation /////////////////////////////
 172 //////////////////////////////////////////////////////////////////
 173 
 174 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 175 
 176 // This struct contains per-thread things necessary to support parallel
 177 // young-gen collection.
 178 class CMSParGCThreadState: public CHeapObj<mtGC> {
 179  public:
 180   CFLS_LAB lab;
 181   PromotionInfo promo;
 182 
 183   // Constructor.
 184   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 185     promo.setSpace(cfls);
 186   }
 187 };
 188 
 189 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 190      ReservedSpace rs, size_t initial_byte_size, int level,
 191      CardTableRS* ct, bool use_adaptive_freelists,
 192      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 193   CardGeneration(rs, initial_byte_size, level, ct),
 194   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 195   _debug_collection_type(Concurrent_collection_type)
 196 {
 197   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 198   HeapWord* end    = (HeapWord*) _virtual_space.high();
 199 
 200   _direct_allocated_words = 0;
 201   NOT_PRODUCT(
 202     _numObjectsPromoted = 0;
 203     _numWordsPromoted = 0;
 204     _numObjectsAllocated = 0;
 205     _numWordsAllocated = 0;
 206   )
 207 
 208   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 209                                            use_adaptive_freelists,
 210                                            dictionaryChoice);
 211   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 212   if (_cmsSpace == NULL) {
 213     vm_exit_during_initialization(
 214       "CompactibleFreeListSpace allocation failure");
 215   }
 216   _cmsSpace->_gen = this;
 217 
 218   _gc_stats = new CMSGCStats();
 219 
 220   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 221   // offsets match. The ability to tell free chunks from objects
 222   // depends on this property.
 223   debug_only(
 224     FreeChunk* junk = NULL;
 225     assert(UseCompressedOops ||
 226            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 227            "Offset of FreeChunk::_prev within FreeChunk must match"
 228            "  that of OopDesc::_klass within OopDesc");
 229   )
 230   if (CollectedHeap::use_parallel_gc_threads()) {
 231     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 232     _par_gc_thread_states =
 233       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 234     if (_par_gc_thread_states == NULL) {
 235       vm_exit_during_initialization("Could not allocate par gc structs");
 236     }
 237     for (uint i = 0; i < ParallelGCThreads; i++) {
 238       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 239       if (_par_gc_thread_states[i] == NULL) {
 240         vm_exit_during_initialization("Could not allocate par gc structs");
 241       }
 242     }
 243   } else {
 244     _par_gc_thread_states = NULL;
 245   }
 246   _incremental_collection_failed = false;
 247   // The "dilatation_factor" is the expansion that can occur on
 248   // account of the fact that the minimum object size in the CMS
 249   // generation may be larger than that in, say, a contiguous young
 250   //  generation.
 251   // Ideally, in the calculation below, we'd compute the dilatation
 252   // factor as: MinChunkSize/(promoting_gen's min object size)
 253   // Since we do not have such a general query interface for the
 254   // promoting generation, we'll instead just use the mimimum
 255   // object size (which today is a header's worth of space);
 256   // note that all arithmetic is in units of HeapWords.
 257   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 258   assert(_dilatation_factor >= 1.0, "from previous assert");
 259 }
 260 
 261 
 262 // The field "_initiating_occupancy" represents the occupancy percentage
 263 // at which we trigger a new collection cycle.  Unless explicitly specified
 264 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 265 // is calculated by:
 266 //
 267 //   Let "f" be MinHeapFreeRatio in
 268 //
 269 //    _intiating_occupancy = 100-f +
 270 //                           f * (CMSTriggerRatio/100)
 271 //   where CMSTriggerRatio is the argument "tr" below.
 272 //
 273 // That is, if we assume the heap is at its desired maximum occupancy at the
 274 // end of a collection, we let CMSTriggerRatio of the (purported) free
 275 // space be allocated before initiating a new collection cycle.
 276 //
 277 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
 278   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
 279   if (io >= 0) {
 280     _initiating_occupancy = (double)io / 100.0;
 281   } else {
 282     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 283                              (double)(tr * MinHeapFreeRatio) / 100.0)
 284                             / 100.0;
 285   }
 286 }
 287 
 288 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 289   assert(collector() != NULL, "no collector");
 290   collector()->ref_processor_init();
 291 }
 292 
 293 void CMSCollector::ref_processor_init() {
 294   if (_ref_processor == NULL) {
 295     // Allocate and initialize a reference processor
 296     _ref_processor =
 297       new ReferenceProcessor(_span,                               // span
 298                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 299                              (int) ParallelGCThreads,             // mt processing degree
 300                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 301                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 302                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 303                              &_is_alive_closure,                  // closure for liveness info
 304                              false);                              // next field updates do not need write barrier
 305     // Initialize the _ref_processor field of CMSGen
 306     _cmsGen->set_ref_processor(_ref_processor);
 307 
 308   }
 309 }
 310 
 311 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 312   GenCollectedHeap* gch = GenCollectedHeap::heap();
 313   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 314     "Wrong type of heap");
 315   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 316     gch->gen_policy()->size_policy();
 317   assert(sp->is_gc_cms_adaptive_size_policy(),
 318     "Wrong type of size policy");
 319   return sp;
 320 }
 321 
 322 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 323   CMSGCAdaptivePolicyCounters* results =
 324     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 325   assert(
 326     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 327     "Wrong gc policy counter kind");
 328   return results;
 329 }
 330 
 331 
 332 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 333 
 334   const char* gen_name = "old";
 335 
 336   // Generation Counters - generation 1, 1 subspace
 337   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 338 
 339   _space_counters = new GSpaceCounters(gen_name, 0,
 340                                        _virtual_space.reserved_size(),
 341                                        this, _gen_counters);
 342 }
 343 
 344 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 345   _cms_gen(cms_gen)
 346 {
 347   assert(alpha <= 100, "bad value");
 348   _saved_alpha = alpha;
 349 
 350   // Initialize the alphas to the bootstrap value of 100.
 351   _gc0_alpha = _cms_alpha = 100;
 352 
 353   _cms_begin_time.update();
 354   _cms_end_time.update();
 355 
 356   _gc0_duration = 0.0;
 357   _gc0_period = 0.0;
 358   _gc0_promoted = 0;
 359 
 360   _cms_duration = 0.0;
 361   _cms_period = 0.0;
 362   _cms_allocated = 0;
 363 
 364   _cms_used_at_gc0_begin = 0;
 365   _cms_used_at_gc0_end = 0;
 366   _allow_duty_cycle_reduction = false;
 367   _valid_bits = 0;
 368   _icms_duty_cycle = CMSIncrementalDutyCycle;
 369 }
 370 
 371 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 372   // TBD: CR 6909490
 373   return 1.0;
 374 }
 375 
 376 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 377 }
 378 
 379 // If promotion failure handling is on use
 380 // the padded average size of the promotion for each
 381 // young generation collection.
 382 double CMSStats::time_until_cms_gen_full() const {
 383   size_t cms_free = _cms_gen->cmsSpace()->free();
 384   GenCollectedHeap* gch = GenCollectedHeap::heap();
 385   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 386                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 387   if (cms_free > expected_promotion) {
 388     // Start a cms collection if there isn't enough space to promote
 389     // for the next minor collection.  Use the padded average as
 390     // a safety factor.
 391     cms_free -= expected_promotion;
 392 
 393     // Adjust by the safety factor.
 394     double cms_free_dbl = (double)cms_free;
 395     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 396     // Apply a further correction factor which tries to adjust
 397     // for recent occurance of concurrent mode failures.
 398     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 399     cms_free_dbl = cms_free_dbl * cms_adjustment;
 400 
 401     if (PrintGCDetails && Verbose) {
 402       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 403         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 404         cms_free, expected_promotion);
 405       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 406         cms_free_dbl, cms_consumption_rate() + 1.0);
 407     }
 408     // Add 1 in case the consumption rate goes to zero.
 409     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 410   }
 411   return 0.0;
 412 }
 413 
 414 // Compare the duration of the cms collection to the
 415 // time remaining before the cms generation is empty.
 416 // Note that the time from the start of the cms collection
 417 // to the start of the cms sweep (less than the total
 418 // duration of the cms collection) can be used.  This
 419 // has been tried and some applications experienced
 420 // promotion failures early in execution.  This was
 421 // possibly because the averages were not accurate
 422 // enough at the beginning.
 423 double CMSStats::time_until_cms_start() const {
 424   // We add "gc0_period" to the "work" calculation
 425   // below because this query is done (mostly) at the
 426   // end of a scavenge, so we need to conservatively
 427   // account for that much possible delay
 428   // in the query so as to avoid concurrent mode failures
 429   // due to starting the collection just a wee bit too
 430   // late.
 431   double work = cms_duration() + gc0_period();
 432   double deadline = time_until_cms_gen_full();
 433   // If a concurrent mode failure occurred recently, we want to be
 434   // more conservative and halve our expected time_until_cms_gen_full()
 435   if (work > deadline) {
 436     if (Verbose && PrintGCDetails) {
 437       gclog_or_tty->print(
 438         " CMSCollector: collect because of anticipated promotion "
 439         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 440         gc0_period(), time_until_cms_gen_full());
 441     }
 442     return 0.0;
 443   }
 444   return work - deadline;
 445 }
 446 
 447 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 448 // amount of change to prevent wild oscillation.
 449 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 450                                               unsigned int new_duty_cycle) {
 451   assert(old_duty_cycle <= 100, "bad input value");
 452   assert(new_duty_cycle <= 100, "bad input value");
 453 
 454   // Note:  use subtraction with caution since it may underflow (values are
 455   // unsigned).  Addition is safe since we're in the range 0-100.
 456   unsigned int damped_duty_cycle = new_duty_cycle;
 457   if (new_duty_cycle < old_duty_cycle) {
 458     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 459     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 460       damped_duty_cycle = old_duty_cycle - largest_delta;
 461     }
 462   } else if (new_duty_cycle > old_duty_cycle) {
 463     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 464     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 465       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 466     }
 467   }
 468   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 469 
 470   if (CMSTraceIncrementalPacing) {
 471     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 472                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 473   }
 474   return damped_duty_cycle;
 475 }
 476 
 477 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 478   assert(CMSIncrementalPacing && valid(),
 479          "should be handled in icms_update_duty_cycle()");
 480 
 481   double cms_time_so_far = cms_timer().seconds();
 482   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 483   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 484 
 485   // Avoid division by 0.
 486   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 487   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 488 
 489   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 490   if (new_duty_cycle > _icms_duty_cycle) {
 491     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 492     if (new_duty_cycle > 2) {
 493       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 494                                                 new_duty_cycle);
 495     }
 496   } else if (_allow_duty_cycle_reduction) {
 497     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 498     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 499     // Respect the minimum duty cycle.
 500     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 501     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 502   }
 503 
 504   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 505     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 506   }
 507 
 508   _allow_duty_cycle_reduction = false;
 509   return _icms_duty_cycle;
 510 }
 511 
 512 #ifndef PRODUCT
 513 void CMSStats::print_on(outputStream *st) const {
 514   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 515   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 516                gc0_duration(), gc0_period(), gc0_promoted());
 517   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 518             cms_duration(), cms_duration_per_mb(),
 519             cms_period(), cms_allocated());
 520   st->print(",cms_since_beg=%g,cms_since_end=%g",
 521             cms_time_since_begin(), cms_time_since_end());
 522   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 523             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 524   if (CMSIncrementalMode) {
 525     st->print(",dc=%d", icms_duty_cycle());
 526   }
 527 
 528   if (valid()) {
 529     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 530               promotion_rate(), cms_allocation_rate());
 531     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 532               cms_consumption_rate(), time_until_cms_gen_full());
 533   }
 534   st->print(" ");
 535 }
 536 #endif // #ifndef PRODUCT
 537 
 538 CMSCollector::CollectorState CMSCollector::_collectorState =
 539                              CMSCollector::Idling;
 540 bool CMSCollector::_foregroundGCIsActive = false;
 541 bool CMSCollector::_foregroundGCShouldWait = false;
 542 
 543 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 544                            CardTableRS*                   ct,
 545                            ConcurrentMarkSweepPolicy*     cp):
 546   _cmsGen(cmsGen),
 547   _ct(ct),
 548   _ref_processor(NULL),    // will be set later
 549   _conc_workers(NULL),     // may be set later
 550   _abort_preclean(false),
 551   _start_sampling(false),
 552   _between_prologue_and_epilogue(false),
 553   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 554   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 555                  -1 /* lock-free */, "No_lock" /* dummy */),
 556   _modUnionClosure(&_modUnionTable),
 557   _modUnionClosurePar(&_modUnionTable),
 558   // Adjust my span to cover old (cms) gen
 559   _span(cmsGen->reserved()),
 560   // Construct the is_alive_closure with _span & markBitMap
 561   _is_alive_closure(_span, &_markBitMap),
 562   _restart_addr(NULL),
 563   _overflow_list(NULL),
 564   _stats(cmsGen),
 565   _eden_chunk_array(NULL),     // may be set in ctor body
 566   _eden_chunk_capacity(0),     // -- ditto --
 567   _eden_chunk_index(0),        // -- ditto --
 568   _survivor_plab_array(NULL),  // -- ditto --
 569   _survivor_chunk_array(NULL), // -- ditto --
 570   _survivor_chunk_capacity(0), // -- ditto --
 571   _survivor_chunk_index(0),    // -- ditto --
 572   _ser_pmc_preclean_ovflw(0),
 573   _ser_kac_preclean_ovflw(0),
 574   _ser_pmc_remark_ovflw(0),
 575   _par_pmc_remark_ovflw(0),
 576   _ser_kac_ovflw(0),
 577   _par_kac_ovflw(0),
 578 #ifndef PRODUCT
 579   _num_par_pushes(0),
 580 #endif
 581   _collection_count_start(0),
 582   _verifying(false),
 583   _icms_start_limit(NULL),
 584   _icms_stop_limit(NULL),
 585   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 586   _completed_initialization(false),
 587   _collector_policy(cp),
 588   _should_unload_classes(false),
 589   _concurrent_cycles_since_last_unload(0),
 590   _roots_scanning_options(0),
 591   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 592   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
 593 {
 594   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 595     ExplicitGCInvokesConcurrent = true;
 596   }
 597   // Now expand the span and allocate the collection support structures
 598   // (MUT, marking bit map etc.) to cover both generations subject to
 599   // collection.
 600 
 601   // For use by dirty card to oop closures.
 602   _cmsGen->cmsSpace()->set_collector(this);
 603 
 604   // Allocate MUT and marking bit map
 605   {
 606     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 607     if (!_markBitMap.allocate(_span)) {
 608       warning("Failed to allocate CMS Bit Map");
 609       return;
 610     }
 611     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 612   }
 613   {
 614     _modUnionTable.allocate(_span);
 615     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 616   }
 617 
 618   if (!_markStack.allocate(MarkStackSize)) {
 619     warning("Failed to allocate CMS Marking Stack");
 620     return;
 621   }
 622 
 623   // Support for multi-threaded concurrent phases
 624   if (CMSConcurrentMTEnabled) {
 625     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 626       // just for now
 627       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 628     }
 629     if (ConcGCThreads > 1) {
 630       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 631                                  ConcGCThreads, true);
 632       if (_conc_workers == NULL) {
 633         warning("GC/CMS: _conc_workers allocation failure: "
 634               "forcing -CMSConcurrentMTEnabled");
 635         CMSConcurrentMTEnabled = false;
 636       } else {
 637         _conc_workers->initialize_workers();
 638       }
 639     } else {
 640       CMSConcurrentMTEnabled = false;
 641     }
 642   }
 643   if (!CMSConcurrentMTEnabled) {
 644     ConcGCThreads = 0;
 645   } else {
 646     // Turn off CMSCleanOnEnter optimization temporarily for
 647     // the MT case where it's not fixed yet; see 6178663.
 648     CMSCleanOnEnter = false;
 649   }
 650   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 651          "Inconsistency");
 652 
 653   // Parallel task queues; these are shared for the
 654   // concurrent and stop-world phases of CMS, but
 655   // are not shared with parallel scavenge (ParNew).
 656   {
 657     uint i;
 658     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 659 
 660     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 661          || ParallelRefProcEnabled)
 662         && num_queues > 0) {
 663       _task_queues = new OopTaskQueueSet(num_queues);
 664       if (_task_queues == NULL) {
 665         warning("task_queues allocation failure.");
 666         return;
 667       }
 668       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 669       if (_hash_seed == NULL) {
 670         warning("_hash_seed array allocation failure");
 671         return;
 672       }
 673 
 674       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 675       for (i = 0; i < num_queues; i++) {
 676         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 677         if (q == NULL) {
 678           warning("work_queue allocation failure.");
 679           return;
 680         }
 681         _task_queues->register_queue(i, q);
 682       }
 683       for (i = 0; i < num_queues; i++) {
 684         _task_queues->queue(i)->initialize();
 685         _hash_seed[i] = 17;  // copied from ParNew
 686       }
 687     }
 688   }
 689 
 690   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 691 
 692   // Clip CMSBootstrapOccupancy between 0 and 100.
 693   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
 694                          /(double)100;
 695 
 696   _full_gcs_since_conc_gc = 0;
 697 
 698   // Now tell CMS generations the identity of their collector
 699   ConcurrentMarkSweepGeneration::set_collector(this);
 700 
 701   // Create & start a CMS thread for this CMS collector
 702   _cmsThread = ConcurrentMarkSweepThread::start(this);
 703   assert(cmsThread() != NULL, "CMS Thread should have been created");
 704   assert(cmsThread()->collector() == this,
 705          "CMS Thread should refer to this gen");
 706   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 707 
 708   // Support for parallelizing young gen rescan
 709   GenCollectedHeap* gch = GenCollectedHeap::heap();
 710   _young_gen = gch->prev_gen(_cmsGen);
 711   if (gch->supports_inline_contig_alloc()) {
 712     _top_addr = gch->top_addr();
 713     _end_addr = gch->end_addr();
 714     assert(_young_gen != NULL, "no _young_gen");
 715     _eden_chunk_index = 0;
 716     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 717     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 718     if (_eden_chunk_array == NULL) {
 719       _eden_chunk_capacity = 0;
 720       warning("GC/CMS: _eden_chunk_array allocation failure");
 721     }
 722   }
 723   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 724 
 725   // Support for parallelizing survivor space rescan
 726   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
 727     const size_t max_plab_samples =
 728       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 729 
 730     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 731     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 732     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 733     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 734         || _cursor == NULL) {
 735       warning("Failed to allocate survivor plab/chunk array");
 736       if (_survivor_plab_array  != NULL) {
 737         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 738         _survivor_plab_array = NULL;
 739       }
 740       if (_survivor_chunk_array != NULL) {
 741         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 742         _survivor_chunk_array = NULL;
 743       }
 744       if (_cursor != NULL) {
 745         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 746         _cursor = NULL;
 747       }
 748     } else {
 749       _survivor_chunk_capacity = 2*max_plab_samples;
 750       for (uint i = 0; i < ParallelGCThreads; i++) {
 751         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 752         if (vec == NULL) {
 753           warning("Failed to allocate survivor plab array");
 754           for (int j = i; j > 0; j--) {
 755             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 756           }
 757           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 758           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 759           _survivor_plab_array = NULL;
 760           _survivor_chunk_array = NULL;
 761           _survivor_chunk_capacity = 0;
 762           break;
 763         } else {
 764           ChunkArray* cur =
 765             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 766                                                         max_plab_samples);
 767           assert(cur->end() == 0, "Should be 0");
 768           assert(cur->array() == vec, "Should be vec");
 769           assert(cur->capacity() == max_plab_samples, "Error");
 770         }
 771       }
 772     }
 773   }
 774   assert(   (   _survivor_plab_array  != NULL
 775              && _survivor_chunk_array != NULL)
 776          || (   _survivor_chunk_capacity == 0
 777              && _survivor_chunk_index == 0),
 778          "Error");
 779 
 780   // Choose what strong roots should be scanned depending on verification options
 781   if (!CMSClassUnloadingEnabled) {
 782     // If class unloading is disabled we want to include all classes into the root set.
 783     add_root_scanning_option(SharedHeap::SO_AllClasses);
 784   } else {
 785     add_root_scanning_option(SharedHeap::SO_SystemClasses);
 786   }
 787 
 788   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 789   _gc_counters = new CollectorCounters("CMS", 1);
 790   _completed_initialization = true;
 791   _inter_sweep_timer.start();  // start of time
 792 #ifdef SPARC
 793   // Issue a stern warning, but allow use for experimentation and debugging.
 794   if (VM_Version::is_sun4v() && UseMemSetInBOT) {
 795     assert(!FLAG_IS_DEFAULT(UseMemSetInBOT), "Error");
 796     warning("Experimental flag -XX:+UseMemSetInBOT is known to cause instability"
 797             " on sun4v; please understand that you are using at your own risk!");
 798   }
 799 #endif
 800 }
 801 
 802 const char* ConcurrentMarkSweepGeneration::name() const {
 803   return "concurrent mark-sweep generation";
 804 }
 805 void ConcurrentMarkSweepGeneration::update_counters() {
 806   if (UsePerfData) {
 807     _space_counters->update_all();
 808     _gen_counters->update_all();
 809   }
 810 }
 811 
 812 // this is an optimized version of update_counters(). it takes the
 813 // used value as a parameter rather than computing it.
 814 //
 815 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 816   if (UsePerfData) {
 817     _space_counters->update_used(used);
 818     _space_counters->update_capacity();
 819     _gen_counters->update_all();
 820   }
 821 }
 822 
 823 void ConcurrentMarkSweepGeneration::print() const {
 824   Generation::print();
 825   cmsSpace()->print();
 826 }
 827 
 828 #ifndef PRODUCT
 829 void ConcurrentMarkSweepGeneration::print_statistics() {
 830   cmsSpace()->printFLCensus(0);
 831 }
 832 #endif
 833 
 834 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 835   GenCollectedHeap* gch = GenCollectedHeap::heap();
 836   if (PrintGCDetails) {
 837     if (Verbose) {
 838       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 839         level(), short_name(), s, used(), capacity());
 840     } else {
 841       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 842         level(), short_name(), s, used() / K, capacity() / K);
 843     }
 844   }
 845   if (Verbose) {
 846     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 847               gch->used(), gch->capacity());
 848   } else {
 849     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 850               gch->used() / K, gch->capacity() / K);
 851   }
 852 }
 853 
 854 size_t
 855 ConcurrentMarkSweepGeneration::contiguous_available() const {
 856   // dld proposes an improvement in precision here. If the committed
 857   // part of the space ends in a free block we should add that to
 858   // uncommitted size in the calculation below. Will make this
 859   // change later, staying with the approximation below for the
 860   // time being. -- ysr.
 861   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 862 }
 863 
 864 size_t
 865 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 866   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 867 }
 868 
 869 size_t ConcurrentMarkSweepGeneration::max_available() const {
 870   return free() + _virtual_space.uncommitted_size();
 871 }
 872 
 873 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 874   size_t available = max_available();
 875   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 876   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 877   if (Verbose && PrintGCDetails) {
 878     gclog_or_tty->print_cr(
 879       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 880       "max_promo("SIZE_FORMAT")",
 881       res? "":" not", available, res? ">=":"<",
 882       av_promo, max_promotion_in_bytes);
 883   }
 884   return res;
 885 }
 886 
 887 // At a promotion failure dump information on block layout in heap
 888 // (cms old generation).
 889 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 890   if (CMSDumpAtPromotionFailure) {
 891     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 892   }
 893 }
 894 
 895 CompactibleSpace*
 896 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 897   return _cmsSpace;
 898 }
 899 
 900 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 901   // Clear the promotion information.  These pointers can be adjusted
 902   // along with all the other pointers into the heap but
 903   // compaction is expected to be a rare event with
 904   // a heap using cms so don't do it without seeing the need.
 905   if (CollectedHeap::use_parallel_gc_threads()) {
 906     for (uint i = 0; i < ParallelGCThreads; i++) {
 907       _par_gc_thread_states[i]->promo.reset();
 908     }
 909   }
 910 }
 911 
 912 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 913   blk->do_space(_cmsSpace);
 914 }
 915 
 916 void ConcurrentMarkSweepGeneration::compute_new_size() {
 917   assert_locked_or_safepoint(Heap_lock);
 918 
 919   // If incremental collection failed, we just want to expand
 920   // to the limit.
 921   if (incremental_collection_failed()) {
 922     clear_incremental_collection_failed();
 923     grow_to_reserved();
 924     return;
 925   }
 926 
 927   size_t expand_bytes = 0;
 928   double free_percentage = ((double) free()) / capacity();
 929   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 930   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 931 
 932   // compute expansion delta needed for reaching desired free percentage
 933   if (free_percentage < desired_free_percentage) {
 934     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 935     assert(desired_capacity >= capacity(), "invalid expansion size");
 936     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 937   }
 938   if (expand_bytes > 0) {
 939     if (PrintGCDetails && Verbose) {
 940       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 941       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 942       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 943       gclog_or_tty->print_cr("  Desired free fraction %f",
 944         desired_free_percentage);
 945       gclog_or_tty->print_cr("  Maximum free fraction %f",
 946         maximum_free_percentage);
 947       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 948       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 949         desired_capacity/1000);
 950       int prev_level = level() - 1;
 951       if (prev_level >= 0) {
 952         size_t prev_size = 0;
 953         GenCollectedHeap* gch = GenCollectedHeap::heap();
 954         Generation* prev_gen = gch->_gens[prev_level];
 955         prev_size = prev_gen->capacity();
 956           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 957                                  prev_size/1000);
 958       }
 959       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 960         unsafe_max_alloc_nogc()/1000);
 961       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 962         contiguous_available()/1000);
 963       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 964         expand_bytes);
 965     }
 966     // safe if expansion fails
 967     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 968     if (PrintGCDetails && Verbose) {
 969       gclog_or_tty->print_cr("  Expanded free fraction %f",
 970         ((double) free()) / capacity());
 971     }
 972   }
 973 }
 974 
 975 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 976   return cmsSpace()->freelistLock();
 977 }
 978 
 979 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 980                                                   bool   tlab) {
 981   CMSSynchronousYieldRequest yr;
 982   MutexLockerEx x(freelistLock(),
 983                   Mutex::_no_safepoint_check_flag);
 984   return have_lock_and_allocate(size, tlab);
 985 }
 986 
 987 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 988                                                   bool   tlab /* ignored */) {
 989   assert_lock_strong(freelistLock());
 990   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 991   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 992   // Allocate the object live (grey) if the background collector has
 993   // started marking. This is necessary because the marker may
 994   // have passed this address and consequently this object will
 995   // not otherwise be greyed and would be incorrectly swept up.
 996   // Note that if this object contains references, the writing
 997   // of those references will dirty the card containing this object
 998   // allowing the object to be blackened (and its references scanned)
 999   // either during a preclean phase or at the final checkpoint.
1000   if (res != NULL) {
1001     // We may block here with an uninitialized object with
1002     // its mark-bit or P-bits not yet set. Such objects need
1003     // to be safely navigable by block_start().
1004     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1005     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1006     collector()->direct_allocated(res, adjustedSize);
1007     _direct_allocated_words += adjustedSize;
1008     // allocation counters
1009     NOT_PRODUCT(
1010       _numObjectsAllocated++;
1011       _numWordsAllocated += (int)adjustedSize;
1012     )
1013   }
1014   return res;
1015 }
1016 
1017 // In the case of direct allocation by mutators in a generation that
1018 // is being concurrently collected, the object must be allocated
1019 // live (grey) if the background collector has started marking.
1020 // This is necessary because the marker may
1021 // have passed this address and consequently this object will
1022 // not otherwise be greyed and would be incorrectly swept up.
1023 // Note that if this object contains references, the writing
1024 // of those references will dirty the card containing this object
1025 // allowing the object to be blackened (and its references scanned)
1026 // either during a preclean phase or at the final checkpoint.
1027 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1028   assert(_markBitMap.covers(start, size), "Out of bounds");
1029   if (_collectorState >= Marking) {
1030     MutexLockerEx y(_markBitMap.lock(),
1031                     Mutex::_no_safepoint_check_flag);
1032     // [see comments preceding SweepClosure::do_blk() below for details]
1033     //
1034     // Can the P-bits be deleted now?  JJJ
1035     //
1036     // 1. need to mark the object as live so it isn't collected
1037     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1038     // 3. need to mark the end of the object so marking, precleaning or sweeping
1039     //    can skip over uninitialized or unparsable objects. An allocated
1040     //    object is considered uninitialized for our purposes as long as
1041     //    its klass word is NULL.  All old gen objects are parsable
1042     //    as soon as they are initialized.)
1043     _markBitMap.mark(start);          // object is live
1044     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1045     _markBitMap.mark(start + size - 1);
1046                                       // mark end of object
1047   }
1048   // check that oop looks uninitialized
1049   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1050 }
1051 
1052 void CMSCollector::promoted(bool par, HeapWord* start,
1053                             bool is_obj_array, size_t obj_size) {
1054   assert(_markBitMap.covers(start), "Out of bounds");
1055   // See comment in direct_allocated() about when objects should
1056   // be allocated live.
1057   if (_collectorState >= Marking) {
1058     // we already hold the marking bit map lock, taken in
1059     // the prologue
1060     if (par) {
1061       _markBitMap.par_mark(start);
1062     } else {
1063       _markBitMap.mark(start);
1064     }
1065     // We don't need to mark the object as uninitialized (as
1066     // in direct_allocated above) because this is being done with the
1067     // world stopped and the object will be initialized by the
1068     // time the marking, precleaning or sweeping get to look at it.
1069     // But see the code for copying objects into the CMS generation,
1070     // where we need to ensure that concurrent readers of the
1071     // block offset table are able to safely navigate a block that
1072     // is in flux from being free to being allocated (and in
1073     // transition while being copied into) and subsequently
1074     // becoming a bona-fide object when the copy/promotion is complete.
1075     assert(SafepointSynchronize::is_at_safepoint(),
1076            "expect promotion only at safepoints");
1077 
1078     if (_collectorState < Sweeping) {
1079       // Mark the appropriate cards in the modUnionTable, so that
1080       // this object gets scanned before the sweep. If this is
1081       // not done, CMS generation references in the object might
1082       // not get marked.
1083       // For the case of arrays, which are otherwise precisely
1084       // marked, we need to dirty the entire array, not just its head.
1085       if (is_obj_array) {
1086         // The [par_]mark_range() method expects mr.end() below to
1087         // be aligned to the granularity of a bit's representation
1088         // in the heap. In the case of the MUT below, that's a
1089         // card size.
1090         MemRegion mr(start,
1091                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1092                         CardTableModRefBS::card_size /* bytes */));
1093         if (par) {
1094           _modUnionTable.par_mark_range(mr);
1095         } else {
1096           _modUnionTable.mark_range(mr);
1097         }
1098       } else {  // not an obj array; we can just mark the head
1099         if (par) {
1100           _modUnionTable.par_mark(start);
1101         } else {
1102           _modUnionTable.mark(start);
1103         }
1104       }
1105     }
1106   }
1107 }
1108 
1109 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1110 {
1111   size_t delta = pointer_delta(addr, space->bottom());
1112   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1113 }
1114 
1115 void CMSCollector::icms_update_allocation_limits()
1116 {
1117   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1118   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1119 
1120   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1121   if (CMSTraceIncrementalPacing) {
1122     stats().print();
1123   }
1124 
1125   assert(duty_cycle <= 100, "invalid duty cycle");
1126   if (duty_cycle != 0) {
1127     // The duty_cycle is a percentage between 0 and 100; convert to words and
1128     // then compute the offset from the endpoints of the space.
1129     size_t free_words = eden->free() / HeapWordSize;
1130     double free_words_dbl = (double)free_words;
1131     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1132     size_t offset_words = (free_words - duty_cycle_words) / 2;
1133 
1134     _icms_start_limit = eden->top() + offset_words;
1135     _icms_stop_limit = eden->end() - offset_words;
1136 
1137     // The limits may be adjusted (shifted to the right) by
1138     // CMSIncrementalOffset, to allow the application more mutator time after a
1139     // young gen gc (when all mutators were stopped) and before CMS starts and
1140     // takes away one or more cpus.
1141     if (CMSIncrementalOffset != 0) {
1142       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1143       size_t adjustment = (size_t)adjustment_dbl;
1144       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1145       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1146         _icms_start_limit += adjustment;
1147         _icms_stop_limit = tmp_stop;
1148       }
1149     }
1150   }
1151   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1152     _icms_start_limit = _icms_stop_limit = eden->end();
1153   }
1154 
1155   // Install the new start limit.
1156   eden->set_soft_end(_icms_start_limit);
1157 
1158   if (CMSTraceIncrementalMode) {
1159     gclog_or_tty->print(" icms alloc limits:  "
1160                            PTR_FORMAT "," PTR_FORMAT
1161                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1162                            _icms_start_limit, _icms_stop_limit,
1163                            percent_of_space(eden, _icms_start_limit),
1164                            percent_of_space(eden, _icms_stop_limit));
1165     if (Verbose) {
1166       gclog_or_tty->print("eden:  ");
1167       eden->print_on(gclog_or_tty);
1168     }
1169   }
1170 }
1171 
1172 // Any changes here should try to maintain the invariant
1173 // that if this method is called with _icms_start_limit
1174 // and _icms_stop_limit both NULL, then it should return NULL
1175 // and not notify the icms thread.
1176 HeapWord*
1177 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1178                                        size_t word_size)
1179 {
1180   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1181   // nop.
1182   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1183     if (top <= _icms_start_limit) {
1184       if (CMSTraceIncrementalMode) {
1185         space->print_on(gclog_or_tty);
1186         gclog_or_tty->stamp();
1187         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1188                                ", new limit=" PTR_FORMAT
1189                                " (" SIZE_FORMAT "%%)",
1190                                top, _icms_stop_limit,
1191                                percent_of_space(space, _icms_stop_limit));
1192       }
1193       ConcurrentMarkSweepThread::start_icms();
1194       assert(top < _icms_stop_limit, "Tautology");
1195       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1196         return _icms_stop_limit;
1197       }
1198 
1199       // The allocation will cross both the _start and _stop limits, so do the
1200       // stop notification also and return end().
1201       if (CMSTraceIncrementalMode) {
1202         space->print_on(gclog_or_tty);
1203         gclog_or_tty->stamp();
1204         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1205                                ", new limit=" PTR_FORMAT
1206                                " (" SIZE_FORMAT "%%)",
1207                                top, space->end(),
1208                                percent_of_space(space, space->end()));
1209       }
1210       ConcurrentMarkSweepThread::stop_icms();
1211       return space->end();
1212     }
1213 
1214     if (top <= _icms_stop_limit) {
1215       if (CMSTraceIncrementalMode) {
1216         space->print_on(gclog_or_tty);
1217         gclog_or_tty->stamp();
1218         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1219                                ", new limit=" PTR_FORMAT
1220                                " (" SIZE_FORMAT "%%)",
1221                                top, space->end(),
1222                                percent_of_space(space, space->end()));
1223       }
1224       ConcurrentMarkSweepThread::stop_icms();
1225       return space->end();
1226     }
1227 
1228     if (CMSTraceIncrementalMode) {
1229       space->print_on(gclog_or_tty);
1230       gclog_or_tty->stamp();
1231       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1232                              ", new limit=" PTR_FORMAT,
1233                              top, NULL);
1234     }
1235   }
1236 
1237   return NULL;
1238 }
1239 
1240 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1241   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1242   // allocate, copy and if necessary update promoinfo --
1243   // delegate to underlying space.
1244   assert_lock_strong(freelistLock());
1245 
1246 #ifndef PRODUCT
1247   if (Universe::heap()->promotion_should_fail()) {
1248     return NULL;
1249   }
1250 #endif  // #ifndef PRODUCT
1251 
1252   oop res = _cmsSpace->promote(obj, obj_size);
1253   if (res == NULL) {
1254     // expand and retry
1255     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1256     expand(s*HeapWordSize, MinHeapDeltaBytes,
1257       CMSExpansionCause::_satisfy_promotion);
1258     // Since there's currently no next generation, we don't try to promote
1259     // into a more senior generation.
1260     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1261                                "is made to pass on a possibly failing "
1262                                "promotion to next generation");
1263     res = _cmsSpace->promote(obj, obj_size);
1264   }
1265   if (res != NULL) {
1266     // See comment in allocate() about when objects should
1267     // be allocated live.
1268     assert(obj->is_oop(), "Will dereference klass pointer below");
1269     collector()->promoted(false,           // Not parallel
1270                           (HeapWord*)res, obj->is_objArray(), obj_size);
1271     // promotion counters
1272     NOT_PRODUCT(
1273       _numObjectsPromoted++;
1274       _numWordsPromoted +=
1275         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1276     )
1277   }
1278   return res;
1279 }
1280 
1281 
1282 HeapWord*
1283 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1284                                              HeapWord* top,
1285                                              size_t word_sz)
1286 {
1287   return collector()->allocation_limit_reached(space, top, word_sz);
1288 }
1289 
1290 // IMPORTANT: Notes on object size recognition in CMS.
1291 // ---------------------------------------------------
1292 // A block of storage in the CMS generation is always in
1293 // one of three states. A free block (FREE), an allocated
1294 // object (OBJECT) whose size() method reports the correct size,
1295 // and an intermediate state (TRANSIENT) in which its size cannot
1296 // be accurately determined.
1297 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1298 // -----------------------------------------------------
1299 // FREE:      klass_word & 1 == 1; mark_word holds block size
1300 //
1301 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1302 //            obj->size() computes correct size
1303 //
1304 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1305 //
1306 // STATE IDENTIFICATION: (64 bit+COOPS)
1307 // ------------------------------------
1308 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1309 //
1310 // OBJECT:    klass_word installed; klass_word != 0;
1311 //            obj->size() computes correct size
1312 //
1313 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1314 //
1315 //
1316 // STATE TRANSITION DIAGRAM
1317 //
1318 //        mut / parnew                     mut  /  parnew
1319 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1320 //  ^                                                                   |
1321 //  |------------------------ DEAD <------------------------------------|
1322 //         sweep                            mut
1323 //
1324 // While a block is in TRANSIENT state its size cannot be determined
1325 // so readers will either need to come back later or stall until
1326 // the size can be determined. Note that for the case of direct
1327 // allocation, P-bits, when available, may be used to determine the
1328 // size of an object that may not yet have been initialized.
1329 
1330 // Things to support parallel young-gen collection.
1331 oop
1332 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1333                                            oop old, markOop m,
1334                                            size_t word_sz) {
1335 #ifndef PRODUCT
1336   if (Universe::heap()->promotion_should_fail()) {
1337     return NULL;
1338   }
1339 #endif  // #ifndef PRODUCT
1340 
1341   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1342   PromotionInfo* promoInfo = &ps->promo;
1343   // if we are tracking promotions, then first ensure space for
1344   // promotion (including spooling space for saving header if necessary).
1345   // then allocate and copy, then track promoted info if needed.
1346   // When tracking (see PromotionInfo::track()), the mark word may
1347   // be displaced and in this case restoration of the mark word
1348   // occurs in the (oop_since_save_marks_)iterate phase.
1349   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1350     // Out of space for allocating spooling buffers;
1351     // try expanding and allocating spooling buffers.
1352     if (!expand_and_ensure_spooling_space(promoInfo)) {
1353       return NULL;
1354     }
1355   }
1356   assert(promoInfo->has_spooling_space(), "Control point invariant");
1357   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1358   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1359   if (obj_ptr == NULL) {
1360      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1361      if (obj_ptr == NULL) {
1362        return NULL;
1363      }
1364   }
1365   oop obj = oop(obj_ptr);
1366   OrderAccess::storestore();
1367   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1368   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1369   // IMPORTANT: See note on object initialization for CMS above.
1370   // Otherwise, copy the object.  Here we must be careful to insert the
1371   // klass pointer last, since this marks the block as an allocated object.
1372   // Except with compressed oops it's the mark word.
1373   HeapWord* old_ptr = (HeapWord*)old;
1374   // Restore the mark word copied above.
