1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {
  56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  57 };
  58 
  59 static double cost_per_entry_ms_defaults[] = {
  60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  61 };
  62 
  63 static double cost_per_byte_ms_defaults[] = {
  64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  65 };
  66 
  67 // these should be pretty consistent
  68 static double constant_other_time_ms_defaults[] = {
  69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  70 };
  71 
  72 
  73 static double young_other_cost_per_region_ms_defaults[] = {
  74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  75 };
  76 
  77 static double non_young_other_cost_per_region_ms_defaults[] = {
  78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  79 };
  80 
  81 G1CollectorPolicy::G1CollectorPolicy() :
  82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
  83                         ? ParallelGCThreads : 1),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _stop_world_start(0.0),
  87 
  88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90 
  91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  92   _prev_collection_pause_end_ms(0.0),
  93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _gcs_are_young(true),
 112 
 113   _during_marking(false),
 114   _in_marking_window(false),
 115   _in_marking_window_im(false),
 116 
 117   _recent_prev_end_times_for_all_gcs_sec(
 118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 119 
 120   _recent_avg_pause_time_ratio(0.0),
 121 
 122   _initiate_conc_mark_if_possible(false),
 123   _during_initial_mark_pause(false),
 124   _last_young_gc(false),
 125   _last_gc_was_young(false),
 126 
 127   _eden_bytes_before_gc(0),
 128   _survivor_bytes_before_gc(0),
 129   _capacity_before_gc(0),
 130 
 131   _eden_cset_region_length(0),
 132   _survivor_cset_region_length(0),
 133   _old_cset_region_length(0),
 134 
 135   _collection_set(NULL),
 136   _collection_set_bytes_used_before(0),
 137 
 138   // Incremental CSet attributes
 139   _inc_cset_build_state(Inactive),
 140   _inc_cset_head(NULL),
 141   _inc_cset_tail(NULL),
 142   _inc_cset_bytes_used_before(0),
 143   _inc_cset_max_finger(NULL),
 144   _inc_cset_recorded_rs_lengths(0),
 145   _inc_cset_recorded_rs_lengths_diffs(0),
 146   _inc_cset_predicted_elapsed_time_ms(0.0),
 147   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 148 
 149 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 150 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 151 #endif // _MSC_VER
 152 
 153   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 154                                                  G1YoungSurvRateNumRegionsSummary)),
 155   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 156                                               G1YoungSurvRateNumRegionsSummary)),
 157   // add here any more surv rate groups
 158   _recorded_survivor_regions(0),
 159   _recorded_survivor_head(NULL),
 160   _recorded_survivor_tail(NULL),
 161   _survivors_age_table(true),
 162 
 163   _gc_overhead_perc(0.0) {
 164 
 165   // Set up the region size and associated fields. Given that the
 166   // policy is created before the heap, we have to set this up here,
 167   // so it's done as soon as possible.
 168   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
 169   HeapRegionRemSet::setup_remset_size();
 170 
 171   G1ErgoVerbose::initialize();
 172   if (PrintAdaptiveSizePolicy) {
 173     // Currently, we only use a single switch for all the heuristics.
 174     G1ErgoVerbose::set_enabled(true);
 175     // Given that we don't currently have a verboseness level
 176     // parameter, we'll hardcode this to high. This can be easily
 177     // changed in the future.
 178     G1ErgoVerbose::set_level(ErgoHigh);
 179   } else {
 180     G1ErgoVerbose::set_enabled(false);
 181   }
 182 
 183   // Verify PLAB sizes
 184   const size_t region_size = HeapRegion::GrainWords;
 185   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 186     char buffer[128];
 187     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 188                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 189     vm_exit_during_initialization(buffer);
 190   }
 191 
 192   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 193   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 194 
 195   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 196 
 197   int index = MIN2(_parallel_gc_threads - 1, 7);
 198 
 199   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 200   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 201   _young_cards_per_entry_ratio_seq->add(
 202                                   young_cards_per_entry_ratio_defaults[index]);
 203   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 204   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 205   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 206   _young_other_cost_per_region_ms_seq->add(
 207                                young_other_cost_per_region_ms_defaults[index]);
 208   _non_young_other_cost_per_region_ms_seq->add(
 209                            non_young_other_cost_per_region_ms_defaults[index]);
 210 
 211   // Below, we might need to calculate the pause time target based on
 212   // the pause interval. When we do so we are going to give G1 maximum
 213   // flexibility and allow it to do pauses when it needs to. So, we'll
 214   // arrange that the pause interval to be pause time target + 1 to
 215   // ensure that a) the pause time target is maximized with respect to
 216   // the pause interval and b) we maintain the invariant that pause
 217   // time target < pause interval. If the user does not want this
 218   // maximum flexibility, they will have to set the pause interval
 219   // explicitly.
 220 
 221   // First make sure that, if either parameter is set, its value is
 222   // reasonable.
 223   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 224     if (MaxGCPauseMillis < 1) {
 225       vm_exit_during_initialization("MaxGCPauseMillis should be "
 226                                     "greater than 0");
 227     }
 228   }
 229   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 230     if (GCPauseIntervalMillis < 1) {
 231       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 232                                     "greater than 0");
 233     }
 234   }
 235 
 236   // Then, if the pause time target parameter was not set, set it to
 237   // the default value.
 238   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 239     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 240       // The default pause time target in G1 is 200ms
 241       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 242     } else {
 243       // We do not allow the pause interval to be set without the
 244       // pause time target
 245       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 246                                     "without setting MaxGCPauseMillis");
 247     }
 248   }
 249 
 250   // Then, if the interval parameter was not set, set it according to
 251   // the pause time target (this will also deal with the case when the
 252   // pause time target is the default value).
 253   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 254     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 255   }
 256 
 257   // Finally, make sure that the two parameters are consistent.
 258   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 259     char buffer[256];
 260     jio_snprintf(buffer, 256,
 261                  "MaxGCPauseMillis (%u) should be less than "
 262                  "GCPauseIntervalMillis (%u)",
 263                  MaxGCPauseMillis, GCPauseIntervalMillis);
 264     vm_exit_during_initialization(buffer);
 265   }
 266 
 267   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 268   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 269   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 270 
 271   uintx confidence_perc = G1ConfidencePercent;
 272   // Put an artificial ceiling on this so that it's not set to a silly value.
 273   if (confidence_perc > 100) {
 274     confidence_perc = 100;
 275     warning("G1ConfidencePercent is set to a value that is too large, "
 276             "it's been updated to %u", confidence_perc);
 277   }
 278   _sigma = (double) confidence_perc / 100.0;
 279 
 280   // start conservatively (around 50ms is about right)
 281   _concurrent_mark_remark_times_ms->add(0.05);
 282   _concurrent_mark_cleanup_times_ms->add(0.20);
 283   _tenuring_threshold = MaxTenuringThreshold;
 284   // _max_survivor_regions will be calculated by
 285   // update_young_list_target_length() during initialization.
 286   _max_survivor_regions = 0;
 287 
 288   assert(GCTimeRatio > 0,
 289          "we should have set it to a default value set_g1_gc_flags() "
 290          "if a user set it to 0");
 291   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 292 
 293   uintx reserve_perc = G1ReservePercent;
 294   // Put an artificial ceiling on this so that it's not set to a silly value.
 295   if (reserve_perc > 50) {
 296     reserve_perc = 50;
 297     warning("G1ReservePercent is set to a value that is too large, "
 298             "it's been updated to %u", reserve_perc);
 299   }
 300   _reserve_factor = (double) reserve_perc / 100.0;
 301   // This will be set when the heap is expanded
 302   // for the first time during initialization.
 303   _reserve_regions = 0;
 304 
 305   initialize_all();
 306   _collectionSetChooser = new CollectionSetChooser();
 307   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 308 }
 309 
 310 void G1CollectorPolicy::initialize_flags() {
 311   set_min_alignment(HeapRegion::GrainBytes);
 312   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
 313   if (SurvivorRatio < 1) {
 314     vm_exit_during_initialization("Invalid survivor ratio specified");
 315   }
 316   CollectorPolicy::initialize_flags();
 317 }
 318 
 319 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
 320   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
 321   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
 322   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
 323 
 324   if (FLAG_IS_CMDLINE(NewRatio)) {
 325     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 326       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 327     } else {
 328       _sizer_kind = SizerNewRatio;
 329       _adaptive_size = false;
 330       return;
 331     }
 332   }
 333 
 334   if (FLAG_IS_CMDLINE(NewSize)) {
 335     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 336                                      1U);
 337     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 338       _max_desired_young_length =
 339                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 340                                   1U);
 341       _sizer_kind = SizerMaxAndNewSize;
 342       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 343     } else {
 344       _sizer_kind = SizerNewSizeOnly;
 345     }
 346   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 347     _max_desired_young_length =
 348                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 349                                   1U);
 350     _sizer_kind = SizerMaxNewSizeOnly;
 351   }
 352 }
 353 
 354 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 355   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 356   return MAX2(1U, default_value);
 357 }
 358 
 359 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 360   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 361   return MAX2(1U, default_value);
 362 }
 363 
 364 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 365   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
 366 
 367   switch (_sizer_kind) {
 368     case SizerDefaults:
 369       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 370       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 371       break;
 372     case SizerNewSizeOnly:
 373       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 374       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
 375       break;
 376     case SizerMaxNewSizeOnly:
 377       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 378       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
 379       break;
 380     case SizerMaxAndNewSize:
 381       // Do nothing. Values set on the command line, don't update them at runtime.
