1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  29 #include "memory/collectorPolicy.hpp"
  30 #include "memory/generation.hpp"
  31 #include "memory/sharedHeap.hpp"
  32 
  33 class SubTasksDone;
  34 
  35 // A "GenCollectedHeap" is a SharedHeap that uses generational
  36 // collection.  It is represented with a sequence of Generation's.
  37 class GenCollectedHeap : public SharedHeap {
  38   friend class GenCollectorPolicy;
  39   friend class Generation;
  40   friend class DefNewGeneration;
  41   friend class TenuredGeneration;
  42   friend class ConcurrentMarkSweepGeneration;
  43   friend class CMSCollector;
  44   friend class GenMarkSweep;
  45   friend class VM_GenCollectForAllocation;
  46   friend class VM_GenCollectFull;
  47   friend class VM_GenCollectFullConcurrent;
  48   friend class VM_GC_HeapInspection;
  49   friend class VM_HeapDumper;
  50   friend class HeapInspection;
  51   friend class GCCauseSetter;
  52   friend class VMStructs;
  53 public:
  54   enum SomeConstants {
  55     max_gens = 10
  56   };
  57 
  58   friend class VM_PopulateDumpSharedSpace;
  59 
  60  protected:
  61   // Fields:
  62   static GenCollectedHeap* _gch;
  63 
  64  private:
  65   int _n_gens;
  66   Generation* _gens[max_gens];
  67   GenerationSpec** _gen_specs;
  68 
  69   // The generational collector policy.
  70   GenCollectorPolicy* _gen_policy;
  71 
  72   // Indicates that the most recent previous incremental collection failed.
  73   // The flag is cleared when an action is taken that might clear the
  74   // condition that caused that incremental collection to fail.
  75   bool _incremental_collection_failed;
  76 
  77   // In support of ExplicitGCInvokesConcurrent functionality
  78   unsigned int _full_collections_completed;
  79 
  80   // Data structure for claiming the (potentially) parallel tasks in
  81   // (gen-specific) strong roots processing.
  82   SubTasksDone* _gen_process_strong_tasks;
  83   SubTasksDone* gen_process_strong_tasks() { return _gen_process_strong_tasks; }
  84 
  85   // In block contents verification, the number of header words to skip
  86   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  87 
  88 protected:
  89   // Directs each generation up to and including "collectedGen" to recompute
  90   // its desired size.
  91   void compute_new_generation_sizes(int collectedGen);
  92 
  93   // Helper functions for allocation
  94   HeapWord* attempt_allocation(size_t size,
  95                                bool   is_tlab,
  96                                bool   first_only);
  97 
  98   // Helper function for two callbacks below.
  99   // Considers collection of the first max_level+1 generations.
 100   void do_collection(bool   full,
 101                      bool   clear_all_soft_refs,
 102                      size_t size,
 103                      bool   is_tlab,
 104                      int    max_level);
 105 
 106   // Callback from VM_GenCollectForAllocation operation.
 107   // This function does everything necessary/possible to satisfy an
 108   // allocation request that failed in the youngest generation that should
 109   // have handled it (including collection, expansion, etc.)
 110   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 111 
 112   // Callback from VM_GenCollectFull operation.
 113   // Perform a full collection of the first max_level+1 generations.
 114   virtual void do_full_collection(bool clear_all_soft_refs);
 115   void do_full_collection(bool clear_all_soft_refs, int max_level);
 116 
 117   // Does the "cause" of GC indicate that
 118   // we absolutely __must__ clear soft refs?
 119   bool must_clear_all_soft_refs();
 120 
 121 public:
 122   GenCollectedHeap(GenCollectorPolicy *policy);
 123 
 124   GCStats* gc_stats(int level) const;
 125 
 126   // Returns JNI_OK on success
 127   virtual jint initialize();
 128   char* allocate(size_t alignment,
 129                  size_t* _total_reserved, int* _n_covered_regions,
 130                  ReservedSpace* heap_rs);
 131 
 132   // Does operations required after initialization has been done.
 133   void post_initialize();
 134 
 135   // Initialize ("weak") refs processing support
 136   virtual void ref_processing_init();
 137 
 138   virtual CollectedHeap::Name kind() const {
 139     return CollectedHeap::GenCollectedHeap;
 140   }
 141 
 142   // The generational collector policy.
 143   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 144   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
 145 
 146   // Adaptive size policy
 147   virtual AdaptiveSizePolicy* size_policy() {
 148     return gen_policy()->size_policy();
 149   }
 150 
 151   size_t capacity() const;
 152   size_t used() const;
 153 
 154   // Save the "used_region" for generations level and lower.