1375   obj->set_mark(m);
1376   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1377   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1378   OrderAccess::storestore();
1379 
1380   if (UseCompressedKlassPointers) {
1381     // Copy gap missed by (aligned) header size calculation below
1382     obj->set_klass_gap(old->klass_gap());
1383   }
1384   if (word_sz > (size_t)oopDesc::header_size()) {
1385     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1386                                  obj_ptr + oopDesc::header_size(),
1387                                  word_sz - oopDesc::header_size());
1388   }
1389 
1390   // Now we can track the promoted object, if necessary.  We take care
1391   // to delay the transition from uninitialized to full object
1392   // (i.e., insertion of klass pointer) until after, so that it
1393   // atomically becomes a promoted object.
1394   if (promoInfo->tracking()) {
1395     promoInfo->track((PromotedObject*)obj, old->klass());
1396   }
1397   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1398   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1399   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1400 
1401   // Finally, install the klass pointer (this should be volatile).
1402   OrderAccess::storestore();
1403   obj->set_klass(old->klass());
1404   // We should now be able to calculate the right size for this object
1405   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1406 
1407   collector()->promoted(true,          // parallel
1408                         obj_ptr, old->is_objArray(), word_sz);
1409 
1410   NOT_PRODUCT(
1411     Atomic::inc_ptr(&_numObjectsPromoted);
1412     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1413   )
1414 
1415   return obj;
1416 }
1417 
1418 void
1419 ConcurrentMarkSweepGeneration::
1420 par_promote_alloc_undo(int thread_num,
1421                        HeapWord* obj, size_t word_sz) {
1422   // CMS does not support promotion undo.
1423   ShouldNotReachHere();
1424 }
1425 
1426 void
1427 ConcurrentMarkSweepGeneration::
1428 par_promote_alloc_done(int thread_num) {
1429   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1430   ps->lab.retire(thread_num);
1431 }
1432 
1433 void
1434 ConcurrentMarkSweepGeneration::
1435 par_oop_since_save_marks_iterate_done(int thread_num) {
1436   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1437   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1438   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1439 }
1440 
1441 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1442                                                    size_t size,
1443                                                    bool   tlab)
1444 {
1445   // We allow a STW collection only if a full
1446   // collection was requested.
1447   return full || should_allocate(size, tlab); // FIX ME !!!
1448   // This and promotion failure handling are connected at the
1449   // hip and should be fixed by untying them.
1450 }
1451 
1452 bool CMSCollector::shouldConcurrentCollect() {
1453   if (_full_gc_requested) {
1454     if (Verbose && PrintGCDetails) {
1455       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1456                              " gc request (or gc_locker)");
1457     }
1458     return true;
1459   }
1460 
1461   // For debugging purposes, change the type of collection.
1462   // If the rotation is not on the concurrent collection
1463   // type, don't start a concurrent collection.
1464   NOT_PRODUCT(
1465     if (RotateCMSCollectionTypes &&
1466         (_cmsGen->debug_collection_type() !=
1467           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1468       assert(_cmsGen->debug_collection_type() !=
1469         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1470         "Bad cms collection type");
1471       return false;
1472     }
1473   )
1474 
1475   FreelistLocker x(this);
1476   // ------------------------------------------------------------------
1477   // Print out lots of information which affects the initiation of
1478   // a collection.
1479   if (PrintCMSInitiationStatistics && stats().valid()) {
1480     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1481     gclog_or_tty->stamp();
1482     gclog_or_tty->print_cr("");
1483     stats().print_on(gclog_or_tty);
1484     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1485       stats().time_until_cms_gen_full());
1486     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1487     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1488                            _cmsGen->contiguous_available());
1489     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1490     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1491     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1492     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1493     gclog_or_tty->print_cr("metadata initialized %d",
1494       MetaspaceGC::should_concurrent_collect());
1495   }
1496   // ------------------------------------------------------------------
1497 
1498   // If the estimated time to complete a cms collection (cms_duration())
1499   // is less than the estimated time remaining until the cms generation
1500   // is full, start a collection.
1501   if (!UseCMSInitiatingOccupancyOnly) {
1502     if (stats().valid()) {
1503       if (stats().time_until_cms_start() == 0.0) {
1504         return true;
1505       }
1506     } else {
1507       // We want to conservatively collect somewhat early in order
1508       // to try and "bootstrap" our CMS/promotion statistics;
1509       // this branch will not fire after the first successful CMS
1510       // collection because the stats should then be valid.
1511       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1512         if (Verbose && PrintGCDetails) {
1513           gclog_or_tty->print_cr(
1514             " CMSCollector: collect for bootstrapping statistics:"
1515             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1516             _bootstrap_occupancy);
1517         }
1518         return true;
1519       }
1520     }
1521   }
1522 
1523   // Otherwise, we start a collection cycle if
1524   // old gen want a collection cycle started. Each may use
1525   // an appropriate criterion for making this decision.
1526   // XXX We need to make sure that the gen expansion
1527   // criterion dovetails well with this. XXX NEED TO FIX THIS
1528   if (_cmsGen->should_concurrent_collect()) {
1529     if (Verbose && PrintGCDetails) {
1530       gclog_or_tty->print_cr("CMS old gen initiated");
1531     }
1532     return true;
1533   }
1534 
1535   // We start a collection if we believe an incremental collection may fail;
1536   // this is not likely to be productive in practice because it's probably too
1537   // late anyway.
1538   GenCollectedHeap* gch = GenCollectedHeap::heap();
1539   assert(gch->collector_policy()->is_two_generation_policy(),
1540          "You may want to check the correctness of the following");
1541   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1542     if (Verbose && PrintGCDetails) {
1543       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1544     }
1545     return true;
1546   }
1547 
1548   if (MetaspaceGC::should_concurrent_collect()) {
1549       if (Verbose && PrintGCDetails) {
1550       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1551       }
1552       return true;
1553     }
1554 
1555   return false;
1556 }
1557 
1558 // Clear _expansion_cause fields of constituent generations
1559 void CMSCollector::clear_expansion_cause() {
1560   _cmsGen->clear_expansion_cause();
1561 }
1562 
1563 // We should be conservative in starting a collection cycle.  To
1564 // start too eagerly runs the risk of collecting too often in the
1565 // extreme.  To collect too rarely falls back on full collections,
1566 // which works, even if not optimum in terms of concurrent work.
1567 // As a work around for too eagerly collecting, use the flag
1568 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1569 // giving the user an easily understandable way of controlling the
1570 // collections.
1571 // We want to start a new collection cycle if any of the following
1572 // conditions hold:
1573 // . our current occupancy exceeds the configured initiating occupancy
1574 //   for this generation, or
1575 // . we recently needed to expand this space and have not, since that
1576 //   expansion, done a collection of this generation, or
1577 // . the underlying space believes that it may be a good idea to initiate
1578 //   a concurrent collection (this may be based on criteria such as the
1579 //   following: the space uses linear allocation and linear allocation is
1580 //   going to fail, or there is believed to be excessive fragmentation in
1581 //   the generation, etc... or ...
1582 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1583 //   the case of the old generation; see CR 6543076):
1584 //   we may be approaching a point at which allocation requests may fail because
1585 //   we will be out of sufficient free space given allocation rate estimates.]
1586 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1587 
1588   assert_lock_strong(freelistLock());
1589   if (occupancy() > initiating_occupancy()) {
1590     if (PrintGCDetails && Verbose) {
1591       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1592         short_name(), occupancy(), initiating_occupancy());
1593     }
1594     return true;
1595   }
1596   if (UseCMSInitiatingOccupancyOnly) {
1597     return false;
1598   }
1599   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1600     if (PrintGCDetails && Verbose) {
1601       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1602         short_name());
1603     }
1604     return true;
1605   }
1606   if (_cmsSpace->should_concurrent_collect()) {
1607     if (PrintGCDetails && Verbose) {
1608       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1609         short_name());
1610     }
1611     return true;
1612   }
1613   return false;
1614 }
1615 
1616 void ConcurrentMarkSweepGeneration::collect(bool   full,
1617                                             bool   clear_all_soft_refs,
1618                                             size_t size,
1619                                             bool   tlab)
1620 {
1621   collector()->collect(full, clear_all_soft_refs, size, tlab);
1622 }
1623 
1624 void CMSCollector::collect(bool   full,
1625                            bool   clear_all_soft_refs,
1626                            size_t size,
1627                            bool   tlab)
1628 {
1629   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1630     // For debugging purposes skip the collection if the state
1631     // is not currently idle
1632     if (TraceCMSState) {
1633       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1634         Thread::current(), full, _collectorState);
1635     }
1636     return;
1637   }
1638 
1639   // The following "if" branch is present for defensive reasons.
1640   // In the current uses of this interface, it can be replaced with:
1641   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1642   // But I am not placing that assert here to allow future
1643   // generality in invoking this interface.
1644   if (GC_locker::is_active()) {
1645     // A consistency test for GC_locker
1646     assert(GC_locker::needs_gc(), "Should have been set already");
1647     // Skip this foreground collection, instead
1648     // expanding the heap if necessary.
1649     // Need the free list locks for the call to free() in compute_new_size()
1650     compute_new_size();
1651     return;
1652   }
1653   acquire_control_and_collect(full, clear_all_soft_refs);
1654   _full_gcs_since_conc_gc++;
1655 
1656 }
1657 
1658 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
1659   GenCollectedHeap* gch = GenCollectedHeap::heap();
1660   unsigned int gc_count = gch->total_full_collections();
1661   if (gc_count == full_gc_count) {
1662     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1663     _full_gc_requested = true;
1664     CGC_lock->notify();   // nudge CMS thread
1665   } else {
1666     assert(gc_count > full_gc_count, "Error: causal loop");
1667   }
1668 }
1669 
1670 
1671 // The foreground and background collectors need to coordinate in order
1672 // to make sure that they do not mutually interfere with CMS collections.
1673 // When a background collection is active,
1674 // the foreground collector may need to take over (preempt) and
1675 // synchronously complete an ongoing collection. Depending on the
1676 // frequency of the background collections and the heap usage
1677 // of the application, this preemption can be seldom or frequent.
1678 // There are only certain
1679 // points in the background collection that the "collection-baton"
1680 // can be passed to the foreground collector.
1681 //
1682 // The foreground collector will wait for the baton before
1683 // starting any part of the collection.  The foreground collector
1684 // will only wait at one location.
1685 //
1686 // The background collector will yield the baton before starting a new
1687 // phase of the collection (e.g., before initial marking, marking from roots,
1688 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1689 // of the loop which switches the phases. The background collector does some
1690 // of the phases (initial mark, final re-mark) with the world stopped.
1691 // Because of locking involved in stopping the world,
1692 // the foreground collector should not block waiting for the background
1693 // collector when it is doing a stop-the-world phase.  The background
1694 // collector will yield the baton at an additional point just before
1695 // it enters a stop-the-world phase.  Once the world is stopped, the
1696 // background collector checks the phase of the collection.  If the
1697 // phase has not changed, it proceeds with the collection.  If the
1698 // phase has changed, it skips that phase of the collection.  See
1699 // the comments on the use of the Heap_lock in collect_in_background().
1700 //
1701 // Variable used in baton passing.
1702 //   _foregroundGCIsActive - Set to true by the foreground collector when
1703 //      it wants the baton.  The foreground clears it when it has finished
1704 //      the collection.
1705 //   _foregroundGCShouldWait - Set to true by the background collector
1706 //        when it is running.  The foreground collector waits while
1707 //      _foregroundGCShouldWait is true.
1708 //  CGC_lock - monitor used to protect access to the above variables
1709 //      and to notify the foreground and background collectors.
1710 //  _collectorState - current state of the CMS collection.
1711 //
1712 // The foreground collector
1713 //   acquires the CGC_lock
1714 //   sets _foregroundGCIsActive
1715 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1716 //     various locks acquired in preparation for the collection
1717 //     are released so as not to block the background collector
1718 //     that is in the midst of a collection
1719 //   proceeds with the collection
1720 //   clears _foregroundGCIsActive
1721 //   returns
1722 //
1723 // The background collector in a loop iterating on the phases of the
1724 //      collection
1725 //   acquires the CGC_lock
1726 //   sets _foregroundGCShouldWait
1727 //   if _foregroundGCIsActive is set
1728 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1729 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1730 //     and exits the loop.
1731 //   otherwise
1732 //     proceed with that phase of the collection
1733 //     if the phase is a stop-the-world phase,
1734 //       yield the baton once more just before enqueueing
1735 //       the stop-world CMS operation (executed by the VM thread).
1736 //   returns after all phases of the collection are done
1737 //
1738 
1739 void CMSCollector::acquire_control_and_collect(bool full,
1740         bool clear_all_soft_refs) {
1741   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1742   assert(!Thread::current()->is_ConcurrentGC_thread(),
1743          "shouldn't try to acquire control from self!");
1744 
1745   // Start the protocol for acquiring control of the
1746   // collection from the background collector (aka CMS thread).
1747   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1748          "VM thread should have CMS token");
1749   // Remember the possibly interrupted state of an ongoing
1750   // concurrent collection
1751   CollectorState first_state = _collectorState;
1752 
1753   // Signal to a possibly ongoing concurrent collection that
1754   // we want to do a foreground collection.
1755   _foregroundGCIsActive = true;
1756 
1757   // Disable incremental mode during a foreground collection.
1758   ICMSDisabler icms_disabler;
1759 
1760   // release locks and wait for a notify from the background collector
1761   // releasing the locks in only necessary for phases which
1762   // do yields to improve the granularity of the collection.
1763   assert_lock_strong(bitMapLock());
1764   // We need to lock the Free list lock for the space that we are
1765   // currently collecting.
1766   assert(haveFreelistLocks(), "Must be holding free list locks");
1767   bitMapLock()->unlock();
1768   releaseFreelistLocks();
1769   {
1770     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1771     if (_foregroundGCShouldWait) {
1772       // We are going to be waiting for action for the CMS thread;
1773       // it had better not be gone (for instance at shutdown)!
1774       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1775              "CMS thread must be running");
1776       // Wait here until the background collector gives us the go-ahead
1777       ConcurrentMarkSweepThread::clear_CMS_flag(
1778         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1779       // Get a possibly blocked CMS thread going:
1780       //   Note that we set _foregroundGCIsActive true above,
1781       //   without protection of the CGC_lock.
1782       CGC_lock->notify();
1783       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1784              "Possible deadlock");
1785       while (_foregroundGCShouldWait) {
1786         // wait for notification
1787         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1788         // Possibility of delay/starvation here, since CMS token does
1789         // not know to give priority to VM thread? Actually, i think
1790         // there wouldn't be any delay/starvation, but the proof of
1791         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1792       }
1793       ConcurrentMarkSweepThread::set_CMS_flag(
1794         ConcurrentMarkSweepThread::CMS_vm_has_token);
1795     }
1796   }
1797   // The CMS_token is already held.  Get back the other locks.
1798   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1799          "VM thread should have CMS token");
1800   getFreelistLocks();
1801   bitMapLock()->lock_without_safepoint_check();
1802   if (TraceCMSState) {
1803     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1804       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1805     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1806   }
1807 
1808   // Check if we need to do a compaction, or if not, whether
1809   // we need to start the mark-sweep from scratch.
1810   bool should_compact    = false;
1811   bool should_start_over = false;
1812   decide_foreground_collection_type(clear_all_soft_refs,
1813     &should_compact, &should_start_over);
1814 
1815 NOT_PRODUCT(
1816   if (RotateCMSCollectionTypes) {
1817     if (_cmsGen->debug_collection_type() ==
1818         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1819       should_compact = true;
1820     } else if (_cmsGen->debug_collection_type() ==
1821                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1822       should_compact = false;
1823     }
1824   }
1825 )
1826 
1827   if (PrintGCDetails && first_state > Idling) {
1828     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1829     if (GCCause::is_user_requested_gc(cause) ||
1830         GCCause::is_serviceability_requested_gc(cause)) {
1831       gclog_or_tty->print(" (concurrent mode interrupted)");
1832     } else {
1833       gclog_or_tty->print(" (concurrent mode failure)");
1834     }
1835   }
1836 
1837   if (should_compact) {
1838     // If the collection is being acquired from the background
1839     // collector, there may be references on the discovered
1840     // references lists that have NULL referents (being those
1841     // that were concurrently cleared by a mutator) or
1842     // that are no longer active (having been enqueued concurrently
1843     // by the mutator).
1844     // Scrub the list of those references because Mark-Sweep-Compact
1845     // code assumes referents are not NULL and that all discovered
1846     // Reference objects are active.
1847     ref_processor()->clean_up_discovered_references();
1848 
1849     do_compaction_work(clear_all_soft_refs);
1850 
1851     // Has the GC time limit been exceeded?
1852     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1853     size_t max_eden_size = young_gen->max_capacity() -
1854                            young_gen->to()->capacity() -
1855                            young_gen->from()->capacity();
1856     GenCollectedHeap* gch = GenCollectedHeap::heap();
1857     GCCause::Cause gc_cause = gch->gc_cause();
1858     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1859                                            young_gen->eden()->used(),
1860                                            _cmsGen->max_capacity(),
1861                                            max_eden_size,
1862                                            full,
1863                                            gc_cause,
1864                                            gch->collector_policy());
1865   } else {
1866     do_mark_sweep_work(clear_all_soft_refs, first_state,
1867       should_start_over);
1868   }
1869   // Reset the expansion cause, now that we just completed
1870   // a collection cycle.
1871   clear_expansion_cause();
1872   _foregroundGCIsActive = false;
1873   return;
1874 }
1875 
1876 // Resize the tenured generation
1877 // after obtaining the free list locks for the
1878 // two generations.
1879 void CMSCollector::compute_new_size() {
1880   assert_locked_or_safepoint(Heap_lock);
1881   FreelistLocker z(this);
1882   MetaspaceGC::compute_new_size();
1883   _cmsGen->compute_new_size();
1884 }
1885 
1886 // A work method used by foreground collection to determine
1887 // what type of collection (compacting or not, continuing or fresh)
1888 // it should do.
1889 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1890 // and CMSCompactWhenClearAllSoftRefs the default in the future
1891 // and do away with the flags after a suitable period.
1892 void CMSCollector::decide_foreground_collection_type(
1893   bool clear_all_soft_refs, bool* should_compact,
1894   bool* should_start_over) {
1895   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1896   // flag is set, and we have either requested a System.gc() or
1897   // the number of full gc's since the last concurrent cycle
1898   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1899   // or if an incremental collection has failed
1900   GenCollectedHeap* gch = GenCollectedHeap::heap();
1901   assert(gch->collector_policy()->is_two_generation_policy(),
1902          "You may want to check the correctness of the following");
1903   // Inform cms gen if this was due to partial collection failing.
1904   // The CMS gen may use this fact to determine its expansion policy.
1905   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1906     assert(!_cmsGen->incremental_collection_failed(),
1907            "Should have been noticed, reacted to and cleared");
1908     _cmsGen->set_incremental_collection_failed();
1909   }
1910   *should_compact =
1911     UseCMSCompactAtFullCollection &&
1912     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1913      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1914      gch->incremental_collection_will_fail(true /* consult_young */));
1915   *should_start_over = false;
1916   if (clear_all_soft_refs && !*should_compact) {
1917     // We are about to do a last ditch collection attempt
1918     // so it would normally make sense to do a compaction
1919     // to reclaim as much space as possible.
1920     if (CMSCompactWhenClearAllSoftRefs) {
1921       // Default: The rationale is that in this case either
1922       // we are past the final marking phase, in which case
1923       // we'd have to start over, or so little has been done
1924       // that there's little point in saving that work. Compaction
1925       // appears to be the sensible choice in either case.
1926       *should_compact = true;
1927     } else {
1928       // We have been asked to clear all soft refs, but not to
1929       // compact. Make sure that we aren't past the final checkpoint
1930       // phase, for that is where we process soft refs. If we are already
1931       // past that phase, we'll need to redo the refs discovery phase and
1932       // if necessary clear soft refs that weren't previously
1933       // cleared. We do so by remembering the phase in which
1934       // we came in, and if we are past the refs processing
1935       // phase, we'll choose to just redo the mark-sweep
1936       // collection from scratch.
1937       if (_collectorState > FinalMarking) {
1938         // We are past the refs processing phase;
1939         // start over and do a fresh synchronous CMS cycle
1940         _collectorState = Resetting; // skip to reset to start new cycle
1941         reset(false /* == !asynch */);
1942         *should_start_over = true;
1943       } // else we can continue a possibly ongoing current cycle
1944     }
1945   }
1946 }
1947 
1948 // A work method used by the foreground collector to do
1949 // a mark-sweep-compact.
1950 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1951   GenCollectedHeap* gch = GenCollectedHeap::heap();
1952   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
1953   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
1954     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
1955       "collections passed to foreground collector", _full_gcs_since_conc_gc);
1956   }
1957 
1958   // Sample collection interval time and reset for collection pause.
1959   if (UseAdaptiveSizePolicy) {
1960     size_policy()->msc_collection_begin();
1961   }
1962 
1963   // Temporarily widen the span of the weak reference processing to
1964   // the entire heap.
1965   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1966   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1967   // Temporarily, clear the "is_alive_non_header" field of the
1968   // reference processor.
1969   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1970   // Temporarily make reference _processing_ single threaded (non-MT).
1971   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1972   // Temporarily make refs discovery atomic
1973   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1974   // Temporarily make reference _discovery_ single threaded (non-MT)
1975   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1976 
1977   ref_processor()->set_enqueuing_is_done(false);
1978   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
1979   ref_processor()->setup_policy(clear_all_soft_refs);
1980   // If an asynchronous collection finishes, the _modUnionTable is
1981   // all clear.  If we are assuming the collection from an asynchronous
1982   // collection, clear the _modUnionTable.
1983   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1984     "_modUnionTable should be clear if the baton was not passed");
1985   _modUnionTable.clear_all();
1986   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1987     "mod union for klasses should be clear if the baton was passed");
1988   _ct->klass_rem_set()->clear_mod_union();
1989 
1990   // We must adjust the allocation statistics being maintained
1991   // in the free list space. We do so by reading and clearing
1992   // the sweep timer and updating the block flux rate estimates below.
1993   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1994   if (_inter_sweep_timer.is_active()) {
1995     _inter_sweep_timer.stop();
1996     // Note that we do not use this sample to update the _inter_sweep_estimate.
1997     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1998                                             _inter_sweep_estimate.padded_average(),
1999                                             _intra_sweep_estimate.padded_average());
2000   }
2001 
2002   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2003     ref_processor(), clear_all_soft_refs);
2004   #ifdef ASSERT
2005     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2006     size_t free_size = cms_space->free();
2007     assert(free_size ==
2008            pointer_delta(cms_space->end(), cms_space->compaction_top())
2009            * HeapWordSize,
2010       "All the free space should be compacted into one chunk at top");
2011     assert(cms_space->dictionary()->total_chunk_size(
2012                                       debug_only(cms_space->freelistLock())) == 0 ||
2013            cms_space->totalSizeInIndexedFreeLists() == 0,
2014       "All the free space should be in a single chunk");
2015     size_t num = cms_space->totalCount();
2016     assert((free_size == 0 && num == 0) ||
2017            (free_size > 0  && (num == 1 || num == 2)),
2018          "There should be at most 2 free chunks after compaction");
2019   #endif // ASSERT
2020   _collectorState = Resetting;
2021   assert(_restart_addr == NULL,
2022          "Should have been NULL'd before baton was passed");
2023   reset(false /* == !asynch */);
2024   _cmsGen->reset_after_compaction();
2025   _concurrent_cycles_since_last_unload = 0;
2026 
2027   // Clear any data recorded in the PLAB chunk arrays.
2028   if (_survivor_plab_array != NULL) {
2029     reset_survivor_plab_arrays();
2030   }
2031 
2032   // Adjust the per-size allocation stats for the next epoch.
2033   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2034   // Restart the "inter sweep timer" for the next epoch.
2035   _inter_sweep_timer.reset();
2036   _inter_sweep_timer.start();
2037 
2038   // Sample collection pause time and reset for collection interval.
2039   if (UseAdaptiveSizePolicy) {
2040     size_policy()->msc_collection_end(gch->gc_cause());
2041   }
2042 
2043   // For a mark-sweep-compact, compute_new_size() will be called
2044   // in the heap's do_collection() method.
2045 }
2046 
2047 // A work method used by the foreground collector to do
2048 // a mark-sweep, after taking over from a possibly on-going
2049 // concurrent mark-sweep collection.
2050 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2051   CollectorState first_state, bool should_start_over) {
2052   if (PrintGC && Verbose) {
2053     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2054       "collector with count %d",
2055       _full_gcs_since_conc_gc);
2056   }
2057   switch (_collectorState) {
2058     case Idling:
2059       if (first_state == Idling || should_start_over) {
2060         // The background GC was not active, or should
2061         // restarted from scratch;  start the cycle.
2062         _collectorState = InitialMarking;
2063       }
2064       // If first_state was not Idling, then a background GC
2065       // was in progress and has now finished.  No need to do it
2066       // again.  Leave the state as Idling.
2067       break;
2068     case Precleaning:
2069       // In the foreground case don't do the precleaning since
2070       // it is not done concurrently and there is extra work
2071       // required.
2072       _collectorState = FinalMarking;
2073   }
2074   if (PrintGCDetails &&
2075       (_collectorState > Idling ||
2076        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
2077     gclog_or_tty->print(" (concurrent mode failure)");
2078   }
2079   collect_in_foreground(clear_all_soft_refs);
2080 
2081   // For a mark-sweep, compute_new_size() will be called
2082   // in the heap's do_collection() method.
2083 }
2084 
2085 
2086 void CMSCollector::getFreelistLocks() const {
2087   // Get locks for all free lists in all generations that this
2088   // collector is responsible for
2089   _cmsGen->freelistLock()->lock_without_safepoint_check();
2090 }
2091 
2092 void CMSCollector::releaseFreelistLocks() const {
2093   // Release locks for all free lists in all generations that this
2094   // collector is responsible for
2095   _cmsGen->freelistLock()->unlock();
2096 }
2097 
2098 bool CMSCollector::haveFreelistLocks() const {
2099   // Check locks for all free lists in all generations that this
2100   // collector is responsible for
2101   assert_lock_strong(_cmsGen->freelistLock());
2102   PRODUCT_ONLY(ShouldNotReachHere());
2103   return true;
2104 }
2105 
2106 // A utility class that is used by the CMS collector to
2107 // temporarily "release" the foreground collector from its
2108 // usual obligation to wait for the background collector to
2109 // complete an ongoing phase before proceeding.
2110 class ReleaseForegroundGC: public StackObj {
2111  private:
2112   CMSCollector* _c;
2113  public:
2114   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2115     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2116     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2117     // allow a potentially blocked foreground collector to proceed
2118     _c->_foregroundGCShouldWait = false;
2119     if (_c->_foregroundGCIsActive) {
2120       CGC_lock->notify();
2121     }
2122     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2123            "Possible deadlock");
2124   }
2125 
2126   ~ReleaseForegroundGC() {
2127     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2128     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2129     _c->_foregroundGCShouldWait = true;
2130   }
2131 };
2132 
2133 // There are separate collect_in_background and collect_in_foreground because of
2134 // the different locking requirements of the background collector and the
2135 // foreground collector.  There was originally an attempt to share
2136 // one "collect" method between the background collector and the foreground
2137 // collector but the if-then-else required made it cleaner to have
2138 // separate methods.
2139 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
2140   assert(Thread::current()->is_ConcurrentGC_thread(),
2141     "A CMS asynchronous collection is only allowed on a CMS thread.");
2142 
2143   GenCollectedHeap* gch = GenCollectedHeap::heap();
2144   {
2145     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2146     MutexLockerEx hl(Heap_lock, safepoint_check);
2147     FreelistLocker fll(this);
2148     MutexLockerEx x(CGC_lock, safepoint_check);
2149     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2150       // The foreground collector is active or we're
2151       // not using asynchronous collections.  Skip this
2152       // background collection.
2153       assert(!_foregroundGCShouldWait, "Should be clear");
2154       return;
2155     } else {
2156       assert(_collectorState == Idling, "Should be idling before start.");
2157       _collectorState = InitialMarking;
2158       // Reset the expansion cause, now that we are about to begin
2159       // a new cycle.
2160       clear_expansion_cause();
2161 
2162       // Clear the MetaspaceGC flag since a concurrent collection
2163       // is starting but also clear it after the collection.
2164       MetaspaceGC::set_should_concurrent_collect(false);
2165     }
2166     // Decide if we want to enable class unloading as part of the
2167     // ensuing concurrent GC cycle.
2168     update_should_unload_classes();
2169     _full_gc_requested = false;           // acks all outstanding full gc requests
2170     // Signal that we are about to start a collection
2171     gch->increment_total_full_collections();  // ... starting a collection cycle
2172     _collection_count_start = gch->total_full_collections();
2173   }
2174 
2175   // Used for PrintGC
2176   size_t prev_used;
2177   if (PrintGC && Verbose) {
2178     prev_used = _cmsGen->used(); // XXXPERM
2179   }
2180 
2181   // The change of the collection state is normally done at this level;
2182   // the exceptions are phases that are executed while the world is
2183   // stopped.  For those phases the change of state is done while the
2184   // world is stopped.  For baton passing purposes this allows the
2185   // background collector to finish the phase and change state atomically.
2186   // The foreground collector cannot wait on a phase that is done
2187   // while the world is stopped because the foreground collector already
2188   // has the world stopped and would deadlock.
2189   while (_collectorState != Idling) {
2190     if (TraceCMSState) {
2191       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2192         Thread::current(), _collectorState);
2193     }
2194     // The foreground collector
2195     //   holds the Heap_lock throughout its collection.
2196     //   holds the CMS token (but not the lock)
2197     //     except while it is waiting for the background collector to yield.
2198     //
2199     // The foreground collector should be blocked (not for long)
2200     //   if the background collector is about to start a phase
2201     //   executed with world stopped.  If the background
2202     //   collector has already started such a phase, the
2203     //   foreground collector is blocked waiting for the
2204     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2205     //   are executed in the VM thread.
2206     //
2207     // The locking order is
2208     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2209     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2210     //   CMS token  (claimed in
2211     //                stop_world_and_do() -->
2212     //                  safepoint_synchronize() -->
2213     //                    CMSThread::synchronize())
2214 
2215     {
2216       // Check if the FG collector wants us to yield.
2217       CMSTokenSync x(true); // is cms thread
2218       if (waitForForegroundGC()) {
2219         // We yielded to a foreground GC, nothing more to be
2220         // done this round.
2221         assert(_foregroundGCShouldWait == false, "We set it to false in "
2222                "waitForForegroundGC()");
2223         if (TraceCMSState) {
2224           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2225             " exiting collection CMS state %d",
2226             Thread::current(), _collectorState);
2227         }
2228         return;
2229       } else {
2230         // The background collector can run but check to see if the
2231         // foreground collector has done a collection while the
2232         // background collector was waiting to get the CGC_lock
2233         // above.  If yes, break so that _foregroundGCShouldWait
2234         // is cleared before returning.
2235         if (_collectorState == Idling) {
2236           break;
2237         }
2238       }
2239     }
2240 
2241     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2242       "should be waiting");
2243 
2244     switch (_collectorState) {
2245       case InitialMarking:
2246         {
2247           ReleaseForegroundGC x(this);
2248           stats().record_cms_begin();
2249 
2250           VM_CMS_Initial_Mark initial_mark_op(this);
2251           VMThread::execute(&initial_mark_op);
2252         }
2253         // The collector state may be any legal state at this point
2254         // since the background collector may have yielded to the
2255         // foreground collector.
2256         break;
2257       case Marking:
2258         // initial marking in checkpointRootsInitialWork has been completed
2259         if (markFromRoots(true)) { // we were successful
2260           assert(_collectorState == Precleaning, "Collector state should "
2261             "have changed");
2262         } else {
2263           assert(_foregroundGCIsActive, "Internal state inconsistency");
2264         }
2265         break;
2266       case Precleaning:
2267         if (UseAdaptiveSizePolicy) {
2268           size_policy()->concurrent_precleaning_begin();
2269         }
2270         // marking from roots in markFromRoots has been completed
2271         preclean();
2272         if (UseAdaptiveSizePolicy) {
2273           size_policy()->concurrent_precleaning_end();
2274         }
2275         assert(_collectorState == AbortablePreclean ||
2276                _collectorState == FinalMarking,
2277                "Collector state should have changed");
2278         break;
2279       case AbortablePreclean:
2280         if (UseAdaptiveSizePolicy) {
2281         size_policy()->concurrent_phases_resume();
2282         }
2283         abortable_preclean();
2284         if (UseAdaptiveSizePolicy) {
2285           size_policy()->concurrent_precleaning_end();
2286         }
2287         assert(_collectorState == FinalMarking, "Collector state should "
2288           "have changed");
2289         break;
2290       case FinalMarking:
2291         {
2292           ReleaseForegroundGC x(this);
2293 
2294           VM_CMS_Final_Remark final_remark_op(this);
2295           VMThread::execute(&final_remark_op);
2296         }
2297         assert(_foregroundGCShouldWait, "block post-condition");
2298         break;
2299       case Sweeping:
2300         if (UseAdaptiveSizePolicy) {
2301           size_policy()->concurrent_sweeping_begin();
2302         }
2303         // final marking in checkpointRootsFinal has been completed
2304         sweep(true);
2305         assert(_collectorState == Resizing, "Collector state change "
2306           "to Resizing must be done under the free_list_lock");
2307         _full_gcs_since_conc_gc = 0;
2308 
2309         // Stop the timers for adaptive size policy for the concurrent phases
2310         if (UseAdaptiveSizePolicy) {
2311           size_policy()->concurrent_sweeping_end();
2312           size_policy()->concurrent_phases_end(gch->gc_cause(),
2313                                              gch->prev_gen(_cmsGen)->capacity(),
2314                                              _cmsGen->free());
2315         }
2316 
2317       case Resizing: {
2318         // Sweeping has been completed...
2319         // At this point the background collection has completed.
2320         // Don't move the call to compute_new_size() down
2321         // into code that might be executed if the background
2322         // collection was preempted.
2323         {
2324           ReleaseForegroundGC x(this);   // unblock FG collection
2325           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2326           CMSTokenSync        z(true);   // not strictly needed.
2327           if (_collectorState == Resizing) {
2328             compute_new_size();
2329             _collectorState = Resetting;
2330           } else {
2331             assert(_collectorState == Idling, "The state should only change"
2332                    " because the foreground collector has finished the collection");
2333           }
2334         }
2335         break;
2336       }
2337       case Resetting:
2338         // CMS heap resizing has been completed
2339         reset(true);
2340         assert(_collectorState == Idling, "Collector state should "
2341           "have changed");
2342 
2343         MetaspaceGC::set_should_concurrent_collect(false);
2344 
2345         stats().record_cms_end();
2346         // Don't move the concurrent_phases_end() and compute_new_size()
2347         // calls to here because a preempted background collection
2348         // has it's state set to "Resetting".
2349         break;
2350       case Idling:
2351       default:
2352         ShouldNotReachHere();
2353         break;
2354     }
2355     if (TraceCMSState) {
2356       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2357         Thread::current(), _collectorState);
2358     }
2359     assert(_foregroundGCShouldWait, "block post-condition");
2360   }
2361 
2362   // Should this be in gc_epilogue?
2363   collector_policy()->counters()->update_counters();
2364 
2365   {
2366     // Clear _foregroundGCShouldWait and, in the event that the
2367     // foreground collector is waiting, notify it, before
2368     // returning.
2369     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2370     _foregroundGCShouldWait = false;
2371     if (_foregroundGCIsActive) {
2372       CGC_lock->notify();
2373     }
2374     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2375            "Possible deadlock");
2376   }
2377   if (TraceCMSState) {
2378     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2379       " exiting collection CMS state %d",
2380       Thread::current(), _collectorState);
2381   }
2382   if (PrintGC && Verbose) {
2383     _cmsGen->print_heap_change(prev_used);
2384   }
2385 }
2386 
2387 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
2388   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2389          "Foreground collector should be waiting, not executing");
2390   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2391     "may only be done by the VM Thread with the world stopped");
2392   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2393          "VM thread should have CMS token");
2394 
2395   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2396     true, gclog_or_tty);)
2397   if (UseAdaptiveSizePolicy) {
2398     size_policy()->ms_collection_begin();
2399   }
2400   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2401 
2402   HandleMark hm;  // Discard invalid handles created during verification
2403 
2404   if (VerifyBeforeGC &&
2405       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2406     Universe::verify(true);
2407   }
2408 
2409   // Snapshot the soft reference policy to be used in this collection cycle.
2410   ref_processor()->setup_policy(clear_all_soft_refs);
2411 
2412   bool init_mark_was_synchronous = false; // until proven otherwise
2413   while (_collectorState != Idling) {
2414     if (TraceCMSState) {
2415       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2416         Thread::current(), _collectorState);
2417     }
2418     switch (_collectorState) {
2419       case InitialMarking:
2420         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2421         checkpointRootsInitial(false);
2422         assert(_collectorState == Marking, "Collector state should have changed"
2423           " within checkpointRootsInitial()");
2424         break;
2425       case Marking:
2426         // initial marking in checkpointRootsInitialWork has been completed
2427         if (VerifyDuringGC &&
2428             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2429           gclog_or_tty->print("Verify before initial mark: ");
2430           Universe::verify(true);
2431         }
2432         {
2433           bool res = markFromRoots(false);
2434           assert(res && _collectorState == FinalMarking, "Collector state should "
2435             "have changed");
2436           break;
2437         }
2438       case FinalMarking:
2439         if (VerifyDuringGC &&
2440             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2441           gclog_or_tty->print("Verify before re-mark: ");
2442           Universe::verify(true);
2443         }
2444         checkpointRootsFinal(false, clear_all_soft_refs,
2445                              init_mark_was_synchronous);
2446         assert(_collectorState == Sweeping, "Collector state should not "
2447           "have changed within checkpointRootsFinal()");
2448         break;
2449       case Sweeping:
2450         // final marking in checkpointRootsFinal has been completed
2451         if (VerifyDuringGC &&
2452             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2453           gclog_or_tty->print("Verify before sweep: ");
2454           Universe::verify(true);
2455         }
2456         sweep(false);
2457         assert(_collectorState == Resizing, "Incorrect state");
2458         break;
2459       case Resizing: {
2460         // Sweeping has been completed; the actual resize in this case
2461         // is done separately; nothing to be done in this state.
2462         _collectorState = Resetting;
2463         break;
2464       }
2465       case Resetting:
2466         // The heap has been resized.
2467         if (VerifyDuringGC &&
2468             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2469           gclog_or_tty->print("Verify before reset: ");
2470           Universe::verify(true);
2471         }
2472         reset(false);
2473         assert(_collectorState == Idling, "Collector state should "
2474           "have changed");
2475         break;
2476       case Precleaning:
2477       case AbortablePreclean:
2478         // Elide the preclean phase
2479         _collectorState = FinalMarking;
2480         break;
2481       default:
2482         ShouldNotReachHere();
2483     }
2484     if (TraceCMSState) {
2485       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2486         Thread::current(), _collectorState);
2487     }
2488   }
2489 
2490   if (UseAdaptiveSizePolicy) {
2491     GenCollectedHeap* gch = GenCollectedHeap::heap();
2492     size_policy()->ms_collection_end(gch->gc_cause());
2493   }
2494 
2495   if (VerifyAfterGC &&
2496       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2497     Universe::verify(true);
2498   }
2499   if (TraceCMSState) {
2500     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2501       " exiting collection CMS state %d",
2502       Thread::current(), _collectorState);
2503   }
2504 }
2505 
2506 bool CMSCollector::waitForForegroundGC() {
2507   bool res = false;
2508   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2509          "CMS thread should have CMS token");
2510   // Block the foreground collector until the
2511   // background collectors decides whether to
2512   // yield.
2513   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2514   _foregroundGCShouldWait = true;
2515   if (_foregroundGCIsActive) {
2516     // The background collector yields to the
2517     // foreground collector and returns a value
2518     // indicating that it has yielded.  The foreground
2519     // collector can proceed.