 382       break;
 383     case SizerNewRatio:
 384       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
 385       _max_desired_young_length = _min_desired_young_length;
 386       break;
 387     default:
 388       ShouldNotReachHere();
 389   }
 390 
 391   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
 392 }
 393 
 394 void G1CollectorPolicy::init() {
 395   // Set aside an initial future to_space.
 396   _g1 = G1CollectedHeap::heap();
 397 
 398   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 399 
 400   initialize_gc_policy_counters();
 401 
 402   if (adaptive_young_list_length()) {
 403     _young_list_fixed_length = 0;
 404   } else {
 405     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 406   }
 407   _free_regions_at_end_of_collection = _g1->free_regions();
 408   update_young_list_target_length();
 409   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
 410 
 411   // We may immediately start allocating regions and placing them on the
 412   // collection set list. Initialize the per-collection set info
 413   start_incremental_cset_building();
 414 }
 415 
 416 // Create the jstat counters for the policy.
 417 void G1CollectorPolicy::initialize_gc_policy_counters() {
 418   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 419 }
 420 
 421 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 422                                          double base_time_ms,
 423                                          uint base_free_regions,
 424                                          double target_pause_time_ms) {
 425   if (young_length >= base_free_regions) {
 426     // end condition 1: not enough space for the young regions
 427     return false;
 428   }
 429 
 430   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 431   size_t bytes_to_copy =
 432                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 433   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 434   double young_other_time_ms = predict_young_other_time_ms(young_length);
 435   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 436   if (pause_time_ms > target_pause_time_ms) {
 437     // end condition 2: prediction is over the target pause time
 438     return false;
 439   }
 440 
 441   size_t free_bytes =
 442                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 443   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 444     // end condition 3: out-of-space (conservatively!)
 445     return false;
 446   }
 447 
 448   // success!
 449   return true;
 450 }
 451 
 452 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 453   // re-calculate the necessary reserve
 454   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 455   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 456   // smaller than 1.0) we'll get 1.
 457   _reserve_regions = (uint) ceil(reserve_regions_d);
 458 
 459   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 460 }
 461 
 462 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 463                                                        uint base_min_length) {
 464   uint desired_min_length = 0;
 465   if (adaptive_young_list_length()) {
 466     if (_alloc_rate_ms_seq->num() > 3) {
 467       double now_sec = os::elapsedTime();
 468       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 469       double alloc_rate_ms = predict_alloc_rate_ms();
 470       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 471     } else {
 472       // otherwise we don't have enough info to make the prediction
 473     }
 474   }
 475   desired_min_length += base_min_length;
 476   // make sure we don't go below any user-defined minimum bound
 477   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 478 }
 479 
 480 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 481   // Here, we might want to also take into account any additional
 482   // constraints (i.e., user-defined minimum bound). Currently, we
 483   // effectively don't set this bound.
 484   return _young_gen_sizer->max_desired_young_length();
 485 }
 486 
 487 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 488   if (rs_lengths == (size_t) -1) {
 489     // if it's set to the default value (-1), we should predict it;
 490     // otherwise, use the given value.
 491     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 492   }
 493 
 494   // Calculate the absolute and desired min bounds.
 495 
 496   // This is how many young regions we already have (currently: the survivors).
 497   uint base_min_length = recorded_survivor_regions();
 498   // This is the absolute minimum young length, which ensures that we
 499   // can allocate one eden region in the worst-case.
 500   uint absolute_min_length = base_min_length + 1;
 501   uint desired_min_length =
 502                      calculate_young_list_desired_min_length(base_min_length);
 503   if (desired_min_length < absolute_min_length) {
 504     desired_min_length = absolute_min_length;
 505   }
 506 
 507   // Calculate the absolute and desired max bounds.
 508 
 509   // We will try our best not to "eat" into the reserve.
 510   uint absolute_max_length = 0;
 511   if (_free_regions_at_end_of_collection > _reserve_regions) {
 512     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 513   }
 514   uint desired_max_length = calculate_young_list_desired_max_length();
 515   if (desired_max_length > absolute_max_length) {
 516     desired_max_length = absolute_max_length;
 517   }
 518 
 519   uint young_list_target_length = 0;
 520   if (adaptive_young_list_length()) {
 521     if (gcs_are_young()) {
 522       young_list_target_length =
 523                         calculate_young_list_target_length(rs_lengths,
 524                                                            base_min_length,
 525                                                            desired_min_length,
 526                                                            desired_max_length);
 527       _rs_lengths_prediction = rs_lengths;
 528     } else {
 529       // Don't calculate anything and let the code below bound it to
 530       // the desired_min_length, i.e., do the next GC as soon as
 531       // possible to maximize how many old regions we can add to it.
 532     }
 533   } else {
 534     // The user asked for a fixed young gen so we'll fix the young gen
 535     // whether the next GC is young or mixed.
 536     young_list_target_length = _young_list_fixed_length;
 537   }
 538 
 539   // Make sure we don't go over the desired max length, nor under the
 540   // desired min length. In case they clash, desired_min_length wins
 541   // which is why that test is second.
 542   if (young_list_target_length > desired_max_length) {
 543     young_list_target_length = desired_max_length;
 544   }
 545   if (young_list_target_length < desired_min_length) {
 546     young_list_target_length = desired_min_length;
 547   }
 548 
 549   assert(young_list_target_length > recorded_survivor_regions(),
 550          "we should be able to allocate at least one eden region");
 551   assert(young_list_target_length >= absolute_min_length, "post-condition");
 552   _young_list_target_length = young_list_target_length;
 553 
 554   update_max_gc_locker_expansion();
 555 }
 556 
 557 uint
 558 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 559                                                      uint base_min_length,
 560                                                      uint desired_min_length,
 561                                                      uint desired_max_length) {
 562   assert(adaptive_young_list_length(), "pre-condition");
 563   assert(gcs_are_young(), "only call this for young GCs");
 564 
 565   // In case some edge-condition makes the desired max length too small...
 566   if (desired_max_length <= desired_min_length) {
 567     return desired_min_length;
 568   }
 569 
 570   // We'll adjust min_young_length and max_young_length not to include
 571   // the already allocated young regions (i.e., so they reflect the
 572   // min and max eden regions we'll allocate). The base_min_length
 573   // will be reflected in the predictions by the
 574   // survivor_regions_evac_time prediction.
 575   assert(desired_min_length > base_min_length, "invariant");
 576   uint min_young_length = desired_min_length - base_min_length;
 577   assert(desired_max_length > base_min_length, "invariant");
 578   uint max_young_length = desired_max_length - base_min_length;
 579 
 580   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 581   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 582   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 583   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 584   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 585   double base_time_ms =
 586     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 587     survivor_regions_evac_time;
 588   uint available_free_regions = _free_regions_at_end_of_collection;
 589   uint base_free_regions = 0;
 590   if (available_free_regions > _reserve_regions) {
 591     base_free_regions = available_free_regions - _reserve_regions;
 592   }
 593 
 594   // Here, we will make sure that the shortest young length that
 595   // makes sense fits within the target pause time.
 596 
 597   if (predict_will_fit(min_young_length, base_time_ms,
 598                        base_free_regions, target_pause_time_ms)) {
 599     // The shortest young length will fit into the target pause time;
 600     // we'll now check whether the absolute maximum number of young
 601     // regions will fit in the target pause time. If not, we'll do
 602     // a binary search between min_young_length and max_young_length.
 603     if (predict_will_fit(max_young_length, base_time_ms,
 604                          base_free_regions, target_pause_time_ms)) {
 605       // The maximum young length will fit into the target pause time.
 606       // We are done so set min young length to the maximum length (as
 607       // the result is assumed to be returned in min_young_length).
 608       min_young_length = max_young_length;
 609     } else {
 610       // The maximum possible number of young regions will not fit within
 611       // the target pause time so we'll search for the optimal
 612       // length. The loop invariants are:
 613       //
 614       // min_young_length < max_young_length
 615       // min_young_length is known to fit into the target pause time
 616       // max_young_length is known not to fit into the target pause time
 617       //
 618       // Going into the loop we know the above hold as we've just
 619       // checked them. Every time around the loop we check whether
 620       // the middle value between min_young_length and
 621       // max_young_length fits into the target pause time. If it
 622       // does, it becomes the new min. If it doesn't, it becomes
 623       // the new max. This way we maintain the loop invariants.
 624 
 625       assert(min_young_length < max_young_length, "invariant");
 626       uint diff = (max_young_length - min_young_length) / 2;
 627       while (diff > 0) {
 628         uint young_length = min_young_length + diff;
 629         if (predict_will_fit(young_length, base_time_ms,
 630                              base_free_regions, target_pause_time_ms)) {
 631           min_young_length = young_length;
 632         } else {
 633           max_young_length = young_length;
 634         }
 635         assert(min_young_length <  max_young_length, "invariant");
 636         diff = (max_young_length - min_young_length) / 2;
 637       }
 638       // The results is min_young_length which, according to the
 639       // loop invariants, should fit within the target pause time.
