rev 55090 : secret-sfac
1 /*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "interpreter/linkResolver.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "oops/method.hpp"
30 #include "opto/addnode.hpp"
31 #include "opto/c2compiler.hpp"
32 #include "opto/castnode.hpp"
33 #include "opto/idealGraphPrinter.hpp"
34 #include "opto/locknode.hpp"
35 #include "opto/memnode.hpp"
36 #include "opto/opaquenode.hpp"
37 #include "opto/parse.hpp"
38 #include "opto/rootnode.hpp"
39 #include "opto/runtime.hpp"
40 #include "opto/valuetypenode.hpp"
41 #include "runtime/arguments.hpp"
42 #include "runtime/handles.inline.hpp"
43 #include "runtime/safepointMechanism.hpp"
44 #include "runtime/sharedRuntime.hpp"
45 #include "utilities/copy.hpp"
46
47 // Static array so we can figure out which bytecodes stop us from compiling
48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
49 // and eventually should be encapsulated in a proper class (gri 8/18/98).
50
51 #ifndef PRODUCT
52 int nodes_created = 0;
53 int methods_parsed = 0;
54 int methods_seen = 0;
55 int blocks_parsed = 0;
56 int blocks_seen = 0;
57
58 int explicit_null_checks_inserted = 0;
59 int explicit_null_checks_elided = 0;
60 int all_null_checks_found = 0;
61 int implicit_null_checks = 0;
62
63 bool Parse::BytecodeParseHistogram::_initialized = false;
64 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
65 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
66 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
67 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes];
68
69 //------------------------------print_statistics-------------------------------
70 void Parse::print_statistics() {
71 tty->print_cr("--- Compiler Statistics ---");
72 tty->print("Methods seen: %d Methods parsed: %d", methods_seen, methods_parsed);
73 tty->print(" Nodes created: %d", nodes_created);
74 tty->cr();
75 if (methods_seen != methods_parsed) {
76 tty->print_cr("Reasons for parse failures (NOT cumulative):");
77 }
78 tty->print_cr("Blocks parsed: %d Blocks seen: %d", blocks_parsed, blocks_seen);
79
80 if (explicit_null_checks_inserted) {
81 tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,",
82 explicit_null_checks_inserted, explicit_null_checks_elided,
83 (100*explicit_null_checks_elided)/explicit_null_checks_inserted,
84 all_null_checks_found);
85 }
86 if (all_null_checks_found) {
87 tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
88 (100*implicit_null_checks)/all_null_checks_found);
89 }
90 if (SharedRuntime::_implicit_null_throws) {
91 tty->print_cr("%d implicit null exceptions at runtime",
92 SharedRuntime::_implicit_null_throws);
93 }
94
95 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
96 BytecodeParseHistogram::print();
97 }
98 }
99 #endif
100
101 //------------------------------ON STACK REPLACEMENT---------------------------
102
103 // Construct a node which can be used to get incoming state for
104 // on stack replacement.
105 Node* Parse::fetch_interpreter_state(int index,
106 const Type* type,
107 Node* local_addrs,
108 Node* local_addrs_base) {
109 BasicType bt = type->basic_type();
110 if (type == TypePtr::NULL_PTR) {
111 // Ptr types are mixed together with T_ADDRESS but NULL is
112 // really for T_OBJECT types so correct it.
113 bt = T_OBJECT;
114 }
115 Node *mem = memory(Compile::AliasIdxRaw);
116 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
117 Node *ctl = control();
118
119 // Very similar to LoadNode::make, except we handle un-aligned longs and
120 // doubles on Sparc. Intel can handle them just fine directly.
121 Node *l = NULL;
122 switch (bt) { // Signature is flattened
123 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break;
124 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break;
125 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break;
126 case T_VALUETYPE:
127 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
128 case T_LONG:
129 case T_DOUBLE: {
130 // Since arguments are in reverse order, the argument address 'adr'
131 // refers to the back half of the long/double. Recompute adr.
132 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
133 if (Matcher::misaligned_doubles_ok) {
134 l = (bt == T_DOUBLE)
135 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
136 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
137 } else {
138 l = (bt == T_DOUBLE)
139 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
140 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
141 }
142 break;
143 }
144 default: ShouldNotReachHere();
145 }
146 return _gvn.transform(l);
147 }
148
149 // Helper routine to prevent the interpreter from handing
150 // unexpected typestate to an OSR method.
151 // The Node l is a value newly dug out of the interpreter frame.
152 // The type is the type predicted by ciTypeFlow. Note that it is
153 // not a general type, but can only come from Type::get_typeflow_type.
154 // The safepoint is a map which will feed an uncommon trap.
155 Node* Parse::check_interpreter_type(Node* l, const Type* type,
156 SafePointNode* &bad_type_exit) {
157 const TypeOopPtr* tp = type->isa_oopptr();
158 if (type->isa_valuetype() != NULL) {
159 // The interpreter passes value types as oops
160 tp = TypeOopPtr::make_from_klass(type->isa_valuetype()->value_klass());
161 }
162
163 // TypeFlow may assert null-ness if a type appears unloaded.
164 if (type == TypePtr::NULL_PTR ||
165 (tp != NULL && !tp->klass()->is_loaded())) {
166 // Value must be null, not a real oop.
167 Node* chk = _gvn.transform( new CmpPNode(l, null()) );
168 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
169 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
170 set_control(_gvn.transform( new IfTrueNode(iff) ));
171 Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
172 bad_type_exit->control()->add_req(bad_type);
173 l = null();
174 }
175
176 // Typeflow can also cut off paths from the CFG, based on
177 // types which appear unloaded, or call sites which appear unlinked.
178 // When paths are cut off, values at later merge points can rise
179 // toward more specific classes. Make sure these specific classes
180 // are still in effect.
181 if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
182 // TypeFlow asserted a specific object type. Value must have that type.
183 Node* bad_type_ctrl = NULL;
184 if (tp->is_valuetypeptr()) {
185 // Check value types for null here to prevent checkcast from adding an
186 // exception state before the bytecode entry (use 'bad_type_ctrl' instead).
187 l = null_check_oop(l, &bad_type_ctrl);
188 bad_type_exit->control()->add_req(bad_type_ctrl);
189 }
190 l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
191 bad_type_exit->control()->add_req(bad_type_ctrl);
192 }
193
194 BasicType bt_l = _gvn.type(l)->basic_type();
195 BasicType bt_t = type->basic_type();
196 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
197 return l;
198 }
199
200 // Helper routine which sets up elements of the initial parser map when
201 // performing a parse for on stack replacement. Add values into map.
202 // The only parameter contains the address of a interpreter arguments.
203 void Parse::load_interpreter_state(Node* osr_buf) {
204 int index;
205 int max_locals = jvms()->loc_size();
206 int max_stack = jvms()->stk_size();
207
208 // Mismatch between method and jvms can occur since map briefly held
209 // an OSR entry state (which takes up one RawPtr word).
210 assert(max_locals == method()->max_locals(), "sanity");
211 assert(max_stack >= method()->max_stack(), "sanity");
212 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
213 assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
214
215 // Find the start block.
216 Block* osr_block = start_block();
217 assert(osr_block->start() == osr_bci(), "sanity");
218
219 // Set initial BCI.
220 set_parse_bci(osr_block->start());
221
222 // Set initial stack depth.
223 set_sp(osr_block->start_sp());
224
225 // Check bailouts. We currently do not perform on stack replacement
226 // of loops in catch blocks or loops which branch with a non-empty stack.
227 if (sp() != 0) {
228 C->record_method_not_compilable("OSR starts with non-empty stack");
229 return;
230 }
231 // Do not OSR inside finally clauses:
232 if (osr_block->has_trap_at(osr_block->start())) {
233 C->record_method_not_compilable("OSR starts with an immediate trap");
234 return;
235 }
236
237 // Commute monitors from interpreter frame to compiler frame.
238 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
239 int mcnt = osr_block->flow()->monitor_count();
240 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
241 for (index = 0; index < mcnt; index++) {
242 // Make a BoxLockNode for the monitor.
243 Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
244
245 // Displaced headers and locked objects are interleaved in the
246 // temp OSR buffer. We only copy the locked objects out here.
247 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
248 Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf);
249 // Try and copy the displaced header to the BoxNode
250 Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf);
251
252 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
253
254 // Build a bogus FastLockNode (no code will be generated) and push the
255 // monitor into our debug info.
256 const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
257 map()->push_monitor(flock);
258
259 // If the lock is our method synchronization lock, tuck it away in
260 // _sync_lock for return and rethrow exit paths.
261 if (index == 0 && method()->is_synchronized()) {
262 _synch_lock = flock;
263 }
264 }
265
266 // Use the raw liveness computation to make sure that unexpected
267 // values don't propagate into the OSR frame.
268 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
269 if (!live_locals.is_valid()) {
270 // Degenerate or breakpointed method.
271 C->record_method_not_compilable("OSR in empty or breakpointed method");
272 return;
273 }
274
275 // Extract the needed locals from the interpreter frame.
276 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
277
278 // find all the locals that the interpreter thinks contain live oops
279 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
280 for (index = 0; index < max_locals; index++) {
281
282 if (!live_locals.at(index)) {
283 continue;
284 }
285
286 const Type *type = osr_block->local_type_at(index);
287
288 if (type->isa_oopptr() != NULL) {
289
290 // 6403625: Verify that the interpreter oopMap thinks that the oop is live
291 // else we might load a stale oop if the MethodLiveness disagrees with the
292 // result of the interpreter. If the interpreter says it is dead we agree
293 // by making the value go to top.
294 //
295
296 if (!live_oops.at(index)) {
297 if (C->log() != NULL) {
298 C->log()->elem("OSR_mismatch local_index='%d'",index);
299 }
300 set_local(index, null());
301 // and ignore it for the loads
302 continue;
303 }
304 }
305
306 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.)
307 if (type == Type::TOP || type == Type::HALF) {
308 continue;
309 }
310 // If the type falls to bottom, then this must be a local that
311 // is mixing ints and oops or some such. Forcing it to top
312 // makes it go dead.
313 if (type == Type::BOTTOM) {
314 continue;
315 }
316 // Construct code to access the appropriate local.
317 Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf);
318 set_local(index, value);
319 }
320
321 // Extract the needed stack entries from the interpreter frame.
322 for (index = 0; index < sp(); index++) {
323 const Type *type = osr_block->stack_type_at(index);
324 if (type != Type::TOP) {
325 // Currently the compiler bails out when attempting to on stack replace
326 // at a bci with a non-empty stack. We should not reach here.
327 ShouldNotReachHere();
328 }
329 }
330
331 // End the OSR migration
332 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
333 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
334 "OSR_migration_end", TypeRawPtr::BOTTOM,
335 osr_buf);
336
337 // Now that the interpreter state is loaded, make sure it will match
338 // at execution time what the compiler is expecting now:
339 SafePointNode* bad_type_exit = clone_map();
340 bad_type_exit->set_control(new RegionNode(1));
341
342 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
343 for (index = 0; index < max_locals; index++) {
344 if (stopped()) break;
345 Node* l = local(index);
346 if (l->is_top()) continue; // nothing here
347 const Type *type = osr_block->local_type_at(index);
348 if (type->isa_oopptr() != NULL) {
349 if (!live_oops.at(index)) {
350 // skip type check for dead oops
351 continue;
352 }
353 }
354 if (osr_block->flow()->local_type_at(index)->is_return_address()) {
355 // In our current system it's illegal for jsr addresses to be
356 // live into an OSR entry point because the compiler performs
357 // inlining of jsrs. ciTypeFlow has a bailout that detect this
358 // case and aborts the compile if addresses are live into an OSR
359 // entry point. Because of that we can assume that any address
360 // locals at the OSR entry point are dead. Method liveness
361 // isn't precise enought to figure out that they are dead in all
362 // cases so simply skip checking address locals all
363 // together. Any type check is guaranteed to fail since the
364 // interpreter type is the result of a load which might have any
365 // value and the expected type is a constant.