2520     res = true;
2521     _foregroundGCShouldWait = false;
2522     ConcurrentMarkSweepThread::clear_CMS_flag(
2523       ConcurrentMarkSweepThread::CMS_cms_has_token);
2524     ConcurrentMarkSweepThread::set_CMS_flag(
2525       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2526     // Get a possibly blocked foreground thread going
2527     CGC_lock->notify();
2528     if (TraceCMSState) {
2529       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2530         Thread::current(), _collectorState);
2531     }
2532     while (_foregroundGCIsActive) {
2533       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2534     }
2535     ConcurrentMarkSweepThread::set_CMS_flag(
2536       ConcurrentMarkSweepThread::CMS_cms_has_token);
2537     ConcurrentMarkSweepThread::clear_CMS_flag(
2538       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2539   }
2540   if (TraceCMSState) {
2541     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2542       Thread::current(), _collectorState);
2543   }
2544   return res;
2545 }
2546 
2547 // Because of the need to lock the free lists and other structures in
2548 // the collector, common to all the generations that the collector is
2549 // collecting, we need the gc_prologues of individual CMS generations
2550 // delegate to their collector. It may have been simpler had the
2551 // current infrastructure allowed one to call a prologue on a
2552 // collector. In the absence of that we have the generation's
2553 // prologue delegate to the collector, which delegates back
2554 // some "local" work to a worker method in the individual generations
2555 // that it's responsible for collecting, while itself doing any
2556 // work common to all generations it's responsible for. A similar
2557 // comment applies to the  gc_epilogue()'s.
2558 // The role of the varaible _between_prologue_and_epilogue is to
2559 // enforce the invocation protocol.
2560 void CMSCollector::gc_prologue(bool full) {
2561   // Call gc_prologue_work() for the CMSGen
2562   // we are responsible for.
2563 
2564   // The following locking discipline assumes that we are only called
2565   // when the world is stopped.
2566   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2567 
2568   // The CMSCollector prologue must call the gc_prologues for the
2569   // "generations" that it's responsible
2570   // for.
2571 
2572   assert(   Thread::current()->is_VM_thread()
2573          || (   CMSScavengeBeforeRemark
2574              && Thread::current()->is_ConcurrentGC_thread()),
2575          "Incorrect thread type for prologue execution");
2576 
2577   if (_between_prologue_and_epilogue) {
2578     // We have already been invoked; this is a gc_prologue delegation
2579     // from yet another CMS generation that we are responsible for, just
2580     // ignore it since all relevant work has already been done.
2581     return;
2582   }
2583 
2584   // set a bit saying prologue has been called; cleared in epilogue
2585   _between_prologue_and_epilogue = true;
2586   // Claim locks for common data structures, then call gc_prologue_work()
2587   // for each CMSGen.
2588 
2589   getFreelistLocks();   // gets free list locks on constituent spaces
2590   bitMapLock()->lock_without_safepoint_check();
2591 
2592   // Should call gc_prologue_work() for all cms gens we are responsible for
2593   bool duringMarking =    _collectorState >= Marking
2594                          && _collectorState < Sweeping;
2595 
2596   // The young collections clear the modified oops state, which tells if
2597   // there are any modified oops in the class. The remark phase also needs
2598   // that information. Tell the young collection to save the union of all
2599   // modified klasses.
2600   if (duringMarking) {
2601     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2602   }
2603 
2604   bool registerClosure = duringMarking;
2605 
2606   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2607                                                &_modUnionClosurePar
2608                                                : &_modUnionClosure;
2609   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2610 
2611   if (!full) {
2612     stats().record_gc0_begin();
2613   }
2614 }
2615 
2616 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2617   // Delegate to CMScollector which knows how to coordinate between
2618   // this and any other CMS generations that it is responsible for
2619   // collecting.
2620   collector()->gc_prologue(full);
2621 }
2622 
2623 // This is a "private" interface for use by this generation's CMSCollector.
2624 // Not to be called directly by any other entity (for instance,
2625 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2626 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2627   bool registerClosure, ModUnionClosure* modUnionClosure) {
2628   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2629   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2630     "Should be NULL");
2631   if (registerClosure) {
2632     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2633   }
2634   cmsSpace()->gc_prologue();
2635   // Clear stat counters
2636   NOT_PRODUCT(
2637     assert(_numObjectsPromoted == 0, "check");
2638     assert(_numWordsPromoted   == 0, "check");
2639     if (Verbose && PrintGC) {
2640       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2641                           SIZE_FORMAT" bytes concurrently",
2642       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2643     }
2644     _numObjectsAllocated = 0;
2645     _numWordsAllocated   = 0;
2646   )
2647 }
2648 
2649 void CMSCollector::gc_epilogue(bool full) {
2650   // The following locking discipline assumes that we are only called
2651   // when the world is stopped.
2652   assert(SafepointSynchronize::is_at_safepoint(),
2653          "world is stopped assumption");
2654 
2655   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2656   // if linear allocation blocks need to be appropriately marked to allow the
2657   // the blocks to be parsable. We also check here whether we need to nudge the
2658   // CMS collector thread to start a new cycle (if it's not already active).
2659   assert(   Thread::current()->is_VM_thread()
2660          || (   CMSScavengeBeforeRemark
2661              && Thread::current()->is_ConcurrentGC_thread()),
2662          "Incorrect thread type for epilogue execution");
2663 
2664   if (!_between_prologue_and_epilogue) {
2665     // We have already been invoked; this is a gc_epilogue delegation
2666     // from yet another CMS generation that we are responsible for, just
2667     // ignore it since all relevant work has already been done.
2668     return;
2669   }
2670   assert(haveFreelistLocks(), "must have freelist locks");
2671   assert_lock_strong(bitMapLock());
2672 
2673   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2674 
2675   _cmsGen->gc_epilogue_work(full);
2676 
2677   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2678     // in case sampling was not already enabled, enable it
2679     _start_sampling = true;
2680   }
2681   // reset _eden_chunk_array so sampling starts afresh
2682   _eden_chunk_index = 0;
2683 
2684   size_t cms_used   = _cmsGen->cmsSpace()->used();
2685 
2686   // update performance counters - this uses a special version of
2687   // update_counters() that allows the utilization to be passed as a
2688   // parameter, avoiding multiple calls to used().
2689   //
2690   _cmsGen->update_counters(cms_used);
2691 
2692   if (CMSIncrementalMode) {
2693     icms_update_allocation_limits();
2694   }
2695 
2696   bitMapLock()->unlock();
2697   releaseFreelistLocks();
2698 
2699   if (!CleanChunkPoolAsync) {
2700     Chunk::clean_chunk_pool();
2701   }
2702 
2703   _between_prologue_and_epilogue = false;  // ready for next cycle
2704 }
2705 
2706 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2707   collector()->gc_epilogue(full);
2708 
2709   // Also reset promotion tracking in par gc thread states.
2710   if (CollectedHeap::use_parallel_gc_threads()) {
2711     for (uint i = 0; i < ParallelGCThreads; i++) {
2712       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2713     }
2714   }
2715 }
2716 
2717 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2718   assert(!incremental_collection_failed(), "Should have been cleared");
2719   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2720   cmsSpace()->gc_epilogue();
2721     // Print stat counters
2722   NOT_PRODUCT(
2723     assert(_numObjectsAllocated == 0, "check");
2724     assert(_numWordsAllocated == 0, "check");
2725     if (Verbose && PrintGC) {
2726       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2727                           SIZE_FORMAT" bytes",
2728                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2729     }
2730     _numObjectsPromoted = 0;
2731     _numWordsPromoted   = 0;
2732   )
2733 
2734   if (PrintGC && Verbose) {
2735     // Call down the chain in contiguous_available needs the freelistLock
2736     // so print this out before releasing the freeListLock.
2737     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2738                         contiguous_available());
2739   }
2740 }
2741 
2742 #ifndef PRODUCT
2743 bool CMSCollector::have_cms_token() {
2744   Thread* thr = Thread::current();
2745   if (thr->is_VM_thread()) {
2746     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2747   } else if (thr->is_ConcurrentGC_thread()) {
2748     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2749   } else if (thr->is_GC_task_thread()) {
2750     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2751            ParGCRareEvent_lock->owned_by_self();
2752   }
2753   return false;
2754 }
2755 #endif
2756 
2757 // Check reachability of the given heap address in CMS generation,
2758 // treating all other generations as roots.
2759 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2760   // We could "guarantee" below, rather than assert, but i'll
2761   // leave these as "asserts" so that an adventurous debugger
2762   // could try this in the product build provided some subset of
2763   // the conditions were met, provided they were intersted in the
2764   // results and knew that the computation below wouldn't interfere
2765   // with other concurrent computations mutating the structures
2766   // being read or written.
2767   assert(SafepointSynchronize::is_at_safepoint(),
2768          "Else mutations in object graph will make answer suspect");
2769   assert(have_cms_token(), "Should hold cms token");
2770   assert(haveFreelistLocks(), "must hold free list locks");
2771   assert_lock_strong(bitMapLock());
2772 
2773   // Clear the marking bit map array before starting, but, just
2774   // for kicks, first report if the given address is already marked
2775   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2776                 _markBitMap.isMarked(addr) ? "" : " not");
2777 
2778   if (verify_after_remark()) {
2779     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2780     bool result = verification_mark_bm()->isMarked(addr);
2781     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2782                            result ? "IS" : "is NOT");
2783     return result;
2784   } else {
2785     gclog_or_tty->print_cr("Could not compute result");
2786     return false;
2787   }
2788 }
2789 
2790 ////////////////////////////////////////////////////////
2791 // CMS Verification Support
2792 ////////////////////////////////////////////////////////
2793 // Following the remark phase, the following invariant
2794 // should hold -- each object in the CMS heap which is
2795 // marked in markBitMap() should be marked in the verification_mark_bm().
2796 
2797 class VerifyMarkedClosure: public BitMapClosure {
2798   CMSBitMap* _marks;
2799   bool       _failed;
2800 
2801  public:
2802   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2803 
2804   bool do_bit(size_t offset) {
2805     HeapWord* addr = _marks->offsetToHeapWord(offset);
2806     if (!_marks->isMarked(addr)) {
2807       oop(addr)->print_on(gclog_or_tty);
2808       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2809       _failed = true;
2810     }
2811     return true;
2812   }
2813 
2814   bool failed() { return _failed; }
2815 };
2816 
2817 bool CMSCollector::verify_after_remark() {
2818   gclog_or_tty->print(" [Verifying CMS Marking... ");
2819   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2820   static bool init = false;
2821 
2822   assert(SafepointSynchronize::is_at_safepoint(),
2823          "Else mutations in object graph will make answer suspect");
2824   assert(have_cms_token(),
2825          "Else there may be mutual interference in use of "
2826          " verification data structures");
2827   assert(_collectorState > Marking && _collectorState <= Sweeping,
2828          "Else marking info checked here may be obsolete");
2829   assert(haveFreelistLocks(), "must hold free list locks");
2830   assert_lock_strong(bitMapLock());
2831 
2832 
2833   // Allocate marking bit map if not already allocated
2834   if (!init) { // first time
2835     if (!verification_mark_bm()->allocate(_span)) {
2836       return false;
2837     }
2838     init = true;
2839   }
2840 
2841   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2842 
2843   // Turn off refs discovery -- so we will be tracing through refs.
2844   // This is as intended, because by this time
2845   // GC must already have cleared any refs that need to be cleared,
2846   // and traced those that need to be marked; moreover,
2847   // the marking done here is not going to intefere in any
2848   // way with the marking information used by GC.
2849   NoRefDiscovery no_discovery(ref_processor());
2850 
2851   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2852 
2853   // Clear any marks from a previous round
2854   verification_mark_bm()->clear_all();
2855   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2856   verify_work_stacks_empty();
2857 
2858   GenCollectedHeap* gch = GenCollectedHeap::heap();
2859   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2860   // Update the saved marks which may affect the root scans.
2861   gch->save_marks();
2862 
2863   if (CMSRemarkVerifyVariant == 1) {
2864     // In this first variant of verification, we complete
2865     // all marking, then check if the new marks-verctor is
2866     // a subset of the CMS marks-vector.
2867     verify_after_remark_work_1();
2868   } else if (CMSRemarkVerifyVariant == 2) {
2869     // In this second variant of verification, we flag an error
2870     // (i.e. an object reachable in the new marks-vector not reachable
2871     // in the CMS marks-vector) immediately, also indicating the
2872     // identify of an object (A) that references the unmarked object (B) --
2873     // presumably, a mutation to A failed to be picked up by preclean/remark?
2874     verify_after_remark_work_2();
2875   } else {
2876     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2877             CMSRemarkVerifyVariant);
2878   }
2879   gclog_or_tty->print(" done] ");
2880   return true;
2881 }
2882 
2883 void CMSCollector::verify_after_remark_work_1() {
2884   ResourceMark rm;
2885   HandleMark  hm;
2886   GenCollectedHeap* gch = GenCollectedHeap::heap();
2887 
2888   // Get a clear set of claim bits for the strong roots processing to work with.
2889   ClassLoaderDataGraph::clear_claimed_marks();
2890 
2891   // Mark from roots one level into CMS
2892   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2893   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2894 
2895   gch->gen_process_strong_roots(_cmsGen->level(),
2896                                 true,   // younger gens are roots
2897                                 true,   // activate StrongRootsScope
2898                                 false,  // not scavenging
2899                                 SharedHeap::ScanningOption(roots_scanning_options()),
2900                                 &notOlder,
2901                                 true,   // walk code active on stacks
2902                                 NULL,
2903                                 NULL); // SSS: Provide correct closure
2904 
2905   // Now mark from the roots
2906   MarkFromRootsClosure markFromRootsClosure(this, _span,
2907     verification_mark_bm(), verification_mark_stack(),
2908     false /* don't yield */, true /* verifying */);
2909   assert(_restart_addr == NULL, "Expected pre-condition");
2910   verification_mark_bm()->iterate(&markFromRootsClosure);
2911   while (_restart_addr != NULL) {
2912     // Deal with stack overflow: by restarting at the indicated
2913     // address.
2914     HeapWord* ra = _restart_addr;
2915     markFromRootsClosure.reset(ra);
2916     _restart_addr = NULL;
2917     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2918   }
2919   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2920   verify_work_stacks_empty();
2921 
2922   // Marking completed -- now verify that each bit marked in
2923   // verification_mark_bm() is also marked in markBitMap(); flag all
2924   // errors by printing corresponding objects.
2925   VerifyMarkedClosure vcl(markBitMap());
2926   verification_mark_bm()->iterate(&vcl);
2927   if (vcl.failed()) {
2928     gclog_or_tty->print("Verification failed");
2929     Universe::heap()->print_on(gclog_or_tty);
2930     fatal("CMS: failed marking verification after remark");
2931   }
2932 }
2933 
2934 class VerifyKlassOopsKlassClosure : public KlassClosure {
2935   class VerifyKlassOopsClosure : public OopClosure {
2936     CMSBitMap* _bitmap;
2937    public:
2938     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2939     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2940     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2941   } _oop_closure;
2942  public:
2943   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2944   void do_klass(Klass* k) {
2945     k->oops_do(&_oop_closure);
2946   }
2947 };
2948 
2949 void CMSCollector::verify_after_remark_work_2() {
2950   ResourceMark rm;
2951   HandleMark  hm;
2952   GenCollectedHeap* gch = GenCollectedHeap::heap();
2953 
2954   // Get a clear set of claim bits for the strong roots processing to work with.
2955   ClassLoaderDataGraph::clear_claimed_marks();
2956 
2957   // Mark from roots one level into CMS
2958   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2959                                      markBitMap());
2960   CMKlassClosure klass_closure(&notOlder);
2961 
2962   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2963   gch->gen_process_strong_roots(_cmsGen->level(),
2964                                 true,   // younger gens are roots
2965                                 true,   // activate StrongRootsScope
2966                                 false,  // not scavenging
2967                                 SharedHeap::ScanningOption(roots_scanning_options()),
2968                                 &notOlder,
2969                                 true,   // walk code active on stacks
2970                                 NULL,
2971                                 &klass_closure);
2972 
2973   // Now mark from the roots
2974   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2975     verification_mark_bm(), markBitMap(), verification_mark_stack());
2976   assert(_restart_addr == NULL, "Expected pre-condition");
2977   verification_mark_bm()->iterate(&markFromRootsClosure);
2978   while (_restart_addr != NULL) {
2979     // Deal with stack overflow: by restarting at the indicated
2980     // address.
2981     HeapWord* ra = _restart_addr;
2982     markFromRootsClosure.reset(ra);
2983     _restart_addr = NULL;
2984     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2985   }
2986   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2987   verify_work_stacks_empty();
2988 
2989   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2990   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2991 
2992   // Marking completed -- now verify that each bit marked in
2993   // verification_mark_bm() is also marked in markBitMap(); flag all
2994   // errors by printing corresponding objects.
2995   VerifyMarkedClosure vcl(markBitMap());
2996   verification_mark_bm()->iterate(&vcl);
2997   assert(!vcl.failed(), "Else verification above should not have succeeded");
2998 }
2999 
3000 void ConcurrentMarkSweepGeneration::save_marks() {
3001   // delegate to CMS space
3002   cmsSpace()->save_marks();
3003   for (uint i = 0; i < ParallelGCThreads; i++) {
3004     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3005   }
3006 }
3007 
3008 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3009   return cmsSpace()->no_allocs_since_save_marks();
3010 }
3011 
3012 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3013                                                                 \
3014 void ConcurrentMarkSweepGeneration::                            \
3015 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3016   cl->set_generation(this);                                     \
3017   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3018   cl->reset_generation();                                       \
3019   save_marks();                                                 \
3020 }
3021 
3022 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3023 
3024 void
3025 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
3026 {
3027   // Not currently implemented; need to do the following. -- ysr.
3028   // dld -- I think that is used for some sort of allocation profiler.  So it
3029   // really means the objects allocated by the mutator since the last
3030   // GC.  We could potentially implement this cheaply by recording only
3031   // the direct allocations in a side data structure.
3032   //
3033   // I think we probably ought not to be required to support these
3034   // iterations at any arbitrary point; I think there ought to be some
3035   // call to enable/disable allocation profiling in a generation/space,
3036   // and the iterator ought to return the objects allocated in the
3037   // gen/space since the enable call, or the last iterator call (which
3038   // will probably be at a GC.)  That way, for gens like CM&S that would
3039   // require some extra data structure to support this, we only pay the
3040   // cost when it's in use...
3041   cmsSpace()->object_iterate_since_last_GC(blk);
3042 }
3043 
3044 void
3045 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3046   cl->set_generation(this);
3047   younger_refs_in_space_iterate(_cmsSpace, cl);
3048   cl->reset_generation();
3049 }
3050 
3051 void
3052 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
3053   if (freelistLock()->owned_by_self()) {
3054     Generation::oop_iterate(mr, cl);
3055   } else {
3056     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3057     Generation::oop_iterate(mr, cl);
3058   }
3059 }
3060 
3061 void
3062 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3063   if (freelistLock()->owned_by_self()) {
3064     Generation::oop_iterate(cl);
3065   } else {
3066     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3067     Generation::oop_iterate(cl);
3068   }
3069 }
3070 
3071 void
3072 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3073   if (freelistLock()->owned_by_self()) {
3074     Generation::object_iterate(cl);
3075   } else {
3076     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3077     Generation::object_iterate(cl);
3078   }
3079 }
3080 
3081 void
3082 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3083   if (freelistLock()->owned_by_self()) {
3084     Generation::safe_object_iterate(cl);
3085   } else {
3086     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3087     Generation::safe_object_iterate(cl);
3088   }
3089 }
3090 
3091 void
3092 ConcurrentMarkSweepGeneration::post_compact() {
3093 }
3094 
3095 void
3096 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3097   // Fix the linear allocation blocks to look like free blocks.
3098 
3099   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3100   // are not called when the heap is verified during universe initialization and
3101   // at vm shutdown.
3102   if (freelistLock()->owned_by_self()) {
3103     cmsSpace()->prepare_for_verify();
3104   } else {
3105     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3106     cmsSpace()->prepare_for_verify();
3107   }
3108 }
3109 
3110 void
3111 ConcurrentMarkSweepGeneration::verify() {
3112   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3113   // are not called when the heap is verified during universe initialization and
3114   // at vm shutdown.
3115   if (freelistLock()->owned_by_self()) {
3116     cmsSpace()->verify();
3117   } else {
3118     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3119     cmsSpace()->verify();
3120   }
3121 }
3122 
3123 void CMSCollector::verify() {
3124   _cmsGen->verify();
3125 }
3126 
3127 #ifndef PRODUCT
3128 bool CMSCollector::overflow_list_is_empty() const {
3129   assert(_num_par_pushes >= 0, "Inconsistency");
3130   if (_overflow_list == NULL) {
3131     assert(_num_par_pushes == 0, "Inconsistency");
3132   }
3133   return _overflow_list == NULL;
3134 }
3135 
3136 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3137 // merely consolidate assertion checks that appear to occur together frequently.
3138 void CMSCollector::verify_work_stacks_empty() const {
3139   assert(_markStack.isEmpty(), "Marking stack should be empty");
3140   assert(overflow_list_is_empty(), "Overflow list should be empty");
3141 }
3142 
3143 void CMSCollector::verify_overflow_empty() const {
3144   assert(overflow_list_is_empty(), "Overflow list should be empty");
3145   assert(no_preserved_marks(), "No preserved marks");
3146 }
3147 #endif // PRODUCT
3148 
3149 // Decide if we want to enable class unloading as part of the
3150 // ensuing concurrent GC cycle. We will collect and
3151 // unload classes if it's the case that:
3152 // (1) an explicit gc request has been made and the flag
3153 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3154 // (2) (a) class unloading is enabled at the command line, and
3155 //     (b) old gen is getting really full
3156 // NOTE: Provided there is no change in the state of the heap between
3157 // calls to this method, it should have idempotent results. Moreover,
3158 // its results should be monotonically increasing (i.e. going from 0 to 1,
3159 // but not 1 to 0) between successive calls between which the heap was
3160 // not collected. For the implementation below, it must thus rely on
3161 // the property that concurrent_cycles_since_last_unload()
3162 // will not decrease unless a collection cycle happened and that
3163 // _cmsGen->is_too_full() are
3164 // themselves also monotonic in that sense. See check_monotonicity()
3165 // below.
3166 void CMSCollector::update_should_unload_classes() {
3167   _should_unload_classes = false;
3168   // Condition 1 above
3169   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3170     _should_unload_classes = true;
3171   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3172     // Disjuncts 2.b.(i,ii,iii) above
3173     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3174                               CMSClassUnloadingMaxInterval)
3175                            || _cmsGen->is_too_full();
3176   }
3177 }
3178 
3179 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3180   bool res = should_concurrent_collect();
3181   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3182   return res;
3183 }
3184 
3185 void CMSCollector::setup_cms_unloading_and_verification_state() {
3186   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3187                              || VerifyBeforeExit;
3188   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3189 
3190   if (should_unload_classes()) {   // Should unload classes this cycle
3191     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3192     set_verifying(should_verify);    // Set verification state for this cycle
3193     return;                            // Nothing else needs to be done at this time
3194   }
3195 
3196   // Not unloading classes this cycle
3197   assert(!should_unload_classes(), "Inconsitency!");
3198   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3199     // Include symbols, strings and code cache elements to prevent their resurrection.
3200     add_root_scanning_option(rso);
3201     set_verifying(true);
3202   } else if (verifying() && !should_verify) {
3203     // We were verifying, but some verification flags got disabled.
3204     set_verifying(false);
3205     // Exclude symbols, strings and code cache elements from root scanning to
3206     // reduce IM and RM pauses.
3207     remove_root_scanning_option(rso);
3208   }
3209 }
3210 
3211 
3212 #ifndef PRODUCT
3213 HeapWord* CMSCollector::block_start(const void* p) const {
3214   const HeapWord* addr = (HeapWord*)p;
3215   if (_span.contains(p)) {
3216     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3217       return _cmsGen->cmsSpace()->block_start(p);
3218     }
3219   }
3220   return NULL;
3221 }
3222 #endif
3223 
3224 HeapWord*
3225 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3226                                                    bool   tlab,
3227                                                    bool   parallel) {
3228   CMSSynchronousYieldRequest yr;
3229   assert(!tlab, "Can't deal with TLAB allocation");
3230   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3231   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3232     CMSExpansionCause::_satisfy_allocation);
3233   if (GCExpandToAllocateDelayMillis > 0) {
3234     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3235   }
3236   return have_lock_and_allocate(word_size, tlab);
3237 }
3238 
3239 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3240 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3241 // to CardGeneration and share it...
3242 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3243   return CardGeneration::expand(bytes, expand_bytes);
3244 }
3245 
3246 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3247   CMSExpansionCause::Cause cause)
3248 {
3249 
3250   bool success = expand(bytes, expand_bytes);
3251 
3252   // remember why we expanded; this information is used
3253   // by shouldConcurrentCollect() when making decisions on whether to start
3254   // a new CMS cycle.
3255   if (success) {
3256     set_expansion_cause(cause);
3257     if (PrintGCDetails && Verbose) {
3258       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3259         CMSExpansionCause::to_string(cause));
3260     }
3261   }
3262 }
3263 
3264 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3265   HeapWord* res = NULL;
3266   MutexLocker x(ParGCRareEvent_lock);
3267   while (true) {
3268     // Expansion by some other thread might make alloc OK now:
3269     res = ps->lab.alloc(word_sz);
3270     if (res != NULL) return res;
3271     // If there's not enough expansion space available, give up.
3272     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3273       return NULL;
3274     }
3275     // Otherwise, we try expansion.
3276     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3277       CMSExpansionCause::_allocate_par_lab);
3278     // Now go around the loop and try alloc again;
3279     // A competing par_promote might beat us to the expansion space,
3280     // so we may go around the loop again if promotion fails agaion.
3281     if (GCExpandToAllocateDelayMillis > 0) {
3282       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3283     }
3284   }
3285 }
3286 
3287 
3288 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3289   PromotionInfo* promo) {
3290   MutexLocker x(ParGCRareEvent_lock);
3291   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3292   while (true) {
3293     // Expansion by some other thread might make alloc OK now:
3294     if (promo->ensure_spooling_space()) {
3295       assert(promo->has_spooling_space(),
3296              "Post-condition of successful ensure_spooling_space()");
3297       return true;
3298     }
3299     // If there's not enough expansion space available, give up.
3300     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3301       return false;
3302     }
3303     // Otherwise, we try expansion.
3304     expand(refill_size_bytes, MinHeapDeltaBytes,
3305       CMSExpansionCause::_allocate_par_spooling_space);
3306     // Now go around the loop and try alloc again;
3307     // A competing allocation might beat us to the expansion space,
3308     // so we may go around the loop again if allocation fails again.
3309     if (GCExpandToAllocateDelayMillis > 0) {
3310       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3311     }
3312   }
3313 }
3314 
3315 
3316 
3317 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3318   assert_locked_or_safepoint(Heap_lock);
3319   size_t size = ReservedSpace::page_align_size_down(bytes);
3320   if (size > 0) {
3321     shrink_by(size);
3322   }
3323 }
3324 
3325 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3326   assert_locked_or_safepoint(Heap_lock);
3327   bool result = _virtual_space.expand_by(bytes);
3328   if (result) {
3329     HeapWord* old_end = _cmsSpace->end();
3330     size_t new_word_size =
3331       heap_word_size(_virtual_space.committed_size());
3332     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3333     _bts->resize(new_word_size);  // resize the block offset shared array
3334     Universe::heap()->barrier_set()->resize_covered_region(mr);
3335     // Hmmmm... why doesn't CFLS::set_end verify locking?
3336     // This is quite ugly; FIX ME XXX
3337     _cmsSpace->assert_locked(freelistLock());
3338     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3339 
3340     // update the space and generation capacity counters
3341     if (UsePerfData) {
3342       _space_counters->update_capacity();
3343       _gen_counters->update_all();
3344     }
3345 
3346     if (Verbose && PrintGC) {
3347       size_t new_mem_size = _virtual_space.committed_size();
3348       size_t old_mem_size = new_mem_size - bytes;
3349       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
3350                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3351     }
3352   }
3353   return result;
3354 }
3355 
3356 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3357   assert_locked_or_safepoint(Heap_lock);
3358   bool success = true;
3359   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3360   if (remaining_bytes > 0) {
3361     success = grow_by(remaining_bytes);
3362     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3363   }
3364   return success;
3365 }
3366 
3367 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3368   assert_locked_or_safepoint(Heap_lock);
3369   assert_lock_strong(freelistLock());
3370   // XXX Fix when compaction is implemented.
3371   warning("Shrinking of CMS not yet implemented");
3372   return;
3373 }
3374 
3375 
3376 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3377 // phases.
3378 class CMSPhaseAccounting: public StackObj {
3379  public:
3380   CMSPhaseAccounting(CMSCollector *collector,
3381                      const char *phase,
3382                      bool print_cr = true);
3383   ~CMSPhaseAccounting();
3384 
3385  private:
3386   CMSCollector *_collector;
3387   const char *_phase;
3388   elapsedTimer _wallclock;
3389   bool _print_cr;
3390 
3391  public:
3392   // Not MT-safe; so do not pass around these StackObj's
3393   // where they may be accessed by other threads.
3394   jlong wallclock_millis() {
3395     assert(_wallclock.is_active(), "Wall clock should not stop");
3396     _wallclock.stop();  // to record time
3397     jlong ret = _wallclock.milliseconds();
3398     _wallclock.start(); // restart
3399     return ret;
3400   }
3401 };
3402 
3403 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3404                                        const char *phase,
3405                                        bool print_cr) :
3406   _collector(collector), _phase(phase), _print_cr(print_cr) {
3407 
3408   if (PrintCMSStatistics != 0) {
3409     _collector->resetYields();
3410   }
3411   if (PrintGCDetails && PrintGCTimeStamps) {
3412     gclog_or_tty->date_stamp(PrintGCDateStamps);
3413     gclog_or_tty->stamp();
3414     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
3415       _collector->cmsGen()->short_name(), _phase);
3416   }
3417   _collector->resetTimer();
3418   _wallclock.start();
3419   _collector->startTimer();
3420 }
3421 
3422 CMSPhaseAccounting::~CMSPhaseAccounting() {
3423   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3424   _collector->stopTimer();
3425   _wallclock.stop();
3426   if (PrintGCDetails) {
3427     gclog_or_tty->date_stamp(PrintGCDateStamps);
3428     if (PrintGCTimeStamps) {
3429       gclog_or_tty->stamp();
3430       gclog_or_tty->print(": ");
3431     }
3432     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3433                  _collector->cmsGen()->short_name(),
3434                  _phase, _collector->timerValue(), _wallclock.seconds());
3435     if (_print_cr) {
3436       gclog_or_tty->print_cr("");
3437     }
3438     if (PrintCMSStatistics != 0) {
3439       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3440                     _collector->yields());
3441     }
3442   }
3443 }
3444 
3445 // CMS work
3446 
3447 // Checkpoint the roots into this generation from outside
3448 // this generation. [Note this initial checkpoint need only
3449 // be approximate -- we'll do a catch up phase subsequently.]
3450 void CMSCollector::checkpointRootsInitial(bool asynch) {
3451   assert(_collectorState == InitialMarking, "Wrong collector state");
3452   check_correct_thread_executing();
3453   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3454 
3455   ReferenceProcessor* rp = ref_processor();
3456   SpecializationStats::clear();
3457   assert(_restart_addr == NULL, "Control point invariant");
3458   if (asynch) {
3459     // acquire locks for subsequent manipulations
3460     MutexLockerEx x(bitMapLock(),
3461                     Mutex::_no_safepoint_check_flag);
3462     checkpointRootsInitialWork(asynch);
3463     // enable ("weak") refs discovery
3464     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3465     _collectorState = Marking;
3466   } else {
3467     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3468     // which recognizes if we are a CMS generation, and doesn't try to turn on
3469     // discovery; verify that they aren't meddling.
3470     assert(!rp->discovery_is_atomic(),
3471            "incorrect setting of discovery predicate");
3472     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3473            "ref discovery for this generation kind");
3474     // already have locks
3475     checkpointRootsInitialWork(asynch);
3476     // now enable ("weak") refs discovery
3477     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3478     _collectorState = Marking;
3479   }
3480   SpecializationStats::print();
3481 }
3482 
3483 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3484   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3485   assert(_collectorState == InitialMarking, "just checking");
3486 
3487   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3488   // precede our marking with a collection of all
3489   // younger generations to keep floating garbage to a minimum.
3490   // XXX: we won't do this for now -- it's an optimization to be done later.
3491 
3492   // already have locks
3493   assert_lock_strong(bitMapLock());
3494   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3495 
3496   // Setup the verification and class unloading state for this
3497   // CMS collection cycle.
3498   setup_cms_unloading_and_verification_state();
3499 
3500   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
3501     PrintGCDetails && Verbose, true, gclog_or_tty);)
3502   if (UseAdaptiveSizePolicy) {
3503     size_policy()->checkpoint_roots_initial_begin();
3504   }
3505 
3506   // Reset all the PLAB chunk arrays if necessary.
3507   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3508     reset_survivor_plab_arrays();
3509   }
3510 
3511   ResourceMark rm;
3512   HandleMark  hm;
3513 
3514   FalseClosure falseClosure;
3515   // In the case of a synchronous collection, we will elide the
3516   // remark step, so it's important to catch all the nmethod oops
3517   // in this step.
3518   // The final 'true' flag to gen_process_strong_roots will ensure this.
3519   // If 'async' is true, we can relax the nmethod tracing.
3520   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3521   GenCollectedHeap* gch = GenCollectedHeap::heap();
3522 
3523   verify_work_stacks_empty();
3524   verify_overflow_empty();
3525 
3526   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3527   // Update the saved marks which may affect the root scans.
3528   gch->save_marks();
3529 
3530   // weak reference processing has not started yet.
3531   ref_processor()->set_enqueuing_is_done(false);
3532 
3533   // Need to remember all newly created CLDs,
3534   // so that we can guarantee that the remark finds them.
3535   ClassLoaderDataGraph::remember_new_clds(true);
3536 
3537   // Whenever a CLD is found, it will be claimed before proceeding to mark
3538   // the klasses. The claimed marks need to be cleared before marking starts.
3539   ClassLoaderDataGraph::clear_claimed_marks();
3540 
3541   CMKlassClosure klass_closure(&notOlder);
3542   {
3543     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3544     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3545     gch->gen_process_strong_roots(_cmsGen->level(),
3546                                   true,   // younger gens are roots
3547                                   true,   // activate StrongRootsScope
3548                                   false,  // not scavenging
3549                                   SharedHeap::ScanningOption(roots_scanning_options()),
3550                                   &notOlder,
3551                                   true,   // walk all of code cache if (so & SO_CodeCache)
3552                                   NULL,
3553                                   &klass_closure);
3554   }
3555 
3556   // Clear mod-union table; it will be dirtied in the prologue of
3557   // CMS generation per each younger generation collection.
3558 
3559   assert(_modUnionTable.isAllClear(),
3560        "Was cleared in most recent final checkpoint phase"
3561        " or no bits are set in the gc_prologue before the start of the next "
3562        "subsequent marking phase.");
3563 
3564   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3565 
3566   // Save the end of the used_region of the constituent generations
3567   // to be used to limit the extent of sweep in each generation.
3568   save_sweep_limits();
3569   if (UseAdaptiveSizePolicy) {
3570     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3571   }
3572   verify_overflow_empty();
3573 }
3574 
3575 bool CMSCollector::markFromRoots(bool asynch) {
3576   // we might be tempted to assert that:
3577   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3578   //        "inconsistent argument?");
3579   // However that wouldn't be right, because it's possible that
3580   // a safepoint is indeed in progress as a younger generation
3581   // stop-the-world GC happens even as we mark in this generation.
3582   assert(_collectorState == Marking, "inconsistent state?");
3583   check_correct_thread_executing();
3584   verify_overflow_empty();
3585 
3586   bool res;
3587   if (asynch) {
3588 
3589     // Start the timers for adaptive size policy for the concurrent phases
3590     // Do it here so that the foreground MS can use the concurrent
3591     // timer since a foreground MS might has the sweep done concurrently
3592     // or STW.
3593     if (UseAdaptiveSizePolicy) {
3594       size_policy()->concurrent_marking_begin();
3595     }
3596 
3597     // Weak ref discovery note: We may be discovering weak
3598     // refs in this generation concurrent (but interleaved) with
3599     // weak ref discovery by a younger generation collector.
3600 
3601     CMSTokenSyncWithLocks ts(true, bitMapLock());
3602     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3603     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3604     res = markFromRootsWork(asynch);
3605     if (res) {
3606       _collectorState = Precleaning;
3607     } else { // We failed and a foreground collection wants to take over
3608       assert(_foregroundGCIsActive, "internal state inconsistency");
3609       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3610       if (PrintGCDetails) {
3611         gclog_or_tty->print_cr("bailing out to foreground collection");
3612       }
3613     }
3614     if (UseAdaptiveSizePolicy) {
3615       size_policy()->concurrent_marking_end();
3616     }
3617   } else {
3618     assert(SafepointSynchronize::is_at_safepoint(),
3619            "inconsistent with asynch == false");
3620     if (UseAdaptiveSizePolicy) {
3621       size_policy()->ms_collection_marking_begin();
3622     }
3623     // already have locks
3624     res = markFromRootsWork(asynch);
3625     _collectorState = FinalMarking;
3626     if (UseAdaptiveSizePolicy) {
3627       GenCollectedHeap* gch = GenCollectedHeap::heap();
3628       size_policy()->ms_collection_marking_end(gch->gc_cause());
3629     }
3630   }
3631   verify_overflow_empty();
3632   return res;
3633 }
3634 
3635 bool CMSCollector::markFromRootsWork(bool asynch) {
3636   // iterate over marked bits in bit map, doing a full scan and mark
3637   // from these roots using the following algorithm:
3638   // . if oop is to the right of the current scan pointer,
3639   //   mark corresponding bit (we'll process it later)
3640   // . else (oop is to left of current scan pointer)
3641   //   push oop on marking stack
3642   // . drain the marking stack
3643 
3644   // Note that when we do a marking step we need to hold the
3645   // bit map lock -- recall that direct allocation (by mutators)
3646   // and promotion (by younger generation collectors) is also
3647   // marking the bit map. [the so-called allocate live policy.]
3648   // Because the implementation of bit map marking is not
3649   // robust wrt simultaneous marking of bits in the same word,
3650   // we need to make sure that there is no such interference
3651   // between concurrent such updates.
3652 
3653   // already have locks
3654   assert_lock_strong(bitMapLock());
3655 
3656   verify_work_stacks_empty();
3657   verify_overflow_empty();
3658   bool result = false;
3659   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3660     result = do_marking_mt(asynch);
3661   } else {
3662     result = do_marking_st(asynch);
3663   }
3664   return result;
3665 }
3666 
3667 // Forward decl
3668 class CMSConcMarkingTask;
3669 
3670 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3671   CMSCollector*       _collector;
3672   CMSConcMarkingTask* _task;
3673  public:
3674   virtual void yield();
3675 
3676   // "n_threads" is the number of threads to be terminated.
3677   // "queue_set" is a set of work queues of other threads.
3678   // "collector" is the CMS collector associated with this task terminator.
3679   // "yield" indicates whether we need the gang as a whole to yield.
3680   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3681     ParallelTaskTerminator(n_threads, queue_set),
3682     _collector(collector) { }
3683 
3684   void set_task(CMSConcMarkingTask* task) {
3685     _task = task;
3686   }
3687 };
3688 
3689 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3690   CMSConcMarkingTask* _task;
3691  public:
3692   bool should_exit_termination();
3693   void set_task(CMSConcMarkingTask* task) {
3694     _task = task;
3695   }
3696 };
3697 
3698 // MT Concurrent Marking Task
3699 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3700   CMSCollector* _collector;
3701   int           _n_workers;                  // requested/desired # workers
3702   bool          _asynch;
3703   bool          _result;
3704   CompactibleFreeListSpace*  _cms_space;
3705   char          _pad_front[64];   // padding to ...
