1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {
  56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  57 };
  58 
  59 static double cost_per_entry_ms_defaults[] = {
  60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  61 };
  62 
  63 static double cost_per_byte_ms_defaults[] = {
  64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  65 };
  66 
  67 // these should be pretty consistent
  68 static double constant_other_time_ms_defaults[] = {
  69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  70 };
  71 
  72 
  73 static double young_other_cost_per_region_ms_defaults[] = {
  74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  75 };
  76 
  77 static double non_young_other_cost_per_region_ms_defaults[] = {
  78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  79 };
  80 
  81 G1CollectorPolicy::G1CollectorPolicy() :
  82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
  83                         ? ParallelGCThreads : 1),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _stop_world_start(0.0),
  87 
  88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90 
  91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  92   _prev_collection_pause_end_ms(0.0),
  93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _gcs_are_young(true),
 112 
 113   _during_marking(false),
 114   _in_marking_window(false),
 115   _in_marking_window_im(false),
 116 
 117   _recent_prev_end_times_for_all_gcs_sec(
 118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 119 
 120   _recent_avg_pause_time_ratio(0.0),
 121 
 122   _initiate_conc_mark_if_possible(false),
 123   _during_initial_mark_pause(false),
 124   _last_young_gc(false),
 125   _last_gc_was_young(false),
 126 
 127   _eden_bytes_before_gc(0),
 128   _survivor_bytes_before_gc(0),
 129   _capacity_before_gc(0),
 130 
 131   _eden_cset_region_length(0),
 132   _survivor_cset_region_length(0),
 133   _old_cset_region_length(0),
 134 
 135   _collection_set(NULL),
 136   _collection_set_bytes_used_before(0),
 137 
 138   // Incremental CSet attributes
 139   _inc_cset_build_state(Inactive),
 140   _inc_cset_head(NULL),
 141   _inc_cset_tail(NULL),
 142   _inc_cset_bytes_used_before(0),
 143   _inc_cset_max_finger(NULL),
 144   _inc_cset_recorded_rs_lengths(0),
 145   _inc_cset_recorded_rs_lengths_diffs(0),
 146   _inc_cset_predicted_elapsed_time_ms(0.0),
 147   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 148 
 149 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 150 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 151 #endif // _MSC_VER
 152 
 153   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 154                                                  G1YoungSurvRateNumRegionsSummary)),
 155   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 156                                               G1YoungSurvRateNumRegionsSummary)),
 157   // add here any more surv rate groups
 158   _recorded_survivor_regions(0),
 159   _recorded_survivor_head(NULL),
 160   _recorded_survivor_tail(NULL),
 161   _survivors_age_table(true),
 162 
 163   _gc_overhead_perc(0.0) {
 164 
 165   // Set up the region size and associated fields. Given that the
 166   // policy is created before the heap, we have to set this up here,
 167   // so it's done as soon as possible.
 168   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
 169   HeapRegionRemSet::setup_remset_size();
 170 
 171   G1ErgoVerbose::initialize();
 172   if (PrintAdaptiveSizePolicy) {
 173     // Currently, we only use a single switch for all the heuristics.
 174     G1ErgoVerbose::set_enabled(true);
 175     // Given that we don't currently have a verboseness level
 176     // parameter, we'll hardcode this to high. This can be easily
 177     // changed in the future.
 178     G1ErgoVerbose::set_level(ErgoHigh);
 179   } else {
 180     G1ErgoVerbose::set_enabled(false);
 181   }
 182 
 183   // Verify PLAB sizes
 184   const size_t region_size = HeapRegion::GrainWords;
 185   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 186     char buffer[128];
 187     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 188                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 189     vm_exit_during_initialization(buffer);
 190   }
 191 
 192   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 193   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 194 
 195   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 196 
 197   int index = MIN2(_parallel_gc_threads - 1, 7);
 198 
 199   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 200   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 201   _young_cards_per_entry_ratio_seq->add(
 202                                   young_cards_per_entry_ratio_defaults[index]);
 203   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 204   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 205   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 206   _young_other_cost_per_region_ms_seq->add(
 207                                young_other_cost_per_region_ms_defaults[index]);
 208   _non_young_other_cost_per_region_ms_seq->add(
 209                            non_young_other_cost_per_region_ms_defaults[index]);
 210 
 211   // Below, we might need to calculate the pause time target based on
 212   // the pause interval. When we do so we are going to give G1 maximum
 213   // flexibility and allow it to do pauses when it needs to. So, we'll
 214   // arrange that the pause interval to be pause time target + 1 to
 215   // ensure that a) the pause time target is maximized with respect to
 216   // the pause interval and b) we maintain the invariant that pause
 217   // time target < pause interval. If the user does not want this
 218   // maximum flexibility, they will have to set the pause interval
 219   // explicitly.
 220 
 221   // First make sure that, if either parameter is set, its value is
 222   // reasonable.
 223   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 224     if (MaxGCPauseMillis < 1) {
 225       vm_exit_during_initialization("MaxGCPauseMillis should be "
 226                                     "greater than 0");
 227     }
 228   }
 229   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 230     if (GCPauseIntervalMillis < 1) {
 231       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 232                                     "greater than 0");
 233     }
 234   }
 235 
 236   // Then, if the pause time target parameter was not set, set it to
 237   // the default value.
 238   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 239     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 240       // The default pause time target in G1 is 200ms
 241       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 242     } else {
 243       // We do not allow the pause interval to be set without the
 244       // pause time target
 245       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 246                                     "without setting MaxGCPauseMillis");
 247     }
 248   }
 249 
 250   // Then, if the interval parameter was not set, set it according to
 251   // the pause time target (this will also deal with the case when the
 252   // pause time target is the default value).
 253   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 254     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 255   }
 256 
 257   // Finally, make sure that the two parameters are consistent.
 258   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 259     char buffer[256];
 260     jio_snprintf(buffer, 256,
 261                  "MaxGCPauseMillis (%u) should be less than "
 262                  "GCPauseIntervalMillis (%u)",
 263                  MaxGCPauseMillis, GCPauseIntervalMillis);
 264     vm_exit_during_initialization(buffer);
 265   }
 266 
 267   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 268   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 269   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 270 
 271   uintx confidence_perc = G1ConfidencePercent;
 272   // Put an artificial ceiling on this so that it's not set to a silly value.
 273   if (confidence_perc > 100) {
 274     confidence_perc = 100;
 275     warning("G1ConfidencePercent is set to a value that is too large, "
 276             "it's been updated to %u", confidence_perc);
 277   }
 278   _sigma = (double) confidence_perc / 100.0;
 279 
 280   // start conservatively (around 50ms is about right)
 281   _concurrent_mark_remark_times_ms->add(0.05);
 282   _concurrent_mark_cleanup_times_ms->add(0.20);
 283   _tenuring_threshold = MaxTenuringThreshold;
 284   // _max_survivor_regions will be calculated by
 285   // update_young_list_target_length() during initialization.
 286   _max_survivor_regions = 0;
 287 
 288   assert(GCTimeRatio > 0,
 289          "we should have set it to a default value set_g1_gc_flags() "
 290          "if a user set it to 0");
 291   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 292 
 293   uintx reserve_perc = G1ReservePercent;
 294   // Put an artificial ceiling on this so that it's not set to a silly value.
 295   if (reserve_perc > 50) {
 296     reserve_perc = 50;
 297     warning("G1ReservePercent is set to a value that is too large, "
 298             "it's been updated to %u", reserve_perc);
 299   }
 300   _reserve_factor = (double) reserve_perc / 100.0;
 301   // This will be set when the heap is expanded
 302   // for the first time during initialization.
 303   _reserve_regions = 0;
 304 
 305   initialize_all();
 306   _collectionSetChooser = new CollectionSetChooser();
 307   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 308 }
 309 
 310 void G1CollectorPolicy::initialize_flags() {
 311   set_min_alignment(HeapRegion::GrainBytes);
 312   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
 313   if (SurvivorRatio < 1) {
 314     vm_exit_during_initialization("Invalid survivor ratio specified");
 315   }
 316   CollectorPolicy::initialize_flags();
 317 }
 318 
 319 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
 320   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
 321   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
 322   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
 323 
 324   if (FLAG_IS_CMDLINE(NewRatio)) {
 325     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 326       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 327     } else {
 328       _sizer_kind = SizerNewRatio;
 329       _adaptive_size = false;
 330       return;
 331     }
 332   }
 333 
 334   if (FLAG_IS_CMDLINE(NewSize)) {
 335     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 336                                      1U);
 337     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 338       _max_desired_young_length =
 339                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 340                                   1U);
 341       _sizer_kind = SizerMaxAndNewSize;
 342       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 343     } else {
 344       _sizer_kind = SizerNewSizeOnly;
 345     }
 346   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 347     _max_desired_young_length =
 348                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 349                                   1U);
 350     _sizer_kind = SizerMaxNewSizeOnly;
 351   }
 352 }
 353 
 354 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 355   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 356   return MAX2(1U, default_value);
 357 }
 358 
 359 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 360   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 361   return MAX2(1U, default_value);
 362 }
 363 
 364 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 365   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
 366 
 367   switch (_sizer_kind) {
 368     case SizerDefaults:
 369       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 370       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 371       break;
 372     case SizerNewSizeOnly:
 373       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 374       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
 375       break;
 376     case SizerMaxNewSizeOnly:
 377       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 378       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
 379       break;
 380     case SizerMaxAndNewSize:
 381       // Do nothing. Values set on the command line, don't update them at runtime.
