1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {
  56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  57 };
  58 
  59 static double cost_per_entry_ms_defaults[] = {
  60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  61 };
  62 
  63 static double cost_per_byte_ms_defaults[] = {
  64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  65 };
  66 
  67 // these should be pretty consistent
  68 static double constant_other_time_ms_defaults[] = {
  69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  70 };
  71 
  72 
  73 static double young_other_cost_per_region_ms_defaults[] = {
  74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  75 };
  76 
  77 static double non_young_other_cost_per_region_ms_defaults[] = {
  78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  79 };
  80 
  81 G1CollectorPolicy::G1CollectorPolicy() :
  82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
  83                         ? ParallelGCThreads : 1),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _stop_world_start(0.0),
  87 
  88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90 
  91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  92   _prev_collection_pause_end_ms(0.0),
  93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _gcs_are_young(true),
 112 
 113   _during_marking(false),
 114   _in_marking_window(false),
 115   _in_marking_window_im(false),
 116 
 117   _recent_prev_end_times_for_all_gcs_sec(
 118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 119 
 120   _recent_avg_pause_time_ratio(0.0),
 121 
 122   _initiate_conc_mark_if_possible(false),
 123   _during_initial_mark_pause(false),
 124   _last_young_gc(false),
 125   _last_gc_was_young(false),
 126 
 127   _eden_bytes_before_gc(0),
 128   _survivor_bytes_before_gc(0),
 129   _capacity_before_gc(0),
 130 
 131   _eden_cset_region_length(0),
 132   _survivor_cset_region_length(0),
 133   _old_cset_region_length(0),
 134 
 135   _collection_set(NULL),
 136   _collection_set_bytes_used_before(0),
 137 
 138   // Incremental CSet attributes
 139   _inc_cset_build_state(Inactive),
 140   _inc_cset_head(NULL),
 141   _inc_cset_tail(NULL),
 142   _inc_cset_bytes_used_before(0),
 143   _inc_cset_max_finger(NULL),
 144   _inc_cset_recorded_rs_lengths(0),
 145   _inc_cset_recorded_rs_lengths_diffs(0),
 146   _inc_cset_predicted_elapsed_time_ms(0.0),
 147   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 148 
 149 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 150 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 151 #endif // _MSC_VER
 152 
 153   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 154                                                  G1YoungSurvRateNumRegionsSummary)),
 155   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 156                                               G1YoungSurvRateNumRegionsSummary)),
 157   // add here any more surv rate groups
 158   _recorded_survivor_regions(0),
 159   _recorded_survivor_head(NULL),
 160   _recorded_survivor_tail(NULL),
 161   _survivors_age_table(true),
 162 
 163   _gc_overhead_perc(0.0) {
 164 
 165   // Set up the region size and associated fields. Given that the
 166   // policy is created before the heap, we have to set this up here,
 167   // so it's done as soon as possible.
 168   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
 169   HeapRegionRemSet::setup_remset_size();
 170 
 171   G1ErgoVerbose::initialize();
 172   if (PrintAdaptiveSizePolicy) {
 173     // Currently, we only use a single switch for all the heuristics.
 174     G1ErgoVerbose::set_enabled(true);
 175     // Given that we don't currently have a verboseness level
 176     // parameter, we'll hardcode this to high. This can be easily
 177     // changed in the future.
 178     G1ErgoVerbose::set_level(ErgoHigh);
 179   } else {
 180     G1ErgoVerbose::set_enabled(false);
 181   }
 182 
 183   // Verify PLAB sizes
 184   const size_t region_size = HeapRegion::GrainWords;
 185   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 186     char buffer[128];
 187     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 188                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 189     vm_exit_during_initialization(buffer);
 190   }
 191 
 192   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 193   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 194 
 195   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 196 
 197   int index = MIN2(_parallel_gc_threads - 1, 7);
 198 
 199   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 200   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 201   _young_cards_per_entry_ratio_seq->add(
 202                                   young_cards_per_entry_ratio_defaults[index]);
 203   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 204   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 205   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 206   _young_other_cost_per_region_ms_seq->add(
 207                                young_other_cost_per_region_ms_defaults[index]);
 208   _non_young_other_cost_per_region_ms_seq->add(
 209                            non_young_other_cost_per_region_ms_defaults[index]);
 210 
 211   // Below, we might need to calculate the pause time target based on
 212   // the pause interval. When we do so we are going to give G1 maximum
 213   // flexibility and allow it to do pauses when it needs to. So, we'll
 214   // arrange that the pause interval to be pause time target + 1 to
 215   // ensure that a) the pause time target is maximized with respect to
 216   // the pause interval and b) we maintain the invariant that pause
 217   // time target < pause interval. If the user does not want this
 218   // maximum flexibility, they will have to set the pause interval
 219   // explicitly.
 220 
 221   // First make sure that, if either parameter is set, its value is
 222   // reasonable.
 223   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 224     if (MaxGCPauseMillis < 1) {
 225       vm_exit_during_initialization("MaxGCPauseMillis should be "
 226                                     "greater than 0");
 227     }
 228   }
 229   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 230     if (GCPauseIntervalMillis < 1) {
 231       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 232                                     "greater than 0");
 233     }
 234   }
 235 
 236   // Then, if the pause time target parameter was not set, set it to
 237   // the default value.
 238   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 239     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 240       // The default pause time target in G1 is 200ms
 241       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 242     } else {
 243       // We do not allow the pause interval to be set without the
 244       // pause time target
 245       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 246                                     "without setting MaxGCPauseMillis");
 247     }
 248   }
 249 
 250   // Then, if the interval parameter was not set, set it according to
 251   // the pause time target (this will also deal with the case when the
 252   // pause time target is the default value).
 253   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 254     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 255   }
 256 
 257   // Finally, make sure that the two parameters are consistent.
 258   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 259     char buffer[256];
 260     jio_snprintf(buffer, 256,
 261                  "MaxGCPauseMillis (%u) should be less than "
 262                  "GCPauseIntervalMillis (%u)",
 263                  MaxGCPauseMillis, GCPauseIntervalMillis);
 264     vm_exit_during_initialization(buffer);
 265   }
 266 
 267   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 268   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 269   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 270 
 271   uintx confidence_perc = G1ConfidencePercent;
 272   // Put an artificial ceiling on this so that it's not set to a silly value.
 273   if (confidence_perc > 100) {
 274     confidence_perc = 100;
 275     warning("G1ConfidencePercent is set to a value that is too large, "
 276             "it's been updated to %u", confidence_perc);
 277   }
 278   _sigma = (double) confidence_perc / 100.0;
 279 
 280   // start conservatively (around 50ms is about right)
 281   _concurrent_mark_remark_times_ms->add(0.05);
 282   _concurrent_mark_cleanup_times_ms->add(0.20);
 283   _tenuring_threshold = MaxTenuringThreshold;
 284   // _max_survivor_regions will be calculated by
 285   // update_young_list_target_length() during initialization.
 286   _max_survivor_regions = 0;
 287 
 288   assert(GCTimeRatio > 0,
 289          "we should have set it to a default value set_g1_gc_flags() "
 290          "if a user set it to 0");
 291   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 292 
 293   uintx reserve_perc = G1ReservePercent;
 294   // Put an artificial ceiling on this so that it's not set to a silly value.
 295   if (reserve_perc > 50) {
 296     reserve_perc = 50;
 297     warning("G1ReservePercent is set to a value that is too large, "
 298             "it's been updated to %u", reserve_perc);
 299   }
 300   _reserve_factor = (double) reserve_perc / 100.0;
 301   // This will be set when the heap is expanded
 302   // for the first time during initialization.
 303   _reserve_regions = 0;
 304 
 305   initialize_all();
 306   _collectionSetChooser = new CollectionSetChooser();
 307   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 308 }
 309 
 310 void G1CollectorPolicy::initialize_flags() {
 311   set_min_alignment(HeapRegion::GrainBytes);
 312   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
 313   if (SurvivorRatio < 1) {
 314     vm_exit_during_initialization("Invalid survivor ratio specified");
 315   }
 316   CollectorPolicy::initialize_flags();
 317 }
 318 
 319 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
 320   assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
 321   assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
 322   assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
 323 
 324   if (FLAG_IS_CMDLINE(NewRatio)) {
 325     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 326       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 327     } else {
 328       _sizer_kind = SizerNewRatio;
 329       _adaptive_size = false;
 330       return;
 331     }
 332   }
 333 
 334   if (FLAG_IS_CMDLINE(NewSize)) {
 335     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 336                                      1U);
 337     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 338       _max_desired_young_length =
 339                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 340                                   1U);
 341       _sizer_kind = SizerMaxAndNewSize;
 342       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 343     } else {
 344       _sizer_kind = SizerNewSizeOnly;
 345     }
 346   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 347     _max_desired_young_length =
 348                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 349                                   1U);
 350     _sizer_kind = SizerMaxNewSizeOnly;
 351   }
 352 }
 353 
 354 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 355   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 356   return MAX2(1U, default_value);
 357 }
 358 
 359 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 360   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 361   return MAX2(1U, default_value);
 362 }
 363 
 364 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 365   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
 366 
 367   switch (_sizer_kind) {
 368     case SizerDefaults:
 369       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 370       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 371       break;
 372     case SizerNewSizeOnly:
 373       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 374       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
 375       break;
 376     case SizerMaxNewSizeOnly:
 377       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 378       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
 379       break;
 380     case SizerMaxAndNewSize:
 381       // Do nothing. Values set on the command line, don't update them at runtime.