 640 
 641       // These are the post-conditions of the binary search above:
 642       assert(min_young_length < max_young_length,
 643              "otherwise we should have discovered that max_young_length "
 644              "fits into the pause target and not done the binary search");
 645       assert(predict_will_fit(min_young_length, base_time_ms,
 646                               base_free_regions, target_pause_time_ms),
 647              "min_young_length, the result of the binary search, should "
 648              "fit into the pause target");
 649       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 650                                base_free_regions, target_pause_time_ms),
 651              "min_young_length, the result of the binary search, should be "
 652              "optimal, so no larger length should fit into the pause target");
 653     }
 654   } else {
 655     // Even the minimum length doesn't fit into the pause time
 656     // target, return it as the result nevertheless.
 657   }
 658   return base_min_length + min_young_length;
 659 }
 660 
 661 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 662   double survivor_regions_evac_time = 0.0;
 663   for (HeapRegion * r = _recorded_survivor_head;
 664        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 665        r = r->get_next_young_region()) {
 666     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
 667   }
 668   return survivor_regions_evac_time;
 669 }
 670 
 671 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 672   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 673 
 674   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 675   if (rs_lengths > _rs_lengths_prediction) {
 676     // add 10% to avoid having to recalculate often
 677     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 678     update_young_list_target_length(rs_lengths_prediction);
 679   }
 680 }
 681 
 682 
 683 
 684 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 685                                                bool is_tlab,
 686                                                bool* gc_overhead_limit_was_exceeded) {
 687   guarantee(false, "Not using this policy feature yet.");
 688   return NULL;
 689 }
 690 
 691 // This method controls how a collector handles one or more
 692 // of its generations being fully allocated.
 693 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 694                                                        bool is_tlab) {
 695   guarantee(false, "Not using this policy feature yet.");
 696   return NULL;
 697 }
 698 
 699 
 700 #ifndef PRODUCT
 701 bool G1CollectorPolicy::verify_young_ages() {
 702   HeapRegion* head = _g1->young_list()->first_region();
 703   return
 704     verify_young_ages(head, _short_lived_surv_rate_group);
 705   // also call verify_young_ages on any additional surv rate groups
 706 }
 707 
 708 bool
 709 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 710                                      SurvRateGroup *surv_rate_group) {
 711   guarantee( surv_rate_group != NULL, "pre-condition" );
 712 
 713   const char* name = surv_rate_group->name();
 714   bool ret = true;
 715   int prev_age = -1;
 716 
 717   for (HeapRegion* curr = head;
 718        curr != NULL;
 719        curr = curr->get_next_young_region()) {
 720     SurvRateGroup* group = curr->surv_rate_group();
 721     if (group == NULL && !curr->is_survivor()) {
 722       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 723       ret = false;
 724     }
 725 
 726     if (surv_rate_group == group) {
 727       int age = curr->age_in_surv_rate_group();
 728 
 729       if (age < 0) {
 730         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 731         ret = false;
 732       }
 733 
 734       if (age <= prev_age) {
 735         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 736                                "(%d, %d)", name, age, prev_age);
 737         ret = false;
 738       }
 739       prev_age = age;
 740     }
 741   }
 742 
 743   return ret;
 744 }
 745 #endif // PRODUCT
 746 
 747 void G1CollectorPolicy::record_full_collection_start() {
 748   _full_collection_start_sec = os::elapsedTime();
 749   // Release the future to-space so that it is available for compaction into.
 750   _g1->set_full_collection();
 751 }
 752 
 753 void G1CollectorPolicy::record_full_collection_end() {
 754   // Consider this like a collection pause for the purposes of allocation
 755   // since last pause.
 756   double end_sec = os::elapsedTime();
 757   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 758   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 759 
 760   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
 761 
 762   update_recent_gc_times(end_sec, full_gc_time_ms);
 763 
 764   _g1->clear_full_collection();
 765 
 766   // "Nuke" the heuristics that control the young/mixed GC
 767   // transitions and make sure we start with young GCs after the Full GC.
 768   set_gcs_are_young(true);
 769   _last_young_gc = false;
 770   clear_initiate_conc_mark_if_possible();
 771   clear_during_initial_mark_pause();
 772   _in_marking_window = false;
 773   _in_marking_window_im = false;
 774 
 775   _short_lived_surv_rate_group->start_adding_regions();
 776   // also call this on any additional surv rate groups
 777 
 778   record_survivor_regions(0, NULL, NULL);
 779 
 780   _free_regions_at_end_of_collection = _g1->free_regions();
 781   // Reset survivors SurvRateGroup.
 782   _survivor_surv_rate_group->reset();
 783   update_young_list_target_length();
 784   _collectionSetChooser->clear();
 785 }
 786 
 787 void G1CollectorPolicy::record_stop_world_start() {
 788   _stop_world_start = os::elapsedTime();
 789 }
 790 
 791 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
 792                                                       size_t start_used) {
 793   // We only need to do this here as the policy will only be applied
 794   // to the GC we're about to start. so, no point is calculating this
 795   // every time we calculate / recalculate the target young length.
 796   update_survivors_policy();
 797 
 798   assert(_g1->used() == _g1->recalculate_used(),
 799          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 800                  _g1->used(), _g1->recalculate_used()));
 801 
 802   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 803   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
 804   _stop_world_start = 0.0;
 805 
 806   phase_times()->record_cur_collection_start_sec(start_time_sec);
 807   _cur_collection_pause_used_at_start_bytes = start_used;
 808   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
 809   _pending_cards = _g1->pending_card_num();
 810 
 811   _collection_set_bytes_used_before = 0;
 812   _bytes_copied_during_gc = 0;
 813 
 814   YoungList* young_list = _g1->young_list();
 815   _eden_bytes_before_gc = young_list->eden_used_bytes();
 816   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
 817   _capacity_before_gc = _g1->capacity();
 818 
 819   _last_gc_was_young = false;
 820 
 821   // do that for any other surv rate groups
 822   _short_lived_surv_rate_group->stop_adding_regions();
 823   _survivors_age_table.clear();
 824 
 825   assert( verify_young_ages(), "region age verification" );
 826 }
 827 
 828 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 829                                                    mark_init_elapsed_time_ms) {
 830   _during_marking = true;
 831   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 832   clear_during_initial_mark_pause();
 833   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 834 }
 835 
 836 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 837   _mark_remark_start_sec = os::elapsedTime();
 838   _during_marking = false;
 839 }
 840 
 841 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 842   double end_time_sec = os::elapsedTime();
 843   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 844   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 845   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 846   _prev_collection_pause_end_ms += elapsed_time_ms;
 847 
 848   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 849 }
 850 
 851 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 852   _mark_cleanup_start_sec = os::elapsedTime();
 853 }
 854 
 855 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 856   _last_young_gc = true;
 857   _in_marking_window = false;
 858 }
 859 
 860 void G1CollectorPolicy::record_concurrent_pause() {
 861   if (_stop_world_start > 0.0) {
 862     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 863     _trace_gen0_time_data.record_yield_time(yield_ms);
 864   }
 865 }
 866 
 867 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 868   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 869     return false;
 870   }
 871 
 872   size_t marking_initiating_used_threshold =
 873     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 874   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 875   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 876 
 877   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 878     if (gcs_are_young()) {
 879       ergo_verbose5(ErgoConcCycles,
 880         "request concurrent cycle initiation",
 881         ergo_format_reason("occupancy higher than threshold")
 882         ergo_format_byte("occupancy")
 883         ergo_format_byte("allocation request")
 884         ergo_format_byte_perc("threshold")
 885         ergo_format_str("source"),
 886         cur_used_bytes,
 887         alloc_byte_size,
 888         marking_initiating_used_threshold,
 889         (double) InitiatingHeapOccupancyPercent,
 890         source);
 891       return true;
 892     } else {
 893       ergo_verbose5(ErgoConcCycles,
 894         "do not request concurrent cycle initiation",
 895         ergo_format_reason("still doing mixed collections")
 896         ergo_format_byte("occupancy")
 897         ergo_format_byte("allocation request")
 898         ergo_format_byte_perc("threshold")
 899         ergo_format_str("source"),
 900         cur_used_bytes,
 901         alloc_byte_size,
 902         marking_initiating_used_threshold,
 903         (double) InitiatingHeapOccupancyPercent,
 904         source);
 905     }
 906   }
 907 
 908   return false;
 909 }
 910 
 911 // Anything below that is considered to be zero
 912 #define MIN_TIMER_GRANULARITY 0.0000001
 913 
 914 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) {
 915   double end_time_sec = os::elapsedTime();
 916   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 917          "otherwise, the subtraction below does not make sense");
 918   size_t rs_size =
 919             _cur_collection_pause_used_regions_at_start - cset_region_length();
 920   size_t cur_used_bytes = _g1->used();
 921   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 922   bool last_pause_included_initial_mark = false;
 923   bool update_stats = !_g1->evacuation_failed();
 924 
 925 #ifndef PRODUCT
 926   if (G1YoungSurvRateVerbose) {
 927     gclog_or_tty->print_cr("");
 928     _short_lived_surv_rate_group->print();
 929     // do that for any other surv rate groups too
 930   }
 931 #endif // PRODUCT
 932 
 933   last_pause_included_initial_mark = during_initial_mark_pause();
 934   if (last_pause_included_initial_mark) {
 935     record_concurrent_mark_init_end(0.0);
 936   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
 937     // Note: this might have already been set, if during the last
 938     // pause we decided to start a cycle but at the beginning of
 939     // this pause we decided to postpone it. That's OK.