3706   HeapWord*     _global_finger;   // ... avoid sharing cache line
3707   char          _pad_back[64];
3708   HeapWord*     _restart_addr;
3709 
3710   //  Exposed here for yielding support
3711   Mutex* const _bit_map_lock;
3712 
3713   // The per thread work queues, available here for stealing
3714   OopTaskQueueSet*  _task_queues;
3715 
3716   // Termination (and yielding) support
3717   CMSConcMarkingTerminator _term;
3718   CMSConcMarkingTerminatorTerminator _term_term;
3719 
3720  public:
3721   CMSConcMarkingTask(CMSCollector* collector,
3722                  CompactibleFreeListSpace* cms_space,
3723                  bool asynch,
3724                  YieldingFlexibleWorkGang* workers,
3725                  OopTaskQueueSet* task_queues):
3726     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3727     _collector(collector),
3728     _cms_space(cms_space),
3729     _asynch(asynch), _n_workers(0), _result(true),
3730     _task_queues(task_queues),
3731     _term(_n_workers, task_queues, _collector),
3732     _bit_map_lock(collector->bitMapLock())
3733   {
3734     _requested_size = _n_workers;
3735     _term.set_task(this);
3736     _term_term.set_task(this);
3737     _restart_addr = _global_finger = _cms_space->bottom();
3738   }
3739 
3740 
3741   OopTaskQueueSet* task_queues()  { return _task_queues; }
3742 
3743   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3744 
3745   HeapWord** global_finger_addr() { return &_global_finger; }
3746 
3747   CMSConcMarkingTerminator* terminator() { return &_term; }
3748 
3749   virtual void set_for_termination(int active_workers) {
3750     terminator()->reset_for_reuse(active_workers);
3751   }
3752 
3753   void work(uint worker_id);
3754   bool should_yield() {
3755     return    ConcurrentMarkSweepThread::should_yield()
3756            && !_collector->foregroundGCIsActive()
3757            && _asynch;
3758   }
3759 
3760   virtual void coordinator_yield();  // stuff done by coordinator
3761   bool result() { return _result; }
3762 
3763   void reset(HeapWord* ra) {
3764     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3765     _restart_addr = _global_finger = ra;
3766     _term.reset_for_reuse();
3767   }
3768 
3769   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3770                                            OopTaskQueue* work_q);
3771 
3772  private:
3773   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3774   void do_work_steal(int i);
3775   void bump_global_finger(HeapWord* f);
3776 };
3777 
3778 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3779   assert(_task != NULL, "Error");
3780   return _task->yielding();
3781   // Note that we do not need the disjunct || _task->should_yield() above
3782   // because we want terminating threads to yield only if the task
3783   // is already in the midst of yielding, which happens only after at least one
3784   // thread has yielded.
3785 }
3786 
3787 void CMSConcMarkingTerminator::yield() {
3788   if (_task->should_yield()) {
3789     _task->yield();
3790   } else {
3791     ParallelTaskTerminator::yield();
3792   }
3793 }
3794 
3795 ////////////////////////////////////////////////////////////////
3796 // Concurrent Marking Algorithm Sketch
3797 ////////////////////////////////////////////////////////////////
3798 // Until all tasks exhausted (both spaces):
3799 // -- claim next available chunk
3800 // -- bump global finger via CAS
3801 // -- find first object that starts in this chunk
3802 //    and start scanning bitmap from that position
3803 // -- scan marked objects for oops
3804 // -- CAS-mark target, and if successful:
3805 //    . if target oop is above global finger (volatile read)
3806 //      nothing to do
3807 //    . if target oop is in chunk and above local finger
3808 //        then nothing to do
3809 //    . else push on work-queue
3810 // -- Deal with possible overflow issues:
3811 //    . local work-queue overflow causes stuff to be pushed on
3812 //      global (common) overflow queue
3813 //    . always first empty local work queue
3814 //    . then get a batch of oops from global work queue if any
3815 //    . then do work stealing
3816 // -- When all tasks claimed (both spaces)
3817 //    and local work queue empty,
3818 //    then in a loop do:
3819 //    . check global overflow stack; steal a batch of oops and trace
3820 //    . try to steal from other threads oif GOS is empty
3821 //    . if neither is available, offer termination
3822 // -- Terminate and return result
3823 //
3824 void CMSConcMarkingTask::work(uint worker_id) {
3825   elapsedTimer _timer;
3826   ResourceMark rm;
3827   HandleMark hm;
3828 
3829   DEBUG_ONLY(_collector->verify_overflow_empty();)
3830 
3831   // Before we begin work, our work queue should be empty
3832   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3833   // Scan the bitmap covering _cms_space, tracing through grey objects.
3834   _timer.start();
3835   do_scan_and_mark(worker_id, _cms_space);
3836   _timer.stop();
3837   if (PrintCMSStatistics != 0) {
3838     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3839       worker_id, _timer.seconds());
3840       // XXX: need xxx/xxx type of notation, two timers
3841   }
3842 
3843   // ... do work stealing
3844   _timer.reset();
3845   _timer.start();
3846   do_work_steal(worker_id);
3847   _timer.stop();
3848   if (PrintCMSStatistics != 0) {
3849     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3850       worker_id, _timer.seconds());
3851       // XXX: need xxx/xxx type of notation, two timers
3852   }
3853   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3854   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3855   // Note that under the current task protocol, the
3856   // following assertion is true even of the spaces
3857   // expanded since the completion of the concurrent
3858   // marking. XXX This will likely change under a strict
3859   // ABORT semantics.
3860   // After perm removal the comparison was changed to
3861   // greater than or equal to from strictly greater than.
3862   // Before perm removal the highest address sweep would
3863   // have been at the end of perm gen but now is at the
3864   // end of the tenured gen.
3865   assert(_global_finger >=  _cms_space->end(),
3866          "All tasks have been completed");
3867   DEBUG_ONLY(_collector->verify_overflow_empty();)
3868 }
3869 
3870 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3871   HeapWord* read = _global_finger;
3872   HeapWord* cur  = read;
3873   while (f > read) {
3874     cur = read;
3875     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3876     if (cur == read) {
3877       // our cas succeeded
3878       assert(_global_finger >= f, "protocol consistency");
3879       break;
3880     }
3881   }
3882 }
3883 
3884 // This is really inefficient, and should be redone by
3885 // using (not yet available) block-read and -write interfaces to the
3886 // stack and the work_queue. XXX FIX ME !!!
3887 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3888                                                       OopTaskQueue* work_q) {
3889   // Fast lock-free check
3890   if (ovflw_stk->length() == 0) {
3891     return false;
3892   }
3893   assert(work_q->size() == 0, "Shouldn't steal");
3894   MutexLockerEx ml(ovflw_stk->par_lock(),
3895                    Mutex::_no_safepoint_check_flag);
3896   // Grab up to 1/4 the size of the work queue
3897   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3898                     (size_t)ParGCDesiredObjsFromOverflowList);
3899   num = MIN2(num, ovflw_stk->length());
3900   for (int i = (int) num; i > 0; i--) {
3901     oop cur = ovflw_stk->pop();
3902     assert(cur != NULL, "Counted wrong?");
3903     work_q->push(cur);
3904   }
3905   return num > 0;
3906 }
3907 
3908 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3909   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3910   int n_tasks = pst->n_tasks();
3911   // We allow that there may be no tasks to do here because
3912   // we are restarting after a stack overflow.
3913   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3914   uint nth_task = 0;
3915 
3916   HeapWord* aligned_start = sp->bottom();
3917   if (sp->used_region().contains(_restart_addr)) {
3918     // Align down to a card boundary for the start of 0th task
3919     // for this space.
3920     aligned_start =
3921       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3922                                  CardTableModRefBS::card_size);
3923   }
3924 
3925   size_t chunk_size = sp->marking_task_size();
3926   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3927     // Having claimed the nth task in this space,
3928     // compute the chunk that it corresponds to:
3929     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3930                                aligned_start + (nth_task+1)*chunk_size);
3931     // Try and bump the global finger via a CAS;
3932     // note that we need to do the global finger bump
3933     // _before_ taking the intersection below, because
3934     // the task corresponding to that region will be
3935     // deemed done even if the used_region() expands
3936     // because of allocation -- as it almost certainly will
3937     // during start-up while the threads yield in the
3938     // closure below.
3939     HeapWord* finger = span.end();
3940     bump_global_finger(finger);   // atomically
3941     // There are null tasks here corresponding to chunks
3942     // beyond the "top" address of the space.
3943     span = span.intersection(sp->used_region());
3944     if (!span.is_empty()) {  // Non-null task
3945       HeapWord* prev_obj;
3946       assert(!span.contains(_restart_addr) || nth_task == 0,
3947              "Inconsistency");
3948       if (nth_task == 0) {
3949         // For the 0th task, we'll not need to compute a block_start.
3950         if (span.contains(_restart_addr)) {
3951           // In the case of a restart because of stack overflow,
3952           // we might additionally skip a chunk prefix.
3953           prev_obj = _restart_addr;
3954         } else {
3955           prev_obj = span.start();
3956         }
3957       } else {
3958         // We want to skip the first object because
3959         // the protocol is to scan any object in its entirety
3960         // that _starts_ in this span; a fortiori, any
3961         // object starting in an earlier span is scanned
3962         // as part of an earlier claimed task.
3963         // Below we use the "careful" version of block_start
3964         // so we do not try to navigate uninitialized objects.
3965         prev_obj = sp->block_start_careful(span.start());
3966         // Below we use a variant of block_size that uses the
3967         // Printezis bits to avoid waiting for allocated
3968         // objects to become initialized/parsable.
3969         while (prev_obj < span.start()) {
3970           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3971           if (sz > 0) {
3972             prev_obj += sz;
3973           } else {
3974             // In this case we may end up doing a bit of redundant
3975             // scanning, but that appears unavoidable, short of
3976             // locking the free list locks; see bug 6324141.
3977             break;
3978           }
3979         }
3980       }
3981       if (prev_obj < span.end()) {
3982         MemRegion my_span = MemRegion(prev_obj, span.end());
3983         // Do the marking work within a non-empty span --
3984         // the last argument to the constructor indicates whether the
3985         // iteration should be incremental with periodic yields.
3986         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3987                                     &_collector->_markBitMap,
3988                                     work_queue(i),
3989                                     &_collector->_markStack,
3990                                     _asynch);
3991         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3992       } // else nothing to do for this task
3993     }   // else nothing to do for this task
3994   }
3995   // We'd be tempted to assert here that since there are no
3996   // more tasks left to claim in this space, the global_finger
3997   // must exceed space->top() and a fortiori space->end(). However,
3998   // that would not quite be correct because the bumping of
3999   // global_finger occurs strictly after the claiming of a task,
4000   // so by the time we reach here the global finger may not yet
4001   // have been bumped up by the thread that claimed the last
4002   // task.
4003   pst->all_tasks_completed();
4004 }
4005 
4006 class Par_ConcMarkingClosure: public CMSOopClosure {
4007  private:
4008   CMSCollector* _collector;
4009   CMSConcMarkingTask* _task;
4010   MemRegion     _span;
4011   CMSBitMap*    _bit_map;
4012   CMSMarkStack* _overflow_stack;
4013   OopTaskQueue* _work_queue;
4014  protected:
4015   DO_OOP_WORK_DEFN
4016  public:
4017   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4018                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4019     CMSOopClosure(collector->ref_processor()),
4020     _collector(collector),
4021     _task(task),
4022     _span(collector->_span),
4023     _work_queue(work_queue),
4024     _bit_map(bit_map),
4025     _overflow_stack(overflow_stack)
4026   { }
4027   virtual void do_oop(oop* p);
4028   virtual void do_oop(narrowOop* p);
4029 
4030   void trim_queue(size_t max);
4031   void handle_stack_overflow(HeapWord* lost);
4032   void do_yield_check() {
4033     if (_task->should_yield()) {
4034       _task->yield();
4035     }
4036   }
4037 };
4038 
4039 // Grey object scanning during work stealing phase --
4040 // the salient assumption here is that any references
4041 // that are in these stolen objects being scanned must
4042 // already have been initialized (else they would not have
4043 // been published), so we do not need to check for
4044 // uninitialized objects before pushing here.
4045 void Par_ConcMarkingClosure::do_oop(oop obj) {
4046   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4047   HeapWord* addr = (HeapWord*)obj;
4048   // Check if oop points into the CMS generation
4049   // and is not marked
4050   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4051     // a white object ...
4052     // If we manage to "claim" the object, by being the
4053     // first thread to mark it, then we push it on our
4054     // marking stack
4055     if (_bit_map->par_mark(addr)) {     // ... now grey
4056       // push on work queue (grey set)
4057       bool simulate_overflow = false;
4058       NOT_PRODUCT(
4059         if (CMSMarkStackOverflowALot &&
4060             _collector->simulate_overflow()) {
4061           // simulate a stack overflow
4062           simulate_overflow = true;
4063         }
4064       )
4065       if (simulate_overflow ||
4066           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4067         // stack overflow
4068         if (PrintCMSStatistics != 0) {
4069           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4070                                  SIZE_FORMAT, _overflow_stack->capacity());
4071         }
4072         // We cannot assert that the overflow stack is full because
4073         // it may have been emptied since.
4074         assert(simulate_overflow ||
4075                _work_queue->size() == _work_queue->max_elems(),
4076               "Else push should have succeeded");
4077         handle_stack_overflow(addr);
4078       }
4079     } // Else, some other thread got there first
4080     do_yield_check();
4081   }
4082 }
4083 
4084 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4085 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4086 
4087 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4088   while (_work_queue->size() > max) {
4089     oop new_oop;
4090     if (_work_queue->pop_local(new_oop)) {
4091       assert(new_oop->is_oop(), "Should be an oop");
4092       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4093       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4094       new_oop->oop_iterate(this);  // do_oop() above
4095       do_yield_check();
4096     }
4097   }
4098 }
4099 
4100 // Upon stack overflow, we discard (part of) the stack,
4101 // remembering the least address amongst those discarded
4102 // in CMSCollector's _restart_address.
4103 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4104   // We need to do this under a mutex to prevent other
4105   // workers from interfering with the work done below.
4106   MutexLockerEx ml(_overflow_stack->par_lock(),
4107                    Mutex::_no_safepoint_check_flag);
4108   // Remember the least grey address discarded
4109   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4110   _collector->lower_restart_addr(ra);
4111   _overflow_stack->reset();  // discard stack contents
4112   _overflow_stack->expand(); // expand the stack if possible
4113 }
4114 
4115 
4116 void CMSConcMarkingTask::do_work_steal(int i) {
4117   OopTaskQueue* work_q = work_queue(i);
4118   oop obj_to_scan;
4119   CMSBitMap* bm = &(_collector->_markBitMap);
4120   CMSMarkStack* ovflw = &(_collector->_markStack);
4121   int* seed = _collector->hash_seed(i);
4122   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4123   while (true) {
4124     cl.trim_queue(0);
4125     assert(work_q->size() == 0, "Should have been emptied above");
4126     if (get_work_from_overflow_stack(ovflw, work_q)) {
4127       // Can't assert below because the work obtained from the
4128       // overflow stack may already have been stolen from us.
4129       // assert(work_q->size() > 0, "Work from overflow stack");
4130       continue;
4131     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4132       assert(obj_to_scan->is_oop(), "Should be an oop");
4133       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4134       obj_to_scan->oop_iterate(&cl);
4135     } else if (terminator()->offer_termination(&_term_term)) {
4136       assert(work_q->size() == 0, "Impossible!");
4137       break;
4138     } else if (yielding() || should_yield()) {
4139       yield();
4140     }
4141   }
4142 }
4143 
4144 // This is run by the CMS (coordinator) thread.
4145 void CMSConcMarkingTask::coordinator_yield() {
4146   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4147          "CMS thread should hold CMS token");
4148   // First give up the locks, then yield, then re-lock
4149   // We should probably use a constructor/destructor idiom to
4150   // do this unlock/lock or modify the MutexUnlocker class to
4151   // serve our purpose. XXX
4152   assert_lock_strong(_bit_map_lock);
4153   _bit_map_lock->unlock();
4154   ConcurrentMarkSweepThread::desynchronize(true);
4155   ConcurrentMarkSweepThread::acknowledge_yield_request();
4156   _collector->stopTimer();
4157   if (PrintCMSStatistics != 0) {
4158     _collector->incrementYields();
4159   }
4160   _collector->icms_wait();
4161 
4162   // It is possible for whichever thread initiated the yield request
4163   // not to get a chance to wake up and take the bitmap lock between
4164   // this thread releasing it and reacquiring it. So, while the
4165   // should_yield() flag is on, let's sleep for a bit to give the
4166   // other thread a chance to wake up. The limit imposed on the number
4167   // of iterations is defensive, to avoid any unforseen circumstances
4168   // putting us into an infinite loop. Since it's always been this
4169   // (coordinator_yield()) method that was observed to cause the
4170   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4171   // which is by default non-zero. For the other seven methods that
4172   // also perform the yield operation, as are using a different
4173   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4174   // can enable the sleeping for those methods too, if necessary.
4175   // See 6442774.
4176   //
4177   // We really need to reconsider the synchronization between the GC
4178   // thread and the yield-requesting threads in the future and we
4179   // should really use wait/notify, which is the recommended
4180   // way of doing this type of interaction. Additionally, we should
4181   // consolidate the eight methods that do the yield operation and they
4182   // are almost identical into one for better maintenability and
4183   // readability. See 6445193.
4184   //
4185   // Tony 2006.06.29
4186   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4187                    ConcurrentMarkSweepThread::should_yield() &&
4188                    !CMSCollector::foregroundGCIsActive(); ++i) {
4189     os::sleep(Thread::current(), 1, false);
4190     ConcurrentMarkSweepThread::acknowledge_yield_request();
4191   }
4192 
4193   ConcurrentMarkSweepThread::synchronize(true);
4194   _bit_map_lock->lock_without_safepoint_check();
4195   _collector->startTimer();
4196 }
4197 
4198 bool CMSCollector::do_marking_mt(bool asynch) {
4199   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4200   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4201                                        conc_workers()->total_workers(),
4202                                        conc_workers()->active_workers(),
4203                                        Threads::number_of_non_daemon_threads());
4204   conc_workers()->set_active_workers(num_workers);
4205 
4206   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4207 
4208   CMSConcMarkingTask tsk(this,
4209                          cms_space,
4210                          asynch,
4211                          conc_workers(),
4212                          task_queues());
4213 
4214   // Since the actual number of workers we get may be different
4215   // from the number we requested above, do we need to do anything different
4216   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4217   // class?? XXX
4218   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4219 
4220   // Refs discovery is already non-atomic.
4221   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4222   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4223   conc_workers()->start_task(&tsk);
4224   while (tsk.yielded()) {
4225     tsk.coordinator_yield();
4226     conc_workers()->continue_task(&tsk);
4227   }
4228   // If the task was aborted, _restart_addr will be non-NULL
4229   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4230   while (_restart_addr != NULL) {
4231     // XXX For now we do not make use of ABORTED state and have not
4232     // yet implemented the right abort semantics (even in the original
4233     // single-threaded CMS case). That needs some more investigation
4234     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4235     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4236     // If _restart_addr is non-NULL, a marking stack overflow
4237     // occurred; we need to do a fresh marking iteration from the
4238     // indicated restart address.
4239     if (_foregroundGCIsActive && asynch) {
4240       // We may be running into repeated stack overflows, having
4241       // reached the limit of the stack size, while making very
4242       // slow forward progress. It may be best to bail out and
4243       // let the foreground collector do its job.
4244       // Clear _restart_addr, so that foreground GC
4245       // works from scratch. This avoids the headache of
4246       // a "rescan" which would otherwise be needed because
4247       // of the dirty mod union table & card table.
4248       _restart_addr = NULL;
4249       return false;
4250     }
4251     // Adjust the task to restart from _restart_addr
4252     tsk.reset(_restart_addr);
4253     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4254                   _restart_addr);
4255     _restart_addr = NULL;
4256     // Get the workers going again
4257     conc_workers()->start_task(&tsk);
4258     while (tsk.yielded()) {
4259       tsk.coordinator_yield();
4260       conc_workers()->continue_task(&tsk);
4261     }
4262   }
4263   assert(tsk.completed(), "Inconsistency");
4264   assert(tsk.result() == true, "Inconsistency");
4265   return true;
4266 }
4267 
4268 bool CMSCollector::do_marking_st(bool asynch) {
4269   ResourceMark rm;
4270   HandleMark   hm;
4271 
4272   // Temporarily make refs discovery single threaded (non-MT)
4273   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4274   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4275     &_markStack, CMSYield && asynch);
4276   // the last argument to iterate indicates whether the iteration
4277   // should be incremental with periodic yields.
4278   _markBitMap.iterate(&markFromRootsClosure);
4279   // If _restart_addr is non-NULL, a marking stack overflow
4280   // occurred; we need to do a fresh iteration from the
4281   // indicated restart address.
4282   while (_restart_addr != NULL) {
4283     if (_foregroundGCIsActive && asynch) {
4284       // We may be running into repeated stack overflows, having
4285       // reached the limit of the stack size, while making very
4286       // slow forward progress. It may be best to bail out and
4287       // let the foreground collector do its job.
4288       // Clear _restart_addr, so that foreground GC
4289       // works from scratch. This avoids the headache of
4290       // a "rescan" which would otherwise be needed because
4291       // of the dirty mod union table & card table.
4292       _restart_addr = NULL;
4293       return false;  // indicating failure to complete marking
4294     }
4295     // Deal with stack overflow:
4296     // we restart marking from _restart_addr
4297     HeapWord* ra = _restart_addr;
4298     markFromRootsClosure.reset(ra);
4299     _restart_addr = NULL;
4300     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4301   }
4302   return true;
4303 }
4304 
4305 void CMSCollector::preclean() {
4306   check_correct_thread_executing();
4307   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4308   verify_work_stacks_empty();
4309   verify_overflow_empty();
4310   _abort_preclean = false;
4311   if (CMSPrecleaningEnabled) {
4312     _eden_chunk_index = 0;
4313     size_t used = get_eden_used();
4314     size_t capacity = get_eden_capacity();
4315     // Don't start sampling unless we will get sufficiently
4316     // many samples.
4317     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4318                 * CMSScheduleRemarkEdenPenetration)) {
4319       _start_sampling = true;
4320     } else {
4321       _start_sampling = false;
4322     }
4323     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4324     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4325     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4326   }
4327   CMSTokenSync x(true); // is cms thread
4328   if (CMSPrecleaningEnabled) {
4329     sample_eden();
4330     _collectorState = AbortablePreclean;
4331   } else {
4332     _collectorState = FinalMarking;
4333   }
4334   verify_work_stacks_empty();
4335   verify_overflow_empty();
4336 }
4337 
4338 // Try and schedule the remark such that young gen
4339 // occupancy is CMSScheduleRemarkEdenPenetration %.
4340 void CMSCollector::abortable_preclean() {
4341   check_correct_thread_executing();
4342   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4343   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4344 
4345   // If Eden's current occupancy is below this threshold,
4346   // immediately schedule the remark; else preclean
4347   // past the next scavenge in an effort to
4348   // schedule the pause as described avove. By choosing
4349   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4350   // we will never do an actual abortable preclean cycle.
4351   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4352     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4353     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4354     // We need more smarts in the abortable preclean
4355     // loop below to deal with cases where allocation
4356     // in young gen is very very slow, and our precleaning
4357     // is running a losing race against a horde of
4358     // mutators intent on flooding us with CMS updates
4359     // (dirty cards).
4360     // One, admittedly dumb, strategy is to give up
4361     // after a certain number of abortable precleaning loops
4362     // or after a certain maximum time. We want to make
4363     // this smarter in the next iteration.
4364     // XXX FIX ME!!! YSR
4365     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4366     while (!(should_abort_preclean() ||
4367              ConcurrentMarkSweepThread::should_terminate())) {
4368       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4369       cumworkdone += workdone;
4370       loops++;
4371       // Voluntarily terminate abortable preclean phase if we have
4372       // been at it for too long.
4373       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4374           loops >= CMSMaxAbortablePrecleanLoops) {
4375         if (PrintGCDetails) {
4376           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4377         }
4378         break;
4379       }
4380       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4381         if (PrintGCDetails) {
4382           gclog_or_tty->print(" CMS: abort preclean due to time ");
4383         }
4384         break;
4385       }
4386       // If we are doing little work each iteration, we should
4387       // take a short break.
4388       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4389         // Sleep for some time, waiting for work to accumulate
4390         stopTimer();
4391         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4392         startTimer();
4393         waited++;
4394       }
4395     }
4396     if (PrintCMSStatistics > 0) {
4397       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4398                           loops, waited, cumworkdone);
4399     }
4400   }
4401   CMSTokenSync x(true); // is cms thread
4402   if (_collectorState != Idling) {
4403     assert(_collectorState == AbortablePreclean,
4404            "Spontaneous state transition?");
4405     _collectorState = FinalMarking;
4406   } // Else, a foreground collection completed this CMS cycle.
4407   return;
4408 }
4409 
4410 // Respond to an Eden sampling opportunity
4411 void CMSCollector::sample_eden() {
4412   // Make sure a young gc cannot sneak in between our
4413   // reading and recording of a sample.
4414   assert(Thread::current()->is_ConcurrentGC_thread(),
4415          "Only the cms thread may collect Eden samples");
4416   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4417          "Should collect samples while holding CMS token");
4418   if (!_start_sampling) {
4419     return;
4420   }
4421   if (_eden_chunk_array) {
4422     if (_eden_chunk_index < _eden_chunk_capacity) {
4423       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4424       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4425              "Unexpected state of Eden");
4426       // We'd like to check that what we just sampled is an oop-start address;
4427       // however, we cannot do that here since the object may not yet have been
4428       // initialized. So we'll instead do the check when we _use_ this sample
4429       // later.
4430       if (_eden_chunk_index == 0 ||
4431           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4432                          _eden_chunk_array[_eden_chunk_index-1])
4433            >= CMSSamplingGrain)) {
4434         _eden_chunk_index++;  // commit sample
4435       }
4436     }
4437   }
4438   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4439     size_t used = get_eden_used();
4440     size_t capacity = get_eden_capacity();
4441     assert(used <= capacity, "Unexpected state of Eden");
4442     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4443       _abort_preclean = true;
4444     }
4445   }
4446 }
4447 
4448 
4449 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4450   assert(_collectorState == Precleaning ||
4451          _collectorState == AbortablePreclean, "incorrect state");
4452   ResourceMark rm;
4453   HandleMark   hm;
4454 
4455   // Precleaning is currently not MT but the reference processor
4456   // may be set for MT.  Disable it temporarily here.
4457   ReferenceProcessor* rp = ref_processor();
4458   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4459 
4460   // Do one pass of scrubbing the discovered reference lists
4461   // to remove any reference objects with strongly-reachable
4462   // referents.
4463   if (clean_refs) {
4464     CMSPrecleanRefsYieldClosure yield_cl(this);
4465     assert(rp->span().equals(_span), "Spans should be equal");
4466     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4467                                    &_markStack, true /* preclean */);
4468     CMSDrainMarkingStackClosure complete_trace(this,
4469                                    _span, &_markBitMap, &_markStack,
4470                                    &keep_alive, true /* preclean */);
4471 
4472     // We don't want this step to interfere with a young
4473     // collection because we don't want to take CPU
4474     // or memory bandwidth away from the young GC threads
4475     // (which may be as many as there are CPUs).
4476     // Note that we don't need to protect ourselves from
4477     // interference with mutators because they can't
4478     // manipulate the discovered reference lists nor affect
4479     // the computed reachability of the referents, the
4480     // only properties manipulated by the precleaning
4481     // of these reference lists.
4482     stopTimer();
4483     CMSTokenSyncWithLocks x(true /* is cms thread */,
4484                             bitMapLock());
4485     startTimer();
4486     sample_eden();
4487 
4488     // The following will yield to allow foreground
4489     // collection to proceed promptly. XXX YSR:
4490     // The code in this method may need further
4491     // tweaking for better performance and some restructuring
4492     // for cleaner interfaces.
4493     rp->preclean_discovered_references(
4494           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl);
4495   }
4496 
4497   if (clean_survivor) {  // preclean the active survivor space(s)
4498     assert(_young_gen->kind() == Generation::DefNew ||
4499            _young_gen->kind() == Generation::ParNew ||
4500            _young_gen->kind() == Generation::ASParNew,
4501          "incorrect type for cast");
4502     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4503     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4504                              &_markBitMap, &_modUnionTable,
4505                              &_markStack, true /* precleaning phase */);
4506     stopTimer();
4507     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4508                              bitMapLock());
4509     startTimer();
4510     unsigned int before_count =
4511       GenCollectedHeap::heap()->total_collections();
4512     SurvivorSpacePrecleanClosure
4513       sss_cl(this, _span, &_markBitMap, &_markStack,
4514              &pam_cl, before_count, CMSYield);
4515     dng->from()->object_iterate_careful(&sss_cl);
4516     dng->to()->object_iterate_careful(&sss_cl);
4517   }
4518   MarkRefsIntoAndScanClosure
4519     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4520              &_markStack, this, CMSYield,
4521              true /* precleaning phase */);
4522   // CAUTION: The following closure has persistent state that may need to
4523   // be reset upon a decrease in the sequence of addresses it
4524   // processes.
4525   ScanMarkedObjectsAgainCarefullyClosure
4526     smoac_cl(this, _span,
4527       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4528 
4529   // Preclean dirty cards in ModUnionTable and CardTable using
4530   // appropriate convergence criterion;
4531   // repeat CMSPrecleanIter times unless we find that
4532   // we are losing.
4533   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4534   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4535          "Bad convergence multiplier");
4536   assert(CMSPrecleanThreshold >= 100,
4537          "Unreasonably low CMSPrecleanThreshold");
4538 
4539   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4540   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4541        numIter < CMSPrecleanIter;
4542        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4543     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4544     if (Verbose && PrintGCDetails) {
4545       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4546     }
4547     // Either there are very few dirty cards, so re-mark
4548     // pause will be small anyway, or our pre-cleaning isn't
4549     // that much faster than the rate at which cards are being
4550     // dirtied, so we might as well stop and re-mark since
4551     // precleaning won't improve our re-mark time by much.
4552     if (curNumCards <= CMSPrecleanThreshold ||
4553         (numIter > 0 &&
4554          (curNumCards * CMSPrecleanDenominator >
4555          lastNumCards * CMSPrecleanNumerator))) {
4556       numIter++;
4557       cumNumCards += curNumCards;
4558       break;
4559     }
4560   }
4561 
4562   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4563 
4564   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4565   cumNumCards += curNumCards;
4566   if (PrintGCDetails && PrintCMSStatistics != 0) {
4567     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4568                   curNumCards, cumNumCards, numIter);
4569   }
4570   return cumNumCards;   // as a measure of useful work done
4571 }
4572 
4573 // PRECLEANING NOTES:
4574 // Precleaning involves:
4575 // . reading the bits of the modUnionTable and clearing the set bits.
4576 // . For the cards corresponding to the set bits, we scan the
4577 //   objects on those cards. This means we need the free_list_lock
4578 //   so that we can safely iterate over the CMS space when scanning
4579 //   for oops.
4580 // . When we scan the objects, we'll be both reading and setting
4581 //   marks in the marking bit map, so we'll need the marking bit map.
4582 // . For protecting _collector_state transitions, we take the CGC_lock.
4583 //   Note that any races in the reading of of card table entries by the
4584 //   CMS thread on the one hand and the clearing of those entries by the
4585 //   VM thread or the setting of those entries by the mutator threads on the
4586 //   other are quite benign. However, for efficiency it makes sense to keep
4587 //   the VM thread from racing with the CMS thread while the latter is
4588 //   dirty card info to the modUnionTable. We therefore also use the
4589 //   CGC_lock to protect the reading of the card table and the mod union
4590 //   table by the CM thread.
4591 // . We run concurrently with mutator updates, so scanning
4592 //   needs to be done carefully  -- we should not try to scan
4593 //   potentially uninitialized objects.
4594 //
4595 // Locking strategy: While holding the CGC_lock, we scan over and
4596 // reset a maximal dirty range of the mod union / card tables, then lock
4597 // the free_list_lock and bitmap lock to do a full marking, then
4598 // release these locks; and repeat the cycle. This allows for a
4599 // certain amount of fairness in the sharing of these locks between
4600 // the CMS collector on the one hand, and the VM thread and the
4601 // mutators on the other.
4602 
4603 // NOTE: preclean_mod_union_table() and preclean_card_table()
4604 // further below are largely identical; if you need to modify
4605 // one of these methods, please check the other method too.
4606 
4607 size_t CMSCollector::preclean_mod_union_table(
4608   ConcurrentMarkSweepGeneration* gen,
4609   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4610   verify_work_stacks_empty();
4611   verify_overflow_empty();
4612 
4613   // strategy: starting with the first card, accumulate contiguous
4614   // ranges of dirty cards; clear these cards, then scan the region
4615   // covered by these cards.
4616 
4617   // Since all of the MUT is committed ahead, we can just use
4618   // that, in case the generations expand while we are precleaning.
4619   // It might also be fine to just use the committed part of the
4620   // generation, but we might potentially miss cards when the
4621   // generation is rapidly expanding while we are in the midst
4622   // of precleaning.
4623   HeapWord* startAddr = gen->reserved().start();
4624   HeapWord* endAddr   = gen->reserved().end();
4625 
4626   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4627 
4628   size_t numDirtyCards, cumNumDirtyCards;
4629   HeapWord *nextAddr, *lastAddr;
4630   for (cumNumDirtyCards = numDirtyCards = 0,
4631        nextAddr = lastAddr = startAddr;
4632        nextAddr < endAddr;
4633        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4634 
4635     ResourceMark rm;
4636     HandleMark   hm;
4637 
4638     MemRegion dirtyRegion;
4639     {
4640       stopTimer();
4641       // Potential yield point
4642       CMSTokenSync ts(true);
4643       startTimer();
4644       sample_eden();
4645       // Get dirty region starting at nextOffset (inclusive),
4646       // simultaneously clearing it.
4647       dirtyRegion =
4648         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4649       assert(dirtyRegion.start() >= nextAddr,
4650              "returned region inconsistent?");
4651     }
4652     // Remember where the next search should begin.
4653     // The returned region (if non-empty) is a right open interval,
4654     // so lastOffset is obtained from the right end of that
4655     // interval.
4656     lastAddr = dirtyRegion.end();
4657     // Should do something more transparent and less hacky XXX
4658     numDirtyCards =
4659       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4660 
4661     // We'll scan the cards in the dirty region (with periodic
4662     // yields for foreground GC as needed).
4663     if (!dirtyRegion.is_empty()) {
4664       assert(numDirtyCards > 0, "consistency check");
4665       HeapWord* stop_point = NULL;
4666       stopTimer();
4667       // Potential yield point
4668       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4669                                bitMapLock());
4670       startTimer();
4671       {
4672         verify_work_stacks_empty();
4673         verify_overflow_empty();
4674         sample_eden();
4675         stop_point =
4676           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4677       }
4678       if (stop_point != NULL) {
4679         // The careful iteration stopped early either because it found an
4680         // uninitialized object, or because we were in the midst of an
4681         // "abortable preclean", which should now be aborted. Redirty
4682         // the bits corresponding to the partially-scanned or unscanned
4683         // cards. We'll either restart at the next block boundary or
4684         // abort the preclean.
4685         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4686                "Should only be AbortablePreclean.");
4687         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4688         if (should_abort_preclean()) {
4689           break; // out of preclean loop
4690         } else {
4691           // Compute the next address at which preclean should pick up;
4692           // might need bitMapLock in order to read P-bits.
4693           lastAddr = next_card_start_after_block(stop_point);
4694         }
4695       }
4696     } else {
4697       assert(lastAddr == endAddr, "consistency check");
4698       assert(numDirtyCards == 0, "consistency check");
4699       break;
4700     }
4701   }
4702   verify_work_stacks_empty();
4703   verify_overflow_empty();
4704   return cumNumDirtyCards;
4705 }
4706 
4707 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4708 // below are largely identical; if you need to modify
4709 // one of these methods, please check the other method too.
4710 
4711 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4712   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4713   // strategy: it's similar to precleamModUnionTable above, in that
4714   // we accumulate contiguous ranges of dirty cards, mark these cards
4715   // precleaned, then scan the region covered by these cards.
4716   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4717   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4718 
4719   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4720 
4721   size_t numDirtyCards, cumNumDirtyCards;
4722   HeapWord *lastAddr, *nextAddr;
4723 
4724   for (cumNumDirtyCards = numDirtyCards = 0,
4725        nextAddr = lastAddr = startAddr;
4726        nextAddr < endAddr;
4727        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4728 
4729     ResourceMark rm;
4730     HandleMark   hm;
4731 
4732     MemRegion dirtyRegion;
4733     {
4734       // See comments in "Precleaning notes" above on why we
4735       // do this locking. XXX Could the locking overheads be
4736       // too high when dirty cards are sparse? [I don't think so.]
4737       stopTimer();
4738       CMSTokenSync x(true); // is cms thread
4739       startTimer();
4740       sample_eden();
4741       // Get and clear dirty region from card table
4742       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4743                                     MemRegion(nextAddr, endAddr),
4744                                     true,
4745                                     CardTableModRefBS::precleaned_card_val());
4746 
4747       assert(dirtyRegion.start() >= nextAddr,
4748              "returned region inconsistent?");
4749     }
4750     lastAddr = dirtyRegion.end();
4751     numDirtyCards =
4752       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4753 
4754     if (!dirtyRegion.is_empty()) {
4755       stopTimer();
4756       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4757       startTimer();
4758       sample_eden();
4759       verify_work_stacks_empty();
4760       verify_overflow_empty();
4761       HeapWord* stop_point =
4762         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4763       if (stop_point != NULL) {
4764         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4765                "Should only be AbortablePreclean.");
4766         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4767         if (should_abort_preclean()) {
4768           break; // out of preclean loop
4769         } else {
4770           // Compute the next address at which preclean should pick up.
4771           lastAddr = next_card_start_after_block(stop_point);
4772         }
4773       }
4774     } else {
4775       break;
4776     }
4777   }
4778   verify_work_stacks_empty();
4779   verify_overflow_empty();
4780   return cumNumDirtyCards;
4781 }
4782 
4783 class PrecleanKlassClosure : public KlassClosure {
4784   CMKlassClosure _cm_klass_closure;
4785  public:
4786   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4787   void do_klass(Klass* k) {
4788     if (k->has_accumulated_modified_oops()) {
4789       k->clear_accumulated_modified_oops();
4790 
4791       _cm_klass_closure.do_klass(k);
4792     }
4793   }
4794 };
4795 
4796 // The freelist lock is needed to prevent asserts, is it really needed?