 382       break;
 383     case SizerNewRatio:
 384       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
 385       _max_desired_young_length = _min_desired_young_length;
 386       break;
 387     default:
 388       ShouldNotReachHere();
 389   }
 390 
 391   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
 392 }
 393 
 394 void G1CollectorPolicy::init() {
 395   // Set aside an initial future to_space.
 396   _g1 = G1CollectedHeap::heap();
 397 
 398   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 399 
 400   initialize_gc_policy_counters();
 401 
 402   if (adaptive_young_list_length()) {
 403     _young_list_fixed_length = 0;
 404   } else {
 405     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 406   }
 407   _free_regions_at_end_of_collection = _g1->free_regions();
 408   update_young_list_target_length();
 409 
 410   // We may immediately start allocating regions and placing them on the
 411   // collection set list. Initialize the per-collection set info
 412   start_incremental_cset_building();
 413 }
 414 
 415 // Create the jstat counters for the policy.
 416 void G1CollectorPolicy::initialize_gc_policy_counters() {
 417   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 418 }
 419 
 420 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 421                                          double base_time_ms,
 422                                          uint base_free_regions,
 423                                          double target_pause_time_ms) {
 424   if (young_length >= base_free_regions) {
 425     // end condition 1: not enough space for the young regions
 426     return false;
 427   }
 428 
 429   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 430   size_t bytes_to_copy =
 431                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 432   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 433   double young_other_time_ms = predict_young_other_time_ms(young_length);
 434   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 435   if (pause_time_ms > target_pause_time_ms) {
 436     // end condition 2: prediction is over the target pause time
 437     return false;
 438   }
 439 
 440   size_t free_bytes =
 441                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 442   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 443     // end condition 3: out-of-space (conservatively!)
 444     return false;
 445   }
 446 
 447   // success!
 448   return true;
 449 }
 450 
 451 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 452   // re-calculate the necessary reserve
 453   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 454   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 455   // smaller than 1.0) we'll get 1.
 456   _reserve_regions = (uint) ceil(reserve_regions_d);
 457 
 458   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 459 }
 460 
 461 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 462                                                        uint base_min_length) {
 463   uint desired_min_length = 0;
 464   if (adaptive_young_list_length()) {
 465     if (_alloc_rate_ms_seq->num() > 3) {
 466       double now_sec = os::elapsedTime();
 467       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 468       double alloc_rate_ms = predict_alloc_rate_ms();
 469       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 470     } else {
 471       // otherwise we don't have enough info to make the prediction
 472     }
 473   }
 474   desired_min_length += base_min_length;
 475   // make sure we don't go below any user-defined minimum bound
 476   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 477 }
 478 
 479 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 480   // Here, we might want to also take into account any additional
 481   // constraints (i.e., user-defined minimum bound). Currently, we
 482   // effectively don't set this bound.
 483   return _young_gen_sizer->max_desired_young_length();
 484 }
 485 
 486 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 487   if (rs_lengths == (size_t) -1) {
 488     // if it's set to the default value (-1), we should predict it;
 489     // otherwise, use the given value.
 490     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 491   }
 492 
 493   // Calculate the absolute and desired min bounds.
 494 
 495   // This is how many young regions we already have (currently: the survivors).
 496   uint base_min_length = recorded_survivor_regions();
 497   // This is the absolute minimum young length, which ensures that we
 498   // can allocate one eden region in the worst-case.
 499   uint absolute_min_length = base_min_length + 1;
 500   uint desired_min_length =
 501                      calculate_young_list_desired_min_length(base_min_length);
 502   if (desired_min_length < absolute_min_length) {
 503     desired_min_length = absolute_min_length;
 504   }
 505 
 506   // Calculate the absolute and desired max bounds.
 507 
 508   // We will try our best not to "eat" into the reserve.
 509   uint absolute_max_length = 0;
 510   if (_free_regions_at_end_of_collection > _reserve_regions) {
 511     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 512   }
 513   uint desired_max_length = calculate_young_list_desired_max_length();
 514   if (desired_max_length > absolute_max_length) {
 515     desired_max_length = absolute_max_length;
 516   }
 517 
 518   uint young_list_target_length = 0;
 519   if (adaptive_young_list_length()) {
 520     if (gcs_are_young()) {
 521       young_list_target_length =
 522                         calculate_young_list_target_length(rs_lengths,
 523                                                            base_min_length,
 524                                                            desired_min_length,
 525                                                            desired_max_length);
 526       _rs_lengths_prediction = rs_lengths;
 527     } else {
 528       // Don't calculate anything and let the code below bound it to
 529       // the desired_min_length, i.e., do the next GC as soon as
 530       // possible to maximize how many old regions we can add to it.
 531     }
 532   } else {
 533     // The user asked for a fixed young gen so we'll fix the young gen
 534     // whether the next GC is young or mixed.
 535     young_list_target_length = _young_list_fixed_length;
 536   }
 537 
 538   // Make sure we don't go over the desired max length, nor under the
 539   // desired min length. In case they clash, desired_min_length wins
 540   // which is why that test is second.
 541   if (young_list_target_length > desired_max_length) {
 542     young_list_target_length = desired_max_length;
 543   }
 544   if (young_list_target_length < desired_min_length) {
 545     young_list_target_length = desired_min_length;
 546   }
 547 
 548   assert(young_list_target_length > recorded_survivor_regions(),
 549          "we should be able to allocate at least one eden region");
 550   assert(young_list_target_length >= absolute_min_length, "post-condition");
 551   _young_list_target_length = young_list_target_length;
 552 
 553   update_max_gc_locker_expansion();
 554 }
 555 
 556 uint
 557 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 558                                                      uint base_min_length,
 559                                                      uint desired_min_length,
 560                                                      uint desired_max_length) {
 561   assert(adaptive_young_list_length(), "pre-condition");
 562   assert(gcs_are_young(), "only call this for young GCs");
 563 
 564   // In case some edge-condition makes the desired max length too small...
 565   if (desired_max_length <= desired_min_length) {
 566     return desired_min_length;
 567   }
 568 
 569   // We'll adjust min_young_length and max_young_length not to include
 570   // the already allocated young regions (i.e., so they reflect the
 571   // min and max eden regions we'll allocate). The base_min_length
 572   // will be reflected in the predictions by the
 573   // survivor_regions_evac_time prediction.
 574   assert(desired_min_length > base_min_length, "invariant");
 575   uint min_young_length = desired_min_length - base_min_length;
 576   assert(desired_max_length > base_min_length, "invariant");
 577   uint max_young_length = desired_max_length - base_min_length;
 578 
 579   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 580   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 581   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 582   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 583   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 584   double base_time_ms =
 585     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 586     survivor_regions_evac_time;
 587   uint available_free_regions = _free_regions_at_end_of_collection;
 588   uint base_free_regions = 0;
 589   if (available_free_regions > _reserve_regions) {
 590     base_free_regions = available_free_regions - _reserve_regions;
 591   }
 592 
 593   // Here, we will make sure that the shortest young length that
 594   // makes sense fits within the target pause time.
 595 
 596   if (predict_will_fit(min_young_length, base_time_ms,
 597                        base_free_regions, target_pause_time_ms)) {
 598     // The shortest young length will fit into the target pause time;
 599     // we'll now check whether the absolute maximum number of young
 600     // regions will fit in the target pause time. If not, we'll do
 601     // a binary search between min_young_length and max_young_length.
 602     if (predict_will_fit(max_young_length, base_time_ms,
 603                          base_free_regions, target_pause_time_ms)) {
 604       // The maximum young length will fit into the target pause time.
 605       // We are done so set min young length to the maximum length (as
 606       // the result is assumed to be returned in min_young_length).
 607       min_young_length = max_young_length;
 608     } else {
 609       // The maximum possible number of young regions will not fit within
 610       // the target pause time so we'll search for the optimal
 611       // length. The loop invariants are:
 612       //
 613       // min_young_length < max_young_length
 614       // min_young_length is known to fit into the target pause time
 615       // max_young_length is known not to fit into the target pause time
 616       //
 617       // Going into the loop we know the above hold as we've just
 618       // checked them. Every time around the loop we check whether
 619       // the middle value between min_young_length and
 620       // max_young_length fits into the target pause time. If it
 621       // does, it becomes the new min. If it doesn't, it becomes
 622       // the new max. This way we maintain the loop invariants.
 623 
 624       assert(min_young_length < max_young_length, "invariant");
 625       uint diff = (max_young_length - min_young_length) / 2;
 626       while (diff > 0) {
 627         uint young_length = min_young_length + diff;
 628         if (predict_will_fit(young_length, base_time_ms,
 629                              base_free_regions, target_pause_time_ms)) {
 630           min_young_length = young_length;
 631         } else {
 632           max_young_length = young_length;
 633         }
 634         assert(min_young_length <  max_young_length, "invariant");
 635         diff = (max_young_length - min_young_length) / 2;
 636       }
 637       // The results is min_young_length which, according to the
 638       // loop invariants, should fit within the target pause time.