 382       break;
 383     case SizerNewRatio:
 384       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
 385       _max_desired_young_length = _min_desired_young_length;
 386       break;
 387     default:
 388       ShouldNotReachHere();
 389   }
 390 
 391   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
 392 }
 393 
 394 void G1CollectorPolicy::init() {
 395   // Set aside an initial future to_space.
 396   _g1 = G1CollectedHeap::heap();
 397 
 398   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 399 
 400   initialize_gc_policy_counters();
 401 
 402   if (adaptive_young_list_length()) {
 403     _young_list_fixed_length = 0;
 404   } else {
 405     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 406   }
 407   _free_regions_at_end_of_collection = _g1->free_regions();
 408   update_young_list_target_length();
 409 
 410   // We may immediately start allocating regions and placing them on the
 411   // collection set list. Initialize the per-collection set info
 412   start_incremental_cset_building();
 413 }
 414 
 415 // Create the jstat counters for the policy.
 416 void G1CollectorPolicy::initialize_gc_policy_counters() {
 417   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 418 }
 419 
 420 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 421                                          double base_time_ms,
 422                                          uint base_free_regions,
 423                                          double target_pause_time_ms) {
 424   if (young_length >= base_free_regions) {
 425     // end condition 1: not enough space for the young regions
 426     return false;
 427   }
 428 
 429   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 430   size_t bytes_to_copy =
 431                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 432   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 433   double young_other_time_ms = predict_young_other_time_ms(young_length);
 434   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 435   if (pause_time_ms > target_pause_time_ms) {
 436     // end condition 2: prediction is over the target pause time
 437     return false;
 438   }
 439 
 440   size_t free_bytes =
 441                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 442   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 443     // end condition 3: out-of-space (conservatively!)
 444     return false;
 445   }
 446 
 447   // success!
 448   return true;
 449 }
 450 
 451 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 452   // re-calculate the necessary reserve
 453   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 454   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 455   // smaller than 1.0) we'll get 1.
 456   _reserve_regions = (uint) ceil(reserve_regions_d);
 457 
 458   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 459 }
 460 
 461 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 462                                                        uint base_min_length) {
 463   uint desired_min_length = 0;
 464   if (adaptive_young_list_length()) {
 465     if (_alloc_rate_ms_seq->num() > 3) {
 466       double now_sec = os::elapsedTime();
 467       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 468       double alloc_rate_ms = predict_alloc_rate_ms();
 469       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 470     } else {
 471       // otherwise we don't have enough info to make the prediction
 472     }
 473   }
 474   desired_min_length += base_min_length;
 475   // make sure we don't go below any user-defined minimum bound
 476   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 477 }
 478 
 479 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 480   // Here, we might want to also take into account any additional
 481   // constraints (i.e., user-defined minimum bound). Currently, we
 482   // effectively don't set this bound.
 483   return _young_gen_sizer->max_desired_young_length();
 484 }
 485 
 486 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 487   if (rs_lengths == (size_t) -1) {
 488     // if it's set to the default value (-1), we should predict it;
 489     // otherwise, use the given value.
 490     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 491   }
 492 
 493   // Calculate the absolute and desired min bounds.
 494 
 495   // This is how many young regions we already have (currently: the survivors).
 496   uint base_min_length = recorded_survivor_regions();
 497   // This is the absolute minimum young length, which ensures that we
 498   // can allocate one eden region in the worst-case.
 499   uint absolute_min_length = base_min_length + 1;
 500   uint desired_min_length =
 501                      calculate_young_list_desired_min_length(base_min_length);
 502   if (desired_min_length < absolute_min_length) {
 503     desired_min_length = absolute_min_length;
 504   }
 505 
 506   // Calculate the absolute and desired max bounds.
 507 
 508   // We will try our best not to "eat" into the reserve.
 509   uint absolute_max_length = 0;
 510   if (_free_regions_at_end_of_collection > _reserve_regions) {
 511     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 512   }
 513   uint desired_max_length = calculate_young_list_desired_max_length();
 514   if (desired_max_length > absolute_max_length) {
 515     desired_max_length = absolute_max_length;
 516   }
 517 
 518   uint young_list_target_length = 0;
 519   if (adaptive_young_list_length()) {
 520     if (gcs_are_young()) {
 521       young_list_target_length =
 522                         calculate_young_list_target_length(rs_lengths,
 523                                                            base_min_length,
 524                                                            desired_min_length,
 525                                                            desired_max_length);
 526       _rs_lengths_prediction = rs_lengths;
 527     } else {
 528       // Don't calculate anything and let the code below bound it to
 529       // the desired_min_length, i.e., do the next GC as soon as
 530       // possible to maximize how many old regions we can add to it.
 531     }
 532   } else {
 533     // The user asked for a fixed young gen so we'll fix the young gen
 534     // whether the next GC is young or mixed.
 535     young_list_target_length = _young_list_fixed_length;
 536   }
 537 
 538   // Make sure we don't go over the desired max length, nor under the
 539   // desired min length. In case they clash, desired_min_length wins
 540   // which is why that test is second.
 541   if (young_list_target_length > desired_max_length) {
 542     young_list_target_length = desired_max_length;
 543   }
 544   if (young_list_target_length < desired_min_length) {
 545     young_list_target_length = desired_min_length;
 546   }
 547 
 548   assert(young_list_target_length > recorded_survivor_regions(),
 549          "we should be able to allocate at least one eden region");
 550   assert(young_list_target_length >= absolute_min_length, "post-condition");
 551   _young_list_target_length = young_list_target_length;
 552 
 553   update_max_gc_locker_expansion();
 554 }
 555 
 556 uint
 557 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 558                                                      uint base_min_length,
 559                                                      uint desired_min_length,
 560                                                      uint desired_max_length) {
 561   assert(adaptive_young_list_length(), "pre-condition");
 562   assert(gcs_are_young(), "only call this for young GCs");
 563 
 564   // In case some edge-condition makes the desired max length too small...
 565   if (desired_max_length <= desired_min_length) {
 566     return desired_min_length;
 567   }
 568 
 569   // We'll adjust min_young_length and max_young_length not to include
 570   // the already allocated young regions (i.e., so they reflect the
 571   // min and max eden regions we'll allocate). The base_min_length
 572   // will be reflected in the predictions by the
 573   // survivor_regions_evac_time prediction.
 574   assert(desired_min_length > base_min_length, "invariant");
 575   uint min_young_length = desired_min_length - base_min_length;
 576   assert(desired_max_length > base_min_length, "invariant");
 577   uint max_young_length = desired_max_length - base_min_length;
 578 
 579   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 580   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 581   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 582   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 583   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 584   double base_time_ms =
 585     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 586     survivor_regions_evac_time;
 587   uint available_free_regions = _free_regions_at_end_of_collection;
 588   uint base_free_regions = 0;
 589   if (available_free_regions > _reserve_regions) {
 590     base_free_regions = available_free_regions - _reserve_regions;
 591   }
 592 
 593   // Here, we will make sure that the shortest young length that
 594   // makes sense fits within the target pause time.
 595 
 596   if (predict_will_fit(min_young_length, base_time_ms,
 597                        base_free_regions, target_pause_time_ms)) {
 598     // The shortest young length will fit into the target pause time;
 599     // we'll now check whether the absolute maximum number of young
 600     // regions will fit in the target pause time. If not, we'll do
 601     // a binary search between min_young_length and max_young_length.
 602     if (predict_will_fit(max_young_length, base_time_ms,
 603                          base_free_regions, target_pause_time_ms)) {
 604       // The maximum young length will fit into the target pause time.
 605       // We are done so set min young length to the maximum length (as
 606       // the result is assumed to be returned in min_young_length).
 607       min_young_length = max_young_length;
 608     } else {
 609       // The maximum possible number of young regions will not fit within
 610       // the target pause time so we'll search for the optimal
 611       // length. The loop invariants are:
 612       //
 613       // min_young_length < max_young_length
 614       // min_young_length is known to fit into the target pause time
 615       // max_young_length is known not to fit into the target pause time
 616       //
 617       // Going into the loop we know the above hold as we've just
 618       // checked them. Every time around the loop we check whether
 619       // the middle value between min_young_length and
 620       // max_young_length fits into the target pause time. If it
 621       // does, it becomes the new min. If it doesn't, it becomes
 622       // the new max. This way we maintain the loop invariants.
 623 
 624       assert(min_young_length < max_young_length, "invariant");
 625       uint diff = (max_young_length - min_young_length) / 2;
 626       while (diff > 0) {
 627         uint young_length = min_young_length + diff;
 628         if (predict_will_fit(young_length, base_time_ms,
 629                              base_free_regions, target_pause_time_ms)) {
 630           min_young_length = young_length;
 631         } else {
 632           max_young_length = young_length;
 633         }
 634         assert(min_young_length <  max_young_length, "invariant");
 635         diff = (max_young_length - min_young_length) / 2;
 636       }
 637       // The results is min_young_length which, according to the
 638       // loop invariants, should fit within the target pause time.
 639 
 640       // These are the post-conditions of the binary search above:
 641       assert(min_young_length < max_young_length,
 642              "otherwise we should have discovered that max_young_length "
 643              "fits into the pause target and not done the binary search");
 644       assert(predict_will_fit(min_young_length, base_time_ms,
 645                               base_free_regions, target_pause_time_ms),
 646              "min_young_length, the result of the binary search, should "
 647              "fit into the pause target");
 648       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 649                                base_free_regions, target_pause_time_ms),
 650              "min_young_length, the result of the binary search, should be "
 651              "optimal, so no larger length should fit into the pause target");
 652     }
 653   } else {
 654     // Even the minimum length doesn't fit into the pause time
 655     // target, return it as the result nevertheless.
 656   }
 657   return base_min_length + min_young_length;
 658 }
 659 
 660 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 661   double survivor_regions_evac_time = 0.0;
 662   for (HeapRegion * r = _recorded_survivor_head;
 663        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 664        r = r->get_next_young_region()) {
 665     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
 666   }
 667   return survivor_regions_evac_time;
 668 }
 669 
 670 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 671   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 672 
 673   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 674   if (rs_lengths > _rs_lengths_prediction) {
 675     // add 10% to avoid having to recalculate often
 676     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 677     update_young_list_target_length(rs_lengths_prediction);
 678   }
 679 }
 680 
 681 
 682 
 683 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 684                                                bool is_tlab,
 685                                                bool* gc_overhead_limit_was_exceeded) {
 686   guarantee(false, "Not using this policy feature yet.");
 687   return NULL;
 688 }
 689 
 690 // This method controls how a collector handles one or more
 691 // of its generations being fully allocated.
 692 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 693                                                        bool is_tlab) {
 694   guarantee(false, "Not using this policy feature yet.");
 695   return NULL;
 696 }
 697 
 698 
 699 #ifndef PRODUCT
 700 bool G1CollectorPolicy::verify_young_ages() {
 701   HeapRegion* head = _g1->young_list()->first_region();
 702   return
 703     verify_young_ages(head, _short_lived_surv_rate_group);
 704   // also call verify_young_ages on any additional surv rate groups
 705 }
 706 
 707 bool
 708 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 709                                      SurvRateGroup *surv_rate_group) {
 710   guarantee( surv_rate_group != NULL, "pre-condition" );
 711 
 712   const char* name = surv_rate_group->name();
 713   bool ret = true;
 714   int prev_age = -1;
 715 
 716   for (HeapRegion* curr = head;
 717        curr != NULL;
 718        curr = curr->get_next_young_region()) {
 719     SurvRateGroup* group = curr->surv_rate_group();
 720     if (group == NULL && !curr->is_survivor()) {
 721       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 722       ret = false;
 723     }
 724 
 725     if (surv_rate_group == group) {
 726       int age = curr->age_in_surv_rate_group();
 727 
 728       if (age < 0) {
 729         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 730         ret = false;
 731       }
 732 
 733       if (age <= prev_age) {
 734         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 735                                "(%d, %d)", name, age, prev_age);
 736         ret = false;
 737       }
 738       prev_age = age;
 739     }
 740   }
 741 
 742   return ret;
 743 }
 744 #endif // PRODUCT
 745 
 746 void G1CollectorPolicy::record_full_collection_start() {
 747   _full_collection_start_sec = os::elapsedTime();
 748   record_heap_size_info_at_start();
 749   // Release the future to-space so that it is available for compaction into.
 750   _g1->set_full_collection();
 751 }
 752 
 753 void G1CollectorPolicy::record_full_collection_end() {
 754   // Consider this like a collection pause for the purposes of allocation
 755   // since last pause.
 756   double end_sec = os::elapsedTime();
 757   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 758   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 759 
 760   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
 761 
 762   update_recent_gc_times(end_sec, full_gc_time_ms);
 763 
 764   _g1->clear_full_collection();
 765 
 766   // "Nuke" the heuristics that control the young/mixed GC
 767   // transitions and make sure we start with young GCs after the Full GC.
 768   set_gcs_are_young(true);
 769   _last_young_gc = false;
 770   clear_initiate_conc_mark_if_possible();
 771   clear_during_initial_mark_pause();
 772   _in_marking_window = false;
 773   _in_marking_window_im = false;
 774 
 775   _short_lived_surv_rate_group->start_adding_regions();
 776   // also call this on any additional surv rate groups
 777 
 778   record_survivor_regions(0, NULL, NULL);
 779 
 780   _free_regions_at_end_of_collection = _g1->free_regions();
 781   // Reset survivors SurvRateGroup.
 782   _survivor_surv_rate_group->reset();
 783   update_young_list_target_length();
 784   _collectionSetChooser->clear();
 785 }
 786 
 787 void G1CollectorPolicy::record_stop_world_start() {
 788   _stop_world_start = os::elapsedTime();
 789 }
 790 
 791 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 792   // We only need to do this here as the policy will only be applied
 793   // to the GC we're about to start. so, no point is calculating this
 794   // every time we calculate / recalculate the target young length.
 795   update_survivors_policy();
 796 
 797   assert(_g1->used() == _g1->recalculate_used(),
 798          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 799                  _g1->used(), _g1->recalculate_used()));
 800 
 801   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 802   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
 803   _stop_world_start = 0.0;
 804 
 805   record_heap_size_info_at_start();
 806 
 807   phase_times()->record_cur_collection_start_sec(start_time_sec);
 808   _pending_cards = _g1->pending_card_num();
 809 
 810   _collection_set_bytes_used_before = 0;
 811   _bytes_copied_during_gc = 0;
 812 
 813   _last_gc_was_young = false;
 814 
 815   // do that for any other surv rate groups
 816   _short_lived_surv_rate_group->stop_adding_regions();
 817   _survivors_age_table.clear();
 818 
 819   assert( verify_young_ages(), "region age verification" );
 820 }
 821 
 822 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 823                                                    mark_init_elapsed_time_ms) {
 824   _during_marking = true;
 825   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 826   clear_during_initial_mark_pause();
 827   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 828 }
 829 
 830 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 831   _mark_remark_start_sec = os::elapsedTime();
 832   _during_marking = false;
 833 }
 834 
 835 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 836   double end_time_sec = os::elapsedTime();
 837   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 838   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 839   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 840   _prev_collection_pause_end_ms += elapsed_time_ms;
 841 
 842   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 843 }
 844 
 845 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 846   _mark_cleanup_start_sec = os::elapsedTime();
 847 }
 848 
 849 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 850   _last_young_gc = true;
 851   _in_marking_window = false;
 852 }
 853 
 854 void G1CollectorPolicy::record_concurrent_pause() {
 855   if (_stop_world_start > 0.0) {
 856     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 857     _trace_gen0_time_data.record_yield_time(yield_ms);
 858   }
 859 }
 860 
 861 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 862   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 863     return false;
 864   }
 865 
 866   size_t marking_initiating_used_threshold =
 867     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 868   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 869   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 870 
 871   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 872     if (gcs_are_young()) {
 873       ergo_verbose5(ErgoConcCycles,
 874         "request concurrent cycle initiation",
 875         ergo_format_reason("occupancy higher than threshold")
 876         ergo_format_byte("occupancy")
 877         ergo_format_byte("allocation request")
 878         ergo_format_byte_perc("threshold")
 879         ergo_format_str("source"),
 880         cur_used_bytes,
 881         alloc_byte_size,
 882         marking_initiating_used_threshold,
 883         (double) InitiatingHeapOccupancyPercent,
 884         source);
 885       return true;
 886     } else {
 887       ergo_verbose5(ErgoConcCycles,
 888         "do not request concurrent cycle initiation",
 889         ergo_format_reason("still doing mixed collections")
 890         ergo_format_byte("occupancy")
 891         ergo_format_byte("allocation request")
 892         ergo_format_byte_perc("threshold")
 893         ergo_format_str("source"),
 894         cur_used_bytes,
 895         alloc_byte_size,
 896         marking_initiating_used_threshold,
 897         (double) InitiatingHeapOccupancyPercent,
 898         source);
 899     }
 900   }
 901 
 902   return false;
 903 }
 904 
 905 // Anything below that is considered to be zero
 906 #define MIN_TIMER_GRANULARITY 0.0000001
 907 
 908 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
 909   double end_time_sec = os::elapsedTime();
 910   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 911          "otherwise, the subtraction below does not make sense");
 912   size_t rs_size =
 913             _cur_collection_pause_used_regions_at_start - cset_region_length();
 914   size_t cur_used_bytes = _g1->used();
 915   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 916   bool last_pause_included_initial_mark = false;
 917   bool update_stats = !_g1->evacuation_failed();
 918 
 919 #ifndef PRODUCT
 920   if (G1YoungSurvRateVerbose) {
 921     gclog_or_tty->print_cr("");
 922     _short_lived_surv_rate_group->print();
 923     // do that for any other surv rate groups too
 924   }
 925 #endif // PRODUCT
 926 
 927   last_pause_included_initial_mark = during_initial_mark_pause();
 928   if (last_pause_included_initial_mark) {
 929     record_concurrent_mark_init_end(0.0);
 930   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
 931     // Note: this might have already been set, if during the last
 932     // pause we decided to start a cycle but at the beginning of
 933     // this pause we decided to postpone it. That's OK.
 934     set_initiate_conc_mark_if_possible();
 935   }
 936 
 937   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 938                           end_time_sec, false);
 939 
 940   size_t freed_bytes =
 941     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
 942   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
 943 
 944   double survival_fraction =
 945     (double)surviving_bytes/
 946     (double)_collection_set_bytes_used_before;
 947 
 948   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
 949   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
 950 
 951   if (update_stats) {
 952     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
 953     // this is where we update the allocation rate of the application
 954     double app_time_ms =
 955       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 956     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 957       // This usually happens due to the timer not having the required
 958       // granularity. Some Linuxes are the usual culprits.
 959       // We'll just set it to something (arbitrarily) small.
 960       app_time_ms = 1.0;
 961     }
 962     // We maintain the invariant that all objects allocated by mutator
 963     // threads will be allocated out of eden regions. So, we can use
 964     // the eden region number allocated since the previous GC to
 965     // calculate the application's allocate rate. The only exception
 966     // to that is humongous objects that are allocated separately. But
 967     // given that humongous object allocations do not really affect
 968     // either the pause's duration nor when the next pause will take
 969     // place we can safely ignore them here.
 970     uint regions_allocated = eden_cset_region_length();
 971     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 972     _alloc_rate_ms_seq->add(alloc_rate_ms);
 973 
 974     double interval_ms =
 975       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 976     update_recent_gc_times(end_time_sec, pause_time_ms);
 977     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 978     if (recent_avg_pause_time_ratio() < 0.0 ||
 979         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 980 #ifndef PRODUCT
 981       // Dump info to allow post-facto debugging
 982       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
 983       gclog_or_tty->print_cr("-------------------------------------------");
 984       gclog_or_tty->print_cr("Recent GC Times (ms):");
 985       _recent_gc_times_ms->dump();
 986       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
 987       _recent_prev_end_times_for_all_gcs_sec->dump();
 988       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
 989                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
 990       // In debug mode, terminate the JVM if the user wants to debug at this point.
 991       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
 992 #endif  // !PRODUCT
 993       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
 994       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
 995       if (_recent_avg_pause_time_ratio < 0.0) {
 996         _recent_avg_pause_time_ratio = 0.0;
 997       } else {
 998         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
 999         _recent_avg_pause_time_ratio = 1.0;
1000       }
1001     }
1002   }
1003   bool new_in_marking_window = _in_marking_window;
1004   bool new_in_marking_window_im = false;
1005   if (during_initial_mark_pause()) {
1006     new_in_marking_window = true;
1007     new_in_marking_window_im = true;
1008   }
1009 
1010   if (_last_young_gc) {
1011     // This is supposed to to be the "last young GC" before we start
1012     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1013 
1014     if (!last_pause_included_initial_mark) {
1015       if (next_gc_should_be_mixed("start mixed GCs",
1016                                   "do not start mixed GCs")) {
1017         set_gcs_are_young(false);
1018       }
1019     } else {
1020       ergo_verbose0(ErgoMixedGCs,
1021                     "do not start mixed GCs",
1022                     ergo_format_reason("concurrent cycle is about to start"));
1023     }
1024     _last_young_gc = false;
1025   }
1026 
1027   if (!_last_gc_was_young) {
1028     // This is a mixed GC. Here we decide whether to continue doing
1029     // mixed GCs or not.
1030 
1031     if (!next_gc_should_be_mixed("continue mixed GCs",
1032                                  "do not continue mixed GCs")) {
1033       set_gcs_are_young(true);
1034     }
1035   }
1036 
1037   _short_lived_surv_rate_group->start_adding_regions();
1038   // do that for any other surv rate groupsx
1039 
1040   if (update_stats) {
1041     double cost_per_card_ms = 0.0;
1042     if (_pending_cards > 0) {
1043       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1044       _cost_per_card_ms_seq->add(cost_per_card_ms);
1045     }
1046 
1047     size_t cards_scanned = _g1->cards_scanned();
1048 
1049     double cost_per_entry_ms = 0.0;
1050     if (cards_scanned > 10) {
1051       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1052       if (_last_gc_was_young) {
1053         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1054       } else {
1055         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1056       }
1057     }
1058 
1059     if (_max_rs_lengths > 0) {
1060       double cards_per_entry_ratio =
1061         (double) cards_scanned / (double) _max_rs_lengths;
1062       if (_last_gc_was_young) {
1063         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1064       } else {
1065         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1066       }
1067     }
1068 
1069     // This is defensive. For a while _max_rs_lengths could get
1070     // smaller than _recorded_rs_lengths which was causing
1071     // rs_length_diff to get very large and mess up the RSet length
1072     // predictions. The reason was unsafe concurrent updates to the
1073     // _inc_cset_recorded_rs_lengths field which the code below guards
1074     // against (see CR 7118202). This bug has now been fixed (see CR
1075     // 7119027). However, I'm still worried that
1076     // _inc_cset_recorded_rs_lengths might still end up somewhat
1077     // inaccurate. The concurrent refinement thread calculates an
1078     // RSet's length concurrently with other CR threads updating it
1079     // which might cause it to calculate the length incorrectly (if,
1080     // say, it's in mid-coarsening). So I'll leave in the defensive
1081     // conditional below just in case.
1082     size_t rs_length_diff = 0;
1083     if (_max_rs_lengths > _recorded_rs_lengths) {
1084       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1085     }
1086     _rs_length_diff_seq->add((double) rs_length_diff);
1087 
1088     size_t copied_bytes = surviving_bytes;
1089     double cost_per_byte_ms = 0.0;
1090     if (copied_bytes > 0) {
1091       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1092       if (_in_marking_window) {
1093         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1094       } else {
1095         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1096       }
1097     }
1098 
1099     double all_other_time_ms = pause_time_ms -
1100       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
1101       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1102 
1103     double young_other_time_ms = 0.0;
1104     if (young_cset_region_length() > 0) {
1105       young_other_time_ms =
1106         phase_times()->young_cset_choice_time_ms() +
1107         phase_times()->young_free_cset_time_ms();
1108       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1109                                           (double) young_cset_region_length());
1110     }
1111     double non_young_other_time_ms = 0.0;
1112     if (old_cset_region_length() > 0) {
1113       non_young_other_time_ms =
1114         phase_times()->non_young_cset_choice_time_ms() +
1115         phase_times()->non_young_free_cset_time_ms();
1116 
1117       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1118                                             (double) old_cset_region_length());
1119     }
1120 
1121     double constant_other_time_ms = all_other_time_ms -
1122       (young_other_time_ms + non_young_other_time_ms);
1123     _constant_other_time_ms_seq->add(constant_other_time_ms);
1124 
1125     double survival_ratio = 0.0;
1126     if (_collection_set_bytes_used_before > 0) {
1127       survival_ratio = (double) _bytes_copied_during_gc /
1128                                    (double) _collection_set_bytes_used_before;
1129     }
1130 
1131     _pending_cards_seq->add((double) _pending_cards);
1132     _rs_lengths_seq->add((double) _max_rs_lengths);
1133   }
1134 
1135   _in_marking_window = new_in_marking_window;
1136   _in_marking_window_im = new_in_marking_window_im;
1137   _free_regions_at_end_of_collection = _g1->free_regions();
1138   update_young_list_target_length();
1139 
1140   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1141   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1142   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
1143                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1144 
1145   _collectionSetChooser->verify();
1146 }
1147 
1148 #define EXT_SIZE_FORMAT "%.1f%s"
1149 #define EXT_SIZE_PARAMS(bytes)                                  \
1150   byte_size_in_proper_unit((double)(bytes)),                    \
1151   proper_unit_for_byte_size((bytes))
1152 
1153 void G1CollectorPolicy::record_heap_size_info_at_start() {
1154   YoungList* young_list = _g1->young_list();
1155   _eden_bytes_before_gc = young_list->eden_used_bytes();
1156   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
1157   _capacity_before_gc = _g1->capacity();
1158 
1159   _cur_collection_pause_used_at_start_bytes = _g1->used();
1160   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
1161 
1162   size_t eden_capacity_before_gc =
1163          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_bytes_before_gc;
1164 
1165   _prev_eden_capacity = eden_capacity_before_gc;
1166 }
1167 
1168 void G1CollectorPolicy::print_heap_transition() {
1169   _g1->print_size_transition(gclog_or_tty,
1170     _cur_collection_pause_used_at_start_bytes, _g1->used(), _g1->capacity());
1171 }
1172 
1173 void G1CollectorPolicy::print_detailed_heap_transition() {
1174     YoungList* young_list = _g1->young_list();
1175     size_t eden_bytes = young_list->eden_used_bytes();
1176     size_t survivor_bytes = young_list->survivor_used_bytes();
1177     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
1178     size_t used = _g1->used();
1179     size_t capacity = _g1->capacity();
1180     size_t eden_capacity =
1181       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1182 
1183     gclog_or_tty->print_cr(
1184       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1185       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1186       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1187       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1188       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
1189       EXT_SIZE_PARAMS(_prev_eden_capacity),
1190       EXT_SIZE_PARAMS(eden_bytes),
1191       EXT_SIZE_PARAMS(eden_capacity),
1192       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
1193       EXT_SIZE_PARAMS(survivor_bytes),
1194       EXT_SIZE_PARAMS(used_before_gc),
1195       EXT_SIZE_PARAMS(_capacity_before_gc),
1196       EXT_SIZE_PARAMS(used),
1197       EXT_SIZE_PARAMS(capacity));
1198 }
1199 
1200 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1201                                                      double update_rs_processed_buffers,
1202                                                      double goal_ms) {
1203   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1204   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1205 
1206   if (G1UseAdaptiveConcRefinement) {
1207     const int k_gy = 3, k_gr = 6;
1208     const double inc_k = 1.1, dec_k = 0.9;
1209 
1210     int g = cg1r->green_zone();
1211     if (update_rs_time > goal_ms) {
1212       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1213     } else {
1214       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1215         g = (int)MAX2(g * inc_k, g + 1.0);
1216       }
1217     }
1218     // Change the refinement threads params
1219     cg1r->set_green_zone(g);
1220     cg1r->set_yellow_zone(g * k_gy);
1221     cg1r->set_red_zone(g * k_gr);
1222     cg1r->reinitialize_threads();
1223 
1224     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1225     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1226                                     cg1r->yellow_zone());
1227     // Change the barrier params
1228     dcqs.set_process_completed_threshold(processing_threshold);
1229     dcqs.set_max_completed_queue(cg1r->red_zone());
1230   }
1231 
1232   int curr_queue_size = dcqs.completed_buffers_num();
1233   if (curr_queue_size >= cg1r->yellow_zone()) {
1234     dcqs.set_completed_queue_padding(curr_queue_size);
1235   } else {
1236     dcqs.set_completed_queue_padding(0);
1237   }
1238   dcqs.notify_if_necessary();
1239 }
1240 
1241 double
1242 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1243                                                 size_t scanned_cards) {
1244   return
1245     predict_rs_update_time_ms(pending_cards) +
1246     predict_rs_scan_time_ms(scanned_cards) +
1247     predict_constant_other_time_ms();
1248 }
1249 
1250 double
1251 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1252   size_t rs_length = predict_rs_length_diff();
1253   size_t card_num;
1254   if (gcs_are_young()) {
1255     card_num = predict_young_card_num(rs_length);
1256   } else {
1257     card_num = predict_non_young_card_num(rs_length);
1258   }
1259   return predict_base_elapsed_time_ms(pending_cards, card_num);
1260 }
1261 
1262 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1263   size_t bytes_to_copy;
1264   if (hr->is_marked())
1265     bytes_to_copy = hr->max_live_bytes();
1266   else {
1267     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1268     int age = hr->age_in_surv_rate_group();
1269     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1270     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1271   }
1272   return bytes_to_copy;
1273 }
1274 
1275 double
1276 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1277                                                   bool for_young_gc) {
1278   size_t rs_length = hr->rem_set()->occupied();
1279   size_t card_num;
1280 
1281   // Predicting the number of cards is based on which type of GC
1282   // we're predicting for.
1283   if (for_young_gc) {
1284     card_num = predict_young_card_num(rs_length);
1285   } else {
1286     card_num = predict_non_young_card_num(rs_length);
1287   }
1288   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1289 
1290   double region_elapsed_time_ms =
1291     predict_rs_scan_time_ms(card_num) +
1292     predict_object_copy_time_ms(bytes_to_copy);
1293 
1294   // The prediction of the "other" time for this region is based
1295   // upon the region type and NOT the GC type.
1296   if (hr->is_young()) {
1297     region_elapsed_time_ms += predict_young_other_time_ms(1);
1298   } else {
1299     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1300   }
1301   return region_elapsed_time_ms;
1302 }
1303 
1304 void
1305 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1306                                             uint survivor_cset_region_length) {
1307   _eden_cset_region_length     = eden_cset_region_length;
1308   _survivor_cset_region_length = survivor_cset_region_length;
1309   _old_cset_region_length      = 0;
1310 }
1311 
1312 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1313   _recorded_rs_lengths = rs_lengths;
1314 }
1315 
1316 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1317                                                double elapsed_ms) {
1318   _recent_gc_times_ms->add(elapsed_ms);
1319   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1320   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1321 }
1322 
1323 size_t G1CollectorPolicy::expansion_amount() {
1324   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1325   double threshold = _gc_overhead_perc;
1326   if (recent_gc_overhead > threshold) {
1327     // We will double the existing space, or take
1328     // G1ExpandByPercentOfAvailable % of the available expansion
1329     // space, whichever is smaller, bounded below by a minimum
1330     // expansion (unless that's all that's left.)
1331     const size_t min_expand_bytes = 1*M;
1332     size_t reserved_bytes = _g1->max_capacity();
1333     size_t committed_bytes = _g1->capacity();
1334     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1335     size_t expand_bytes;
1336     size_t expand_bytes_via_pct =
1337       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1338     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1339     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1340     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1341 
1342     ergo_verbose5(ErgoHeapSizing,
1343                   "attempt heap expansion",
1344                   ergo_format_reason("recent GC overhead higher than "
1345                                      "threshold after GC")
1346                   ergo_format_perc("recent GC overhead")
1347                   ergo_format_perc("threshold")
1348                   ergo_format_byte("uncommitted")
1349                   ergo_format_byte_perc("calculated expansion amount"),
1350                   recent_gc_overhead, threshold,
1351                   uncommitted_bytes,
1352                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1353 
1354     return expand_bytes;
1355   } else {
1356     return 0;
1357   }
1358 }
1359 
1360 void G1CollectorPolicy::print_tracing_info() const {
1361   _trace_gen0_time_data.print();
1362   _trace_gen1_time_data.print();
1363 }
1364 
1365 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1366 #ifndef PRODUCT
1367   _short_lived_surv_rate_group->print_surv_rate_summary();
1368   // add this call for any other surv rate groups
1369 #endif // PRODUCT
1370 }
1371 
1372 #ifndef PRODUCT
1373 // for debugging, bit of a hack...
1374 static char*
1375 region_num_to_mbs(int length) {
1376   static char buffer[64];
1377   double bytes = (double) (length * HeapRegion::GrainBytes);
1378   double mbs = bytes / (double) (1024 * 1024);
1379   sprintf(buffer, "%7.2lfMB", mbs);
1380   return buffer;
1381 }
1382 #endif // PRODUCT
1383 
1384 uint G1CollectorPolicy::max_regions(int purpose) {
1385   switch (purpose) {
1386     case GCAllocForSurvived:
1387       return _max_survivor_regions;
1388     case GCAllocForTenured:
1389       return REGIONS_UNLIMITED;
1390     default:
1391       ShouldNotReachHere();
1392       return REGIONS_UNLIMITED;
1393   };
1394 }
1395 
1396 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1397   uint expansion_region_num = 0;
1398   if (GCLockerEdenExpansionPercent > 0) {
1399     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1400     double expansion_region_num_d = perc * (double) _young_list_target_length;
1401     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1402     // less than 1.0) we'll get 1.
1403     expansion_region_num = (uint) ceil(expansion_region_num_d);
1404   } else {
1405     assert(expansion_region_num == 0, "sanity");
1406   }
1407   _young_list_max_length = _young_list_target_length + expansion_region_num;
1408   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1409 }
1410 
1411 // Calculates survivor space parameters.
1412 void G1CollectorPolicy::update_survivors_policy() {
1413   double max_survivor_regions_d =
1414                  (double) _young_list_target_length / (double) SurvivorRatio;
1415   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1416   // smaller than 1.0) we'll get 1.
1417   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1418 
1419   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1420         HeapRegion::GrainWords * _max_survivor_regions);
1421 }
1422 
1423 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1424                                                      GCCause::Cause gc_cause) {
1425   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1426   if (!during_cycle) {
1427     ergo_verbose1(ErgoConcCycles,
1428                   "request concurrent cycle initiation",
1429                   ergo_format_reason("requested by GC cause")
1430                   ergo_format_str("GC cause"),
1431                   GCCause::to_string(gc_cause));
1432     set_initiate_conc_mark_if_possible();
1433     return true;
1434   } else {
1435     ergo_verbose1(ErgoConcCycles,
1436                   "do not request concurrent cycle initiation",
1437                   ergo_format_reason("concurrent cycle already in progress")
1438                   ergo_format_str("GC cause"),
1439                   GCCause::to_string(gc_cause));
1440     return false;
1441   }
1442 }
1443 
1444 void
1445 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1446   // We are about to decide on whether this pause will be an
1447   // initial-mark pause.
1448 
1449   // First, during_initial_mark_pause() should not be already set. We
1450   // will set it here if we have to. However, it should be cleared by
1451   // the end of the pause (it's only set for the duration of an
1452   // initial-mark pause).
1453   assert(!during_initial_mark_pause(), "pre-condition");
1454 
1455   if (initiate_conc_mark_if_possible()) {
1456     // We had noticed on a previous pause that the heap occupancy has
1457     // gone over the initiating threshold and we should start a
1458     // concurrent marking cycle. So we might initiate one.
1459 
1460     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1461     if (!during_cycle) {
1462       // The concurrent marking thread is not "during a cycle", i.e.,
1463       // it has completed the last one. So we can go ahead and
1464       // initiate a new cycle.
1465 
1466       set_during_initial_mark_pause();
1467       // We do not allow mixed GCs during marking.
1468       if (!gcs_are_young()) {
1469         set_gcs_are_young(true);
1470         ergo_verbose0(ErgoMixedGCs,
1471                       "end mixed GCs",
1472                       ergo_format_reason("concurrent cycle is about to start"));
1473       }
1474 
1475       // And we can now clear initiate_conc_mark_if_possible() as
1476       // we've already acted on it.
1477       clear_initiate_conc_mark_if_possible();
1478 
1479       ergo_verbose0(ErgoConcCycles,
1480                   "initiate concurrent cycle",
1481                   ergo_format_reason("concurrent cycle initiation requested"));
1482     } else {
1483       // The concurrent marking thread is still finishing up the
1484       // previous cycle. If we start one right now the two cycles
1485       // overlap. In particular, the concurrent marking thread might
1486       // be in the process of clearing the next marking bitmap (which
1487       // we will use for the next cycle if we start one). Starting a
1488       // cycle now will be bad given that parts of the marking
1489       // information might get cleared by the marking thread. And we
1490       // cannot wait for the marking thread to finish the cycle as it
1491       // periodically yields while clearing the next marking bitmap
1492       // and, if it's in a yield point, it's waiting for us to
1493       // finish. So, at this point we will not start a cycle and we'll
1494       // let the concurrent marking thread complete the last one.
1495       ergo_verbose0(ErgoConcCycles,
1496                     "do not initiate concurrent cycle",
1497                     ergo_format_reason("concurrent cycle already in progress"));
1498     }
1499   }
1500 }
1501 
1502 class KnownGarbageClosure: public HeapRegionClosure {
1503   G1CollectedHeap* _g1h;
1504   CollectionSetChooser* _hrSorted;
1505 
1506 public:
1507   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1508     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1509 
1510   bool doHeapRegion(HeapRegion* r) {
1511     // We only include humongous regions in collection
1512     // sets when concurrent mark shows that their contained object is
1513     // unreachable.
1514 
1515     // Do we have any marking information for this region?
1516     if (r->is_marked()) {
1517       // We will skip any region that's currently used as an old GC
1518       // alloc region (we should not consider those for collection
1519       // before we fill them up).
1520       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1521         _hrSorted->add_region(r);
1522       }
1523     }
1524     return false;
1525   }
1526 };
1527 
1528 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1529   G1CollectedHeap* _g1h;
1530   CSetChooserParUpdater _cset_updater;
1531 
1532 public:
1533   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1534                            uint chunk_size) :
1535     _g1h(G1CollectedHeap::heap()),
1536     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1537 
1538   bool doHeapRegion(HeapRegion* r) {
1539     // Do we have any marking information for this region?
1540     if (r->is_marked()) {
1541       // We will skip any region that's currently used as an old GC
1542       // alloc region (we should not consider those for collection
1543       // before we fill them up).
1544       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1545         _cset_updater.add_region(r);
1546       }
1547     }
1548     return false;
1549   }
1550 };
1551 
1552 class ParKnownGarbageTask: public AbstractGangTask {
1553   CollectionSetChooser* _hrSorted;
1554   uint _chunk_size;
1555   G1CollectedHeap* _g1;
1556 public:
1557   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1558     AbstractGangTask("ParKnownGarbageTask"),
1559     _hrSorted(hrSorted), _chunk_size(chunk_size),
1560     _g1(G1CollectedHeap::heap()) { }
1561 
1562   void work(uint worker_id) {
1563     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1564 
1565     // Back to zero for the claim value.
1566     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1567                                          _g1->workers()->active_workers(),
1568                                          HeapRegion::InitialClaimValue);
1569   }
1570 };
1571 
1572 void
1573 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1574   _collectionSetChooser->clear();
1575 
1576   uint region_num = _g1->n_regions();
1577   if (G1CollectedHeap::use_parallel_gc_threads()) {
1578     const uint OverpartitionFactor = 4;
1579     uint WorkUnit;
1580     // The use of MinChunkSize = 8 in the original code
1581     // causes some assertion failures when the total number of
1582     // region is less than 8.  The code here tries to fix that.
1583     // Should the original code also be fixed?
1584     if (no_of_gc_threads > 0) {
1585       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
1586       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
1587                       MinWorkUnit);
1588     } else {
1589       assert(no_of_gc_threads > 0,
1590         "The active gc workers should be greater than 0");
1591       // In a product build do something reasonable to avoid a crash.
1592       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1593       WorkUnit =
1594         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1595              MinWorkUnit);
1596     }
1597     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
1598                                                            WorkUnit);
1599     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1600                                             (int) WorkUnit);
1601     _g1->workers()->run_task(&parKnownGarbageTask);
1602 
1603     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1604            "sanity check");
1605   } else {
1606     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
1607     _g1->heap_region_iterate(&knownGarbagecl);
1608   }
1609 
1610   _collectionSetChooser->sort_regions();
1611 
1612   double end_sec = os::elapsedTime();
1613   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1614   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1615   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1616   _prev_collection_pause_end_ms += elapsed_time_ms;
1617   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1618 }
1619 
1620 // Add the heap region at the head of the non-incremental collection set
1621 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1622   assert(_inc_cset_build_state == Active, "Precondition");
1623   assert(!hr->is_young(), "non-incremental add of young region");
1624 
1625   assert(!hr->in_collection_set(), "should not already be in the CSet");
1626   hr->set_in_collection_set(true);
1627   hr->set_next_in_collection_set(_collection_set);
1628   _collection_set = hr;
1629   _collection_set_bytes_used_before += hr->used();
1630   _g1->register_region_with_in_cset_fast_test(hr);
1631   size_t rs_length = hr->rem_set()->occupied();
1632   _recorded_rs_lengths += rs_length;
1633   _old_cset_region_length += 1;
1634 }
1635 
1636 // Initialize the per-collection-set information
1637 void G1CollectorPolicy::start_incremental_cset_building() {
1638   assert(_inc_cset_build_state == Inactive, "Precondition");
1639 
1640   _inc_cset_head = NULL;
1641   _inc_cset_tail = NULL;
1642   _inc_cset_bytes_used_before = 0;
1643 
1644   _inc_cset_max_finger = 0;
1645   _inc_cset_recorded_rs_lengths = 0;
1646   _inc_cset_recorded_rs_lengths_diffs = 0;
1647   _inc_cset_predicted_elapsed_time_ms = 0.0;
1648   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1649   _inc_cset_build_state = Active;
1650 }
1651 
1652 void G1CollectorPolicy::finalize_incremental_cset_building() {
1653   assert(_inc_cset_build_state == Active, "Precondition");
1654   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1655 
1656   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1657   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1658   // that adds a new region to the CSet. Further updates by the
1659   // concurrent refinement thread that samples the young RSet lengths
1660   // are accumulated in the *_diffs fields. Here we add the diffs to
1661   // the "main" fields.
1662 
1663   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1664     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1665   } else {
1666     // This is defensive. The diff should in theory be always positive
1667     // as RSets can only grow between GCs. However, given that we
1668     // sample their size concurrently with other threads updating them
1669     // it's possible that we might get the wrong size back, which
1670     // could make the calculations somewhat inaccurate.
1671     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1672     if (_inc_cset_recorded_rs_lengths >= diffs) {
1673       _inc_cset_recorded_rs_lengths -= diffs;
1674     } else {
1675       _inc_cset_recorded_rs_lengths = 0;
1676     }
1677   }
1678   _inc_cset_predicted_elapsed_time_ms +=
1679                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1680 
1681   _inc_cset_recorded_rs_lengths_diffs = 0;
1682   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1683 }
1684 
1685 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1686   // This routine is used when:
1687   // * adding survivor regions to the incremental cset at the end of an
1688   //   evacuation pause,
1689   // * adding the current allocation region to the incremental cset
1690   //   when it is retired, and
1691   // * updating existing policy information for a region in the
1692   //   incremental cset via young list RSet sampling.
1693   // Therefore this routine may be called at a safepoint by the
1694   // VM thread, or in-between safepoints by mutator threads (when
1695   // retiring the current allocation region) or a concurrent
1696   // refine thread (RSet sampling).
1697 
1698   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1699   size_t used_bytes = hr->used();
1700   _inc_cset_recorded_rs_lengths += rs_length;
1701   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1702   _inc_cset_bytes_used_before += used_bytes;
1703 
1704   // Cache the values we have added to the aggregated informtion
1705   // in the heap region in case we have to remove this region from
1706   // the incremental collection set, or it is updated by the
1707   // rset sampling code
1708   hr->set_recorded_rs_length(rs_length);
1709   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1710 }
1711 
1712 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1713                                                      size_t new_rs_length) {
1714   // Update the CSet information that is dependent on the new RS length
1715   assert(hr->is_young(), "Precondition");
1716   assert(!SafepointSynchronize::is_at_safepoint(),
1717                                                "should not be at a safepoint");
1718 
1719   // We could have updated _inc_cset_recorded_rs_lengths and
1720   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1721   // that atomically, as this code is executed by a concurrent
1722   // refinement thread, potentially concurrently with a mutator thread
1723   // allocating a new region and also updating the same fields. To
1724   // avoid the atomic operations we accumulate these updates on two
1725   // separate fields (*_diffs) and we'll just add them to the "main"
1726   // fields at the start of a GC.
1727 
1728   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1729   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1730   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1731 
1732   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1733   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1734   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1735   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1736 
1737   hr->set_recorded_rs_length(new_rs_length);
1738   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1739 }
1740 
1741 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1742   assert(hr->is_young(), "invariant");
1743   assert(hr->young_index_in_cset() > -1, "should have already been set");
1744   assert(_inc_cset_build_state == Active, "Precondition");
1745 
1746   // We need to clear and set the cached recorded/cached collection set
1747   // information in the heap region here (before the region gets added
1748   // to the collection set). An individual heap region's cached values
1749   // are calculated, aggregated with the policy collection set info,
1750   // and cached in the heap region here (initially) and (subsequently)
1751   // by the Young List sampling code.
1752 
1753   size_t rs_length = hr->rem_set()->occupied();
1754   add_to_incremental_cset_info(hr, rs_length);
1755 
1756   HeapWord* hr_end = hr->end();
1757   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1758 
1759   assert(!hr->in_collection_set(), "invariant");
1760   hr->set_in_collection_set(true);
1761   assert( hr->next_in_collection_set() == NULL, "invariant");
1762 
1763   _g1->register_region_with_in_cset_fast_test(hr);
1764 }
1765 
1766 // Add the region at the RHS of the incremental cset
1767 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1768   // We should only ever be appending survivors at the end of a pause
1769   assert( hr->is_survivor(), "Logic");
1770 
1771   // Do the 'common' stuff
1772   add_region_to_incremental_cset_common(hr);
1773 
1774   // Now add the region at the right hand side
1775   if (_inc_cset_tail == NULL) {
1776     assert(_inc_cset_head == NULL, "invariant");
1777     _inc_cset_head = hr;
1778   } else {
1779     _inc_cset_tail->set_next_in_collection_set(hr);
1780   }
1781   _inc_cset_tail = hr;
1782 }
1783 
1784 // Add the region to the LHS of the incremental cset
1785 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1786   // Survivors should be added to the RHS at the end of a pause
1787   assert(!hr->is_survivor(), "Logic");
1788 
1789   // Do the 'common' stuff
1790   add_region_to_incremental_cset_common(hr);
1791 
1792   // Add the region at the left hand side
1793   hr->set_next_in_collection_set(_inc_cset_head);
1794   if (_inc_cset_head == NULL) {
1795     assert(_inc_cset_tail == NULL, "Invariant");
1796     _inc_cset_tail = hr;
1797   }
1798   _inc_cset_head = hr;
1799 }
1800 
1801 #ifndef PRODUCT
1802 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1803   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1804 
1805   st->print_cr("\nCollection_set:");
1806   HeapRegion* csr = list_head;
1807   while (csr != NULL) {
1808     HeapRegion* next = csr->next_in_collection_set();
1809     assert(csr->in_collection_set(), "bad CS");
1810     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
1811                  HR_FORMAT_PARAMS(csr),
1812                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
1813                  csr->age_in_surv_rate_group_cond());
1814     csr = next;
1815   }
1816 }
1817 #endif // !PRODUCT
1818 
1819 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1820   // Returns the given amount of reclaimable bytes (that represents
1821   // the amount of reclaimable space still to be collected) as a
1822   // percentage of the current heap capacity.
1823   size_t capacity_bytes = _g1->capacity();
1824   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1825 }
1826 
1827 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1828                                                 const char* false_action_str) {
1829   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1830   if (cset_chooser->is_empty()) {
1831     ergo_verbose0(ErgoMixedGCs,
1832                   false_action_str,
1833                   ergo_format_reason("candidate old regions not available"));
1834     return false;
1835   }
1836 
1837   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1838   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1839   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1840   double threshold = (double) G1HeapWastePercent;
1841   if (reclaimable_perc <= threshold) {
1842     ergo_verbose4(ErgoMixedGCs,
1843               false_action_str,
1844               ergo_format_reason("reclaimable percentage not over threshold")
1845               ergo_format_region("candidate old regions")
1846               ergo_format_byte_perc("reclaimable")
1847               ergo_format_perc("threshold"),
1848               cset_chooser->remaining_regions(),
1849               reclaimable_bytes,
1850               reclaimable_perc, threshold);
1851     return false;
1852   }
1853 
1854   ergo_verbose4(ErgoMixedGCs,
1855                 true_action_str,
1856                 ergo_format_reason("candidate old regions available")
1857                 ergo_format_region("candidate old regions")
1858                 ergo_format_byte_perc("reclaimable")
1859                 ergo_format_perc("threshold"),
1860                 cset_chooser->remaining_regions(),
1861                 reclaimable_bytes,
1862                 reclaimable_perc, threshold);
1863   return true;
1864 }
1865 
1866 uint G1CollectorPolicy::calc_min_old_cset_length() {
1867   // The min old CSet region bound is based on the maximum desired
1868   // number of mixed GCs after a cycle. I.e., even if some old regions
1869   // look expensive, we should add them to the CSet anyway to make
1870   // sure we go through the available old regions in no more than the
1871   // maximum desired number of mixed GCs.
1872   //
1873   // The calculation is based on the number of marked regions we added
1874   // to the CSet chooser in the first place, not how many remain, so
1875   // that the result is the same during all mixed GCs that follow a cycle.
1876 
1877   const size_t region_num = (size_t) _collectionSetChooser->length();
1878   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1879   size_t result = region_num / gc_num;
1880   // emulate ceiling
1881   if (result * gc_num < region_num) {
1882     result += 1;
1883   }
1884   return (uint) result;
1885 }
1886 
1887 uint G1CollectorPolicy::calc_max_old_cset_length() {
1888   // The max old CSet region bound is based on the threshold expressed
1889   // as a percentage of the heap size. I.e., it should bound the
1890   // number of old regions added to the CSet irrespective of how many
1891   // of them are available.
1892 
1893   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1894   const size_t region_num = g1h->n_regions();
1895   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1896   size_t result = region_num * perc / 100;
1897   // emulate ceiling
1898   if (100 * result < region_num * perc) {
1899     result += 1;
1900   }
1901   return (uint) result;
1902 }
1903 
1904 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1905   double young_start_time_sec = os::elapsedTime();
1906 
1907   YoungList* young_list = _g1->young_list();
1908   finalize_incremental_cset_building();
1909 
1910   guarantee(target_pause_time_ms > 0.0,
1911             err_msg("target_pause_time_ms = %1.6lf should be positive",
1912                     target_pause_time_ms));
1913   guarantee(_collection_set == NULL, "Precondition");
1914 
1915   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1916   double predicted_pause_time_ms = base_time_ms;
1917   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1918 
1919   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1920                 "start choosing CSet",
1921                 ergo_format_size("_pending_cards")
1922                 ergo_format_ms("predicted base time")
1923                 ergo_format_ms("remaining time")
1924                 ergo_format_ms("target pause time"),
1925                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1926 
1927   _last_gc_was_young = gcs_are_young() ? true : false;
1928 
1929   if (_last_gc_was_young) {
1930     _trace_gen0_time_data.increment_young_collection_count();
1931   } else {
1932     _trace_gen0_time_data.increment_mixed_collection_count();
1933   }
1934 
1935   // The young list is laid with the survivor regions from the previous
1936   // pause are appended to the RHS of the young list, i.e.
1937   //   [Newly Young Regions ++ Survivors from last pause].
1938 
1939   uint survivor_region_length = young_list->survivor_length();
1940   uint eden_region_length = young_list->length() - survivor_region_length;
1941   init_cset_region_lengths(eden_region_length, survivor_region_length);
1942 
1943   HeapRegion* hr = young_list->first_survivor_region();
1944   while (hr != NULL) {
1945     assert(hr->is_survivor(), "badly formed young list");
1946     hr->set_young();
1947     hr = hr->get_next_young_region();
1948   }
1949 
1950   // Clear the fields that point to the survivor list - they are all young now.
1951   young_list->clear_survivors();
1952 
1953   _collection_set = _inc_cset_head;
1954   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1955   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1956   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1957 
1958   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
1959                 "add young regions to CSet",
1960                 ergo_format_region("eden")
1961                 ergo_format_region("survivors")
1962                 ergo_format_ms("predicted young region time"),
1963                 eden_region_length, survivor_region_length,
1964                 _inc_cset_predicted_elapsed_time_ms);
1965 
1966   // The number of recorded young regions is the incremental
1967   // collection set's current size
1968   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1969 
1970   double young_end_time_sec = os::elapsedTime();
1971   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1972 
1973   // Set the start of the non-young choice time.
1974   double non_young_start_time_sec = young_end_time_sec;
1975 
1976   if (!gcs_are_young()) {
1977     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1978     cset_chooser->verify();
1979     const uint min_old_cset_length = calc_min_old_cset_length();
1980     const uint max_old_cset_length = calc_max_old_cset_length();
1981 
1982     uint expensive_region_num = 0;
1983     bool check_time_remaining = adaptive_young_list_length();
1984 
1985     HeapRegion* hr = cset_chooser->peek();
1986     while (hr != NULL) {
1987       if (old_cset_region_length() >= max_old_cset_length) {
1988         // Added maximum number of old regions to the CSet.
1989         ergo_verbose2(ErgoCSetConstruction,
1990                       "finish adding old regions to CSet",
1991                       ergo_format_reason("old CSet region num reached max")
1992                       ergo_format_region("old")
1993                       ergo_format_region("max"),
1994                       old_cset_region_length(), max_old_cset_length);
1995         break;
1996       }
1997 
1998 
1999       // Stop adding regions if the remaining reclaimable space is
2000       // not above G1HeapWastePercent.
2001       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2002       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2003       double threshold = (double) G1HeapWastePercent;
2004       if (reclaimable_perc <= threshold) {
2005         // We've added enough old regions that the amount of uncollected
2006         // reclaimable space is at or below the waste threshold. Stop
2007         // adding old regions to the CSet.
2008         ergo_verbose5(ErgoCSetConstruction,
2009                       "finish adding old regions to CSet",
2010                       ergo_format_reason("reclaimable percentage not over threshold")
2011                       ergo_format_region("old")
2012                       ergo_format_region("max")
2013                       ergo_format_byte_perc("reclaimable")
2014                       ergo_format_perc("threshold"),
2015                       old_cset_region_length(),
2016                       max_old_cset_length,
2017                       reclaimable_bytes,
2018                       reclaimable_perc, threshold);
2019         break;
2020       }
2021 
2022       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2023       if (check_time_remaining) {
2024         if (predicted_time_ms > time_remaining_ms) {
2025           // Too expensive for the current CSet.
2026 
2027           if (old_cset_region_length() >= min_old_cset_length) {
2028             // We have added the minimum number of old regions to the CSet,
2029             // we are done with this CSet.
2030             ergo_verbose4(ErgoCSetConstruction,
2031                           "finish adding old regions to CSet",
2032                           ergo_format_reason("predicted time is too high")
2033                           ergo_format_ms("predicted time")
2034                           ergo_format_ms("remaining time")
2035                           ergo_format_region("old")
2036                           ergo_format_region("min"),
2037                           predicted_time_ms, time_remaining_ms,
2038                           old_cset_region_length(), min_old_cset_length);
2039             break;
2040           }
2041 
2042           // We'll add it anyway given that we haven't reached the
2043           // minimum number of old regions.
2044           expensive_region_num += 1;
2045         }
2046       } else {
2047         if (old_cset_region_length() >= min_old_cset_length) {
2048           // In the non-auto-tuning case, we'll finish adding regions
2049           // to the CSet if we reach the minimum.
2050           ergo_verbose2(ErgoCSetConstruction,
2051                         "finish adding old regions to CSet",
2052                         ergo_format_reason("old CSet region num reached min")
2053                         ergo_format_region("old")
2054                         ergo_format_region("min"),
2055                         old_cset_region_length(), min_old_cset_length);
2056           break;
2057         }
2058       }
2059 
2060       // We will add this region to the CSet.
2061       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2062       predicted_pause_time_ms += predicted_time_ms;
2063       cset_chooser->remove_and_move_to_next(hr);
2064       _g1->old_set_remove(hr);
2065       add_old_region_to_cset(hr);
2066 
2067       hr = cset_chooser->peek();
2068     }
2069     if (hr == NULL) {
2070       ergo_verbose0(ErgoCSetConstruction,
2071                     "finish adding old regions to CSet",
2072                     ergo_format_reason("candidate old regions not available"));
2073     }
2074 
2075     if (expensive_region_num > 0) {
2076       // We print the information once here at the end, predicated on
2077       // whether we added any apparently expensive regions or not, to
2078       // avoid generating output per region.
2079       ergo_verbose4(ErgoCSetConstruction,
2080                     "added expensive regions to CSet",
2081                     ergo_format_reason("old CSet region num not reached min")
2082                     ergo_format_region("old")
2083                     ergo_format_region("expensive")
2084                     ergo_format_region("min")
2085                     ergo_format_ms("remaining time"),
2086                     old_cset_region_length(),
2087                     expensive_region_num,
2088                     min_old_cset_length,
2089                     time_remaining_ms);
2090     }
2091 
2092     cset_chooser->verify();
2093   }
2094 
2095   stop_incremental_cset_building();
2096 
2097   ergo_verbose5(ErgoCSetConstruction,
2098                 "finish choosing CSet",
2099                 ergo_format_region("eden")
2100                 ergo_format_region("survivors")
2101                 ergo_format_region("old")
2102                 ergo_format_ms("predicted pause time")
2103                 ergo_format_ms("target pause time"),
2104                 eden_region_length, survivor_region_length,
2105                 old_cset_region_length(),
2106                 predicted_pause_time_ms, target_pause_time_ms);
2107 
2108   double non_young_end_time_sec = os::elapsedTime();
2109   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2110   evacuation_info.set_collectionset_regions(cset_region_length());
2111 }
2112 
2113 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
2114   if(TraceGen0Time) {
2115     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2116   }
2117 }
2118 
2119 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
2120   if(TraceGen0Time) {
2121     _all_yield_times_ms.add(yield_time_ms);
2122   }
2123 }
2124 
2125 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2126   if(TraceGen0Time) {
2127     _total.add(pause_time_ms);
2128     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2129     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2130     _parallel.add(phase_times->cur_collection_par_time_ms());
2131     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
2132     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
2133     _update_rs.add(phase_times->average_last_update_rs_time());
2134     _scan_rs.add(phase_times->average_last_scan_rs_time());
2135     _obj_copy.add(phase_times->average_last_obj_copy_time());
2136     _termination.add(phase_times->average_last_termination_time());
2137 
2138     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
2139       phase_times->average_last_satb_filtering_times_ms() +
2140       phase_times->average_last_update_rs_time() +
2141       phase_times->average_last_scan_rs_time() +
2142       phase_times->average_last_obj_copy_time() +
2143       + phase_times->average_last_termination_time();
2144 
2145     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2146     _parallel_other.add(parallel_other_time);
2147     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2148   }
2149 }
2150 
2151 void TraceGen0TimeData::increment_young_collection_count() {
2152   if(TraceGen0Time) {
2153     ++_young_pause_num;
2154   }
2155 }
2156 
2157 void TraceGen0TimeData::increment_mixed_collection_count() {
2158   if(TraceGen0Time) {
2159     ++_mixed_pause_num;
2160   }
2161 }
2162 
2163 void TraceGen0TimeData::print_summary(const char* str,
2164                                       const NumberSeq* seq) const {
2165   double sum = seq->sum();
2166   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2167                 str, sum / 1000.0, seq->avg());
2168 }
2169 
2170 void TraceGen0TimeData::print_summary_sd(const char* str,
2171                                          const NumberSeq* seq) const {
2172   print_summary(str, seq);
2173   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2174                 "(num", seq->num(), seq->sd(), seq->maximum());
2175 }
2176 
2177 void TraceGen0TimeData::print() const {
2178   if (!TraceGen0Time) {
2179     return;
2180   }
2181 
2182   gclog_or_tty->print_cr("ALL PAUSES");
2183   print_summary_sd("   Total", &_total);
2184   gclog_or_tty->print_cr("");
2185   gclog_or_tty->print_cr("");
2186   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2187   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2188   gclog_or_tty->print_cr("");
2189 
2190   gclog_or_tty->print_cr("EVACUATION PAUSES");
2191 
2192   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2193     gclog_or_tty->print_cr("none");
2194   } else {
2195     print_summary_sd("   Evacuation Pauses", &_total);
2196     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2197     print_summary("      Parallel Time", &_parallel);
2198     print_summary("         Ext Root Scanning", &_ext_root_scan);
2199     print_summary("         SATB Filtering", &_satb_filtering);
2200     print_summary("         Update RS", &_update_rs);
2201     print_summary("         Scan RS", &_scan_rs);
2202     print_summary("         Object Copy", &_obj_copy);
2203     print_summary("         Termination", &_termination);
2204     print_summary("         Parallel Other", &_parallel_other);
2205     print_summary("      Clear CT", &_clear_ct);
2206     print_summary("      Other", &_other);
2207   }
2208   gclog_or_tty->print_cr("");
2209 
2210   gclog_or_tty->print_cr("MISC");
2211   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2212   print_summary_sd("   Yields", &_all_yield_times_ms);
2213 }
2214 
2215 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
2216   if (TraceGen1Time) {
2217     _all_full_gc_times.add(full_gc_time_ms);
2218   }
2219 }
2220 
2221 void TraceGen1TimeData::print() const {
2222   if (!TraceGen1Time) {
2223     return;
2224   }
2225 
2226   if (_all_full_gc_times.num() > 0) {
2227     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2228       _all_full_gc_times.num(),
2229       _all_full_gc_times.sum() / 1000.0);
2230     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2231     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2232       _all_full_gc_times.sd(),
2233       _all_full_gc_times.maximum());
2234   }
2235 }