4797 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4798 
4799   cl->set_freelistLock(freelistLock);
4800 
4801   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4802 
4803   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4804   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4805   PrecleanKlassClosure preclean_klass_closure(cl);
4806   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4807 
4808   verify_work_stacks_empty();
4809   verify_overflow_empty();
4810 }
4811 
4812 void CMSCollector::checkpointRootsFinal(bool asynch,
4813   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4814   assert(_collectorState == FinalMarking, "incorrect state transition?");
4815   check_correct_thread_executing();
4816   // world is stopped at this checkpoint
4817   assert(SafepointSynchronize::is_at_safepoint(),
4818          "world should be stopped");
4819   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4820 
4821   verify_work_stacks_empty();
4822   verify_overflow_empty();
4823 
4824   SpecializationStats::clear();
4825   if (PrintGCDetails) {
4826     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4827                         _young_gen->used() / K,
4828                         _young_gen->capacity() / K);
4829   }
4830   if (asynch) {
4831     if (CMSScavengeBeforeRemark) {
4832       GenCollectedHeap* gch = GenCollectedHeap::heap();
4833       // Temporarily set flag to false, GCH->do_collection will
4834       // expect it to be false and set to true
4835       FlagSetting fl(gch->_is_gc_active, false);
4836       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
4837         PrintGCDetails && Verbose, true, gclog_or_tty);)
4838       int level = _cmsGen->level() - 1;
4839       if (level >= 0) {
4840         gch->do_collection(true,        // full (i.e. force, see below)
4841                            false,       // !clear_all_soft_refs
4842                            0,           // size
4843                            false,       // is_tlab
4844                            level        // max_level
4845                           );
4846       }
4847     }
4848     FreelistLocker x(this);
4849     MutexLockerEx y(bitMapLock(),
4850                     Mutex::_no_safepoint_check_flag);
4851     assert(!init_mark_was_synchronous, "but that's impossible!");
4852     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4853   } else {
4854     // already have all the locks
4855     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4856                              init_mark_was_synchronous);
4857   }
4858   verify_work_stacks_empty();
4859   verify_overflow_empty();
4860   SpecializationStats::print();
4861 }
4862 
4863 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4864   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4865 
4866   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
4867 
4868   assert(haveFreelistLocks(), "must have free list locks");
4869   assert_lock_strong(bitMapLock());
4870 
4871   if (UseAdaptiveSizePolicy) {
4872     size_policy()->checkpoint_roots_final_begin();
4873   }
4874 
4875   ResourceMark rm;
4876   HandleMark   hm;
4877 
4878   GenCollectedHeap* gch = GenCollectedHeap::heap();
4879 
4880   if (should_unload_classes()) {
4881     CodeCache::gc_prologue();
4882   }
4883   assert(haveFreelistLocks(), "must have free list locks");
4884   assert_lock_strong(bitMapLock());
4885 
4886   if (!init_mark_was_synchronous) {
4887     // We might assume that we need not fill TLAB's when
4888     // CMSScavengeBeforeRemark is set, because we may have just done
4889     // a scavenge which would have filled all TLAB's -- and besides
4890     // Eden would be empty. This however may not always be the case --
4891     // for instance although we asked for a scavenge, it may not have
4892     // happened because of a JNI critical section. We probably need
4893     // a policy for deciding whether we can in that case wait until
4894     // the critical section releases and then do the remark following
4895     // the scavenge, and skip it here. In the absence of that policy,
4896     // or of an indication of whether the scavenge did indeed occur,
4897     // we cannot rely on TLAB's having been filled and must do
4898     // so here just in case a scavenge did not happen.
4899     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4900     // Update the saved marks which may affect the root scans.
4901     gch->save_marks();
4902 
4903     {
4904       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4905 
4906       // Note on the role of the mod union table:
4907       // Since the marker in "markFromRoots" marks concurrently with
4908       // mutators, it is possible for some reachable objects not to have been
4909       // scanned. For instance, an only reference to an object A was
4910       // placed in object B after the marker scanned B. Unless B is rescanned,
4911       // A would be collected. Such updates to references in marked objects
4912       // are detected via the mod union table which is the set of all cards
4913       // dirtied since the first checkpoint in this GC cycle and prior to
4914       // the most recent young generation GC, minus those cleaned up by the
4915       // concurrent precleaning.
4916       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
4917         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
4918         do_remark_parallel();
4919       } else {
4920         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4921                     gclog_or_tty);
4922         do_remark_non_parallel();
4923       }
4924     }
4925   } else {
4926     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
4927     // The initial mark was stop-world, so there's no rescanning to
4928     // do; go straight on to the next step below.
4929   }
4930   verify_work_stacks_empty();
4931   verify_overflow_empty();
4932 
4933   {
4934     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
4935     refProcessingWork(asynch, clear_all_soft_refs);
4936   }
4937   verify_work_stacks_empty();
4938   verify_overflow_empty();
4939 
4940   if (should_unload_classes()) {
4941     CodeCache::gc_epilogue();
4942   }
4943   JvmtiExport::gc_epilogue();
4944 
4945   // If we encountered any (marking stack / work queue) overflow
4946   // events during the current CMS cycle, take appropriate
4947   // remedial measures, where possible, so as to try and avoid
4948   // recurrence of that condition.
4949   assert(_markStack.isEmpty(), "No grey objects");
4950   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4951                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4952   if (ser_ovflw > 0) {
4953     if (PrintCMSStatistics != 0) {
4954       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4955         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4956         ", kac_preclean="SIZE_FORMAT")",
4957         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4958         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4959     }
4960     _markStack.expand();
4961     _ser_pmc_remark_ovflw = 0;
4962     _ser_pmc_preclean_ovflw = 0;
4963     _ser_kac_preclean_ovflw = 0;
4964     _ser_kac_ovflw = 0;
4965   }
4966   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4967     if (PrintCMSStatistics != 0) {
4968       gclog_or_tty->print_cr("Work queue overflow (benign) "
4969         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
4970         _par_pmc_remark_ovflw, _par_kac_ovflw);
4971     }
4972     _par_pmc_remark_ovflw = 0;
4973     _par_kac_ovflw = 0;
4974   }
4975   if (PrintCMSStatistics != 0) {
4976      if (_markStack._hit_limit > 0) {
4977        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
4978                               _markStack._hit_limit);
4979      }
4980      if (_markStack._failed_double > 0) {
4981        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
4982                               " current capacity "SIZE_FORMAT,
4983                               _markStack._failed_double,
4984                               _markStack.capacity());
4985      }
4986   }
4987   _markStack._hit_limit = 0;
4988   _markStack._failed_double = 0;
4989 
4990   if ((VerifyAfterGC || VerifyDuringGC) &&
4991       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4992     verify_after_remark();
4993   }
4994 
4995   // Change under the freelistLocks.
4996   _collectorState = Sweeping;
4997   // Call isAllClear() under bitMapLock
4998   assert(_modUnionTable.isAllClear(),
4999       "Should be clear by end of the final marking");
5000   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5001       "Should be clear by end of the final marking");
5002   if (UseAdaptiveSizePolicy) {
5003     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5004   }
5005 }
5006 
5007 // Parallel remark task
5008 class CMSParRemarkTask: public AbstractGangTask {
5009   CMSCollector* _collector;
5010   int           _n_workers;
5011   CompactibleFreeListSpace* _cms_space;
5012 
5013   // The per-thread work queues, available here for stealing.
5014   OopTaskQueueSet*       _task_queues;
5015   ParallelTaskTerminator _term;
5016 
5017  public:
5018   // A value of 0 passed to n_workers will cause the number of
5019   // workers to be taken from the active workers in the work gang.
5020   CMSParRemarkTask(CMSCollector* collector,
5021                    CompactibleFreeListSpace* cms_space,
5022                    int n_workers, FlexibleWorkGang* workers,
5023                    OopTaskQueueSet* task_queues):
5024     AbstractGangTask("Rescan roots and grey objects in parallel"),
5025     _collector(collector),
5026     _cms_space(cms_space),
5027     _n_workers(n_workers),
5028     _task_queues(task_queues),
5029     _term(n_workers, task_queues) { }
5030 
5031   OopTaskQueueSet* task_queues() { return _task_queues; }
5032 
5033   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5034 
5035   ParallelTaskTerminator* terminator() { return &_term; }
5036   int n_workers() { return _n_workers; }
5037 
5038   void work(uint worker_id);
5039 
5040  private:
5041   // Work method in support of parallel rescan ... of young gen spaces
5042   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
5043                              ContiguousSpace* space,
5044                              HeapWord** chunk_array, size_t chunk_top);
5045 
5046   // ... of  dirty cards in old space
5047   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5048                                   Par_MarkRefsIntoAndScanClosure* cl);
5049 
5050   // ... work stealing for the above
5051   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5052 };
5053 
5054 class RemarkKlassClosure : public KlassClosure {
5055   CMKlassClosure _cm_klass_closure;
5056  public:
5057   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5058   void do_klass(Klass* k) {
5059     // Check if we have modified any oops in the Klass during the concurrent marking.
5060     if (k->has_accumulated_modified_oops()) {
5061       k->clear_accumulated_modified_oops();
5062 
5063       // We could have transfered the current modified marks to the accumulated marks,
5064       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5065     } else if (k->has_modified_oops()) {
5066       // Don't clear anything, this info is needed by the next young collection.
5067     } else {
5068       // No modified oops in the Klass.
5069       return;
5070     }
5071 
5072     // The klass has modified fields, need to scan the klass.
5073     _cm_klass_closure.do_klass(k);
5074   }
5075 };
5076 
5077 // work_queue(i) is passed to the closure
5078 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5079 // also is passed to do_dirty_card_rescan_tasks() and to
5080 // do_work_steal() to select the i-th task_queue.
5081 
5082 void CMSParRemarkTask::work(uint worker_id) {
5083   elapsedTimer _timer;
5084   ResourceMark rm;
5085   HandleMark   hm;
5086 
5087   // ---------- rescan from roots --------------
5088   _timer.start();
5089   GenCollectedHeap* gch = GenCollectedHeap::heap();
5090   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5091     _collector->_span, _collector->ref_processor(),
5092     &(_collector->_markBitMap),
5093     work_queue(worker_id));
5094 
5095   // Rescan young gen roots first since these are likely
5096   // coarsely partitioned and may, on that account, constitute
5097   // the critical path; thus, it's best to start off that
5098   // work first.
5099   // ---------- young gen roots --------------
5100   {
5101     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5102     EdenSpace* eden_space = dng->eden();
5103     ContiguousSpace* from_space = dng->from();
5104     ContiguousSpace* to_space   = dng->to();
5105 
5106     HeapWord** eca = _collector->_eden_chunk_array;
5107     size_t     ect = _collector->_eden_chunk_index;
5108     HeapWord** sca = _collector->_survivor_chunk_array;
5109     size_t     sct = _collector->_survivor_chunk_index;
5110 
5111     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5112     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5113 
5114     do_young_space_rescan(worker_id, &par_mrias_cl, to_space, NULL, 0);
5115     do_young_space_rescan(worker_id, &par_mrias_cl, from_space, sca, sct);
5116     do_young_space_rescan(worker_id, &par_mrias_cl, eden_space, eca, ect);
5117 
5118     _timer.stop();
5119     if (PrintCMSStatistics != 0) {
5120       gclog_or_tty->print_cr(
5121         "Finished young gen rescan work in %dth thread: %3.3f sec",
5122         worker_id, _timer.seconds());
5123     }
5124   }
5125 
5126   // ---------- remaining roots --------------
5127   _timer.reset();
5128   _timer.start();
5129   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5130                                 false,     // yg was scanned above
5131                                 false,     // this is parallel code
5132                                 false,     // not scavenging
5133                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5134                                 &par_mrias_cl,
5135                                 true,   // walk all of code cache if (so & SO_CodeCache)
5136                                 NULL,
5137                                 NULL);     // The dirty klasses will be handled below
5138   assert(_collector->should_unload_classes()
5139          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5140          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5141   _timer.stop();
5142   if (PrintCMSStatistics != 0) {
5143     gclog_or_tty->print_cr(
5144       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5145       worker_id, _timer.seconds());
5146   }
5147 
5148   // ---------- unhandled CLD scanning ----------
5149   if (worker_id == 0) { // Single threaded at the moment.
5150     _timer.reset();
5151     _timer.start();
5152 
5153     // Scan all new class loader data objects and new dependencies that were
5154     // introduced during concurrent marking.
5155     ResourceMark rm;
5156     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5157     for (int i = 0; i < array->length(); i++) {
5158       par_mrias_cl.do_class_loader_data(array->at(i));
5159     }
5160 
5161     // We don't need to keep track of new CLDs anymore.
5162     ClassLoaderDataGraph::remember_new_clds(false);
5163 
5164     _timer.stop();
5165     if (PrintCMSStatistics != 0) {
5166       gclog_or_tty->print_cr(
5167           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5168           worker_id, _timer.seconds());
5169     }
5170   }
5171 
5172   // ---------- dirty klass scanning ----------
5173   if (worker_id == 0) { // Single threaded at the moment.
5174     _timer.reset();
5175     _timer.start();
5176 
5177     // Scan all classes that was dirtied during the concurrent marking phase.
5178     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5179     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5180 
5181     _timer.stop();
5182     if (PrintCMSStatistics != 0) {
5183       gclog_or_tty->print_cr(
5184           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5185           worker_id, _timer.seconds());
5186     }
5187   }
5188 
5189   // We might have added oops to ClassLoaderData::_handles during the
5190   // concurrent marking phase. These oops point to newly allocated objects
5191   // that are guaranteed to be kept alive. Either by the direct allocation
5192   // code, or when the young collector processes the strong roots. Hence,
5193   // we don't have to revisit the _handles block during the remark phase.
5194 
5195   // ---------- rescan dirty cards ------------
5196   _timer.reset();
5197   _timer.start();
5198 
5199   // Do the rescan tasks for each of the two spaces
5200   // (cms_space) in turn.
5201   // "worker_id" is passed to select the task_queue for "worker_id"
5202   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5203   _timer.stop();
5204   if (PrintCMSStatistics != 0) {
5205     gclog_or_tty->print_cr(
5206       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5207       worker_id, _timer.seconds());
5208   }
5209 
5210   // ---------- steal work from other threads ...
5211   // ---------- ... and drain overflow list.
5212   _timer.reset();
5213   _timer.start();
5214   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5215   _timer.stop();
5216   if (PrintCMSStatistics != 0) {
5217     gclog_or_tty->print_cr(
5218       "Finished work stealing in %dth thread: %3.3f sec",
5219       worker_id, _timer.seconds());
5220   }
5221 }
5222 
5223 // Note that parameter "i" is not used.
5224 void
5225 CMSParRemarkTask::do_young_space_rescan(int i,
5226   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
5227   HeapWord** chunk_array, size_t chunk_top) {
5228   // Until all tasks completed:
5229   // . claim an unclaimed task
5230   // . compute region boundaries corresponding to task claimed
5231   //   using chunk_array
5232   // . par_oop_iterate(cl) over that region
5233 
5234   ResourceMark rm;
5235   HandleMark   hm;
5236 
5237   SequentialSubTasksDone* pst = space->par_seq_tasks();
5238   assert(pst->valid(), "Uninitialized use?");
5239 
5240   uint nth_task = 0;
5241   uint n_tasks  = pst->n_tasks();
5242 
5243   HeapWord *start, *end;
5244   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5245     // We claimed task # nth_task; compute its boundaries.
5246     if (chunk_top == 0) {  // no samples were taken
5247       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5248       start = space->bottom();
5249       end   = space->top();
5250     } else if (nth_task == 0) {
5251       start = space->bottom();
5252       end   = chunk_array[nth_task];
5253     } else if (nth_task < (uint)chunk_top) {
5254       assert(nth_task >= 1, "Control point invariant");
5255       start = chunk_array[nth_task - 1];
5256       end   = chunk_array[nth_task];
5257     } else {
5258       assert(nth_task == (uint)chunk_top, "Control point invariant");
5259       start = chunk_array[chunk_top - 1];
5260       end   = space->top();
5261     }
5262     MemRegion mr(start, end);
5263     // Verify that mr is in space
5264     assert(mr.is_empty() || space->used_region().contains(mr),
5265            "Should be in space");
5266     // Verify that "start" is an object boundary
5267     assert(mr.is_empty() || oop(mr.start())->is_oop(),
5268            "Should be an oop");
5269     space->par_oop_iterate(mr, cl);
5270   }
5271   pst->all_tasks_completed();
5272 }
5273 
5274 void
5275 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5276   CompactibleFreeListSpace* sp, int i,
5277   Par_MarkRefsIntoAndScanClosure* cl) {
5278   // Until all tasks completed:
5279   // . claim an unclaimed task
5280   // . compute region boundaries corresponding to task claimed
5281   // . transfer dirty bits ct->mut for that region
5282   // . apply rescanclosure to dirty mut bits for that region
5283 
5284   ResourceMark rm;
5285   HandleMark   hm;
5286 
5287   OopTaskQueue* work_q = work_queue(i);
5288   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5289   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5290   // CAUTION: This closure has state that persists across calls to
5291   // the work method dirty_range_iterate_clear() in that it has
5292   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5293   // use of that state in the imbedded UpwardsObjectClosure instance
5294   // assumes that the cards are always iterated (even if in parallel
5295   // by several threads) in monotonically increasing order per each
5296   // thread. This is true of the implementation below which picks
5297   // card ranges (chunks) in monotonically increasing order globally
5298   // and, a-fortiori, in monotonically increasing order per thread
5299   // (the latter order being a subsequence of the former).
5300   // If the work code below is ever reorganized into a more chaotic
5301   // work-partitioning form than the current "sequential tasks"
5302   // paradigm, the use of that persistent state will have to be
5303   // revisited and modified appropriately. See also related
5304   // bug 4756801 work on which should examine this code to make
5305   // sure that the changes there do not run counter to the
5306   // assumptions made here and necessary for correctness and
5307   // efficiency. Note also that this code might yield inefficient
5308   // behaviour in the case of very large objects that span one or
5309   // more work chunks. Such objects would potentially be scanned
5310   // several times redundantly. Work on 4756801 should try and
5311   // address that performance anomaly if at all possible. XXX
5312   MemRegion  full_span  = _collector->_span;
5313   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5314   MarkFromDirtyCardsClosure
5315     greyRescanClosure(_collector, full_span, // entire span of interest
5316                       sp, bm, work_q, cl);
5317 
5318   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5319   assert(pst->valid(), "Uninitialized use?");
5320   uint nth_task = 0;
5321   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5322   MemRegion span = sp->used_region();
5323   HeapWord* start_addr = span.start();
5324   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5325                                            alignment);
5326   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5327   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5328          start_addr, "Check alignment");
5329   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5330          chunk_size, "Check alignment");
5331 
5332   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5333     // Having claimed the nth_task, compute corresponding mem-region,
5334     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5335     // The alignment restriction ensures that we do not need any
5336     // synchronization with other gang-workers while setting or
5337     // clearing bits in thus chunk of the MUT.
5338     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5339                                     start_addr + (nth_task+1)*chunk_size);
5340     // The last chunk's end might be way beyond end of the
5341     // used region. In that case pull back appropriately.
5342     if (this_span.end() > end_addr) {
5343       this_span.set_end(end_addr);
5344       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5345     }
5346     // Iterate over the dirty cards covering this chunk, marking them
5347     // precleaned, and setting the corresponding bits in the mod union
5348     // table. Since we have been careful to partition at Card and MUT-word
5349     // boundaries no synchronization is needed between parallel threads.
5350     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5351                                                  &modUnionClosure);
5352 
5353     // Having transferred these marks into the modUnionTable,
5354     // rescan the marked objects on the dirty cards in the modUnionTable.
5355     // Even if this is at a synchronous collection, the initial marking
5356     // may have been done during an asynchronous collection so there
5357     // may be dirty bits in the mod-union table.
5358     _collector->_modUnionTable.dirty_range_iterate_clear(
5359                   this_span, &greyRescanClosure);
5360     _collector->_modUnionTable.verifyNoOneBitsInRange(
5361                                  this_span.start(),
5362                                  this_span.end());
5363   }
5364   pst->all_tasks_completed();  // declare that i am done
5365 }
5366 
5367 // . see if we can share work_queues with ParNew? XXX
5368 void
5369 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5370                                 int* seed) {
5371   OopTaskQueue* work_q = work_queue(i);
5372   NOT_PRODUCT(int num_steals = 0;)
5373   oop obj_to_scan;
5374   CMSBitMap* bm = &(_collector->_markBitMap);
5375 
5376   while (true) {
5377     // Completely finish any left over work from (an) earlier round(s)
5378     cl->trim_queue(0);
5379     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5380                                          (size_t)ParGCDesiredObjsFromOverflowList);
5381     // Now check if there's any work in the overflow list
5382     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5383     // only affects the number of attempts made to get work from the
5384     // overflow list and does not affect the number of workers.  Just
5385     // pass ParallelGCThreads so this behavior is unchanged.
5386     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5387                                                 work_q,
5388                                                 ParallelGCThreads)) {
5389       // found something in global overflow list;
5390       // not yet ready to go stealing work from others.
5391       // We'd like to assert(work_q->size() != 0, ...)
5392       // because we just took work from the overflow list,
5393       // but of course we can't since all of that could have
5394       // been already stolen from us.
5395       // "He giveth and He taketh away."
5396       continue;
5397     }
5398     // Verify that we have no work before we resort to stealing
5399     assert(work_q->size() == 0, "Have work, shouldn't steal");
5400     // Try to steal from other queues that have work
5401     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5402       NOT_PRODUCT(num_steals++;)
5403       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5404       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5405       // Do scanning work
5406       obj_to_scan->oop_iterate(cl);
5407       // Loop around, finish this work, and try to steal some more
5408     } else if (terminator()->offer_termination()) {
5409         break;  // nirvana from the infinite cycle
5410     }
5411   }
5412   NOT_PRODUCT(
5413     if (PrintCMSStatistics != 0) {
5414       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5415     }
5416   )
5417   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5418          "Else our work is not yet done");
5419 }
5420 
5421 // Return a thread-local PLAB recording array, as appropriate.
5422 void* CMSCollector::get_data_recorder(int thr_num) {
5423   if (_survivor_plab_array != NULL &&
5424       (CMSPLABRecordAlways ||
5425        (_collectorState > Marking && _collectorState < FinalMarking))) {
5426     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5427     ChunkArray* ca = &_survivor_plab_array[thr_num];
5428     ca->reset();   // clear it so that fresh data is recorded
5429     return (void*) ca;
5430   } else {
5431     return NULL;
5432   }
5433 }
5434 
5435 // Reset all the thread-local PLAB recording arrays
5436 void CMSCollector::reset_survivor_plab_arrays() {
5437   for (uint i = 0; i < ParallelGCThreads; i++) {
5438     _survivor_plab_array[i].reset();
5439   }
5440 }
5441 
5442 // Merge the per-thread plab arrays into the global survivor chunk
5443 // array which will provide the partitioning of the survivor space
5444 // for CMS rescan.
5445 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5446                                               int no_of_gc_threads) {
5447   assert(_survivor_plab_array  != NULL, "Error");
5448   assert(_survivor_chunk_array != NULL, "Error");
5449   assert(_collectorState == FinalMarking, "Error");
5450   for (int j = 0; j < no_of_gc_threads; j++) {
5451     _cursor[j] = 0;
5452   }
5453   HeapWord* top = surv->top();
5454   size_t i;
5455   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5456     HeapWord* min_val = top;          // Higher than any PLAB address
5457     uint      min_tid = 0;            // position of min_val this round
5458     for (int j = 0; j < no_of_gc_threads; j++) {
5459       ChunkArray* cur_sca = &_survivor_plab_array[j];
5460       if (_cursor[j] == cur_sca->end()) {
5461         continue;
5462       }
5463       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5464       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5465       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5466       if (cur_val < min_val) {
5467         min_tid = j;
5468         min_val = cur_val;
5469       } else {
5470         assert(cur_val < top, "All recorded addresses should be less");
5471       }
5472     }
5473     // At this point min_val and min_tid are respectively
5474     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5475     // and the thread (j) that witnesses that address.
5476     // We record this address in the _survivor_chunk_array[i]
5477     // and increment _cursor[min_tid] prior to the next round i.
5478     if (min_val == top) {
5479       break;
5480     }
5481     _survivor_chunk_array[i] = min_val;
5482     _cursor[min_tid]++;
5483   }
5484   // We are all done; record the size of the _survivor_chunk_array
5485   _survivor_chunk_index = i; // exclusive: [0, i)
5486   if (PrintCMSStatistics > 0) {
5487     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5488   }
5489   // Verify that we used up all the recorded entries
5490   #ifdef ASSERT
5491     size_t total = 0;
5492     for (int j = 0; j < no_of_gc_threads; j++) {
5493       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5494       total += _cursor[j];
5495     }
5496     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5497     // Check that the merged array is in sorted order
5498     if (total > 0) {
5499       for (size_t i = 0; i < total - 1; i++) {
5500         if (PrintCMSStatistics > 0) {
5501           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5502                               i, _survivor_chunk_array[i]);
5503         }
5504         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5505                "Not sorted");
5506       }
5507     }
5508   #endif // ASSERT
5509 }
5510 
5511 // Set up the space's par_seq_tasks structure for work claiming
5512 // for parallel rescan of young gen.
5513 // See ParRescanTask where this is currently used.
5514 void
5515 CMSCollector::
5516 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5517   assert(n_threads > 0, "Unexpected n_threads argument");
5518   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5519 
5520   // Eden space
5521   {
5522     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5523     assert(!pst->valid(), "Clobbering existing data?");
5524     // Each valid entry in [0, _eden_chunk_index) represents a task.
5525     size_t n_tasks = _eden_chunk_index + 1;
5526     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5527     // Sets the condition for completion of the subtask (how many threads
5528     // need to finish in order to be done).
5529     pst->set_n_threads(n_threads);
5530     pst->set_n_tasks((int)n_tasks);
5531   }
5532 
5533   // Merge the survivor plab arrays into _survivor_chunk_array
5534   if (_survivor_plab_array != NULL) {
5535     merge_survivor_plab_arrays(dng->from(), n_threads);
5536   } else {
5537     assert(_survivor_chunk_index == 0, "Error");
5538   }
5539 
5540   // To space
5541   {
5542     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5543     assert(!pst->valid(), "Clobbering existing data?");
5544     // Sets the condition for completion of the subtask (how many threads
5545     // need to finish in order to be done).
5546     pst->set_n_threads(n_threads);
5547     pst->set_n_tasks(1);
5548     assert(pst->valid(), "Error");
5549   }
5550 
5551   // From space
5552   {
5553     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5554     assert(!pst->valid(), "Clobbering existing data?");
5555     size_t n_tasks = _survivor_chunk_index + 1;
5556     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5557     // Sets the condition for completion of the subtask (how many threads
5558     // need to finish in order to be done).
5559     pst->set_n_threads(n_threads);
5560     pst->set_n_tasks((int)n_tasks);
5561     assert(pst->valid(), "Error");
5562   }
5563 }
5564 
5565 // Parallel version of remark
5566 void CMSCollector::do_remark_parallel() {
5567   GenCollectedHeap* gch = GenCollectedHeap::heap();
5568   FlexibleWorkGang* workers = gch->workers();
5569   assert(workers != NULL, "Need parallel worker threads.");
5570   // Choose to use the number of GC workers most recently set
5571   // into "active_workers".  If active_workers is not set, set it
5572   // to ParallelGCThreads.
5573   int n_workers = workers->active_workers();
5574   if (n_workers == 0) {
5575     assert(n_workers > 0, "Should have been set during scavenge");
5576     n_workers = ParallelGCThreads;
5577     workers->set_active_workers(n_workers);
5578   }
5579   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5580 
5581   CMSParRemarkTask tsk(this,
5582     cms_space,
5583     n_workers, workers, task_queues());
5584 
5585   // Set up for parallel process_strong_roots work.
5586   gch->set_par_threads(n_workers);
5587   // We won't be iterating over the cards in the card table updating
5588   // the younger_gen cards, so we shouldn't call the following else
5589   // the verification code as well as subsequent younger_refs_iterate
5590   // code would get confused. XXX
5591   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5592 
5593   // The young gen rescan work will not be done as part of
5594   // process_strong_roots (which currently doesn't knw how to
5595   // parallelize such a scan), but rather will be broken up into
5596   // a set of parallel tasks (via the sampling that the [abortable]
5597   // preclean phase did of EdenSpace, plus the [two] tasks of
5598   // scanning the [two] survivor spaces. Further fine-grain
5599   // parallelization of the scanning of the survivor spaces
5600   // themselves, and of precleaning of the younger gen itself
5601   // is deferred to the future.
5602   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5603 
5604   // The dirty card rescan work is broken up into a "sequence"
5605   // of parallel tasks (per constituent space) that are dynamically
5606   // claimed by the parallel threads.
5607   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5608 
5609   // It turns out that even when we're using 1 thread, doing the work in a
5610   // separate thread causes wide variance in run times.  We can't help this
5611   // in the multi-threaded case, but we special-case n=1 here to get
5612   // repeatable measurements of the 1-thread overhead of the parallel code.
5613   if (n_workers > 1) {
5614     // Make refs discovery MT-safe, if it isn't already: it may not
5615     // necessarily be so, since it's possible that we are doing
5616     // ST marking.
5617     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5618     GenCollectedHeap::StrongRootsScope srs(gch);
5619     workers->run_task(&tsk);
5620   } else {
5621     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5622     GenCollectedHeap::StrongRootsScope srs(gch);
5623     tsk.work(0);
5624   }
5625 
5626   gch->set_par_threads(0);  // 0 ==> non-parallel.
5627   // restore, single-threaded for now, any preserved marks
5628   // as a result of work_q overflow
5629   restore_preserved_marks_if_any();
5630 }
5631 
5632 // Non-parallel version of remark
5633 void CMSCollector::do_remark_non_parallel() {
5634   ResourceMark rm;
5635   HandleMark   hm;
5636   GenCollectedHeap* gch = GenCollectedHeap::heap();
5637   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5638 
5639   MarkRefsIntoAndScanClosure
5640     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5641              &_markStack, this,
5642              false /* should_yield */, false /* not precleaning */);
5643   MarkFromDirtyCardsClosure
5644     markFromDirtyCardsClosure(this, _span,
5645                               NULL,  // space is set further below
5646                               &_markBitMap, &_markStack, &mrias_cl);
5647   {
5648     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
5649     // Iterate over the dirty cards, setting the corresponding bits in the
5650     // mod union table.
5651     {
5652       ModUnionClosure modUnionClosure(&_modUnionTable);
5653       _ct->ct_bs()->dirty_card_iterate(
5654                       _cmsGen->used_region(),
5655                       &modUnionClosure);
5656     }
5657     // Having transferred these marks into the modUnionTable, we just need
5658     // to rescan the marked objects on the dirty cards in the modUnionTable.
5659     // The initial marking may have been done during an asynchronous
5660     // collection so there may be dirty bits in the mod-union table.
5661     const int alignment =
5662       CardTableModRefBS::card_size * BitsPerWord;
5663     {
5664       // ... First handle dirty cards in CMS gen
5665       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5666       MemRegion ur = _cmsGen->used_region();
5667       HeapWord* lb = ur.start();
5668       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5669       MemRegion cms_span(lb, ub);
5670       _modUnionTable.dirty_range_iterate_clear(cms_span,
5671                                                &markFromDirtyCardsClosure);
5672       verify_work_stacks_empty();
5673       if (PrintCMSStatistics != 0) {
5674         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5675           markFromDirtyCardsClosure.num_dirty_cards());
5676       }
5677     }
5678   }
5679   if (VerifyDuringGC &&
5680       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5681     HandleMark hm;  // Discard invalid handles created during verification
5682     Universe::verify(true);
5683   }
5684   {
5685     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
5686 
5687     verify_work_stacks_empty();
5688 
5689     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5690     GenCollectedHeap::StrongRootsScope srs(gch);
5691     gch->gen_process_strong_roots(_cmsGen->level(),
5692                                   true,  // younger gens as roots
5693                                   false, // use the local StrongRootsScope
5694                                   false, // not scavenging
5695                                   SharedHeap::ScanningOption(roots_scanning_options()),
5696                                   &mrias_cl,
5697                                   true,   // walk code active on stacks
5698                                   NULL,
5699                                   NULL);  // The dirty klasses will be handled below
5700 
5701     assert(should_unload_classes()
5702            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
5703            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5704   }
5705 
5706   {
5707     TraceTime t("visit unhandled CLDs", PrintGCDetails, false, gclog_or_tty);
5708 
5709     verify_work_stacks_empty();
5710 
5711     // Scan all class loader data objects that might have been introduced
5712     // during concurrent marking.
5713     ResourceMark rm;
5714     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5715     for (int i = 0; i < array->length(); i++) {
5716       mrias_cl.do_class_loader_data(array->at(i));
5717     }
5718 
5719     // We don't need to keep track of new CLDs anymore.
5720     ClassLoaderDataGraph::remember_new_clds(false);
5721 
5722     verify_work_stacks_empty();
5723   }
5724 
5725   {
5726     TraceTime t("dirty klass scan", PrintGCDetails, false, gclog_or_tty);
5727 
5728     verify_work_stacks_empty();
5729 
5730     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5731     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5732 
5733     verify_work_stacks_empty();
5734   }
5735 
5736   // We might have added oops to ClassLoaderData::_handles during the
5737   // concurrent marking phase. These oops point to newly allocated objects
5738   // that are guaranteed to be kept alive. Either by the direct allocation
5739   // code, or when the young collector processes the strong roots. Hence,
5740   // we don't have to revisit the _handles block during the remark phase.
5741 
5742   verify_work_stacks_empty();
5743   // Restore evacuated mark words, if any, used for overflow list links
5744   if (!CMSOverflowEarlyRestoration) {
5745     restore_preserved_marks_if_any();
5746   }
5747   verify_overflow_empty();
5748 }
5749 
5750 ////////////////////////////////////////////////////////
5751 // Parallel Reference Processing Task Proxy Class
5752 ////////////////////////////////////////////////////////
5753 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5754   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5755   CMSCollector*          _collector;
5756   CMSBitMap*             _mark_bit_map;
5757   const MemRegion        _span;
5758   ProcessTask&           _task;
5759 
5760 public:
5761   CMSRefProcTaskProxy(ProcessTask&     task,
5762                       CMSCollector*    collector,
5763                       const MemRegion& span,
5764                       CMSBitMap*       mark_bit_map,
5765                       AbstractWorkGang* workers,
5766                       OopTaskQueueSet* task_queues):
5767     // XXX Should superclass AGTWOQ also know about AWG since it knows
5768     // about the task_queues used by the AWG? Then it could initialize
5769     // the terminator() object. See 6984287. The set_for_termination()
5770     // below is a temporary band-aid for the regression in 6984287.
5771     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5772       task_queues),
5773     _task(task),
5774     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5775   {
5776     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5777            "Inconsistency in _span");
5778     set_for_termination(workers->active_workers());
5779   }
5780 
5781   OopTaskQueueSet* task_queues() { return queues(); }
5782 
5783   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5784 
5785   void do_work_steal(int i,
5786                      CMSParDrainMarkingStackClosure* drain,
5787                      CMSParKeepAliveClosure* keep_alive,
5788                      int* seed);
5789 
5790   virtual void work(uint worker_id);
5791 };
5792 
5793 void CMSRefProcTaskProxy::work(uint worker_id) {
5794   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5795   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5796                                         _mark_bit_map,
5797                                         work_queue(worker_id));
5798   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5799                                                  _mark_bit_map,
5800                                                  work_queue(worker_id));
5801   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5802   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5803   if (_task.marks_oops_alive()) {
5804     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5805                   _collector->hash_seed(worker_id));
5806   }
5807   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5808   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5809 }
5810 
5811 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5812   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5813   EnqueueTask& _task;
5814 
5815 public:
5816   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5817     : AbstractGangTask("Enqueue reference objects in parallel"),
5818       _task(task)
5819   { }
5820 
5821   virtual void work(uint worker_id)
5822   {
5823     _task.work(worker_id);
5824   }
5825 };
5826 
5827 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5828   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5829    _span(span),
5830    _bit_map(bit_map),
5831    _work_queue(work_queue),
5832    _mark_and_push(collector, span, bit_map, work_queue),
5833    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5834                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5835 { }
5836 
5837 // . see if we can share work_queues with ParNew? XXX
5838 void CMSRefProcTaskProxy::do_work_steal(int i,
5839   CMSParDrainMarkingStackClosure* drain,
5840   CMSParKeepAliveClosure* keep_alive,
5841   int* seed) {
5842   OopTaskQueue* work_q = work_queue(i);
5843   NOT_PRODUCT(int num_steals = 0;)
5844   oop obj_to_scan;
5845 
5846   while (true) {
5847     // Completely finish any left over work from (an) earlier round(s)
5848     drain->trim_queue(0);
5849     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5850                                          (size_t)ParGCDesiredObjsFromOverflowList);
5851     // Now check if there's any work in the overflow list
5852     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5853     // only affects the number of attempts made to get work from the
5854     // overflow list and does not affect the number of workers.  Just
5855     // pass ParallelGCThreads so this behavior is unchanged.
5856     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5857                                                 work_q,
5858                                                 ParallelGCThreads)) {
5859       // Found something in global overflow list;
5860       // not yet ready to go stealing work from others.
5861       // We'd like to assert(work_q->size() != 0, ...)
5862       // because we just took work from the overflow list,
5863       // but of course we can't, since all of that might have
5864       // been already stolen from us.
5865       continue;
5866     }
5867     // Verify that we have no work before we resort to stealing
5868     assert(work_q->size() == 0, "Have work, shouldn't steal");
5869     // Try to steal from other queues that have work
5870     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5871       NOT_PRODUCT(num_steals++;)
5872       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5873       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5874       // Do scanning work
5875       obj_to_scan->oop_iterate(keep_alive);
5876       // Loop around, finish this work, and try to steal some more
5877     } else if (terminator()->offer_termination()) {
5878       break;  // nirvana from the infinite cycle
5879     }
5880   }
5881   NOT_PRODUCT(
5882     if (PrintCMSStatistics != 0) {
5883       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5884     }
5885   )
5886 }
5887 
5888 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5889 {
5890   GenCollectedHeap* gch = GenCollectedHeap::heap();
5891   FlexibleWorkGang* workers = gch->workers();
5892   assert(workers != NULL, "Need parallel worker threads.");
5893   CMSRefProcTaskProxy rp_task(task, &_collector,
5894                               _collector.ref_processor()->span(),
5895                               _collector.markBitMap(),
5896                               workers, _collector.task_queues());
5897   workers->run_task(&rp_task);
5898 }
5899 
5900 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5901 {
5902 
5903   GenCollectedHeap* gch = GenCollectedHeap::heap();
5904   FlexibleWorkGang* workers = gch->workers();
5905   assert(workers != NULL, "Need parallel worker threads.");
5906   CMSRefEnqueueTaskProxy enq_task(task);
5907   workers->run_task(&enq_task);
5908 }
5909 
5910 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
5911 
5912   ResourceMark rm;
5913   HandleMark   hm;
5914 
5915   ReferenceProcessor* rp = ref_processor();
5916   assert(rp->span().equals(_span), "Spans should be equal");
5917   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5918   // Process weak references.
5919   rp->setup_policy(clear_all_soft_refs);
5920   verify_work_stacks_empty();
5921 
5922   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5923                                           &_markStack, false /* !preclean */);
5924   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5925                                 _span, &_markBitMap, &_markStack,
5926                                 &cmsKeepAliveClosure, false /* !preclean */);
5927   {
5928     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
5929     if (rp->processing_is_mt()) {
5930       // Set the degree of MT here.  If the discovery is done MT, there
5931       // may have been a different number of threads doing the discovery
5932       // and a different number of discovered lists may have Ref objects.
5933       // That is OK as long as the Reference lists are balanced (see
5934       // balance_all_queues() and balance_queues()).
5935       GenCollectedHeap* gch = GenCollectedHeap::heap();
5936       int active_workers = ParallelGCThreads;
5937       FlexibleWorkGang* workers = gch->workers();
5938       if (workers != NULL) {
5939         active_workers = workers->active_workers();
5940         // The expectation is that active_workers will have already
5941         // been set to a reasonable value.  If it has not been set,
5942         // investigate.
5943         assert(active_workers > 0, "Should have been set during scavenge");
5944       }
5945       rp->set_active_mt_degree(active_workers);
5946       CMSRefProcTaskExecutor task_executor(*this);
5947       rp->process_discovered_references(&_is_alive_closure,
5948                                         &cmsKeepAliveClosure,
5949                                         &cmsDrainMarkingStackClosure,
5950                                         &task_executor);
5951     } else {
5952       rp->process_discovered_references(&_is_alive_closure,
5953                                         &cmsKeepAliveClosure,
5954                                         &cmsDrainMarkingStackClosure,
5955                                         NULL);
5956     }
5957     verify_work_stacks_empty();
5958   }
5959 
5960   if (should_unload_classes()) {
5961     {
5962       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
5963 
5964       // Follow SystemDictionary roots and unload classes
5965       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5966 
5967       // Follow CodeCache roots and unload any methods marked for unloading
5968       CodeCache::do_unloading(&_is_alive_closure,
5969                               &cmsKeepAliveClosure,
5970                               purged_class);
5971 
5972       cmsDrainMarkingStackClosure.do_void();
5973       verify_work_stacks_empty();
5974 
5975       // Update subklass/sibling/implementor links in KlassKlass descendants
5976       Klass::clean_weak_klass_links(&_is_alive_closure);
5977       // Nothing should have been pushed onto the working stacks.