366 continue;
367 }
368 set_local(index, check_interpreter_type(l, type, bad_type_exit));
369 }
370
371 for (index = 0; index < sp(); index++) {
372 if (stopped()) break;
373 Node* l = stack(index);
374 if (l->is_top()) continue; // nothing here
375 const Type *type = osr_block->stack_type_at(index);
376 set_stack(index, check_interpreter_type(l, type, bad_type_exit));
377 }
378
379 if (bad_type_exit->control()->req() > 1) {
380 // Build an uncommon trap here, if any inputs can be unexpected.
381 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
382 record_for_igvn(bad_type_exit->control());
383 SafePointNode* types_are_good = map();
384 set_map(bad_type_exit);
385 // The unexpected type happens because a new edge is active
386 // in the CFG, which typeflow had previously ignored.
387 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
388 // This x will be typed as Integer if notReached is not yet linked.
389 // It could also happen due to a problem in ciTypeFlow analysis.
390 uncommon_trap(Deoptimization::Reason_constraint,
391 Deoptimization::Action_reinterpret);
392 set_map(types_are_good);
393 }
394 }
395
396 //------------------------------Parse------------------------------------------
397 // Main parser constructor.
398 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
399 : _exits(caller)
400 {
401 // Init some variables
402 _caller = caller;
403 _method = parse_method;
404 _expected_uses = expected_uses;
405 _depth = 1 + (caller->has_method() ? caller->depth() : 0);
406 _wrote_final = false;
407 _wrote_volatile = false;
408 _wrote_stable = false;
409 _wrote_fields = false;
410 _alloc_with_final = NULL;
411 _entry_bci = InvocationEntryBci;
412 _tf = NULL;
413 _block = NULL;
414 _first_return = true;
415 _replaced_nodes_for_exceptions = false;
416 _new_idx = C->unique();
417 debug_only(_block_count = -1);
418 debug_only(_blocks = (Block*)-1);
419 #ifndef PRODUCT
420 if (PrintCompilation || PrintOpto) {
421 // Make sure I have an inline tree, so I can print messages about it.
422 JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
423 InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
424 }
425 _max_switch_depth = 0;
426 _est_switch_depth = 0;
427 #endif
428
429 if (parse_method->has_reserved_stack_access()) {
430 C->set_has_reserved_stack_access(true);
431 }
432
433 _tf = TypeFunc::make(method());
434 _iter.reset_to_method(method());
435 _flow = method()->get_flow_analysis();
436 if (_flow->failing()) {
437 C->record_method_not_compilable(_flow->failure_reason());
438 }
439
440 #ifndef PRODUCT
441 if (_flow->has_irreducible_entry()) {
442 C->set_parsed_irreducible_loop(true);
443 }
444 #endif
445
446 if (_expected_uses <= 0) {
447 _prof_factor = 1;
448 } else {
449 float prof_total = parse_method->interpreter_invocation_count();
450 if (prof_total <= _expected_uses) {
451 _prof_factor = 1;
452 } else {
453 _prof_factor = _expected_uses / prof_total;
454 }
455 }
456
457 CompileLog* log = C->log();
458 if (log != NULL) {
459 log->begin_head("parse method='%d' uses='%f'",
460 log->identify(parse_method), expected_uses);
461 if (depth() == 1 && C->is_osr_compilation()) {
462 log->print(" osr_bci='%d'", C->entry_bci());
463 }
464 log->stamp();
465 log->end_head();
466 }
467
468 // Accumulate deoptimization counts.
469 // (The range_check and store_check counts are checked elsewhere.)
470 ciMethodData* md = method()->method_data();
471 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
472 uint md_count = md->trap_count(reason);
473 if (md_count != 0) {
474 if (md_count == md->trap_count_limit())
475 md_count += md->overflow_trap_count();
476 uint total_count = C->trap_count(reason);
477 uint old_count = total_count;
478 total_count += md_count;
479 // Saturate the add if it overflows.
480 if (total_count < old_count || total_count < md_count)
481 total_count = (uint)-1;
482 C->set_trap_count(reason, total_count);
483 if (log != NULL)
484 log->elem("observe trap='%s' count='%d' total='%d'",
485 Deoptimization::trap_reason_name(reason),
486 md_count, total_count);
487 }
488 }
489 // Accumulate total sum of decompilations, also.
490 C->set_decompile_count(C->decompile_count() + md->decompile_count());
491
492 _count_invocations = C->do_count_invocations();
493 _method_data_update = C->do_method_data_update();
494
495 if (log != NULL && method()->has_exception_handlers()) {
496 log->elem("observe that='has_exception_handlers'");
497 }
498
499 assert(InlineTree::check_can_parse(method()) == NULL, "Can not parse this method, cutout earlier");
500 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
501
502 // Always register dependence if JVMTI is enabled, because
503 // either breakpoint setting or hotswapping of methods may
504 // cause deoptimization.
505 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
506 C->dependencies()->assert_evol_method(method());
507 }
508
509 NOT_PRODUCT(methods_seen++);
510
511 // Do some special top-level things.
512 if (depth() == 1 && C->is_osr_compilation()) {
513 _entry_bci = C->entry_bci();
514 _flow = method()->get_osr_flow_analysis(osr_bci());
515 if (_flow->failing()) {
516 C->record_method_not_compilable(_flow->failure_reason());
517 #ifndef PRODUCT
518 if (PrintOpto && (Verbose || WizardMode)) {
519 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
520 if (Verbose) {
521 method()->print();
522 method()->print_codes();
523 _flow->print();
524 }
525 }
526 #endif
527 }
528 _tf = C->tf(); // the OSR entry type is different
529 }
530
531 #ifdef ASSERT
532 if (depth() == 1) {
533 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
534 if (C->tf() != tf()) {
535 assert(C->env()->system_dictionary_modification_counter_changed(),
536 "Must invalidate if TypeFuncs differ");
537 }
538 } else {
539 assert(!this->is_osr_parse(), "no recursive OSR");
540 }
541 #endif
542
543 #ifndef PRODUCT
544 methods_parsed++;
545 // add method size here to guarantee that inlined methods are added too
546 if (CITime)
547 _total_bytes_compiled += method()->code_size();
548
549 show_parse_info();
550 #endif
551
552 if (failing()) {
553 if (log) log->done("parse");
554 return;
555 }
556
557 gvn().set_type(root(), root()->bottom_type());
558 gvn().transform(top());
559
560 // Import the results of the ciTypeFlow.
561 init_blocks();
562
563 // Merge point for all normal exits
564 build_exits();
565
566 // Setup the initial JVM state map.
567 SafePointNode* entry_map = create_entry_map();
568
569 // Check for bailouts during map initialization
570 if (failing() || entry_map == NULL) {
571 if (log) log->done("parse");
572 return;
573 }
574
575 Node_Notes* caller_nn = C->default_node_notes();
576 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
577 if (DebugInlinedCalls || depth() == 1) {
578 C->set_default_node_notes(make_node_notes(caller_nn));
579 }
580
581 if (is_osr_parse()) {
582 Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
583 entry_map->set_req(TypeFunc::Parms+0, top());
584 set_map(entry_map);
585 load_interpreter_state(osr_buf);
586 } else {
587 set_map(entry_map);
588 do_method_entry();
589 if (depth() == 1 && C->age_code()) {
590 decrement_age();
591 }
592 }
593
594 if (depth() == 1 && !failing()) {
595 // Add check to deoptimize the nmethod if RTM state was changed
596 rtm_deopt();
597 }
598
599 // Check for bailouts during method entry or RTM state check setup.
600 if (failing()) {
601 if (log) log->done("parse");
602 C->set_default_node_notes(caller_nn);
603 return;
604 }
605
606 // Handle value type arguments
607 int arg_size_sig = tf()->domain_sig()->cnt();
608 for (uint i = 0; i < (uint)arg_size_sig; i++) {
609 Node* parm = map()->in(i);
610 const Type* t = _gvn.type(parm);
611 if (t->is_valuetypeptr() && t->value_klass()->is_scalarizable() && !t->maybe_null()) {
612 // Create ValueTypeNode from the oop and replace the parameter
613 Node* vt = ValueTypeNode::make_from_oop(this, parm, t->value_klass());
614 map()->replace_edge(parm, vt);
615 }
616 }
617
618 entry_map = map(); // capture any changes performed by method setup code
619 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
620
621 // We begin parsing as if we have just encountered a jump to the
622 // method entry.
623 Block* entry_block = start_block();
624 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
625 set_map_clone(entry_map);
626 merge_common(entry_block, entry_block->next_path_num());
627
628 #ifndef PRODUCT
629 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
630 set_parse_histogram( parse_histogram_obj );
631 #endif
632
633 // Parse all the basic blocks.
634 do_all_blocks();
635
636 C->set_default_node_notes(caller_nn);
637
638 // Check for bailouts during conversion to graph
639 if (failing()) {
640 if (log) log->done("parse");
641 return;
642 }
643
644 // Fix up all exiting control flow.
645 set_map(entry_map);
646 do_exits();
647
648 if (log) log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
649 C->unique(), C->live_nodes(), C->node_arena()->used());
650 }
651
652 //---------------------------do_all_blocks-------------------------------------
653 void Parse::do_all_blocks() {
654 bool has_irreducible = flow()->has_irreducible_entry();
655
656 // Walk over all blocks in Reverse Post-Order.
657 while (true) {
658 bool progress = false;
659 for (int rpo = 0; rpo < block_count(); rpo++) {
660 Block* block = rpo_at(rpo);
661
662 if (block->is_parsed()) continue;
663
664 if (!block->is_merged()) {
665 // Dead block, no state reaches this block
666 continue;
667 }
668
669 // Prepare to parse this block.
670 load_state_from(block);
671
672 if (stopped()) {
673 // Block is dead.
674 continue;
675 }
676
677 NOT_PRODUCT(blocks_parsed++);
678
679 progress = true;
680 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) {
681 // Not all preds have been parsed. We must build phis everywhere.
682 // (Note that dead locals do not get phis built, ever.)
683 ensure_phis_everywhere();
684
685 if (block->is_SEL_head()) {
686 // Add predicate to single entry (not irreducible) loop head.
687 assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
688 // Predicates may have been added after a dominating if
689 if (!block->has_predicates()) {
690 // Need correct bci for predicate.
691 // It is fine to set it here since do_one_block() will set it anyway.
692 set_parse_bci(block->start());
693 add_predicate();
694 }
695 // Add new region for back branches.
696 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
697 RegionNode *r = new RegionNode(edges+1);
698 _gvn.set_type(r, Type::CONTROL);
699 record_for_igvn(r);
700 r->init_req(edges, control());
701 set_control(r);
702 // Add new phis.
703 ensure_phis_everywhere();
704 }
705
706 // Leave behind an undisturbed copy of the map, for future merges.
707 set_map(clone_map());
708 }
709
710 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
711 // In the absence of irreducible loops, the Region and Phis
712 // associated with a merge that doesn't involve a backedge can
713 // be simplified now since the RPO parsing order guarantees
714 // that any path which was supposed to reach here has already
715 // been parsed or must be dead.