 639 
 640       // These are the post-conditions of the binary search above:
 641       assert(min_young_length < max_young_length,
 642              "otherwise we should have discovered that max_young_length "
 643              "fits into the pause target and not done the binary search");
 644       assert(predict_will_fit(min_young_length, base_time_ms,
 645                               base_free_regions, target_pause_time_ms),
 646              "min_young_length, the result of the binary search, should "
 647              "fit into the pause target");
 648       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 649                                base_free_regions, target_pause_time_ms),
 650              "min_young_length, the result of the binary search, should be "
 651              "optimal, so no larger length should fit into the pause target");
 652     }
 653   } else {
 654     // Even the minimum length doesn't fit into the pause time
 655     // target, return it as the result nevertheless.
 656   }
 657   return base_min_length + min_young_length;
 658 }
 659 
 660 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 661   double survivor_regions_evac_time = 0.0;
 662   for (HeapRegion * r = _recorded_survivor_head;
 663        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 664        r = r->get_next_young_region()) {
 665     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
 666   }
 667   return survivor_regions_evac_time;
 668 }
 669 
 670 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 671   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 672 
 673   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 674   if (rs_lengths > _rs_lengths_prediction) {
 675     // add 10% to avoid having to recalculate often
 676     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 677     update_young_list_target_length(rs_lengths_prediction);
 678   }
 679 }
 680 
 681 
 682 
 683 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 684                                                bool is_tlab,
 685                                                bool* gc_overhead_limit_was_exceeded) {
 686   guarantee(false, "Not using this policy feature yet.");
 687   return NULL;
 688 }
 689 
 690 // This method controls how a collector handles one or more
 691 // of its generations being fully allocated.
 692 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 693                                                        bool is_tlab) {
 694   guarantee(false, "Not using this policy feature yet.");
 695   return NULL;
 696 }
 697 
 698 
 699 #ifndef PRODUCT
 700 bool G1CollectorPolicy::verify_young_ages() {
 701   HeapRegion* head = _g1->young_list()->first_region();
 702   return
 703     verify_young_ages(head, _short_lived_surv_rate_group);
 704   // also call verify_young_ages on any additional surv rate groups
 705 }
 706 
 707 bool
 708 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 709                                      SurvRateGroup *surv_rate_group) {
 710   guarantee( surv_rate_group != NULL, "pre-condition" );
 711 
 712   const char* name = surv_rate_group->name();
 713   bool ret = true;
 714   int prev_age = -1;
 715 
 716   for (HeapRegion* curr = head;
 717        curr != NULL;
 718        curr = curr->get_next_young_region()) {
 719     SurvRateGroup* group = curr->surv_rate_group();
 720     if (group == NULL && !curr->is_survivor()) {
 721       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 722       ret = false;
 723     }
 724 
 725     if (surv_rate_group == group) {
 726       int age = curr->age_in_surv_rate_group();
 727 
 728       if (age < 0) {
 729         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 730         ret = false;
 731       }
 732 
 733       if (age <= prev_age) {
 734         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 735                                "(%d, %d)", name, age, prev_age);
 736         ret = false;
 737       }
 738       prev_age = age;
 739     }
 740   }
 741 
 742   return ret;
 743 }
 744 #endif // PRODUCT
 745 
 746 void G1CollectorPolicy::record_full_collection_start() {
 747   _full_collection_start_sec = os::elapsedTime();
 748   record_heap_size_info_at_start();
 749   // Release the future to-space so that it is available for compaction into.
 750   _g1->set_full_collection();
 751 }
 752 
 753 void G1CollectorPolicy::record_full_collection_end() {
 754   // Consider this like a collection pause for the purposes of allocation
 755   // since last pause.
 756   double end_sec = os::elapsedTime();
 757   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 758   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 759 
 760   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
 761 
 762   update_recent_gc_times(end_sec, full_gc_time_ms);
 763 
 764   _g1->clear_full_collection();
 765 
 766   // "Nuke" the heuristics that control the young/mixed GC
 767   // transitions and make sure we start with young GCs after the Full GC.
 768   set_gcs_are_young(true);
 769   _last_young_gc = false;
 770   clear_initiate_conc_mark_if_possible();
 771   clear_during_initial_mark_pause();
 772   _in_marking_window = false;
 773   _in_marking_window_im = false;
 774 
 775   _short_lived_surv_rate_group->start_adding_regions();
 776   // also call this on any additional surv rate groups
 777 
 778   record_survivor_regions(0, NULL, NULL);
 779 
 780   _free_regions_at_end_of_collection = _g1->free_regions();
 781   // Reset survivors SurvRateGroup.
 782   _survivor_surv_rate_group->reset();
 783   update_young_list_target_length();
 784   _collectionSetChooser->clear();
 785 }
 786 
 787 void G1CollectorPolicy::record_stop_world_start() {
 788   _stop_world_start = os::elapsedTime();
 789 }
 790 
 791 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 792   // We only need to do this here as the policy will only be applied
 793   // to the GC we're about to start. so, no point is calculating this
 794   // every time we calculate / recalculate the target young length.
 795   update_survivors_policy();
 796 
 797   assert(_g1->used() == _g1->recalculate_used(),
 798          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 799                  _g1->used(), _g1->recalculate_used()));
 800 
 801   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 802   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
 803   _stop_world_start = 0.0;
 804 
 805   record_heap_size_info_at_start();
 806 
 807   phase_times()->record_cur_collection_start_sec(start_time_sec);
 808   _pending_cards = _g1->pending_card_num();
 809 
 810   _collection_set_bytes_used_before = 0;
 811   _bytes_copied_during_gc = 0;
 812 
 813   _last_gc_was_young = false;
 814 
 815   // do that for any other surv rate groups
 816   _short_lived_surv_rate_group->stop_adding_regions();
 817   _survivors_age_table.clear();
 818 
 819   assert( verify_young_ages(), "region age verification" );
 820 }
 821 
 822 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 823                                                    mark_init_elapsed_time_ms) {
 824   _during_marking = true;
 825   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 826   clear_during_initial_mark_pause();
 827   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 828 }
 829 
 830 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 831   _mark_remark_start_sec = os::elapsedTime();
 832   _during_marking = false;
 833 }
 834 
 835 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 836   double end_time_sec = os::elapsedTime();
 837   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 838   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 839   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 840   _prev_collection_pause_end_ms += elapsed_time_ms;
 841 
 842   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 843 }
 844 
 845 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 846   _mark_cleanup_start_sec = os::elapsedTime();
 847 }
 848 
 849 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 850   _last_young_gc = true;
 851   _in_marking_window = false;
 852 }
 853 
 854 void G1CollectorPolicy::record_concurrent_pause() {
 855   if (_stop_world_start > 0.0) {
 856     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 857     _trace_gen0_time_data.record_yield_time(yield_ms);
 858   }
 859 }
 860 
 861 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 862   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 863     return false;
 864   }
 865 
 866   size_t marking_initiating_used_threshold =
 867     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 868   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 869   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 870 
 871   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 872     if (gcs_are_young()) {
 873       ergo_verbose5(ErgoConcCycles,
 874         "request concurrent cycle initiation",
 875         ergo_format_reason("occupancy higher than threshold")
 876         ergo_format_byte("occupancy")
 877         ergo_format_byte("allocation request")
 878         ergo_format_byte_perc("threshold")
 879         ergo_format_str("source"),
 880         cur_used_bytes,
 881         alloc_byte_size,
 882         marking_initiating_used_threshold,
 883         (double) InitiatingHeapOccupancyPercent,
 884         source);
 885       return true;
 886     } else {
 887       ergo_verbose5(ErgoConcCycles,
 888         "do not request concurrent cycle initiation",
 889         ergo_format_reason("still doing mixed collections")
 890         ergo_format_byte("occupancy")
 891         ergo_format_byte("allocation request")
 892         ergo_format_byte_perc("threshold")
 893         ergo_format_str("source"),
 894         cur_used_bytes,
 895         alloc_byte_size,
 896         marking_initiating_used_threshold,
 897         (double) InitiatingHeapOccupancyPercent,
 898         source);
 899     }
 900   }
 901 
 902   return false;
 903 }
 904 
 905 // Anything below that is considered to be zero
 906 #define MIN_TIMER_GRANULARITY 0.0000001
 907 
 908 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) {
 909   double end_time_sec = os::elapsedTime();
 910   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 911          "otherwise, the subtraction below does not make sense");
 912   size_t rs_size =
 913             _cur_collection_pause_used_regions_at_start - cset_region_length();
 914   size_t cur_used_bytes = _g1->used();
 915   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 916   bool last_pause_included_initial_mark = false;
 917   bool update_stats = !_g1->evacuation_failed();
 918 
 919 #ifndef PRODUCT
 920   if (G1YoungSurvRateVerbose) {
 921     gclog_or_tty->print_cr("");
 922     _short_lived_surv_rate_group->print();
 923     // do that for any other surv rate groups too
 924   }
 925 #endif // PRODUCT
 926 
 927   last_pause_included_initial_mark = during_initial_mark_pause();
 928   if (last_pause_included_initial_mark) {
 929     record_concurrent_mark_init_end(0.0);
 930   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
 931     // Note: this might have already been set, if during the last
 932     // pause we decided to start a cycle but at the beginning of
 933     // this pause we decided to postpone it. That's OK.