5978       verify_work_stacks_empty();
5979     }
5980 
5981     {
5982       TraceTime t("scrub symbol table", PrintGCDetails, false, gclog_or_tty);
5983       // Clean up unreferenced symbols in symbol table.
5984       SymbolTable::unlink();
5985     }
5986   }
5987 
5988   // CMS doesn't use the StringTable as hard roots when class unloading is turned off.
5989   // Need to check if we really scanned the StringTable.
5990   if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
5991     TraceTime t("scrub string table", PrintGCDetails, false, gclog_or_tty);
5992     // Now clean up stale oops in StringTable
5993     StringTable::unlink(&_is_alive_closure);
5994   }
5995 
5996   verify_work_stacks_empty();
5997   // Restore any preserved marks as a result of mark stack or
5998   // work queue overflow
5999   restore_preserved_marks_if_any();  // done single-threaded for now
6000 
6001   rp->set_enqueuing_is_done(true);
6002   if (rp->processing_is_mt()) {
6003     rp->balance_all_queues();
6004     CMSRefProcTaskExecutor task_executor(*this);
6005     rp->enqueue_discovered_references(&task_executor);
6006   } else {
6007     rp->enqueue_discovered_references(NULL);
6008   }
6009   rp->verify_no_references_recorded();
6010   assert(!rp->discovery_enabled(), "should have been disabled");
6011 }
6012 
6013 #ifndef PRODUCT
6014 void CMSCollector::check_correct_thread_executing() {
6015   Thread* t = Thread::current();
6016   // Only the VM thread or the CMS thread should be here.
6017   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6018          "Unexpected thread type");
6019   // If this is the vm thread, the foreground process
6020   // should not be waiting.  Note that _foregroundGCIsActive is
6021   // true while the foreground collector is waiting.
6022   if (_foregroundGCShouldWait) {
6023     // We cannot be the VM thread
6024     assert(t->is_ConcurrentGC_thread(),
6025            "Should be CMS thread");
6026   } else {
6027     // We can be the CMS thread only if we are in a stop-world
6028     // phase of CMS collection.
6029     if (t->is_ConcurrentGC_thread()) {
6030       assert(_collectorState == InitialMarking ||
6031              _collectorState == FinalMarking,
6032              "Should be a stop-world phase");
6033       // The CMS thread should be holding the CMS_token.
6034       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6035              "Potential interference with concurrently "
6036              "executing VM thread");
6037     }
6038   }
6039 }
6040 #endif
6041 
6042 void CMSCollector::sweep(bool asynch) {
6043   assert(_collectorState == Sweeping, "just checking");
6044   check_correct_thread_executing();
6045   verify_work_stacks_empty();
6046   verify_overflow_empty();
6047   increment_sweep_count();
6048   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6049 
6050   _inter_sweep_timer.stop();
6051   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6052   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6053 
6054   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6055   _intra_sweep_timer.reset();
6056   _intra_sweep_timer.start();
6057   if (asynch) {
6058     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6059     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6060     // First sweep the old gen
6061     {
6062       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6063                                bitMapLock());
6064       sweepWork(_cmsGen, asynch);
6065     }
6066 
6067     // Update Universe::_heap_*_at_gc figures.
6068     // We need all the free list locks to make the abstract state
6069     // transition from Sweeping to Resetting. See detailed note
6070     // further below.
6071     {
6072       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6073       // Update heap occupancy information which is used as
6074       // input to soft ref clearing policy at the next gc.
6075       Universe::update_heap_info_at_gc();
6076       _collectorState = Resizing;
6077     }
6078   } else {
6079     // already have needed locks
6080     sweepWork(_cmsGen,  asynch);
6081     // Update heap occupancy information which is used as
6082     // input to soft ref clearing policy at the next gc.
6083     Universe::update_heap_info_at_gc();
6084     _collectorState = Resizing;
6085   }
6086   verify_work_stacks_empty();
6087   verify_overflow_empty();
6088 
6089   _intra_sweep_timer.stop();
6090   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6091 
6092   _inter_sweep_timer.reset();
6093   _inter_sweep_timer.start();
6094 
6095   // We need to use a monotonically non-deccreasing time in ms
6096   // or we will see time-warp warnings and os::javaTimeMillis()
6097   // does not guarantee monotonicity.
6098   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6099   update_time_of_last_gc(now);
6100 
6101   // NOTE on abstract state transitions:
6102   // Mutators allocate-live and/or mark the mod-union table dirty
6103   // based on the state of the collection.  The former is done in
6104   // the interval [Marking, Sweeping] and the latter in the interval
6105   // [Marking, Sweeping).  Thus the transitions into the Marking state
6106   // and out of the Sweeping state must be synchronously visible
6107   // globally to the mutators.
6108   // The transition into the Marking state happens with the world
6109   // stopped so the mutators will globally see it.  Sweeping is
6110   // done asynchronously by the background collector so the transition
6111   // from the Sweeping state to the Resizing state must be done
6112   // under the freelistLock (as is the check for whether to
6113   // allocate-live and whether to dirty the mod-union table).
6114   assert(_collectorState == Resizing, "Change of collector state to"
6115     " Resizing must be done under the freelistLocks (plural)");
6116 
6117   // Now that sweeping has been completed, we clear
6118   // the incremental_collection_failed flag,
6119   // thus inviting a younger gen collection to promote into
6120   // this generation. If such a promotion may still fail,
6121   // the flag will be set again when a young collection is
6122   // attempted.
6123   GenCollectedHeap* gch = GenCollectedHeap::heap();
6124   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6125   gch->update_full_collections_completed(_collection_count_start);
6126 }
6127 
6128 // FIX ME!!! Looks like this belongs in CFLSpace, with
6129 // CMSGen merely delegating to it.
6130 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6131   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6132   HeapWord*  minAddr        = _cmsSpace->bottom();
6133   HeapWord*  largestAddr    =
6134     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6135   if (largestAddr == NULL) {
6136     // The dictionary appears to be empty.  In this case
6137     // try to coalesce at the end of the heap.
6138     largestAddr = _cmsSpace->end();
6139   }
6140   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6141   size_t nearLargestOffset =
6142     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6143   if (PrintFLSStatistics != 0) {
6144     gclog_or_tty->print_cr(
6145       "CMS: Large Block: " PTR_FORMAT ";"
6146       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6147       largestAddr,
6148       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6149   }
6150   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6151 }
6152 
6153 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6154   return addr >= _cmsSpace->nearLargestChunk();
6155 }
6156 
6157 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6158   return _cmsSpace->find_chunk_at_end();
6159 }
6160 
6161 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6162                                                     bool full) {
6163   // The next lower level has been collected.  Gather any statistics
6164   // that are of interest at this point.
6165   if (!full && (current_level + 1) == level()) {
6166     // Gather statistics on the young generation collection.
6167     collector()->stats().record_gc0_end(used());
6168   }
6169 }
6170 
6171 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6172   GenCollectedHeap* gch = GenCollectedHeap::heap();
6173   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6174     "Wrong type of heap");
6175   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6176     gch->gen_policy()->size_policy();
6177   assert(sp->is_gc_cms_adaptive_size_policy(),
6178     "Wrong type of size policy");
6179   return sp;
6180 }
6181 
6182 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6183   if (PrintGCDetails && Verbose) {
6184     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6185   }
6186   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6187   _debug_collection_type =
6188     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6189   if (PrintGCDetails && Verbose) {
6190     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6191   }
6192 }
6193 
6194 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6195   bool asynch) {
6196   // We iterate over the space(s) underlying this generation,
6197   // checking the mark bit map to see if the bits corresponding
6198   // to specific blocks are marked or not. Blocks that are
6199   // marked are live and are not swept up. All remaining blocks
6200   // are swept up, with coalescing on-the-fly as we sweep up
6201   // contiguous free and/or garbage blocks:
6202   // We need to ensure that the sweeper synchronizes with allocators
6203   // and stop-the-world collectors. In particular, the following
6204   // locks are used:
6205   // . CMS token: if this is held, a stop the world collection cannot occur
6206   // . freelistLock: if this is held no allocation can occur from this
6207   //                 generation by another thread
6208   // . bitMapLock: if this is held, no other thread can access or update
6209   //
6210 
6211   // Note that we need to hold the freelistLock if we use
6212   // block iterate below; else the iterator might go awry if
6213   // a mutator (or promotion) causes block contents to change
6214   // (for instance if the allocator divvies up a block).
6215   // If we hold the free list lock, for all practical purposes
6216   // young generation GC's can't occur (they'll usually need to
6217   // promote), so we might as well prevent all young generation
6218   // GC's while we do a sweeping step. For the same reason, we might
6219   // as well take the bit map lock for the entire duration
6220 
6221   // check that we hold the requisite locks
6222   assert(have_cms_token(), "Should hold cms token");
6223   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6224          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6225         "Should possess CMS token to sweep");
6226   assert_lock_strong(gen->freelistLock());
6227   assert_lock_strong(bitMapLock());
6228 
6229   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6230   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6231   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6232                                       _inter_sweep_estimate.padded_average(),
6233                                       _intra_sweep_estimate.padded_average());
6234   gen->setNearLargestChunk();
6235 
6236   {
6237     SweepClosure sweepClosure(this, gen, &_markBitMap,
6238                             CMSYield && asynch);
6239     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6240     // We need to free-up/coalesce garbage/blocks from a
6241     // co-terminal free run. This is done in the SweepClosure
6242     // destructor; so, do not remove this scope, else the
6243     // end-of-sweep-census below will be off by a little bit.
6244   }
6245   gen->cmsSpace()->sweep_completed();
6246   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6247   if (should_unload_classes()) {                // unloaded classes this cycle,
6248     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6249   } else {                                      // did not unload classes,
6250     _concurrent_cycles_since_last_unload++;     // ... increment count
6251   }
6252 }
6253 
6254 // Reset CMS data structures (for now just the marking bit map)
6255 // preparatory for the next cycle.
6256 void CMSCollector::reset(bool asynch) {
6257   GenCollectedHeap* gch = GenCollectedHeap::heap();
6258   CMSAdaptiveSizePolicy* sp = size_policy();
6259   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6260   if (asynch) {
6261     CMSTokenSyncWithLocks ts(true, bitMapLock());
6262 
6263     // If the state is not "Resetting", the foreground  thread
6264     // has done a collection and the resetting.
6265     if (_collectorState != Resetting) {
6266       assert(_collectorState == Idling, "The state should only change"
6267         " because the foreground collector has finished the collection");
6268       return;
6269     }
6270 
6271     // Clear the mark bitmap (no grey objects to start with)
6272     // for the next cycle.
6273     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6274     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6275 
6276     HeapWord* curAddr = _markBitMap.startWord();
6277     while (curAddr < _markBitMap.endWord()) {
6278       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6279       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6280       _markBitMap.clear_large_range(chunk);
6281       if (ConcurrentMarkSweepThread::should_yield() &&
6282           !foregroundGCIsActive() &&
6283           CMSYield) {
6284         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6285                "CMS thread should hold CMS token");
6286         assert_lock_strong(bitMapLock());
6287         bitMapLock()->unlock();
6288         ConcurrentMarkSweepThread::desynchronize(true);
6289         ConcurrentMarkSweepThread::acknowledge_yield_request();
6290         stopTimer();
6291         if (PrintCMSStatistics != 0) {
6292           incrementYields();
6293         }
6294         icms_wait();
6295 
6296         // See the comment in coordinator_yield()
6297         for (unsigned i = 0; i < CMSYieldSleepCount &&
6298                          ConcurrentMarkSweepThread::should_yield() &&
6299                          !CMSCollector::foregroundGCIsActive(); ++i) {
6300           os::sleep(Thread::current(), 1, false);
6301           ConcurrentMarkSweepThread::acknowledge_yield_request();
6302         }
6303 
6304         ConcurrentMarkSweepThread::synchronize(true);
6305         bitMapLock()->lock_without_safepoint_check();
6306         startTimer();
6307       }
6308       curAddr = chunk.end();
6309     }
6310     // A successful mostly concurrent collection has been done.
6311     // Because only the full (i.e., concurrent mode failure) collections
6312     // are being measured for gc overhead limits, clean the "near" flag
6313     // and count.
6314     sp->reset_gc_overhead_limit_count();
6315     _collectorState = Idling;
6316   } else {
6317     // already have the lock
6318     assert(_collectorState == Resetting, "just checking");
6319     assert_lock_strong(bitMapLock());
6320     _markBitMap.clear_all();
6321     _collectorState = Idling;
6322   }
6323 
6324   // Stop incremental mode after a cycle completes, so that any future cycles
6325   // are triggered by allocation.
6326   stop_icms();
6327 
6328   NOT_PRODUCT(
6329     if (RotateCMSCollectionTypes) {
6330       _cmsGen->rotate_debug_collection_type();
6331     }
6332   )
6333 }
6334 
6335 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6336   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6337   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6338   TraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
6339   TraceCollectorStats tcs(counters());
6340 
6341   switch (op) {
6342     case CMS_op_checkpointRootsInitial: {
6343       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6344       checkpointRootsInitial(true);       // asynch
6345       if (PrintGC) {
6346         _cmsGen->printOccupancy("initial-mark");
6347       }
6348       break;
6349     }
6350     case CMS_op_checkpointRootsFinal: {
6351       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6352       checkpointRootsFinal(true,    // asynch
6353                            false,   // !clear_all_soft_refs
6354                            false);  // !init_mark_was_synchronous
6355       if (PrintGC) {
6356         _cmsGen->printOccupancy("remark");
6357       }
6358       break;
6359     }
6360     default:
6361       fatal("No such CMS_op");
6362   }
6363 }
6364 
6365 #ifndef PRODUCT
6366 size_t const CMSCollector::skip_header_HeapWords() {
6367   return FreeChunk::header_size();
6368 }
6369 
6370 // Try and collect here conditions that should hold when
6371 // CMS thread is exiting. The idea is that the foreground GC
6372 // thread should not be blocked if it wants to terminate
6373 // the CMS thread and yet continue to run the VM for a while
6374 // after that.
6375 void CMSCollector::verify_ok_to_terminate() const {
6376   assert(Thread::current()->is_ConcurrentGC_thread(),
6377          "should be called by CMS thread");
6378   assert(!_foregroundGCShouldWait, "should be false");
6379   // We could check here that all the various low-level locks
6380   // are not held by the CMS thread, but that is overkill; see
6381   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6382   // is checked.
6383 }
6384 #endif
6385 
6386 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6387    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6388           "missing Printezis mark?");
6389   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6390   size_t size = pointer_delta(nextOneAddr + 1, addr);
6391   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6392          "alignment problem");
6393   assert(size >= 3, "Necessary for Printezis marks to work");
6394   return size;
6395 }
6396 
6397 // A variant of the above (block_size_using_printezis_bits()) except
6398 // that we return 0 if the P-bits are not yet set.
6399 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6400   if (_markBitMap.isMarked(addr + 1)) {
6401     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6402     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6403     size_t size = pointer_delta(nextOneAddr + 1, addr);
6404     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6405            "alignment problem");
6406     assert(size >= 3, "Necessary for Printezis marks to work");
6407     return size;
6408   }
6409   return 0;
6410 }
6411 
6412 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6413   size_t sz = 0;
6414   oop p = (oop)addr;
6415   if (p->klass_or_null() != NULL) {
6416     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6417   } else {
6418     sz = block_size_using_printezis_bits(addr);
6419   }
6420   assert(sz > 0, "size must be nonzero");
6421   HeapWord* next_block = addr + sz;
6422   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6423                                              CardTableModRefBS::card_size);
6424   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6425          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6426          "must be different cards");
6427   return next_card;
6428 }
6429 
6430 
6431 // CMS Bit Map Wrapper /////////////////////////////////////////
6432 
6433 // Construct a CMS bit map infrastructure, but don't create the
6434 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6435 // further below.
6436 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6437   _bm(),
6438   _shifter(shifter),
6439   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6440 {
6441   _bmStartWord = 0;
6442   _bmWordSize  = 0;
6443 }
6444 
6445 bool CMSBitMap::allocate(MemRegion mr) {
6446   _bmStartWord = mr.start();
6447   _bmWordSize  = mr.word_size();
6448   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6449                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6450   if (!brs.is_reserved()) {
6451     warning("CMS bit map allocation failure");
6452     return false;
6453   }
6454   // For now we'll just commit all of the bit map up fromt.
6455   // Later on we'll try to be more parsimonious with swap.
6456   if (!_virtual_space.initialize(brs, brs.size())) {
6457     warning("CMS bit map backing store failure");
6458     return false;
6459   }
6460   assert(_virtual_space.committed_size() == brs.size(),
6461          "didn't reserve backing store for all of CMS bit map?");
6462   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6463   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6464          _bmWordSize, "inconsistency in bit map sizing");
6465   _bm.set_size(_bmWordSize >> _shifter);
6466 
6467   // bm.clear(); // can we rely on getting zero'd memory? verify below
6468   assert(isAllClear(),
6469          "Expected zero'd memory from ReservedSpace constructor");
6470   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6471          "consistency check");
6472   return true;
6473 }
6474 
6475 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6476   HeapWord *next_addr, *end_addr, *last_addr;
6477   assert_locked();
6478   assert(covers(mr), "out-of-range error");
6479   // XXX assert that start and end are appropriately aligned
6480   for (next_addr = mr.start(), end_addr = mr.end();
6481        next_addr < end_addr; next_addr = last_addr) {
6482     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6483     last_addr = dirty_region.end();
6484     if (!dirty_region.is_empty()) {
6485       cl->do_MemRegion(dirty_region);
6486     } else {
6487       assert(last_addr == end_addr, "program logic");
6488       return;
6489     }
6490   }
6491 }
6492 
6493 #ifndef PRODUCT
6494 void CMSBitMap::assert_locked() const {
6495   CMSLockVerifier::assert_locked(lock());
6496 }
6497 
6498 bool CMSBitMap::covers(MemRegion mr) const {
6499   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6500   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6501          "size inconsistency");
6502   return (mr.start() >= _bmStartWord) &&
6503          (mr.end()   <= endWord());
6504 }
6505 
6506 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6507     return (start >= _bmStartWord && (start + size) <= endWord());
6508 }
6509 
6510 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6511   // verify that there are no 1 bits in the interval [left, right)
6512   FalseBitMapClosure falseBitMapClosure;
6513   iterate(&falseBitMapClosure, left, right);
6514 }
6515 
6516 void CMSBitMap::region_invariant(MemRegion mr)
6517 {
6518   assert_locked();
6519   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6520   assert(!mr.is_empty(), "unexpected empty region");
6521   assert(covers(mr), "mr should be covered by bit map");
6522   // convert address range into offset range
6523   size_t start_ofs = heapWordToOffset(mr.start());
6524   // Make sure that end() is appropriately aligned
6525   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6526                         (1 << (_shifter+LogHeapWordSize))),
6527          "Misaligned mr.end()");
6528   size_t end_ofs   = heapWordToOffset(mr.end());
6529   assert(end_ofs > start_ofs, "Should mark at least one bit");
6530 }
6531 
6532 #endif
6533 
6534 bool CMSMarkStack::allocate(size_t size) {
6535   // allocate a stack of the requisite depth
6536   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6537                    size * sizeof(oop)));
6538   if (!rs.is_reserved()) {
6539     warning("CMSMarkStack allocation failure");
6540     return false;
6541   }
6542   if (!_virtual_space.initialize(rs, rs.size())) {
6543     warning("CMSMarkStack backing store failure");
6544     return false;
6545   }
6546   assert(_virtual_space.committed_size() == rs.size(),
6547          "didn't reserve backing store for all of CMS stack?");
6548   _base = (oop*)(_virtual_space.low());
6549   _index = 0;
6550   _capacity = size;
6551   NOT_PRODUCT(_max_depth = 0);
6552   return true;
6553 }
6554 
6555 // XXX FIX ME !!! In the MT case we come in here holding a
6556 // leaf lock. For printing we need to take a further lock
6557 // which has lower rank. We need to recallibrate the two
6558 // lock-ranks involved in order to be able to rpint the
6559 // messages below. (Or defer the printing to the caller.
6560 // For now we take the expedient path of just disabling the
6561 // messages for the problematic case.)
6562 void CMSMarkStack::expand() {
6563   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6564   if (_capacity == MarkStackSizeMax) {
6565     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6566       // We print a warning message only once per CMS cycle.
6567       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6568     }
6569     return;
6570   }
6571   // Double capacity if possible
6572   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6573   // Do not give up existing stack until we have managed to
6574   // get the double capacity that we desired.
6575   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6576                    new_capacity * sizeof(oop)));
6577   if (rs.is_reserved()) {
6578     // Release the backing store associated with old stack
6579     _virtual_space.release();
6580     // Reinitialize virtual space for new stack
6581     if (!_virtual_space.initialize(rs, rs.size())) {
6582       fatal("Not enough swap for expanded marking stack");
6583     }
6584     _base = (oop*)(_virtual_space.low());
6585     _index = 0;
6586     _capacity = new_capacity;
6587   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6588     // Failed to double capacity, continue;
6589     // we print a detail message only once per CMS cycle.
6590     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6591             SIZE_FORMAT"K",
6592             _capacity / K, new_capacity / K);
6593   }
6594 }
6595 
6596 
6597 // Closures
6598 // XXX: there seems to be a lot of code  duplication here;
6599 // should refactor and consolidate common code.
6600 
6601 // This closure is used to mark refs into the CMS generation in
6602 // the CMS bit map. Called at the first checkpoint. This closure
6603 // assumes that we do not need to re-mark dirty cards; if the CMS
6604 // generation on which this is used is not an oldest
6605 // generation then this will lose younger_gen cards!
6606 
6607 MarkRefsIntoClosure::MarkRefsIntoClosure(
6608   MemRegion span, CMSBitMap* bitMap):
6609     _span(span),
6610     _bitMap(bitMap)
6611 {
6612     assert(_ref_processor == NULL, "deliberately left NULL");
6613     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6614 }
6615 
6616 void MarkRefsIntoClosure::do_oop(oop obj) {
6617   // if p points into _span, then mark corresponding bit in _markBitMap
6618   assert(obj->is_oop(), "expected an oop");
6619   HeapWord* addr = (HeapWord*)obj;
6620   if (_span.contains(addr)) {
6621     // this should be made more efficient
6622     _bitMap->mark(addr);
6623   }
6624 }
6625 
6626 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6627 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6628 
6629 // A variant of the above, used for CMS marking verification.
6630 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6631   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6632     _span(span),
6633     _verification_bm(verification_bm),
6634     _cms_bm(cms_bm)
6635 {
6636     assert(_ref_processor == NULL, "deliberately left NULL");
6637     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6638 }
6639 
6640 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6641   // if p points into _span, then mark corresponding bit in _markBitMap
6642   assert(obj->is_oop(), "expected an oop");
6643   HeapWord* addr = (HeapWord*)obj;
6644   if (_span.contains(addr)) {
6645     _verification_bm->mark(addr);
6646     if (!_cms_bm->isMarked(addr)) {
6647       oop(addr)->print();
6648       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6649       fatal("... aborting");
6650     }
6651   }
6652 }
6653 
6654 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6655 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6656 
6657 //////////////////////////////////////////////////
6658 // MarkRefsIntoAndScanClosure
6659 //////////////////////////////////////////////////
6660 
6661 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6662                                                        ReferenceProcessor* rp,
6663                                                        CMSBitMap* bit_map,
6664                                                        CMSBitMap* mod_union_table,
6665                                                        CMSMarkStack*  mark_stack,
6666                                                        CMSCollector* collector,
6667                                                        bool should_yield,
6668                                                        bool concurrent_precleaning):
6669   _collector(collector),
6670   _span(span),
6671   _bit_map(bit_map),
6672   _mark_stack(mark_stack),
6673   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6674                       mark_stack, concurrent_precleaning),
6675   _yield(should_yield),
6676   _concurrent_precleaning(concurrent_precleaning),
6677   _freelistLock(NULL)
6678 {
6679   _ref_processor = rp;
6680   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6681 }
6682 
6683 // This closure is used to mark refs into the CMS generation at the
6684 // second (final) checkpoint, and to scan and transitively follow
6685 // the unmarked oops. It is also used during the concurrent precleaning
6686 // phase while scanning objects on dirty cards in the CMS generation.
6687 // The marks are made in the marking bit map and the marking stack is
6688 // used for keeping the (newly) grey objects during the scan.
6689 // The parallel version (Par_...) appears further below.
6690 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6691   if (obj != NULL) {
6692     assert(obj->is_oop(), "expected an oop");
6693     HeapWord* addr = (HeapWord*)obj;
6694     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6695     assert(_collector->overflow_list_is_empty(),
6696            "overflow list should be empty");
6697     if (_span.contains(addr) &&
6698         !_bit_map->isMarked(addr)) {
6699       // mark bit map (object is now grey)
6700       _bit_map->mark(addr);
6701       // push on marking stack (stack should be empty), and drain the
6702       // stack by applying this closure to the oops in the oops popped
6703       // from the stack (i.e. blacken the grey objects)
6704       bool res = _mark_stack->push(obj);
6705       assert(res, "Should have space to push on empty stack");
6706       do {
6707         oop new_oop = _mark_stack->pop();
6708         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6709         assert(_bit_map->isMarked((HeapWord*)new_oop),
6710                "only grey objects on this stack");
6711         // iterate over the oops in this oop, marking and pushing
6712         // the ones in CMS heap (i.e. in _span).
6713         new_oop->oop_iterate(&_pushAndMarkClosure);
6714         // check if it's time to yield
6715         do_yield_check();
6716       } while (!_mark_stack->isEmpty() ||
6717                (!_concurrent_precleaning && take_from_overflow_list()));
6718         // if marking stack is empty, and we are not doing this
6719         // during precleaning, then check the overflow list
6720     }
6721     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6722     assert(_collector->overflow_list_is_empty(),
6723            "overflow list was drained above");
6724     // We could restore evacuated mark words, if any, used for
6725     // overflow list links here because the overflow list is
6726     // provably empty here. That would reduce the maximum
6727     // size requirements for preserved_{oop,mark}_stack.
6728     // But we'll just postpone it until we are all done
6729     // so we can just stream through.
6730     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6731       _collector->restore_preserved_marks_if_any();
6732       assert(_collector->no_preserved_marks(), "No preserved marks");
6733     }
6734     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6735            "All preserved marks should have been restored above");
6736   }
6737 }
6738 
6739 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6740 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6741 
6742 void MarkRefsIntoAndScanClosure::do_yield_work() {
6743   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6744          "CMS thread should hold CMS token");
6745   assert_lock_strong(_freelistLock);
6746   assert_lock_strong(_bit_map->lock());
6747   // relinquish the free_list_lock and bitMaplock()
6748   _bit_map->lock()->unlock();
6749   _freelistLock->unlock();
6750   ConcurrentMarkSweepThread::desynchronize(true);
6751   ConcurrentMarkSweepThread::acknowledge_yield_request();
6752   _collector->stopTimer();
6753   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6754   if (PrintCMSStatistics != 0) {
6755     _collector->incrementYields();
6756   }
6757   _collector->icms_wait();
6758 
6759   // See the comment in coordinator_yield()
6760   for (unsigned i = 0;
6761        i < CMSYieldSleepCount &&
6762        ConcurrentMarkSweepThread::should_yield() &&
6763        !CMSCollector::foregroundGCIsActive();
6764        ++i) {
6765     os::sleep(Thread::current(), 1, false);
6766     ConcurrentMarkSweepThread::acknowledge_yield_request();
6767   }
6768 
6769   ConcurrentMarkSweepThread::synchronize(true);
6770   _freelistLock->lock_without_safepoint_check();
6771   _bit_map->lock()->lock_without_safepoint_check();
6772   _collector->startTimer();
6773 }
6774 
6775 ///////////////////////////////////////////////////////////
6776 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6777 //                                 MarkRefsIntoAndScanClosure
6778 ///////////////////////////////////////////////////////////
6779 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6780   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6781   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6782   _span(span),
6783   _bit_map(bit_map),
6784   _work_queue(work_queue),
6785   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6786                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6787   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6788 {
6789   _ref_processor = rp;
6790   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6791 }
6792 
6793 // This closure is used to mark refs into the CMS generation at the
6794 // second (final) checkpoint, and to scan and transitively follow
6795 // the unmarked oops. The marks are made in the marking bit map and
6796 // the work_queue is used for keeping the (newly) grey objects during
6797 // the scan phase whence they are also available for stealing by parallel
6798 // threads. Since the marking bit map is shared, updates are
6799 // synchronized (via CAS).
6800 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6801   if (obj != NULL) {
6802     // Ignore mark word because this could be an already marked oop
6803     // that may be chained at the end of the overflow list.
6804     assert(obj->is_oop(true), "expected an oop");
6805     HeapWord* addr = (HeapWord*)obj;
6806     if (_span.contains(addr) &&
6807         !_bit_map->isMarked(addr)) {
6808       // mark bit map (object will become grey):
6809       // It is possible for several threads to be
6810       // trying to "claim" this object concurrently;
6811       // the unique thread that succeeds in marking the
6812       // object first will do the subsequent push on
6813       // to the work queue (or overflow list).
6814       if (_bit_map->par_mark(addr)) {
6815         // push on work_queue (which may not be empty), and trim the
6816         // queue to an appropriate length by applying this closure to
6817         // the oops in the oops popped from the stack (i.e. blacken the
6818         // grey objects)
6819         bool res = _work_queue->push(obj);
6820         assert(res, "Low water mark should be less than capacity?");
6821         trim_queue(_low_water_mark);
6822       } // Else, another thread claimed the object
6823     }
6824   }
6825 }
6826 
6827 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6828 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6829 
6830 // This closure is used to rescan the marked objects on the dirty cards
6831 // in the mod union table and the card table proper.
6832 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6833   oop p, MemRegion mr) {
6834 
6835   size_t size = 0;
6836   HeapWord* addr = (HeapWord*)p;
6837   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6838   assert(_span.contains(addr), "we are scanning the CMS generation");
6839   // check if it's time to yield
6840   if (do_yield_check()) {
6841     // We yielded for some foreground stop-world work,
6842     // and we have been asked to abort this ongoing preclean cycle.
6843     return 0;
6844   }
6845   if (_bitMap->isMarked(addr)) {
6846     // it's marked; is it potentially uninitialized?
6847     if (p->klass_or_null() != NULL) {
6848         // an initialized object; ignore mark word in verification below
6849         // since we are running concurrent with mutators
6850         assert(p->is_oop(true), "should be an oop");
6851         if (p->is_objArray()) {
6852           // objArrays are precisely marked; restrict scanning
6853           // to dirty cards only.
6854           size = CompactibleFreeListSpace::adjustObjectSize(
6855                    p->oop_iterate(_scanningClosure, mr));
6856         } else {
6857           // A non-array may have been imprecisely marked; we need
6858           // to scan object in its entirety.
6859           size = CompactibleFreeListSpace::adjustObjectSize(
6860                    p->oop_iterate(_scanningClosure));
6861         }
6862         #ifdef DEBUG
6863           size_t direct_size =
6864             CompactibleFreeListSpace::adjustObjectSize(p->size());
6865           assert(size == direct_size, "Inconsistency in size");
6866           assert(size >= 3, "Necessary for Printezis marks to work");
6867           if (!_bitMap->isMarked(addr+1)) {
6868             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6869           } else {
6870             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6871             assert(_bitMap->isMarked(addr+size-1),
6872                    "inconsistent Printezis mark");
6873           }
6874         #endif // DEBUG
6875     } else {
6876       // an unitialized object
6877       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6878       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6879       size = pointer_delta(nextOneAddr + 1, addr);
6880       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6881              "alignment problem");
6882       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6883       // will dirty the card when the klass pointer is installed in the
6884       // object (signalling the completion of initialization).
6885     }
6886   } else {
6887     // Either a not yet marked object or an uninitialized object
6888     if (p->klass_or_null() == NULL) {
6889       // An uninitialized object, skip to the next card, since
6890       // we may not be able to read its P-bits yet.
6891       assert(size == 0, "Initial value");
6892     } else {
6893       // An object not (yet) reached by marking: we merely need to
6894       // compute its size so as to go look at the next block.
6895       assert(p->is_oop(true), "should be an oop");
6896       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6897     }
6898   }
6899   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6900   return size;
6901 }
6902 
6903 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6904   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6905          "CMS thread should hold CMS token");
6906   assert_lock_strong(_freelistLock);
6907   assert_lock_strong(_bitMap->lock());
6908   // relinquish the free_list_lock and bitMaplock()
6909   _bitMap->lock()->unlock();
6910   _freelistLock->unlock();
6911   ConcurrentMarkSweepThread::desynchronize(true);
6912   ConcurrentMarkSweepThread::acknowledge_yield_request();
6913   _collector->stopTimer();
6914   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6915   if (PrintCMSStatistics != 0) {
6916     _collector->incrementYields();
6917   }
6918   _collector->icms_wait();
6919 
6920   // See the comment in coordinator_yield()
6921   for (unsigned i = 0; i < CMSYieldSleepCount &&
6922                    ConcurrentMarkSweepThread::should_yield() &&
6923                    !CMSCollector::foregroundGCIsActive(); ++i) {
6924     os::sleep(Thread::current(), 1, false);
6925     ConcurrentMarkSweepThread::acknowledge_yield_request();
6926   }
6927 
6928   ConcurrentMarkSweepThread::synchronize(true);
6929   _freelistLock->lock_without_safepoint_check();
6930   _bitMap->lock()->lock_without_safepoint_check();
6931   _collector->startTimer();
6932 }
6933 
6934 
6935 //////////////////////////////////////////////////////////////////
6936 // SurvivorSpacePrecleanClosure
6937 //////////////////////////////////////////////////////////////////
6938 // This (single-threaded) closure is used to preclean the oops in
6939 // the survivor spaces.
6940 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6941 
6942   HeapWord* addr = (HeapWord*)p;
6943   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6944   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6945   assert(p->klass_or_null() != NULL, "object should be initializd");
6946   // an initialized object; ignore mark word in verification below
6947   // since we are running concurrent with mutators
6948   assert(p->is_oop(true), "should be an oop");
6949   // Note that we do not yield while we iterate over
6950   // the interior oops of p, pushing the relevant ones
6951   // on our marking stack.
6952   size_t size = p->oop_iterate(_scanning_closure);
6953   do_yield_check();
6954   // Observe that below, we do not abandon the preclean
6955   // phase as soon as we should; rather we empty the
6956   // marking stack before returning. This is to satisfy
6957   // some existing assertions. In general, it may be a
6958   // good idea to abort immediately and complete the marking
6959   // from the grey objects at a later time.
6960   while (!_mark_stack->isEmpty()) {
6961     oop new_oop = _mark_stack->pop();
6962     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6963     assert(_bit_map->isMarked((HeapWord*)new_oop),
6964            "only grey objects on this stack");
6965     // iterate over the oops in this oop, marking and pushing
6966     // the ones in CMS heap (i.e. in _span).
6967     new_oop->oop_iterate(_scanning_closure);
6968     // check if it's time to yield
6969     do_yield_check();
6970   }
6971   unsigned int after_count =
6972     GenCollectedHeap::heap()->total_collections();
6973   bool abort = (_before_count != after_count) ||
6974                _collector->should_abort_preclean();
6975   return abort ? 0 : size;
6976 }
6977 
6978 void SurvivorSpacePrecleanClosure::do_yield_work() {
6979   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6980          "CMS thread should hold CMS token");
6981   assert_lock_strong(_bit_map->lock());
6982   // Relinquish the bit map lock
6983   _bit_map->lock()->unlock();
6984   ConcurrentMarkSweepThread::desynchronize(true);
6985   ConcurrentMarkSweepThread::acknowledge_yield_request();
6986   _collector->stopTimer();
6987   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6988   if (PrintCMSStatistics != 0) {
6989     _collector->incrementYields();
6990   }
6991   _collector->icms_wait();
6992 
6993   // See the comment in coordinator_yield()
6994   for (unsigned i = 0; i < CMSYieldSleepCount &&
6995                        ConcurrentMarkSweepThread::should_yield() &&
6996                        !CMSCollector::foregroundGCIsActive(); ++i) {
6997     os::sleep(Thread::current(), 1, false);
6998     ConcurrentMarkSweepThread::acknowledge_yield_request();
6999   }
7000 
7001   ConcurrentMarkSweepThread::synchronize(true);
7002   _bit_map->lock()->lock_without_safepoint_check();
7003   _collector->startTimer();
7004 }
7005 
7006 // This closure is used to rescan the marked objects on the dirty cards
7007 // in the mod union table and the card table proper. In the parallel
7008 // case, although the bitMap is shared, we do a single read so the
7009 // isMarked() query is "safe".
7010 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7011   // Ignore mark word because we are running concurrent with mutators
7012   assert(p->is_oop_or_null(true), "expected an oop or null");
7013   HeapWord* addr = (HeapWord*)p;
7014   assert(_span.contains(addr), "we are scanning the CMS generation");
7015   bool is_obj_array = false;
7016   #ifdef DEBUG
7017     if (!_parallel) {
7018       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7019       assert(_collector->overflow_list_is_empty(),
7020              "overflow list should be empty");
7021 
7022     }
7023   #endif // DEBUG
7024   if (_bit_map->isMarked(addr)) {
7025     // Obj arrays are precisely marked, non-arrays are not;
7026     // so we scan objArrays precisely and non-arrays in their
7027     // entirety.
7028     if (p->is_objArray()) {
7029       is_obj_array = true;
7030       if (_parallel) {
7031         p->oop_iterate(_par_scan_closure, mr);
7032       } else {
7033         p->oop_iterate(_scan_closure, mr);
7034       }
7035     } else {
7036       if (_parallel) {
7037         p->oop_iterate(_par_scan_closure);
7038       } else {
7039         p->oop_iterate(_scan_closure);
7040       }
7041     }
7042   }
7043   #ifdef DEBUG
7044     if (!_parallel) {
7045       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7046       assert(_collector->overflow_list_is_empty(),
7047              "overflow list should be empty");
7048 
7049     }
7050   #endif // DEBUG
7051   return is_obj_array;
7052 }
7053 
7054 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7055                         MemRegion span,
7056                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7057                         bool should_yield, bool verifying):
7058   _collector(collector),
7059   _span(span),
7060   _bitMap(bitMap),
7061   _mut(&collector->_modUnionTable),
7062   _markStack(markStack),
7063   _yield(should_yield),
7064   _skipBits(0)
7065 {
7066   assert(_markStack->isEmpty(), "stack should be empty");
7067   _finger = _bitMap->startWord();
7068   _threshold = _finger;
7069   assert(_collector->_restart_addr == NULL, "Sanity check");
7070   assert(_span.contains(_finger), "Out of bounds _finger?");
7071   DEBUG_ONLY(_verifying = verifying;)
7072 }
7073 
7074 void MarkFromRootsClosure::reset(HeapWord* addr) {
7075   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7076   assert(_span.contains(addr), "Out of bounds _finger?");
7077   _finger = addr;
7078   _threshold = (HeapWord*)round_to(
7079                  (intptr_t)_finger, CardTableModRefBS::card_size);
7080 }
7081 
7082 // Should revisit to see if this should be restructured for
7083 // greater efficiency.