 940     set_initiate_conc_mark_if_possible();
 941   }
 942 
 943   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 944                           end_time_sec, false);
 945 
 946   size_t freed_bytes =
 947     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
 948   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
 949 
 950   double survival_fraction =
 951     (double)surviving_bytes/
 952     (double)_collection_set_bytes_used_before;
 953 
 954   if (update_stats) {
 955     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
 956     // this is where we update the allocation rate of the application
 957     double app_time_ms =
 958       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 959     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 960       // This usually happens due to the timer not having the required
 961       // granularity. Some Linuxes are the usual culprits.
 962       // We'll just set it to something (arbitrarily) small.
 963       app_time_ms = 1.0;
 964     }
 965     // We maintain the invariant that all objects allocated by mutator
 966     // threads will be allocated out of eden regions. So, we can use
 967     // the eden region number allocated since the previous GC to
 968     // calculate the application's allocate rate. The only exception
 969     // to that is humongous objects that are allocated separately. But
 970     // given that humongous object allocations do not really affect
 971     // either the pause's duration nor when the next pause will take
 972     // place we can safely ignore them here.
 973     uint regions_allocated = eden_cset_region_length();
 974     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 975     _alloc_rate_ms_seq->add(alloc_rate_ms);
 976 
 977     double interval_ms =
 978       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 979     update_recent_gc_times(end_time_sec, pause_time_ms);
 980     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 981     if (recent_avg_pause_time_ratio() < 0.0 ||
 982         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 983 #ifndef PRODUCT
 984       // Dump info to allow post-facto debugging
 985       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
 986       gclog_or_tty->print_cr("-------------------------------------------");
 987       gclog_or_tty->print_cr("Recent GC Times (ms):");
 988       _recent_gc_times_ms->dump();
 989       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
 990       _recent_prev_end_times_for_all_gcs_sec->dump();
 991       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
 992                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
 993       // In debug mode, terminate the JVM if the user wants to debug at this point.
 994       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
 995 #endif  // !PRODUCT
 996       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
 997       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
 998       if (_recent_avg_pause_time_ratio < 0.0) {
 999         _recent_avg_pause_time_ratio = 0.0;
1000       } else {
1001         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1002         _recent_avg_pause_time_ratio = 1.0;
1003       }
1004     }
1005   }
1006   bool new_in_marking_window = _in_marking_window;
1007   bool new_in_marking_window_im = false;
1008   if (during_initial_mark_pause()) {
1009     new_in_marking_window = true;
1010     new_in_marking_window_im = true;
1011   }
1012 
1013   if (_last_young_gc) {
1014     // This is supposed to to be the "last young GC" before we start
1015     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1016 
1017     if (!last_pause_included_initial_mark) {
1018       if (next_gc_should_be_mixed("start mixed GCs",
1019                                   "do not start mixed GCs")) {
1020         set_gcs_are_young(false);
1021       }
1022     } else {
1023       ergo_verbose0(ErgoMixedGCs,
1024                     "do not start mixed GCs",
1025                     ergo_format_reason("concurrent cycle is about to start"));
1026     }
1027     _last_young_gc = false;
1028   }
1029 
1030   if (!_last_gc_was_young) {
1031     // This is a mixed GC. Here we decide whether to continue doing
1032     // mixed GCs or not.
1033 
1034     if (!next_gc_should_be_mixed("continue mixed GCs",
1035                                  "do not continue mixed GCs")) {
1036       set_gcs_are_young(true);
1037     }
1038   }
1039 
1040   _short_lived_surv_rate_group->start_adding_regions();
1041   // do that for any other surv rate groupsx
1042 
1043   if (update_stats) {
1044     double cost_per_card_ms = 0.0;
1045     if (_pending_cards > 0) {
1046       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1047       _cost_per_card_ms_seq->add(cost_per_card_ms);
1048     }
1049 
1050     size_t cards_scanned = _g1->cards_scanned();
1051 
1052     double cost_per_entry_ms = 0.0;
1053     if (cards_scanned > 10) {
1054       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1055       if (_last_gc_was_young) {
1056         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1057       } else {
1058         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1059       }
1060     }
1061 
1062     if (_max_rs_lengths > 0) {
1063       double cards_per_entry_ratio =
1064         (double) cards_scanned / (double) _max_rs_lengths;
1065       if (_last_gc_was_young) {
1066         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1067       } else {
1068         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1069       }
1070     }
1071 
1072     // This is defensive. For a while _max_rs_lengths could get
1073     // smaller than _recorded_rs_lengths which was causing
1074     // rs_length_diff to get very large and mess up the RSet length
1075     // predictions. The reason was unsafe concurrent updates to the
1076     // _inc_cset_recorded_rs_lengths field which the code below guards
1077     // against (see CR 7118202). This bug has now been fixed (see CR
1078     // 7119027). However, I'm still worried that
1079     // _inc_cset_recorded_rs_lengths might still end up somewhat
1080     // inaccurate. The concurrent refinement thread calculates an
1081     // RSet's length concurrently with other CR threads updating it
1082     // which might cause it to calculate the length incorrectly (if,
1083     // say, it's in mid-coarsening). So I'll leave in the defensive
1084     // conditional below just in case.
1085     size_t rs_length_diff = 0;
1086     if (_max_rs_lengths > _recorded_rs_lengths) {
1087       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1088     }
1089     _rs_length_diff_seq->add((double) rs_length_diff);
1090 
1091     size_t copied_bytes = surviving_bytes;
1092     double cost_per_byte_ms = 0.0;
1093     if (copied_bytes > 0) {
1094       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1095       if (_in_marking_window) {
1096         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1097       } else {
1098         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1099       }
1100     }
1101 
1102     double all_other_time_ms = pause_time_ms -
1103       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
1104       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1105 
1106     double young_other_time_ms = 0.0;
1107     if (young_cset_region_length() > 0) {
1108       young_other_time_ms =
1109         phase_times()->young_cset_choice_time_ms() +
1110         phase_times()->young_free_cset_time_ms();
1111       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1112                                           (double) young_cset_region_length());
1113     }
1114     double non_young_other_time_ms = 0.0;
1115     if (old_cset_region_length() > 0) {
1116       non_young_other_time_ms =
1117         phase_times()->non_young_cset_choice_time_ms() +
1118         phase_times()->non_young_free_cset_time_ms();
1119 
1120       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1121                                             (double) old_cset_region_length());
1122     }
1123 
1124     double constant_other_time_ms = all_other_time_ms -
1125       (young_other_time_ms + non_young_other_time_ms);
1126     _constant_other_time_ms_seq->add(constant_other_time_ms);
1127 
1128     double survival_ratio = 0.0;
1129     if (_collection_set_bytes_used_before > 0) {
1130       survival_ratio = (double) _bytes_copied_during_gc /
1131                                    (double) _collection_set_bytes_used_before;
1132     }
1133 
1134     _pending_cards_seq->add((double) _pending_cards);
1135     _rs_lengths_seq->add((double) _max_rs_lengths);
1136   }
1137 
1138   _in_marking_window = new_in_marking_window;
1139   _in_marking_window_im = new_in_marking_window_im;
1140   _free_regions_at_end_of_collection = _g1->free_regions();
1141   update_young_list_target_length();
1142 
1143   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1144   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1145   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
1146                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1147 
1148   _collectionSetChooser->verify();
1149 }
1150 
1151 #define EXT_SIZE_FORMAT "%.1f%s"
1152 #define EXT_SIZE_PARAMS(bytes)                                  \
1153   byte_size_in_proper_unit((double)(bytes)),                    \
1154   proper_unit_for_byte_size((bytes))
1155 
1156 void G1CollectorPolicy::print_heap_transition() {
1157   _g1->print_size_transition(gclog_or_tty,
1158     _cur_collection_pause_used_at_start_bytes, _g1->used(), _g1->capacity());
1159 }
1160 
1161 void G1CollectorPolicy::print_detailed_heap_transition() {
1162     YoungList* young_list = _g1->young_list();
1163     size_t eden_bytes = young_list->eden_used_bytes();
1164     size_t survivor_bytes = young_list->survivor_used_bytes();
1165     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
1166     size_t used = _g1->used();
1167     size_t capacity = _g1->capacity();
1168     size_t eden_capacity =
1169       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1170 
1171     gclog_or_tty->print_cr(
1172       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1173       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1174       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1175       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1176       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
1177       EXT_SIZE_PARAMS(_prev_eden_capacity),
1178       EXT_SIZE_PARAMS(eden_bytes),
1179       EXT_SIZE_PARAMS(eden_capacity),