 934     set_initiate_conc_mark_if_possible();
 935   }
 936 
 937   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 938                           end_time_sec, false);
 939 
 940   size_t freed_bytes =
 941     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
 942   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
 943 
 944   double survival_fraction =
 945     (double)surviving_bytes/
 946     (double)_collection_set_bytes_used_before;
 947 
 948   if (update_stats) {
 949     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
 950     // this is where we update the allocation rate of the application
 951     double app_time_ms =
 952       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 953     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 954       // This usually happens due to the timer not having the required
 955       // granularity. Some Linuxes are the usual culprits.
 956       // We'll just set it to something (arbitrarily) small.
 957       app_time_ms = 1.0;
 958     }
 959     // We maintain the invariant that all objects allocated by mutator
 960     // threads will be allocated out of eden regions. So, we can use
 961     // the eden region number allocated since the previous GC to
 962     // calculate the application's allocate rate. The only exception
 963     // to that is humongous objects that are allocated separately. But
 964     // given that humongous object allocations do not really affect
 965     // either the pause's duration nor when the next pause will take
 966     // place we can safely ignore them here.
 967     uint regions_allocated = eden_cset_region_length();
 968     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 969     _alloc_rate_ms_seq->add(alloc_rate_ms);
 970 
 971     double interval_ms =
 972       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 973     update_recent_gc_times(end_time_sec, pause_time_ms);
 974     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 975     if (recent_avg_pause_time_ratio() < 0.0 ||
 976         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 977 #ifndef PRODUCT
 978       // Dump info to allow post-facto debugging
 979       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
 980       gclog_or_tty->print_cr("-------------------------------------------");
 981       gclog_or_tty->print_cr("Recent GC Times (ms):");
 982       _recent_gc_times_ms->dump();
 983       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
 984       _recent_prev_end_times_for_all_gcs_sec->dump();
 985       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
 986                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
 987       // In debug mode, terminate the JVM if the user wants to debug at this point.
 988       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
 989 #endif  // !PRODUCT
 990       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
 991       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
 992       if (_recent_avg_pause_time_ratio < 0.0) {
 993         _recent_avg_pause_time_ratio = 0.0;
 994       } else {
 995         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
 996         _recent_avg_pause_time_ratio = 1.0;
 997       }
 998     }
 999   }
1000   bool new_in_marking_window = _in_marking_window;
1001   bool new_in_marking_window_im = false;
1002   if (during_initial_mark_pause()) {
1003     new_in_marking_window = true;
1004     new_in_marking_window_im = true;
1005   }
1006 
1007   if (_last_young_gc) {
1008     // This is supposed to to be the "last young GC" before we start
1009     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1010 
1011     if (!last_pause_included_initial_mark) {
1012       if (next_gc_should_be_mixed("start mixed GCs",
1013                                   "do not start mixed GCs")) {
1014         set_gcs_are_young(false);
1015       }
1016     } else {
1017       ergo_verbose0(ErgoMixedGCs,
1018                     "do not start mixed GCs",
1019                     ergo_format_reason("concurrent cycle is about to start"));
1020     }
1021     _last_young_gc = false;
1022   }
1023 
1024   if (!_last_gc_was_young) {
1025     // This is a mixed GC. Here we decide whether to continue doing
1026     // mixed GCs or not.
1027 
1028     if (!next_gc_should_be_mixed("continue mixed GCs",
1029                                  "do not continue mixed GCs")) {
1030       set_gcs_are_young(true);
1031     }
1032   }
1033 
1034   _short_lived_surv_rate_group->start_adding_regions();
1035   // do that for any other surv rate groupsx
1036 
1037   if (update_stats) {
1038     double cost_per_card_ms = 0.0;
1039     if (_pending_cards > 0) {
1040       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1041       _cost_per_card_ms_seq->add(cost_per_card_ms);
1042     }
1043 
1044     size_t cards_scanned = _g1->cards_scanned();
1045 
1046     double cost_per_entry_ms = 0.0;
1047     if (cards_scanned > 10) {
1048       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1049       if (_last_gc_was_young) {
1050         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1051       } else {
1052         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1053       }
1054     }
1055 
1056     if (_max_rs_lengths > 0) {
1057       double cards_per_entry_ratio =
1058         (double) cards_scanned / (double) _max_rs_lengths;
1059       if (_last_gc_was_young) {
1060         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1061       } else {
1062         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1063       }
1064     }
1065 
1066     // This is defensive. For a while _max_rs_lengths could get
1067     // smaller than _recorded_rs_lengths which was causing
1068     // rs_length_diff to get very large and mess up the RSet length
1069     // predictions. The reason was unsafe concurrent updates to the
1070     // _inc_cset_recorded_rs_lengths field which the code below guards
1071     // against (see CR 7118202). This bug has now been fixed (see CR
1072     // 7119027). However, I'm still worried that
1073     // _inc_cset_recorded_rs_lengths might still end up somewhat
1074     // inaccurate. The concurrent refinement thread calculates an
1075     // RSet's length concurrently with other CR threads updating it
1076     // which might cause it to calculate the length incorrectly (if,
1077     // say, it's in mid-coarsening). So I'll leave in the defensive
1078     // conditional below just in case.
1079     size_t rs_length_diff = 0;
1080     if (_max_rs_lengths > _recorded_rs_lengths) {
1081       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1082     }
1083     _rs_length_diff_seq->add((double) rs_length_diff);
1084 
1085     size_t copied_bytes = surviving_bytes;
1086     double cost_per_byte_ms = 0.0;
1087     if (copied_bytes > 0) {
1088       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1089       if (_in_marking_window) {
1090         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1091       } else {
1092         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1093       }
1094     }
1095 
1096     double all_other_time_ms = pause_time_ms -
1097       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
1098       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1099 
1100     double young_other_time_ms = 0.0;
1101     if (young_cset_region_length() > 0) {
1102       young_other_time_ms =
1103         phase_times()->young_cset_choice_time_ms() +
1104         phase_times()->young_free_cset_time_ms();
1105       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1106                                           (double) young_cset_region_length());
1107     }
1108     double non_young_other_time_ms = 0.0;
1109     if (old_cset_region_length() > 0) {
1110       non_young_other_time_ms =
1111         phase_times()->non_young_cset_choice_time_ms() +
1112         phase_times()->non_young_free_cset_time_ms();
1113 
1114       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1115                                             (double) old_cset_region_length());
1116     }
1117 
1118     double constant_other_time_ms = all_other_time_ms -
1119       (young_other_time_ms + non_young_other_time_ms);
1120     _constant_other_time_ms_seq->add(constant_other_time_ms);
1121 
1122     double survival_ratio = 0.0;
1123     if (_collection_set_bytes_used_before > 0) {
1124       survival_ratio = (double) _bytes_copied_during_gc /
1125                                    (double) _collection_set_bytes_used_before;
1126     }
1127 
1128     _pending_cards_seq->add((double) _pending_cards);
1129     _rs_lengths_seq->add((double) _max_rs_lengths);
1130   }
1131 
1132   _in_marking_window = new_in_marking_window;
1133   _in_marking_window_im = new_in_marking_window_im;
1134   _free_regions_at_end_of_collection = _g1->free_regions();
1135   update_young_list_target_length();
1136 
1137   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1138   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1139   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
1140                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1141 
1142   _collectionSetChooser->verify();
1143 }
1144 
1145 #define EXT_SIZE_FORMAT "%.1f%s"
1146 #define EXT_SIZE_PARAMS(bytes)                                  \
1147   byte_size_in_proper_unit((double)(bytes)),                    \
1148   proper_unit_for_byte_size((bytes))
1149 
1150 void G1CollectorPolicy::record_heap_size_info_at_start() {
1151   YoungList* young_list = _g1->young_list();
1152   _eden_bytes_before_gc = young_list->eden_used_bytes();
1153   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
1154   _capacity_before_gc = _g1->capacity();
1155 
1156   _cur_collection_pause_used_at_start_bytes = _g1->used();
1157   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
1158 
1159   size_t eden_capacity_before_gc =
1160          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_bytes_before_gc;
1161 
1162   _prev_eden_capacity = eden_capacity_before_gc;
1163 }
1164 
1165 void G1CollectorPolicy::print_heap_transition() {
1166   _g1->print_size_transition(gclog_or_tty,
1167     _cur_collection_pause_used_at_start_bytes, _g1->used(), _g1->capacity());
1168 }
1169 
1170 void G1CollectorPolicy::print_detailed_heap_transition() {
1171     YoungList* young_list = _g1->young_list();
1172     size_t eden_bytes = young_list->eden_used_bytes();
1173     size_t survivor_bytes = young_list->survivor_used_bytes();
1174     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
1175     size_t used = _g1->used();
1176     size_t capacity = _g1->capacity();
1177     size_t eden_capacity =
1178       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1179 
1180     gclog_or_tty->print_cr(