716 Node* c = control();
717 Node* result = _gvn.transform_no_reclaim(control());
718 if (c != result && TraceOptoParse) {
719 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
720 }
721 if (result != top()) {
722 record_for_igvn(result);
723 }
724 }
725
726 // Parse the block.
727 do_one_block();
728
729 // Check for bailouts.
730 if (failing()) return;
731 }
732
733 // with irreducible loops multiple passes might be necessary to parse everything
734 if (!has_irreducible || !progress) {
735 break;
736 }
737 }
738
739 #ifndef PRODUCT
740 blocks_seen += block_count();
741
742 // Make sure there are no half-processed blocks remaining.
743 // Every remaining unprocessed block is dead and may be ignored now.
744 for (int rpo = 0; rpo < block_count(); rpo++) {
745 Block* block = rpo_at(rpo);
746 if (!block->is_parsed()) {
747 if (TraceOptoParse) {
748 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
749 }
750 assert(!block->is_merged(), "no half-processed blocks");
751 }
752 }
753 #endif
754 }
755
756 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) {
757 switch (bt) {
758 case T_BYTE:
759 v = gvn->transform(new LShiftINode(v, gvn->intcon(24)));
760 v = gvn->transform(new RShiftINode(v, gvn->intcon(24)));
761 break;
762 case T_SHORT:
763 v = gvn->transform(new LShiftINode(v, gvn->intcon(16)));
764 v = gvn->transform(new RShiftINode(v, gvn->intcon(16)));
765 break;
766 case T_CHAR:
767 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF)));
768 break;
769 case T_BOOLEAN:
770 v = gvn->transform(new AndINode(v, gvn->intcon(0x1)));
771 break;
772 default:
773 break;
774 }
775 return v;
776 }
777
778 //-------------------------------build_exits----------------------------------
779 // Build normal and exceptional exit merge points.
780 void Parse::build_exits() {
781 // make a clone of caller to prevent sharing of side-effects
782 _exits.set_map(_exits.clone_map());
783 _exits.clean_stack(_exits.sp());
784 _exits.sync_jvms();
785
786 RegionNode* region = new RegionNode(1);
787 record_for_igvn(region);
788 gvn().set_type_bottom(region);
789 _exits.set_control(region);
790
791 // Note: iophi and memphi are not transformed until do_exits.
792 Node* iophi = new PhiNode(region, Type::ABIO);
793 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
794 gvn().set_type_bottom(iophi);
795 gvn().set_type_bottom(memphi);
796 _exits.set_i_o(iophi);
797 _exits.set_all_memory(memphi);
798
799 // Add a return value to the exit state. (Do not push it yet.)
800 if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
801 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
802 if (ret_type->isa_int()) {
803 BasicType ret_bt = method()->return_type()->basic_type();
804 if (ret_bt == T_BOOLEAN ||
805 ret_bt == T_CHAR ||
806 ret_bt == T_BYTE ||
807 ret_bt == T_SHORT) {
808 ret_type = TypeInt::INT;
809 }
810 }
811
812 // Don't "bind" an unloaded return klass to the ret_phi. If the klass
813 // becomes loaded during the subsequent parsing, the loaded and unloaded
814 // types will not join when we transform and push in do_exits().
815 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
816 if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
817 ret_type = TypeOopPtr::BOTTOM;
818 }
819 if ((_caller->has_method() || tf()->returns_value_type_as_fields()) &&
820 ret_type->is_valuetypeptr() && ret_type->value_klass()->is_scalarizable() && !ret_type->maybe_null()) {
821 // Scalarize value type return when inlining or with multiple return values
822 ret_type = TypeValueType::make(ret_type->value_klass());
823 }
824 int ret_size = type2size[ret_type->basic_type()];
825 Node* ret_phi = new PhiNode(region, ret_type);
826 gvn().set_type_bottom(ret_phi);
827 _exits.ensure_stack(ret_size);
828 assert((int)(tf()->range_sig()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
829 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
830 _exits.set_argument(0, ret_phi); // here is where the parser finds it
831 // Note: ret_phi is not yet pushed, until do_exits.
832 }
833 }
834
835 //----------------------------build_start_state-------------------------------
836 // Construct a state which contains only the incoming arguments from an
837 // unknown caller. The method & bci will be NULL & InvocationEntryBci.
838 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
839 int arg_size = tf->domain_sig()->cnt();
840 int max_size = MAX2(arg_size, (int)tf->range_cc()->cnt());
841 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms);
842 SafePointNode* map = new SafePointNode(max_size, NULL);
843 map->set_jvms(jvms);
844 jvms->set_map(map);
845 record_for_igvn(map);
846 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
847 Node_Notes* old_nn = default_node_notes();
848 if (old_nn != NULL && has_method()) {
849 Node_Notes* entry_nn = old_nn->clone(this);
850 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
851 entry_jvms->set_offsets(0);
852 entry_jvms->set_bci(entry_bci());
853 entry_nn->set_jvms(entry_jvms);
854 set_default_node_notes(entry_nn);
855 }
856 PhaseGVN& gvn = *initial_gvn();
857 uint j = 0;
858 ExtendedSignature sig_cc = ExtendedSignature(method()->get_sig_cc(), SigEntryFilter());
859 for (uint i = 0; i < (uint)arg_size; i++) {
860 const Type* t = tf->domain_sig()->field_at(i);
861 Node* parm = NULL;
862 if (has_scalarized_args() && t->is_valuetypeptr() && !t->maybe_null()) {
863 // Value type arguments are not passed by reference: we get an argument per
864 // field of the value type. Build ValueTypeNodes from the value type arguments.
865 GraphKit kit(jvms, &gvn);
866 kit.set_control(map->control());
867 Node* old_mem = map->memory();
868 // Use immutable memory for value type loads and restore it below
869 // TODO make sure value types are always loaded from immutable memory
870 kit.set_all_memory(C->immutable_memory());
871 parm = ValueTypeNode::make_from_multi(&kit, start, sig_cc, t->value_klass(), j, true);
872 map->set_control(kit.control());
873 map->set_memory(old_mem);
874 } else {
875 parm = gvn.transform(new ParmNode(start, j++));
876 BasicType bt = t->basic_type();
877 while (i >= TypeFunc::Parms && SigEntry::next_is_reserved(sig_cc, bt, true)) {
878 j += type2size[bt]; // Skip reserved arguments
879 }
880 }
881 map->init_req(i, parm);
882 // Record all these guys for later GVN.
883 record_for_igvn(parm);
884 }
885 for (; j < map->req(); j++) {
886 map->init_req(j, top());
887 }
888 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
889 set_default_node_notes(old_nn);
890 return jvms;
891 }
892
893 //-----------------------------make_node_notes---------------------------------
894 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
895 if (caller_nn == NULL) return NULL;
896 Node_Notes* nn = caller_nn->clone(C);
897 JVMState* caller_jvms = nn->jvms();
898 JVMState* jvms = new (C) JVMState(method(), caller_jvms);
899 jvms->set_offsets(0);
900 jvms->set_bci(_entry_bci);
901 nn->set_jvms(jvms);
902 return nn;
903 }
904
905
906 //--------------------------return_values--------------------------------------
907 void Compile::return_values(JVMState* jvms) {
908 GraphKit kit(jvms);
909 Node* ret = new ReturnNode(TypeFunc::Parms,
910 kit.control(),
911 kit.i_o(),
912 kit.reset_memory(),
913 kit.frameptr(),
914 kit.returnadr());
915 // Add zero or 1 return values
916 int ret_size = tf()->range_sig()->cnt() - TypeFunc::Parms;
917 if (ret_size > 0) {
918 kit.inc_sp(-ret_size); // pop the return value(s)
919 kit.sync_jvms();
920 Node* res = kit.argument(0);
921 if (tf()->returns_value_type_as_fields()) {
922 // Multiple return values (value type fields): add as many edges
923 // to the Return node as returned values.
924 assert(res->is_ValueType(), "what else supports multi value return?");
925 ValueTypeNode* vt = res->as_ValueType();
926 ret->add_req_batch(NULL, tf()->range_cc()->cnt() - TypeFunc::Parms);
927 if (vt->is_allocated(&kit.gvn()) && !StressValueTypeReturnedAsFields) {
928 ret->init_req(TypeFunc::Parms, vt->get_oop());
929 } else {
930 ret->init_req(TypeFunc::Parms, vt->tagged_klass(kit.gvn()));
931 }
932 const Array<SigEntry>* sig_array = vt->type()->is_valuetype()->value_klass()->extended_sig();
933 GrowableArray<SigEntry> sig = GrowableArray<SigEntry>(sig_array->length());
934 sig.appendAll(sig_array);
935 ExtendedSignature sig_cc = ExtendedSignature(&sig, SigEntryFilter());
936 uint idx = TypeFunc::Parms+1;
937 vt->pass_fields(&kit, ret, sig_cc, idx);
938 } else {
939 ret->add_req(res);
940 // Note: The second dummy edge is not needed by a ReturnNode.
941 }
942 }
943 // bind it to root
944 root()->add_req(ret);
945 record_for_igvn(ret);
946 initial_gvn()->transform_no_reclaim(ret);
947 }
948
949 //------------------------rethrow_exceptions-----------------------------------
950 // Bind all exception states in the list into a single RethrowNode.
951 void Compile::rethrow_exceptions(JVMState* jvms) {
952 GraphKit kit(jvms);
953 if (!kit.has_exceptions()) return; // nothing to generate
954 // Load my combined exception state into the kit, with all phis transformed:
955 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
956 Node* ex_oop = kit.use_exception_state(ex_map);
957 RethrowNode* exit = new RethrowNode(kit.control(),
958 kit.i_o(), kit.reset_memory(),
959 kit.frameptr(), kit.returnadr(),
960 // like a return but with exception input
961 ex_oop);
962 // bind to root
963 root()->add_req(exit);
964 record_for_igvn(exit);
965 initial_gvn()->transform_no_reclaim(exit);
966 }
967
968 //---------------------------do_exceptions-------------------------------------
969 // Process exceptions arising from the current bytecode.
970 // Send caught exceptions to the proper handler within this method.
971 // Unhandled exceptions feed into _exit.
972 void Parse::do_exceptions() {
973 if (!has_exceptions()) return;
974
975 if (failing()) {
976 // Pop them all off and throw them away.
977 while (pop_exception_state() != NULL) ;
978 return;
979 }
980
981 PreserveJVMState pjvms(this, false);
982
983 SafePointNode* ex_map;
984 while ((ex_map = pop_exception_state()) != NULL) {
985 if (!method()->has_exception_handlers()) {
986 // Common case: Transfer control outward.
987 // Doing it this early allows the exceptions to common up
988 // even between adjacent method calls.
989 throw_to_exit(ex_map);
990 } else {
991 // Have to look at the exception first.
992 assert(stopped(), "catch_inline_exceptions trashes the map");
993 catch_inline_exceptions(ex_map);
994 stop_and_kill_map(); // we used up this exception state; kill it
995 }
996 }
997
998 // We now return to our regularly scheduled program:
999 }
1000
1001 //---------------------------throw_to_exit-------------------------------------
1002 // Merge the given map into an exception exit from this method.
1003 // The exception exit will handle any unlocking of receiver.
1004 // The ex_oop must be saved within the ex_map, unlike merge_exception.
1005 void Parse::throw_to_exit(SafePointNode* ex_map) {
1006 // Pop the JVMS to (a copy of) the caller.