7084 bool MarkFromRootsClosure::do_bit(size_t offset) {
7085   if (_skipBits > 0) {
7086     _skipBits--;
7087     return true;
7088   }
7089   // convert offset into a HeapWord*
7090   HeapWord* addr = _bitMap->startWord() + offset;
7091   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7092          "address out of range");
7093   assert(_bitMap->isMarked(addr), "tautology");
7094   if (_bitMap->isMarked(addr+1)) {
7095     // this is an allocated but not yet initialized object
7096     assert(_skipBits == 0, "tautology");
7097     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7098     oop p = oop(addr);
7099     if (p->klass_or_null() == NULL) {
7100       DEBUG_ONLY(if (!_verifying) {)
7101         // We re-dirty the cards on which this object lies and increase
7102         // the _threshold so that we'll come back to scan this object
7103         // during the preclean or remark phase. (CMSCleanOnEnter)
7104         if (CMSCleanOnEnter) {
7105           size_t sz = _collector->block_size_using_printezis_bits(addr);
7106           HeapWord* end_card_addr   = (HeapWord*)round_to(
7107                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7108           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7109           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7110           // Bump _threshold to end_card_addr; note that
7111           // _threshold cannot possibly exceed end_card_addr, anyhow.
7112           // This prevents future clearing of the card as the scan proceeds
7113           // to the right.
7114           assert(_threshold <= end_card_addr,
7115                  "Because we are just scanning into this object");
7116           if (_threshold < end_card_addr) {
7117             _threshold = end_card_addr;
7118           }
7119           if (p->klass_or_null() != NULL) {
7120             // Redirty the range of cards...
7121             _mut->mark_range(redirty_range);
7122           } // ...else the setting of klass will dirty the card anyway.
7123         }
7124       DEBUG_ONLY(})
7125       return true;
7126     }
7127   }
7128   scanOopsInOop(addr);
7129   return true;
7130 }
7131 
7132 // We take a break if we've been at this for a while,
7133 // so as to avoid monopolizing the locks involved.
7134 void MarkFromRootsClosure::do_yield_work() {
7135   // First give up the locks, then yield, then re-lock
7136   // We should probably use a constructor/destructor idiom to
7137   // do this unlock/lock or modify the MutexUnlocker class to
7138   // serve our purpose. XXX
7139   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7140          "CMS thread should hold CMS token");
7141   assert_lock_strong(_bitMap->lock());
7142   _bitMap->lock()->unlock();
7143   ConcurrentMarkSweepThread::desynchronize(true);
7144   ConcurrentMarkSweepThread::acknowledge_yield_request();
7145   _collector->stopTimer();
7146   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7147   if (PrintCMSStatistics != 0) {
7148     _collector->incrementYields();
7149   }
7150   _collector->icms_wait();
7151 
7152   // See the comment in coordinator_yield()
7153   for (unsigned i = 0; i < CMSYieldSleepCount &&
7154                        ConcurrentMarkSweepThread::should_yield() &&
7155                        !CMSCollector::foregroundGCIsActive(); ++i) {
7156     os::sleep(Thread::current(), 1, false);
7157     ConcurrentMarkSweepThread::acknowledge_yield_request();
7158   }
7159 
7160   ConcurrentMarkSweepThread::synchronize(true);
7161   _bitMap->lock()->lock_without_safepoint_check();
7162   _collector->startTimer();
7163 }
7164 
7165 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7166   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7167   assert(_markStack->isEmpty(),
7168          "should drain stack to limit stack usage");
7169   // convert ptr to an oop preparatory to scanning
7170   oop obj = oop(ptr);
7171   // Ignore mark word in verification below, since we
7172   // may be running concurrent with mutators.
7173   assert(obj->is_oop(true), "should be an oop");
7174   assert(_finger <= ptr, "_finger runneth ahead");
7175   // advance the finger to right end of this object
7176   _finger = ptr + obj->size();
7177   assert(_finger > ptr, "we just incremented it above");
7178   // On large heaps, it may take us some time to get through
7179   // the marking phase (especially if running iCMS). During
7180   // this time it's possible that a lot of mutations have
7181   // accumulated in the card table and the mod union table --
7182   // these mutation records are redundant until we have
7183   // actually traced into the corresponding card.
7184   // Here, we check whether advancing the finger would make
7185   // us cross into a new card, and if so clear corresponding
7186   // cards in the MUT (preclean them in the card-table in the
7187   // future).
7188 
7189   DEBUG_ONLY(if (!_verifying) {)
7190     // The clean-on-enter optimization is disabled by default,
7191     // until we fix 6178663.
7192     if (CMSCleanOnEnter && (_finger > _threshold)) {
7193       // [_threshold, _finger) represents the interval
7194       // of cards to be cleared  in MUT (or precleaned in card table).
7195       // The set of cards to be cleared is all those that overlap
7196       // with the interval [_threshold, _finger); note that
7197       // _threshold is always kept card-aligned but _finger isn't
7198       // always card-aligned.
7199       HeapWord* old_threshold = _threshold;
7200       assert(old_threshold == (HeapWord*)round_to(
7201               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7202              "_threshold should always be card-aligned");
7203       _threshold = (HeapWord*)round_to(
7204                      (intptr_t)_finger, CardTableModRefBS::card_size);
7205       MemRegion mr(old_threshold, _threshold);
7206       assert(!mr.is_empty(), "Control point invariant");
7207       assert(_span.contains(mr), "Should clear within span");
7208       _mut->clear_range(mr);
7209     }
7210   DEBUG_ONLY(})
7211   // Note: the finger doesn't advance while we drain
7212   // the stack below.
7213   PushOrMarkClosure pushOrMarkClosure(_collector,
7214                                       _span, _bitMap, _markStack,
7215                                       _finger, this);
7216   bool res = _markStack->push(obj);
7217   assert(res, "Empty non-zero size stack should have space for single push");
7218   while (!_markStack->isEmpty()) {
7219     oop new_oop = _markStack->pop();
7220     // Skip verifying header mark word below because we are
7221     // running concurrent with mutators.
7222     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7223     // now scan this oop's oops
7224     new_oop->oop_iterate(&pushOrMarkClosure);
7225     do_yield_check();
7226   }
7227   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7228 }
7229 
7230 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7231                        CMSCollector* collector, MemRegion span,
7232                        CMSBitMap* bit_map,
7233                        OopTaskQueue* work_queue,
7234                        CMSMarkStack*  overflow_stack,
7235                        bool should_yield):
7236   _collector(collector),
7237   _whole_span(collector->_span),
7238   _span(span),
7239   _bit_map(bit_map),
7240   _mut(&collector->_modUnionTable),
7241   _work_queue(work_queue),
7242   _overflow_stack(overflow_stack),
7243   _yield(should_yield),
7244   _skip_bits(0),
7245   _task(task)
7246 {
7247   assert(_work_queue->size() == 0, "work_queue should be empty");
7248   _finger = span.start();
7249   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7250   assert(_span.contains(_finger), "Out of bounds _finger?");
7251 }
7252 
7253 // Should revisit to see if this should be restructured for
7254 // greater efficiency.
7255 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7256   if (_skip_bits > 0) {
7257     _skip_bits--;
7258     return true;
7259   }
7260   // convert offset into a HeapWord*
7261   HeapWord* addr = _bit_map->startWord() + offset;
7262   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7263          "address out of range");
7264   assert(_bit_map->isMarked(addr), "tautology");
7265   if (_bit_map->isMarked(addr+1)) {
7266     // this is an allocated object that might not yet be initialized
7267     assert(_skip_bits == 0, "tautology");
7268     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7269     oop p = oop(addr);
7270     if (p->klass_or_null() == NULL) {
7271       // in the case of Clean-on-Enter optimization, redirty card
7272       // and avoid clearing card by increasing  the threshold.
7273       return true;
7274     }
7275   }
7276   scan_oops_in_oop(addr);
7277   return true;
7278 }
7279 
7280 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7281   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7282   // Should we assert that our work queue is empty or
7283   // below some drain limit?
7284   assert(_work_queue->size() == 0,
7285          "should drain stack to limit stack usage");
7286   // convert ptr to an oop preparatory to scanning
7287   oop obj = oop(ptr);
7288   // Ignore mark word in verification below, since we
7289   // may be running concurrent with mutators.
7290   assert(obj->is_oop(true), "should be an oop");
7291   assert(_finger <= ptr, "_finger runneth ahead");
7292   // advance the finger to right end of this object
7293   _finger = ptr + obj->size();
7294   assert(_finger > ptr, "we just incremented it above");
7295   // On large heaps, it may take us some time to get through
7296   // the marking phase (especially if running iCMS). During
7297   // this time it's possible that a lot of mutations have
7298   // accumulated in the card table and the mod union table --
7299   // these mutation records are redundant until we have
7300   // actually traced into the corresponding card.
7301   // Here, we check whether advancing the finger would make
7302   // us cross into a new card, and if so clear corresponding
7303   // cards in the MUT (preclean them in the card-table in the
7304   // future).
7305 
7306   // The clean-on-enter optimization is disabled by default,
7307   // until we fix 6178663.
7308   if (CMSCleanOnEnter && (_finger > _threshold)) {
7309     // [_threshold, _finger) represents the interval
7310     // of cards to be cleared  in MUT (or precleaned in card table).
7311     // The set of cards to be cleared is all those that overlap
7312     // with the interval [_threshold, _finger); note that
7313     // _threshold is always kept card-aligned but _finger isn't
7314     // always card-aligned.
7315     HeapWord* old_threshold = _threshold;
7316     assert(old_threshold == (HeapWord*)round_to(
7317             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7318            "_threshold should always be card-aligned");
7319     _threshold = (HeapWord*)round_to(
7320                    (intptr_t)_finger, CardTableModRefBS::card_size);
7321     MemRegion mr(old_threshold, _threshold);
7322     assert(!mr.is_empty(), "Control point invariant");
7323     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7324     _mut->clear_range(mr);
7325   }
7326 
7327   // Note: the local finger doesn't advance while we drain
7328   // the stack below, but the global finger sure can and will.
7329   HeapWord** gfa = _task->global_finger_addr();
7330   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7331                                       _span, _bit_map,
7332                                       _work_queue,
7333                                       _overflow_stack,
7334                                       _finger,
7335                                       gfa, this);
7336   bool res = _work_queue->push(obj);   // overflow could occur here
7337   assert(res, "Will hold once we use workqueues");
7338   while (true) {
7339     oop new_oop;
7340     if (!_work_queue->pop_local(new_oop)) {
7341       // We emptied our work_queue; check if there's stuff that can
7342       // be gotten from the overflow stack.
7343       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7344             _overflow_stack, _work_queue)) {
7345         do_yield_check();
7346         continue;
7347       } else {  // done
7348         break;
7349       }
7350     }
7351     // Skip verifying header mark word below because we are
7352     // running concurrent with mutators.
7353     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7354     // now scan this oop's oops
7355     new_oop->oop_iterate(&pushOrMarkClosure);
7356     do_yield_check();
7357   }
7358   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7359 }
7360 
7361 // Yield in response to a request from VM Thread or
7362 // from mutators.
7363 void Par_MarkFromRootsClosure::do_yield_work() {
7364   assert(_task != NULL, "sanity");
7365   _task->yield();
7366 }
7367 
7368 // A variant of the above used for verifying CMS marking work.
7369 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7370                         MemRegion span,
7371                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7372                         CMSMarkStack*  mark_stack):
7373   _collector(collector),
7374   _span(span),
7375   _verification_bm(verification_bm),
7376   _cms_bm(cms_bm),
7377   _mark_stack(mark_stack),
7378   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7379                       mark_stack)
7380 {
7381   assert(_mark_stack->isEmpty(), "stack should be empty");
7382   _finger = _verification_bm->startWord();
7383   assert(_collector->_restart_addr == NULL, "Sanity check");
7384   assert(_span.contains(_finger), "Out of bounds _finger?");
7385 }
7386 
7387 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7388   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7389   assert(_span.contains(addr), "Out of bounds _finger?");
7390   _finger = addr;
7391 }
7392 
7393 // Should revisit to see if this should be restructured for
7394 // greater efficiency.
7395 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7396   // convert offset into a HeapWord*
7397   HeapWord* addr = _verification_bm->startWord() + offset;
7398   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7399          "address out of range");
7400   assert(_verification_bm->isMarked(addr), "tautology");
7401   assert(_cms_bm->isMarked(addr), "tautology");
7402 
7403   assert(_mark_stack->isEmpty(),
7404          "should drain stack to limit stack usage");
7405   // convert addr to an oop preparatory to scanning
7406   oop obj = oop(addr);
7407   assert(obj->is_oop(), "should be an oop");
7408   assert(_finger <= addr, "_finger runneth ahead");
7409   // advance the finger to right end of this object
7410   _finger = addr + obj->size();
7411   assert(_finger > addr, "we just incremented it above");
7412   // Note: the finger doesn't advance while we drain
7413   // the stack below.
7414   bool res = _mark_stack->push(obj);
7415   assert(res, "Empty non-zero size stack should have space for single push");
7416   while (!_mark_stack->isEmpty()) {
7417     oop new_oop = _mark_stack->pop();
7418     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7419     // now scan this oop's oops
7420     new_oop->oop_iterate(&_pam_verify_closure);
7421   }
7422   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7423   return true;
7424 }
7425 
7426 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7427   CMSCollector* collector, MemRegion span,
7428   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7429   CMSMarkStack*  mark_stack):
7430   CMSOopClosure(collector->ref_processor()),
7431   _collector(collector),
7432   _span(span),
7433   _verification_bm(verification_bm),
7434   _cms_bm(cms_bm),
7435   _mark_stack(mark_stack)
7436 { }
7437 
7438 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7439 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7440 
7441 // Upon stack overflow, we discard (part of) the stack,
7442 // remembering the least address amongst those discarded
7443 // in CMSCollector's _restart_address.
7444 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7445   // Remember the least grey address discarded
7446   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7447   _collector->lower_restart_addr(ra);
7448   _mark_stack->reset();  // discard stack contents
7449   _mark_stack->expand(); // expand the stack if possible
7450 }
7451 
7452 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7453   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7454   HeapWord* addr = (HeapWord*)obj;
7455   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7456     // Oop lies in _span and isn't yet grey or black
7457     _verification_bm->mark(addr);            // now grey
7458     if (!_cms_bm->isMarked(addr)) {
7459       oop(addr)->print();
7460       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7461                              addr);
7462       fatal("... aborting");
7463     }
7464 
7465     if (!_mark_stack->push(obj)) { // stack overflow
7466       if (PrintCMSStatistics != 0) {
7467         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7468                                SIZE_FORMAT, _mark_stack->capacity());
7469       }
7470       assert(_mark_stack->isFull(), "Else push should have succeeded");
7471       handle_stack_overflow(addr);
7472     }
7473     // anything including and to the right of _finger
7474     // will be scanned as we iterate over the remainder of the
7475     // bit map
7476   }
7477 }
7478 
7479 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7480                      MemRegion span,
7481                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7482                      HeapWord* finger, MarkFromRootsClosure* parent) :
7483   CMSOopClosure(collector->ref_processor()),
7484   _collector(collector),
7485   _span(span),
7486   _bitMap(bitMap),
7487   _markStack(markStack),
7488   _finger(finger),
7489   _parent(parent)
7490 { }
7491 
7492 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7493                      MemRegion span,
7494                      CMSBitMap* bit_map,
7495                      OopTaskQueue* work_queue,
7496                      CMSMarkStack*  overflow_stack,
7497                      HeapWord* finger,
7498                      HeapWord** global_finger_addr,
7499                      Par_MarkFromRootsClosure* parent) :
7500   CMSOopClosure(collector->ref_processor()),
7501   _collector(collector),
7502   _whole_span(collector->_span),
7503   _span(span),
7504   _bit_map(bit_map),
7505   _work_queue(work_queue),
7506   _overflow_stack(overflow_stack),
7507   _finger(finger),
7508   _global_finger_addr(global_finger_addr),
7509   _parent(parent)
7510 { }
7511 
7512 // Assumes thread-safe access by callers, who are
7513 // responsible for mutual exclusion.
7514 void CMSCollector::lower_restart_addr(HeapWord* low) {
7515   assert(_span.contains(low), "Out of bounds addr");
7516   if (_restart_addr == NULL) {
7517     _restart_addr = low;
7518   } else {
7519     _restart_addr = MIN2(_restart_addr, low);
7520   }
7521 }
7522 
7523 // Upon stack overflow, we discard (part of) the stack,
7524 // remembering the least address amongst those discarded
7525 // in CMSCollector's _restart_address.
7526 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7527   // Remember the least grey address discarded
7528   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7529   _collector->lower_restart_addr(ra);
7530   _markStack->reset();  // discard stack contents
7531   _markStack->expand(); // expand the stack if possible
7532 }
7533 
7534 // Upon stack overflow, we discard (part of) the stack,
7535 // remembering the least address amongst those discarded
7536 // in CMSCollector's _restart_address.
7537 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7538   // We need to do this under a mutex to prevent other
7539   // workers from interfering with the work done below.
7540   MutexLockerEx ml(_overflow_stack->par_lock(),
7541                    Mutex::_no_safepoint_check_flag);
7542   // Remember the least grey address discarded
7543   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7544   _collector->lower_restart_addr(ra);
7545   _overflow_stack->reset();  // discard stack contents
7546   _overflow_stack->expand(); // expand the stack if possible
7547 }
7548 
7549 void CMKlassClosure::do_klass(Klass* k) {
7550   assert(_oop_closure != NULL, "Not initialized?");
7551   k->oops_do(_oop_closure);
7552 }
7553 
7554 void PushOrMarkClosure::do_oop(oop obj) {
7555   // Ignore mark word because we are running concurrent with mutators.
7556   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7557   HeapWord* addr = (HeapWord*)obj;
7558   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7559     // Oop lies in _span and isn't yet grey or black
7560     _bitMap->mark(addr);            // now grey
7561     if (addr < _finger) {
7562       // the bit map iteration has already either passed, or
7563       // sampled, this bit in the bit map; we'll need to
7564       // use the marking stack to scan this oop's oops.
7565       bool simulate_overflow = false;
7566       NOT_PRODUCT(
7567         if (CMSMarkStackOverflowALot &&
7568             _collector->simulate_overflow()) {
7569           // simulate a stack overflow
7570           simulate_overflow = true;
7571         }
7572       )
7573       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7574         if (PrintCMSStatistics != 0) {
7575           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7576                                  SIZE_FORMAT, _markStack->capacity());
7577         }
7578         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7579         handle_stack_overflow(addr);
7580       }
7581     }
7582     // anything including and to the right of _finger
7583     // will be scanned as we iterate over the remainder of the
7584     // bit map
7585     do_yield_check();
7586   }
7587 }
7588 
7589 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7590 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7591 
7592 void Par_PushOrMarkClosure::do_oop(oop obj) {
7593   // Ignore mark word because we are running concurrent with mutators.
7594   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7595   HeapWord* addr = (HeapWord*)obj;
7596   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7597     // Oop lies in _span and isn't yet grey or black
7598     // We read the global_finger (volatile read) strictly after marking oop
7599     bool res = _bit_map->par_mark(addr);    // now grey
7600     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7601     // Should we push this marked oop on our stack?
7602     // -- if someone else marked it, nothing to do
7603     // -- if target oop is above global finger nothing to do
7604     // -- if target oop is in chunk and above local finger
7605     //      then nothing to do
7606     // -- else push on work queue
7607     if (   !res       // someone else marked it, they will deal with it
7608         || (addr >= *gfa)  // will be scanned in a later task
7609         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7610       return;
7611     }
7612     // the bit map iteration has already either passed, or
7613     // sampled, this bit in the bit map; we'll need to
7614     // use the marking stack to scan this oop's oops.
7615     bool simulate_overflow = false;
7616     NOT_PRODUCT(
7617       if (CMSMarkStackOverflowALot &&
7618           _collector->simulate_overflow()) {
7619         // simulate a stack overflow
7620         simulate_overflow = true;
7621       }
7622     )
7623     if (simulate_overflow ||
7624         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7625       // stack overflow
7626       if (PrintCMSStatistics != 0) {
7627         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7628                                SIZE_FORMAT, _overflow_stack->capacity());
7629       }
7630       // We cannot assert that the overflow stack is full because
7631       // it may have been emptied since.
7632       assert(simulate_overflow ||
7633              _work_queue->size() == _work_queue->max_elems(),
7634             "Else push should have succeeded");
7635       handle_stack_overflow(addr);
7636     }
7637     do_yield_check();
7638   }
7639 }
7640 
7641 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7642 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7643 
7644 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7645                                        MemRegion span,
7646                                        ReferenceProcessor* rp,
7647                                        CMSBitMap* bit_map,
7648                                        CMSBitMap* mod_union_table,
7649                                        CMSMarkStack*  mark_stack,
7650                                        bool           concurrent_precleaning):
7651   CMSOopClosure(rp),
7652   _collector(collector),
7653   _span(span),
7654   _bit_map(bit_map),
7655   _mod_union_table(mod_union_table),
7656   _mark_stack(mark_stack),
7657   _concurrent_precleaning(concurrent_precleaning)
7658 {
7659   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7660 }
7661 
7662 // Grey object rescan during pre-cleaning and second checkpoint phases --
7663 // the non-parallel version (the parallel version appears further below.)
7664 void PushAndMarkClosure::do_oop(oop obj) {
7665   // Ignore mark word verification. If during concurrent precleaning,
7666   // the object monitor may be locked. If during the checkpoint
7667   // phases, the object may already have been reached by a  different
7668   // path and may be at the end of the global overflow list (so
7669   // the mark word may be NULL).
7670   assert(obj->is_oop_or_null(true /* ignore mark word */),
7671          "expected an oop or NULL");
7672   HeapWord* addr = (HeapWord*)obj;
7673   // Check if oop points into the CMS generation
7674   // and is not marked
7675   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7676     // a white object ...
7677     _bit_map->mark(addr);         // ... now grey
7678     // push on the marking stack (grey set)
7679     bool simulate_overflow = false;
7680     NOT_PRODUCT(
7681       if (CMSMarkStackOverflowALot &&
7682           _collector->simulate_overflow()) {
7683         // simulate a stack overflow
7684         simulate_overflow = true;
7685       }
7686     )
7687     if (simulate_overflow || !_mark_stack->push(obj)) {
7688       if (_concurrent_precleaning) {
7689          // During precleaning we can just dirty the appropriate card(s)
7690          // in the mod union table, thus ensuring that the object remains
7691          // in the grey set  and continue. In the case of object arrays
7692          // we need to dirty all of the cards that the object spans,
7693          // since the rescan of object arrays will be limited to the
7694          // dirty cards.
7695          // Note that no one can be intefering with us in this action
7696          // of dirtying the mod union table, so no locking or atomics
7697          // are required.
7698          if (obj->is_objArray()) {
7699            size_t sz = obj->size();
7700            HeapWord* end_card_addr = (HeapWord*)round_to(
7701                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7702            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7703            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7704            _mod_union_table->mark_range(redirty_range);
7705          } else {
7706            _mod_union_table->mark(addr);
7707          }
7708          _collector->_ser_pmc_preclean_ovflw++;
7709       } else {
7710          // During the remark phase, we need to remember this oop
7711          // in the overflow list.
7712          _collector->push_on_overflow_list(obj);
7713          _collector->_ser_pmc_remark_ovflw++;
7714       }
7715     }
7716   }
7717 }
7718 
7719 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7720                                                MemRegion span,
7721                                                ReferenceProcessor* rp,
7722                                                CMSBitMap* bit_map,
7723                                                OopTaskQueue* work_queue):
7724   CMSOopClosure(rp),
7725   _collector(collector),
7726   _span(span),
7727   _bit_map(bit_map),
7728   _work_queue(work_queue)
7729 {
7730   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7731 }
7732 
7733 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7734 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7735 
7736 // Grey object rescan during second checkpoint phase --
7737 // the parallel version.
7738 void Par_PushAndMarkClosure::do_oop(oop obj) {
7739   // In the assert below, we ignore the mark word because
7740   // this oop may point to an already visited object that is
7741   // on the overflow stack (in which case the mark word has
7742   // been hijacked for chaining into the overflow stack --
7743   // if this is the last object in the overflow stack then
7744   // its mark word will be NULL). Because this object may
7745   // have been subsequently popped off the global overflow
7746   // stack, and the mark word possibly restored to the prototypical
7747   // value, by the time we get to examined this failing assert in
7748   // the debugger, is_oop_or_null(false) may subsequently start
7749   // to hold.
7750   assert(obj->is_oop_or_null(true),
7751          "expected an oop or NULL");
7752   HeapWord* addr = (HeapWord*)obj;
7753   // Check if oop points into the CMS generation
7754   // and is not marked
7755   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7756     // a white object ...
7757     // If we manage to "claim" the object, by being the
7758     // first thread to mark it, then we push it on our
7759     // marking stack
7760     if (_bit_map->par_mark(addr)) {     // ... now grey
7761       // push on work queue (grey set)
7762       bool simulate_overflow = false;
7763       NOT_PRODUCT(
7764         if (CMSMarkStackOverflowALot &&
7765             _collector->par_simulate_overflow()) {
7766           // simulate a stack overflow
7767           simulate_overflow = true;
7768         }
7769       )
7770       if (simulate_overflow || !_work_queue->push(obj)) {
7771         _collector->par_push_on_overflow_list(obj);
7772         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7773       }
7774     } // Else, some other thread got there first
7775   }
7776 }
7777 
7778 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7779 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7780 
7781 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7782   Mutex* bml = _collector->bitMapLock();
7783   assert_lock_strong(bml);
7784   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7785          "CMS thread should hold CMS token");
7786 
7787   bml->unlock();
7788   ConcurrentMarkSweepThread::desynchronize(true);
7789 
7790   ConcurrentMarkSweepThread::acknowledge_yield_request();
7791 
7792   _collector->stopTimer();
7793   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7794   if (PrintCMSStatistics != 0) {
7795     _collector->incrementYields();
7796   }
7797   _collector->icms_wait();
7798 
7799   // See the comment in coordinator_yield()
7800   for (unsigned i = 0; i < CMSYieldSleepCount &&
7801                        ConcurrentMarkSweepThread::should_yield() &&
7802                        !CMSCollector::foregroundGCIsActive(); ++i) {
7803     os::sleep(Thread::current(), 1, false);
7804     ConcurrentMarkSweepThread::acknowledge_yield_request();
7805   }
7806 
7807   ConcurrentMarkSweepThread::synchronize(true);
7808   bml->lock();
7809 
7810   _collector->startTimer();
7811 }
7812 
7813 bool CMSPrecleanRefsYieldClosure::should_return() {
7814   if (ConcurrentMarkSweepThread::should_yield()) {
7815     do_yield_work();
7816   }
7817   return _collector->foregroundGCIsActive();
7818 }
7819 
7820 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7821   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7822          "mr should be aligned to start at a card boundary");
7823   // We'd like to assert:
7824   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7825   //        "mr should be a range of cards");
7826   // However, that would be too strong in one case -- the last
7827   // partition ends at _unallocated_block which, in general, can be
7828   // an arbitrary boundary, not necessarily card aligned.
7829   if (PrintCMSStatistics != 0) {
7830     _num_dirty_cards +=
7831          mr.word_size()/CardTableModRefBS::card_size_in_words;
7832   }
7833   _space->object_iterate_mem(mr, &_scan_cl);
7834 }
7835 
7836 SweepClosure::SweepClosure(CMSCollector* collector,
7837                            ConcurrentMarkSweepGeneration* g,
7838                            CMSBitMap* bitMap, bool should_yield) :
7839   _collector(collector),
7840   _g(g),
7841   _sp(g->cmsSpace()),
7842   _limit(_sp->sweep_limit()),
7843   _freelistLock(_sp->freelistLock()),
7844   _bitMap(bitMap),
7845   _yield(should_yield),
7846   _inFreeRange(false),           // No free range at beginning of sweep
7847   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7848   _lastFreeRangeCoalesced(false),
7849   _freeFinger(g->used_region().start())
7850 {
7851   NOT_PRODUCT(
7852     _numObjectsFreed = 0;
7853     _numWordsFreed   = 0;
7854     _numObjectsLive = 0;
7855     _numWordsLive = 0;
7856     _numObjectsAlreadyFree = 0;
7857     _numWordsAlreadyFree = 0;
7858     _last_fc = NULL;
7859 
7860     _sp->initializeIndexedFreeListArrayReturnedBytes();
7861     _sp->dictionary()->initialize_dict_returned_bytes();
7862   )
7863   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7864          "sweep _limit out of bounds");
7865   if (CMSTraceSweeper) {
7866     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7867                         _limit);
7868   }
7869 }
7870 
7871 void SweepClosure::print_on(outputStream* st) const {
7872   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7873                 _sp->bottom(), _sp->end());
7874   tty->print_cr("_limit = " PTR_FORMAT, _limit);
7875   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
7876   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
7877   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7878                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7879 }
7880 
7881 #ifndef PRODUCT
7882 // Assertion checking only:  no useful work in product mode --
7883 // however, if any of the flags below become product flags,
7884 // you may need to review this code to see if it needs to be
7885 // enabled in product mode.
7886 SweepClosure::~SweepClosure() {
7887   assert_lock_strong(_freelistLock);
7888   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7889          "sweep _limit out of bounds");
7890   if (inFreeRange()) {
7891     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7892     print();
7893     ShouldNotReachHere();
7894   }
7895   if (Verbose && PrintGC) {
7896     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7897                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7898     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7899                            SIZE_FORMAT" bytes  "
7900       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7901       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7902       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7903     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7904                         * sizeof(HeapWord);
7905     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7906 
7907     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7908       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7909       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7910       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7911       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
7912       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7913         indexListReturnedBytes);
7914       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7915         dict_returned_bytes);
7916     }
7917   }
7918   if (CMSTraceSweeper) {
7919     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7920                            _limit);
7921   }
7922 }
7923 #endif  // PRODUCT
7924 
7925 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7926     bool freeRangeInFreeLists) {
7927   if (CMSTraceSweeper) {
7928     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
7929                freeFinger, freeRangeInFreeLists);
7930   }
7931   assert(!inFreeRange(), "Trampling existing free range");
7932   set_inFreeRange(true);
7933   set_lastFreeRangeCoalesced(false);
7934 
7935   set_freeFinger(freeFinger);
7936   set_freeRangeInFreeLists(freeRangeInFreeLists);
7937   if (CMSTestInFreeList) {
7938     if (freeRangeInFreeLists) {
7939       FreeChunk* fc = (FreeChunk*) freeFinger;
7940       assert(fc->is_free(), "A chunk on the free list should be free.");
7941       assert(fc->size() > 0, "Free range should have a size");
7942       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7943     }
7944   }
7945 }
7946 
7947 // Note that the sweeper runs concurrently with mutators. Thus,
7948 // it is possible for direct allocation in this generation to happen
7949 // in the middle of the sweep. Note that the sweeper also coalesces
7950 // contiguous free blocks. Thus, unless the sweeper and the allocator
7951 // synchronize appropriately freshly allocated blocks may get swept up.
7952 // This is accomplished by the sweeper locking the free lists while
7953 // it is sweeping. Thus blocks that are determined to be free are
7954 // indeed free. There is however one additional complication:
7955 // blocks that have been allocated since the final checkpoint and
7956 // mark, will not have been marked and so would be treated as
7957 // unreachable and swept up. To prevent this, the allocator marks
7958 // the bit map when allocating during the sweep phase. This leads,
7959 // however, to a further complication -- objects may have been allocated
7960 // but not yet initialized -- in the sense that the header isn't yet
7961 // installed. The sweeper can not then determine the size of the block
7962 // in order to skip over it. To deal with this case, we use a technique
7963 // (due to Printezis) to encode such uninitialized block sizes in the
7964 // bit map. Since the bit map uses a bit per every HeapWord, but the
7965 // CMS generation has a minimum object size of 3 HeapWords, it follows
7966 // that "normal marks" won't be adjacent in the bit map (there will
7967 // always be at least two 0 bits between successive 1 bits). We make use
7968 // of these "unused" bits to represent uninitialized blocks -- the bit
7969 // corresponding to the start of the uninitialized object and the next
7970 // bit are both set. Finally, a 1 bit marks the end of the object that
7971 // started with the two consecutive 1 bits to indicate its potentially
7972 // uninitialized state.
7973 
7974 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7975   FreeChunk* fc = (FreeChunk*)addr;
7976   size_t res;
7977 
7978   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7979   // than "addr == _limit" because although _limit was a block boundary when
7980   // we started the sweep, it may no longer be one because heap expansion
7981   // may have caused us to coalesce the block ending at the address _limit
7982   // with a newly expanded chunk (this happens when _limit was set to the
7983   // previous _end of the space), so we may have stepped past _limit:
7984   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7985   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7986     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7987            "sweep _limit out of bounds");
7988     assert(addr < _sp->end(), "addr out of bounds");
7989     // Flush any free range we might be holding as a single
7990     // coalesced chunk to the appropriate free list.
7991     if (inFreeRange()) {
7992       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7993              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
7994       flush_cur_free_chunk(freeFinger(),
7995                            pointer_delta(addr, freeFinger()));
7996       if (CMSTraceSweeper) {
7997         gclog_or_tty->print("Sweep: last chunk: ");
7998         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
7999                    "[coalesced:"SIZE_FORMAT"]\n",
8000                    freeFinger(), pointer_delta(addr, freeFinger()),
8001                    lastFreeRangeCoalesced());
8002       }
8003     }
8004 
8005     // help the iterator loop finish
8006     return pointer_delta(_sp->end(), addr);
8007   }
8008 
8009   assert(addr < _limit, "sweep invariant");
8010   // check if we should yield
8011   do_yield_check(addr);
8012   if (fc->is_free()) {
8013     // Chunk that is already free
8014     res = fc->size();
8015     do_already_free_chunk(fc);
8016     debug_only(_sp->verifyFreeLists());
8017     // If we flush the chunk at hand in lookahead_and_flush()
8018     // and it's coalesced with a preceding chunk, then the
8019     // process of "mangling" the payload of the coalesced block
8020     // will cause erasure of the size information from the
8021     // (erstwhile) header of all the coalesced blocks but the
8022     // first, so the first disjunct in the assert will not hold
8023     // in that specific case (in which case the second disjunct
8024     // will hold).
8025     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8026            "Otherwise the size info doesn't change at this step");
8027     NOT_PRODUCT(
8028       _numObjectsAlreadyFree++;
8029       _numWordsAlreadyFree += res;
8030     )
8031     NOT_PRODUCT(_last_fc = fc;)
8032   } else if (!_bitMap->isMarked(addr)) {
8033     // Chunk is fresh garbage
8034     res = do_garbage_chunk(fc);
8035     debug_only(_sp->verifyFreeLists());
8036     NOT_PRODUCT(
8037       _numObjectsFreed++;
8038       _numWordsFreed += res;
8039     )
8040   } else {
8041     // Chunk that is alive.
8042     res = do_live_chunk(fc);
8043     debug_only(_sp->verifyFreeLists());
8044     NOT_PRODUCT(
8045         _numObjectsLive++;
8046         _numWordsLive += res;
8047     )
8048   }
8049   return res;
8050 }
8051 
8052 // For the smart allocation, record following
8053 //  split deaths - a free chunk is removed from its free list because
8054 //      it is being split into two or more chunks.
8055 //  split birth - a free chunk is being added to its free list because
8056 //      a larger free chunk has been split and resulted in this free chunk.
8057 //  coal death - a free chunk is being removed from its free list because
8058 //      it is being coalesced into a large free chunk.
8059 //  coal birth - a free chunk is being added to its free list because
8060 //      it was created when two or more free chunks where coalesced into
8061 //      this free chunk.
8062 //
8063 // These statistics are used to determine the desired number of free
8064 // chunks of a given size.  The desired number is chosen to be relative
8065 // to the end of a CMS sweep.  The desired number at the end of a sweep
8066 // is the
8067 //      count-at-end-of-previous-sweep (an amount that was enough)
8068 //              - count-at-beginning-of-current-sweep  (the excess)
8069 //              + split-births  (gains in this size during interval)
8070 //              - split-deaths  (demands on this size during interval)
8071 // where the interval is from the end of one sweep to the end of the
8072 // next.
8073 //
8074 // When sweeping the sweeper maintains an accumulated chunk which is
8075 // the chunk that is made up of chunks that have been coalesced.  That
8076 // will be termed the left-hand chunk.  A new chunk of garbage that
8077 // is being considered for coalescing will be referred to as the
8078 // right-hand chunk.
8079 //
8080 // When making a decision on whether to coalesce a right-hand chunk with
8081 // the current left-hand chunk, the current count vs. the desired count
8082 // of the left-hand chunk is considered.  Also if the right-hand chunk
8083 // is near the large chunk at the end of the heap (see
8084 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8085 // left-hand chunk is coalesced.
8086 //
8087 // When making a decision about whether to split a chunk, the desired count
8088 // vs. the current count of the candidate to be split is also considered.
8089 // If the candidate is underpopulated (currently fewer chunks than desired)
8090 // a chunk of an overpopulated (currently more chunks than desired) size may
8091 // be chosen.  The "hint" associated with a free list, if non-null, points
8092 // to a free list which may be overpopulated.
8093 //
8094 
8095 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8096   const size_t size = fc->size();
8097   // Chunks that cannot be coalesced are not in the
8098   // free lists.
8099   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8100     assert(_sp->verify_chunk_in_free_list(fc),
8101       "free chunk should be in free lists");
8102   }
8103   // a chunk that is already free, should not have been
8104   // marked in the bit map
8105   HeapWord* const addr = (HeapWord*) fc;
8106   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8107   // Verify that the bit map has no bits marked between
8108   // addr and purported end of this block.
8109   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8110 
8111   // Some chunks cannot be coalesced under any circumstances.
8112   // See the definition of cantCoalesce().
8113   if (!fc->cantCoalesce()) {
8114     // This chunk can potentially be coalesced.
8115     if (_sp->adaptive_freelists()) {
8116       // All the work is done in
8117       do_post_free_or_garbage_chunk(fc, size);
8118     } else {  // Not adaptive free lists
8119       // this is a free chunk that can potentially be coalesced by the sweeper;
8120       if (!inFreeRange()) {
8121         // if the next chunk is a free block that can't be coalesced
8122         // it doesn't make sense to remove this chunk from the free lists
8123         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8124         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8125         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8126             nextChunk->is_free()               &&     // ... which is free...
8127             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8128           // nothing to do
8129         } else {
8130           // Potentially the start of a new free range:
8131           // Don't eagerly remove it from the free lists.
8132           // No need to remove it if it will just be put
8133           // back again.  (Also from a pragmatic point of view
8134           // if it is a free block in a region that is beyond
8135           // any allocated blocks, an assertion will fail)
8136           // Remember the start of a free run.
8137           initialize_free_range(addr, true);
8138           // end - can coalesce with next chunk
8139         }
8140       } else {
8141         // the midst of a free range, we are coalescing
8142         print_free_block_coalesced(fc);
8143         if (CMSTraceSweeper) {
8144           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8145         }
8146         // remove it from the free lists
8147         _sp->removeFreeChunkFromFreeLists(fc);
8148         set_lastFreeRangeCoalesced(true);
8149         // If the chunk is being coalesced and the current free range is
8150         // in the free lists, remove the current free range so that it
8151         // will be returned to the free lists in its entirety - all
8152         // the coalesced pieces included.
8153         if (freeRangeInFreeLists()) {
8154           FreeChunk* ffc = (FreeChunk*) freeFinger();
8155           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8156             "Size of free range is inconsistent with chunk size.");
8157           if (CMSTestInFreeList) {
8158             assert(_sp->verify_chunk_in_free_list(ffc),
8159               "free range is not in free lists");
8160           }
8161           _sp->removeFreeChunkFromFreeLists(ffc);
8162           set_freeRangeInFreeLists(false);
8163         }
8164       }
8165     }
8166     // Note that if the chunk is not coalescable (the else arm
8167     // below), we unconditionally flush, without needing to do
8168     // a "lookahead," as we do below.
8169     if (inFreeRange()) lookahead_and_flush(fc, size);
8170   } else {
8171     // Code path common to both original and adaptive free lists.
8172 
8173     // cant coalesce with previous block; this should be treated
8174     // as the end of a free run if any
8175     if (inFreeRange()) {
8176       // we kicked some butt; time to pick up the garbage
8177       assert(freeFinger() < addr, "freeFinger points too high");
8178       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8179     }
8180     // else, nothing to do, just continue
8181   }
8182 }
8183 
8184 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8185   // This is a chunk of garbage.  It is not in any free list.