1180       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
1181       EXT_SIZE_PARAMS(survivor_bytes),
1182       EXT_SIZE_PARAMS(used_before_gc),
1183       EXT_SIZE_PARAMS(_capacity_before_gc),
1184       EXT_SIZE_PARAMS(used),
1185       EXT_SIZE_PARAMS(capacity));
1186 
1187     _prev_eden_capacity = eden_capacity;
1188 }
1189 
1190 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1191                                                      double update_rs_processed_buffers,
1192                                                      double goal_ms) {
1193   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1194   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1195 
1196   if (G1UseAdaptiveConcRefinement) {
1197     const int k_gy = 3, k_gr = 6;
1198     const double inc_k = 1.1, dec_k = 0.9;
1199 
1200     int g = cg1r->green_zone();
1201     if (update_rs_time > goal_ms) {
1202       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1203     } else {
1204       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1205         g = (int)MAX2(g * inc_k, g + 1.0);
1206       }
1207     }
1208     // Change the refinement threads params
1209     cg1r->set_green_zone(g);
1210     cg1r->set_yellow_zone(g * k_gy);
1211     cg1r->set_red_zone(g * k_gr);
1212     cg1r->reinitialize_threads();
1213 
1214     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1215     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1216                                     cg1r->yellow_zone());
1217     // Change the barrier params
1218     dcqs.set_process_completed_threshold(processing_threshold);
1219     dcqs.set_max_completed_queue(cg1r->red_zone());
1220   }
1221 
1222   int curr_queue_size = dcqs.completed_buffers_num();
1223   if (curr_queue_size >= cg1r->yellow_zone()) {
1224     dcqs.set_completed_queue_padding(curr_queue_size);
1225   } else {
1226     dcqs.set_completed_queue_padding(0);
1227   }
1228   dcqs.notify_if_necessary();
1229 }
1230 
1231 double
1232 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1233                                                 size_t scanned_cards) {
1234   return
1235     predict_rs_update_time_ms(pending_cards) +
1236     predict_rs_scan_time_ms(scanned_cards) +
1237     predict_constant_other_time_ms();
1238 }
1239 
1240 double
1241 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1242   size_t rs_length = predict_rs_length_diff();
1243   size_t card_num;
1244   if (gcs_are_young()) {
1245     card_num = predict_young_card_num(rs_length);
1246   } else {
1247     card_num = predict_non_young_card_num(rs_length);
1248   }
1249   return predict_base_elapsed_time_ms(pending_cards, card_num);
1250 }
1251 
1252 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1253   size_t bytes_to_copy;
1254   if (hr->is_marked())
1255     bytes_to_copy = hr->max_live_bytes();
1256   else {
1257     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1258     int age = hr->age_in_surv_rate_group();
1259     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1260     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1261   }
1262   return bytes_to_copy;
1263 }
1264 
1265 double
1266 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1267                                                   bool for_young_gc) {
1268   size_t rs_length = hr->rem_set()->occupied();
1269   size_t card_num;
1270 
1271   // Predicting the number of cards is based on which type of GC
1272   // we're predicting for.
1273   if (for_young_gc) {
1274     card_num = predict_young_card_num(rs_length);
1275   } else {
1276     card_num = predict_non_young_card_num(rs_length);
1277   }
1278   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1279 
1280   double region_elapsed_time_ms =
1281     predict_rs_scan_time_ms(card_num) +
1282     predict_object_copy_time_ms(bytes_to_copy);
1283 
1284   // The prediction of the "other" time for this region is based
1285   // upon the region type and NOT the GC type.
1286   if (hr->is_young()) {
1287     region_elapsed_time_ms += predict_young_other_time_ms(1);
1288   } else {
1289     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1290   }
1291   return region_elapsed_time_ms;
1292 }
1293 
1294 void
1295 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1296                                             uint survivor_cset_region_length) {
1297   _eden_cset_region_length     = eden_cset_region_length;
1298   _survivor_cset_region_length = survivor_cset_region_length;
1299   _old_cset_region_length      = 0;
1300 }
1301 
1302 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1303   _recorded_rs_lengths = rs_lengths;
1304 }
1305 
1306 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1307                                                double elapsed_ms) {
1308   _recent_gc_times_ms->add(elapsed_ms);
1309   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1310   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1311 }
1312 
1313 size_t G1CollectorPolicy::expansion_amount() {
1314   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1315   double threshold = _gc_overhead_perc;
1316   if (recent_gc_overhead > threshold) {
1317     // We will double the existing space, or take
1318     // G1ExpandByPercentOfAvailable % of the available expansion
1319     // space, whichever is smaller, bounded below by a minimum
1320     // expansion (unless that's all that's left.)
1321     const size_t min_expand_bytes = 1*M;
1322     size_t reserved_bytes = _g1->max_capacity();
1323     size_t committed_bytes = _g1->capacity();
1324     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1325     size_t expand_bytes;
1326     size_t expand_bytes_via_pct =
1327       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1328     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1329     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1330     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1331 
1332     ergo_verbose5(ErgoHeapSizing,
1333                   "attempt heap expansion",
1334                   ergo_format_reason("recent GC overhead higher than "
1335                                      "threshold after GC")
1336                   ergo_format_perc("recent GC overhead")
1337                   ergo_format_perc("threshold")
1338                   ergo_format_byte("uncommitted")
1339                   ergo_format_byte_perc("calculated expansion amount"),
1340                   recent_gc_overhead, threshold,
1341                   uncommitted_bytes,
1342                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1343 
1344     return expand_bytes;
1345   } else {
1346     return 0;
1347   }
1348 }
1349 
1350 void G1CollectorPolicy::print_tracing_info() const {
1351   _trace_gen0_time_data.print();
1352   _trace_gen1_time_data.print();
1353 }
1354 
1355 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1356 #ifndef PRODUCT
1357   _short_lived_surv_rate_group->print_surv_rate_summary();
1358   // add this call for any other surv rate groups
1359 #endif // PRODUCT
1360 }
1361 
1362 #ifndef PRODUCT
1363 // for debugging, bit of a hack...
1364 static char*
1365 region_num_to_mbs(int length) {
1366   static char buffer[64];
1367   double bytes = (double) (length * HeapRegion::GrainBytes);
1368   double mbs = bytes / (double) (1024 * 1024);
1369   sprintf(buffer, "%7.2lfMB", mbs);
1370   return buffer;
1371 }
1372 #endif // PRODUCT
1373 
1374 uint G1CollectorPolicy::max_regions(int purpose) {
1375   switch (purpose) {
1376     case GCAllocForSurvived:
1377       return _max_survivor_regions;
1378     case GCAllocForTenured:
1379       return REGIONS_UNLIMITED;
1380     default:
1381       ShouldNotReachHere();
1382       return REGIONS_UNLIMITED;
1383   };
1384 }
1385 
1386 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1387   uint expansion_region_num = 0;
1388   if (GCLockerEdenExpansionPercent > 0) {
1389     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1390     double expansion_region_num_d = perc * (double) _young_list_target_length;
1391     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1392     // less than 1.0) we'll get 1.
1393     expansion_region_num = (uint) ceil(expansion_region_num_d);
1394   } else {
1395     assert(expansion_region_num == 0, "sanity");
1396   }
1397   _young_list_max_length = _young_list_target_length + expansion_region_num;
1398   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1399 }
1400 
1401 // Calculates survivor space parameters.
1402 void G1CollectorPolicy::update_survivors_policy() {
1403   double max_survivor_regions_d =
1404                  (double) _young_list_target_length / (double) SurvivorRatio;
1405   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1406   // smaller than 1.0) we'll get 1.
1407   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1408 
1409   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1410         HeapRegion::GrainWords * _max_survivor_regions);
1411 }
1412 
1413 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1414                                                      GCCause::Cause gc_cause) {
1415   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1416   if (!during_cycle) {
1417     ergo_verbose1(ErgoConcCycles,
1418                   "request concurrent cycle initiation",
1419                   ergo_format_reason("requested by GC cause")
1420                   ergo_format_str("GC cause"),
1421                   GCCause::to_string(gc_cause));
1422     set_initiate_conc_mark_if_possible();
1423     return true;
1424   } else {
1425     ergo_verbose1(ErgoConcCycles,
1426                   "do not request concurrent cycle initiation",
1427                   ergo_format_reason("concurrent cycle already in progress")
1428                   ergo_format_str("GC cause"),
1429                   GCCause::to_string(gc_cause));
1430     return false;
1431   }
1432 }
1433 
1434 void
1435 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1436   // We are about to decide on whether this pause will be an
1437   // initial-mark pause.
1438 
1439   // First, during_initial_mark_pause() should not be already set. We
1440   // will set it here if we have to. However, it should be cleared by
1441   // the end of the pause (it's only set for the duration of an
1442   // initial-mark pause).
1443   assert(!during_initial_mark_pause(), "pre-condition");
1444 
1445   if (initiate_conc_mark_if_possible()) {
1446     // We had noticed on a previous pause that the heap occupancy has
1447     // gone over the initiating threshold and we should start a
1448     // concurrent marking cycle. So we might initiate one.