1007 GraphKit caller;
1008 caller.set_map_clone(_caller->map());
1009 caller.set_bci(_caller->bci());
1010 caller.set_sp(_caller->sp());
1011 // Copy out the standard machine state:
1012 for (uint i = 0; i < TypeFunc::Parms; i++) {
1013 caller.map()->set_req(i, ex_map->in(i));
1014 }
1015 if (ex_map->has_replaced_nodes()) {
1016 _replaced_nodes_for_exceptions = true;
1017 }
1018 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
1019 // ...and the exception:
1020 Node* ex_oop = saved_ex_oop(ex_map);
1021 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
1022 // Finally, collect the new exception state in my exits:
1023 _exits.add_exception_state(caller_ex_map);
1024 }
1025
1026 //------------------------------do_exits---------------------------------------
1027 void Parse::do_exits() {
1028 set_parse_bci(InvocationEntryBci);
1029
1030 // Now peephole on the return bits
1031 Node* region = _exits.control();
1032 _exits.set_control(gvn().transform(region));
1033
1034 Node* iophi = _exits.i_o();
1035 _exits.set_i_o(gvn().transform(iophi));
1036
1037 // Figure out if we need to emit the trailing barrier. The barrier is only
1038 // needed in the constructors, and only in three cases:
1039 //
1040 // 1. The constructor wrote a final. The effects of all initializations
1041 // must be committed to memory before any code after the constructor
1042 // publishes the reference to the newly constructed object. Rather
1043 // than wait for the publication, we simply block the writes here.
1044 // Rather than put a barrier on only those writes which are required
1045 // to complete, we force all writes to complete.
1046 //
1047 // 2. On PPC64, also add MemBarRelease for constructors which write
1048 // volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
1049 // is set on PPC64, no sync instruction is issued after volatile
1050 // stores. We want to guarantee the same behavior as on platforms
1051 // with total store order, although this is not required by the Java
1052 // memory model. So as with finals, we add a barrier here.
1053 //
1054 // 3. Experimental VM option is used to force the barrier if any field
1055 // was written out in the constructor.
1056 //
1057 // "All bets are off" unless the first publication occurs after a
1058 // normal return from the constructor. We do not attempt to detect
1059 // such unusual early publications. But no barrier is needed on
1060 // exceptional returns, since they cannot publish normally.
1061 //
1062 if (method()->is_object_constructor_or_class_initializer() &&
1063 (wrote_final() ||
1064 PPC64_ONLY(wrote_volatile() ||)
1065 (AlwaysSafeConstructors && wrote_fields()))) {
1066 _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
1067
1068 // If Memory barrier is created for final fields write
1069 // and allocation node does not escape the initialize method,
1070 // then barrier introduced by allocation node can be removed.
1071 if (DoEscapeAnalysis && alloc_with_final()) {
1072 AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn);
1073 alloc->compute_MemBar_redundancy(method());
1074 }
1075 if (PrintOpto && (Verbose || WizardMode)) {
1076 method()->print_name();
1077 tty->print_cr(" writes finals and needs a memory barrier");
1078 }
1079 }
1080
1081 // Any method can write a @Stable field; insert memory barriers
1082 // after those also. Can't bind predecessor allocation node (if any)
1083 // with barrier because allocation doesn't always dominate
1084 // MemBarRelease.
1085 if (wrote_stable()) {
1086 _exits.insert_mem_bar(Op_MemBarRelease);
1087 if (PrintOpto && (Verbose || WizardMode)) {
1088 method()->print_name();
1089 tty->print_cr(" writes @Stable and needs a memory barrier");
1090 }
1091 }
1092
1093 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1094 // transform each slice of the original memphi:
1095 mms.set_memory(_gvn.transform(mms.memory()));
1096 }
1097
1098 if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
1099 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
1100 Node* ret_phi = _gvn.transform( _exits.argument(0) );
1101 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1102 // In case of concurrent class loading, the type we set for the
1103 // ret_phi in build_exits() may have been too optimistic and the
1104 // ret_phi may be top now.
1105 // Otherwise, we've encountered an error and have to mark the method as
1106 // not compilable. Just using an assertion instead would be dangerous
1107 // as this could lead to an infinite compile loop in non-debug builds.
1108 {
1109 if (C->env()->system_dictionary_modification_counter_changed()) {
1110 C->record_failure(C2Compiler::retry_class_loading_during_parsing());
1111 } else {
1112 C->record_method_not_compilable("Can't determine return type.");
1113 }
1114 }
1115 return;
1116 }
1117 if (ret_type->isa_int()) {
1118 BasicType ret_bt = method()->return_type()->basic_type();
1119 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1120 }
1121 _exits.push_node(ret_type->basic_type(), ret_phi);
1122 }
1123
1124 // Note: Logic for creating and optimizing the ReturnNode is in Compile.
1125
1126 // Unlock along the exceptional paths.
1127 // This is done late so that we can common up equivalent exceptions
1128 // (e.g., null checks) arising from multiple points within this method.
1129 // See GraphKit::add_exception_state, which performs the commoning.
1130 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
1131
1132 // record exit from a method if compiled while Dtrace is turned on.
1133 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1134 // First move the exception list out of _exits:
1135 GraphKit kit(_exits.transfer_exceptions_into_jvms());
1136 SafePointNode* normal_map = kit.map(); // keep this guy safe
1137 // Now re-collect the exceptions into _exits:
1138 SafePointNode* ex_map;
1139 while ((ex_map = kit.pop_exception_state()) != NULL) {
1140 Node* ex_oop = kit.use_exception_state(ex_map);
1141 // Force the exiting JVM state to have this method at InvocationEntryBci.
1142 // The exiting JVM state is otherwise a copy of the calling JVMS.
1143 JVMState* caller = kit.jvms();
1144 JVMState* ex_jvms = caller->clone_shallow(C);
1145 ex_jvms->set_map(kit.clone_map());
1146 ex_jvms->map()->set_jvms(ex_jvms);
1147 ex_jvms->set_bci( InvocationEntryBci);
1148 kit.set_jvms(ex_jvms);
1149 if (do_synch) {
1150 // Add on the synchronized-method box/object combo
1151 kit.map()->push_monitor(_synch_lock);
1152 // Unlock!
1153 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1154 }
1155 if (C->env()->dtrace_method_probes()) {
1156 kit.make_dtrace_method_exit(method());
1157 }
1158 if (_replaced_nodes_for_exceptions) {
1159 kit.map()->apply_replaced_nodes(_new_idx);
1160 }
1161 // Done with exception-path processing.
1162 ex_map = kit.make_exception_state(ex_oop);
1163 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1164 // Pop the last vestige of this method:
1165 ex_map->set_jvms(caller->clone_shallow(C));
1166 ex_map->jvms()->set_map(ex_map);
1167 _exits.push_exception_state(ex_map);
1168 }
1169 assert(_exits.map() == normal_map, "keep the same return state");
1170 }
1171
1172 {
1173 // Capture very early exceptions (receiver null checks) from caller JVMS
1174 GraphKit caller(_caller);
1175 SafePointNode* ex_map;
1176 while ((ex_map = caller.pop_exception_state()) != NULL) {
1177 _exits.add_exception_state(ex_map);
1178 }
1179 }
1180 _exits.map()->apply_replaced_nodes(_new_idx);
1181 }
1182
1183 //-----------------------------create_entry_map-------------------------------
1184 // Initialize our parser map to contain the types at method entry.
1185 // For OSR, the map contains a single RawPtr parameter.
1186 // Initial monitor locking for sync. methods is performed by do_method_entry.
1187 SafePointNode* Parse::create_entry_map() {
1188 // Check for really stupid bail-out cases.
1189 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1190 if (len >= 32760) {
1191 C->record_method_not_compilable("too many local variables");
1192 return NULL;
1193 }
1194
1195 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1196 _caller->map()->delete_replaced_nodes();
1197
1198 // If this is an inlined method, we may have to do a receiver null check.
1199 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1200 GraphKit kit(_caller);
1201 kit.null_check_receiver_before_call(method(), false);
1202 _caller = kit.transfer_exceptions_into_jvms();
1203 if (kit.stopped()) {
1204 _exits.add_exception_states_from(_caller);
1205 _exits.set_jvms(_caller);
1206 return NULL;
1207 }
1208 }
1209
1210 assert(method() != NULL, "parser must have a method");
1211
1212 // Create an initial safepoint to hold JVM state during parsing
1213 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1214 set_map(new SafePointNode(len, jvms));
1215 jvms->set_map(map());
1216 record_for_igvn(map());
1217 assert(jvms->endoff() == len, "correct jvms sizing");
1218
1219 SafePointNode* inmap = _caller->map();
1220 assert(inmap != NULL, "must have inmap");
1221 // In case of null check on receiver above
1222 map()->transfer_replaced_nodes_from(inmap, _new_idx);
1223
1224 uint i;
1225
1226 // Pass thru the predefined input parameters.
1227 for (i = 0; i < TypeFunc::Parms; i++) {
1228 map()->init_req(i, inmap->in(i));
1229 }
1230
1231 if (depth() == 1) {
1232 assert(map()->memory()->Opcode() == Op_Parm, "");
1233 // Insert the memory aliasing node
1234 set_all_memory(reset_memory());
1235 }
1236 assert(merged_memory(), "");
1237
1238 // Now add the locals which are initially bound to arguments:
1239 uint arg_size = tf()->domain_sig()->cnt();
1240 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args
1241 for (i = TypeFunc::Parms; i < arg_size; i++) {
1242 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1243 }
1244
1245 // Clear out the rest of the map (locals and stack)
1246 for (i = arg_size; i < len; i++) {
1247 map()->init_req(i, top());
1248 }
1249
1250 SafePointNode* entry_map = stop();
1251 return entry_map;
1252 }
1253
1254 //-----------------------------do_method_entry--------------------------------
1255 // Emit any code needed in the pseudo-block before BCI zero.
1256 // The main thing to do is lock the receiver of a synchronized method.
1257 void Parse::do_method_entry() {
1258 set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1259 set_sp(0); // Java Stack Pointer
1260
1261 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1262
1263 if (C->env()->dtrace_method_probes()) {
1264 make_dtrace_method_entry(method());
1265 }
1266
1267 // If the method is synchronized, we need to construct a lock node, attach
1268 // it to the Start node, and pin it there.
1269 if (method()->is_synchronized()) {
1270 // Insert a FastLockNode right after the Start which takes as arguments
1271 // the current thread pointer, the "this" pointer & the address of the
1272 // stack slot pair used for the lock. The "this" pointer is a projection
1273 // off the start node, but the locking spot has to be constructed by
1274 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode
1275 // becomes the second argument to the FastLockNode call. The
1276 // FastLockNode becomes the new control parent to pin it to the start.
1277
1278 // Setup Object Pointer
1279 Node *lock_obj = NULL;
1280 if(method()->is_static()) {
1281 ciInstance* mirror = _method->holder()->java_mirror();
1282 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1283 lock_obj = makecon(t_lock);
1284 } else { // Else pass the "this" pointer,
1285 lock_obj = local(0); // which is Parm0 from StartNode
1286 }
1287 // Clear out dead values from the debug info.
1288 kill_dead_locals();
1289 // Build the FastLockNode
1290 _synch_lock = shared_lock(lock_obj);
1291 }
1292
1293 // Feed profiling data for parameters to the type system so it can
1294 // propagate it as speculative types
1295 record_profiled_parameters_for_speculation();
1296
1297 if (depth() == 1) {
1298 increment_and_test_invocation_counter(Tier2CompileThreshold);
1299 }
1300 }
1301
1302 //------------------------------init_blocks------------------------------------
1303 // Initialize our parser map to contain the types/monitors at method entry.
1304 void Parse::init_blocks() {
1305 // Create the blocks.
1306 _block_count = flow()->block_count();
1307 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1308
1309 // Initialize the structs.
1310 for (int rpo = 0; rpo < block_count(); rpo++) {
1311 Block* block = rpo_at(rpo);
1312 new(block) Block(this, rpo);
1313 }
1314
1315 // Collect predecessor and successor information.
1316 for (int rpo = 0; rpo < block_count(); rpo++) {
1317 Block* block = rpo_at(rpo);
1318 block->init_graph(this);
1319 }
1320 }
1321
1322 //-------------------------------init_node-------------------------------------
1323 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() {
1324 _flow = outer->flow()->rpo_at(rpo);
1325 _pred_count = 0;
1326 _preds_parsed = 0;
1327 _count = 0;
1328 _is_parsed = false;
1329 _is_handler = false;
1330 _has_merged_backedge = false;
1331 _start_map = NULL;
1332 _has_predicates = false;
1333 _num_successors = 0;
1334 _all_successors = 0;
1335 _successors = NULL;
1336 assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1337 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1338 assert(_live_locals.size() == 0, "sanity");
1339
1340 // entry point has additional predecessor
1341 if (flow()->is_start()) _pred_count++;
1342 assert(flow()->is_start() == (this == outer->start_block()), "");
1343 }
1344
1345 //-------------------------------init_graph------------------------------------
1346 void Parse::Block::init_graph(Parse* outer) {
1347 // Create the successor list for this parser block.
1348 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1349 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1350 int ns = tfs->length();
1351 int ne = tfe->length();
1352 _num_successors = ns;
1353 _all_successors = ns+ne;
1354 _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1355 int p = 0;
1356 for (int i = 0; i < ns+ne; i++) {
1357 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1358 Block* block2 = outer->rpo_at(tf2->rpo());
1359 _successors[i] = block2;
1360
1361 // Accumulate pred info for the other block, too.
1362 if (i < ns) {
1363 block2->_pred_count++;
1364 } else {
1365 block2->_is_handler = true;
1366 }
1367
1368 #ifdef ASSERT
1369 // A block's successors must be distinguishable by BCI.
1370 // That is, no bytecode is allowed to branch to two different
1371 // clones of the same code location.
1372 for (int j = 0; j < i; j++) {
1373 Block* block1 = _successors[j];
1374 if (block1 == block2) continue; // duplicates are OK
1375 assert(block1->start() != block2->start(), "successors have unique bcis");
1376 }
1377 #endif
1378 }
1379
1380 // Note: We never call next_path_num along exception paths, so they
1381 // never get processed as "ready". Also, the input phis of exception
1382 // handlers get specially processed, so that
1383 }
1384
1385 //---------------------------successor_for_bci---------------------------------
1386 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1387 for (int i = 0; i < all_successors(); i++) {
1388 Block* block2 = successor_at(i);
1389 if (block2->start() == bci) return block2;
1390 }
1391 // We can actually reach here if ciTypeFlow traps out a block
1392 // due to an unloaded class, and concurrently with compilation the
1393 // class is then loaded, so that a later phase of the parser is
1394 // able to see more of the bytecode CFG. Or, the flow pass and
1395 // the parser can have a minor difference of opinion about executability
1396 // of bytecodes. For example, "obj.field = null" is executable even
1397 // if the field's type is an unloaded class; the flow pass used to
1398 // make a trap for such code.
1399 return NULL;
1400 }
1401
1402
1403 //-----------------------------stack_type_at-----------------------------------
1404 const Type* Parse::Block::stack_type_at(int i) const {
1405 return get_type(flow()->stack_type_at(i));
1406 }
1407
1408
1409 //-----------------------------local_type_at-----------------------------------
1410 const Type* Parse::Block::local_type_at(int i) const {
1411 // Make dead locals fall to bottom.
1412 if (_live_locals.size() == 0) {
1413 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1414 // This bitmap can be zero length if we saw a breakpoint.
1415 // In such cases, pretend they are all live.
1416 ((Block*)this)->_live_locals = live_locals;
1417 }
1418 if (_live_locals.size() > 0 && !_live_locals.at(i))
1419 return Type::BOTTOM;
1420
1421 return get_type(flow()->local_type_at(i));
1422 }
1423
1424
1425 #ifndef PRODUCT
1426
1427 //----------------------------name_for_bc--------------------------------------
1428 // helper method for BytecodeParseHistogram
1429 static const char* name_for_bc(int i) {
1430 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1431 }
1432
1433 //----------------------------BytecodeParseHistogram------------------------------------
1434 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1435 _parser = p;
1436 _compiler = c;
1437 if( ! _initialized ) { _initialized = true; reset(); }
1438 }
1439
1440 //----------------------------current_count------------------------------------
1441 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1442 switch( bph_type ) {
1443 case BPH_transforms: { return _parser->gvn().made_progress(); }
1444 case BPH_values: { return _parser->gvn().made_new_values(); }
1445 default: { ShouldNotReachHere(); return 0; }
1446 }
1447 }
1448
1449 //----------------------------initialized--------------------------------------
1450 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1451
1452 //----------------------------reset--------------------------------------------
1453 void Parse::BytecodeParseHistogram::reset() {
1454 int i = Bytecodes::number_of_codes;
1455 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1456 }
1457
1458 //----------------------------set_initial_state--------------------------------
1459 // Record info when starting to parse one bytecode
1460 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1461 if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1462 _initial_bytecode = bc;
1463 _initial_node_count = _compiler->unique();
1464 _initial_transforms = current_count(BPH_transforms);
1465 _initial_values = current_count(BPH_values);
1466 }
1467 }
1468
1469 //----------------------------record_change--------------------------------
1470 // Record results of parsing one bytecode
1471 void Parse::BytecodeParseHistogram::record_change() {
1472 if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1473 ++_bytecodes_parsed[_initial_bytecode];
1474 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1475 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1476 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values);
1477 }
1478 }
1479
1480
1481 //----------------------------print--------------------------------------------
1482 void Parse::BytecodeParseHistogram::print(float cutoff) {
1483 ResourceMark rm;
1484 // print profile
1485 int total = 0;
1486 int i = 0;
1487 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1488 int abs_sum = 0;
1489 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789
1490 tty->print_cr("Histogram of %d parsed bytecodes:", total);
1491 if( total == 0 ) { return; }
1492 tty->cr();
1493 tty->print_cr("absolute: count of compiled bytecodes of this type");
1494 tty->print_cr("relative: percentage contribution to compiled nodes");
1495 tty->print_cr("nodes : Average number of nodes constructed per bytecode");
1496 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)");
1497 tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1498 tty->print_cr("values : Average number of node values improved per bytecode");
1499 tty->print_cr("name : Bytecode name");
1500 tty->cr();
1501 tty->print_cr(" absolute relative nodes rnodes transforms values name");
1502 tty->print_cr("----------------------------------------------------------------------");
1503 while (--i > 0) {
1504 int abs = _bytecodes_parsed[i];
1505 float rel = abs * 100.0F / total;
1506 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1507 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes;
1508 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1509 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i];
1510 if (cutoff <= rel) {
1511 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1512 abs_sum += abs;
1513 }
1514 }
1515 tty->print_cr("----------------------------------------------------------------------");
1516 float rel_sum = abs_sum * 100.0F / total;
1517 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1518 tty->print_cr("----------------------------------------------------------------------");
1519 tty->cr();
1520 }
1521 #endif
1522
1523 //----------------------------load_state_from----------------------------------
1524 // Load block/map/sp. But not do not touch iter/bci.
1525 void Parse::load_state_from(Block* block) {
1526 set_block(block);
1527 // load the block's JVM state:
1528 set_map(block->start_map());
1529 set_sp( block->start_sp());
1530 }
1531
1532
1533 //-----------------------------record_state------------------------------------
1534 void Parse::Block::record_state(Parse* p) {
1535 assert(!is_merged(), "can only record state once, on 1st inflow");
1536 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1537 set_start_map(p->stop());
1538 }
1539
1540
1541 //------------------------------do_one_block-----------------------------------
1542 void Parse::do_one_block() {
1543 if (TraceOptoParse) {
1544 Block *b = block();
1545 int ns = b->num_successors();
1546 int nt = b->all_successors();
1547
1548 tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1549 block()->rpo(), block()->start(), block()->limit());
1550 for (int i = 0; i < nt; i++) {
1551 tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1552 }
1553 if (b->is_loop_head()) tty->print(" lphd");
1554 tty->cr();
1555 }
1556
1557 assert(block()->is_merged(), "must be merged before being parsed");
1558 block()->mark_parsed();
1559
1560 // Set iterator to start of block.
1561 iter().reset_to_bci(block()->start());
1562
1563 CompileLog* log = C->log();
1564
1565 // Parse bytecodes
1566 while (!stopped() && !failing()) {
1567 iter().next();
1568
1569 // Learn the current bci from the iterator:
1570 set_parse_bci(iter().cur_bci());
1571
1572 if (bci() == block()->limit()) {
1573 // Do not walk into the next block until directed by do_all_blocks.
1574 merge(bci());
1575 break;
1576 }
1577 assert(bci() < block()->limit(), "bci still in block");
1578
1579 if (log != NULL) {
1580 // Output an optional context marker, to help place actions
1581 // that occur during parsing of this BC. If there is no log
1582 // output until the next context string, this context string
1583 // will be silently ignored.
1584 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1585 }
1586
1587 if (block()->has_trap_at(bci())) {
1588 // We must respect the flow pass's traps, because it will refuse
1589 // to produce successors for trapping blocks.
1590 int trap_index = block()->flow()->trap_index();
1591 assert(trap_index != 0, "trap index must be valid");
1592 uncommon_trap(trap_index);
1593 break;
1594 }
1595
1596 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1597
1598 #ifdef ASSERT
1599 int pre_bc_sp = sp();
1600 int inputs, depth;
1601 bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1602 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs);
1603 #endif //ASSERT
1604
1605 do_one_bytecode();
1606
1607 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1608 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth);
1609
1610 do_exceptions();
1611
1612 NOT_PRODUCT( parse_histogram()->record_change(); );
1613
1614 if (log != NULL)
1615 log->clear_context(); // skip marker if nothing was printed
1616
1617 // Fall into next bytecode. Each bytecode normally has 1 sequential
1618 // successor which is typically made ready by visiting this bytecode.
1619 // If the successor has several predecessors, then it is a merge
1620 // point, starts a new basic block, and is handled like other basic blocks.
1621 }
1622 }
1623
1624
1625 //------------------------------merge------------------------------------------
1626 void Parse::set_parse_bci(int bci) {
1627 set_bci(bci);
1628 Node_Notes* nn = C->default_node_notes();
1629 if (nn == NULL) return;
1630
1631 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1632 if (!DebugInlinedCalls && depth() > 1) {
1633 return;
1634 }
1635
1636 // Update the JVMS annotation, if present.
1637 JVMState* jvms = nn->jvms();
1638 if (jvms != NULL && jvms->bci() != bci) {
1639 // Update the JVMS.
1640 jvms = jvms->clone_shallow(C);
1641 jvms->set_bci(bci);
1642 nn->set_jvms(jvms);
1643 }
1644 }
1645
1646 //------------------------------merge------------------------------------------
1647 // Merge the current mapping into the basic block starting at bci
1648 void Parse::merge(int target_bci) {
1649 Block* target = successor_for_bci(target_bci);
1650 if (target == NULL) { handle_missing_successor(target_bci); return; }
1651 assert(!target->is_ready(), "our arrival must be expected");
1652 int pnum = target->next_path_num();
1653 merge_common(target, pnum);
1654 }
1655
1656 //-------------------------merge_new_path--------------------------------------
1657 // Merge the current mapping into the basic block, using a new path
1658 void Parse::merge_new_path(int target_bci) {
1659 Block* target = successor_for_bci(target_bci);
1660 if (target == NULL) { handle_missing_successor(target_bci); return; }
1661 assert(!target->is_ready(), "new path into frozen graph");
1662 int pnum = target->add_new_path();
1663 merge_common(target, pnum);
1664 }
1665
1666 //-------------------------merge_exception-------------------------------------
1667 // Merge the current mapping into the basic block starting at bci
1668 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1669 void Parse::merge_exception(int target_bci) {
1670 assert(sp() == 1, "must have only the throw exception on the stack");
1671 Block* target = successor_for_bci(target_bci);
1672 if (target == NULL) { handle_missing_successor(target_bci); return; }
1673 assert(target->is_handler(), "exceptions are handled by special blocks");
1674 int pnum = target->add_new_path();
1675 merge_common(target, pnum);
1676 }
1677
1678 //--------------------handle_missing_successor---------------------------------
1679 void Parse::handle_missing_successor(int target_bci) {
1680 #ifndef PRODUCT
1681 Block* b = block();
1682 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1683 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1684 #endif
1685 ShouldNotReachHere();
1686 }
1687
1688 //--------------------------merge_common---------------------------------------
1689 void Parse::merge_common(Parse::Block* target, int pnum) {
1690 if (TraceOptoParse) {
1691 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1692 }
1693
1694 // Zap extra stack slots to top
1695 assert(sp() == target->start_sp(), "");
1696 clean_stack(sp());
1697
1698 // Check for merge conflicts involving value types
1699 JVMState* old_jvms = map()->jvms();
1700 int old_bci = bci();
1701 JVMState* tmp_jvms = old_jvms->clone_shallow(C);
1702 tmp_jvms->set_should_reexecute(true);
1703 map()->set_jvms(tmp_jvms);
1704 // Execution needs to restart a the next bytecode (entry of next
1705 // block)
1706 if (target->is_merged() ||
1707 pnum > PhiNode::Input ||
1708 target->is_handler() ||
1709 target->is_loop_head()) {
1710 set_parse_bci(target->start());
1711 for (uint j = TypeFunc::Parms; j < map()->req(); j++) {
1712 Node* n = map()->in(j); // Incoming change to target state.
1713 const Type* t = NULL;
1714 if (tmp_jvms->is_loc(j)) {
1715 t = target->local_type_at(j - tmp_jvms->locoff());
1716 } else if (tmp_jvms->is_stk(j) && j < (uint)sp() + tmp_jvms->stkoff()) {
1717 t = target->stack_type_at(j - tmp_jvms->stkoff());
1718 }
1719 if (t != NULL && t != Type::BOTTOM) {
1720 if (n->is_ValueType() && !t->isa_valuetype()) {
1721 // Allocate value type in src block to be able to merge it with oop in target block
1722 map()->set_req(j, ValueTypePtrNode::make_from_value_type(this, n->as_ValueType(), true));
1723 }
1724 assert(!t->isa_valuetype() || n->is_ValueType(), "inconsistent typeflow info");
1725 }
1726 }
1727 }
1728 map()->set_jvms(old_jvms);
1729 set_parse_bci(old_bci);
1730
1731 if (!target->is_merged()) { // No prior mapping at this bci
1732 if (TraceOptoParse) { tty->print(" with empty state"); }
1733
1734 // If this path is dead, do not bother capturing it as a merge.
1735 // It is "as if" we had 1 fewer predecessors from the beginning.
1736 if (stopped()) {
1737 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count");
1738 return;
1739 }
1740
1741 // Make a region if we know there are multiple or unpredictable inputs.
1742 // (Also, if this is a plain fall-through, we might see another region,
1743 // which must not be allowed into this block's map.)
1744 if (pnum > PhiNode::Input // Known multiple inputs.
1745 || target->is_handler() // These have unpredictable inputs.
1746 || target->is_loop_head() // Known multiple inputs
1747 || control()->is_Region()) { // We must hide this guy.
1748
1749 int current_bci = bci();
1750 set_parse_bci(target->start()); // Set target bci
1751 if (target->is_SEL_head()) {
1752 DEBUG_ONLY( target->mark_merged_backedge(block()); )
1753 if (target->start() == 0) {
1754 // Add loop predicate for the special case when
1755 // there are backbranches to the method entry.
1756 add_predicate();
1757 }
1758 }
1759 // Add a Region to start the new basic block. Phis will be added
1760 // later lazily.
1761 int edges = target->pred_count();
1762 if (edges < pnum) edges = pnum; // might be a new path!
1763 RegionNode *r = new RegionNode(edges+1);
1764 gvn().set_type(r, Type::CONTROL);
1765 record_for_igvn(r);
1766 // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1767 // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1768 r->init_req(pnum, control());
1769 set_control(r);
1770 set_parse_bci(current_bci); // Restore bci
1771 }
1772
1773 // Convert the existing Parser mapping into a mapping at this bci.
1774 store_state_to(target);
1775 assert(target->is_merged(), "do not come here twice");
1776
1777 } else { // Prior mapping at this bci
1778 if (TraceOptoParse) { tty->print(" with previous state"); }
1779 #ifdef ASSERT
1780 if (target->is_SEL_head()) {
1781 target->mark_merged_backedge(block());
1782 }
1783 #endif
1784
1785 // We must not manufacture more phis if the target is already parsed.
1786 bool nophi = target->is_parsed();
1787
1788 SafePointNode* newin = map();// Hang on to incoming mapping
1789 Block* save_block = block(); // Hang on to incoming block;
1790 load_state_from(target); // Get prior mapping
1791
1792 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1793 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1794 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1795 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1796
1797 // Iterate over my current mapping and the old mapping.
1798 // Where different, insert Phi functions.
1799 // Use any existing Phi functions.
1800 assert(control()->is_Region(), "must be merging to a region");
1801 RegionNode* r = control()->as_Region();
1802
1803 // Compute where to merge into
1804 // Merge incoming control path
1805 r->init_req(pnum, newin->control());
1806
1807 if (pnum == 1) { // Last merge for this Region?
1808 if (!block()->flow()->is_irreducible_entry()) {
1809 Node* result = _gvn.transform_no_reclaim(r);
1810 if (r != result && TraceOptoParse) {
1811 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1812 }
1813 }
1814 record_for_igvn(r);
1815 }
1816
1817 // Update all the non-control inputs to map:
1818 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1819 bool check_elide_phi = target->is_SEL_backedge(save_block);
1820 bool last_merge = (pnum == PhiNode::Input);
1821 for (uint j = 1; j < newin->req(); j++) {
1822 Node* m = map()->in(j); // Current state of target.
1823 Node* n = newin->in(j); // Incoming change to target state.
1824 PhiNode* phi;
1825 if (m->is_Phi() && m->as_Phi()->region() == r) {
1826 phi = m->as_Phi();
1827 } else if (m->is_ValueType() && m->as_ValueType()->has_phi_inputs(r)){
1828 phi = m->as_ValueType()->get_oop()->as_Phi();
1829 } else {
1830 phi = NULL;
1831 }
1832 if (m != n) { // Different; must merge
1833 switch (j) {
1834 // Frame pointer and Return Address never changes
1835 case TypeFunc::FramePtr:// Drop m, use the original value
1836 case TypeFunc::ReturnAdr:
1837 break;
1838 case TypeFunc::Memory: // Merge inputs to the MergeMem node
1839 assert(phi == NULL, "the merge contains phis, not vice versa");
1840 merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1841 continue;
1842 default: // All normal stuff
1843 if (phi == NULL) {
1844 const JVMState* jvms = map()->jvms();
1845 if (EliminateNestedLocks &&
1846 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1847 // BoxLock nodes are not commoning.
1848 // Use old BoxLock node as merged box.
1849 assert(newin->jvms()->is_monitor_box(j), "sanity");
1850 // This assert also tests that nodes are BoxLock.
1851 assert(BoxLockNode::same_slot(n, m), "sanity");
1852 C->gvn_replace_by(n, m);
1853 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1854 phi = ensure_phi(j, nophi);
1855 }
1856 }
1857 break;
1858 }
1859 }
1860 // At this point, n might be top if:
1861 // - there is no phi (because TypeFlow detected a conflict), or
1862 // - the corresponding control edges is top (a dead incoming path)
1863 // It is a bug if we create a phi which sees a garbage value on a live path.
1864
1865 // Merging two value types?
1866 if (phi != NULL && n->is_ValueType()) {
1867 // Reload current state because it may have been updated by ensure_phi
1868 m = map()->in(j);
1869 ValueTypeNode* vtm = m->as_ValueType(); // Current value type
1870 ValueTypeNode* vtn = n->as_ValueType(); // Incoming value type
1871 assert(vtm->get_oop() == phi, "Value type should have Phi input");
1872 if (TraceOptoParse) {
1873 #ifdef ASSERT
1874 tty->print_cr("\nMerging value types");
1875 tty->print_cr("Current:");
1876 vtm->dump(2);
1877 tty->print_cr("Incoming:");
1878 vtn->dump(2);
1879 tty->cr();
1880 #endif
1881 }
1882 // Do the merge
1883 vtm->merge_with(&_gvn, vtn, pnum, last_merge);
1884 if (last_merge) {
1885 map()->set_req(j, _gvn.transform_no_reclaim(vtm));
1886 record_for_igvn(vtm);
1887 }
1888 } else if (phi != NULL) {
1889 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1890 assert(phi->region() == r, "");
1891 phi->set_req(pnum, n); // Then add 'n' to the merge
1892 if (last_merge) {
1893 // Last merge for this Phi.
1894 // So far, Phis have had a reasonable type from ciTypeFlow.
1895 // Now _gvn will join that with the meet of current inputs.
1896 // BOTTOM is never permissible here, 'cause pessimistically
1897 // Phis of pointers cannot lose the basic pointer type.
1898 debug_only(const Type* bt1 = phi->bottom_type());
1899 assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1900 map()->set_req(j, _gvn.transform_no_reclaim(phi));
1901 debug_only(const Type* bt2 = phi->bottom_type());
1902 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1903 record_for_igvn(phi);
1904 }
1905 }
1906 } // End of for all values to be merged
1907
1908 if (last_merge && !r->in(0)) { // The occasional useless Region
1909 assert(control() == r, "");
1910 set_control(r->nonnull_req());
1911 }
1912
1913 map()->merge_replaced_nodes_with(newin);
1914
1915 // newin has been subsumed into the lazy merge, and is now dead.
1916 set_block(save_block);
1917
1918 stop(); // done with this guy, for now
1919 }
1920
1921 if (TraceOptoParse) {
1922 tty->print_cr(" on path %d", pnum);
1923 }
1924
1925 // Done with this parser state.
1926 assert(stopped(), "");
1927 }
1928
1929
1930 //--------------------------merge_memory_edges---------------------------------
1931 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1932 // (nophi means we must not create phis, because we already parsed here)
1933 assert(n != NULL, "");
1934 // Merge the inputs to the MergeMems
1935 MergeMemNode* m = merged_memory();
1936
1937 assert(control()->is_Region(), "must be merging to a region");
1938 RegionNode* r = control()->as_Region();
1939
1940 PhiNode* base = NULL;
1941 MergeMemNode* remerge = NULL;
1942 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1943 Node *p = mms.force_memory();
1944 Node *q = mms.memory2();
1945 if (mms.is_empty() && nophi) {
1946 // Trouble: No new splits allowed after a loop body is parsed.
1947 // Instead, wire the new split into a MergeMem on the backedge.
1948 // The optimizer will sort it out, slicing the phi.
1949 if (remerge == NULL) {
1950 guarantee(base != NULL, "");
1951 assert(base->in(0) != NULL, "should not be xformed away");
1952 remerge = MergeMemNode::make(base->in(pnum));
1953 gvn().set_type(remerge, Type::MEMORY);
1954 base->set_req(pnum, remerge);
1955 }
1956 remerge->set_memory_at(mms.alias_idx(), q);
1957 continue;
1958 }
1959 assert(!q->is_MergeMem(), "");
1960 PhiNode* phi;
1961 if (p != q) {
1962 phi = ensure_memory_phi(mms.alias_idx(), nophi);
1963 } else {
1964 if (p->is_Phi() && p->as_Phi()->region() == r)
1965 phi = p->as_Phi();
1966 else
1967 phi = NULL;
1968 }
1969 // Insert q into local phi
1970 if (phi != NULL) {
1971 assert(phi->region() == r, "");
1972 p = phi;
1973 phi->set_req(pnum, q);
1974 if (mms.at_base_memory()) {
1975 base = phi; // delay transforming it
1976 } else if (pnum == 1) {
1977 record_for_igvn(phi);
1978 p = _gvn.transform_no_reclaim(phi);
1979 }
1980 mms.set_memory(p);// store back through the iterator
1981 }
1982 }
1983 // Transform base last, in case we must fiddle with remerging.
1984 if (base != NULL && pnum == 1) {
1985 record_for_igvn(base);
1986 m->set_base_memory( _gvn.transform_no_reclaim(base) );
1987 }
1988 }
1989
1990
1991 //------------------------ensure_phis_everywhere-------------------------------
1992 void Parse::ensure_phis_everywhere() {
1993 ensure_phi(TypeFunc::I_O);
1994
1995 // Ensure a phi on all currently known memories.
1996 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1997 ensure_memory_phi(mms.alias_idx());
1998 debug_only(mms.set_memory()); // keep the iterator happy
1999 }
2000
2001 // Note: This is our only chance to create phis for memory slices.
2002 // If we miss a slice that crops up later, it will have to be
2003 // merged into the base-memory phi that we are building here.
2004 // Later, the optimizer will comb out the knot, and build separate
2005 // phi-loops for each memory slice that matters.
2006
2007 // Monitors must nest nicely and not get confused amongst themselves.
2008 // Phi-ify everything up to the monitors, though.
2009 uint monoff = map()->jvms()->monoff();
2010 uint nof_monitors = map()->jvms()->nof_monitors();
2011
2012 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
2013 bool check_elide_phi = block()->is_SEL_head();
2014 for (uint i = TypeFunc::Parms; i < monoff; i++) {
2015 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
2016 ensure_phi(i);
2017 }
2018 }
2019
2020 // Even monitors need Phis, though they are well-structured.
2021 // This is true for OSR methods, and also for the rare cases where
2022 // a monitor object is the subject of a replace_in_map operation.
2023 // See bugs 4426707 and 5043395.
2024 for (uint m = 0; m < nof_monitors; m++) {
2025 ensure_phi(map()->jvms()->monitor_obj_offset(m));
2026 }
2027 }
2028
2029
2030 //-----------------------------add_new_path------------------------------------
2031 // Add a previously unaccounted predecessor to this block.
2032 int Parse::Block::add_new_path() {
2033 // If there is no map, return the lowest unused path number.
2034 if (!is_merged()) return pred_count()+1; // there will be a map shortly
2035
2036 SafePointNode* map = start_map();
2037 if (!map->control()->is_Region())
2038 return pred_count()+1; // there may be a region some day
2039 RegionNode* r = map->control()->as_Region();
2040
2041 // Add new path to the region.
2042 uint pnum = r->req();
2043 r->add_req(NULL);
2044
2045 for (uint i = 1; i < map->req(); i++) {
2046 Node* n = map->in(i);
2047 if (i == TypeFunc::Memory) {
2048 // Ensure a phi on all currently known memories.
2049 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
2050 Node* phi = mms.memory();
2051 if (phi->is_Phi() && phi->as_Phi()->region() == r) {
2052 assert(phi->req() == pnum, "must be same size as region");
2053 phi->add_req(NULL);
2054 }
2055 }
2056 } else {
2057 if (n->is_Phi() && n->as_Phi()->region() == r) {
2058 assert(n->req() == pnum, "must be same size as region");
2059 n->add_req(NULL);
2060 } else if (n->is_ValueType() && n->as_ValueType()->has_phi_inputs(r)) {
2061 n->as_ValueType()->add_new_path(r);
2062 }
2063 }
2064 }
2065
2066 return pnum;
2067 }
2068
2069 //------------------------------ensure_phi-------------------------------------
2070 // Turn the idx'th entry of the current map into a Phi
2071 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2072 SafePointNode* map = this->map();
2073 Node* region = map->control();
2074 assert(region->is_Region(), "");
2075
2076 Node* o = map->in(idx);
2077 assert(o != NULL, "");
2078
2079 if (o == top()) return NULL; // TOP always merges into TOP
2080
2081 if (o->is_Phi() && o->as_Phi()->region() == region) {
2082 return o->as_Phi();
2083 }
2084 ValueTypeBaseNode* vt = o->isa_ValueType();
2085 if (vt != NULL && vt->has_phi_inputs(region)) {
2086 return vt->get_oop()->as_Phi();
2087 }
2088
2089 // Now use a Phi here for merging
2090 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2091 const JVMState* jvms = map->jvms();
2092 const Type* t = NULL;
2093 if (jvms->is_loc(idx)) {
2094 t = block()->local_type_at(idx - jvms->locoff());
2095 } else if (jvms->is_stk(idx)) {
2096 t = block()->stack_type_at(idx - jvms->stkoff());
2097 } else if (jvms->is_mon(idx)) {
2098 assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2099 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2100 } else if ((uint)idx < TypeFunc::Parms) {
2101 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like.
2102 } else {
2103 assert(false, "no type information for this phi");
2104 }
2105
2106 // If the type falls to bottom, then this must be a local that
2107 // is already dead or is mixing ints and oops or some such.
2108 // Forcing it to top makes it go dead.
2109 if (t == Type::BOTTOM) {
2110 map->set_req(idx, top());
2111 return NULL;
2112 }
2113
2114 // Do not create phis for top either.
2115 // A top on a non-null control flow must be an unused even after the.phi.
2116 if (t == Type::TOP || t == Type::HALF) {
2117 map->set_req(idx, top());
2118 return NULL;
2119 }
2120
2121 if (vt != NULL) {
2122 // Value types are merged by merging their field values.
2123 // Create a cloned ValueTypeNode with phi inputs that
2124 // represents the merged value type and update the map.
2125 vt = vt->clone_with_phis(&_gvn, region);
2126 map->set_req(idx, vt);
2127 return vt->get_oop()->as_Phi();
2128 } else {
2129 PhiNode* phi = PhiNode::make(region, o, t);
2130 gvn().set_type(phi, t);
2131 if (C->do_escape_analysis()) record_for_igvn(phi);
2132 map->set_req(idx, phi);
2133 return phi;
2134 }
2135 }
2136
2137 //--------------------------ensure_memory_phi----------------------------------
2138 // Turn the idx'th slice of the current memory into a Phi
2139 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2140 MergeMemNode* mem = merged_memory();
2141 Node* region = control();
2142 assert(region->is_Region(), "");
2143
2144 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2145 assert(o != NULL && o != top(), "");
2146
2147 PhiNode* phi;
2148 if (o->is_Phi() && o->as_Phi()->region() == region) {
2149 phi = o->as_Phi();
2150 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2151 // clone the shared base memory phi to make a new memory split
2152 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2153 const Type* t = phi->bottom_type();
2154 const TypePtr* adr_type = C->get_adr_type(idx);
2155 phi = phi->slice_memory(adr_type);
2156 gvn().set_type(phi, t);
2157 }
2158 return phi;
2159 }
2160
2161 // Now use a Phi here for merging
2162 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2163 const Type* t = o->bottom_type();
2164 const TypePtr* adr_type = C->get_adr_type(idx);
2165 phi = PhiNode::make(region, o, t, adr_type);
2166 gvn().set_type(phi, t);
2167 if (idx == Compile::AliasIdxBot)
2168 mem->set_base_memory(phi);
2169 else
2170 mem->set_memory_at(idx, phi);
2171 return phi;
2172 }
2173
2174 //------------------------------call_register_finalizer-----------------------
2175 // Check the klass of the receiver and call register_finalizer if the
2176 // class need finalization.
2177 void Parse::call_register_finalizer() {
2178 Node* receiver = local(0);
2179 assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
2180 "must have non-null instance type");
2181
2182 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
2183 if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
2184 // The type isn't known exactly so see if CHA tells us anything.
2185 ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2186 if (!Dependencies::has_finalizable_subclass(ik)) {
2187 // No finalizable subclasses so skip the dynamic check.
2188 C->dependencies()->assert_has_no_finalizable_subclasses(ik);
2189 return;
2190 }
2191 }
2192
2193 // Insert a dynamic test for whether the instance needs
2194 // finalization. In general this will fold up since the concrete
2195 // class is often visible so the access flags are constant.
2196 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2197 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2198
2199 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
2200 Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
2201
2202 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
2203 Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2204 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne));
2205
2206 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2207
2208 RegionNode* result_rgn = new RegionNode(3);
2209 record_for_igvn(result_rgn);
2210
2211 Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2212 result_rgn->init_req(1, skip_register);
2213
2214 Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2215 set_control(needs_register);
2216 if (stopped()) {
2217 // There is no slow path.
2218 result_rgn->init_req(2, top());
2219 } else {
2220 Node *call = make_runtime_call(RC_NO_LEAF,
2221 OptoRuntime::register_finalizer_Type(),
2222 OptoRuntime::register_finalizer_Java(),
2223 NULL, TypePtr::BOTTOM,
2224 receiver);
2225 make_slow_call_ex(call, env()->Throwable_klass(), true);
2226
2227 Node* fast_io = call->in(TypeFunc::I_O);
2228 Node* fast_mem = call->in(TypeFunc::Memory);
2229 // These two phis are pre-filled with copies of of the fast IO and Memory
2230 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
2231 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2232
2233 result_rgn->init_req(2, control());
2234 io_phi ->init_req(2, i_o());
2235 mem_phi ->init_req(2, reset_memory());
2236
2237 set_all_memory( _gvn.transform(mem_phi) );
2238 set_i_o( _gvn.transform(io_phi) );
2239 }
2240
2241 set_control( _gvn.transform(result_rgn) );
2242 }
2243
2244 // Add check to deoptimize if RTM state is not ProfileRTM
2245 void Parse::rtm_deopt() {
2246 #if INCLUDE_RTM_OPT
2247 if (C->profile_rtm()) {
2248 assert(C->method() != NULL, "only for normal compilations");
2249 assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2250 assert(depth() == 1, "generate check only for main compiled method");
2251
2252 // Set starting bci for uncommon trap.
2253 set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2254
2255 // Load the rtm_state from the MethodData.
2256 const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
2257 Node* mdo = makecon(adr_type);
2258 int offset = MethodData::rtm_state_offset_in_bytes();
2259 Node* adr_node = basic_plus_adr(mdo, mdo, offset);
2260 Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2261
2262 // Separate Load from Cmp by Opaque.
2263 // In expand_macro_nodes() it will be replaced either
2264 // with this load when there are locks in the code
2265 // or with ProfileRTM (cmp->in(2)) otherwise so that
2266 // the check will fold.
2267 Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2268 Node* opq = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2269 Node* chk = _gvn.transform( new CmpINode(opq, profile_state) );
2270 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2271 // Branch to failure if state was changed
2272 { BuildCutout unless(this, tst, PROB_ALWAYS);
2273 uncommon_trap(Deoptimization::Reason_rtm_state_change,
2274 Deoptimization::Action_make_not_entrant);
2275 }
2276 }
2277 #endif
2278 }
2279
2280 void Parse::decrement_age() {
2281 MethodCounters* mc = method()->ensure_method_counters();
2282 if (mc == NULL) {
2283 C->record_failure("Must have MCs");
2284 return;
2285 }
2286 assert(!is_osr_parse(), "Not doing this for OSRs");
2287
2288 // Set starting bci for uncommon trap.
2289 set_parse_bci(0);
2290
2291 const TypePtr* adr_type = TypeRawPtr::make((address)mc);
2292 Node* mc_adr = makecon(adr_type);
2293 Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset()));
2294 Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2295 Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE)));
2296 store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered);
2297 Node *chk = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO)));
2298 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::gt));
2299 { BuildCutout unless(this, tst, PROB_ALWAYS);
2300 uncommon_trap(Deoptimization::Reason_tenured,
2301 Deoptimization::Action_make_not_entrant);
2302 }
2303 }
2304
2305 //------------------------------return_current---------------------------------
2306 // Append current _map to _exit_return
2307 void Parse::return_current(Node* value) {
2308 if (RegisterFinalizersAtInit &&
2309 method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2310 call_register_finalizer();
2311 }
2312
2313 // Do not set_parse_bci, so that return goo is credited to the return insn.
2314 // vreturn can trigger an allocation so vreturn can throw. Setting
2315 // the bci here breaks exception handling. Commenting this out
2316 // doesn't seem to break anything.
2317 // set_bci(InvocationEntryBci);
2318 if (method()->is_synchronized() && GenerateSynchronizationCode) {
2319 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2320 }
2321 if (C->env()->dtrace_method_probes()) {
2322 make_dtrace_method_exit(method());
2323 }
2324 // frame pointer is always same, already captured
2325 if (value != NULL) {
2326 Node* phi = _exits.argument(0);
2327 const Type* return_type = phi->bottom_type();
2328 const TypeOopPtr* tr = return_type->isa_oopptr();
2329 if (return_type->isa_valuetype()) {
2330 // Value type is returned as fields, make sure it is scalarized
2331 if (!value->is_ValueType()) {
2332 value = ValueTypeNode::make_from_oop(this, value, return_type->is_valuetype()->value_klass());
2333 }
2334 if (!_caller->has_method()) {
2335 // Value type is returned as fields from root method, make
2336 // sure all non-flattened value type fields are allocated.
2337 assert(tf()->returns_value_type_as_fields(), "must be returned as fields");
2338 value = value->as_ValueType()->allocate_fields(this);
2339 }
2340 } else if (value->is_ValueType()) {
2341 // Value type is returned as oop, make sure it is allocated
2342 assert(tr && tr->can_be_value_type(), "must return a value type pointer");
2343 value = ValueTypePtrNode::make_from_value_type(this, value->as_ValueType());
2344 } else if (tr && tr->isa_instptr() && tr->klass()->is_loaded() && tr->klass()->is_interface()) {
2345 // If returning oops to an interface-return, there is a silent free
2346 // cast from oop to interface allowed by the Verifier. Make it explicit here.
2347 const TypeInstPtr* tp = value->bottom_type()->isa_instptr();
2348 if (tp && tp->klass()->is_loaded() && !tp->klass()->is_interface()) {
2349 // sharpen the type eagerly; this eases certain assert checking
2350 if (tp->higher_equal(TypeInstPtr::NOTNULL)) {
2351 tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2352 }
2353 value = _gvn.transform(new CheckCastPPNode(0, value, tr));
2354 }
2355 } else {
2356 // Handle returns of oop-arrays to an arrays-of-interface return
2357 const TypeInstPtr* phi_tip;
2358 const TypeInstPtr* val_tip;
2359 Type::get_arrays_base_elements(return_type, value->bottom_type(), &phi_tip, &val_tip);
2360 if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() &&
2361 val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) {
2362 value = _gvn.transform(new CheckCastPPNode(0, value, return_type));
2363 }
2364 }
2365 phi->add_req(value);
2366 }
2367
2368 SafePointNode* exit_return = _exits.map();
2369 exit_return->in( TypeFunc::Control )->add_req( control() );
2370 exit_return->in( TypeFunc::I_O )->add_req( i_o () );
2371 Node *mem = exit_return->in( TypeFunc::Memory );
2372 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2373 if (mms.is_empty()) {
2374 // get a copy of the base memory, and patch just this one input
2375 const TypePtr* adr_type = mms.adr_type(C);
2376 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2377 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2378 gvn().set_type_bottom(phi);
2379 phi->del_req(phi->req()-1); // prepare to re-patch
2380 mms.set_memory(phi);
2381 }
2382 mms.memory()->add_req(mms.memory2());
2383 }
2384
2385 if (_first_return) {
2386 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2387 _first_return = false;
2388 } else {
2389 _exits.map()->merge_replaced_nodes_with(map());
2390 }
2391
2392 stop_and_kill_map(); // This CFG path dies here
2393 }
2394
2395
2396 //------------------------------add_safepoint----------------------------------
2397 void Parse::add_safepoint() {
2398 // See if we can avoid this safepoint. No need for a SafePoint immediately
2399 // after a Call (except Leaf Call) or another SafePoint.
2400 Node *proj = control();
2401 bool add_poll_param = SafePointNode::needs_polling_address_input();
2402 uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2403 if( proj->is_Proj() ) {
2404 Node *n0 = proj->in(0);
2405 if( n0->is_Catch() ) {
2406 n0 = n0->in(0)->in(0);
2407 assert( n0->is_Call(), "expect a call here" );
2408 }
2409 if( n0->is_Call() ) {
2410 if( n0->as_Call()->guaranteed_safepoint() )
2411 return;
2412 } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2413 return;
2414 }
2415 }
2416
2417 // Clear out dead values from the debug info.
2418 kill_dead_locals();
2419
2420 // Clone the JVM State
2421 SafePointNode *sfpnt = new SafePointNode(parms, NULL);
2422
2423 // Capture memory state BEFORE a SafePoint. Since we can block at a
2424 // SafePoint we need our GC state to be safe; i.e. we need all our current
2425 // write barriers (card marks) to not float down after the SafePoint so we
2426 // must read raw memory. Likewise we need all oop stores to match the card
2427 // marks. If deopt can happen, we need ALL stores (we need the correct JVM
2428 // state on a deopt).
2429
2430 // We do not need to WRITE the memory state after a SafePoint. The control
2431 // edge will keep card-marks and oop-stores from floating up from below a
2432 // SafePoint and our true dependency added here will keep them from floating
2433 // down below a SafePoint.
2434
2435 // Clone the current memory state
2436 Node* mem = MergeMemNode::make(map()->memory());
2437
2438 mem = _gvn.transform(mem);
2439
2440 // Pass control through the safepoint
2441 sfpnt->init_req(TypeFunc::Control , control());
2442 // Fix edges normally used by a call
2443 sfpnt->init_req(TypeFunc::I_O , top() );
2444 sfpnt->init_req(TypeFunc::Memory , mem );
2445 sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2446 sfpnt->init_req(TypeFunc::FramePtr , top() );
2447
2448 // Create a node for the polling address
2449 if( add_poll_param ) {
2450 Node *polladr;
2451 if (SafepointMechanism::uses_thread_local_poll()) {
2452 Node *thread = _gvn.transform(new ThreadLocalNode());
2453 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(Thread::polling_page_offset())));
2454 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
2455 } else {
2456 polladr = ConPNode::make((address)os::get_polling_page());
2457 }
2458 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2459 }
2460
2461 // Fix up the JVM State edges
2462 add_safepoint_edges(sfpnt);
2463 Node *transformed_sfpnt = _gvn.transform(sfpnt);
2464 set_control(transformed_sfpnt);
2465
2466 // Provide an edge from root to safepoint. This makes the safepoint
2467 // appear useful until the parse has completed.
2468 if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2469 assert(C->root() != NULL, "Expect parse is still valid");
2470 C->root()->add_prec(transformed_sfpnt);
2471 }
2472 }
2473
2474 #ifndef PRODUCT
2475 //------------------------show_parse_info--------------------------------------
2476 void Parse::show_parse_info() {
2477 InlineTree* ilt = NULL;
2478 if (C->ilt() != NULL) {
2479 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2480 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2481 }
2482 if (PrintCompilation && Verbose) {
2483 if (depth() == 1) {
2484 if( ilt->count_inlines() ) {
2485 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2486 ilt->count_inline_bcs());
2487 tty->cr();
2488 }
2489 } else {
2490 if (method()->is_synchronized()) tty->print("s");
2491 if (method()->has_exception_handlers()) tty->print("!");
2492 // Check this is not the final compiled version
2493 if (C->trap_can_recompile()) {
2494 tty->print("-");
2495 } else {
2496 tty->print(" ");
2497 }
2498 method()->print_short_name();
2499 if (is_osr_parse()) {
2500 tty->print(" @ %d", osr_bci());
2501 }
2502 tty->print(" (%d bytes)",method()->code_size());
2503 if (ilt->count_inlines()) {
2504 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2505 ilt->count_inline_bcs());
2506 }
2507 tty->cr();
2508 }
2509 }
2510 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2511 // Print that we succeeded; suppress this message on the first osr parse.
2512
2513 if (method()->is_synchronized()) tty->print("s");
2514 if (method()->has_exception_handlers()) tty->print("!");
2515 // Check this is not the final compiled version
2516 if (C->trap_can_recompile() && depth() == 1) {
2517 tty->print("-");
2518 } else {
2519 tty->print(" ");
2520 }
2521 if( depth() != 1 ) { tty->print(" "); } // missing compile count
2522 for (int i = 1; i < depth(); ++i) { tty->print(" "); }
2523 method()->print_short_name();
2524 if (is_osr_parse()) {
2525 tty->print(" @ %d", osr_bci());
2526 }
2527 if (ilt->caller_bci() != -1) {
2528 tty->print(" @ %d", ilt->caller_bci());
2529 }
2530 tty->print(" (%d bytes)",method()->code_size());
2531 if (ilt->count_inlines()) {
2532 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2533 ilt->count_inline_bcs());
2534 }
2535 tty->cr();
2536 }
2537 }
2538
2539
2540 //------------------------------dump-------------------------------------------
2541 // Dump information associated with the bytecodes of current _method
2542 void Parse::dump() {
2543 if( method() != NULL ) {
2544 // Iterate over bytecodes
2545 ciBytecodeStream iter(method());
2546 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2547 dump_bci( iter.cur_bci() );
2548 tty->cr();
2549 }
2550 }
2551 }
2552
2553 // Dump information associated with a byte code index, 'bci'
2554 void Parse::dump_bci(int bci) {
2555 // Output info on merge-points, cloning, and within _jsr..._ret
2556 // NYI
2557 tty->print(" bci:%d", bci);
2558 }
2559
2560 #endif
--- EOF ---