1181       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1182       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1183       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1184       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1185       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
1186       EXT_SIZE_PARAMS(_prev_eden_capacity),
1187       EXT_SIZE_PARAMS(eden_bytes),
1188       EXT_SIZE_PARAMS(eden_capacity),
1189       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
1190       EXT_SIZE_PARAMS(survivor_bytes),
1191       EXT_SIZE_PARAMS(used_before_gc),
1192       EXT_SIZE_PARAMS(_capacity_before_gc),
1193       EXT_SIZE_PARAMS(used),
1194       EXT_SIZE_PARAMS(capacity));
1195 }
1196 
1197 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1198                                                      double update_rs_processed_buffers,
1199                                                      double goal_ms) {
1200   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1201   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1202 
1203   if (G1UseAdaptiveConcRefinement) {
1204     const int k_gy = 3, k_gr = 6;
1205     const double inc_k = 1.1, dec_k = 0.9;
1206 
1207     int g = cg1r->green_zone();
1208     if (update_rs_time > goal_ms) {
1209       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1210     } else {
1211       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1212         g = (int)MAX2(g * inc_k, g + 1.0);
1213       }
1214     }
1215     // Change the refinement threads params
1216     cg1r->set_green_zone(g);
1217     cg1r->set_yellow_zone(g * k_gy);
1218     cg1r->set_red_zone(g * k_gr);
1219     cg1r->reinitialize_threads();
1220 
1221     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1222     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1223                                     cg1r->yellow_zone());
1224     // Change the barrier params
1225     dcqs.set_process_completed_threshold(processing_threshold);
1226     dcqs.set_max_completed_queue(cg1r->red_zone());
1227   }
1228 
1229   int curr_queue_size = dcqs.completed_buffers_num();
1230   if (curr_queue_size >= cg1r->yellow_zone()) {
1231     dcqs.set_completed_queue_padding(curr_queue_size);
1232   } else {
1233     dcqs.set_completed_queue_padding(0);
1234   }
1235   dcqs.notify_if_necessary();
1236 }
1237 
1238 double
1239 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1240                                                 size_t scanned_cards) {
1241   return
1242     predict_rs_update_time_ms(pending_cards) +
1243     predict_rs_scan_time_ms(scanned_cards) +
1244     predict_constant_other_time_ms();
1245 }
1246 
1247 double
1248 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1249   size_t rs_length = predict_rs_length_diff();
1250   size_t card_num;
1251   if (gcs_are_young()) {
1252     card_num = predict_young_card_num(rs_length);
1253   } else {
1254     card_num = predict_non_young_card_num(rs_length);
1255   }
1256   return predict_base_elapsed_time_ms(pending_cards, card_num);
1257 }
1258 
1259 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1260   size_t bytes_to_copy;
1261   if (hr->is_marked())
1262     bytes_to_copy = hr->max_live_bytes();
1263   else {
1264     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1265     int age = hr->age_in_surv_rate_group();
1266     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1267     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1268   }
1269   return bytes_to_copy;
1270 }
1271 
1272 double
1273 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1274                                                   bool for_young_gc) {
1275   size_t rs_length = hr->rem_set()->occupied();
1276   size_t card_num;
1277 
1278   // Predicting the number of cards is based on which type of GC
1279   // we're predicting for.
1280   if (for_young_gc) {
1281     card_num = predict_young_card_num(rs_length);
1282   } else {
1283     card_num = predict_non_young_card_num(rs_length);
1284   }
1285   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1286 
1287   double region_elapsed_time_ms =
1288     predict_rs_scan_time_ms(card_num) +
1289     predict_object_copy_time_ms(bytes_to_copy);
1290 
1291   // The prediction of the "other" time for this region is based
1292   // upon the region type and NOT the GC type.
1293   if (hr->is_young()) {
1294     region_elapsed_time_ms += predict_young_other_time_ms(1);
1295   } else {
1296     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1297   }
1298   return region_elapsed_time_ms;
1299 }
1300 
1301 void
1302 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1303                                             uint survivor_cset_region_length) {
1304   _eden_cset_region_length     = eden_cset_region_length;
1305   _survivor_cset_region_length = survivor_cset_region_length;
1306   _old_cset_region_length      = 0;
1307 }
1308 
1309 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1310   _recorded_rs_lengths = rs_lengths;
1311 }
1312 
1313 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1314                                                double elapsed_ms) {
1315   _recent_gc_times_ms->add(elapsed_ms);
1316   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1317   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1318 }
1319 
1320 size_t G1CollectorPolicy::expansion_amount() {
1321   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1322   double threshold = _gc_overhead_perc;
1323   if (recent_gc_overhead > threshold) {
1324     // We will double the existing space, or take
1325     // G1ExpandByPercentOfAvailable % of the available expansion
1326     // space, whichever is smaller, bounded below by a minimum
1327     // expansion (unless that's all that's left.)
1328     const size_t min_expand_bytes = 1*M;
1329     size_t reserved_bytes = _g1->max_capacity();
1330     size_t committed_bytes = _g1->capacity();
1331     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1332     size_t expand_bytes;
1333     size_t expand_bytes_via_pct =
1334       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1335     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1336     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1337     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1338 
1339     ergo_verbose5(ErgoHeapSizing,
1340                   "attempt heap expansion",
1341                   ergo_format_reason("recent GC overhead higher than "
1342                                      "threshold after GC")
1343                   ergo_format_perc("recent GC overhead")
1344                   ergo_format_perc("threshold")
1345                   ergo_format_byte("uncommitted")
1346                   ergo_format_byte_perc("calculated expansion amount"),
1347                   recent_gc_overhead, threshold,
1348                   uncommitted_bytes,
1349                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1350 
1351     return expand_bytes;
1352   } else {
1353     return 0;
1354   }
1355 }
1356 
1357 void G1CollectorPolicy::print_tracing_info() const {
1358   _trace_gen0_time_data.print();
1359   _trace_gen1_time_data.print();
1360 }
1361 
1362 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1363 #ifndef PRODUCT
1364   _short_lived_surv_rate_group->print_surv_rate_summary();
1365   // add this call for any other surv rate groups
1366 #endif // PRODUCT
1367 }
1368 
1369 #ifndef PRODUCT
1370 // for debugging, bit of a hack...
1371 static char*
1372 region_num_to_mbs(int length) {
1373   static char buffer[64];
1374   double bytes = (double) (length * HeapRegion::GrainBytes);
1375   double mbs = bytes / (double) (1024 * 1024);
1376   sprintf(buffer, "%7.2lfMB", mbs);
1377   return buffer;
1378 }
1379 #endif // PRODUCT
1380 
1381 uint G1CollectorPolicy::max_regions(int purpose) {
1382   switch (purpose) {
1383     case GCAllocForSurvived:
1384       return _max_survivor_regions;
1385     case GCAllocForTenured:
1386       return REGIONS_UNLIMITED;
1387     default:
1388       ShouldNotReachHere();
1389       return REGIONS_UNLIMITED;
1390   };
1391 }
1392 
1393 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1394   uint expansion_region_num = 0;
1395   if (GCLockerEdenExpansionPercent > 0) {
1396     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1397     double expansion_region_num_d = perc * (double) _young_list_target_length;
1398     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1399     // less than 1.0) we'll get 1.
1400     expansion_region_num = (uint) ceil(expansion_region_num_d);
1401   } else {
1402     assert(expansion_region_num == 0, "sanity");
1403   }
1404   _young_list_max_length = _young_list_target_length + expansion_region_num;
1405   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1406 }
1407 
1408 // Calculates survivor space parameters.
1409 void G1CollectorPolicy::update_survivors_policy() {
1410   double max_survivor_regions_d =
1411                  (double) _young_list_target_length / (double) SurvivorRatio;
1412   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1413   // smaller than 1.0) we'll get 1.
1414   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1415 
1416   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1417         HeapRegion::GrainWords * _max_survivor_regions);
1418 }
1419 
1420 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1421                                                      GCCause::Cause gc_cause) {
1422   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1423   if (!during_cycle) {
1424     ergo_verbose1(ErgoConcCycles,
1425                   "request concurrent cycle initiation",
1426                   ergo_format_reason("requested by GC cause")
1427                   ergo_format_str("GC cause"),
1428                   GCCause::to_string(gc_cause));
1429     set_initiate_conc_mark_if_possible();
1430     return true;
1431   } else {
1432     ergo_verbose1(ErgoConcCycles,
1433                   "do not request concurrent cycle initiation",
1434                   ergo_format_reason("concurrent cycle already in progress")
1435                   ergo_format_str("GC cause"),
1436                   GCCause::to_string(gc_cause));
1437     return false;
1438   }
1439 }
1440 
1441 void
1442 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1443   // We are about to decide on whether this pause will be an
1444   // initial-mark pause.
1445 
1446   // First, during_initial_mark_pause() should not be already set. We
1447   // will set it here if we have to. However, it should be cleared by
1448   // the end of the pause (it's only set for the duration of an
1449   // initial-mark pause).
1450   assert(!during_initial_mark_pause(), "pre-condition");
1451 
1452   if (initiate_conc_mark_if_possible()) {
1453     // We had noticed on a previous pause that the heap occupancy has
1454     // gone over the initiating threshold and we should start a
1455     // concurrent marking cycle. So we might initiate one.
