rev 55090 : secret-sfac
1 /*
2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "ci/ciReplay.hpp"
29 #include "classfile/systemDictionary.hpp"
30 #include "code/exceptionHandlerTable.hpp"
31 #include "code/nmethod.hpp"
32 #include "compiler/compileBroker.hpp"
33 #include "compiler/compileLog.hpp"
34 #include "compiler/disassembler.hpp"
35 #include "compiler/oopMap.hpp"
36 #include "gc/shared/barrierSet.hpp"
37 #include "gc/shared/c2/barrierSetC2.hpp"
38 #include "memory/resourceArea.hpp"
39 #include "opto/addnode.hpp"
40 #include "opto/block.hpp"
41 #include "opto/c2compiler.hpp"
42 #include "opto/callGenerator.hpp"
43 #include "opto/callnode.hpp"
44 #include "opto/castnode.hpp"
45 #include "opto/cfgnode.hpp"
46 #include "opto/chaitin.hpp"
47 #include "opto/compile.hpp"
48 #include "opto/connode.hpp"
49 #include "opto/convertnode.hpp"
50 #include "opto/divnode.hpp"
51 #include "opto/escape.hpp"
52 #include "opto/idealGraphPrinter.hpp"
53 #include "opto/loopnode.hpp"
54 #include "opto/machnode.hpp"
55 #include "opto/macro.hpp"
56 #include "opto/matcher.hpp"
57 #include "opto/mathexactnode.hpp"
58 #include "opto/memnode.hpp"
59 #include "opto/mulnode.hpp"
60 #include "opto/narrowptrnode.hpp"
61 #include "opto/node.hpp"
62 #include "opto/opcodes.hpp"
63 #include "opto/output.hpp"
64 #include "opto/parse.hpp"
65 #include "opto/phaseX.hpp"
66 #include "opto/rootnode.hpp"
67 #include "opto/runtime.hpp"
68 #include "opto/stringopts.hpp"
69 #include "opto/type.hpp"
70 #include "opto/valuetypenode.hpp"
71 #include "opto/vectornode.hpp"
72 #include "runtime/arguments.hpp"
73 #include "runtime/sharedRuntime.hpp"
74 #include "runtime/signature.hpp"
75 #include "runtime/stubRoutines.hpp"
76 #include "runtime/timer.hpp"
77 #include "utilities/align.hpp"
78 #include "utilities/copy.hpp"
79 #include "utilities/macros.hpp"
80 #if INCLUDE_ZGC
81 #include "gc/z/c2/zBarrierSetC2.hpp"
82 #endif
83
84
85 // -------------------- Compile::mach_constant_base_node -----------------------
86 // Constant table base node singleton.
87 MachConstantBaseNode* Compile::mach_constant_base_node() {
88 if (_mach_constant_base_node == NULL) {
89 _mach_constant_base_node = new MachConstantBaseNode();
90 _mach_constant_base_node->add_req(C->root());
91 }
92 return _mach_constant_base_node;
93 }
94
95
96 /// Support for intrinsics.
97
98 // Return the index at which m must be inserted (or already exists).
99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
100 class IntrinsicDescPair {
101 private:
102 ciMethod* _m;
103 bool _is_virtual;
104 public:
105 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
106 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
107 ciMethod* m= elt->method();
108 ciMethod* key_m = key->_m;
109 if (key_m < m) return -1;
110 else if (key_m > m) return 1;
111 else {
112 bool is_virtual = elt->is_virtual();
113 bool key_virtual = key->_is_virtual;
114 if (key_virtual < is_virtual) return -1;
115 else if (key_virtual > is_virtual) return 1;
116 else return 0;
117 }
118 }
119 };
120 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
121 #ifdef ASSERT
122 for (int i = 1; i < _intrinsics->length(); i++) {
123 CallGenerator* cg1 = _intrinsics->at(i-1);
124 CallGenerator* cg2 = _intrinsics->at(i);
125 assert(cg1->method() != cg2->method()
126 ? cg1->method() < cg2->method()
127 : cg1->is_virtual() < cg2->is_virtual(),
128 "compiler intrinsics list must stay sorted");
129 }
130 #endif
131 IntrinsicDescPair pair(m, is_virtual);
132 return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
133 }
134
135 void Compile::register_intrinsic(CallGenerator* cg) {
136 if (_intrinsics == NULL) {
137 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
138 }
139 int len = _intrinsics->length();
140 bool found = false;
141 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
142 assert(!found, "registering twice");
143 _intrinsics->insert_before(index, cg);
144 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
145 }
146
147 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
148 assert(m->is_loaded(), "don't try this on unloaded methods");
149 if (_intrinsics != NULL) {
150 bool found = false;
151 int index = intrinsic_insertion_index(m, is_virtual, found);
152 if (found) {
153 return _intrinsics->at(index);
154 }
155 }
156 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
157 if (m->intrinsic_id() != vmIntrinsics::_none &&
158 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
159 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
160 if (cg != NULL) {
161 // Save it for next time:
162 register_intrinsic(cg);
163 return cg;
164 } else {
165 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
166 }
167 }
168 return NULL;
169 }
170
171 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
172 // in library_call.cpp.
173
174
175 #ifndef PRODUCT
176 // statistics gathering...
177
178 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
179 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
180
181 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
182 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
183 int oflags = _intrinsic_hist_flags[id];
184 assert(flags != 0, "what happened?");
185 if (is_virtual) {
186 flags |= _intrinsic_virtual;
187 }
188 bool changed = (flags != oflags);
189 if ((flags & _intrinsic_worked) != 0) {
190 juint count = (_intrinsic_hist_count[id] += 1);
191 if (count == 1) {
192 changed = true; // first time
193 }
194 // increment the overall count also:
195 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
196 }
197 if (changed) {
198 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
199 // Something changed about the intrinsic's virtuality.
200 if ((flags & _intrinsic_virtual) != 0) {
201 // This is the first use of this intrinsic as a virtual call.
202 if (oflags != 0) {
203 // We already saw it as a non-virtual, so note both cases.
204 flags |= _intrinsic_both;
205 }
206 } else if ((oflags & _intrinsic_both) == 0) {
207 // This is the first use of this intrinsic as a non-virtual
208 flags |= _intrinsic_both;
209 }
210 }
211 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
212 }
213 // update the overall flags also:
214 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
215 return changed;
216 }
217
218 static char* format_flags(int flags, char* buf) {
219 buf[0] = 0;
220 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
221 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
222 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
223 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
224 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
225 if (buf[0] == 0) strcat(buf, ",");
226 assert(buf[0] == ',', "must be");
227 return &buf[1];
228 }
229
230 void Compile::print_intrinsic_statistics() {
231 char flagsbuf[100];
232 ttyLocker ttyl;
233 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
234 tty->print_cr("Compiler intrinsic usage:");
235 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
236 if (total == 0) total = 1; // avoid div0 in case of no successes
237 #define PRINT_STAT_LINE(name, c, f) \
238 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
239 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
240 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
241 int flags = _intrinsic_hist_flags[id];
242 juint count = _intrinsic_hist_count[id];
243 if ((flags | count) != 0) {
244 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
245 }
246 }
247 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
248 if (xtty != NULL) xtty->tail("statistics");
249 }
250
251 void Compile::print_statistics() {
252 { ttyLocker ttyl;
253 if (xtty != NULL) xtty->head("statistics type='opto'");
254 Parse::print_statistics();
255 PhaseCCP::print_statistics();
256 PhaseRegAlloc::print_statistics();
257 Scheduling::print_statistics();
258 PhasePeephole::print_statistics();
259 PhaseIdealLoop::print_statistics();
260 if (xtty != NULL) xtty->tail("statistics");
261 }
262 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
263 // put this under its own <statistics> element.
264 print_intrinsic_statistics();
265 }
266 }
267 #endif //PRODUCT
268
269 // Support for bundling info
270 Bundle* Compile::node_bundling(const Node *n) {
271 assert(valid_bundle_info(n), "oob");
272 return &_node_bundling_base[n->_idx];
273 }
274
275 bool Compile::valid_bundle_info(const Node *n) {
276 return (_node_bundling_limit > n->_idx);
277 }
278
279
280 void Compile::gvn_replace_by(Node* n, Node* nn) {
281 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
282 Node* use = n->last_out(i);
283 bool is_in_table = initial_gvn()->hash_delete(use);
284 uint uses_found = 0;
285 for (uint j = 0; j < use->len(); j++) {
286 if (use->in(j) == n) {
287 if (j < use->req())
288 use->set_req(j, nn);
289 else
290 use->set_prec(j, nn);
291 uses_found++;
292 }
293 }
294 if (is_in_table) {
295 // reinsert into table
296 initial_gvn()->hash_find_insert(use);
297 }
298 record_for_igvn(use);
299 i -= uses_found; // we deleted 1 or more copies of this edge
300 }
301 }
302
303
304 static inline bool not_a_node(const Node* n) {
305 if (n == NULL) return true;
306 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
307 if (*(address*)n == badAddress) return true; // kill by Node::destruct
308 return false;
309 }
310
311 // Identify all nodes that are reachable from below, useful.
312 // Use breadth-first pass that records state in a Unique_Node_List,
313 // recursive traversal is slower.
314 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
315 int estimated_worklist_size = live_nodes();
316 useful.map( estimated_worklist_size, NULL ); // preallocate space
317
318 // Initialize worklist
319 if (root() != NULL) { useful.push(root()); }
320 // If 'top' is cached, declare it useful to preserve cached node
321 if( cached_top_node() ) { useful.push(cached_top_node()); }
322
323 // Push all useful nodes onto the list, breadthfirst
324 for( uint next = 0; next < useful.size(); ++next ) {
325 assert( next < unique(), "Unique useful nodes < total nodes");
326 Node *n = useful.at(next);
327 uint max = n->len();
328 for( uint i = 0; i < max; ++i ) {
329 Node *m = n->in(i);
330 if (not_a_node(m)) continue;
331 useful.push(m);
332 }
333 }
334 }
335
336 // Update dead_node_list with any missing dead nodes using useful
337 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
338 void Compile::update_dead_node_list(Unique_Node_List &useful) {
339 uint max_idx = unique();
340 VectorSet& useful_node_set = useful.member_set();
341
342 for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
343 // If node with index node_idx is not in useful set,
344 // mark it as dead in dead node list.
345 if (! useful_node_set.test(node_idx) ) {
346 record_dead_node(node_idx);
347 }
348 }
349 }
350
351 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
352 int shift = 0;
353 for (int i = 0; i < inlines->length(); i++) {
354 CallGenerator* cg = inlines->at(i);
355 CallNode* call = cg->call_node();
356 if (shift > 0) {
357 inlines->at_put(i-shift, cg);
358 }
359 if (!useful.member(call)) {
360 shift++;
361 }
362 }
363 inlines->trunc_to(inlines->length()-shift);
364 }
365
366 // Disconnect all useless nodes by disconnecting those at the boundary.
367 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
368 uint next = 0;
369 while (next < useful.size()) {
370 Node *n = useful.at(next++);
371 if (n->is_SafePoint()) {
372 // We're done with a parsing phase. Replaced nodes are not valid
373 // beyond that point.
374 n->as_SafePoint()->delete_replaced_nodes();
375 }
376 // Use raw traversal of out edges since this code removes out edges
377 int max = n->outcnt();
378 for (int j = 0; j < max; ++j) {
379 Node* child = n->raw_out(j);
380 if (! useful.member(child)) {
381 assert(!child->is_top() || child != top(),
382 "If top is cached in Compile object it is in useful list");
383 // Only need to remove this out-edge to the useless node
384 n->raw_del_out(j);
385 --j;
386 --max;
387 }
388 }
389 if (n->outcnt() == 1 && n->has_special_unique_user()) {
390 record_for_igvn(n->unique_out());
391 }
392 }
393 // Remove useless macro and predicate opaq nodes
394 for (int i = C->macro_count()-1; i >= 0; i--) {
395 Node* n = C->macro_node(i);
396 if (!useful.member(n)) {
397 remove_macro_node(n);
398 }
399 }
400 // Remove useless CastII nodes with range check dependency
401 for (int i = range_check_cast_count() - 1; i >= 0; i--) {
402 Node* cast = range_check_cast_node(i);
403 if (!useful.member(cast)) {
404 remove_range_check_cast(cast);
405 }
406 }
407 // Remove useless expensive nodes
408 for (int i = C->expensive_count()-1; i >= 0; i--) {
409 Node* n = C->expensive_node(i);
410 if (!useful.member(n)) {
411 remove_expensive_node(n);
412 }
413 }
414 // Remove useless Opaque4 nodes
415 for (int i = opaque4_count() - 1; i >= 0; i--) {
416 Node* opaq = opaque4_node(i);
417 if (!useful.member(opaq)) {
418 remove_opaque4_node(opaq);
419 }
420 }
421 // Remove useless value type nodes
422 if (_value_type_nodes != NULL) {
423 _value_type_nodes->remove_useless_nodes(useful.member_set());
424 }
425 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
426 bs->eliminate_useless_gc_barriers(useful, this);
427 // clean up the late inline lists
428 remove_useless_late_inlines(&_string_late_inlines, useful);
429 remove_useless_late_inlines(&_boxing_late_inlines, useful);
430 remove_useless_late_inlines(&_late_inlines, useful);
431 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
432 }
433
434 //------------------------------frame_size_in_words-----------------------------
435 // frame_slots in units of words
436 int Compile::frame_size_in_words() const {
437 // shift is 0 in LP32 and 1 in LP64
438 const int shift = (LogBytesPerWord - LogBytesPerInt);
439 int words = _frame_slots >> shift;
440 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
441 return words;
442 }
443
444 // To bang the stack of this compiled method we use the stack size
445 // that the interpreter would need in case of a deoptimization. This
446 // removes the need to bang the stack in the deoptimization blob which
447 // in turn simplifies stack overflow handling.
448 int Compile::bang_size_in_bytes() const {
449 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
450 }
451
452 // ============================================================================
453 //------------------------------CompileWrapper---------------------------------
454 class CompileWrapper : public StackObj {
455 Compile *const _compile;
456 public:
457 CompileWrapper(Compile* compile);
458
459 ~CompileWrapper();
460 };
461
462 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
463 // the Compile* pointer is stored in the current ciEnv:
464 ciEnv* env = compile->env();
465 assert(env == ciEnv::current(), "must already be a ciEnv active");
466 assert(env->compiler_data() == NULL, "compile already active?");
467 env->set_compiler_data(compile);
468 assert(compile == Compile::current(), "sanity");
469
470 compile->set_type_dict(NULL);
471 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
472 compile->clone_map().set_clone_idx(0);
473 compile->set_type_hwm(NULL);
474 compile->set_type_last_size(0);
475 compile->set_last_tf(NULL, NULL);
476 compile->set_indexSet_arena(NULL);
477 compile->set_indexSet_free_block_list(NULL);
478 compile->init_type_arena();
479 Type::Initialize(compile);
480 _compile->set_scratch_buffer_blob(NULL);
481 _compile->begin_method();
482 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
483 }
484 CompileWrapper::~CompileWrapper() {
485 _compile->end_method();
486 if (_compile->scratch_buffer_blob() != NULL)
487 BufferBlob::free(_compile->scratch_buffer_blob());
488 _compile->env()->set_compiler_data(NULL);
489 }
490
491
492 //----------------------------print_compile_messages---------------------------
493 void Compile::print_compile_messages() {
494 #ifndef PRODUCT
495 // Check if recompiling
496 if (_subsume_loads == false && PrintOpto) {
497 // Recompiling without allowing machine instructions to subsume loads
498 tty->print_cr("*********************************************************");
499 tty->print_cr("** Bailout: Recompile without subsuming loads **");
500 tty->print_cr("*********************************************************");
501 }
502 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
503 // Recompiling without escape analysis
504 tty->print_cr("*********************************************************");
505 tty->print_cr("** Bailout: Recompile without escape analysis **");
506 tty->print_cr("*********************************************************");
507 }
508 if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
509 // Recompiling without boxing elimination
510 tty->print_cr("*********************************************************");
511 tty->print_cr("** Bailout: Recompile without boxing elimination **");
512 tty->print_cr("*********************************************************");
513 }
514 if (C->directive()->BreakAtCompileOption) {
515 // Open the debugger when compiling this method.
516 tty->print("### Breaking when compiling: ");
517 method()->print_short_name();
518 tty->cr();
519 BREAKPOINT;
520 }
521
522 if( PrintOpto ) {
523 if (is_osr_compilation()) {
524 tty->print("[OSR]%3d", _compile_id);
525 } else {
526 tty->print("%3d", _compile_id);
527 }
528 }
529 #endif
530 }
531
532
533 //-----------------------init_scratch_buffer_blob------------------------------
534 // Construct a temporary BufferBlob and cache it for this compile.
535 void Compile::init_scratch_buffer_blob(int const_size) {
536 // If there is already a scratch buffer blob allocated and the
537 // constant section is big enough, use it. Otherwise free the
538 // current and allocate a new one.
539 BufferBlob* blob = scratch_buffer_blob();
540 if ((blob != NULL) && (const_size <= _scratch_const_size)) {
541 // Use the current blob.
542 } else {
543 if (blob != NULL) {
544 BufferBlob::free(blob);
545 }
546
547 ResourceMark rm;
548 _scratch_const_size = const_size;
549 int size = C2Compiler::initial_code_buffer_size(const_size);
550 #ifdef ASSERT
551 if (C->has_scalarized_args()) {
552 // Oop verification for loading object fields from scalarized value types in the new entry point requires lots of space
553 size += 5120;
554 }
555 #endif
556 blob = BufferBlob::create("Compile::scratch_buffer", size);
557 // Record the buffer blob for next time.
558 set_scratch_buffer_blob(blob);
559 // Have we run out of code space?
560 if (scratch_buffer_blob() == NULL) {
561 // Let CompilerBroker disable further compilations.
562 record_failure("Not enough space for scratch buffer in CodeCache");
563 return;
564 }
565 }
566
567 // Initialize the relocation buffers
568 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
569 set_scratch_locs_memory(locs_buf);
570 }
571
572
573 //-----------------------scratch_emit_size-------------------------------------
574 // Helper function that computes size by emitting code
575 uint Compile::scratch_emit_size(const Node* n) {
576 // Start scratch_emit_size section.
577 set_in_scratch_emit_size(true);
578
579 // Emit into a trash buffer and count bytes emitted.
580 // This is a pretty expensive way to compute a size,
581 // but it works well enough if seldom used.
582 // All common fixed-size instructions are given a size
583 // method by the AD file.
584 // Note that the scratch buffer blob and locs memory are
585 // allocated at the beginning of the compile task, and
586 // may be shared by several calls to scratch_emit_size.
587 // The allocation of the scratch buffer blob is particularly
588 // expensive, since it has to grab the code cache lock.
589 BufferBlob* blob = this->scratch_buffer_blob();
590 assert(blob != NULL, "Initialize BufferBlob at start");
591 assert(blob->size() > MAX_inst_size, "sanity");
592 relocInfo* locs_buf = scratch_locs_memory();
593 address blob_begin = blob->content_begin();
594 address blob_end = (address)locs_buf;
595 assert(blob->contains(blob_end), "sanity");
596 CodeBuffer buf(blob_begin, blob_end - blob_begin);
597 buf.initialize_consts_size(_scratch_const_size);
598 buf.initialize_stubs_size(MAX_stubs_size);
599 assert(locs_buf != NULL, "sanity");
600 int lsize = MAX_locs_size / 3;
601 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
602 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
603 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
604 // Mark as scratch buffer.
605 buf.consts()->set_scratch_emit();
606 buf.insts()->set_scratch_emit();
607 buf.stubs()->set_scratch_emit();
608
609 // Do the emission.
610
611 Label fakeL; // Fake label for branch instructions.
612 Label* saveL = NULL;
613 uint save_bnum = 0;
614 bool is_branch = n->is_MachBranch();
615 if (is_branch) {
616 MacroAssembler masm(&buf);
617 masm.bind(fakeL);
618 n->as_MachBranch()->save_label(&saveL, &save_bnum);
619 n->as_MachBranch()->label_set(&fakeL, 0);
620 } else if (n->is_MachProlog()) {
621 saveL = ((MachPrologNode*)n)->_verified_entry;
622 ((MachPrologNode*)n)->_verified_entry = &fakeL;
623 }
624 n->emit(buf, this->regalloc());
625
626 // Emitting into the scratch buffer should not fail
627 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
628
629 // Restore label.
630 if (is_branch) {
631 n->as_MachBranch()->label_set(saveL, save_bnum);
632 } else if (n->is_MachProlog()) {
633 ((MachPrologNode*)n)->_verified_entry = saveL;
634 }
635
636 // End scratch_emit_size section.
637 set_in_scratch_emit_size(false);
638
639 return buf.insts_size();
640 }
641
642
643 // ============================================================================
644 //------------------------------Compile standard-------------------------------
645 debug_only( int Compile::_debug_idx = 100000; )
646
647 // Compile a method. entry_bci is -1 for normal compilations and indicates
648 // the continuation bci for on stack replacement.
649
650
651 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
652 bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
653 : Phase(Compiler),
654 _compile_id(ci_env->compile_id()),
655 _save_argument_registers(false),
656 _subsume_loads(subsume_loads),
657 _do_escape_analysis(do_escape_analysis),
658 _eliminate_boxing(eliminate_boxing),
659 _method(target),
660 _entry_bci(osr_bci),
661 _stub_function(NULL),
662 _stub_name(NULL),
663 _stub_entry_point(NULL),
664 _max_node_limit(MaxNodeLimit),
665 _orig_pc_slot(0),
666 _orig_pc_slot_offset_in_bytes(0),
667 _sp_inc_slot(0),
668 _sp_inc_slot_offset_in_bytes(0),
669 _inlining_progress(false),
670 _inlining_incrementally(false),
671 _do_cleanup(false),
672 _has_reserved_stack_access(target->has_reserved_stack_access()),
673 #ifndef PRODUCT
674 _trace_opto_output(directive->TraceOptoOutputOption),
675 #endif
676 _has_method_handle_invokes(false),
677 _comp_arena(mtCompiler),
678 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
679 _env(ci_env),
680 _directive(directive),
681 _log(ci_env->log()),
682 _failure_reason(NULL),
683 _congraph(NULL),
684 #ifndef PRODUCT
685 _printer(IdealGraphPrinter::printer()),
686 #endif
687 _dead_node_list(comp_arena()),
688 _dead_node_count(0),
689 _node_arena(mtCompiler),
690 _old_arena(mtCompiler),
691 _mach_constant_base_node(NULL),
692 _Compile_types(mtCompiler),
693 _initial_gvn(NULL),
694 _for_igvn(NULL),
695 _warm_calls(NULL),
696 _late_inlines(comp_arena(), 2, 0, NULL),
697 _string_late_inlines(comp_arena(), 2, 0, NULL),
698 _boxing_late_inlines(comp_arena(), 2, 0, NULL),
699 _late_inlines_pos(0),
700 _number_of_mh_late_inlines(0),
701 _print_inlining_stream(NULL),
702 _print_inlining_list(NULL),
703 _print_inlining_idx(0),
704 _print_inlining_output(NULL),
705 _replay_inline_data(NULL),
706 _java_calls(0),
707 _inner_loops(0),
708 _interpreter_frame_size(0),
709 _node_bundling_limit(0),
710 _node_bundling_base(NULL),
711 _code_buffer("Compile::Fill_buffer"),
712 _scratch_const_size(-1),
713 _in_scratch_emit_size(false)
714 #ifndef PRODUCT
715 , _in_dump_cnt(0)
716 #endif
717 {
718 C = this;
719 #ifndef PRODUCT
720 if (_printer != NULL) {
721 _printer->set_compile(this);
722 }
723 #endif
724 CompileWrapper cw(this);
725
726 if (CITimeVerbose) {
727 tty->print(" ");
728 target->holder()->name()->print();
729 tty->print(".");
730 target->print_short_name();
731 tty->print(" ");
732 }
733 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
734 TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
735
736 #ifndef PRODUCT
737 bool print_opto_assembly = directive->PrintOptoAssemblyOption;
738 if (!print_opto_assembly) {
739 bool print_assembly = directive->PrintAssemblyOption;
740 if (print_assembly && !Disassembler::can_decode()) {
741 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
742 print_opto_assembly = true;
743 }
744 }
745 set_print_assembly(print_opto_assembly);
746 set_parsed_irreducible_loop(false);
747
748 if (directive->ReplayInlineOption) {
749 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
750 }
751 #endif
752 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
753 set_print_intrinsics(directive->PrintIntrinsicsOption);
754 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
755
756 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
757 // Make sure the method being compiled gets its own MDO,
758 // so we can at least track the decompile_count().
759 // Need MDO to record RTM code generation state.
760 method()->ensure_method_data();
761 }
762
763 Init(::AliasLevel);
764
765
766 print_compile_messages();
767
768 _ilt = InlineTree::build_inline_tree_root();
769
770 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
771 assert(num_alias_types() >= AliasIdxRaw, "");
772
773 #define MINIMUM_NODE_HASH 1023
774 // Node list that Iterative GVN will start with
775 Unique_Node_List for_igvn(comp_arena());
776 set_for_igvn(&for_igvn);
777
778 // GVN that will be run immediately on new nodes
779 uint estimated_size = method()->code_size()*4+64;
780 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
781 PhaseGVN gvn(node_arena(), estimated_size);
782 set_initial_gvn(&gvn);
783
784 print_inlining_init();
785 { // Scope for timing the parser
786 TracePhase tp("parse", &timers[_t_parser]);
787
788 // Put top into the hash table ASAP.
789 initial_gvn()->transform_no_reclaim(top());
790
791 // Set up tf(), start(), and find a CallGenerator.
792 CallGenerator* cg = NULL;
793 if (is_osr_compilation()) {
794 const TypeTuple *domain = StartOSRNode::osr_domain();
795 const TypeTuple *range = TypeTuple::make_range(method()->signature());
796 init_tf(TypeFunc::make(domain, range));
797 StartNode* s = new StartOSRNode(root(), domain);
798 initial_gvn()->set_type_bottom(s);
799 init_start(s);
800 cg = CallGenerator::for_osr(method(), entry_bci());
801 } else {
802 // Normal case.
803 init_tf(TypeFunc::make(method()));
804 StartNode* s = new StartNode(root(), tf()->domain_cc());
805 initial_gvn()->set_type_bottom(s);
806 init_start(s);
807 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
808 // With java.lang.ref.reference.get() we must go through the
809 // intrinsic - even when get() is the root
810 // method of the compile - so that, if necessary, the value in
811 // the referent field of the reference object gets recorded by
812 // the pre-barrier code.
813 cg = find_intrinsic(method(), false);
814 }
815 if (cg == NULL) {
816 float past_uses = method()->interpreter_invocation_count();
817 float expected_uses = past_uses;
818 cg = CallGenerator::for_inline(method(), expected_uses);
819 }
820 }
821 if (failing()) return;
822 if (cg == NULL) {
823 record_method_not_compilable("cannot parse method");
824 return;
825 }
826 JVMState* jvms = build_start_state(start(), tf());
827 if ((jvms = cg->generate(jvms)) == NULL) {
828 if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
829 record_method_not_compilable("method parse failed");
830 }
831 return;
832 }
833 GraphKit kit(jvms);
834
835 if (!kit.stopped()) {
836 // Accept return values, and transfer control we know not where.
837 // This is done by a special, unique ReturnNode bound to root.
838 return_values(kit.jvms());
839 }
840
841 if (kit.has_exceptions()) {
842 // Any exceptions that escape from this call must be rethrown
843 // to whatever caller is dynamically above us on the stack.
844 // This is done by a special, unique RethrowNode bound to root.
845 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
846 }
847
848 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
849
850 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
851 inline_string_calls(true);
852 }
853
854 if (failing()) return;
855
856 print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
857
858 // Remove clutter produced by parsing.
859 if (!failing()) {
860 ResourceMark rm;
861 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
862 }
863 }
864
865 // Note: Large methods are capped off in do_one_bytecode().
866 if (failing()) return;
867
868 // After parsing, node notes are no longer automagic.
869 // They must be propagated by register_new_node_with_optimizer(),
870 // clone(), or the like.
871 set_default_node_notes(NULL);
872
873 for (;;) {
874 int successes = Inline_Warm();
875 if (failing()) return;
876 if (successes == 0) break;
877 }
878
879 // Drain the list.
880 Finish_Warm();
881 #ifndef PRODUCT
882 if (_printer && _printer->should_print(1)) {
883 _printer->print_inlining();
884 }
885 #endif
886
887 if (failing()) return;
888 NOT_PRODUCT( verify_graph_edges(); )
889
890 // Now optimize
891 Optimize();
892 if (failing()) return;
893 NOT_PRODUCT( verify_graph_edges(); )
894
895 #ifndef PRODUCT
896 if (PrintIdeal) {
897 ttyLocker ttyl; // keep the following output all in one block
898 // This output goes directly to the tty, not the compiler log.
899 // To enable tools to match it up with the compilation activity,
900 // be sure to tag this tty output with the compile ID.
901 if (xtty != NULL) {
902 xtty->head("ideal compile_id='%d'%s", compile_id(),
903 is_osr_compilation() ? " compile_kind='osr'" :
904 "");
905 }
906 root()->dump(9999);
907 if (xtty != NULL) {
908 xtty->tail("ideal");
909 }
910 }
911 #endif
912
913 #ifdef ASSERT
914 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
915 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
916 #endif
917
918 // Dump compilation data to replay it.
919 if (directive->DumpReplayOption) {
920 env()->dump_replay_data(_compile_id);
921 }
922 if (directive->DumpInlineOption && (ilt() != NULL)) {
923 env()->dump_inline_data(_compile_id);
924 }
925
926 // Now that we know the size of all the monitors we can add a fixed slot
927 // for the original deopt pc.
928
929 _orig_pc_slot = fixed_slots();
930 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
931
932 if (needs_stack_repair()) {
933 // One extra slot for the special stack increment value
934 _sp_inc_slot = next_slot;
935 next_slot += 2;
936 }
937
938 set_fixed_slots(next_slot);
939
940 // Compute when to use implicit null checks. Used by matching trap based
941 // nodes and NullCheck optimization.
942 set_allowed_deopt_reasons();
943
944 // Now generate code
945 Code_Gen();
946 if (failing()) return;
947
948 // Check if we want to skip execution of all compiled code.
949 {
950 #ifndef PRODUCT
951 if (OptoNoExecute) {
952 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
953 return;
954 }
955 #endif
956 TracePhase tp("install_code", &timers[_t_registerMethod]);
957
958 if (is_osr_compilation()) {
959 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
960 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
961 } else {
962 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
963 if (_code_offsets.value(CodeOffsets::Verified_Value_Entry) == -1) {
964 _code_offsets.set_value(CodeOffsets::Verified_Value_Entry, _first_block_size);
965 }
966 if (_code_offsets.value(CodeOffsets::Verified_Value_Entry_RO) == -1) {
967 _code_offsets.set_value(CodeOffsets::Verified_Value_Entry_RO, _first_block_size);
968 }
969 if (_code_offsets.value(CodeOffsets::Entry) == -1) {
970 _code_offsets.set_value(CodeOffsets::Entry, _first_block_size);
971 }
972 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
973 }
974
975 env()->register_method(_method, _entry_bci,
976 &_code_offsets,
977 _orig_pc_slot_offset_in_bytes,
978 code_buffer(),
979 frame_size_in_words(), _oop_map_set,
980 &_handler_table, &_inc_table,
981 compiler,
982 has_unsafe_access(),
983 SharedRuntime::is_wide_vector(max_vector_size()),
984 rtm_state()
985 );
986
987 if (log() != NULL) // Print code cache state into compiler log
988 log()->code_cache_state();
989 }
990 }
991
992 //------------------------------Compile----------------------------------------
993 // Compile a runtime stub
994 Compile::Compile( ciEnv* ci_env,
995 TypeFunc_generator generator,
996 address stub_function,
997 const char *stub_name,
998 int is_fancy_jump,
999 bool pass_tls,
1000 bool save_arg_registers,
1001 bool return_pc,
1002 DirectiveSet* directive)
1003 : Phase(Compiler),
1004 _compile_id(0),
1005 _save_argument_registers(save_arg_registers),
1006 _subsume_loads(true),
1007 _do_escape_analysis(false),
1008 _eliminate_boxing(false),
1009 _method(NULL),
1010 _entry_bci(InvocationEntryBci),
1011 _stub_function(stub_function),
1012 _stub_name(stub_name),
1013 _stub_entry_point(NULL),
1014 _max_node_limit(MaxNodeLimit),
1015 _orig_pc_slot(0),
1016 _orig_pc_slot_offset_in_bytes(0),
1017 _sp_inc_slot(0),
1018 _sp_inc_slot_offset_in_bytes(0),
1019 _inlining_progress(false),
1020 _inlining_incrementally(false),
1021 _has_reserved_stack_access(false),
1022 #ifndef PRODUCT
1023 _trace_opto_output(directive->TraceOptoOutputOption),
1024 #endif
1025 _has_method_handle_invokes(false),
1026 _comp_arena(mtCompiler),
1027 _env(ci_env),
1028 _directive(directive),
1029 _log(ci_env->log()),
1030 _failure_reason(NULL),
1031 _congraph(NULL),
1032 #ifndef PRODUCT
1033 _printer(NULL),
1034 #endif
1035 _dead_node_list(comp_arena()),
1036 _dead_node_count(0),
1037 _node_arena(mtCompiler),
1038 _old_arena(mtCompiler),
1039 _mach_constant_base_node(NULL),
1040 _Compile_types(mtCompiler),
1041 _initial_gvn(NULL),
1042 _for_igvn(NULL),
1043 _warm_calls(NULL),
1044 _number_of_mh_late_inlines(0),
1045 _print_inlining_stream(NULL),
1046 _print_inlining_list(NULL),
1047 _print_inlining_idx(0),
1048 _print_inlining_output(NULL),
1049 _replay_inline_data(NULL),
1050 _java_calls(0),
1051 _inner_loops(0),
1052 _interpreter_frame_size(0),
1053 _node_bundling_limit(0),
1054 _node_bundling_base(NULL),
1055 _code_buffer("Compile::Fill_buffer"),
1056 #ifndef PRODUCT
1057 _in_dump_cnt(0),
1058 #endif
1059 _allowed_reasons(0) {
1060 C = this;
1061
1062 TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1063 TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1064
1065 #ifndef PRODUCT
1066 set_print_assembly(PrintFrameConverterAssembly);
1067 set_parsed_irreducible_loop(false);
1068 #endif
1069 set_has_irreducible_loop(false); // no loops
1070
1071 CompileWrapper cw(this);
1072 Init(/*AliasLevel=*/ 0);
1073 init_tf((*generator)());
1074
1075 {
1076 // The following is a dummy for the sake of GraphKit::gen_stub
1077 Unique_Node_List for_igvn(comp_arena());
1078 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
1079 PhaseGVN gvn(Thread::current()->resource_area(),255);
1080 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
1081 gvn.transform_no_reclaim(top());
1082
1083 GraphKit kit;
1084 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1085 }
1086
1087 NOT_PRODUCT( verify_graph_edges(); )
1088 Code_Gen();
1089 if (failing()) return;
1090
1091
1092 // Entry point will be accessed using compile->stub_entry_point();
1093 if (code_buffer() == NULL) {
1094 Matcher::soft_match_failure();
1095 } else {
1096 if (PrintAssembly && (WizardMode || Verbose))
1097 tty->print_cr("### Stub::%s", stub_name);
1098
1099 if (!failing()) {
1100 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1101
1102 // Make the NMethod
1103 // For now we mark the frame as never safe for profile stackwalking
1104 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1105 code_buffer(),
1106 CodeOffsets::frame_never_safe,
1107 // _code_offsets.value(CodeOffsets::Frame_Complete),
1108 frame_size_in_words(),
1109 _oop_map_set,
1110 save_arg_registers);
1111 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1112
1113 _stub_entry_point = rs->entry_point();
1114 }
1115 }
1116 }
1117
1118 //------------------------------Init-------------------------------------------
1119 // Prepare for a single compilation
1120 void Compile::Init(int aliaslevel) {
1121 _unique = 0;
1122 _regalloc = NULL;
1123
1124 _tf = NULL; // filled in later
1125 _top = NULL; // cached later
1126 _matcher = NULL; // filled in later
1127 _cfg = NULL; // filled in later
1128
1129 set_24_bit_selection_and_mode(Use24BitFP, false);
1130
1131 _node_note_array = NULL;
1132 _default_node_notes = NULL;
1133 DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1134
1135 _immutable_memory = NULL; // filled in at first inquiry
1136
1137 // Globally visible Nodes
1138 // First set TOP to NULL to give safe behavior during creation of RootNode
1139 set_cached_top_node(NULL);
1140 set_root(new RootNode());
1141 // Now that you have a Root to point to, create the real TOP
1142 set_cached_top_node( new ConNode(Type::TOP) );
1143 set_recent_alloc(NULL, NULL);
1144
1145 // Create Debug Information Recorder to record scopes, oopmaps, etc.
1146 env()->set_oop_recorder(new OopRecorder(env()->arena()));
1147 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1148 env()->set_dependencies(new Dependencies(env()));
1149
1150 _fixed_slots = 0;
1151 set_has_split_ifs(false);
1152 set_has_loops(has_method() && method()->has_loops()); // first approximation
1153 set_has_stringbuilder(false);
1154 set_has_boxed_value(false);
1155 _trap_can_recompile = false; // no traps emitted yet
1156 _major_progress = true; // start out assuming good things will happen
1157 set_has_unsafe_access(false);
1158 set_max_vector_size(0);
1159 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers
1160 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1161 set_decompile_count(0);
1162
1163 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1164 _loop_opts_cnt = LoopOptsCount;
1165 set_do_inlining(Inline);
1166 set_max_inline_size(MaxInlineSize);
1167 set_freq_inline_size(FreqInlineSize);
1168 set_do_scheduling(OptoScheduling);
1169 set_do_count_invocations(false);
1170 set_do_method_data_update(false);
1171
1172 set_do_vector_loop(false);
1173
1174 if (AllowVectorizeOnDemand) {
1175 if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1176 set_do_vector_loop(true);
1177 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());})
1178 } else if (has_method() && method()->name() != 0 &&
1179 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1180 set_do_vector_loop(true);
1181 }
1182 }
1183 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1184 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());})
1185
1186 set_age_code(has_method() && method()->profile_aging());
1187 set_rtm_state(NoRTM); // No RTM lock eliding by default
1188 _max_node_limit = _directive->MaxNodeLimitOption;
1189
1190 #if INCLUDE_RTM_OPT
1191 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1192 int rtm_state = method()->method_data()->rtm_state();
1193 if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1194 // Don't generate RTM lock eliding code.
1195 set_rtm_state(NoRTM);
1196 } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1197 // Generate RTM lock eliding code without abort ratio calculation code.
1198 set_rtm_state(UseRTM);
1199 } else if (UseRTMDeopt) {
1200 // Generate RTM lock eliding code and include abort ratio calculation
1201 // code if UseRTMDeopt is on.
1202 set_rtm_state(ProfileRTM);
1203 }
1204 }
1205 #endif
1206 if (debug_info()->recording_non_safepoints()) {
1207 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1208 (comp_arena(), 8, 0, NULL));
1209 set_default_node_notes(Node_Notes::make(this));
1210 }
1211
1212 // // -- Initialize types before each compile --
1213 // // Update cached type information
1214 // if( _method && _method->constants() )
1215 // Type::update_loaded_types(_method, _method->constants());
1216
1217 // Init alias_type map.
1218 if (!_do_escape_analysis && aliaslevel == 3)
1219 aliaslevel = 2; // No unique types without escape analysis
1220 _AliasLevel = aliaslevel;
1221 const int grow_ats = 16;
1222 _max_alias_types = grow_ats;
1223 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1224 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
1225 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1226 {
1227 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
1228 }
1229 // Initialize the first few types.
1230 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1231 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1232 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1233 _num_alias_types = AliasIdxRaw+1;
1234 // Zero out the alias type cache.
1235 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1236 // A NULL adr_type hits in the cache right away. Preload the right answer.
1237 probe_alias_cache(NULL)->_index = AliasIdxTop;
1238
1239 _intrinsics = NULL;
1240 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1241 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1242 _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1243 _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1244 _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1245 _value_type_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
1246 register_library_intrinsics();
1247 }
1248
1249 //---------------------------init_start----------------------------------------
1250 // Install the StartNode on this compile object.
1251 void Compile::init_start(StartNode* s) {
1252 if (failing())
1253 return; // already failing
1254 assert(s == start(), "");
1255 }
1256
1257 /**
1258 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1259 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1260 * the ideal graph.
1261 */
1262 StartNode* Compile::start() const {
1263 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1264 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1265 Node* start = root()->fast_out(i);
1266 if (start->is_Start()) {
1267 return start->as_Start();
1268 }
1269 }
1270 fatal("Did not find Start node!");
1271 return NULL;
1272 }
1273
1274 //-------------------------------immutable_memory-------------------------------------
1275 // Access immutable memory
1276 Node* Compile::immutable_memory() {
1277 if (_immutable_memory != NULL) {
1278 return _immutable_memory;
1279 }
1280 StartNode* s = start();
1281 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1282 Node *p = s->fast_out(i);
1283 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1284 _immutable_memory = p;
1285 return _immutable_memory;
1286 }
1287 }
1288 ShouldNotReachHere();
1289 return NULL;
1290 }
1291
1292 //----------------------set_cached_top_node------------------------------------
1293 // Install the cached top node, and make sure Node::is_top works correctly.
1294 void Compile::set_cached_top_node(Node* tn) {
1295 if (tn != NULL) verify_top(tn);
1296 Node* old_top = _top;
1297 _top = tn;
1298 // Calling Node::setup_is_top allows the nodes the chance to adjust
1299 // their _out arrays.
1300 if (_top != NULL) _top->setup_is_top();
1301 if (old_top != NULL) old_top->setup_is_top();
1302 assert(_top == NULL || top()->is_top(), "");
1303 }
1304
1305 #ifdef ASSERT
1306 uint Compile::count_live_nodes_by_graph_walk() {
1307 Unique_Node_List useful(comp_arena());
1308 // Get useful node list by walking the graph.
1309 identify_useful_nodes(useful);
1310 return useful.size();
1311 }
1312
1313 void Compile::print_missing_nodes() {
1314
1315 // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1316 if ((_log == NULL) && (! PrintIdealNodeCount)) {
1317 return;
1318 }
1319
1320 // This is an expensive function. It is executed only when the user
1321 // specifies VerifyIdealNodeCount option or otherwise knows the
1322 // additional work that needs to be done to identify reachable nodes
1323 // by walking the flow graph and find the missing ones using
1324 // _dead_node_list.
1325
1326 Unique_Node_List useful(comp_arena());
1327 // Get useful node list by walking the graph.
1328 identify_useful_nodes(useful);
1329
1330 uint l_nodes = C->live_nodes();
1331 uint l_nodes_by_walk = useful.size();
1332
1333 if (l_nodes != l_nodes_by_walk) {
1334 if (_log != NULL) {
1335 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1336 _log->stamp();
1337 _log->end_head();
1338 }
1339 VectorSet& useful_member_set = useful.member_set();
1340 int last_idx = l_nodes_by_walk;
1341 for (int i = 0; i < last_idx; i++) {
1342 if (useful_member_set.test(i)) {
1343 if (_dead_node_list.test(i)) {
1344 if (_log != NULL) {
1345 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1346 }
1347 if (PrintIdealNodeCount) {
1348 // Print the log message to tty
1349 tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1350 useful.at(i)->dump();
1351 }
1352 }
1353 }
1354 else if (! _dead_node_list.test(i)) {
1355 if (_log != NULL) {
1356 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1357 }
1358 if (PrintIdealNodeCount) {
1359 // Print the log message to tty
1360 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1361 }
1362 }
1363 }
1364 if (_log != NULL) {
1365 _log->tail("mismatched_nodes");
1366 }
1367 }
1368 }
1369 void Compile::record_modified_node(Node* n) {
1370 if (_modified_nodes != NULL && !_inlining_incrementally &&
1371 n->outcnt() != 0 && !n->is_Con()) {
1372 _modified_nodes->push(n);
1373 }
1374 }
1375
1376 void Compile::remove_modified_node(Node* n) {
1377 if (_modified_nodes != NULL) {
1378 _modified_nodes->remove(n);
1379 }
1380 }
1381 #endif
1382
1383 #ifndef PRODUCT
1384 void Compile::verify_top(Node* tn) const {
1385 if (tn != NULL) {
1386 assert(tn->is_Con(), "top node must be a constant");
1387 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1388 assert(tn->in(0) != NULL, "must have live top node");
1389 }
1390 }
1391 #endif
1392
1393
1394 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1395
1396 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1397 guarantee(arr != NULL, "");
1398 int num_blocks = arr->length();
1399 if (grow_by < num_blocks) grow_by = num_blocks;
1400 int num_notes = grow_by * _node_notes_block_size;
1401 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1402 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1403 while (num_notes > 0) {
1404 arr->append(notes);
1405 notes += _node_notes_block_size;
1406 num_notes -= _node_notes_block_size;
1407 }
1408 assert(num_notes == 0, "exact multiple, please");
1409 }
1410
1411 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1412 if (source == NULL || dest == NULL) return false;
1413
1414 if (dest->is_Con())
1415 return false; // Do not push debug info onto constants.
1416
1417 #ifdef ASSERT
1418 // Leave a bread crumb trail pointing to the original node:
1419 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1420 dest->set_debug_orig(source);
1421 }
1422 #endif
1423
1424 if (node_note_array() == NULL)
1425 return false; // Not collecting any notes now.
1426
1427 // This is a copy onto a pre-existing node, which may already have notes.
1428 // If both nodes have notes, do not overwrite any pre-existing notes.
1429 Node_Notes* source_notes = node_notes_at(source->_idx);
1430 if (source_notes == NULL || source_notes->is_clear()) return false;
1431 Node_Notes* dest_notes = node_notes_at(dest->_idx);
1432 if (dest_notes == NULL || dest_notes->is_clear()) {
1433 return set_node_notes_at(dest->_idx, source_notes);
1434 }
1435
1436 Node_Notes merged_notes = (*source_notes);
1437 // The order of operations here ensures that dest notes will win...
1438 merged_notes.update_from(dest_notes);
1439 return set_node_notes_at(dest->_idx, &merged_notes);
1440 }
1441
1442
1443 //--------------------------allow_range_check_smearing-------------------------
1444 // Gating condition for coalescing similar range checks.
1445 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1446 // single covering check that is at least as strong as any of them.
1447 // If the optimization succeeds, the simplified (strengthened) range check
1448 // will always succeed. If it fails, we will deopt, and then give up
1449 // on the optimization.
1450 bool Compile::allow_range_check_smearing() const {
1451 // If this method has already thrown a range-check,
1452 // assume it was because we already tried range smearing
1453 // and it failed.
1454 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1455 return !already_trapped;
1456 }
1457
1458
1459 //------------------------------flatten_alias_type-----------------------------
1460 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1461 int offset = tj->offset();
1462 TypePtr::PTR ptr = tj->ptr();
1463
1464 // Known instance (scalarizable allocation) alias only with itself.
1465 bool is_known_inst = tj->isa_oopptr() != NULL &&
1466 tj->is_oopptr()->is_known_instance();
1467
1468 // Process weird unsafe references.
1469 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1470 bool default_value_load = EnableValhalla && tj->is_instptr()->klass() == ciEnv::current()->Class_klass();
1471 assert(InlineUnsafeOps || default_value_load, "indeterminate pointers come only from unsafe ops");
1472 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1473 tj = TypeOopPtr::BOTTOM;
1474 ptr = tj->ptr();
1475 offset = tj->offset();
1476 }
1477
1478 // Array pointers need some flattening
1479 const TypeAryPtr *ta = tj->isa_aryptr();
1480 if (ta && ta->is_stable()) {
1481 // Erase stability property for alias analysis.
1482 tj = ta = ta->cast_to_stable(false);
1483 }
1484 if( ta && is_known_inst ) {
1485 if ( offset != Type::OffsetBot &&
1486 offset > arrayOopDesc::length_offset_in_bytes() ) {
1487 offset = Type::OffsetBot; // Flatten constant access into array body only
1488 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, Type::Offset(offset), ta->field_offset(), ta->instance_id());
1489 }
1490 } else if( ta && _AliasLevel >= 2 ) {
1491 // For arrays indexed by constant indices, we flatten the alias
1492 // space to include all of the array body. Only the header, klass
1493 // and array length can be accessed un-aliased.
1494 // For flattened value type array, each field has its own slice so
1495 // we must include the field offset.
1496 if( offset != Type::OffsetBot ) {
1497 if( ta->const_oop() ) { // MethodData* or Method*
1498 offset = Type::OffsetBot; // Flatten constant access into array body
1499 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1500 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1501 // range is OK as-is.
1502 tj = ta = TypeAryPtr::RANGE;
1503 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1504 tj = TypeInstPtr::KLASS; // all klass loads look alike
1505 ta = TypeAryPtr::RANGE; // generic ignored junk
1506 ptr = TypePtr::BotPTR;
1507 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1508 tj = TypeInstPtr::MARK;
1509 ta = TypeAryPtr::RANGE; // generic ignored junk
1510 ptr = TypePtr::BotPTR;
1511 } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1512 ta = tj->isa_aryptr();
1513 } else { // Random constant offset into array body
1514 offset = Type::OffsetBot; // Flatten constant access into array body
1515 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1516 }
1517 }
1518 // Arrays of fixed size alias with arrays of unknown size.
1519 if (ta->size() != TypeInt::POS) {
1520 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1521 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,Type::Offset(offset), ta->field_offset());
1522 }
1523 // Arrays of known objects become arrays of unknown objects.
1524 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1525 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1526 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1527 }
1528 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1529 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1530 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1531 }
1532 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1533 // cannot be distinguished by bytecode alone.
1534 if (ta->elem() == TypeInt::BOOL) {
1535 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1536 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1537 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset());
1538 }
1539 // During the 2nd round of IterGVN, NotNull castings are removed.
1540 // Make sure the Bottom and NotNull variants alias the same.
1541 // Also, make sure exact and non-exact variants alias the same.
1542 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1543 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1544 }
1545 }
1546
1547 // Oop pointers need some flattening
1548 const TypeInstPtr *to = tj->isa_instptr();
1549 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1550 ciInstanceKlass *k = to->klass()->as_instance_klass();
1551 if( ptr == TypePtr::Constant ) {
1552 if (to->klass() != ciEnv::current()->Class_klass() ||
1553 offset < k->size_helper() * wordSize) {
1554 // No constant oop pointers (such as Strings); they alias with
1555 // unknown strings.
1556 assert(!is_known_inst, "not scalarizable allocation");
1557 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1558 }
1559 } else if( is_known_inst ) {
1560 tj = to; // Keep NotNull and klass_is_exact for instance type
1561 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1562 // During the 2nd round of IterGVN, NotNull castings are removed.
1563 // Make sure the Bottom and NotNull variants alias the same.
1564 // Also, make sure exact and non-exact variants alias the same.
1565 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1566 }
1567 if (to->speculative() != NULL) {
1568 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),Type::Offset(to->offset()), to->instance_id());
1569 }
1570 // Canonicalize the holder of this field
1571 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1572 // First handle header references such as a LoadKlassNode, even if the
1573 // object's klass is unloaded at compile time (4965979).
1574 if (!is_known_inst) { // Do it only for non-instance types
1575 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, Type::Offset(offset));
1576 }
1577 } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1578 to = tj->is_instptr();
1579 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1580 // Static fields are in the space above the normal instance
1581 // fields in the java.lang.Class instance.
1582 if (to->klass() != ciEnv::current()->Class_klass()) {
1583 to = NULL;
1584 tj = TypeOopPtr::BOTTOM;
1585 offset = tj->offset();
1586 }
1587 } else {
1588 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1589 if (!k->equals(canonical_holder) || tj->offset() != offset) {
1590 if( is_known_inst ) {
1591 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, Type::Offset(offset), to->instance_id());
1592 } else {
1593 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, Type::Offset(offset));
1594 }
1595 }
1596 }
1597 }
1598
1599 // Klass pointers to object array klasses need some flattening
1600 const TypeKlassPtr *tk = tj->isa_klassptr();
1601 if( tk ) {
1602 // If we are referencing a field within a Klass, we need
1603 // to assume the worst case of an Object. Both exact and
1604 // inexact types must flatten to the same alias class so
1605 // use NotNull as the PTR.
1606 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1607
1608 tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1609 TypeKlassPtr::OBJECT->klass(),
1610 Type::Offset(offset));
1611 }
1612
1613 ciKlass* klass = tk->klass();
1614 if (klass != NULL && klass->is_obj_array_klass()) {
1615 ciKlass* k = TypeAryPtr::OOPS->klass();
1616 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
1617 k = TypeInstPtr::BOTTOM->klass();
1618 tj = tk = TypeKlassPtr::make(TypePtr::NotNull, k, Type::Offset(offset));
1619 }
1620
1621 // Check for precise loads from the primary supertype array and force them
1622 // to the supertype cache alias index. Check for generic array loads from
1623 // the primary supertype array and also force them to the supertype cache
1624 // alias index. Since the same load can reach both, we need to merge
1625 // these 2 disparate memories into the same alias class. Since the
1626 // primary supertype array is read-only, there's no chance of confusion
1627 // where we bypass an array load and an array store.
1628 int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1629 if (offset == Type::OffsetBot ||
1630 (offset >= primary_supers_offset &&
1631 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1632 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1633 offset = in_bytes(Klass::secondary_super_cache_offset());
1634 tj = tk = TypeKlassPtr::make(TypePtr::NotNull, tk->klass(), Type::Offset(offset));
1635 }
1636 }
1637
1638 // Flatten all Raw pointers together.
1639 if (tj->base() == Type::RawPtr)
1640 tj = TypeRawPtr::BOTTOM;
1641
1642 if (tj->base() == Type::AnyPtr)
1643 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
1644
1645 // Flatten all to bottom for now
1646 switch( _AliasLevel ) {
1647 case 0:
1648 tj = TypePtr::BOTTOM;
1649 break;
1650 case 1: // Flatten to: oop, static, field or array
1651 switch (tj->base()) {
1652 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
1653 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
1654 case Type::AryPtr: // do not distinguish arrays at all
1655 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
1656 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1657 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
1658 default: ShouldNotReachHere();
1659 }
1660 break;
1661 case 2: // No collapsing at level 2; keep all splits
1662 case 3: // No collapsing at level 3; keep all splits
1663 break;
1664 default:
1665 Unimplemented();
1666 }
1667
1668 offset = tj->offset();
1669 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1670
1671 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1672 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1673 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1674 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1675 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1676 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1677 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1678 (BarrierSet::barrier_set()->barrier_set_c2()->verify_gc_alias_type(tj, offset)),
1679 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1680 assert( tj->ptr() != TypePtr::TopPTR &&
1681 tj->ptr() != TypePtr::AnyNull &&
1682 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1683 // assert( tj->ptr() != TypePtr::Constant ||
1684 // tj->base() == Type::RawPtr ||
1685 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
1686
1687 return tj;
1688 }
1689
1690 void Compile::AliasType::Init(int i, const TypePtr* at) {
1691 _index = i;
1692 _adr_type = at;
1693 _field = NULL;
1694 _element = NULL;
1695 _is_rewritable = true; // default
1696 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1697 if (atoop != NULL && atoop->is_known_instance()) {
1698 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1699 _general_index = Compile::current()->get_alias_index(gt);
1700 } else {
1701 _general_index = 0;
1702 }
1703 }
1704
1705 BasicType Compile::AliasType::basic_type() const {
1706 if (element() != NULL) {
1707 const Type* element = adr_type()->is_aryptr()->elem();
1708 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1709 } if (field() != NULL) {
1710 return field()->layout_type();
1711 } else {
1712 return T_ILLEGAL; // unknown
1713 }
1714 }
1715
1716 //---------------------------------print_on------------------------------------
1717 #ifndef PRODUCT
1718 void Compile::AliasType::print_on(outputStream* st) {
1719 if (index() < 10)
1720 st->print("@ <%d> ", index());
1721 else st->print("@ <%d>", index());
1722 st->print(is_rewritable() ? " " : " RO");
1723 int offset = adr_type()->offset();
1724 if (offset == Type::OffsetBot)
1725 st->print(" +any");
1726 else st->print(" +%-3d", offset);
1727 st->print(" in ");
1728 adr_type()->dump_on(st);
1729 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1730 if (field() != NULL && tjp) {
1731 if (tjp->klass() != field()->holder() ||
1732 tjp->offset() != field()->offset_in_bytes()) {
1733 st->print(" != ");
1734 field()->print();
1735 st->print(" ***");
1736 }
1737 }
1738 }
1739
1740 void print_alias_types() {
1741 Compile* C = Compile::current();
1742 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1743 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1744 C->alias_type(idx)->print_on(tty);
1745 tty->cr();
1746 }
1747 }
1748 #endif
1749
1750
1751 //----------------------------probe_alias_cache--------------------------------
1752 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1753 intptr_t key = (intptr_t) adr_type;
1754 key ^= key >> logAliasCacheSize;
1755 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1756 }
1757
1758
1759 //-----------------------------grow_alias_types--------------------------------
1760 void Compile::grow_alias_types() {
1761 const int old_ats = _max_alias_types; // how many before?
1762 const int new_ats = old_ats; // how many more?
1763 const int grow_ats = old_ats+new_ats; // how many now?
1764 _max_alias_types = grow_ats;
1765 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1766 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1767 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1768 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
1769 }
1770
1771
1772 //--------------------------------find_alias_type------------------------------
1773 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1774 if (_AliasLevel == 0)
1775 return alias_type(AliasIdxBot);
1776
1777 AliasCacheEntry* ace = probe_alias_cache(adr_type);
1778 if (ace->_adr_type == adr_type) {
1779 return alias_type(ace->_index);
1780 }
1781
1782 // Handle special cases.
1783 if (adr_type == NULL) return alias_type(AliasIdxTop);
1784 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
1785
1786 // Do it the slow way.
1787 const TypePtr* flat = flatten_alias_type(adr_type);
1788
1789 #ifdef ASSERT
1790 {
1791 ResourceMark rm;
1792 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1793 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1794 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1795 Type::str(adr_type));
1796 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1797 const TypeOopPtr* foop = flat->is_oopptr();
1798 // Scalarizable allocations have exact klass always.
1799 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1800 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1801 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1802 Type::str(foop), Type::str(xoop));
1803 }
1804 }
1805 #endif
1806
1807 int idx = AliasIdxTop;
1808 for (int i = 0; i < num_alias_types(); i++) {
1809 if (alias_type(i)->adr_type() == flat) {
1810 idx = i;
1811 break;
1812 }
1813 }
1814
1815 if (idx == AliasIdxTop) {
1816 if (no_create) return NULL;
1817 // Grow the array if necessary.
1818 if (_num_alias_types == _max_alias_types) grow_alias_types();
1819 // Add a new alias type.
1820 idx = _num_alias_types++;
1821 _alias_types[idx]->Init(idx, flat);
1822 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
1823 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
1824 if (flat->isa_instptr()) {
1825 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1826 && flat->is_instptr()->klass() == env()->Class_klass())
1827 alias_type(idx)->set_rewritable(false);
1828 }
1829 ciField* field = NULL;
1830 if (flat->isa_aryptr()) {
1831 #ifdef ASSERT
1832 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1833 // (T_BYTE has the weakest alignment and size restrictions...)
1834 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1835 #endif
1836 const Type* elemtype = flat->is_aryptr()->elem();
1837 if (flat->offset() == TypePtr::OffsetBot) {
1838 alias_type(idx)->set_element(elemtype);
1839 }
1840 int field_offset = flat->is_aryptr()->field_offset().get();
1841 if (elemtype->isa_valuetype() && field_offset != Type::OffsetBot) {
1842 ciValueKlass* vk = elemtype->is_valuetype()->value_klass();
1843 field_offset += vk->first_field_offset();
1844 field = vk->get_field_by_offset(field_offset, false);
1845 }
1846 }
1847 if (flat->isa_klassptr()) {
1848 if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1849 alias_type(idx)->set_rewritable(false);
1850 if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1851 alias_type(idx)->set_rewritable(false);
1852 if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1853 alias_type(idx)->set_rewritable(false);
1854 if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1855 alias_type(idx)->set_rewritable(false);
1856 }
1857 // %%% (We would like to finalize JavaThread::threadObj_offset(),
1858 // but the base pointer type is not distinctive enough to identify
1859 // references into JavaThread.)
1860
1861 // Check for final fields.
1862 const TypeInstPtr* tinst = flat->isa_instptr();
1863 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1864 if (tinst->const_oop() != NULL &&
1865 tinst->klass() == ciEnv::current()->Class_klass() &&
1866 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1867 // static field
1868 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1869 field = k->get_field_by_offset(tinst->offset(), true);
1870 } else if (tinst->klass()->is_valuetype()) {
1871 // Value type field
1872 ciValueKlass* vk = tinst->value_klass();
1873 field = vk->get_field_by_offset(tinst->offset(), false);
1874 } else {
1875 ciInstanceKlass* k = tinst->klass()->as_instance_klass();
1876 field = k->get_field_by_offset(tinst->offset(), false);
1877 }
1878 }
1879 assert(field == NULL ||
1880 original_field == NULL ||
1881 (field->holder() == original_field->holder() &&
1882 field->offset() == original_field->offset() &&
1883 field->is_static() == original_field->is_static()), "wrong field?");
1884 // Set field() and is_rewritable() attributes.
1885 if (field != NULL) alias_type(idx)->set_field(field);
1886 }
1887
1888 // Fill the cache for next time.
1889 ace->_adr_type = adr_type;
1890 ace->_index = idx;
1891 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
1892
1893 // Might as well try to fill the cache for the flattened version, too.
1894 AliasCacheEntry* face = probe_alias_cache(flat);
1895 if (face->_adr_type == NULL) {
1896 face->_adr_type = flat;
1897 face->_index = idx;
1898 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1899 }
1900
1901 return alias_type(idx);
1902 }
1903
1904
1905 Compile::AliasType* Compile::alias_type(ciField* field) {
1906 const TypeOopPtr* t;
1907 if (field->is_static())
1908 t = TypeInstPtr::make(field->holder()->java_mirror());
1909 else
1910 t = TypeOopPtr::make_from_klass_raw(field->holder());
1911 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1912 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1913 return atp;
1914 }
1915
1916
1917 //------------------------------have_alias_type--------------------------------
1918 bool Compile::have_alias_type(const TypePtr* adr_type) {
1919 AliasCacheEntry* ace = probe_alias_cache(adr_type);
1920 if (ace->_adr_type == adr_type) {
1921 return true;
1922 }
1923
1924 // Handle special cases.
1925 if (adr_type == NULL) return true;
1926 if (adr_type == TypePtr::BOTTOM) return true;
1927
1928 return find_alias_type(adr_type, true, NULL) != NULL;
1929 }
1930
1931 //-----------------------------must_alias--------------------------------------
1932 // True if all values of the given address type are in the given alias category.
1933 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1934 if (alias_idx == AliasIdxBot) return true; // the universal category
1935 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
1936 if (alias_idx == AliasIdxTop) return false; // the empty category
1937 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1938
1939 // the only remaining possible overlap is identity
1940 int adr_idx = get_alias_index(adr_type);
1941 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1942 assert(adr_idx == alias_idx ||
1943 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1944 && adr_type != TypeOopPtr::BOTTOM),
1945 "should not be testing for overlap with an unsafe pointer");
1946 return adr_idx == alias_idx;
1947 }
1948
1949 //------------------------------can_alias--------------------------------------
1950 // True if any values of the given address type are in the given alias category.
1951 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1952 if (alias_idx == AliasIdxTop) return false; // the empty category
1953 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
1954 if (alias_idx == AliasIdxBot) return true; // the universal category
1955 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
1956
1957 // the only remaining possible overlap is identity
1958 int adr_idx = get_alias_index(adr_type);
1959 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1960 return adr_idx == alias_idx;
1961 }
1962
1963
1964
1965 //---------------------------pop_warm_call-------------------------------------
1966 WarmCallInfo* Compile::pop_warm_call() {
1967 WarmCallInfo* wci = _warm_calls;
1968 if (wci != NULL) _warm_calls = wci->remove_from(wci);
1969 return wci;
1970 }
1971
1972 //----------------------------Inline_Warm--------------------------------------
1973 int Compile::Inline_Warm() {
1974 // If there is room, try to inline some more warm call sites.
1975 // %%% Do a graph index compaction pass when we think we're out of space?
1976 if (!InlineWarmCalls) return 0;
1977
1978 int calls_made_hot = 0;
1979 int room_to_grow = NodeCountInliningCutoff - unique();
1980 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1981 int amount_grown = 0;
1982 WarmCallInfo* call;
1983 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1984 int est_size = (int)call->size();
1985 if (est_size > (room_to_grow - amount_grown)) {
1986 // This one won't fit anyway. Get rid of it.
1987 call->make_cold();
1988 continue;
1989 }
1990 call->make_hot();
1991 calls_made_hot++;
1992 amount_grown += est_size;
1993 amount_to_grow -= est_size;
1994 }
1995
1996 if (calls_made_hot > 0) set_major_progress();
1997 return calls_made_hot;
1998 }
1999
2000
2001 //----------------------------Finish_Warm--------------------------------------
2002 void Compile::Finish_Warm() {
2003 if (!InlineWarmCalls) return;
2004 if (failing()) return;
2005 if (warm_calls() == NULL) return;
2006
2007 // Clean up loose ends, if we are out of space for inlining.
2008 WarmCallInfo* call;
2009 while ((call = pop_warm_call()) != NULL) {
2010 call->make_cold();
2011 }
2012 }
2013
2014 //---------------------cleanup_loop_predicates-----------------------
2015 // Remove the opaque nodes that protect the predicates so that all unused
2016 // checks and uncommon_traps will be eliminated from the ideal graph
2017 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
2018 if (predicate_count()==0) return;
2019 for (int i = predicate_count(); i > 0; i--) {
2020 Node * n = predicate_opaque1_node(i-1);
2021 assert(n->Opcode() == Op_Opaque1, "must be");
2022 igvn.replace_node(n, n->in(1));
2023 }
2024 assert(predicate_count()==0, "should be clean!");
2025 }
2026
2027 void Compile::add_range_check_cast(Node* n) {
2028 assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
2029 assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
2030 _range_check_casts->append(n);
2031 }
2032
2033 // Remove all range check dependent CastIINodes.
2034 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
2035 for (int i = range_check_cast_count(); i > 0; i--) {
2036 Node* cast = range_check_cast_node(i-1);
2037 assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
2038 igvn.replace_node(cast, cast->in(1));
2039 }
2040 assert(range_check_cast_count() == 0, "should be empty");
2041 }
2042
2043 void Compile::add_opaque4_node(Node* n) {
2044 assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
2045 assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
2046 _opaque4_nodes->append(n);
2047 }
2048
2049 // Remove all Opaque4 nodes.
2050 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
2051 for (int i = opaque4_count(); i > 0; i--) {
2052 Node* opaq = opaque4_node(i-1);
2053 assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
2054 igvn.replace_node(opaq, opaq->in(2));
2055 }
2056 assert(opaque4_count() == 0, "should be empty");
2057 }
2058
2059 void Compile::add_value_type(Node* n) {
2060 assert(n->is_ValueTypeBase(), "unexpected node");
2061 if (_value_type_nodes != NULL) {
2062 _value_type_nodes->push(n);
2063 }
2064 }
2065
2066 void Compile::remove_value_type(Node* n) {
2067 assert(n->is_ValueTypeBase(), "unexpected node");
2068 if (_value_type_nodes != NULL) {
2069 _value_type_nodes->remove(n);
2070 }
2071 }
2072
2073 // Does the return value keep otherwise useless value type allocations
2074 // alive?
2075 static bool return_val_keeps_allocations_alive(Node* ret_val) {
2076 ResourceMark rm;
2077 Unique_Node_List wq;
2078 wq.push(ret_val);
2079 bool some_allocations = false;
2080 for (uint i = 0; i < wq.size(); i++) {
2081 Node* n = wq.at(i);
2082 assert(!n->is_ValueTypeBase(), "chain of value type nodes");
2083 if (n->outcnt() > 1) {
2084 // Some other use for the allocation
2085 return false;
2086 } else if (n->is_Phi()) {
2087 for (uint j = 1; j < n->req(); j++) {
2088 wq.push(n->in(j));
2089 }
2090 } else if (n->is_CheckCastPP() &&
2091 n->in(1)->is_Proj() &&
2092 n->in(1)->in(0)->is_Allocate()) {
2093 some_allocations = true;
2094 }
2095 }
2096 return some_allocations;
2097 }
2098
2099 void Compile::process_value_types(PhaseIterGVN &igvn) {
2100 // Make value types scalar in safepoints
2101 while (_value_type_nodes->size() != 0) {
2102 ValueTypeBaseNode* vt = _value_type_nodes->pop()->as_ValueTypeBase();
2103 vt->make_scalar_in_safepoints(&igvn);
2104 if (vt->is_ValueTypePtr()) {
2105 igvn.replace_node(vt, vt->get_oop());
2106 } else if (vt->outcnt() == 0) {
2107 igvn.remove_dead_node(vt);
2108 }
2109 }
2110 _value_type_nodes = NULL;
2111 if (tf()->returns_value_type_as_fields()) {
2112 Node* ret = NULL;
2113 for (uint i = 1; i < root()->req(); i++){
2114 Node* in = root()->in(i);
2115 if (in->Opcode() == Op_Return) {
2116 assert(ret == NULL, "only one return");
2117 ret = in;
2118 }
2119 }
2120 if (ret != NULL) {
2121 Node* ret_val = ret->in(TypeFunc::Parms);
2122 if (igvn.type(ret_val)->isa_oopptr() &&
2123 return_val_keeps_allocations_alive(ret_val)) {
2124 igvn.replace_input_of(ret, TypeFunc::Parms, ValueTypeNode::tagged_klass(igvn.type(ret_val)->value_klass(), igvn));
2125 assert(ret_val->outcnt() == 0, "should be dead now");
2126 igvn.remove_dead_node(ret_val);
2127 }
2128 }
2129 }
2130 igvn.optimize();
2131 }
2132
2133 // StringOpts and late inlining of string methods
2134 void Compile::inline_string_calls(bool parse_time) {
2135 {
2136 // remove useless nodes to make the usage analysis simpler
2137 ResourceMark rm;
2138 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2139 }
2140
2141 {
2142 ResourceMark rm;
2143 print_method(PHASE_BEFORE_STRINGOPTS, 3);
2144 PhaseStringOpts pso(initial_gvn(), for_igvn());
2145 print_method(PHASE_AFTER_STRINGOPTS, 3);
2146 }
2147
2148 // now inline anything that we skipped the first time around
2149 if (!parse_time) {
2150 _late_inlines_pos = _late_inlines.length();
2151 }
2152
2153 while (_string_late_inlines.length() > 0) {
2154 CallGenerator* cg = _string_late_inlines.pop();
2155 cg->do_late_inline();
2156 if (failing()) return;
2157 }
2158 _string_late_inlines.trunc_to(0);
2159 }
2160
2161 // Late inlining of boxing methods
2162 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2163 if (_boxing_late_inlines.length() > 0) {
2164 assert(has_boxed_value(), "inconsistent");
2165
2166 PhaseGVN* gvn = initial_gvn();
2167 set_inlining_incrementally(true);
2168
2169 assert( igvn._worklist.size() == 0, "should be done with igvn" );
2170 for_igvn()->clear();
2171 gvn->replace_with(&igvn);
2172
2173 _late_inlines_pos = _late_inlines.length();
2174
2175 while (_boxing_late_inlines.length() > 0) {
2176 CallGenerator* cg = _boxing_late_inlines.pop();
2177 cg->do_late_inline();
2178 if (failing()) return;
2179 }
2180 _boxing_late_inlines.trunc_to(0);
2181
2182 inline_incrementally_cleanup(igvn);
2183
2184 set_inlining_incrementally(false);
2185 }
2186 }
2187
2188 bool Compile::inline_incrementally_one() {
2189 assert(IncrementalInline, "incremental inlining should be on");
2190
2191 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2192 set_inlining_progress(false);
2193 set_do_cleanup(false);
2194 int i = 0;
2195 for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2196 CallGenerator* cg = _late_inlines.at(i);
2197 _late_inlines_pos = i+1;
2198 cg->do_late_inline();
2199 if (failing()) return false;
2200 }
2201 int j = 0;
2202 for (; i < _late_inlines.length(); i++, j++) {
2203 _late_inlines.at_put(j, _late_inlines.at(i));
2204 }
2205 _late_inlines.trunc_to(j);
2206 assert(inlining_progress() || _late_inlines.length() == 0, "");
2207
2208 bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2209
2210 set_inlining_progress(false);
2211 set_do_cleanup(false);
2212 return (_late_inlines.length() > 0) && !needs_cleanup;
2213 }
2214
2215 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2216 {
2217 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2218 ResourceMark rm;
2219 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2220 }
2221 {
2222 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2223 igvn = PhaseIterGVN(initial_gvn());
2224 igvn.optimize();
2225 }
2226 }
2227
2228 // Perform incremental inlining until bound on number of live nodes is reached
2229 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2230 TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2231
2232 set_inlining_incrementally(true);
2233 uint low_live_nodes = 0;
2234
2235 while (_late_inlines.length() > 0) {
2236 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2237 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2238 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2239 // PhaseIdealLoop is expensive so we only try it once we are
2240 // out of live nodes and we only try it again if the previous
2241 // helped got the number of nodes down significantly
2242 PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2243 if (failing()) return;
2244 low_live_nodes = live_nodes();
2245 _major_progress = true;
2246 }
2247
2248 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2249 break; // finish
2250 }
2251 }
2252
2253 for_igvn()->clear();
2254 initial_gvn()->replace_with(&igvn);
2255
2256 while (inline_incrementally_one()) {
2257 assert(!failing(), "inconsistent");
2258 }
2259
2260 if (failing()) return;
2261
2262 inline_incrementally_cleanup(igvn);
2263
2264 if (failing()) return;
2265 }
2266 assert( igvn._worklist.size() == 0, "should be done with igvn" );
2267
2268 if (_string_late_inlines.length() > 0) {
2269 assert(has_stringbuilder(), "inconsistent");
2270 for_igvn()->clear();
2271 initial_gvn()->replace_with(&igvn);
2272
2273 inline_string_calls(false);
2274
2275 if (failing()) return;
2276
2277 inline_incrementally_cleanup(igvn);
2278 }
2279
2280 set_inlining_incrementally(false);
2281 }
2282
2283
2284 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2285 if(_loop_opts_cnt > 0) {
2286 debug_only( int cnt = 0; );
2287 while(major_progress() && (_loop_opts_cnt > 0)) {
2288 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2289 assert( cnt++ < 40, "infinite cycle in loop optimization" );
2290 PhaseIdealLoop::optimize(igvn, mode);
2291 _loop_opts_cnt--;
2292 if (failing()) return false;
2293 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2294 }
2295 }
2296 return true;
2297 }
2298
2299 // Remove edges from "root" to each SafePoint at a backward branch.
2300 // They were inserted during parsing (see add_safepoint()) to make
2301 // infinite loops without calls or exceptions visible to root, i.e.,
2302 // useful.
2303 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2304 Node *r = root();
2305 if (r != NULL) {
2306 for (uint i = r->req(); i < r->len(); ++i) {
2307 Node *n = r->in(i);
2308 if (n != NULL && n->is_SafePoint()) {
2309 r->rm_prec(i);
2310 if (n->outcnt() == 0) {
2311 igvn.remove_dead_node(n);
2312 }
2313 --i;
2314 }
2315 }
2316 }
2317 }
2318
2319 //------------------------------Optimize---------------------------------------
2320 // Given a graph, optimize it.
2321 void Compile::Optimize() {
2322 TracePhase tp("optimizer", &timers[_t_optimizer]);
2323
2324 #ifndef PRODUCT
2325 if (_directive->BreakAtCompileOption) {
2326 BREAKPOINT;
2327 }
2328
2329 #endif
2330
2331 #ifdef ASSERT
2332 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2333 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2334 #endif
2335
2336 ResourceMark rm;
2337
2338 print_inlining_reinit();
2339
2340 NOT_PRODUCT( verify_graph_edges(); )
2341
2342 print_method(PHASE_AFTER_PARSING);
2343
2344 {
2345 // Iterative Global Value Numbering, including ideal transforms
2346 // Initialize IterGVN with types and values from parse-time GVN
2347 PhaseIterGVN igvn(initial_gvn());
2348 #ifdef ASSERT
2349 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2350 #endif
2351 {
2352 TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2353 igvn.optimize();
2354 }
2355
2356 if (failing()) return;
2357
2358 print_method(PHASE_ITER_GVN1, 2);
2359
2360 inline_incrementally(igvn);
2361
2362 print_method(PHASE_INCREMENTAL_INLINE, 2);
2363
2364 if (failing()) return;
2365
2366 if (eliminate_boxing()) {
2367 // Inline valueOf() methods now.
2368 inline_boxing_calls(igvn);
2369
2370 if (AlwaysIncrementalInline) {
2371 inline_incrementally(igvn);
2372 }
2373
2374 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2375
2376 if (failing()) return;
2377 }
2378
2379 // Now that all inlining is over, cut edge from root to loop
2380 // safepoints
2381 remove_root_to_sfpts_edges(igvn);
2382
2383 // Remove the speculative part of types and clean up the graph from
2384 // the extra CastPP nodes whose only purpose is to carry them. Do
2385 // that early so that optimizations are not disrupted by the extra
2386 // CastPP nodes.
2387 remove_speculative_types(igvn);
2388
2389 // No more new expensive nodes will be added to the list from here
2390 // so keep only the actual candidates for optimizations.
2391 cleanup_expensive_nodes(igvn);
2392
2393 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2394 Compile::TracePhase tp("", &timers[_t_renumberLive]);
2395 initial_gvn()->replace_with(&igvn);
2396 for_igvn()->clear();
2397 Unique_Node_List new_worklist(C->comp_arena());
2398 {
2399 ResourceMark rm;
2400 PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2401 }
2402 set_for_igvn(&new_worklist);
2403 igvn = PhaseIterGVN(initial_gvn());
2404 igvn.optimize();
2405 }
2406
2407 if (_value_type_nodes->size() > 0) {
2408 // Do this once all inlining is over to avoid getting inconsistent debug info
2409 process_value_types(igvn);
2410 }
2411
2412 // Perform escape analysis
2413 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2414 if (has_loops()) {
2415 // Cleanup graph (remove dead nodes).
2416 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2417 PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2418 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2419 if (failing()) return;
2420 }
2421 ConnectionGraph::do_analysis(this, &igvn);
2422
2423 if (failing()) return;
2424
2425 // Optimize out fields loads from scalar replaceable allocations.
2426 igvn.optimize();
2427 print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2428
2429 if (failing()) return;
2430
2431 if (congraph() != NULL && macro_count() > 0) {
2432 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2433 PhaseMacroExpand mexp(igvn);
2434 mexp.eliminate_macro_nodes();
2435 igvn.set_delay_transform(false);
2436
2437 igvn.optimize();
2438 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2439
2440 if (failing()) return;
2441 }
2442 }
2443
2444 // Loop transforms on the ideal graph. Range Check Elimination,
2445 // peeling, unrolling, etc.
2446
2447 // Set loop opts counter
2448 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2449 {
2450 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2451 PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2452 _loop_opts_cnt--;
2453 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2454 if (failing()) return;
2455 }
2456 // Loop opts pass if partial peeling occurred in previous pass
2457 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2458 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2459 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2460 _loop_opts_cnt--;
2461 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2462 if (failing()) return;
2463 }
2464 // Loop opts pass for loop-unrolling before CCP
2465 if(major_progress() && (_loop_opts_cnt > 0)) {
2466 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2467 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2468 _loop_opts_cnt--;
2469 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2470 }
2471 if (!failing()) {
2472 // Verify that last round of loop opts produced a valid graph
2473 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2474 PhaseIdealLoop::verify(igvn);
2475 }
2476 }
2477 if (failing()) return;
2478
2479 // Conditional Constant Propagation;
2480 PhaseCCP ccp( &igvn );
2481 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2482 {
2483 TracePhase tp("ccp", &timers[_t_ccp]);
2484 ccp.do_transform();
2485 }
2486 print_method(PHASE_CPP1, 2);
2487
2488 assert( true, "Break here to ccp.dump_old2new_map()");
2489
2490 // Iterative Global Value Numbering, including ideal transforms
2491 {
2492 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2493 igvn = ccp;
2494 igvn.optimize();
2495 }
2496
2497 print_method(PHASE_ITER_GVN2, 2);
2498
2499 if (failing()) return;
2500
2501 // Loop transforms on the ideal graph. Range Check Elimination,
2502 // peeling, unrolling, etc.
2503 if (!optimize_loops(igvn, LoopOptsDefault)) {
2504 return;
2505 }
2506
2507 #if INCLUDE_ZGC
2508 if (UseZGC) {
2509 ZBarrierSetC2::find_dominating_barriers(igvn);
2510 }
2511 #endif
2512
2513 if (failing()) return;
2514
2515 // Ensure that major progress is now clear
2516 C->clear_major_progress();
2517
2518 {
2519 // Verify that all previous optimizations produced a valid graph
2520 // at least to this point, even if no loop optimizations were done.
2521 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2522 PhaseIdealLoop::verify(igvn);
2523 }
2524
2525 if (range_check_cast_count() > 0) {
2526 // No more loop optimizations. Remove all range check dependent CastIINodes.
2527 C->remove_range_check_casts(igvn);
2528 igvn.optimize();
2529 }
2530
2531 #ifdef ASSERT
2532 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2533 bs->verify_gc_barriers(this, BarrierSetC2::BeforeExpand);
2534 #endif
2535
2536 {
2537 TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2538 PhaseMacroExpand mex(igvn);
2539 print_method(PHASE_BEFORE_MACRO_EXPANSION, 2);
2540 if (mex.expand_macro_nodes()) {
2541 assert(failing(), "must bail out w/ explicit message");
2542 return;
2543 }
2544 }
2545
2546 {
2547 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2548 print_method(PHASE_BEFORE_BARRIER_EXPAND, 2);
2549 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2550 if (bs->expand_barriers(this, igvn)) {
2551 assert(failing(), "must bail out w/ explicit message");
2552 return;
2553 }
2554 }
2555
2556 if (opaque4_count() > 0) {
2557 C->remove_opaque4_nodes(igvn);
2558 igvn.optimize();
2559 }
2560
2561 DEBUG_ONLY( _modified_nodes = NULL; )
2562 } // (End scope of igvn; run destructor if necessary for asserts.)
2563
2564 process_print_inlining();
2565 // A method with only infinite loops has no edges entering loops from root
2566 {
2567 TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2568 if (final_graph_reshaping()) {
2569 assert(failing(), "must bail out w/ explicit message");
2570 return;
2571 }
2572 }
2573
2574 print_method(PHASE_OPTIMIZE_FINISHED, 2);
2575 }
2576
2577 //------------------------------Code_Gen---------------------------------------
2578 // Given a graph, generate code for it
2579 void Compile::Code_Gen() {
2580 if (failing()) {
2581 return;
2582 }
2583
2584 // Perform instruction selection. You might think we could reclaim Matcher
2585 // memory PDQ, but actually the Matcher is used in generating spill code.
2586 // Internals of the Matcher (including some VectorSets) must remain live
2587 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2588 // set a bit in reclaimed memory.
2589
2590 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2591 // nodes. Mapping is only valid at the root of each matched subtree.
2592 NOT_PRODUCT( verify_graph_edges(); )
2593
2594 Matcher matcher;
2595 _matcher = &matcher;
2596 {
2597 TracePhase tp("matcher", &timers[_t_matcher]);
2598 matcher.match();
2599 }
2600 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2601 // nodes. Mapping is only valid at the root of each matched subtree.
2602 NOT_PRODUCT( verify_graph_edges(); )
2603
2604 // If you have too many nodes, or if matching has failed, bail out
2605 check_node_count(0, "out of nodes matching instructions");
2606 if (failing()) {
2607 return;
2608 }
2609
2610 print_method(PHASE_MATCHING, 2);
2611
2612 // Build a proper-looking CFG
2613 PhaseCFG cfg(node_arena(), root(), matcher);
2614 _cfg = &cfg;
2615 {
2616 TracePhase tp("scheduler", &timers[_t_scheduler]);
2617 bool success = cfg.do_global_code_motion();
2618 if (!success) {
2619 return;
2620 }
2621
2622 print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2623 NOT_PRODUCT( verify_graph_edges(); )
2624 debug_only( cfg.verify(); )
2625 }
2626
2627 PhaseChaitin regalloc(unique(), cfg, matcher, false);
2628 _regalloc = ®alloc;
2629 {
2630 TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2631 // Perform register allocation. After Chaitin, use-def chains are
2632 // no longer accurate (at spill code) and so must be ignored.
2633 // Node->LRG->reg mappings are still accurate.
2634 _regalloc->Register_Allocate();
2635
2636 // Bail out if the allocator builds too many nodes
2637 if (failing()) {
2638 return;
2639 }
2640 }
2641
2642 // Prior to register allocation we kept empty basic blocks in case the
2643 // the allocator needed a place to spill. After register allocation we
2644 // are not adding any new instructions. If any basic block is empty, we
2645 // can now safely remove it.
2646 {
2647 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2648 cfg.remove_empty_blocks();
2649 if (do_freq_based_layout()) {
2650 PhaseBlockLayout layout(cfg);
2651 } else {
2652 cfg.set_loop_alignment();
2653 }
2654 cfg.fixup_flow();
2655 }
2656
2657 // Apply peephole optimizations
2658 if( OptoPeephole ) {
2659 TracePhase tp("peephole", &timers[_t_peephole]);
2660 PhasePeephole peep( _regalloc, cfg);
2661 peep.do_transform();
2662 }
2663
2664 // Do late expand if CPU requires this.
2665 if (Matcher::require_postalloc_expand) {
2666 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2667 cfg.postalloc_expand(_regalloc);
2668 }
2669
2670 // Convert Nodes to instruction bits in a buffer
2671 {
2672 TraceTime tp("output", &timers[_t_output], CITime);
2673 Output();
2674 }
2675
2676 print_method(PHASE_FINAL_CODE);
2677
2678 // He's dead, Jim.
2679 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef);
2680 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2681 }
2682
2683
2684 //------------------------------dump_asm---------------------------------------
2685 // Dump formatted assembly
2686 #ifndef PRODUCT
2687 void Compile::dump_asm(int *pcs, uint pc_limit) {
2688 bool cut_short = false;
2689 tty->print_cr("#");
2690 tty->print("# "); _tf->dump(); tty->cr();
2691 tty->print_cr("#");
2692
2693 // For all blocks
2694 int pc = 0x0; // Program counter
2695 char starts_bundle = ' ';
2696 _regalloc->dump_frame();
2697
2698 Node *n = NULL;
2699 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2700 if (VMThread::should_terminate()) {
2701 cut_short = true;
2702 break;
2703 }
2704 Block* block = _cfg->get_block(i);
2705 if (block->is_connector() && !Verbose) {
2706 continue;
2707 }
2708 n = block->head();
2709 if (pcs && n->_idx < pc_limit) {
2710 tty->print("%3.3x ", pcs[n->_idx]);
2711 } else {
2712 tty->print(" ");
2713 }
2714 block->dump_head(_cfg);
2715 if (block->is_connector()) {
2716 tty->print_cr(" # Empty connector block");
2717 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2718 tty->print_cr(" # Block is sole successor of call");
2719 }
2720
2721 // For all instructions
2722 Node *delay = NULL;
2723 for (uint j = 0; j < block->number_of_nodes(); j++) {
2724 if (VMThread::should_terminate()) {
2725 cut_short = true;
2726 break;
2727 }
2728 n = block->get_node(j);
2729 if (valid_bundle_info(n)) {
2730 Bundle* bundle = node_bundling(n);
2731 if (bundle->used_in_unconditional_delay()) {
2732 delay = n;
2733 continue;
2734 }
2735 if (bundle->starts_bundle()) {
2736 starts_bundle = '+';
2737 }
2738 }
2739
2740 if (WizardMode) {
2741 n->dump();
2742 }
2743
2744 if( !n->is_Region() && // Dont print in the Assembly
2745 !n->is_Phi() && // a few noisely useless nodes
2746 !n->is_Proj() &&
2747 !n->is_MachTemp() &&
2748 !n->is_SafePointScalarObject() &&
2749 !n->is_Catch() && // Would be nice to print exception table targets
2750 !n->is_MergeMem() && // Not very interesting
2751 !n->is_top() && // Debug info table constants
2752 !(n->is_Con() && !n->is_Mach())// Debug info table constants
2753 ) {
2754 if (pcs && n->_idx < pc_limit)
2755 tty->print("%3.3x", pcs[n->_idx]);
2756 else
2757 tty->print(" ");
2758 tty->print(" %c ", starts_bundle);
2759 starts_bundle = ' ';
2760 tty->print("\t");
2761 n->format(_regalloc, tty);
2762 tty->cr();
2763 }
2764
2765 // If we have an instruction with a delay slot, and have seen a delay,
2766 // then back up and print it
2767 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2768 assert(delay != NULL, "no unconditional delay instruction");
2769 if (WizardMode) delay->dump();
2770
2771 if (node_bundling(delay)->starts_bundle())
2772 starts_bundle = '+';
2773 if (pcs && n->_idx < pc_limit)
2774 tty->print("%3.3x", pcs[n->_idx]);
2775 else
2776 tty->print(" ");
2777 tty->print(" %c ", starts_bundle);
2778 starts_bundle = ' ';
2779 tty->print("\t");
2780 delay->format(_regalloc, tty);
2781 tty->cr();
2782 delay = NULL;
2783 }
2784
2785 // Dump the exception table as well
2786 if( n->is_Catch() && (Verbose || WizardMode) ) {
2787 // Print the exception table for this offset
2788 _handler_table.print_subtable_for(pc);
2789 }
2790 }
2791
2792 if (pcs && n->_idx < pc_limit)
2793 tty->print_cr("%3.3x", pcs[n->_idx]);
2794 else
2795 tty->cr();
2796
2797 assert(cut_short || delay == NULL, "no unconditional delay branch");
2798
2799 } // End of per-block dump
2800 tty->cr();
2801
2802 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
2803 }
2804 #endif
2805
2806 //------------------------------Final_Reshape_Counts---------------------------
2807 // This class defines counters to help identify when a method
2808 // may/must be executed using hardware with only 24-bit precision.
2809 struct Final_Reshape_Counts : public StackObj {
2810 int _call_count; // count non-inlined 'common' calls
2811 int _float_count; // count float ops requiring 24-bit precision
2812 int _double_count; // count double ops requiring more precision
2813 int _java_call_count; // count non-inlined 'java' calls
2814 int _inner_loop_count; // count loops which need alignment
2815 VectorSet _visited; // Visitation flags
2816 Node_List _tests; // Set of IfNodes & PCTableNodes
2817
2818 Final_Reshape_Counts() :
2819 _call_count(0), _float_count(0), _double_count(0),
2820 _java_call_count(0), _inner_loop_count(0),
2821 _visited( Thread::current()->resource_area() ) { }
2822
2823 void inc_call_count () { _call_count ++; }
2824 void inc_float_count () { _float_count ++; }
2825 void inc_double_count() { _double_count++; }
2826 void inc_java_call_count() { _java_call_count++; }
2827 void inc_inner_loop_count() { _inner_loop_count++; }
2828
2829 int get_call_count () const { return _call_count ; }
2830 int get_float_count () const { return _float_count ; }
2831 int get_double_count() const { return _double_count; }
2832 int get_java_call_count() const { return _java_call_count; }
2833 int get_inner_loop_count() const { return _inner_loop_count; }
2834 };
2835
2836 #ifdef ASSERT
2837 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2838 ciInstanceKlass *k = tp->klass()->as_instance_klass();
2839 // Make sure the offset goes inside the instance layout.
2840 return k->contains_field_offset(tp->offset());
2841 // Note that OffsetBot and OffsetTop are very negative.
2842 }
2843 #endif
2844
2845 // Eliminate trivially redundant StoreCMs and accumulate their
2846 // precedence edges.
2847 void Compile::eliminate_redundant_card_marks(Node* n) {
2848 assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2849 if (n->in(MemNode::Address)->outcnt() > 1) {
2850 // There are multiple users of the same address so it might be
2851 // possible to eliminate some of the StoreCMs
2852 Node* mem = n->in(MemNode::Memory);
2853 Node* adr = n->in(MemNode::Address);
2854 Node* val = n->in(MemNode::ValueIn);
2855 Node* prev = n;
2856 bool done = false;
2857 // Walk the chain of StoreCMs eliminating ones that match. As
2858 // long as it's a chain of single users then the optimization is
2859 // safe. Eliminating partially redundant StoreCMs would require
2860 // cloning copies down the other paths.
2861 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2862 if (adr == mem->in(MemNode::Address) &&
2863 val == mem->in(MemNode::ValueIn)) {
2864 // redundant StoreCM
2865 if (mem->req() > MemNode::OopStore) {
2866 // Hasn't been processed by this code yet.
2867 n->add_prec(mem->in(MemNode::OopStore));
2868 } else {
2869 // Already converted to precedence edge
2870 for (uint i = mem->req(); i < mem->len(); i++) {
2871 // Accumulate any precedence edges
2872 if (mem->in(i) != NULL) {
2873 n->add_prec(mem->in(i));
2874 }
2875 }
2876 // Everything above this point has been processed.
2877 done = true;
2878 }
2879 // Eliminate the previous StoreCM
2880 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2881 assert(mem->outcnt() == 0, "should be dead");
2882 mem->disconnect_inputs(NULL, this);
2883 } else {
2884 prev = mem;
2885 }
2886 mem = prev->in(MemNode::Memory);
2887 }
2888 }
2889 }
2890
2891
2892 //------------------------------final_graph_reshaping_impl----------------------
2893 // Implement items 1-5 from final_graph_reshaping below.
2894 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2895
2896 if ( n->outcnt() == 0 ) return; // dead node
2897 uint nop = n->Opcode();
2898
2899 // Check for 2-input instruction with "last use" on right input.
2900 // Swap to left input. Implements item (2).
2901 if( n->req() == 3 && // two-input instruction
2902 n->in(1)->outcnt() > 1 && // left use is NOT a last use
2903 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2904 n->in(2)->outcnt() == 1 &&// right use IS a last use
2905 !n->in(2)->is_Con() ) { // right use is not a constant
2906 // Check for commutative opcode
2907 switch( nop ) {
2908 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
2909 case Op_MaxI: case Op_MinI:
2910 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
2911 case Op_AndL: case Op_XorL: case Op_OrL:
2912 case Op_AndI: case Op_XorI: case Op_OrI: {
2913 // Move "last use" input to left by swapping inputs
2914 n->swap_edges(1, 2);
2915 break;
2916 }
2917 default:
2918 break;
2919 }
2920 }
2921
2922 #ifdef ASSERT
2923 if( n->is_Mem() ) {
2924 int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2925 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2926 // oop will be recorded in oop map if load crosses safepoint
2927 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2928 LoadNode::is_immutable_value(n->in(MemNode::Address))),
2929 "raw memory operations should have control edge");
2930 }
2931 if (n->is_MemBar()) {
2932 MemBarNode* mb = n->as_MemBar();
2933 if (mb->trailing_store() || mb->trailing_load_store()) {
2934 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2935 Node* mem = mb->in(MemBarNode::Precedent);
2936 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2937 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2938 } else if (mb->leading()) {
2939 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2940 }
2941 }
2942 #endif
2943 // Count FPU ops and common calls, implements item (3)
2944 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop);
2945 if (!gc_handled) {
2946 final_graph_reshaping_main_switch(n, frc, nop);
2947 }
2948
2949 // Collect CFG split points
2950 if (n->is_MultiBranch() && !n->is_RangeCheck()) {
2951 frc._tests.push(n);
2952 }
2953 }
2954
2955 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) {
2956 switch( nop ) {
2957 // Count all float operations that may use FPU
2958 case Op_AddF:
2959 case Op_SubF:
2960 case Op_MulF:
2961 case Op_DivF:
2962 case Op_NegF:
2963 case Op_ModF:
2964 case Op_ConvI2F:
2965 case Op_ConF:
2966 case Op_CmpF:
2967 case Op_CmpF3:
2968 // case Op_ConvL2F: // longs are split into 32-bit halves
2969 frc.inc_float_count();
2970 break;
2971
2972 case Op_ConvF2D:
2973 case Op_ConvD2F:
2974 frc.inc_float_count();
2975 frc.inc_double_count();
2976 break;
2977
2978 // Count all double operations that may use FPU
2979 case Op_AddD:
2980 case Op_SubD:
2981 case Op_MulD:
2982 case Op_DivD:
2983 case Op_NegD:
2984 case Op_ModD:
2985 case Op_ConvI2D:
2986 case Op_ConvD2I:
2987 // case Op_ConvL2D: // handled by leaf call
2988 // case Op_ConvD2L: // handled by leaf call
2989 case Op_ConD:
2990 case Op_CmpD:
2991 case Op_CmpD3:
2992 frc.inc_double_count();
2993 break;
2994 case Op_Opaque1: // Remove Opaque Nodes before matching
2995 case Op_Opaque2: // Remove Opaque Nodes before matching
2996 case Op_Opaque3:
2997 n->subsume_by(n->in(1), this);
2998 break;
2999 case Op_CallStaticJava:
3000 case Op_CallJava:
3001 case Op_CallDynamicJava:
3002 frc.inc_java_call_count(); // Count java call site;
3003 case Op_CallRuntime:
3004 case Op_CallLeaf:
3005 case Op_CallLeafNoFP: {
3006 assert (n->is_Call(), "");
3007 CallNode *call = n->as_Call();
3008 // Count call sites where the FP mode bit would have to be flipped.
3009 // Do not count uncommon runtime calls:
3010 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3011 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3012 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3013 frc.inc_call_count(); // Count the call site
3014 } else { // See if uncommon argument is shared
3015 Node *n = call->in(TypeFunc::Parms);
3016 int nop = n->Opcode();
3017 // Clone shared simple arguments to uncommon calls, item (1).
3018 if (n->outcnt() > 1 &&
3019 !n->is_Proj() &&
3020 nop != Op_CreateEx &&
3021 nop != Op_CheckCastPP &&
3022 nop != Op_DecodeN &&
3023 nop != Op_DecodeNKlass &&
3024 !n->is_Mem() &&
3025 !n->is_Phi()) {
3026 Node *x = n->clone();
3027 call->set_req(TypeFunc::Parms, x);
3028 }
3029 }
3030 break;
3031 }
3032
3033 case Op_StoreD:
3034 case Op_LoadD:
3035 case Op_LoadD_unaligned:
3036 frc.inc_double_count();
3037 goto handle_mem;
3038 case Op_StoreF:
3039 case Op_LoadF:
3040 frc.inc_float_count();
3041 goto handle_mem;
3042
3043 case Op_StoreCM:
3044 {
3045 // Convert OopStore dependence into precedence edge
3046 Node* prec = n->in(MemNode::OopStore);
3047 n->del_req(MemNode::OopStore);
3048 n->add_prec(prec);
3049 eliminate_redundant_card_marks(n);
3050 }
3051
3052 // fall through
3053
3054 case Op_StoreB:
3055 case Op_StoreC:
3056 case Op_StorePConditional:
3057 case Op_StoreI:
3058 case Op_StoreL:
3059 case Op_StoreIConditional:
3060 case Op_StoreLConditional:
3061 case Op_CompareAndSwapB:
3062 case Op_CompareAndSwapS:
3063 case Op_CompareAndSwapI:
3064 case Op_CompareAndSwapL:
3065 case Op_CompareAndSwapP:
3066 case Op_CompareAndSwapN:
3067 case Op_WeakCompareAndSwapB:
3068 case Op_WeakCompareAndSwapS:
3069 case Op_WeakCompareAndSwapI:
3070 case Op_WeakCompareAndSwapL:
3071 case Op_WeakCompareAndSwapP:
3072 case Op_WeakCompareAndSwapN:
3073 case Op_CompareAndExchangeB:
3074 case Op_CompareAndExchangeS:
3075 case Op_CompareAndExchangeI:
3076 case Op_CompareAndExchangeL:
3077 case Op_CompareAndExchangeP:
3078 case Op_CompareAndExchangeN:
3079 case Op_GetAndAddS:
3080 case Op_GetAndAddB:
3081 case Op_GetAndAddI:
3082 case Op_GetAndAddL:
3083 case Op_GetAndSetS:
3084 case Op_GetAndSetB:
3085 case Op_GetAndSetI:
3086 case Op_GetAndSetL:
3087 case Op_GetAndSetP:
3088 case Op_GetAndSetN:
3089 case Op_StoreP:
3090 case Op_StoreN:
3091 case Op_StoreNKlass:
3092 case Op_LoadB:
3093 case Op_LoadUB:
3094 case Op_LoadUS:
3095 case Op_LoadI:
3096 case Op_LoadKlass:
3097 case Op_LoadNKlass:
3098 case Op_LoadL:
3099 case Op_LoadL_unaligned:
3100 case Op_LoadPLocked:
3101 case Op_LoadP:
3102 case Op_LoadN:
3103 case Op_LoadRange:
3104 case Op_LoadS: {
3105 handle_mem:
3106 #ifdef ASSERT
3107 if( VerifyOptoOopOffsets ) {
3108 MemNode* mem = n->as_Mem();
3109 // Check to see if address types have grounded out somehow.
3110 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
3111 assert( !tp || oop_offset_is_sane(tp), "" );
3112 }
3113 #endif
3114 break;
3115 }
3116
3117 case Op_AddP: { // Assert sane base pointers
3118 Node *addp = n->in(AddPNode::Address);
3119 assert( !addp->is_AddP() ||
3120 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3121 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3122 "Base pointers must match (addp %u)", addp->_idx );
3123 #ifdef _LP64
3124 if ((UseCompressedOops || UseCompressedClassPointers) &&
3125 addp->Opcode() == Op_ConP &&
3126 addp == n->in(AddPNode::Base) &&
3127 n->in(AddPNode::Offset)->is_Con()) {
3128 // If the transformation of ConP to ConN+DecodeN is beneficial depends
3129 // on the platform and on the compressed oops mode.
3130 // Use addressing with narrow klass to load with offset on x86.
3131 // Some platforms can use the constant pool to load ConP.
3132 // Do this transformation here since IGVN will convert ConN back to ConP.
3133 const Type* t = addp->bottom_type();
3134 bool is_oop = t->isa_oopptr() != NULL;
3135 bool is_klass = t->isa_klassptr() != NULL;
3136
3137 if ((is_oop && Matcher::const_oop_prefer_decode() ) ||
3138 (is_klass && Matcher::const_klass_prefer_decode())) {
3139 Node* nn = NULL;
3140
3141 int op = is_oop ? Op_ConN : Op_ConNKlass;
3142
3143 // Look for existing ConN node of the same exact type.
3144 Node* r = root();
3145 uint cnt = r->outcnt();
3146 for (uint i = 0; i < cnt; i++) {
3147 Node* m = r->raw_out(i);
3148 if (m!= NULL && m->Opcode() == op &&
3149 m->bottom_type()->make_ptr() == t) {
3150 nn = m;
3151 break;
3152 }
3153 }
3154 if (nn != NULL) {
3155 // Decode a narrow oop to match address
3156 // [R12 + narrow_oop_reg<<3 + offset]
3157 if (is_oop) {
3158 nn = new DecodeNNode(nn, t);
3159 } else {
3160 nn = new DecodeNKlassNode(nn, t);
3161 }
3162 // Check for succeeding AddP which uses the same Base.
3163 // Otherwise we will run into the assertion above when visiting that guy.
3164 for (uint i = 0; i < n->outcnt(); ++i) {
3165 Node *out_i = n->raw_out(i);
3166 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3167 out_i->set_req(AddPNode::Base, nn);
3168 #ifdef ASSERT
3169 for (uint j = 0; j < out_i->outcnt(); ++j) {
3170 Node *out_j = out_i->raw_out(j);
3171 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3172 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3173 }
3174 #endif
3175 }
3176 }
3177 n->set_req(AddPNode::Base, nn);
3178 n->set_req(AddPNode::Address, nn);
3179 if (addp->outcnt() == 0) {
3180 addp->disconnect_inputs(NULL, this);
3181 }
3182 }
3183 }
3184 }
3185 #endif
3186 // platform dependent reshaping of the address expression
3187 reshape_address(n->as_AddP());
3188 break;
3189 }
3190
3191 case Op_CastPP: {
3192 // Remove CastPP nodes to gain more freedom during scheduling but
3193 // keep the dependency they encode as control or precedence edges
3194 // (if control is set already) on memory operations. Some CastPP
3195 // nodes don't have a control (don't carry a dependency): skip
3196 // those.
3197 if (n->in(0) != NULL) {
3198 ResourceMark rm;
3199 Unique_Node_List wq;
3200 wq.push(n);
3201 for (uint next = 0; next < wq.size(); ++next) {
3202 Node *m = wq.at(next);
3203 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3204 Node* use = m->fast_out(i);
3205 if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3206 use->ensure_control_or_add_prec(n->in(0));
3207 } else {
3208 switch(use->Opcode()) {
3209 case Op_AddP:
3210 case Op_DecodeN:
3211 case Op_DecodeNKlass:
3212 case Op_CheckCastPP:
3213 case Op_CastPP:
3214 wq.push(use);
3215 break;
3216 }
3217 }
3218 }
3219 }
3220 }
3221 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3222 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3223 Node* in1 = n->in(1);
3224 const Type* t = n->bottom_type();
3225 Node* new_in1 = in1->clone();
3226 new_in1->as_DecodeN()->set_type(t);
3227
3228 if (!Matcher::narrow_oop_use_complex_address()) {
3229 //
3230 // x86, ARM and friends can handle 2 adds in addressing mode
3231 // and Matcher can fold a DecodeN node into address by using
3232 // a narrow oop directly and do implicit NULL check in address:
3233 //
3234 // [R12 + narrow_oop_reg<<3 + offset]
3235 // NullCheck narrow_oop_reg
3236 //
3237 // On other platforms (Sparc) we have to keep new DecodeN node and
3238 // use it to do implicit NULL check in address:
3239 //
3240 // decode_not_null narrow_oop_reg, base_reg
3241 // [base_reg + offset]
3242 // NullCheck base_reg
3243 //
3244 // Pin the new DecodeN node to non-null path on these platform (Sparc)
3245 // to keep the information to which NULL check the new DecodeN node
3246 // corresponds to use it as value in implicit_null_check().
3247 //
3248 new_in1->set_req(0, n->in(0));
3249 }
3250
3251 n->subsume_by(new_in1, this);
3252 if (in1->outcnt() == 0) {
3253 in1->disconnect_inputs(NULL, this);
3254 }
3255 } else {
3256 n->subsume_by(n->in(1), this);
3257 if (n->outcnt() == 0) {
3258 n->disconnect_inputs(NULL, this);
3259 }
3260 }
3261 break;
3262 }
3263 #ifdef _LP64
3264 case Op_CmpP:
3265 // Do this transformation here to preserve CmpPNode::sub() and
3266 // other TypePtr related Ideal optimizations (for example, ptr nullness).
3267 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3268 Node* in1 = n->in(1);
3269 Node* in2 = n->in(2);
3270 if (!in1->is_DecodeNarrowPtr()) {
3271 in2 = in1;
3272 in1 = n->in(2);
3273 }
3274 assert(in1->is_DecodeNarrowPtr(), "sanity");
3275
3276 Node* new_in2 = NULL;
3277 if (in2->is_DecodeNarrowPtr()) {
3278 assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3279 new_in2 = in2->in(1);
3280 } else if (in2->Opcode() == Op_ConP) {
3281 const Type* t = in2->bottom_type();
3282 if (t == TypePtr::NULL_PTR) {
3283 assert(in1->is_DecodeN(), "compare klass to null?");
3284 // Don't convert CmpP null check into CmpN if compressed
3285 // oops implicit null check is not generated.
3286 // This will allow to generate normal oop implicit null check.
3287 if (Matcher::gen_narrow_oop_implicit_null_checks())
3288 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3289 //
3290 // This transformation together with CastPP transformation above
3291 // will generated code for implicit NULL checks for compressed oops.
3292 //
3293 // The original code after Optimize()
3294 //
3295 // LoadN memory, narrow_oop_reg
3296 // decode narrow_oop_reg, base_reg
3297 // CmpP base_reg, NULL
3298 // CastPP base_reg // NotNull
3299 // Load [base_reg + offset], val_reg
3300 //
3301 // after these transformations will be
3302 //
3303 // LoadN memory, narrow_oop_reg
3304 // CmpN narrow_oop_reg, NULL
3305 // decode_not_null narrow_oop_reg, base_reg
3306 // Load [base_reg + offset], val_reg
3307 //
3308 // and the uncommon path (== NULL) will use narrow_oop_reg directly
3309 // since narrow oops can be used in debug info now (see the code in
3310 // final_graph_reshaping_walk()).
3311 //
3312 // At the end the code will be matched to
3313 // on x86:
3314 //
3315 // Load_narrow_oop memory, narrow_oop_reg
3316 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3317 // NullCheck narrow_oop_reg
3318 //
3319 // and on sparc:
3320 //
3321 // Load_narrow_oop memory, narrow_oop_reg
3322 // decode_not_null narrow_oop_reg, base_reg
3323 // Load [base_reg + offset], val_reg
3324 // NullCheck base_reg
3325 //
3326 } else if (t->isa_oopptr()) {
3327 new_in2 = ConNode::make(t->make_narrowoop());
3328 } else if (t->isa_klassptr()) {
3329 new_in2 = ConNode::make(t->make_narrowklass());
3330 }
3331 }
3332 if (new_in2 != NULL) {
3333 Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3334 n->subsume_by(cmpN, this);
3335 if (in1->outcnt() == 0) {
3336 in1->disconnect_inputs(NULL, this);
3337 }
3338 if (in2->outcnt() == 0) {
3339 in2->disconnect_inputs(NULL, this);
3340 }
3341 }
3342 }
3343 break;
3344
3345 case Op_DecodeN:
3346 case Op_DecodeNKlass:
3347 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3348 // DecodeN could be pinned when it can't be fold into
3349 // an address expression, see the code for Op_CastPP above.
3350 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3351 break;
3352
3353 case Op_EncodeP:
3354 case Op_EncodePKlass: {
3355 Node* in1 = n->in(1);
3356 if (in1->is_DecodeNarrowPtr()) {
3357 n->subsume_by(in1->in(1), this);
3358 } else if (in1->Opcode() == Op_ConP) {
3359 const Type* t = in1->bottom_type();
3360 if (t == TypePtr::NULL_PTR) {
3361 assert(t->isa_oopptr(), "null klass?");
3362 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3363 } else if (t->isa_oopptr()) {
3364 n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3365 } else if (t->isa_klassptr()) {
3366 n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3367 }
3368 }
3369 if (in1->outcnt() == 0) {
3370 in1->disconnect_inputs(NULL, this);
3371 }
3372 break;
3373 }
3374
3375 case Op_Proj: {
3376 if (OptimizeStringConcat) {
3377 ProjNode* p = n->as_Proj();
3378 if (p->_is_io_use) {
3379 // Separate projections were used for the exception path which
3380 // are normally removed by a late inline. If it wasn't inlined
3381 // then they will hang around and should just be replaced with
3382 // the original one.
3383 Node* proj = NULL;
3384 // Replace with just one
3385 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3386 Node *use = i.get();
3387 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3388 proj = use;
3389 break;
3390 }
3391 }
3392 assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
3393 if (proj != NULL) {
3394 p->subsume_by(proj, this);
3395 }
3396 }
3397 }
3398 break;
3399 }
3400
3401 case Op_Phi:
3402 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3403 // The EncodeP optimization may create Phi with the same edges
3404 // for all paths. It is not handled well by Register Allocator.
3405 Node* unique_in = n->in(1);
3406 assert(unique_in != NULL, "");
3407 uint cnt = n->req();
3408 for (uint i = 2; i < cnt; i++) {
3409 Node* m = n->in(i);
3410 assert(m != NULL, "");
3411 if (unique_in != m)
3412 unique_in = NULL;
3413 }
3414 if (unique_in != NULL) {
3415 n->subsume_by(unique_in, this);
3416 }
3417 }
3418 break;
3419
3420 #endif
3421
3422 #ifdef ASSERT
3423 case Op_CastII:
3424 // Verify that all range check dependent CastII nodes were removed.
3425 if (n->isa_CastII()->has_range_check()) {
3426 n->dump(3);
3427 assert(false, "Range check dependent CastII node was not removed");
3428 }
3429 break;
3430 #endif
3431
3432 case Op_ModI:
3433 if (UseDivMod) {
3434 // Check if a%b and a/b both exist
3435 Node* d = n->find_similar(Op_DivI);
3436 if (d) {
3437 // Replace them with a fused divmod if supported
3438 if (Matcher::has_match_rule(Op_DivModI)) {
3439 DivModINode* divmod = DivModINode::make(n);
3440 d->subsume_by(divmod->div_proj(), this);
3441 n->subsume_by(divmod->mod_proj(), this);
3442 } else {
3443 // replace a%b with a-((a/b)*b)
3444 Node* mult = new MulINode(d, d->in(2));
3445 Node* sub = new SubINode(d->in(1), mult);
3446 n->subsume_by(sub, this);
3447 }
3448 }
3449 }
3450 break;
3451
3452 case Op_ModL:
3453 if (UseDivMod) {
3454 // Check if a%b and a/b both exist
3455 Node* d = n->find_similar(Op_DivL);
3456 if (d) {
3457 // Replace them with a fused divmod if supported
3458 if (Matcher::has_match_rule(Op_DivModL)) {
3459 DivModLNode* divmod = DivModLNode::make(n);
3460 d->subsume_by(divmod->div_proj(), this);
3461 n->subsume_by(divmod->mod_proj(), this);
3462 } else {
3463 // replace a%b with a-((a/b)*b)
3464 Node* mult = new MulLNode(d, d->in(2));
3465 Node* sub = new SubLNode(d->in(1), mult);
3466 n->subsume_by(sub, this);
3467 }
3468 }
3469 }
3470 break;
3471
3472 case Op_LoadVector:
3473 case Op_StoreVector:
3474 break;
3475
3476 case Op_AddReductionVI:
3477 case Op_AddReductionVL:
3478 case Op_AddReductionVF:
3479 case Op_AddReductionVD:
3480 case Op_MulReductionVI:
3481 case Op_MulReductionVL:
3482 case Op_MulReductionVF:
3483 case Op_MulReductionVD:
3484 case Op_MinReductionV:
3485 case Op_MaxReductionV:
3486 break;
3487
3488 case Op_PackB:
3489 case Op_PackS:
3490 case Op_PackI:
3491 case Op_PackF:
3492 case Op_PackL:
3493 case Op_PackD:
3494 if (n->req()-1 > 2) {
3495 // Replace many operand PackNodes with a binary tree for matching
3496 PackNode* p = (PackNode*) n;
3497 Node* btp = p->binary_tree_pack(1, n->req());
3498 n->subsume_by(btp, this);
3499 }
3500 break;
3501 case Op_Loop:
3502 case Op_CountedLoop:
3503 case Op_OuterStripMinedLoop:
3504 if (n->as_Loop()->is_inner_loop()) {
3505 frc.inc_inner_loop_count();
3506 }
3507 n->as_Loop()->verify_strip_mined(0);
3508 break;
3509 case Op_LShiftI:
3510 case Op_RShiftI:
3511 case Op_URShiftI:
3512 case Op_LShiftL:
3513 case Op_RShiftL:
3514 case Op_URShiftL:
3515 if (Matcher::need_masked_shift_count) {
3516 // The cpu's shift instructions don't restrict the count to the
3517 // lower 5/6 bits. We need to do the masking ourselves.
3518 Node* in2 = n->in(2);
3519 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3520 const TypeInt* t = in2->find_int_type();
3521 if (t != NULL && t->is_con()) {
3522 juint shift = t->get_con();
3523 if (shift > mask) { // Unsigned cmp
3524 n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3525 }
3526 } else {
3527 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3528 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3529 n->set_req(2, shift);
3530 }
3531 }
3532 if (in2->outcnt() == 0) { // Remove dead node
3533 in2->disconnect_inputs(NULL, this);
3534 }
3535 }
3536 break;
3537 case Op_MemBarStoreStore:
3538 case Op_MemBarRelease:
3539 // Break the link with AllocateNode: it is no longer useful and
3540 // confuses register allocation.
3541 if (n->req() > MemBarNode::Precedent) {
3542 n->set_req(MemBarNode::Precedent, top());
3543 }
3544 break;
3545 case Op_MemBarAcquire: {
3546 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3547 // At parse time, the trailing MemBarAcquire for a volatile load
3548 // is created with an edge to the load. After optimizations,
3549 // that input may be a chain of Phis. If those phis have no
3550 // other use, then the MemBarAcquire keeps them alive and
3551 // register allocation can be confused.
3552 ResourceMark rm;
3553 Unique_Node_List wq;
3554 wq.push(n->in(MemBarNode::Precedent));
3555 n->set_req(MemBarNode::Precedent, top());
3556 while (wq.size() > 0) {
3557 Node* m = wq.pop();
3558 if (m->outcnt() == 0) {
3559 for (uint j = 0; j < m->req(); j++) {
3560 Node* in = m->in(j);
3561 if (in != NULL) {
3562 wq.push(in);
3563 }
3564 }
3565 m->disconnect_inputs(NULL, this);
3566 }
3567 }
3568 }
3569 break;
3570 }
3571 case Op_RangeCheck: {
3572 RangeCheckNode* rc = n->as_RangeCheck();
3573 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3574 n->subsume_by(iff, this);
3575 frc._tests.push(iff);
3576 break;
3577 }
3578 case Op_ConvI2L: {
3579 if (!Matcher::convi2l_type_required) {
3580 // Code generation on some platforms doesn't need accurate
3581 // ConvI2L types. Widening the type can help remove redundant
3582 // address computations.
3583 n->as_Type()->set_type(TypeLong::INT);
3584 ResourceMark rm;
3585 Node_List wq;
3586 wq.push(n);
3587 for (uint next = 0; next < wq.size(); next++) {
3588 Node *m = wq.at(next);
3589
3590 for(;;) {
3591 // Loop over all nodes with identical inputs edges as m
3592 Node* k = m->find_similar(m->Opcode());
3593 if (k == NULL) {
3594 break;
3595 }
3596 // Push their uses so we get a chance to remove node made
3597 // redundant
3598 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3599 Node* u = k->fast_out(i);
3600 assert(!wq.contains(u), "shouldn't process one node several times");
3601 if (u->Opcode() == Op_LShiftL ||
3602 u->Opcode() == Op_AddL ||
3603 u->Opcode() == Op_SubL ||
3604 u->Opcode() == Op_AddP) {
3605 wq.push(u);
3606 }
3607 }
3608 // Replace all nodes with identical edges as m with m
3609 k->subsume_by(m, this);
3610 }
3611 }
3612 }
3613 break;
3614 }
3615 case Op_CmpUL: {
3616 if (!Matcher::has_match_rule(Op_CmpUL)) {
3617 // No support for unsigned long comparisons
3618 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3619 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3620 Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3621 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3622 Node* andl = new AndLNode(orl, remove_sign_mask);
3623 Node* cmp = new CmpLNode(andl, n->in(2));
3624 n->subsume_by(cmp, this);
3625 }
3626 break;
3627 }
3628 #ifdef ASSERT
3629 case Op_ValueTypePtr:
3630 case Op_ValueType: {
3631 n->dump(-1);
3632 assert(false, "value type node was not removed");
3633 break;
3634 }
3635 #endif
3636 default:
3637 assert(!n->is_Call(), "");
3638 assert(!n->is_Mem(), "");
3639 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3640 break;
3641 }
3642 }
3643
3644 //------------------------------final_graph_reshaping_walk---------------------
3645 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3646 // requires that the walk visits a node's inputs before visiting the node.
3647 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3648 ResourceArea *area = Thread::current()->resource_area();
3649 Unique_Node_List sfpt(area);
3650
3651 frc._visited.set(root->_idx); // first, mark node as visited
3652 uint cnt = root->req();
3653 Node *n = root;
3654 uint i = 0;
3655 while (true) {
3656 if (i < cnt) {
3657 // Place all non-visited non-null inputs onto stack
3658 Node* m = n->in(i);
3659 ++i;
3660 if (m != NULL && !frc._visited.test_set(m->_idx)) {
3661 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3662 // compute worst case interpreter size in case of a deoptimization
3663 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3664
3665 sfpt.push(m);
3666 }
3667 cnt = m->req();
3668 nstack.push(n, i); // put on stack parent and next input's index
3669 n = m;
3670 i = 0;
3671 }
3672 } else {
3673 // Now do post-visit work
3674 final_graph_reshaping_impl( n, frc );
3675 if (nstack.is_empty())
3676 break; // finished
3677 n = nstack.node(); // Get node from stack
3678 cnt = n->req();
3679 i = nstack.index();
3680 nstack.pop(); // Shift to the next node on stack
3681 }
3682 }
3683
3684 // Skip next transformation if compressed oops are not used.
3685 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3686 (!UseCompressedOops && !UseCompressedClassPointers))
3687 return;
3688
3689 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3690 // It could be done for an uncommon traps or any safepoints/calls
3691 // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3692 while (sfpt.size() > 0) {
3693 n = sfpt.pop();
3694 JVMState *jvms = n->as_SafePoint()->jvms();
3695 assert(jvms != NULL, "sanity");
3696 int start = jvms->debug_start();
3697 int end = n->req();
3698 bool is_uncommon = (n->is_CallStaticJava() &&
3699 n->as_CallStaticJava()->uncommon_trap_request() != 0);
3700 for (int j = start; j < end; j++) {
3701 Node* in = n->in(j);
3702 if (in->is_DecodeNarrowPtr()) {
3703 bool safe_to_skip = true;
3704 if (!is_uncommon ) {
3705 // Is it safe to skip?
3706 for (uint i = 0; i < in->outcnt(); i++) {
3707 Node* u = in->raw_out(i);
3708 if (!u->is_SafePoint() ||
3709 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3710 safe_to_skip = false;
3711 }
3712 }
3713 }
3714 if (safe_to_skip) {
3715 n->set_req(j, in->in(1));
3716 }
3717 if (in->outcnt() == 0) {
3718 in->disconnect_inputs(NULL, this);
3719 }
3720 }
3721 }
3722 }
3723 }
3724
3725 //------------------------------final_graph_reshaping--------------------------
3726 // Final Graph Reshaping.
3727 //
3728 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3729 // and not commoned up and forced early. Must come after regular
3730 // optimizations to avoid GVN undoing the cloning. Clone constant
3731 // inputs to Loop Phis; these will be split by the allocator anyways.
3732 // Remove Opaque nodes.
3733 // (2) Move last-uses by commutative operations to the left input to encourage
3734 // Intel update-in-place two-address operations and better register usage
3735 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
3736 // calls canonicalizing them back.
3737 // (3) Count the number of double-precision FP ops, single-precision FP ops
3738 // and call sites. On Intel, we can get correct rounding either by
3739 // forcing singles to memory (requires extra stores and loads after each
3740 // FP bytecode) or we can set a rounding mode bit (requires setting and
3741 // clearing the mode bit around call sites). The mode bit is only used
3742 // if the relative frequency of single FP ops to calls is low enough.
3743 // This is a key transform for SPEC mpeg_audio.
3744 // (4) Detect infinite loops; blobs of code reachable from above but not
3745 // below. Several of the Code_Gen algorithms fail on such code shapes,
3746 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
3747 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
3748 // Detection is by looking for IfNodes where only 1 projection is
3749 // reachable from below or CatchNodes missing some targets.
3750 // (5) Assert for insane oop offsets in debug mode.
3751
3752 bool Compile::final_graph_reshaping() {
3753 // an infinite loop may have been eliminated by the optimizer,
3754 // in which case the graph will be empty.
3755 if (root()->req() == 1) {
3756 record_method_not_compilable("trivial infinite loop");
3757 return true;
3758 }
3759
3760 // Expensive nodes have their control input set to prevent the GVN
3761 // from freely commoning them. There's no GVN beyond this point so
3762 // no need to keep the control input. We want the expensive nodes to
3763 // be freely moved to the least frequent code path by gcm.
3764 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3765 for (int i = 0; i < expensive_count(); i++) {
3766 _expensive_nodes->at(i)->set_req(0, NULL);
3767 }
3768
3769 Final_Reshape_Counts frc;
3770
3771 // Visit everybody reachable!
3772 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3773 Node_Stack nstack(live_nodes() >> 1);
3774 final_graph_reshaping_walk(nstack, root(), frc);
3775
3776 // Check for unreachable (from below) code (i.e., infinite loops).
3777 for( uint i = 0; i < frc._tests.size(); i++ ) {
3778 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3779 // Get number of CFG targets.
3780 // Note that PCTables include exception targets after calls.
3781 uint required_outcnt = n->required_outcnt();
3782 if (n->outcnt() != required_outcnt) {
3783 // Check for a few special cases. Rethrow Nodes never take the
3784 // 'fall-thru' path, so expected kids is 1 less.
3785 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3786 if (n->in(0)->in(0)->is_Call()) {
3787 CallNode *call = n->in(0)->in(0)->as_Call();
3788 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3789 required_outcnt--; // Rethrow always has 1 less kid
3790 } else if (call->req() > TypeFunc::Parms &&
3791 call->is_CallDynamicJava()) {
3792 // Check for null receiver. In such case, the optimizer has
3793 // detected that the virtual call will always result in a null
3794 // pointer exception. The fall-through projection of this CatchNode
3795 // will not be populated.
3796 Node *arg0 = call->in(TypeFunc::Parms);
3797 if (arg0->is_Type() &&
3798 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3799 required_outcnt--;
3800 }
3801 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3802 call->req() > TypeFunc::Parms+1 &&
3803 call->is_CallStaticJava()) {
3804 // Check for negative array length. In such case, the optimizer has
3805 // detected that the allocation attempt will always result in an
3806 // exception. There is no fall-through projection of this CatchNode .
3807 Node *arg1 = call->in(TypeFunc::Parms+1);
3808 if (arg1->is_Type() &&
3809 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3810 required_outcnt--;
3811 }
3812 }
3813 }
3814 }
3815 // Recheck with a better notion of 'required_outcnt'
3816 if (n->outcnt() != required_outcnt) {
3817 record_method_not_compilable("malformed control flow");
3818 return true; // Not all targets reachable!
3819 }
3820 }
3821 // Check that I actually visited all kids. Unreached kids
3822 // must be infinite loops.
3823 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3824 if (!frc._visited.test(n->fast_out(j)->_idx)) {
3825 record_method_not_compilable("infinite loop");
3826 return true; // Found unvisited kid; must be unreach
3827 }
3828
3829 // Here so verification code in final_graph_reshaping_walk()
3830 // always see an OuterStripMinedLoopEnd
3831 if (n->is_OuterStripMinedLoopEnd()) {
3832 IfNode* init_iff = n->as_If();
3833 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3834 n->subsume_by(iff, this);
3835 }
3836 }
3837
3838 // If original bytecodes contained a mixture of floats and doubles
3839 // check if the optimizer has made it homogenous, item (3).
3840 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3841 frc.get_float_count() > 32 &&
3842 frc.get_double_count() == 0 &&
3843 (10 * frc.get_call_count() < frc.get_float_count()) ) {
3844 set_24_bit_selection_and_mode( false, true );
3845 }
3846
3847 set_java_calls(frc.get_java_call_count());
3848 set_inner_loops(frc.get_inner_loop_count());
3849
3850 // No infinite loops, no reason to bail out.
3851 return false;
3852 }
3853
3854 //-----------------------------too_many_traps----------------------------------
3855 // Report if there are too many traps at the current method and bci.
3856 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3857 bool Compile::too_many_traps(ciMethod* method,
3858 int bci,
3859 Deoptimization::DeoptReason reason) {
3860 ciMethodData* md = method->method_data();
3861 if (md->is_empty()) {
3862 // Assume the trap has not occurred, or that it occurred only
3863 // because of a transient condition during start-up in the interpreter.
3864 return false;
3865 }
3866 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3867 if (md->has_trap_at(bci, m, reason) != 0) {
3868 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3869 // Also, if there are multiple reasons, or if there is no per-BCI record,
3870 // assume the worst.
3871 if (log())
3872 log()->elem("observe trap='%s' count='%d'",
3873 Deoptimization::trap_reason_name(reason),
3874 md->trap_count(reason));
3875 return true;
3876 } else {
3877 // Ignore method/bci and see if there have been too many globally.
3878 return too_many_traps(reason, md);
3879 }
3880 }
3881
3882 // Less-accurate variant which does not require a method and bci.
3883 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3884 ciMethodData* logmd) {
3885 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3886 // Too many traps globally.
3887 // Note that we use cumulative trap_count, not just md->trap_count.
3888 if (log()) {
3889 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3890 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3891 Deoptimization::trap_reason_name(reason),
3892 mcount, trap_count(reason));
3893 }
3894 return true;
3895 } else {
3896 // The coast is clear.
3897 return false;
3898 }
3899 }
3900
3901 //--------------------------too_many_recompiles--------------------------------
3902 // Report if there are too many recompiles at the current method and bci.
3903 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3904 // Is not eager to return true, since this will cause the compiler to use
3905 // Action_none for a trap point, to avoid too many recompilations.
3906 bool Compile::too_many_recompiles(ciMethod* method,
3907 int bci,
3908 Deoptimization::DeoptReason reason) {
3909 ciMethodData* md = method->method_data();
3910 if (md->is_empty()) {
3911 // Assume the trap has not occurred, or that it occurred only
3912 // because of a transient condition during start-up in the interpreter.
3913 return false;
3914 }
3915 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3916 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3917 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
3918 Deoptimization::DeoptReason per_bc_reason
3919 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3920 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3921 if ((per_bc_reason == Deoptimization::Reason_none
3922 || md->has_trap_at(bci, m, reason) != 0)
3923 // The trap frequency measure we care about is the recompile count:
3924 && md->trap_recompiled_at(bci, m)
3925 && md->overflow_recompile_count() >= bc_cutoff) {
3926 // Do not emit a trap here if it has already caused recompilations.
3927 // Also, if there are multiple reasons, or if there is no per-BCI record,
3928 // assume the worst.
3929 if (log())
3930 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3931 Deoptimization::trap_reason_name(reason),
3932 md->trap_count(reason),
3933 md->overflow_recompile_count());
3934 return true;
3935 } else if (trap_count(reason) != 0
3936 && decompile_count() >= m_cutoff) {
3937 // Too many recompiles globally, and we have seen this sort of trap.
3938 // Use cumulative decompile_count, not just md->decompile_count.
3939 if (log())
3940 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3941 Deoptimization::trap_reason_name(reason),
3942 md->trap_count(reason), trap_count(reason),
3943 md->decompile_count(), decompile_count());
3944 return true;
3945 } else {
3946 // The coast is clear.
3947 return false;
3948 }
3949 }
3950
3951 // Compute when not to trap. Used by matching trap based nodes and
3952 // NullCheck optimization.
3953 void Compile::set_allowed_deopt_reasons() {
3954 _allowed_reasons = 0;
3955 if (is_method_compilation()) {
3956 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3957 assert(rs < BitsPerInt, "recode bit map");
3958 if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3959 _allowed_reasons |= nth_bit(rs);
3960 }
3961 }
3962 }
3963 }
3964
3965 bool Compile::is_compiling_clinit_for(ciKlass* k) {
3966 ciMethod* root = method(); // the root method of compilation
3967 return root->is_class_initializer() && root->holder() == k; // access in the context of clinit
3968 }
3969
3970 #ifndef PRODUCT
3971 //------------------------------verify_graph_edges---------------------------
3972 // Walk the Graph and verify that there is a one-to-one correspondence
3973 // between Use-Def edges and Def-Use edges in the graph.
3974 void Compile::verify_graph_edges(bool no_dead_code) {
3975 if (VerifyGraphEdges) {
3976 ResourceArea *area = Thread::current()->resource_area();
3977 Unique_Node_List visited(area);
3978 // Call recursive graph walk to check edges
3979 _root->verify_edges(visited);
3980 if (no_dead_code) {
3981 // Now make sure that no visited node is used by an unvisited node.
3982 bool dead_nodes = false;
3983 Unique_Node_List checked(area);
3984 while (visited.size() > 0) {
3985 Node* n = visited.pop();
3986 checked.push(n);
3987 for (uint i = 0; i < n->outcnt(); i++) {
3988 Node* use = n->raw_out(i);
3989 if (checked.member(use)) continue; // already checked
3990 if (visited.member(use)) continue; // already in the graph
3991 if (use->is_Con()) continue; // a dead ConNode is OK
3992 // At this point, we have found a dead node which is DU-reachable.
3993 if (!dead_nodes) {
3994 tty->print_cr("*** Dead nodes reachable via DU edges:");
3995 dead_nodes = true;
3996 }
3997 use->dump(2);
3998 tty->print_cr("---");
3999 checked.push(use); // No repeats; pretend it is now checked.
4000 }
4001 }
4002 assert(!dead_nodes, "using nodes must be reachable from root");
4003 }
4004 }
4005 }
4006 #endif
4007
4008 // The Compile object keeps track of failure reasons separately from the ciEnv.
4009 // This is required because there is not quite a 1-1 relation between the
4010 // ciEnv and its compilation task and the Compile object. Note that one
4011 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4012 // to backtrack and retry without subsuming loads. Other than this backtracking
4013 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4014 // by the logic in C2Compiler.
4015 void Compile::record_failure(const char* reason) {
4016 if (log() != NULL) {
4017 log()->elem("failure reason='%s' phase='compile'", reason);
4018 }
4019 if (_failure_reason == NULL) {
4020 // Record the first failure reason.
4021 _failure_reason = reason;
4022 }
4023
4024 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4025 C->print_method(PHASE_FAILURE);
4026 }
4027 _root = NULL; // flush the graph, too
4028 }
4029
4030 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
4031 : TraceTime(name, accumulator, CITime, CITimeVerbose),
4032 _phase_name(name), _dolog(CITimeVerbose)
4033 {
4034 if (_dolog) {
4035 C = Compile::current();
4036 _log = C->log();
4037 } else {
4038 C = NULL;
4039 _log = NULL;
4040 }
4041 if (_log != NULL) {
4042 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4043 _log->stamp();
4044 _log->end_head();
4045 }
4046 }
4047
4048 Compile::TracePhase::~TracePhase() {
4049
4050 C = Compile::current();
4051 if (_dolog) {
4052 _log = C->log();
4053 } else {
4054 _log = NULL;
4055 }
4056
4057 #ifdef ASSERT
4058 if (PrintIdealNodeCount) {
4059 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4060 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
4061 }
4062
4063 if (VerifyIdealNodeCount) {
4064 Compile::current()->print_missing_nodes();
4065 }
4066 #endif
4067
4068 if (_log != NULL) {
4069 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4070 }
4071 }
4072
4073 //=============================================================================
4074 // Two Constant's are equal when the type and the value are equal.
4075 bool Compile::Constant::operator==(const Constant& other) {
4076 if (type() != other.type() ) return false;
4077 if (can_be_reused() != other.can_be_reused()) return false;
4078 // For floating point values we compare the bit pattern.
4079 switch (type()) {
4080 case T_INT:
4081 case T_FLOAT: return (_v._value.i == other._v._value.i);
4082 case T_LONG:
4083 case T_DOUBLE: return (_v._value.j == other._v._value.j);
4084 case T_OBJECT:
4085 case T_ADDRESS: return (_v._value.l == other._v._value.l);
4086 case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries
4087 case T_METADATA: return (_v._metadata == other._v._metadata);
4088 default: ShouldNotReachHere(); return false;
4089 }
4090 }
4091
4092 static int type_to_size_in_bytes(BasicType t) {
4093 switch (t) {
4094 case T_INT: return sizeof(jint );
4095 case T_LONG: return sizeof(jlong );
4096 case T_FLOAT: return sizeof(jfloat );
4097 case T_DOUBLE: return sizeof(jdouble);
4098 case T_METADATA: return sizeof(Metadata*);
4099 // We use T_VOID as marker for jump-table entries (labels) which
4100 // need an internal word relocation.
4101 case T_VOID:
4102 case T_ADDRESS:
4103 case T_OBJECT: return sizeof(jobject);
4104 default:
4105 ShouldNotReachHere();
4106 return -1;
4107 }
4108 }
4109
4110 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
4111 // sort descending
4112 if (a->freq() > b->freq()) return -1;
4113 if (a->freq() < b->freq()) return 1;
4114 return 0;
4115 }
4116
4117 void Compile::ConstantTable::calculate_offsets_and_size() {
4118 // First, sort the array by frequencies.
4119 _constants.sort(qsort_comparator);
4120
4121 #ifdef ASSERT
4122 // Make sure all jump-table entries were sorted to the end of the
4123 // array (they have a negative frequency).
4124 bool found_void = false;
4125 for (int i = 0; i < _constants.length(); i++) {
4126 Constant con = _constants.at(i);
4127 if (con.type() == T_VOID)
4128 found_void = true; // jump-tables
4129 else
4130 assert(!found_void, "wrong sorting");
4131 }
4132 #endif
4133
4134 int offset = 0;
4135 for (int i = 0; i < _constants.length(); i++) {
4136 Constant* con = _constants.adr_at(i);
4137
4138 // Align offset for type.
4139 int typesize = type_to_size_in_bytes(con->type());
4140 offset = align_up(offset, typesize);
4141 con->set_offset(offset); // set constant's offset
4142
4143 if (con->type() == T_VOID) {
4144 MachConstantNode* n = (MachConstantNode*) con->get_jobject();
4145 offset = offset + typesize * n->outcnt(); // expand jump-table
4146 } else {
4147 offset = offset + typesize;
4148 }
4149 }
4150
4151 // Align size up to the next section start (which is insts; see
4152 // CodeBuffer::align_at_start).
4153 assert(_size == -1, "already set?");
4154 _size = align_up(offset, (int)CodeEntryAlignment);
4155 }
4156
4157 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4158 MacroAssembler _masm(&cb);
4159 for (int i = 0; i < _constants.length(); i++) {
4160 Constant con = _constants.at(i);
4161 address constant_addr = NULL;
4162 switch (con.type()) {
4163 case T_INT: constant_addr = _masm.int_constant( con.get_jint() ); break;
4164 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break;
4165 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4166 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4167 case T_OBJECT: {
4168 jobject obj = con.get_jobject();
4169 int oop_index = _masm.oop_recorder()->find_index(obj);
4170 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4171 break;
4172 }
4173 case T_ADDRESS: {
4174 address addr = (address) con.get_jobject();
4175 constant_addr = _masm.address_constant(addr);
4176 break;
4177 }
4178 // We use T_VOID as marker for jump-table entries (labels) which
4179 // need an internal word relocation.
4180 case T_VOID: {
4181 MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4182 // Fill the jump-table with a dummy word. The real value is
4183 // filled in later in fill_jump_table.
4184 address dummy = (address) n;
4185 constant_addr = _masm.address_constant(dummy);
4186 // Expand jump-table
4187 for (uint i = 1; i < n->outcnt(); i++) {
4188 address temp_addr = _masm.address_constant(dummy + i);
4189 assert(temp_addr, "consts section too small");
4190 }
4191 break;
4192 }
4193 case T_METADATA: {
4194 Metadata* obj = con.get_metadata();
4195 int metadata_index = _masm.oop_recorder()->find_index(obj);
4196 constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4197 break;
4198 }
4199 default: ShouldNotReachHere();
4200 }
4201 assert(constant_addr, "consts section too small");
4202 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4203 "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4204 }
4205 }
4206
4207 int Compile::ConstantTable::find_offset(Constant& con) const {
4208 int idx = _constants.find(con);
4209 guarantee(idx != -1, "constant must be in constant table");
4210 int offset = _constants.at(idx).offset();
4211 guarantee(offset != -1, "constant table not emitted yet?");
4212 return offset;
4213 }
4214
4215 void Compile::ConstantTable::add(Constant& con) {
4216 if (con.can_be_reused()) {
4217 int idx = _constants.find(con);
4218 if (idx != -1 && _constants.at(idx).can_be_reused()) {
4219 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value
4220 return;
4221 }
4222 }
4223 (void) _constants.append(con);
4224 }
4225
4226 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4227 Block* b = Compile::current()->cfg()->get_block_for_node(n);
4228 Constant con(type, value, b->_freq);
4229 add(con);
4230 return con;
4231 }
4232
4233 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4234 Constant con(metadata);
4235 add(con);
4236 return con;
4237 }
4238
4239 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4240 jvalue value;
4241 BasicType type = oper->type()->basic_type();
4242 switch (type) {
4243 case T_LONG: value.j = oper->constantL(); break;
4244 case T_FLOAT: value.f = oper->constantF(); break;
4245 case T_DOUBLE: value.d = oper->constantD(); break;
4246 case T_OBJECT:
4247 case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4248 case T_METADATA: return add((Metadata*)oper->constant()); break;
4249 default: guarantee(false, "unhandled type: %s", type2name(type));
4250 }
4251 return add(n, type, value);
4252 }
4253
4254 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4255 jvalue value;
4256 // We can use the node pointer here to identify the right jump-table
4257 // as this method is called from Compile::Fill_buffer right before
4258 // the MachNodes are emitted and the jump-table is filled (means the
4259 // MachNode pointers do not change anymore).
4260 value.l = (jobject) n;
4261 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused.
4262 add(con);
4263 return con;
4264 }
4265
4266 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4267 // If called from Compile::scratch_emit_size do nothing.
4268 if (Compile::current()->in_scratch_emit_size()) return;
4269
4270 assert(labels.is_nonempty(), "must be");
4271 assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4272
4273 // Since MachConstantNode::constant_offset() also contains
4274 // table_base_offset() we need to subtract the table_base_offset()
4275 // to get the plain offset into the constant table.
4276 int offset = n->constant_offset() - table_base_offset();
4277
4278 MacroAssembler _masm(&cb);
4279 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4280
4281 for (uint i = 0; i < n->outcnt(); i++) {
4282 address* constant_addr = &jump_table_base[i];
4283 assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4284 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4285 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4286 }
4287 }
4288
4289 //----------------------------static_subtype_check-----------------------------
4290 // Shortcut important common cases when superklass is exact:
4291 // (0) superklass is java.lang.Object (can occur in reflective code)
4292 // (1) subklass is already limited to a subtype of superklass => always ok
4293 // (2) subklass does not overlap with superklass => always fail
4294 // (3) superklass has NO subtypes and we can check with a simple compare.
4295 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4296 if (StressReflectiveCode || superk == NULL || subk == NULL) {
4297 return SSC_full_test; // Let caller generate the general case.
4298 }
4299
4300 if (superk == env()->Object_klass()) {
4301 return SSC_always_true; // (0) this test cannot fail
4302 }
4303
4304 ciType* superelem = superk;
4305 if (superelem->is_array_klass())
4306 superelem = superelem->as_array_klass()->base_element_type();
4307
4308 if (!subk->is_interface()) { // cannot trust static interface types yet
4309 if (subk->is_subtype_of(superk)) {
4310 return SSC_always_true; // (1) false path dead; no dynamic test needed
4311 }
4312 if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4313 !superk->is_subtype_of(subk)) {
4314 return SSC_always_false;
4315 }
4316 }
4317
4318 // If casting to an instance klass, it must have no subtypes
4319 if (superk->is_interface()) {
4320 // Cannot trust interfaces yet.
4321 // %%% S.B. superk->nof_implementors() == 1
4322 } else if (superelem->is_instance_klass()) {
4323 ciInstanceKlass* ik = superelem->as_instance_klass();
4324 if (!ik->has_subklass() && !ik->is_interface()) {
4325 if (!ik->is_final()) {
4326 // Add a dependency if there is a chance of a later subclass.
4327 dependencies()->assert_leaf_type(ik);
4328 }
4329 return SSC_easy_test; // (3) caller can do a simple ptr comparison
4330 }
4331 } else {
4332 // A primitive array type has no subtypes.
4333 return SSC_easy_test; // (3) caller can do a simple ptr comparison
4334 }
4335
4336 return SSC_full_test;
4337 }
4338
4339 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4340 #ifdef _LP64
4341 // The scaled index operand to AddP must be a clean 64-bit value.
4342 // Java allows a 32-bit int to be incremented to a negative
4343 // value, which appears in a 64-bit register as a large
4344 // positive number. Using that large positive number as an
4345 // operand in pointer arithmetic has bad consequences.
4346 // On the other hand, 32-bit overflow is rare, and the possibility
4347 // can often be excluded, if we annotate the ConvI2L node with
4348 // a type assertion that its value is known to be a small positive
4349 // number. (The prior range check has ensured this.)
4350 // This assertion is used by ConvI2LNode::Ideal.
4351 int index_max = max_jint - 1; // array size is max_jint, index is one less
4352 if (sizetype != NULL) index_max = sizetype->_hi - 1;
4353 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4354 idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4355 #endif
4356 return idx;
4357 }
4358
4359 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4360 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4361 if (ctrl != NULL) {
4362 // Express control dependency by a CastII node with a narrow type.
4363 value = new CastIINode(value, itype, false, true /* range check dependency */);
4364 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4365 // node from floating above the range check during loop optimizations. Otherwise, the
4366 // ConvI2L node may be eliminated independently of the range check, causing the data path
4367 // to become TOP while the control path is still there (although it's unreachable).
4368 value->set_req(0, ctrl);
4369 // Save CastII node to remove it after loop optimizations.
4370 phase->C->add_range_check_cast(value);
4371 value = phase->transform(value);
4372 }
4373 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4374 return phase->transform(new ConvI2LNode(value, ltype));
4375 }
4376
4377 // The message about the current inlining is accumulated in
4378 // _print_inlining_stream and transfered into the _print_inlining_list
4379 // once we know whether inlining succeeds or not. For regular
4380 // inlining, messages are appended to the buffer pointed by
4381 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4382 // a new buffer is added after _print_inlining_idx in the list. This
4383 // way we can update the inlining message for late inlining call site
4384 // when the inlining is attempted again.
4385 void Compile::print_inlining_init() {
4386 if (print_inlining() || print_intrinsics()) {
4387 _print_inlining_stream = new stringStream();
4388 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4389 }
4390 }
4391
4392 void Compile::print_inlining_reinit() {
4393 if (print_inlining() || print_intrinsics()) {
4394 // Re allocate buffer when we change ResourceMark
4395 _print_inlining_stream = new stringStream();
4396 }
4397 }
4398
4399 void Compile::print_inlining_reset() {
4400 _print_inlining_stream->reset();
4401 }
4402
4403 void Compile::print_inlining_commit() {
4404 assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4405 // Transfer the message from _print_inlining_stream to the current
4406 // _print_inlining_list buffer and clear _print_inlining_stream.
4407 _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4408 print_inlining_reset();
4409 }
4410
4411 void Compile::print_inlining_push() {
4412 // Add new buffer to the _print_inlining_list at current position
4413 _print_inlining_idx++;
4414 _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4415 }
4416
4417 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4418 return _print_inlining_list->at(_print_inlining_idx);
4419 }
4420
4421 void Compile::print_inlining_update(CallGenerator* cg) {
4422 if (print_inlining() || print_intrinsics()) {
4423 if (!cg->is_late_inline()) {
4424 if (print_inlining_current().cg() != NULL) {
4425 print_inlining_push();
4426 }
4427 print_inlining_commit();
4428 } else {
4429 if (print_inlining_current().cg() != cg &&
4430 (print_inlining_current().cg() != NULL ||
4431 print_inlining_current().ss()->size() != 0)) {
4432 print_inlining_push();
4433 }
4434 print_inlining_commit();
4435 print_inlining_current().set_cg(cg);
4436 }
4437 }
4438 }
4439
4440 void Compile::print_inlining_move_to(CallGenerator* cg) {
4441 // We resume inlining at a late inlining call site. Locate the
4442 // corresponding inlining buffer so that we can update it.
4443 if (print_inlining()) {
4444 for (int i = 0; i < _print_inlining_list->length(); i++) {
4445 if (_print_inlining_list->adr_at(i)->cg() == cg) {
4446 _print_inlining_idx = i;
4447 return;
4448 }
4449 }
4450 ShouldNotReachHere();
4451 }
4452 }
4453
4454 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4455 if (print_inlining()) {
4456 assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4457 assert(print_inlining_current().cg() == cg, "wrong entry");
4458 // replace message with new message
4459 _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4460 print_inlining_commit();
4461 print_inlining_current().set_cg(cg);
4462 }
4463 }
4464
4465 void Compile::print_inlining_assert_ready() {
4466 assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4467 }
4468
4469 void Compile::process_print_inlining() {
4470 bool do_print_inlining = print_inlining() || print_intrinsics();
4471 if (do_print_inlining || log() != NULL) {
4472 // Print inlining message for candidates that we couldn't inline
4473 // for lack of space
4474 for (int i = 0; i < _late_inlines.length(); i++) {
4475 CallGenerator* cg = _late_inlines.at(i);
4476 if (!cg->is_mh_late_inline()) {
4477 const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4478 if (do_print_inlining) {
4479 cg->print_inlining_late(msg);
4480 }
4481 log_late_inline_failure(cg, msg);
4482 }
4483 }
4484 }
4485 if (do_print_inlining) {
4486 ResourceMark rm;
4487 stringStream ss;
4488 for (int i = 0; i < _print_inlining_list->length(); i++) {
4489 ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4490 }
4491 size_t end = ss.size();
4492 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4493 strncpy(_print_inlining_output, ss.base(), end+1);
4494 _print_inlining_output[end] = 0;
4495 }
4496 }
4497
4498 void Compile::dump_print_inlining() {
4499 if (_print_inlining_output != NULL) {
4500 tty->print_raw(_print_inlining_output);
4501 }
4502 }
4503
4504 void Compile::log_late_inline(CallGenerator* cg) {
4505 if (log() != NULL) {
4506 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4507 cg->unique_id());
4508 JVMState* p = cg->call_node()->jvms();
4509 while (p != NULL) {
4510 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4511 p = p->caller();
4512 }
4513 log()->tail("late_inline");
4514 }
4515 }
4516
4517 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4518 log_late_inline(cg);
4519 if (log() != NULL) {
4520 log()->inline_fail(msg);
4521 }
4522 }
4523
4524 void Compile::log_inline_id(CallGenerator* cg) {
4525 if (log() != NULL) {
4526 // The LogCompilation tool needs a unique way to identify late
4527 // inline call sites. This id must be unique for this call site in
4528 // this compilation. Try to have it unique across compilations as
4529 // well because it can be convenient when grepping through the log
4530 // file.
4531 // Distinguish OSR compilations from others in case CICountOSR is
4532 // on.
4533 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4534 cg->set_unique_id(id);
4535 log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4536 }
4537 }
4538
4539 void Compile::log_inline_failure(const char* msg) {
4540 if (C->log() != NULL) {
4541 C->log()->inline_fail(msg);
4542 }
4543 }
4544
4545
4546 // Dump inlining replay data to the stream.
4547 // Don't change thread state and acquire any locks.
4548 void Compile::dump_inline_data(outputStream* out) {
4549 InlineTree* inl_tree = ilt();
4550 if (inl_tree != NULL) {
4551 out->print(" inline %d", inl_tree->count());
4552 inl_tree->dump_replay_data(out);
4553 }
4554 }
4555
4556 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4557 if (n1->Opcode() < n2->Opcode()) return -1;
4558 else if (n1->Opcode() > n2->Opcode()) return 1;
4559
4560 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4561 for (uint i = 1; i < n1->req(); i++) {
4562 if (n1->in(i) < n2->in(i)) return -1;
4563 else if (n1->in(i) > n2->in(i)) return 1;
4564 }
4565
4566 return 0;
4567 }
4568
4569 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4570 Node* n1 = *n1p;
4571 Node* n2 = *n2p;
4572
4573 return cmp_expensive_nodes(n1, n2);
4574 }
4575
4576 void Compile::sort_expensive_nodes() {
4577 if (!expensive_nodes_sorted()) {
4578 _expensive_nodes->sort(cmp_expensive_nodes);
4579 }
4580 }
4581
4582 bool Compile::expensive_nodes_sorted() const {
4583 for (int i = 1; i < _expensive_nodes->length(); i++) {
4584 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4585 return false;
4586 }
4587 }
4588 return true;
4589 }
4590
4591 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4592 if (_expensive_nodes->length() == 0) {
4593 return false;
4594 }
4595
4596 assert(OptimizeExpensiveOps, "optimization off?");
4597
4598 // Take this opportunity to remove dead nodes from the list
4599 int j = 0;
4600 for (int i = 0; i < _expensive_nodes->length(); i++) {
4601 Node* n = _expensive_nodes->at(i);
4602 if (!n->is_unreachable(igvn)) {
4603 assert(n->is_expensive(), "should be expensive");
4604 _expensive_nodes->at_put(j, n);
4605 j++;
4606 }
4607 }
4608 _expensive_nodes->trunc_to(j);
4609
4610 // Then sort the list so that similar nodes are next to each other
4611 // and check for at least two nodes of identical kind with same data
4612 // inputs.
4613 sort_expensive_nodes();
4614
4615 for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4616 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4617 return true;
4618 }
4619 }
4620
4621 return false;
4622 }
4623
4624 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4625 if (_expensive_nodes->length() == 0) {
4626 return;
4627 }
4628
4629 assert(OptimizeExpensiveOps, "optimization off?");
4630
4631 // Sort to bring similar nodes next to each other and clear the
4632 // control input of nodes for which there's only a single copy.
4633 sort_expensive_nodes();
4634
4635 int j = 0;
4636 int identical = 0;
4637 int i = 0;
4638 bool modified = false;
4639 for (; i < _expensive_nodes->length()-1; i++) {
4640 assert(j <= i, "can't write beyond current index");
4641 if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4642 identical++;
4643 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4644 continue;
4645 }
4646 if (identical > 0) {
4647 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4648 identical = 0;
4649 } else {
4650 Node* n = _expensive_nodes->at(i);
4651 igvn.replace_input_of(n, 0, NULL);
4652 igvn.hash_insert(n);
4653 modified = true;
4654 }
4655 }
4656 if (identical > 0) {
4657 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4658 } else if (_expensive_nodes->length() >= 1) {
4659 Node* n = _expensive_nodes->at(i);
4660 igvn.replace_input_of(n, 0, NULL);
4661 igvn.hash_insert(n);
4662 modified = true;
4663 }
4664 _expensive_nodes->trunc_to(j);
4665 if (modified) {
4666 igvn.optimize();
4667 }
4668 }
4669
4670 void Compile::add_expensive_node(Node * n) {
4671 assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4672 assert(n->is_expensive(), "expensive nodes with non-null control here only");
4673 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4674 if (OptimizeExpensiveOps) {
4675 _expensive_nodes->append(n);
4676 } else {
4677 // Clear control input and let IGVN optimize expensive nodes if
4678 // OptimizeExpensiveOps is off.
4679 n->set_req(0, NULL);
4680 }
4681 }
4682
4683 /**
4684 * Remove the speculative part of types and clean up the graph
4685 */
4686 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4687 if (UseTypeSpeculation) {
4688 Unique_Node_List worklist;
4689 worklist.push(root());
4690 int modified = 0;
4691 // Go over all type nodes that carry a speculative type, drop the
4692 // speculative part of the type and enqueue the node for an igvn
4693 // which may optimize it out.
4694 for (uint next = 0; next < worklist.size(); ++next) {
4695 Node *n = worklist.at(next);
4696 if (n->is_Type()) {
4697 TypeNode* tn = n->as_Type();
4698 const Type* t = tn->type();
4699 const Type* t_no_spec = t->remove_speculative();
4700 if (t_no_spec != t) {
4701 bool in_hash = igvn.hash_delete(n);
4702 assert(in_hash, "node should be in igvn hash table");
4703 tn->set_type(t_no_spec);
4704 igvn.hash_insert(n);
4705 igvn._worklist.push(n); // give it a chance to go away
4706 modified++;
4707 }
4708 }
4709 uint max = n->len();
4710 for( uint i = 0; i < max; ++i ) {
4711 Node *m = n->in(i);
4712 if (not_a_node(m)) continue;
4713 worklist.push(m);
4714 }
4715 }
4716 // Drop the speculative part of all types in the igvn's type table
4717 igvn.remove_speculative_types();
4718 if (modified > 0) {
4719 igvn.optimize();
4720 }
4721 #ifdef ASSERT
4722 // Verify that after the IGVN is over no speculative type has resurfaced
4723 worklist.clear();
4724 worklist.push(root());
4725 for (uint next = 0; next < worklist.size(); ++next) {
4726 Node *n = worklist.at(next);
4727 const Type* t = igvn.type_or_null(n);
4728 assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4729 if (n->is_Type()) {
4730 t = n->as_Type()->type();
4731 assert(t == t->remove_speculative(), "no more speculative types");
4732 }
4733 uint max = n->len();
4734 for( uint i = 0; i < max; ++i ) {
4735 Node *m = n->in(i);
4736 if (not_a_node(m)) continue;
4737 worklist.push(m);
4738 }
4739 }
4740 igvn.check_no_speculative_types();
4741 #endif
4742 }
4743 }
4744
4745 Node* Compile::optimize_acmp(PhaseGVN* phase, Node* a, Node* b) {
4746 const TypeInstPtr* ta = phase->type(a)->isa_instptr();
4747 const TypeInstPtr* tb = phase->type(b)->isa_instptr();
4748 if (!EnableValhalla || ta == NULL || tb == NULL ||
4749 ta->is_zero_type() || tb->is_zero_type() ||
4750 !ta->can_be_value_type() || !tb->can_be_value_type()) {
4751 // Use old acmp if one operand is null or not a value type
4752 return new CmpPNode(a, b);
4753 } else if (ta->is_valuetypeptr() || tb->is_valuetypeptr()) {
4754 // We know that one operand is a value type. Therefore,
4755 // new acmp will only return true if both operands are NULL.
4756 // Check if both operands are null by or'ing the oops.
4757 a = phase->transform(new CastP2XNode(NULL, a));
4758 b = phase->transform(new CastP2XNode(NULL, b));
4759 a = phase->transform(new OrXNode(a, b));
4760 return new CmpXNode(a, phase->MakeConX(0));
4761 }
4762 // Use new acmp
4763 return NULL;
4764 }
4765
4766 // Auxiliary method to support randomized stressing/fuzzing.
4767 //
4768 // This method can be called the arbitrary number of times, with current count
4769 // as the argument. The logic allows selecting a single candidate from the
4770 // running list of candidates as follows:
4771 // int count = 0;
4772 // Cand* selected = null;
4773 // while(cand = cand->next()) {
4774 // if (randomized_select(++count)) {
4775 // selected = cand;
4776 // }
4777 // }
4778 //
4779 // Including count equalizes the chances any candidate is "selected".
4780 // This is useful when we don't have the complete list of candidates to choose
4781 // from uniformly. In this case, we need to adjust the randomicity of the
4782 // selection, or else we will end up biasing the selection towards the latter
4783 // candidates.
4784 //
4785 // Quick back-envelope calculation shows that for the list of n candidates
4786 // the equal probability for the candidate to persist as "best" can be
4787 // achieved by replacing it with "next" k-th candidate with the probability
4788 // of 1/k. It can be easily shown that by the end of the run, the
4789 // probability for any candidate is converged to 1/n, thus giving the
4790 // uniform distribution among all the candidates.
4791 //
4792 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4793 #define RANDOMIZED_DOMAIN_POW 29
4794 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4795 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4796 bool Compile::randomized_select(int count) {
4797 assert(count > 0, "only positive");
4798 return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4799 }
4800
4801 CloneMap& Compile::clone_map() { return _clone_map; }
4802 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; }
4803
4804 void NodeCloneInfo::dump() const {
4805 tty->print(" {%d:%d} ", idx(), gen());
4806 }
4807
4808 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4809 uint64_t val = value(old->_idx);
4810 NodeCloneInfo cio(val);
4811 assert(val != 0, "old node should be in the map");
4812 NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4813 insert(nnn->_idx, cin.get());
4814 #ifndef PRODUCT
4815 if (is_debug()) {
4816 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4817 }
4818 #endif
4819 }
4820
4821 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4822 NodeCloneInfo cio(value(old->_idx));
4823 if (cio.get() == 0) {
4824 cio.set(old->_idx, 0);
4825 insert(old->_idx, cio.get());
4826 #ifndef PRODUCT
4827 if (is_debug()) {
4828 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4829 }
4830 #endif
4831 }
4832 clone(old, nnn, gen);
4833 }
4834
4835 int CloneMap::max_gen() const {
4836 int g = 0;
4837 DictI di(_dict);
4838 for(; di.test(); ++di) {
4839 int t = gen(di._key);
4840 if (g < t) {
4841 g = t;
4842 #ifndef PRODUCT
4843 if (is_debug()) {
4844 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4845 }
4846 #endif
4847 }
4848 }
4849 return g;
4850 }
4851
4852 void CloneMap::dump(node_idx_t key) const {
4853 uint64_t val = value(key);
4854 if (val != 0) {
4855 NodeCloneInfo ni(val);
4856 ni.dump();
4857 }
4858 }
--- EOF ---