1449 
1450     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1451     if (!during_cycle) {
1452       // The concurrent marking thread is not "during a cycle", i.e.,
1453       // it has completed the last one. So we can go ahead and
1454       // initiate a new cycle.
1455 
1456       set_during_initial_mark_pause();
1457       // We do not allow mixed GCs during marking.
1458       if (!gcs_are_young()) {
1459         set_gcs_are_young(true);
1460         ergo_verbose0(ErgoMixedGCs,
1461                       "end mixed GCs",
1462                       ergo_format_reason("concurrent cycle is about to start"));
1463       }
1464 
1465       // And we can now clear initiate_conc_mark_if_possible() as
1466       // we've already acted on it.
1467       clear_initiate_conc_mark_if_possible();
1468 
1469       ergo_verbose0(ErgoConcCycles,
1470                   "initiate concurrent cycle",
1471                   ergo_format_reason("concurrent cycle initiation requested"));
1472     } else {
1473       // The concurrent marking thread is still finishing up the
1474       // previous cycle. If we start one right now the two cycles
1475       // overlap. In particular, the concurrent marking thread might
1476       // be in the process of clearing the next marking bitmap (which
1477       // we will use for the next cycle if we start one). Starting a
1478       // cycle now will be bad given that parts of the marking
1479       // information might get cleared by the marking thread. And we
1480       // cannot wait for the marking thread to finish the cycle as it
1481       // periodically yields while clearing the next marking bitmap
1482       // and, if it's in a yield point, it's waiting for us to
1483       // finish. So, at this point we will not start a cycle and we'll
1484       // let the concurrent marking thread complete the last one.
1485       ergo_verbose0(ErgoConcCycles,
1486                     "do not initiate concurrent cycle",
1487                     ergo_format_reason("concurrent cycle already in progress"));
1488     }
1489   }
1490 }
1491 
1492 class KnownGarbageClosure: public HeapRegionClosure {
1493   G1CollectedHeap* _g1h;
1494   CollectionSetChooser* _hrSorted;
1495 
1496 public:
1497   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1498     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1499 
1500   bool doHeapRegion(HeapRegion* r) {
1501     // We only include humongous regions in collection
1502     // sets when concurrent mark shows that their contained object is
1503     // unreachable.
1504 
1505     // Do we have any marking information for this region?
1506     if (r->is_marked()) {
1507       // We will skip any region that's currently used as an old GC
1508       // alloc region (we should not consider those for collection
1509       // before we fill them up).
1510       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1511         _hrSorted->add_region(r);
1512       }
1513     }
1514     return false;
1515   }
1516 };
1517 
1518 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1519   G1CollectedHeap* _g1h;
1520   CSetChooserParUpdater _cset_updater;
1521 
1522 public:
1523   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1524                            uint chunk_size) :
1525     _g1h(G1CollectedHeap::heap()),
1526     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1527 
1528   bool doHeapRegion(HeapRegion* r) {
1529     // Do we have any marking information for this region?
1530     if (r->is_marked()) {
1531       // We will skip any region that's currently used as an old GC
1532       // alloc region (we should not consider those for collection
1533       // before we fill them up).
1534       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1535         _cset_updater.add_region(r);
1536       }
1537     }
1538     return false;
1539   }
1540 };
1541 
1542 class ParKnownGarbageTask: public AbstractGangTask {
1543   CollectionSetChooser* _hrSorted;
1544   uint _chunk_size;
1545   G1CollectedHeap* _g1;
1546 public:
1547   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1548     AbstractGangTask("ParKnownGarbageTask"),
1549     _hrSorted(hrSorted), _chunk_size(chunk_size),
1550     _g1(G1CollectedHeap::heap()) { }
1551 
1552   void work(uint worker_id) {
1553     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1554 
1555     // Back to zero for the claim value.
1556     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1557                                          _g1->workers()->active_workers(),
1558                                          HeapRegion::InitialClaimValue);
1559   }
1560 };
1561 
1562 void
1563 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1564   _collectionSetChooser->clear();
1565 
1566   uint region_num = _g1->n_regions();
1567   if (G1CollectedHeap::use_parallel_gc_threads()) {
1568     const uint OverpartitionFactor = 4;
1569     uint WorkUnit;
1570     // The use of MinChunkSize = 8 in the original code
1571     // causes some assertion failures when the total number of
1572     // region is less than 8.  The code here tries to fix that.
1573     // Should the original code also be fixed?
1574     if (no_of_gc_threads > 0) {
1575       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
1576       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
1577                       MinWorkUnit);
1578     } else {
1579       assert(no_of_gc_threads > 0,
1580         "The active gc workers should be greater than 0");
1581       // In a product build do something reasonable to avoid a crash.
1582       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1583       WorkUnit =
1584         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1585              MinWorkUnit);
1586     }
1587     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
1588                                                            WorkUnit);
1589     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1590                                             (int) WorkUnit);
1591     _g1->workers()->run_task(&parKnownGarbageTask);
1592 
1593     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1594            "sanity check");
1595   } else {
1596     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
1597     _g1->heap_region_iterate(&knownGarbagecl);
1598   }
1599 
1600   _collectionSetChooser->sort_regions();
1601 
1602   double end_sec = os::elapsedTime();
1603   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1604   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1605   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1606   _prev_collection_pause_end_ms += elapsed_time_ms;
1607   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1608 }
1609 
1610 // Add the heap region at the head of the non-incremental collection set
1611 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1612   assert(_inc_cset_build_state == Active, "Precondition");
1613   assert(!hr->is_young(), "non-incremental add of young region");
1614 
1615   assert(!hr->in_collection_set(), "should not already be in the CSet");
1616   hr->set_in_collection_set(true);
1617   hr->set_next_in_collection_set(_collection_set);
1618   _collection_set = hr;
1619   _collection_set_bytes_used_before += hr->used();
1620   _g1->register_region_with_in_cset_fast_test(hr);
1621   size_t rs_length = hr->rem_set()->occupied();
1622   _recorded_rs_lengths += rs_length;
1623   _old_cset_region_length += 1;
1624 }
1625 
1626 // Initialize the per-collection-set information
1627 void G1CollectorPolicy::start_incremental_cset_building() {
1628   assert(_inc_cset_build_state == Inactive, "Precondition");
1629 
1630   _inc_cset_head = NULL;
1631   _inc_cset_tail = NULL;
1632   _inc_cset_bytes_used_before = 0;
1633 
1634   _inc_cset_max_finger = 0;
1635   _inc_cset_recorded_rs_lengths = 0;
1636   _inc_cset_recorded_rs_lengths_diffs = 0;
1637   _inc_cset_predicted_elapsed_time_ms = 0.0;
1638   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1639   _inc_cset_build_state = Active;
1640 }
1641 
1642 void G1CollectorPolicy::finalize_incremental_cset_building() {
1643   assert(_inc_cset_build_state == Active, "Precondition");
1644   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1645 
1646   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1647   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1648   // that adds a new region to the CSet. Further updates by the
1649   // concurrent refinement thread that samples the young RSet lengths
1650   // are accumulated in the *_diffs fields. Here we add the diffs to
1651   // the "main" fields.
1652 
1653   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1654     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1655   } else {
1656     // This is defensive. The diff should in theory be always positive
1657     // as RSets can only grow between GCs. However, given that we
1658     // sample their size concurrently with other threads updating them
1659     // it's possible that we might get the wrong size back, which
1660     // could make the calculations somewhat inaccurate.
1661     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1662     if (_inc_cset_recorded_rs_lengths >= diffs) {
1663       _inc_cset_recorded_rs_lengths -= diffs;
1664     } else {
1665       _inc_cset_recorded_rs_lengths = 0;
1666     }
1667   }
1668   _inc_cset_predicted_elapsed_time_ms +=
1669                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1670 
1671   _inc_cset_recorded_rs_lengths_diffs = 0;
1672   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1673 }
1674 
1675 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1676   // This routine is used when:
1677   // * adding survivor regions to the incremental cset at the end of an
1678   //   evacuation pause,
1679   // * adding the current allocation region to the incremental cset
1680   //   when it is retired, and
1681   // * updating existing policy information for a region in the
1682   //   incremental cset via young list RSet sampling.
1683   // Therefore this routine may be called at a safepoint by the
1684   // VM thread, or in-between safepoints by mutator threads (when
1685   // retiring the current allocation region) or a concurrent
1686   // refine thread (RSet sampling).
1687 
1688   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1689   size_t used_bytes = hr->used();
1690   _inc_cset_recorded_rs_lengths += rs_length;
1691   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1692   _inc_cset_bytes_used_before += used_bytes;
1693 
1694   // Cache the values we have added to the aggregated informtion
1695   // in the heap region in case we have to remove this region from
1696   // the incremental collection set, or it is updated by the
1697   // rset sampling code
1698   hr->set_recorded_rs_length(rs_length);
1699   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1700 }
1701 
1702 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1703                                                      size_t new_rs_length) {
1704   // Update the CSet information that is dependent on the new RS length
1705   assert(hr->is_young(), "Precondition");
1706   assert(!SafepointSynchronize::is_at_safepoint(),
1707                                                "should not be at a safepoint");
1708 
1709   // We could have updated _inc_cset_recorded_rs_lengths and
1710   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1711   // that atomically, as this code is executed by a concurrent
1712   // refinement thread, potentially concurrently with a mutator thread
1713   // allocating a new region and also updating the same fields. To
1714   // avoid the atomic operations we accumulate these updates on two
1715   // separate fields (*_diffs) and we'll just add them to the "main"
1716   // fields at the start of a GC.
1717 
1718   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1719   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1720   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1721 
1722   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1723   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1724   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1725   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1726 
1727   hr->set_recorded_rs_length(new_rs_length);
1728   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1729 }
1730 
1731 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1732   assert(hr->is_young(), "invariant");
1733   assert(hr->young_index_in_cset() > -1, "should have already been set");
1734   assert(_inc_cset_build_state == Active, "Precondition");
1735 
1736   // We need to clear and set the cached recorded/cached collection set
1737   // information in the heap region here (before the region gets added
1738   // to the collection set). An individual heap region's cached values
1739   // are calculated, aggregated with the policy collection set info,
1740   // and cached in the heap region here (initially) and (subsequently)
1741   // by the Young List sampling code.
1742 
1743   size_t rs_length = hr->rem_set()->occupied();
1744   add_to_incremental_cset_info(hr, rs_length);
1745 
1746   HeapWord* hr_end = hr->end();
1747   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1748 
1749   assert(!hr->in_collection_set(), "invariant");
1750   hr->set_in_collection_set(true);
1751   assert( hr->next_in_collection_set() == NULL, "invariant");
1752 
1753   _g1->register_region_with_in_cset_fast_test(hr);
1754 }
1755 
1756 // Add the region at the RHS of the incremental cset
1757 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1758   // We should only ever be appending survivors at the end of a pause
1759   assert( hr->is_survivor(), "Logic");
1760 
1761   // Do the 'common' stuff
1762   add_region_to_incremental_cset_common(hr);
1763 
1764   // Now add the region at the right hand side
1765   if (_inc_cset_tail == NULL) {
1766     assert(_inc_cset_head == NULL, "invariant");
1767     _inc_cset_head = hr;
1768   } else {
1769     _inc_cset_tail->set_next_in_collection_set(hr);
1770   }
1771   _inc_cset_tail = hr;
1772 }
1773 
1774 // Add the region to the LHS of the incremental cset
1775 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1776   // Survivors should be added to the RHS at the end of a pause
1777   assert(!hr->is_survivor(), "Logic");
1778 
1779   // Do the 'common' stuff
1780   add_region_to_incremental_cset_common(hr);
1781 
1782   // Add the region at the left hand side
1783   hr->set_next_in_collection_set(_inc_cset_head);
1784   if (_inc_cset_head == NULL) {
1785     assert(_inc_cset_tail == NULL, "Invariant");
1786     _inc_cset_tail = hr;
1787   }
1788   _inc_cset_head = hr;
1789 }
1790 
1791 #ifndef PRODUCT
1792 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1793   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1794 
1795   st->print_cr("\nCollection_set:");
1796   HeapRegion* csr = list_head;
1797   while (csr != NULL) {
1798     HeapRegion* next = csr->next_in_collection_set();
1799     assert(csr->in_collection_set(), "bad CS");
1800     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
1801                  HR_FORMAT_PARAMS(csr),
1802                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
1803                  csr->age_in_surv_rate_group_cond());
1804     csr = next;
1805   }
1806 }
1807 #endif // !PRODUCT
1808 
1809 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1810   // Returns the given amount of reclaimable bytes (that represents
1811   // the amount of reclaimable space still to be collected) as a
1812   // percentage of the current heap capacity.
1813   size_t capacity_bytes = _g1->capacity();
1814   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1815 }
1816 
1817 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1818                                                 const char* false_action_str) {
1819   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1820   if (cset_chooser->is_empty()) {
1821     ergo_verbose0(ErgoMixedGCs,
1822                   false_action_str,
1823                   ergo_format_reason("candidate old regions not available"));
1824     return false;
1825   }
1826 
1827   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1828   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1829   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1830   double threshold = (double) G1HeapWastePercent;
1831   if (reclaimable_perc <= threshold) {
1832     ergo_verbose4(ErgoMixedGCs,
1833               false_action_str,
1834               ergo_format_reason("reclaimable percentage not over threshold")
1835               ergo_format_region("candidate old regions")
1836               ergo_format_byte_perc("reclaimable")
1837               ergo_format_perc("threshold"),
1838               cset_chooser->remaining_regions(),
1839               reclaimable_bytes,
1840               reclaimable_perc, threshold);
1841     return false;
1842   }
1843 
1844   ergo_verbose4(ErgoMixedGCs,
1845                 true_action_str,
1846                 ergo_format_reason("candidate old regions available")
1847                 ergo_format_region("candidate old regions")
1848                 ergo_format_byte_perc("reclaimable")
1849                 ergo_format_perc("threshold"),
1850                 cset_chooser->remaining_regions(),
1851                 reclaimable_bytes,
1852                 reclaimable_perc, threshold);
1853   return true;
1854 }
1855 
1856 uint G1CollectorPolicy::calc_min_old_cset_length() {
1857   // The min old CSet region bound is based on the maximum desired
1858   // number of mixed GCs after a cycle. I.e., even if some old regions
1859   // look expensive, we should add them to the CSet anyway to make
1860   // sure we go through the available old regions in no more than the
1861   // maximum desired number of mixed GCs.
1862   //
1863   // The calculation is based on the number of marked regions we added
1864   // to the CSet chooser in the first place, not how many remain, so
1865   // that the result is the same during all mixed GCs that follow a cycle.
1866 
1867   const size_t region_num = (size_t) _collectionSetChooser->length();
1868   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1869   size_t result = region_num / gc_num;
1870   // emulate ceiling
1871   if (result * gc_num < region_num) {
1872     result += 1;
1873   }
1874   return (uint) result;
1875 }
1876 
1877 uint G1CollectorPolicy::calc_max_old_cset_length() {
1878   // The max old CSet region bound is based on the threshold expressed
1879   // as a percentage of the heap size. I.e., it should bound the
1880   // number of old regions added to the CSet irrespective of how many
1881   // of them are available.
1882 
1883   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1884   const size_t region_num = g1h->n_regions();
1885   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1886   size_t result = region_num * perc / 100;
1887   // emulate ceiling
1888   if (100 * result < region_num * perc) {
1889     result += 1;
1890   }
1891   return (uint) result;
1892 }
1893 
1894 
1895 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
1896   double young_start_time_sec = os::elapsedTime();
1897 
1898   YoungList* young_list = _g1->young_list();
1899   finalize_incremental_cset_building();
1900 
1901   guarantee(target_pause_time_ms > 0.0,
1902             err_msg("target_pause_time_ms = %1.6lf should be positive",
1903                     target_pause_time_ms));
1904   guarantee(_collection_set == NULL, "Precondition");
1905 
1906   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1907   double predicted_pause_time_ms = base_time_ms;
1908   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1909 
1910   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1911                 "start choosing CSet",
1912                 ergo_format_size("_pending_cards")
1913                 ergo_format_ms("predicted base time")
1914                 ergo_format_ms("remaining time")
1915                 ergo_format_ms("target pause time"),
1916                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1917 
1918   _last_gc_was_young = gcs_are_young() ? true : false;
1919 
1920   if (_last_gc_was_young) {
1921     _trace_gen0_time_data.increment_young_collection_count();
1922   } else {
1923     _trace_gen0_time_data.increment_mixed_collection_count();
1924   }
1925 
1926   // The young list is laid with the survivor regions from the previous
1927   // pause are appended to the RHS of the young list, i.e.
1928   //   [Newly Young Regions ++ Survivors from last pause].
1929 
1930   uint survivor_region_length = young_list->survivor_length();
1931   uint eden_region_length = young_list->length() - survivor_region_length;
1932   init_cset_region_lengths(eden_region_length, survivor_region_length);
1933 
1934   HeapRegion* hr = young_list->first_survivor_region();
1935   while (hr != NULL) {
1936     assert(hr->is_survivor(), "badly formed young list");
1937     hr->set_young();
1938     hr = hr->get_next_young_region();
1939   }
1940 
1941   // Clear the fields that point to the survivor list - they are all young now.
1942   young_list->clear_survivors();
1943 
1944   _collection_set = _inc_cset_head;
1945   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1946   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1947   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1948 
1949   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
1950                 "add young regions to CSet",
1951                 ergo_format_region("eden")
1952                 ergo_format_region("survivors")
1953                 ergo_format_ms("predicted young region time"),
1954                 eden_region_length, survivor_region_length,
1955                 _inc_cset_predicted_elapsed_time_ms);
1956 
1957   // The number of recorded young regions is the incremental
1958   // collection set's current size
1959   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1960 
1961   double young_end_time_sec = os::elapsedTime();
1962   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1963 
1964   // Set the start of the non-young choice time.