 155   void save_used_regions(int level);
 156 
 157   size_t max_capacity() const;
 158 
 159   HeapWord* mem_allocate(size_t size,
 160                          bool*  gc_overhead_limit_was_exceeded);
 161 
 162   // We may support a shared contiguous allocation area, if the youngest
 163   // generation does.
 164   bool supports_inline_contig_alloc() const;
 165   HeapWord** top_addr() const;
 166   HeapWord** end_addr() const;
 167 
 168   // Return an estimate of the maximum allocation that could be performed
 169   // without triggering any collection activity.  In a generational
 170   // collector, for example, this is probably the largest allocation that
 171   // could be supported in the youngest generation.  It is "unsafe" because
 172   // no locks are taken; the result should be treated as an approximation,
 173   // not a guarantee.
 174   size_t unsafe_max_alloc();
 175 
 176   // Does this heap support heap inspection? (+PrintClassHistogram)
 177   virtual bool supports_heap_inspection() const { return true; }
 178 
 179   // Perform a full collection of the heap; intended for use in implementing
 180   // "System.gc". This implies as full a collection as the CollectedHeap
 181   // supports. Caller does not hold the Heap_lock on entry.
 182   void collect(GCCause::Cause cause);
 183 
 184   // The same as above but assume that the caller holds the Heap_lock.
 185   void collect_locked(GCCause::Cause cause);
 186 
 187   // Perform a full collection of the first max_level+1 generations.
 188   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 189   void collect(GCCause::Cause cause, int max_level);
 190 
 191   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 192   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 193   // be expensive to compute in general, so, to prevent
 194   // their inadvertent use in product jvm's, we restrict their use to
 195   // assertion checking or verification only.
 196   bool is_in(const void* p) const;
 197 
 198   // override
 199   bool is_in_closed_subset(const void* p) const {
 200     if (UseConcMarkSweepGC) {
 201       return is_in_reserved(p);
 202     } else {
 203       return is_in(p);
 204     }
 205   }
 206 
 207   // Returns true if the reference is to an object in the reserved space
 208   // for the young generation.
 209   // Assumes the the young gen address range is less than that of the old gen.
 210   bool is_in_young(oop p);
 211 
 212 #ifdef ASSERT
 213   virtual bool is_in_partial_collection(const void* p);
 214 #endif
 215 
 216   virtual bool is_scavengable(const void* addr) {
 217     return is_in_young((oop)addr);
 218   }
 219 
 220   // Iteration functions.
 221   void oop_iterate(ExtendedOopClosure* cl);
 222   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
 223   void object_iterate(ObjectClosure* cl);
 224   void safe_object_iterate(ObjectClosure* cl);
 225   void object_iterate_since_last_GC(ObjectClosure* cl);
 226   Space* space_containing(const void* addr) const;
 227 
 228   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 229   // each address in the (reserved) heap is a member of exactly
 230   // one block.  The defining characteristic of a block is that it is
 231   // possible to find its size, and thus to progress forward to the next
 232   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 233   // represent Java objects, or they might be free blocks in a
 234   // free-list-based heap (or subheap), as long as the two kinds are
 235   // distinguishable and the size of each is determinable.
 236 
 237   // Returns the address of the start of the "block" that contains the
 238   // address "addr".  We say "blocks" instead of "object" since some heaps
 239   // may not pack objects densely; a chunk may either be an object or a
 240   // non-object.
 241   virtual HeapWord* block_start(const void* addr) const;
 242 
 243   // Requires "addr" to be the start of a chunk, and returns its size.
 244   // "addr + size" is required to be the start of a new chunk, or the end
 245   // of the active area of the heap. Assumes (and verifies in non-product
 246   // builds) that addr is in the allocated part of the heap and is
 247   // the start of a chunk.
 248   virtual size_t block_size(const HeapWord* addr) const;
 249 
 250   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 251   // the block is an object. Assumes (and verifies in non-product
 252   // builds) that addr is in the allocated part of the heap and is
 253   // the start of a chunk.
 254   virtual bool block_is_obj(const HeapWord* addr) const;
 255 
 256   // Section on TLAB's.
 257   virtual bool supports_tlab_allocation() const;
 258   virtual size_t tlab_capacity(Thread* thr) const;
 259   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 260   virtual HeapWord* allocate_new_tlab(size_t size);
 261 
 262   // Can a compiler initialize a new object without store barriers?
 263   // This permission only extends from the creation of a new object
 264   // via a TLAB up to the first subsequent safepoint.
 265   virtual bool can_elide_tlab_store_barriers() const {
 266     return true;
 267   }
 268 
 269   virtual bool card_mark_must_follow_store() const {
 270     return UseConcMarkSweepGC;
 271   }
 272 
 273   // We don't need barriers for stores to objects in the
 274   // young gen and, a fortiori, for initializing stores to
 275   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
 276   // only and may need to be re-examined in case other
 277   // kinds of collectors are implemented in the future.