1456 
1457     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1458     if (!during_cycle) {
1459       // The concurrent marking thread is not "during a cycle", i.e.,
1460       // it has completed the last one. So we can go ahead and
1461       // initiate a new cycle.
1462 
1463       set_during_initial_mark_pause();
1464       // We do not allow mixed GCs during marking.
1465       if (!gcs_are_young()) {
1466         set_gcs_are_young(true);
1467         ergo_verbose0(ErgoMixedGCs,
1468                       "end mixed GCs",
1469                       ergo_format_reason("concurrent cycle is about to start"));
1470       }
1471 
1472       // And we can now clear initiate_conc_mark_if_possible() as
1473       // we've already acted on it.
1474       clear_initiate_conc_mark_if_possible();
1475 
1476       ergo_verbose0(ErgoConcCycles,
1477                   "initiate concurrent cycle",
1478                   ergo_format_reason("concurrent cycle initiation requested"));
1479     } else {
1480       // The concurrent marking thread is still finishing up the
1481       // previous cycle. If we start one right now the two cycles
1482       // overlap. In particular, the concurrent marking thread might
1483       // be in the process of clearing the next marking bitmap (which
1484       // we will use for the next cycle if we start one). Starting a
1485       // cycle now will be bad given that parts of the marking
1486       // information might get cleared by the marking thread. And we
1487       // cannot wait for the marking thread to finish the cycle as it
1488       // periodically yields while clearing the next marking bitmap
1489       // and, if it's in a yield point, it's waiting for us to
1490       // finish. So, at this point we will not start a cycle and we'll
1491       // let the concurrent marking thread complete the last one.
1492       ergo_verbose0(ErgoConcCycles,
1493                     "do not initiate concurrent cycle",
1494                     ergo_format_reason("concurrent cycle already in progress"));
1495     }
1496   }
1497 }
1498 
1499 class KnownGarbageClosure: public HeapRegionClosure {
1500   G1CollectedHeap* _g1h;
1501   CollectionSetChooser* _hrSorted;
1502 
1503 public:
1504   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1505     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1506 
1507   bool doHeapRegion(HeapRegion* r) {
1508     // We only include humongous regions in collection
1509     // sets when concurrent mark shows that their contained object is
1510     // unreachable.
1511 
1512     // Do we have any marking information for this region?
1513     if (r->is_marked()) {
1514       // We will skip any region that's currently used as an old GC
1515       // alloc region (we should not consider those for collection
1516       // before we fill them up).
1517       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1518         _hrSorted->add_region(r);
1519       }
1520     }
1521     return false;
1522   }
1523 };
1524 
1525 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1526   G1CollectedHeap* _g1h;
1527   CSetChooserParUpdater _cset_updater;
1528 
1529 public:
1530   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1531                            uint chunk_size) :
1532     _g1h(G1CollectedHeap::heap()),
1533     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1534 
1535   bool doHeapRegion(HeapRegion* r) {
1536     // Do we have any marking information for this region?
1537     if (r->is_marked()) {
1538       // We will skip any region that's currently used as an old GC
1539       // alloc region (we should not consider those for collection
1540       // before we fill them up).
1541       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1542         _cset_updater.add_region(r);
1543       }
1544     }
1545     return false;
1546   }
1547 };
1548 
1549 class ParKnownGarbageTask: public AbstractGangTask {
1550   CollectionSetChooser* _hrSorted;
1551   uint _chunk_size;
1552   G1CollectedHeap* _g1;
1553 public:
1554   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1555     AbstractGangTask("ParKnownGarbageTask"),
1556     _hrSorted(hrSorted), _chunk_size(chunk_size),
1557     _g1(G1CollectedHeap::heap()) { }
1558 
1559   void work(uint worker_id) {
1560     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1561 
1562     // Back to zero for the claim value.
1563     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1564                                          _g1->workers()->active_workers(),
1565                                          HeapRegion::InitialClaimValue);
1566   }
1567 };
1568 
1569 void
1570 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1571   _collectionSetChooser->clear();
1572 
1573   uint region_num = _g1->n_regions();
1574   if (G1CollectedHeap::use_parallel_gc_threads()) {
1575     const uint OverpartitionFactor = 4;
1576     uint WorkUnit;
1577     // The use of MinChunkSize = 8 in the original code
1578     // causes some assertion failures when the total number of
1579     // region is less than 8.  The code here tries to fix that.
1580     // Should the original code also be fixed?
1581     if (no_of_gc_threads > 0) {
1582       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
1583       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
1584                       MinWorkUnit);
1585     } else {
1586       assert(no_of_gc_threads > 0,
1587         "The active gc workers should be greater than 0");
1588       // In a product build do something reasonable to avoid a crash.
1589       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1590       WorkUnit =
1591         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1592              MinWorkUnit);
1593     }
1594     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
1595                                                            WorkUnit);
1596     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1597                                             (int) WorkUnit);
1598     _g1->workers()->run_task(&parKnownGarbageTask);
1599 
1600     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1601            "sanity check");
1602   } else {
1603     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
1604     _g1->heap_region_iterate(&knownGarbagecl);
1605   }
1606 
1607   _collectionSetChooser->sort_regions();
1608 
1609   double end_sec = os::elapsedTime();
1610   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1611   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1612   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1613   _prev_collection_pause_end_ms += elapsed_time_ms;
1614   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1615 }
1616 
1617 // Add the heap region at the head of the non-incremental collection set
1618 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1619   assert(_inc_cset_build_state == Active, "Precondition");
1620   assert(!hr->is_young(), "non-incremental add of young region");
1621 
1622   assert(!hr->in_collection_set(), "should not already be in the CSet");
1623   hr->set_in_collection_set(true);
1624   hr->set_next_in_collection_set(_collection_set);
1625   _collection_set = hr;
1626   _collection_set_bytes_used_before += hr->used();
1627   _g1->register_region_with_in_cset_fast_test(hr);
1628   size_t rs_length = hr->rem_set()->occupied();
1629   _recorded_rs_lengths += rs_length;
1630   _old_cset_region_length += 1;
1631 }
1632 
1633 // Initialize the per-collection-set information
1634 void G1CollectorPolicy::start_incremental_cset_building() {
1635   assert(_inc_cset_build_state == Inactive, "Precondition");
1636 
1637   _inc_cset_head = NULL;
1638   _inc_cset_tail = NULL;
1639   _inc_cset_bytes_used_before = 0;
1640 
1641   _inc_cset_max_finger = 0;
1642   _inc_cset_recorded_rs_lengths = 0;
1643   _inc_cset_recorded_rs_lengths_diffs = 0;
1644   _inc_cset_predicted_elapsed_time_ms = 0.0;
1645   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1646   _inc_cset_build_state = Active;
1647 }
1648 
1649 void G1CollectorPolicy::finalize_incremental_cset_building() {
1650   assert(_inc_cset_build_state == Active, "Precondition");
1651   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1652 
1653   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1654   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1655   // that adds a new region to the CSet. Further updates by the
1656   // concurrent refinement thread that samples the young RSet lengths
1657   // are accumulated in the *_diffs fields. Here we add the diffs to
1658   // the "main" fields.
1659 
1660   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1661     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1662   } else {
1663     // This is defensive. The diff should in theory be always positive
1664     // as RSets can only grow between GCs. However, given that we
1665     // sample their size concurrently with other threads updating them
1666     // it's possible that we might get the wrong size back, which
1667     // could make the calculations somewhat inaccurate.
1668     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1669     if (_inc_cset_recorded_rs_lengths >= diffs) {
1670       _inc_cset_recorded_rs_lengths -= diffs;
1671     } else {
1672       _inc_cset_recorded_rs_lengths = 0;
1673     }
1674   }
1675   _inc_cset_predicted_elapsed_time_ms +=
1676                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1677 
1678   _inc_cset_recorded_rs_lengths_diffs = 0;
1679   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1680 }
1681 
1682 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1683   // This routine is used when:
1684   // * adding survivor regions to the incremental cset at the end of an
1685   //   evacuation pause,
1686   // * adding the current allocation region to the incremental cset
1687   //   when it is retired, and
1688   // * updating existing policy information for a region in the
1689   //   incremental cset via young list RSet sampling.
1690   // Therefore this routine may be called at a safepoint by the
1691   // VM thread, or in-between safepoints by mutator threads (when
1692   // retiring the current allocation region) or a concurrent
1693   // refine thread (RSet sampling).
1694 
1695   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1696   size_t used_bytes = hr->used();
1697   _inc_cset_recorded_rs_lengths += rs_length;
1698   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1699   _inc_cset_bytes_used_before += used_bytes;
1700 
1701   // Cache the values we have added to the aggregated informtion
1702   // in the heap region in case we have to remove this region from
1703   // the incremental collection set, or it is updated by the
1704   // rset sampling code
1705   hr->set_recorded_rs_length(rs_length);
1706   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1707 }
1708 
1709 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1710                                                      size_t new_rs_length) {
1711   // Update the CSet information that is dependent on the new RS length
1712   assert(hr->is_young(), "Precondition");
1713   assert(!SafepointSynchronize::is_at_safepoint(),
1714                                                "should not be at a safepoint");
1715 
1716   // We could have updated _inc_cset_recorded_rs_lengths and
1717   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1718   // that atomically, as this code is executed by a concurrent
1719   // refinement thread, potentially concurrently with a mutator thread
1720   // allocating a new region and also updating the same fields. To
1721   // avoid the atomic operations we accumulate these updates on two
1722   // separate fields (*_diffs) and we'll just add them to the "main"
1723   // fields at the start of a GC.
1724 
1725   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1726   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1727   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1728 
1729   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1730   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1731   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1732   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1733 
1734   hr->set_recorded_rs_length(new_rs_length);
1735   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1736 }
1737 
1738 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1739   assert(hr->is_young(), "invariant");
1740   assert(hr->young_index_in_cset() > -1, "should have already been set");
1741   assert(_inc_cset_build_state == Active, "Precondition");
1742 
1743   // We need to clear and set the cached recorded/cached collection set
1744   // information in the heap region here (before the region gets added
1745   // to the collection set). An individual heap region's cached values
1746   // are calculated, aggregated with the policy collection set info,
1747   // and cached in the heap region here (initially) and (subsequently)
1748   // by the Young List sampling code.
1749 
1750   size_t rs_length = hr->rem_set()->occupied();
1751   add_to_incremental_cset_info(hr, rs_length);
1752 
1753   HeapWord* hr_end = hr->end();
1754   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1755 
1756   assert(!hr->in_collection_set(), "invariant");
1757   hr->set_in_collection_set(true);
1758   assert( hr->next_in_collection_set() == NULL, "invariant");
1759 
1760   _g1->register_region_with_in_cset_fast_test(hr);
1761 }
1762 
1763 // Add the region at the RHS of the incremental cset
1764 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1765   // We should only ever be appending survivors at the end of a pause
1766   assert( hr->is_survivor(), "Logic");
1767 
1768   // Do the 'common' stuff
1769   add_region_to_incremental_cset_common(hr);
1770 
1771   // Now add the region at the right hand side
1772   if (_inc_cset_tail == NULL) {
1773     assert(_inc_cset_head == NULL, "invariant");
1774     _inc_cset_head = hr;
1775   } else {
1776     _inc_cset_tail->set_next_in_collection_set(hr);
1777   }
1778   _inc_cset_tail = hr;
1779 }
1780 
1781 // Add the region to the LHS of the incremental cset
1782 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1783   // Survivors should be added to the RHS at the end of a pause
1784   assert(!hr->is_survivor(), "Logic");
1785 
1786   // Do the 'common' stuff
1787   add_region_to_incremental_cset_common(hr);
1788 
1789   // Add the region at the left hand side
1790   hr->set_next_in_collection_set(_inc_cset_head);
1791   if (_inc_cset_head == NULL) {
1792     assert(_inc_cset_tail == NULL, "Invariant");
1793     _inc_cset_tail = hr;
1794   }
1795   _inc_cset_head = hr;
1796 }
1797 
1798 #ifndef PRODUCT
1799 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1800   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1801 
1802   st->print_cr("\nCollection_set:");
1803   HeapRegion* csr = list_head;
1804   while (csr != NULL) {
1805     HeapRegion* next = csr->next_in_collection_set();
1806     assert(csr->in_collection_set(), "bad CS");
1807     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
1808                  HR_FORMAT_PARAMS(csr),
1809                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
1810                  csr->age_in_surv_rate_group_cond());
1811     csr = next;
1812   }
1813 }
1814 #endif // !PRODUCT
1815 
1816 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1817   // Returns the given amount of reclaimable bytes (that represents
1818   // the amount of reclaimable space still to be collected) as a
1819   // percentage of the current heap capacity.
1820   size_t capacity_bytes = _g1->capacity();
1821   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1822 }
1823 
1824 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1825                                                 const char* false_action_str) {
1826   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1827   if (cset_chooser->is_empty()) {
1828     ergo_verbose0(ErgoMixedGCs,
1829                   false_action_str,
1830                   ergo_format_reason("candidate old regions not available"));
1831     return false;
1832   }
1833 
1834   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1835   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1836   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1837   double threshold = (double) G1HeapWastePercent;
1838   if (reclaimable_perc <= threshold) {
1839     ergo_verbose4(ErgoMixedGCs,
1840               false_action_str,
1841               ergo_format_reason("reclaimable percentage not over threshold")
1842               ergo_format_region("candidate old regions")
1843               ergo_format_byte_perc("reclaimable")
1844               ergo_format_perc("threshold"),
1845               cset_chooser->remaining_regions(),
1846               reclaimable_bytes,
1847               reclaimable_perc, threshold);
1848     return false;
1849   }
1850 
1851   ergo_verbose4(ErgoMixedGCs,
1852                 true_action_str,
1853                 ergo_format_reason("candidate old regions available")
1854                 ergo_format_region("candidate old regions")
1855                 ergo_format_byte_perc("reclaimable")
1856                 ergo_format_perc("threshold"),
1857                 cset_chooser->remaining_regions(),
1858                 reclaimable_bytes,
1859                 reclaimable_perc, threshold);
1860   return true;
1861 }
1862 
1863 uint G1CollectorPolicy::calc_min_old_cset_length() {
1864   // The min old CSet region bound is based on the maximum desired
1865   // number of mixed GCs after a cycle. I.e., even if some old regions
1866   // look expensive, we should add them to the CSet anyway to make
1867   // sure we go through the available old regions in no more than the
1868   // maximum desired number of mixed GCs.
1869   //
1870   // The calculation is based on the number of marked regions we added
1871   // to the CSet chooser in the first place, not how many remain, so
1872   // that the result is the same during all mixed GCs that follow a cycle.
1873 
1874   const size_t region_num = (size_t) _collectionSetChooser->length();
1875   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1876   size_t result = region_num / gc_num;
1877   // emulate ceiling
1878   if (result * gc_num < region_num) {
1879     result += 1;
1880   }
1881   return (uint) result;
1882 }
1883 
1884 uint G1CollectorPolicy::calc_max_old_cset_length() {
1885   // The max old CSet region bound is based on the threshold expressed
1886   // as a percentage of the heap size. I.e., it should bound the
1887   // number of old regions added to the CSet irrespective of how many
1888   // of them are available.
1889 
1890   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1891   const size_t region_num = g1h->n_regions();
1892   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1893   size_t result = region_num * perc / 100;
1894   // emulate ceiling
1895   if (100 * result < region_num * perc) {
1896     result += 1;
1897   }
1898   return (uint) result;
1899 }
1900 
1901 
1902 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
1903   double young_start_time_sec = os::elapsedTime();
1904 
1905   YoungList* young_list = _g1->young_list();
1906   finalize_incremental_cset_building();
1907 
1908   guarantee(target_pause_time_ms > 0.0,
1909             err_msg("target_pause_time_ms = %1.6lf should be positive",
1910                     target_pause_time_ms));
1911   guarantee(_collection_set == NULL, "Precondition");
1912 
1913   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1914   double predicted_pause_time_ms = base_time_ms;
1915   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1916 
1917   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1918                 "start choosing CSet",
1919                 ergo_format_size("_pending_cards")
1920                 ergo_format_ms("predicted base time")
1921                 ergo_format_ms("remaining time")
1922                 ergo_format_ms("target pause time"),
1923                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1924 
1925   _last_gc_was_young = gcs_are_young() ? true : false;
1926 
1927   if (_last_gc_was_young) {
1928     _trace_gen0_time_data.increment_young_collection_count();
1929   } else {
1930     _trace_gen0_time_data.increment_mixed_collection_count();
1931   }
1932 
1933   // The young list is laid with the survivor regions from the previous
1934   // pause are appended to the RHS of the young list, i.e.
1935   //   [Newly Young Regions ++ Survivors from last pause].
1936 
1937   uint survivor_region_length = young_list->survivor_length();
1938   uint eden_region_length = young_list->length() - survivor_region_length;
1939   init_cset_region_lengths(eden_region_length, survivor_region_length);
1940 
1941   HeapRegion* hr = young_list->first_survivor_region();
1942   while (hr != NULL) {
1943     assert(hr->is_survivor(), "badly formed young list");
1944     hr->set_young();
1945     hr = hr->get_next_young_region();
1946   }
1947 
1948   // Clear the fields that point to the survivor list - they are all young now.
1949   young_list->clear_survivors();
1950 
1951   _collection_set = _inc_cset_head;
1952   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1953   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1954   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1955 
1956   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
1957                 "add young regions to CSet",
1958                 ergo_format_region("eden")
1959                 ergo_format_region("survivors")
1960                 ergo_format_ms("predicted young region time"),
1961                 eden_region_length, survivor_region_length,
1962                 _inc_cset_predicted_elapsed_time_ms);
1963 
1964   // The number of recorded young regions is the incremental
1965   // collection set's current size
1966   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1967 
1968   double young_end_time_sec = os::elapsedTime();
1969   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1970 
1971   // Set the start of the non-young choice time.