8186   // Add it to a free list or let it possibly be coalesced into
8187   // a larger chunk.
8188   HeapWord* const addr = (HeapWord*) fc;
8189   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8190 
8191   if (_sp->adaptive_freelists()) {
8192     // Verify that the bit map has no bits marked between
8193     // addr and purported end of just dead object.
8194     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8195 
8196     do_post_free_or_garbage_chunk(fc, size);
8197   } else {
8198     if (!inFreeRange()) {
8199       // start of a new free range
8200       assert(size > 0, "A free range should have a size");
8201       initialize_free_range(addr, false);
8202     } else {
8203       // this will be swept up when we hit the end of the
8204       // free range
8205       if (CMSTraceSweeper) {
8206         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8207       }
8208       // If the chunk is being coalesced and the current free range is
8209       // in the free lists, remove the current free range so that it
8210       // will be returned to the free lists in its entirety - all
8211       // the coalesced pieces included.
8212       if (freeRangeInFreeLists()) {
8213         FreeChunk* ffc = (FreeChunk*)freeFinger();
8214         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8215           "Size of free range is inconsistent with chunk size.");
8216         if (CMSTestInFreeList) {
8217           assert(_sp->verify_chunk_in_free_list(ffc),
8218             "free range is not in free lists");
8219         }
8220         _sp->removeFreeChunkFromFreeLists(ffc);
8221         set_freeRangeInFreeLists(false);
8222       }
8223       set_lastFreeRangeCoalesced(true);
8224     }
8225     // this will be swept up when we hit the end of the free range
8226 
8227     // Verify that the bit map has no bits marked between
8228     // addr and purported end of just dead object.
8229     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8230   }
8231   assert(_limit >= addr + size,
8232          "A freshly garbage chunk can't possibly straddle over _limit");
8233   if (inFreeRange()) lookahead_and_flush(fc, size);
8234   return size;
8235 }
8236 
8237 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8238   HeapWord* addr = (HeapWord*) fc;
8239   // The sweeper has just found a live object. Return any accumulated
8240   // left hand chunk to the free lists.
8241   if (inFreeRange()) {
8242     assert(freeFinger() < addr, "freeFinger points too high");
8243     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8244   }
8245 
8246   // This object is live: we'd normally expect this to be
8247   // an oop, and like to assert the following:
8248   // assert(oop(addr)->is_oop(), "live block should be an oop");
8249   // However, as we commented above, this may be an object whose
8250   // header hasn't yet been initialized.
8251   size_t size;
8252   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8253   if (_bitMap->isMarked(addr + 1)) {
8254     // Determine the size from the bit map, rather than trying to
8255     // compute it from the object header.
8256     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8257     size = pointer_delta(nextOneAddr + 1, addr);
8258     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8259            "alignment problem");
8260 
8261 #ifdef DEBUG
8262       if (oop(addr)->klass_or_null() != NULL) {
8263         // Ignore mark word because we are running concurrent with mutators
8264         assert(oop(addr)->is_oop(true), "live block should be an oop");
8265         assert(size ==
8266                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8267                "P-mark and computed size do not agree");
8268       }
8269 #endif
8270 
8271   } else {
8272     // This should be an initialized object that's alive.
8273     assert(oop(addr)->klass_or_null() != NULL,
8274            "Should be an initialized object");
8275     // Ignore mark word because we are running concurrent with mutators
8276     assert(oop(addr)->is_oop(true), "live block should be an oop");
8277     // Verify that the bit map has no bits marked between
8278     // addr and purported end of this block.
8279     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8280     assert(size >= 3, "Necessary for Printezis marks to work");
8281     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8282     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8283   }
8284   return size;
8285 }
8286 
8287 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8288                                                  size_t chunkSize) {
8289   // do_post_free_or_garbage_chunk() should only be called in the case
8290   // of the adaptive free list allocator.
8291   const bool fcInFreeLists = fc->is_free();
8292   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8293   assert((HeapWord*)fc <= _limit, "sweep invariant");
8294   if (CMSTestInFreeList && fcInFreeLists) {
8295     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8296   }
8297 
8298   if (CMSTraceSweeper) {
8299     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8300   }
8301 
8302   HeapWord* const fc_addr = (HeapWord*) fc;
8303 
8304   bool coalesce;
8305   const size_t left  = pointer_delta(fc_addr, freeFinger());
8306   const size_t right = chunkSize;
8307   switch (FLSCoalescePolicy) {
8308     // numeric value forms a coalition aggressiveness metric
8309     case 0:  { // never coalesce
8310       coalesce = false;
8311       break;
8312     }
8313     case 1: { // coalesce if left & right chunks on overpopulated lists
8314       coalesce = _sp->coalOverPopulated(left) &&
8315                  _sp->coalOverPopulated(right);
8316       break;
8317     }
8318     case 2: { // coalesce if left chunk on overpopulated list (default)
8319       coalesce = _sp->coalOverPopulated(left);
8320       break;
8321     }
8322     case 3: { // coalesce if left OR right chunk on overpopulated list
8323       coalesce = _sp->coalOverPopulated(left) ||
8324                  _sp->coalOverPopulated(right);
8325       break;
8326     }
8327     case 4: { // always coalesce
8328       coalesce = true;
8329       break;
8330     }
8331     default:
8332      ShouldNotReachHere();
8333   }
8334 
8335   // Should the current free range be coalesced?
8336   // If the chunk is in a free range and either we decided to coalesce above
8337   // or the chunk is near the large block at the end of the heap
8338   // (isNearLargestChunk() returns true), then coalesce this chunk.
8339   const bool doCoalesce = inFreeRange()
8340                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8341   if (doCoalesce) {
8342     // Coalesce the current free range on the left with the new
8343     // chunk on the right.  If either is on a free list,
8344     // it must be removed from the list and stashed in the closure.
8345     if (freeRangeInFreeLists()) {
8346       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8347       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8348         "Size of free range is inconsistent with chunk size.");
8349       if (CMSTestInFreeList) {
8350         assert(_sp->verify_chunk_in_free_list(ffc),
8351           "Chunk is not in free lists");
8352       }
8353       _sp->coalDeath(ffc->size());
8354       _sp->removeFreeChunkFromFreeLists(ffc);
8355       set_freeRangeInFreeLists(false);
8356     }
8357     if (fcInFreeLists) {
8358       _sp->coalDeath(chunkSize);
8359       assert(fc->size() == chunkSize,
8360         "The chunk has the wrong size or is not in the free lists");
8361       _sp->removeFreeChunkFromFreeLists(fc);
8362     }
8363     set_lastFreeRangeCoalesced(true);
8364     print_free_block_coalesced(fc);
8365   } else {  // not in a free range and/or should not coalesce
8366     // Return the current free range and start a new one.
8367     if (inFreeRange()) {
8368       // In a free range but cannot coalesce with the right hand chunk.
8369       // Put the current free range into the free lists.
8370       flush_cur_free_chunk(freeFinger(),
8371                            pointer_delta(fc_addr, freeFinger()));
8372     }
8373     // Set up for new free range.  Pass along whether the right hand
8374     // chunk is in the free lists.
8375     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8376   }
8377 }
8378 
8379 // Lookahead flush:
8380 // If we are tracking a free range, and this is the last chunk that
8381 // we'll look at because its end crosses past _limit, we'll preemptively
8382 // flush it along with any free range we may be holding on to. Note that
8383 // this can be the case only for an already free or freshly garbage
8384 // chunk. If this block is an object, it can never straddle
8385 // over _limit. The "straddling" occurs when _limit is set at
8386 // the previous end of the space when this cycle started, and
8387 // a subsequent heap expansion caused the previously co-terminal
8388 // free block to be coalesced with the newly expanded portion,
8389 // thus rendering _limit a non-block-boundary making it dangerous
8390 // for the sweeper to step over and examine.
8391 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8392   assert(inFreeRange(), "Should only be called if currently in a free range.");
8393   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8394   assert(_sp->used_region().contains(eob - 1),
8395          err_msg("eob = " PTR_FORMAT " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8396                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8397                  _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8398   if (eob >= _limit) {
8399     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8400     if (CMSTraceSweeper) {
8401       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8402                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8403                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8404                              _limit, fc, eob, _sp->bottom(), _sp->end());
8405     }
8406     // Return the storage we are tracking back into the free lists.
8407     if (CMSTraceSweeper) {
8408       gclog_or_tty->print_cr("Flushing ... ");
8409     }
8410     assert(freeFinger() < eob, "Error");
8411     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8412   }
8413 }
8414 
8415 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8416   assert(inFreeRange(), "Should only be called if currently in a free range.");
8417   assert(size > 0,
8418     "A zero sized chunk cannot be added to the free lists.");
8419   if (!freeRangeInFreeLists()) {
8420     if (CMSTestInFreeList) {
8421       FreeChunk* fc = (FreeChunk*) chunk;
8422       fc->set_size(size);
8423       assert(!_sp->verify_chunk_in_free_list(fc),
8424         "chunk should not be in free lists yet");
8425     }
8426     if (CMSTraceSweeper) {
8427       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8428                     chunk, size);
8429     }
8430     // A new free range is going to be starting.  The current
8431     // free range has not been added to the free lists yet or
8432     // was removed so add it back.
8433     // If the current free range was coalesced, then the death
8434     // of the free range was recorded.  Record a birth now.
8435     if (lastFreeRangeCoalesced()) {
8436       _sp->coalBirth(size);
8437     }
8438     _sp->addChunkAndRepairOffsetTable(chunk, size,
8439             lastFreeRangeCoalesced());
8440   } else if (CMSTraceSweeper) {
8441     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8442   }
8443   set_inFreeRange(false);
8444   set_freeRangeInFreeLists(false);
8445 }
8446 
8447 // We take a break if we've been at this for a while,
8448 // so as to avoid monopolizing the locks involved.
8449 void SweepClosure::do_yield_work(HeapWord* addr) {
8450   // Return current free chunk being used for coalescing (if any)
8451   // to the appropriate freelist.  After yielding, the next
8452   // free block encountered will start a coalescing range of
8453   // free blocks.  If the next free block is adjacent to the
8454   // chunk just flushed, they will need to wait for the next
8455   // sweep to be coalesced.
8456   if (inFreeRange()) {
8457     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8458   }
8459 
8460   // First give up the locks, then yield, then re-lock.
8461   // We should probably use a constructor/destructor idiom to
8462   // do this unlock/lock or modify the MutexUnlocker class to
8463   // serve our purpose. XXX
8464   assert_lock_strong(_bitMap->lock());
8465   assert_lock_strong(_freelistLock);
8466   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8467          "CMS thread should hold CMS token");
8468   _bitMap->lock()->unlock();
8469   _freelistLock->unlock();
8470   ConcurrentMarkSweepThread::desynchronize(true);
8471   ConcurrentMarkSweepThread::acknowledge_yield_request();
8472   _collector->stopTimer();
8473   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8474   if (PrintCMSStatistics != 0) {
8475     _collector->incrementYields();
8476   }
8477   _collector->icms_wait();
8478 
8479   // See the comment in coordinator_yield()
8480   for (unsigned i = 0; i < CMSYieldSleepCount &&
8481                        ConcurrentMarkSweepThread::should_yield() &&
8482                        !CMSCollector::foregroundGCIsActive(); ++i) {
8483     os::sleep(Thread::current(), 1, false);
8484     ConcurrentMarkSweepThread::acknowledge_yield_request();
8485   }
8486 
8487   ConcurrentMarkSweepThread::synchronize(true);
8488   _freelistLock->lock();
8489   _bitMap->lock()->lock_without_safepoint_check();
8490   _collector->startTimer();
8491 }
8492 
8493 #ifndef PRODUCT
8494 // This is actually very useful in a product build if it can
8495 // be called from the debugger.  Compile it into the product
8496 // as needed.
8497 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8498   return debug_cms_space->verify_chunk_in_free_list(fc);
8499 }
8500 #endif
8501 
8502 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8503   if (CMSTraceSweeper) {
8504     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8505                            fc, fc->size());
8506   }
8507 }
8508 
8509 // CMSIsAliveClosure
8510 bool CMSIsAliveClosure::do_object_b(oop obj) {
8511   HeapWord* addr = (HeapWord*)obj;
8512   return addr != NULL &&
8513          (!_span.contains(addr) || _bit_map->isMarked(addr));
8514 }
8515 
8516 
8517 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8518                       MemRegion span,
8519                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8520                       bool cpc):
8521   _collector(collector),
8522   _span(span),
8523   _bit_map(bit_map),
8524   _mark_stack(mark_stack),
8525   _concurrent_precleaning(cpc) {
8526   assert(!_span.is_empty(), "Empty span could spell trouble");
8527 }
8528 
8529 
8530 // CMSKeepAliveClosure: the serial version
8531 void CMSKeepAliveClosure::do_oop(oop obj) {
8532   HeapWord* addr = (HeapWord*)obj;
8533   if (_span.contains(addr) &&
8534       !_bit_map->isMarked(addr)) {
8535     _bit_map->mark(addr);
8536     bool simulate_overflow = false;
8537     NOT_PRODUCT(
8538       if (CMSMarkStackOverflowALot &&
8539           _collector->simulate_overflow()) {
8540         // simulate a stack overflow
8541         simulate_overflow = true;
8542       }
8543     )
8544     if (simulate_overflow || !_mark_stack->push(obj)) {
8545       if (_concurrent_precleaning) {
8546         // We dirty the overflown object and let the remark
8547         // phase deal with it.
8548         assert(_collector->overflow_list_is_empty(), "Error");
8549         // In the case of object arrays, we need to dirty all of
8550         // the cards that the object spans. No locking or atomics
8551         // are needed since no one else can be mutating the mod union
8552         // table.
8553         if (obj->is_objArray()) {
8554           size_t sz = obj->size();
8555           HeapWord* end_card_addr =
8556             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8557           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8558           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8559           _collector->_modUnionTable.mark_range(redirty_range);
8560         } else {
8561           _collector->_modUnionTable.mark(addr);
8562         }
8563         _collector->_ser_kac_preclean_ovflw++;
8564       } else {
8565         _collector->push_on_overflow_list(obj);
8566         _collector->_ser_kac_ovflw++;
8567       }
8568     }
8569   }
8570 }
8571 
8572 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8573 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8574 
8575 // CMSParKeepAliveClosure: a parallel version of the above.
8576 // The work queues are private to each closure (thread),
8577 // but (may be) available for stealing by other threads.
8578 void CMSParKeepAliveClosure::do_oop(oop obj) {
8579   HeapWord* addr = (HeapWord*)obj;
8580   if (_span.contains(addr) &&
8581       !_bit_map->isMarked(addr)) {
8582     // In general, during recursive tracing, several threads
8583     // may be concurrently getting here; the first one to
8584     // "tag" it, claims it.
8585     if (_bit_map->par_mark(addr)) {
8586       bool res = _work_queue->push(obj);
8587       assert(res, "Low water mark should be much less than capacity");
8588       // Do a recursive trim in the hope that this will keep
8589       // stack usage lower, but leave some oops for potential stealers
8590       trim_queue(_low_water_mark);
8591     } // Else, another thread got there first
8592   }
8593 }
8594 
8595 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8596 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8597 
8598 void CMSParKeepAliveClosure::trim_queue(uint max) {
8599   while (_work_queue->size() > max) {
8600     oop new_oop;
8601     if (_work_queue->pop_local(new_oop)) {
8602       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8603       assert(_bit_map->isMarked((HeapWord*)new_oop),
8604              "no white objects on this stack!");
8605       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8606       // iterate over the oops in this oop, marking and pushing
8607       // the ones in CMS heap (i.e. in _span).
8608       new_oop->oop_iterate(&_mark_and_push);
8609     }
8610   }
8611 }
8612 
8613 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8614                                 CMSCollector* collector,
8615                                 MemRegion span, CMSBitMap* bit_map,
8616                                 OopTaskQueue* work_queue):
8617   _collector(collector),
8618   _span(span),
8619   _bit_map(bit_map),
8620   _work_queue(work_queue) { }
8621 
8622 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8623   HeapWord* addr = (HeapWord*)obj;
8624   if (_span.contains(addr) &&
8625       !_bit_map->isMarked(addr)) {
8626     if (_bit_map->par_mark(addr)) {
8627       bool simulate_overflow = false;
8628       NOT_PRODUCT(
8629         if (CMSMarkStackOverflowALot &&
8630             _collector->par_simulate_overflow()) {
8631           // simulate a stack overflow
8632           simulate_overflow = true;
8633         }
8634       )
8635       if (simulate_overflow || !_work_queue->push(obj)) {
8636         _collector->par_push_on_overflow_list(obj);
8637         _collector->_par_kac_ovflw++;
8638       }
8639     } // Else another thread got there already
8640   }
8641 }
8642 
8643 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8644 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8645 
8646 //////////////////////////////////////////////////////////////////
8647 //  CMSExpansionCause                /////////////////////////////
8648 //////////////////////////////////////////////////////////////////
8649 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8650   switch (cause) {
8651     case _no_expansion:
8652       return "No expansion";
8653     case _satisfy_free_ratio:
8654       return "Free ratio";
8655     case _satisfy_promotion:
8656       return "Satisfy promotion";
8657     case _satisfy_allocation:
8658       return "allocation";
8659     case _allocate_par_lab:
8660       return "Par LAB";
8661     case _allocate_par_spooling_space:
8662       return "Par Spooling Space";
8663     case _adaptive_size_policy:
8664       return "Ergonomics";
8665     default:
8666       return "unknown";
8667   }
8668 }
8669 
8670 void CMSDrainMarkingStackClosure::do_void() {
8671   // the max number to take from overflow list at a time
8672   const size_t num = _mark_stack->capacity()/4;
8673   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8674          "Overflow list should be NULL during concurrent phases");
8675   while (!_mark_stack->isEmpty() ||
8676          // if stack is empty, check the overflow list
8677          _collector->take_from_overflow_list(num, _mark_stack)) {
8678     oop obj = _mark_stack->pop();
8679     HeapWord* addr = (HeapWord*)obj;
8680     assert(_span.contains(addr), "Should be within span");
8681     assert(_bit_map->isMarked(addr), "Should be marked");
8682     assert(obj->is_oop(), "Should be an oop");
8683     obj->oop_iterate(_keep_alive);
8684   }
8685 }
8686 
8687 void CMSParDrainMarkingStackClosure::do_void() {
8688   // drain queue
8689   trim_queue(0);
8690 }
8691 
8692 // Trim our work_queue so its length is below max at return
8693 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8694   while (_work_queue->size() > max) {
8695     oop new_oop;
8696     if (_work_queue->pop_local(new_oop)) {
8697       assert(new_oop->is_oop(), "Expected an oop");
8698       assert(_bit_map->isMarked((HeapWord*)new_oop),
8699              "no white objects on this stack!");
8700       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8701       // iterate over the oops in this oop, marking and pushing
8702       // the ones in CMS heap (i.e. in _span).
8703       new_oop->oop_iterate(&_mark_and_push);
8704     }
8705   }
8706 }
8707 
8708 ////////////////////////////////////////////////////////////////////
8709 // Support for Marking Stack Overflow list handling and related code
8710 ////////////////////////////////////////////////////////////////////
8711 // Much of the following code is similar in shape and spirit to the
8712 // code used in ParNewGC. We should try and share that code
8713 // as much as possible in the future.
8714 
8715 #ifndef PRODUCT
8716 // Debugging support for CMSStackOverflowALot
8717 
8718 // It's OK to call this multi-threaded;  the worst thing
8719 // that can happen is that we'll get a bunch of closely
8720 // spaced simulated oveflows, but that's OK, in fact
8721 // probably good as it would exercise the overflow code
8722 // under contention.
8723 bool CMSCollector::simulate_overflow() {
8724   if (_overflow_counter-- <= 0) { // just being defensive
8725     _overflow_counter = CMSMarkStackOverflowInterval;
8726     return true;
8727   } else {
8728     return false;
8729   }
8730 }
8731 
8732 bool CMSCollector::par_simulate_overflow() {
8733   return simulate_overflow();
8734 }
8735 #endif
8736 
8737 // Single-threaded
8738 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8739   assert(stack->isEmpty(), "Expected precondition");
8740   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8741   size_t i = num;
8742   oop  cur = _overflow_list;
8743   const markOop proto = markOopDesc::prototype();
8744   NOT_PRODUCT(ssize_t n = 0;)
8745   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8746     next = oop(cur->mark());
8747     cur->set_mark(proto);   // until proven otherwise
8748     assert(cur->is_oop(), "Should be an oop");
8749     bool res = stack->push(cur);
8750     assert(res, "Bit off more than can chew?");
8751     NOT_PRODUCT(n++;)
8752   }
8753   _overflow_list = cur;
8754 #ifndef PRODUCT
8755   assert(_num_par_pushes >= n, "Too many pops?");
8756   _num_par_pushes -=n;
8757 #endif
8758   return !stack->isEmpty();
8759 }
8760 
8761 #define BUSY  (oop(0x1aff1aff))
8762 // (MT-safe) Get a prefix of at most "num" from the list.
8763 // The overflow list is chained through the mark word of
8764 // each object in the list. We fetch the entire list,
8765 // break off a prefix of the right size and return the
8766 // remainder. If other threads try to take objects from
8767 // the overflow list at that time, they will wait for
8768 // some time to see if data becomes available. If (and
8769 // only if) another thread places one or more object(s)
8770 // on the global list before we have returned the suffix
8771 // to the global list, we will walk down our local list
8772 // to find its end and append the global list to
8773 // our suffix before returning it. This suffix walk can
8774 // prove to be expensive (quadratic in the amount of traffic)
8775 // when there are many objects in the overflow list and
8776 // there is much producer-consumer contention on the list.
8777 // *NOTE*: The overflow list manipulation code here and
8778 // in ParNewGeneration:: are very similar in shape,
8779 // except that in the ParNew case we use the old (from/eden)
8780 // copy of the object to thread the list via its klass word.
8781 // Because of the common code, if you make any changes in
8782 // the code below, please check the ParNew version to see if
8783 // similar changes might be needed.
8784 // CR 6797058 has been filed to consolidate the common code.
8785 bool CMSCollector::par_take_from_overflow_list(size_t num,
8786                                                OopTaskQueue* work_q,
8787                                                int no_of_gc_threads) {
8788   assert(work_q->size() == 0, "First empty local work queue");
8789   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8790   if (_overflow_list == NULL) {
8791     return false;
8792   }
8793   // Grab the entire list; we'll put back a suffix
8794   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8795   Thread* tid = Thread::current();
8796   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8797   // set to ParallelGCThreads.
8798   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8799   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8800   // If the list is busy, we spin for a short while,
8801   // sleeping between attempts to get the list.
8802   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8803     os::sleep(tid, sleep_time_millis, false);
8804     if (_overflow_list == NULL) {
8805       // Nothing left to take
8806       return false;
8807     } else if (_overflow_list != BUSY) {
8808       // Try and grab the prefix
8809       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8810     }
8811   }
8812   // If the list was found to be empty, or we spun long
8813   // enough, we give up and return empty-handed. If we leave
8814   // the list in the BUSY state below, it must be the case that
8815   // some other thread holds the overflow list and will set it
8816   // to a non-BUSY state in the future.
8817   if (prefix == NULL || prefix == BUSY) {
8818      // Nothing to take or waited long enough
8819      if (prefix == NULL) {
8820        // Write back the NULL in case we overwrote it with BUSY above
8821        // and it is still the same value.
8822        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8823      }
8824      return false;
8825   }
8826   assert(prefix != NULL && prefix != BUSY, "Error");
8827   size_t i = num;
8828   oop cur = prefix;
8829   // Walk down the first "num" objects, unless we reach the end.
8830   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8831   if (cur->mark() == NULL) {
8832     // We have "num" or fewer elements in the list, so there
8833     // is nothing to return to the global list.
8834     // Write back the NULL in lieu of the BUSY we wrote
8835     // above, if it is still the same value.
8836     if (_overflow_list == BUSY) {
8837       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8838     }
8839   } else {
8840     // Chop off the suffix and rerturn it to the global list.
8841     assert(cur->mark() != BUSY, "Error");
8842     oop suffix_head = cur->mark(); // suffix will be put back on global list
8843     cur->set_mark(NULL);           // break off suffix
8844     // It's possible that the list is still in the empty(busy) state
8845     // we left it in a short while ago; in that case we may be
8846     // able to place back the suffix without incurring the cost
8847     // of a walk down the list.
8848     oop observed_overflow_list = _overflow_list;
8849     oop cur_overflow_list = observed_overflow_list;
8850     bool attached = false;
8851     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8852       observed_overflow_list =
8853         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8854       if (cur_overflow_list == observed_overflow_list) {
8855         attached = true;
8856         break;
8857       } else cur_overflow_list = observed_overflow_list;
8858     }
8859     if (!attached) {
8860       // Too bad, someone else sneaked in (at least) an element; we'll need
8861       // to do a splice. Find tail of suffix so we can prepend suffix to global
8862       // list.
8863       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8864       oop suffix_tail = cur;
8865       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8866              "Tautology");
8867       observed_overflow_list = _overflow_list;
8868       do {
8869         cur_overflow_list = observed_overflow_list;
8870         if (cur_overflow_list != BUSY) {
8871           // Do the splice ...
8872           suffix_tail->set_mark(markOop(cur_overflow_list));
8873         } else { // cur_overflow_list == BUSY
8874           suffix_tail->set_mark(NULL);
8875         }
8876         // ... and try to place spliced list back on overflow_list ...
8877         observed_overflow_list =
8878           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8879       } while (cur_overflow_list != observed_overflow_list);
8880       // ... until we have succeeded in doing so.
8881     }
8882   }
8883 
8884   // Push the prefix elements on work_q
8885   assert(prefix != NULL, "control point invariant");
8886   const markOop proto = markOopDesc::prototype();
8887   oop next;
8888   NOT_PRODUCT(ssize_t n = 0;)
8889   for (cur = prefix; cur != NULL; cur = next) {
8890     next = oop(cur->mark());
8891     cur->set_mark(proto);   // until proven otherwise
8892     assert(cur->is_oop(), "Should be an oop");
8893     bool res = work_q->push(cur);
8894     assert(res, "Bit off more than we can chew?");
8895     NOT_PRODUCT(n++;)
8896   }
8897 #ifndef PRODUCT
8898   assert(_num_par_pushes >= n, "Too many pops?");
8899   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8900 #endif
8901   return true;
8902 }
8903 
8904 // Single-threaded
8905 void CMSCollector::push_on_overflow_list(oop p) {
8906   NOT_PRODUCT(_num_par_pushes++;)
8907   assert(p->is_oop(), "Not an oop");
8908   preserve_mark_if_necessary(p);
8909   p->set_mark((markOop)_overflow_list);
8910   _overflow_list = p;
8911 }
8912 
8913 // Multi-threaded; use CAS to prepend to overflow list
8914 void CMSCollector::par_push_on_overflow_list(oop p) {
8915   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8916   assert(p->is_oop(), "Not an oop");
8917   par_preserve_mark_if_necessary(p);
8918   oop observed_overflow_list = _overflow_list;
8919   oop cur_overflow_list;
8920   do {
8921     cur_overflow_list = observed_overflow_list;
8922     if (cur_overflow_list != BUSY) {
8923       p->set_mark(markOop(cur_overflow_list));
8924     } else {
8925       p->set_mark(NULL);
8926     }
8927     observed_overflow_list =
8928       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8929   } while (cur_overflow_list != observed_overflow_list);
8930 }
8931 #undef BUSY
8932 
8933 // Single threaded
8934 // General Note on GrowableArray: pushes may silently fail
8935 // because we are (temporarily) out of C-heap for expanding
8936 // the stack. The problem is quite ubiquitous and affects
8937 // a lot of code in the JVM. The prudent thing for GrowableArray
8938 // to do (for now) is to exit with an error. However, that may
8939 // be too draconian in some cases because the caller may be
8940 // able to recover without much harm. For such cases, we
8941 // should probably introduce a "soft_push" method which returns
8942 // an indication of success or failure with the assumption that
8943 // the caller may be able to recover from a failure; code in
8944 // the VM can then be changed, incrementally, to deal with such
8945 // failures where possible, thus, incrementally hardening the VM
8946 // in such low resource situations.
8947 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8948   _preserved_oop_stack.push(p);
8949   _preserved_mark_stack.push(m);
8950   assert(m == p->mark(), "Mark word changed");
8951   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8952          "bijection");
8953 }
8954 
8955 // Single threaded
8956 void CMSCollector::preserve_mark_if_necessary(oop p) {
8957   markOop m = p->mark();
8958   if (m->must_be_preserved(p)) {
8959     preserve_mark_work(p, m);
8960   }
8961 }
8962 
8963 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8964   markOop m = p->mark();
8965   if (m->must_be_preserved(p)) {
8966     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8967     // Even though we read the mark word without holding
8968     // the lock, we are assured that it will not change
8969     // because we "own" this oop, so no other thread can
8970     // be trying to push it on the overflow list; see
8971     // the assertion in preserve_mark_work() that checks
8972     // that m == p->mark().
8973     preserve_mark_work(p, m);
8974   }
8975 }
8976 
8977 // We should be able to do this multi-threaded,
8978 // a chunk of stack being a task (this is
8979 // correct because each oop only ever appears
8980 // once in the overflow list. However, it's
8981 // not very easy to completely overlap this with
8982 // other operations, so will generally not be done
8983 // until all work's been completed. Because we
8984 // expect the preserved oop stack (set) to be small,
8985 // it's probably fine to do this single-threaded.
8986 // We can explore cleverer concurrent/overlapped/parallel
8987 // processing of preserved marks if we feel the
8988 // need for this in the future. Stack overflow should
8989 // be so rare in practice and, when it happens, its
8990 // effect on performance so great that this will
8991 // likely just be in the noise anyway.
8992 void CMSCollector::restore_preserved_marks_if_any() {
8993   assert(SafepointSynchronize::is_at_safepoint(),
8994          "world should be stopped");
8995   assert(Thread::current()->is_ConcurrentGC_thread() ||
8996          Thread::current()->is_VM_thread(),
8997          "should be single-threaded");
8998   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8999          "bijection");
9000 
9001   while (!_preserved_oop_stack.is_empty()) {
9002     oop p = _preserved_oop_stack.pop();
9003     assert(p->is_oop(), "Should be an oop");
9004     assert(_span.contains(p), "oop should be in _span");
9005     assert(p->mark() == markOopDesc::prototype(),
9006            "Set when taken from overflow list");
9007     markOop m = _preserved_mark_stack.pop();
9008     p->set_mark(m);
9009   }
9010   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9011          "stacks were cleared above");
9012 }
9013 
9014 #ifndef PRODUCT
9015 bool CMSCollector::no_preserved_marks() const {
9016   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9017 }
9018 #endif
9019 
9020 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9021 {
9022   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9023   CMSAdaptiveSizePolicy* size_policy =
9024     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9025   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9026     "Wrong type for size policy");
9027   return size_policy;
9028 }
9029 
9030 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9031                                            size_t desired_promo_size) {
9032   if (cur_promo_size < desired_promo_size) {
9033     size_t expand_bytes = desired_promo_size - cur_promo_size;
9034     if (PrintAdaptiveSizePolicy && Verbose) {
9035       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9036         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9037         expand_bytes);
9038     }
9039     expand(expand_bytes,
9040            MinHeapDeltaBytes,
9041            CMSExpansionCause::_adaptive_size_policy);
9042   } else if (desired_promo_size < cur_promo_size) {
9043     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9044     if (PrintAdaptiveSizePolicy && Verbose) {
9045       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9046         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9047         shrink_bytes);
9048     }
9049     shrink(shrink_bytes);
9050   }
9051 }
9052 
9053 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9054   GenCollectedHeap* gch = GenCollectedHeap::heap();
9055   CMSGCAdaptivePolicyCounters* counters =
9056     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9057   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9058     "Wrong kind of counters");
9059   return counters;
9060 }
9061 
9062 
9063 void ASConcurrentMarkSweepGeneration::update_counters() {
9064   if (UsePerfData) {
9065     _space_counters->update_all();
9066     _gen_counters->update_all();
9067     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9068     GenCollectedHeap* gch = GenCollectedHeap::heap();
9069     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9070     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9071       "Wrong gc statistics type");
9072     counters->update_counters(gc_stats_l);
9073   }
9074 }
9075 
9076 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9077   if (UsePerfData) {
9078     _space_counters->update_used(used);
9079     _space_counters->update_capacity();
9080     _gen_counters->update_all();
9081 
9082     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9083     GenCollectedHeap* gch = GenCollectedHeap::heap();
9084     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9085     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9086       "Wrong gc statistics type");
9087     counters->update_counters(gc_stats_l);
9088   }
9089 }
9090 
9091 // The desired expansion delta is computed so that:
9092 // . desired free percentage or greater is used
9093 void ASConcurrentMarkSweepGeneration::compute_new_size() {
9094   assert_locked_or_safepoint(Heap_lock);
9095 
9096   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9097 
9098   // If incremental collection failed, we just want to expand
9099   // to the limit.
9100   if (incremental_collection_failed()) {
9101     clear_incremental_collection_failed();
9102     grow_to_reserved();
9103     return;
9104   }
9105 
9106   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
9107 
9108   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
9109     "Wrong type of heap");
9110   int prev_level = level() - 1;
9111   assert(prev_level >= 0, "The cms generation is the lowest generation");
9112   Generation* prev_gen = gch->get_gen(prev_level);
9113   assert(prev_gen->kind() == Generation::ASParNew,
9114     "Wrong type of young generation");
9115   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
9116   size_t cur_eden = younger_gen->eden()->capacity();
9117   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
9118   size_t cur_promo = free();
9119   size_policy->compute_tenured_generation_free_space(cur_promo,
9120                                                        max_available(),
9121                                                        cur_eden);
9122   resize(cur_promo, size_policy->promo_size());
9123 
9124   // Record the new size of the space in the cms generation
9125   // that is available for promotions.  This is temporary.
9126   // It should be the desired promo size.
9127   size_policy->avg_cms_promo()->sample(free());
9128   size_policy->avg_old_live()->sample(used());
9129 
9130   if (UsePerfData) {
9131     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9132     counters->update_cms_capacity_counter(capacity());
9133   }
9134 }
9135 
9136 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9137   assert_locked_or_safepoint(Heap_lock);
9138   assert_lock_strong(freelistLock());
9139   HeapWord* old_end = _cmsSpace->end();
9140   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9141   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9142   FreeChunk* chunk_at_end = find_chunk_at_end();
9143   if (chunk_at_end == NULL) {
9144     // No room to shrink
9145     if (PrintGCDetails && Verbose) {
9146       gclog_or_tty->print_cr("No room to shrink: old_end  "
9147         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9148         " chunk_at_end  " PTR_FORMAT,
9149         old_end, unallocated_start, chunk_at_end);
9150     }
9151     return;
9152   } else {
9153 
9154     // Find the chunk at the end of the space and determine
9155     // how much it can be shrunk.
9156     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9157     size_t aligned_shrinkable_size_in_bytes =
9158       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9159     assert(unallocated_start <= chunk_at_end->end(),
9160       "Inconsistent chunk at end of space");
9161     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9162     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9163 
9164     // Shrink the underlying space
9165     _virtual_space.shrink_by(bytes);
9166     if (PrintGCDetails && Verbose) {
9167       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9168         " desired_bytes " SIZE_FORMAT
9169         " shrinkable_size_in_bytes " SIZE_FORMAT
9170         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9171         "  bytes  " SIZE_FORMAT,
9172         desired_bytes, shrinkable_size_in_bytes,
9173         aligned_shrinkable_size_in_bytes, bytes);
9174       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9175         "  unallocated_start  " SIZE_FORMAT,
9176         old_end, unallocated_start);
9177     }
9178 
9179     // If the space did shrink (shrinking is not guaranteed),
9180     // shrink the chunk at the end by the appropriate amount.
9181     if (((HeapWord*)_virtual_space.high()) < old_end) {
9182       size_t new_word_size =
9183         heap_word_size(_virtual_space.committed_size());
9184 
9185       // Have to remove the chunk from the dictionary because it is changing
9186       // size and might be someplace elsewhere in the dictionary.
9187 
9188       // Get the chunk at end, shrink it, and put it
9189       // back.
9190       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9191       size_t word_size_change = word_size_before - new_word_size;
9192       size_t chunk_at_end_old_size = chunk_at_end->size();
9193       assert(chunk_at_end_old_size >= word_size_change,
9194         "Shrink is too large");
9195       chunk_at_end->set_size(chunk_at_end_old_size -
9196                           word_size_change);
9197       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9198         word_size_change);
9199 
9200       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9201 
9202       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9203       _bts->resize(new_word_size);  // resize the block offset shared array
9204       Universe::heap()->barrier_set()->resize_covered_region(mr);
9205       _cmsSpace->assert_locked();
9206       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9207 
9208       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9209 
9210       // update the space and generation capacity counters
9211       if (UsePerfData) {
9212         _space_counters->update_capacity();
9213         _gen_counters->update_all();
9214       }
9215 
9216       if (Verbose && PrintGCDetails) {
9217         size_t new_mem_size = _virtual_space.committed_size();
9218         size_t old_mem_size = new_mem_size + bytes;
9219         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
9220                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9221       }
9222     }
9223 
9224     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9225       "Inconsistency at end of space");
9226     assert(chunk_at_end->end() == _cmsSpace->end(),
9227       "Shrinking is inconsistent");
9228     return;
9229   }
9230 }
9231 
9232 // Transfer some number of overflown objects to usual marking
9233 // stack. Return true if some objects were transferred.
9234 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9235   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9236                     (size_t)ParGCDesiredObjsFromOverflowList);
9237 
9238   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9239   assert(_collector->overflow_list_is_empty() || res,
9240          "If list is not empty, we should have taken something");
9241   assert(!res || !_mark_stack->isEmpty(),
9242          "If we took something, it should now be on our stack");
9243   return res;
9244 }
9245 
9246 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9247   size_t res = _sp->block_size_no_stall(addr, _collector);
9248   if (_sp->block_is_obj(addr)) {
9249     if (_live_bit_map->isMarked(addr)) {
9250       // It can't have been dead in a previous cycle
9251       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9252     } else {
9253       _dead_bit_map->mark(addr);      // mark the dead object
9254     }
9255   }
9256   // Could be 0, if the block size could not be computed without stalling.
9257   return res;
9258 }
9259 
9260 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9261 
9262   switch (phase) {
9263     case CMSCollector::InitialMarking:
9264       initialize(true  /* fullGC */ ,
9265                  cause /* cause of the GC */,
9266                  true  /* recordGCBeginTime */,
9267                  true  /* recordPreGCUsage */,
9268                  false /* recordPeakUsage */,
9269                  false /* recordPostGCusage */,
9270                  true  /* recordAccumulatedGCTime */,
9271                  false /* recordGCEndTime */,
9272                  false /* countCollection */  );
9273       break;
9274 
9275     case CMSCollector::FinalMarking:
9276       initialize(true  /* fullGC */ ,
9277                  cause /* cause of the GC */,
9278                  false /* recordGCBeginTime */,
9279                  false /* recordPreGCUsage */,
9280                  false /* recordPeakUsage */,
9281                  false /* recordPostGCusage */,
9282                  true  /* recordAccumulatedGCTime */,
9283                  false /* recordGCEndTime */,
9284                  false /* countCollection */  );
9285       break;
9286 
9287     case CMSCollector::Sweeping:
9288       initialize(true  /* fullGC */ ,
9289                  cause /* cause of the GC */,
9290                  false /* recordGCBeginTime */,
9291                  false /* recordPreGCUsage */,
9292                  true  /* recordPeakUsage */,
9293                  true  /* recordPostGCusage */,
9294                  false /* recordAccumulatedGCTime */,
9295                  true  /* recordGCEndTime */,
9296                  true  /* countCollection */  );
9297       break;
9298 
9299     default:
9300       ShouldNotReachHere();
9301   }
9302 }
9303