 278   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 279     // We wanted to assert that:-
 280     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
 281     //       "Check can_elide_initializing_store_barrier() for this collector");
 282     // but unfortunately the flag UseSerialGC need not necessarily always
 283     // be set when DefNew+Tenured are being used.
 284     return is_in_young(new_obj);
 285   }
 286 
 287   // The "requestor" generation is performing some garbage collection
 288   // action for which it would be useful to have scratch space.  The
 289   // requestor promises to allocate no more than "max_alloc_words" in any
 290   // older generation (via promotion say.)   Any blocks of space that can
 291   // be provided are returned as a list of ScratchBlocks, sorted by
 292   // decreasing size.
 293   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 294   // Allow each generation to reset any scratch space that it has
 295   // contributed as it needs.
 296   void release_scratch();
 297 
 298   // Ensure parsability: override
 299   virtual void ensure_parsability(bool retire_tlabs);
 300 
 301   // Time in ms since the longest time a collector ran in
 302   // in any generation.
 303   virtual jlong millis_since_last_gc();
 304 
 305   // Total number of full collections completed.
 306   unsigned int total_full_collections_completed() {
 307     assert(_full_collections_completed <= _total_full_collections,
 308            "Can't complete more collections than were started");
 309     return _full_collections_completed;
 310   }
 311 
 312   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 313   unsigned int update_full_collections_completed();
 314   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 315   unsigned int update_full_collections_completed(unsigned int count);
 316 
 317   // Update "time of last gc" for all constituent generations
 318   // to "now".
 319   void update_time_of_last_gc(jlong now) {
 320     for (int i = 0; i < _n_gens; i++) {
 321       _gens[i]->update_time_of_last_gc(now);
 322     }
 323   }
 324 
 325   // Update the gc statistics for each generation.
 326   // "level" is the level of the lastest collection
 327   void update_gc_stats(int current_level, bool full) {
 328     for (int i = 0; i < _n_gens; i++) {
 329       _gens[i]->update_gc_stats(current_level, full);
 330     }
 331   }
 332 
 333   // Override.
 334   bool no_gc_in_progress() { return !is_gc_active(); }
 335 
 336   // Override.
 337   void prepare_for_verify();
 338 
 339   // Override.
 340   void verify(bool silent, VerifyOption option);
 341 
 342   // Override.
 343   virtual void print_on(outputStream* st) const;
 344   virtual void print_gc_threads_on(outputStream* st) const;
 345   virtual void gc_threads_do(ThreadClosure* tc) const;
 346   virtual void print_tracing_info() const;
 347   virtual void print_on_error(outputStream* st) const;
 348 
 349   // PrintGC, PrintGCDetails support
 350   void print_heap_change(size_t prev_used) const;
 351 
 352   // The functions below are helper functions that a subclass of
 353   // "CollectedHeap" can use in the implementation of its virtual
 354   // functions.
 355 
 356   class GenClosure : public StackObj {
 357    public:
 358     virtual void do_generation(Generation* gen) = 0;
 359   };
 360 
 361   // Apply "cl.do_generation" to all generations in the heap
 362   // If "old_to_young" determines the order.
 363   void generation_iterate(GenClosure* cl, bool old_to_young);
 364 
 365   void space_iterate(SpaceClosure* cl);
 366 
 367   // Return "true" if all generations have reached the
 368   // maximal committed limit that they can reach, without a garbage
 369   // collection.
 370   virtual bool is_maximal_no_gc() const;
 371 
 372   // Return the generation before "gen", or else NULL.
 373   Generation* prev_gen(Generation* gen) const {
 374     int l = gen->level();
 375     if (l == 0) return NULL;
 376     else return _gens[l-1];
 377   }
 378 
 379   // Return the generation after "gen", or else NULL.
 380   Generation* next_gen(Generation* gen) const {
 381     int l = gen->level() + 1;
 382     if (l == _n_gens) return NULL;
 383     else return _gens[l];
 384   }
 385 
 386   Generation* get_gen(int i) const {
 387     if (i >= 0 && i < _n_gens)
 388       return _gens[i];
 389     else
 390       return NULL;
 391   }
 392 
 393   int n_gens() const {
 394     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
 395     return _n_gens;
 396   }
 397 
 398   // Convenience function to be used in situations where the heap type can be
 399   // asserted to be this type.
 400   static GenCollectedHeap* heap();
 401 
 402   void set_par_threads(uint t);
 403 
 404   // Invoke the "do_oop" method of one of the closures "not_older_gens"
 405   // or "older_gens" on root locations for the generation at
 406   // "level".  (The "older_gens" closure is used for scanning references
 407   // from older generations; "not_older_gens" is used everywhere else.)