1972   double non_young_start_time_sec = young_end_time_sec;
1973 
1974   if (!gcs_are_young()) {
1975     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1976     cset_chooser->verify();
1977     const uint min_old_cset_length = calc_min_old_cset_length();
1978     const uint max_old_cset_length = calc_max_old_cset_length();
1979 
1980     uint expensive_region_num = 0;
1981     bool check_time_remaining = adaptive_young_list_length();
1982 
1983     HeapRegion* hr = cset_chooser->peek();
1984     while (hr != NULL) {
1985       if (old_cset_region_length() >= max_old_cset_length) {
1986         // Added maximum number of old regions to the CSet.
1987         ergo_verbose2(ErgoCSetConstruction,
1988                       "finish adding old regions to CSet",
1989                       ergo_format_reason("old CSet region num reached max")
1990                       ergo_format_region("old")
1991                       ergo_format_region("max"),
1992                       old_cset_region_length(), max_old_cset_length);
1993         break;
1994       }
1995 
1996 
1997       // Stop adding regions if the remaining reclaimable space is
1998       // not above G1HeapWastePercent.
1999       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2000       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2001       double threshold = (double) G1HeapWastePercent;
2002       if (reclaimable_perc <= threshold) {
2003         // We've added enough old regions that the amount of uncollected
2004         // reclaimable space is at or below the waste threshold. Stop
2005         // adding old regions to the CSet.
2006         ergo_verbose5(ErgoCSetConstruction,
2007                       "finish adding old regions to CSet",
2008                       ergo_format_reason("reclaimable percentage not over threshold")
2009                       ergo_format_region("old")
2010                       ergo_format_region("max")
2011                       ergo_format_byte_perc("reclaimable")
2012                       ergo_format_perc("threshold"),
2013                       old_cset_region_length(),
2014                       max_old_cset_length,
2015                       reclaimable_bytes,
2016                       reclaimable_perc, threshold);
2017         break;
2018       }
2019 
2020       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2021       if (check_time_remaining) {
2022         if (predicted_time_ms > time_remaining_ms) {
2023           // Too expensive for the current CSet.
2024 
2025           if (old_cset_region_length() >= min_old_cset_length) {
2026             // We have added the minimum number of old regions to the CSet,
2027             // we are done with this CSet.
2028             ergo_verbose4(ErgoCSetConstruction,
2029                           "finish adding old regions to CSet",
2030                           ergo_format_reason("predicted time is too high")
2031                           ergo_format_ms("predicted time")
2032                           ergo_format_ms("remaining time")
2033                           ergo_format_region("old")
2034                           ergo_format_region("min"),
2035                           predicted_time_ms, time_remaining_ms,
2036                           old_cset_region_length(), min_old_cset_length);
2037             break;
2038           }
2039 
2040           // We'll add it anyway given that we haven't reached the
2041           // minimum number of old regions.
2042           expensive_region_num += 1;
2043         }
2044       } else {
2045         if (old_cset_region_length() >= min_old_cset_length) {
2046           // In the non-auto-tuning case, we'll finish adding regions
2047           // to the CSet if we reach the minimum.
2048           ergo_verbose2(ErgoCSetConstruction,
2049                         "finish adding old regions to CSet",
2050                         ergo_format_reason("old CSet region num reached min")
2051                         ergo_format_region("old")
2052                         ergo_format_region("min"),
2053                         old_cset_region_length(), min_old_cset_length);
2054           break;
2055         }
2056       }
2057 
2058       // We will add this region to the CSet.
2059       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2060       predicted_pause_time_ms += predicted_time_ms;
2061       cset_chooser->remove_and_move_to_next(hr);
2062       _g1->old_set_remove(hr);
2063       add_old_region_to_cset(hr);
2064 
2065       hr = cset_chooser->peek();
2066     }
2067     if (hr == NULL) {
2068       ergo_verbose0(ErgoCSetConstruction,
2069                     "finish adding old regions to CSet",
2070                     ergo_format_reason("candidate old regions not available"));
2071     }
2072 
2073     if (expensive_region_num > 0) {
2074       // We print the information once here at the end, predicated on
2075       // whether we added any apparently expensive regions or not, to
2076       // avoid generating output per region.
2077       ergo_verbose4(ErgoCSetConstruction,
2078                     "added expensive regions to CSet",
2079                     ergo_format_reason("old CSet region num not reached min")
2080                     ergo_format_region("old")
2081                     ergo_format_region("expensive")
2082                     ergo_format_region("min")
2083                     ergo_format_ms("remaining time"),
2084                     old_cset_region_length(),
2085                     expensive_region_num,
2086                     min_old_cset_length,
2087                     time_remaining_ms);
2088     }
2089 
2090     cset_chooser->verify();
2091   }
2092 
2093   stop_incremental_cset_building();
2094 
2095   ergo_verbose5(ErgoCSetConstruction,
2096                 "finish choosing CSet",
2097                 ergo_format_region("eden")
2098                 ergo_format_region("survivors")
2099                 ergo_format_region("old")
2100                 ergo_format_ms("predicted pause time")
2101                 ergo_format_ms("target pause time"),
2102                 eden_region_length, survivor_region_length,
2103                 old_cset_region_length(),
2104                 predicted_pause_time_ms, target_pause_time_ms);
2105 
2106   double non_young_end_time_sec = os::elapsedTime();
2107   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2108 }
2109 
2110 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
2111   if(TraceGen0Time) {
2112     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2113   }
2114 }
2115 
2116 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
2117   if(TraceGen0Time) {
2118     _all_yield_times_ms.add(yield_time_ms);
2119   }
2120 }
2121 
2122 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2123   if(TraceGen0Time) {
2124     _total.add(pause_time_ms);
2125     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2126     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2127     _parallel.add(phase_times->cur_collection_par_time_ms());
2128     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
2129     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
2130     _update_rs.add(phase_times->average_last_update_rs_time());
2131     _scan_rs.add(phase_times->average_last_scan_rs_time());
2132     _obj_copy.add(phase_times->average_last_obj_copy_time());
2133     _termination.add(phase_times->average_last_termination_time());
2134 
2135     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
2136       phase_times->average_last_satb_filtering_times_ms() +
2137       phase_times->average_last_update_rs_time() +
2138       phase_times->average_last_scan_rs_time() +
2139       phase_times->average_last_obj_copy_time() +
2140       + phase_times->average_last_termination_time();
2141 
2142     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2143     _parallel_other.add(parallel_other_time);
2144     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2145   }
2146 }
2147 
2148 void TraceGen0TimeData::increment_young_collection_count() {
2149   if(TraceGen0Time) {
2150     ++_young_pause_num;
2151   }
2152 }
2153 
2154 void TraceGen0TimeData::increment_mixed_collection_count() {
2155   if(TraceGen0Time) {
2156     ++_mixed_pause_num;
2157   }
2158 }
2159 
2160 void TraceGen0TimeData::print_summary(const char* str,
2161                                       const NumberSeq* seq) const {
2162   double sum = seq->sum();
2163   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2164                 str, sum / 1000.0, seq->avg());
2165 }
2166 
2167 void TraceGen0TimeData::print_summary_sd(const char* str,
2168                                          const NumberSeq* seq) const {
2169   print_summary(str, seq);
2170   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2171                 "(num", seq->num(), seq->sd(), seq->maximum());
2172 }
2173 
2174 void TraceGen0TimeData::print() const {
2175   if (!TraceGen0Time) {
2176     return;
2177   }
2178 
2179   gclog_or_tty->print_cr("ALL PAUSES");
2180   print_summary_sd("   Total", &_total);
2181   gclog_or_tty->print_cr("");
2182   gclog_or_tty->print_cr("");
2183   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2184   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2185   gclog_or_tty->print_cr("");
2186 
2187   gclog_or_tty->print_cr("EVACUATION PAUSES");
2188 
2189   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2190     gclog_or_tty->print_cr("none");
2191   } else {
2192     print_summary_sd("   Evacuation Pauses", &_total);
2193     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2194     print_summary("      Parallel Time", &_parallel);
2195     print_summary("         Ext Root Scanning", &_ext_root_scan);
2196     print_summary("         SATB Filtering", &_satb_filtering);
2197     print_summary("         Update RS", &_update_rs);
2198     print_summary("         Scan RS", &_scan_rs);
2199     print_summary("         Object Copy", &_obj_copy);
2200     print_summary("         Termination", &_termination);
2201     print_summary("         Parallel Other", &_parallel_other);
2202     print_summary("      Clear CT", &_clear_ct);
2203     print_summary("      Other", &_other);
2204   }
2205   gclog_or_tty->print_cr("");
2206 
2207   gclog_or_tty->print_cr("MISC");
2208   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2209   print_summary_sd("   Yields", &_all_yield_times_ms);
2210 }
2211 
2212 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
2213   if (TraceGen1Time) {
2214     _all_full_gc_times.add(full_gc_time_ms);
2215   }
2216 }
2217 
2218 void TraceGen1TimeData::print() const {
2219   if (!TraceGen1Time) {
2220     return;
2221   }
2222 
2223   if (_all_full_gc_times.num() > 0) {
2224     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2225       _all_full_gc_times.num(),
2226       _all_full_gc_times.sum() / 1000.0);
2227     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2228     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2229       _all_full_gc_times.sd(),
2230       _all_full_gc_times.maximum());
2231   }
2232 }