1965   double non_young_start_time_sec = young_end_time_sec;
1966 
1967   if (!gcs_are_young()) {
1968     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1969     cset_chooser->verify();
1970     const uint min_old_cset_length = calc_min_old_cset_length();
1971     const uint max_old_cset_length = calc_max_old_cset_length();
1972 
1973     uint expensive_region_num = 0;
1974     bool check_time_remaining = adaptive_young_list_length();
1975 
1976     HeapRegion* hr = cset_chooser->peek();
1977     while (hr != NULL) {
1978       if (old_cset_region_length() >= max_old_cset_length) {
1979         // Added maximum number of old regions to the CSet.
1980         ergo_verbose2(ErgoCSetConstruction,
1981                       "finish adding old regions to CSet",
1982                       ergo_format_reason("old CSet region num reached max")
1983                       ergo_format_region("old")
1984                       ergo_format_region("max"),
1985                       old_cset_region_length(), max_old_cset_length);
1986         break;
1987       }
1988 
1989 
1990       // Stop adding regions if the remaining reclaimable space is
1991       // not above G1HeapWastePercent.
1992       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1993       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1994       double threshold = (double) G1HeapWastePercent;
1995       if (reclaimable_perc <= threshold) {
1996         // We've added enough old regions that the amount of uncollected
1997         // reclaimable space is at or below the waste threshold. Stop
1998         // adding old regions to the CSet.
1999         ergo_verbose5(ErgoCSetConstruction,
2000                       "finish adding old regions to CSet",
2001                       ergo_format_reason("reclaimable percentage not over threshold")
2002                       ergo_format_region("old")
2003                       ergo_format_region("max")
2004                       ergo_format_byte_perc("reclaimable")
2005                       ergo_format_perc("threshold"),
2006                       old_cset_region_length(),
2007                       max_old_cset_length,
2008                       reclaimable_bytes,
2009                       reclaimable_perc, threshold);
2010         break;
2011       }
2012 
2013       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2014       if (check_time_remaining) {
2015         if (predicted_time_ms > time_remaining_ms) {
2016           // Too expensive for the current CSet.
2017 
2018           if (old_cset_region_length() >= min_old_cset_length) {
2019             // We have added the minimum number of old regions to the CSet,
2020             // we are done with this CSet.
2021             ergo_verbose4(ErgoCSetConstruction,
2022                           "finish adding old regions to CSet",
2023                           ergo_format_reason("predicted time is too high")
2024                           ergo_format_ms("predicted time")
2025                           ergo_format_ms("remaining time")
2026                           ergo_format_region("old")
2027                           ergo_format_region("min"),
2028                           predicted_time_ms, time_remaining_ms,
2029                           old_cset_region_length(), min_old_cset_length);
2030             break;
2031           }
2032 
2033           // We'll add it anyway given that we haven't reached the
2034           // minimum number of old regions.
2035           expensive_region_num += 1;
2036         }
2037       } else {
2038         if (old_cset_region_length() >= min_old_cset_length) {
2039           // In the non-auto-tuning case, we'll finish adding regions
2040           // to the CSet if we reach the minimum.
2041           ergo_verbose2(ErgoCSetConstruction,
2042                         "finish adding old regions to CSet",
2043                         ergo_format_reason("old CSet region num reached min")
2044                         ergo_format_region("old")
2045                         ergo_format_region("min"),
2046                         old_cset_region_length(), min_old_cset_length);
2047           break;
2048         }
2049       }
2050 
2051       // We will add this region to the CSet.
2052       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2053       predicted_pause_time_ms += predicted_time_ms;
2054       cset_chooser->remove_and_move_to_next(hr);
2055       _g1->old_set_remove(hr);
2056       add_old_region_to_cset(hr);
2057 
2058       hr = cset_chooser->peek();
2059     }
2060     if (hr == NULL) {
2061       ergo_verbose0(ErgoCSetConstruction,
2062                     "finish adding old regions to CSet",
2063                     ergo_format_reason("candidate old regions not available"));
2064     }
2065 
2066     if (expensive_region_num > 0) {
2067       // We print the information once here at the end, predicated on
2068       // whether we added any apparently expensive regions or not, to
2069       // avoid generating output per region.
2070       ergo_verbose4(ErgoCSetConstruction,
2071                     "added expensive regions to CSet",
2072                     ergo_format_reason("old CSet region num not reached min")
2073                     ergo_format_region("old")
2074                     ergo_format_region("expensive")
2075                     ergo_format_region("min")
2076                     ergo_format_ms("remaining time"),
2077                     old_cset_region_length(),
2078                     expensive_region_num,
2079                     min_old_cset_length,
2080                     time_remaining_ms);
2081     }
2082 
2083     cset_chooser->verify();
2084   }
2085 
2086   stop_incremental_cset_building();
2087 
2088   ergo_verbose5(ErgoCSetConstruction,
2089                 "finish choosing CSet",
2090                 ergo_format_region("eden")
2091                 ergo_format_region("survivors")
2092                 ergo_format_region("old")
2093                 ergo_format_ms("predicted pause time")
2094                 ergo_format_ms("target pause time"),
2095                 eden_region_length, survivor_region_length,
2096                 old_cset_region_length(),
2097                 predicted_pause_time_ms, target_pause_time_ms);
2098 
2099   double non_young_end_time_sec = os::elapsedTime();
2100   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2101 }
2102 
2103 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
2104   if(TraceGen0Time) {
2105     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2106   }
2107 }
2108 
2109 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
2110   if(TraceGen0Time) {
2111     _all_yield_times_ms.add(yield_time_ms);
2112   }
2113 }
2114 
2115 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2116   if(TraceGen0Time) {
2117     _total.add(pause_time_ms);
2118     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2119     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2120     _parallel.add(phase_times->cur_collection_par_time_ms());
2121     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
2122     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
2123     _update_rs.add(phase_times->average_last_update_rs_time());
2124     _scan_rs.add(phase_times->average_last_scan_rs_time());
2125     _obj_copy.add(phase_times->average_last_obj_copy_time());
2126     _termination.add(phase_times->average_last_termination_time());
2127 
2128     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
2129       phase_times->average_last_satb_filtering_times_ms() +
2130       phase_times->average_last_update_rs_time() +
2131       phase_times->average_last_scan_rs_time() +
2132       phase_times->average_last_obj_copy_time() +
2133       + phase_times->average_last_termination_time();
2134 
2135     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2136     _parallel_other.add(parallel_other_time);
2137     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2138   }
2139 }
2140 
2141 void TraceGen0TimeData::increment_young_collection_count() {
2142   if(TraceGen0Time) {
2143     ++_young_pause_num;
2144   }
2145 }
2146 
2147 void TraceGen0TimeData::increment_mixed_collection_count() {
2148   if(TraceGen0Time) {
2149     ++_mixed_pause_num;
2150   }
2151 }
2152 
2153 void TraceGen0TimeData::print_summary(const char* str,
2154                                       const NumberSeq* seq) const {
2155   double sum = seq->sum();
2156   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2157                 str, sum / 1000.0, seq->avg());
2158 }
2159 
2160 void TraceGen0TimeData::print_summary_sd(const char* str,
2161                                          const NumberSeq* seq) const {
2162   print_summary(str, seq);
2163   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2164                 "(num", seq->num(), seq->sd(), seq->maximum());
2165 }
2166 
2167 void TraceGen0TimeData::print() const {
2168   if (!TraceGen0Time) {
2169     return;
2170   }
2171 
2172   gclog_or_tty->print_cr("ALL PAUSES");
2173   print_summary_sd("   Total", &_total);
2174   gclog_or_tty->print_cr("");
2175   gclog_or_tty->print_cr("");
2176   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2177   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2178   gclog_or_tty->print_cr("");
2179 
2180   gclog_or_tty->print_cr("EVACUATION PAUSES");
2181 
2182   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2183     gclog_or_tty->print_cr("none");
2184   } else {
2185     print_summary_sd("   Evacuation Pauses", &_total);
2186     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2187     print_summary("      Parallel Time", &_parallel);
2188     print_summary("         Ext Root Scanning", &_ext_root_scan);
2189     print_summary("         SATB Filtering", &_satb_filtering);
2190     print_summary("         Update RS", &_update_rs);
2191     print_summary("         Scan RS", &_scan_rs);
2192     print_summary("         Object Copy", &_obj_copy);
2193     print_summary("         Termination", &_termination);
2194     print_summary("         Parallel Other", &_parallel_other);
2195     print_summary("      Clear CT", &_clear_ct);
2196     print_summary("      Other", &_other);
2197   }
2198   gclog_or_tty->print_cr("");
2199 
2200   gclog_or_tty->print_cr("MISC");
2201   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2202   print_summary_sd("   Yields", &_all_yield_times_ms);
2203 }
2204 
2205 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
2206   if (TraceGen1Time) {
2207     _all_full_gc_times.add(full_gc_time_ms);
2208   }
2209 }
2210 
2211 void TraceGen1TimeData::print() const {
2212   if (!TraceGen1Time) {
2213     return;
2214   }
2215 
2216   if (_all_full_gc_times.num() > 0) {
2217     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2218       _all_full_gc_times.num(),
2219       _all_full_gc_times.sum() / 1000.0);
2220     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2221     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2222       _all_full_gc_times.sd(),
2223       _all_full_gc_times.maximum());
2224   }
2225 }