 408   // If "younger_gens_as_roots" is false, younger generations are
 409   // not scanned as roots; in this case, the caller must be arranging to
 410   // scan the younger generations itself.  (For example, a generation might
 411   // explicitly mark reachable objects in younger generations, to avoid
 412   // excess storage retention.)
 413   // The "so" argument determines which of the roots
 414   // the closure is applied to:
 415   // "SO_None" does none;
 416   // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
 417   // "SO_SystemClasses" to all the "system" classes and loaders;
 418   // "SO_Strings" applies the closure to all entries in the StringTable.
 419   void gen_process_strong_roots(int level,
 420                                 bool younger_gens_as_roots,
 421                                 // The remaining arguments are in an order
 422                                 // consistent with SharedHeap::process_strong_roots:
 423                                 bool activate_scope,
 424                                 bool is_scavenging,
 425                                 SharedHeap::ScanningOption so,
 426                                 OopsInGenClosure* not_older_gens,
 427                                 bool do_code_roots,
 428                                 OopsInGenClosure* older_gens,
 429                                 KlassClosure* klass_closure);
 430 
 431   // Apply "blk" to all the weak roots of the system.  These include
 432   // JNI weak roots, the code cache, system dictionary, symbol table,
 433   // string table, and referents of reachable weak refs.
 434   void gen_process_weak_roots(OopClosure* root_closure,
 435                               CodeBlobClosure* code_roots);
 436 
 437   // Set the saved marks of generations, if that makes sense.
 438   // In particular, if any generation might iterate over the oops
 439   // in other generations, it should call this method.
 440   void save_marks();
 441 
 442   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 443   // allocated since the last call to save_marks in generations at or above
 444   // "level".  The "cur" closure is
 445   // applied to references in the generation at "level", and the "older"
 446   // closure to older generations.
 447 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 448   void oop_since_save_marks_iterate(int level,                          \
 449                                     OopClosureType* cur,                \
 450                                     OopClosureType* older);
 451 
 452   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 453 
 454 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 455 
 456   // Returns "true" iff no allocations have occurred in any generation at
 457   // "level" or above since the last
 458   // call to "save_marks".
 459   bool no_allocs_since_save_marks(int level);
 460 
 461   // Returns true if an incremental collection is likely to fail.
 462   // We optionally consult the young gen, if asked to do so;
 463   // otherwise we base our answer on whether the previous incremental
 464   // collection attempt failed with no corrective action as of yet.
 465   bool incremental_collection_will_fail(bool consult_young) {
 466     // Assumes a 2-generation system; the first disjunct remembers if an
 467     // incremental collection failed, even when we thought (second disjunct)
 468     // that it would not.
 469     assert(heap()->collector_policy()->is_two_generation_policy(),
 470            "the following definition may not be suitable for an n(>2)-generation system");
 471     return incremental_collection_failed() ||
 472            (consult_young && !get_gen(0)->collection_attempt_is_safe());
 473   }
 474 
 475   // If a generation bails out of an incremental collection,
 476   // it sets this flag.
 477   bool incremental_collection_failed() const {
 478     return _incremental_collection_failed;
 479   }
 480   void set_incremental_collection_failed() {
 481     _incremental_collection_failed = true;
 482   }
 483   void clear_incremental_collection_failed() {
 484     _incremental_collection_failed = false;
 485   }
 486 
 487   // Promotion of obj into gen failed.  Try to promote obj to higher
 488   // gens in ascending order; return the new location of obj if successful.
 489   // Otherwise, try expand-and-allocate for obj in each generation starting at
 490   // gen; return the new location of obj if successful.  Otherwise, return NULL.
 491   oop handle_failed_promotion(Generation* gen,
 492                               oop obj,
 493                               size_t obj_size);
 494 
 495 private:
 496   // Accessor for memory state verification support
 497   NOT_PRODUCT(
 498     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 499   )
 500 
 501   // Override
 502   void check_for_non_bad_heap_word_value(HeapWord* addr,
 503     size_t size) PRODUCT_RETURN;
 504 
 505   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 506   // in an essential way: compaction is performed across generations, by
 507   // iterating over spaces.
 508   void prepare_for_compaction();
 509 
 510   // Perform a full collection of the first max_level+1 generations.
 511   // This is the low level interface used by the public versions of
 512   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 513   void collect_locked(GCCause::Cause cause, int max_level);
 514 
 515   // Returns success or failure.
 516   bool create_cms_collector();
 517 
 518   // In support of ExplicitGCInvokesConcurrent functionality
 519   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 520   void collect_mostly_concurrent(GCCause::Cause cause);
 521 
 522   // Save the tops of the spaces in all generations
 523   void record_gen_tops_before_GC() PRODUCT_RETURN;
 524 
 525 protected:
 526   virtual void gc_prologue(bool full);
 527   virtual void gc_epilogue(bool full);
 528 };
 529 
 530 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP