1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "code/icBuffer.hpp"
  28 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  29 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  30 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  31 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  32 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  35 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  36 #include "gc_implementation/g1/g1EvacFailure.hpp"
  37 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  38 #include "gc_implementation/g1/g1Log.hpp"
  39 #include "gc_implementation/g1/g1MarkSweep.hpp"
  40 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  41 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  42 #include "gc_implementation/g1/g1YCTypes.hpp"
  43 #include "gc_implementation/g1/heapRegion.inline.hpp"
  44 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  45 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  46 #include "gc_implementation/g1/vm_operations_g1.hpp"
  47 #include "gc_implementation/shared/gcHeapSummary.hpp"
  48 #include "gc_implementation/shared/gcTimer.hpp"
  49 #include "gc_implementation/shared/gcTrace.hpp"
  50 #include "gc_implementation/shared/gcTraceTime.hpp"
  51 #include "gc_implementation/shared/isGCActiveMark.hpp"
  52 #include "memory/gcLocker.inline.hpp"
  53 #include "memory/genOopClosures.inline.hpp"
  54 #include "memory/generationSpec.hpp"
  55 #include "memory/referenceProcessor.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/oop.pcgc.inline.hpp"
  58 #include "runtime/vmThread.hpp"
  59 
  60 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  61 
  62 // turn it on so that the contents of the young list (scan-only /
  63 // to-be-collected) are printed at "strategic" points before / during
  64 // / after the collection --- this is useful for debugging
  65 #define YOUNG_LIST_VERBOSE 0
  66 // CURRENT STATUS
  67 // This file is under construction.  Search for "FIXME".
  68 
  69 // INVARIANTS/NOTES
  70 //
  71 // All allocation activity covered by the G1CollectedHeap interface is
  72 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  73 // and allocate_new_tlab, which are the "entry" points to the
  74 // allocation code from the rest of the JVM.  (Note that this does not
  75 // apply to TLAB allocation, which is not part of this interface: it
  76 // is done by clients of this interface.)
  77 
  78 // Notes on implementation of parallelism in different tasks.
  79 //
  80 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  81 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  82 // It does use run_task() which sets _n_workers in the task.
  83 // G1ParTask executes g1_process_strong_roots() ->
  84 // SharedHeap::process_strong_roots() which calls eventually to
  85 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  86 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  87 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  88 //
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   SuspendibleThreadSet* _sts;
  94   G1RemSet* _g1rs;
  95   ConcurrentG1Refine* _cg1r;
  96   bool _concurrent;
  97 public:
  98   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  99                               G1RemSet* g1rs,
 100                               ConcurrentG1Refine* cg1r) :
 101     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 102   {}
 103   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 104     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
 105     // This path is executed by the concurrent refine or mutator threads,
 106     // concurrently, and so we do not care if card_ptr contains references
 107     // that point into the collection set.
 108     assert(!oops_into_cset, "should be");
 109 
 110     if (_concurrent && _sts->should_yield()) {
 111       // Caller will actually yield.
 112       return false;
 113     }
 114     // Otherwise, we finished successfully; return true.
 115     return true;
 116   }
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 122   int _calls;
 123   G1CollectedHeap* _g1h;
 124   CardTableModRefBS* _ctbs;
 125   int _histo[256];
 126 public:
 127   ClearLoggedCardTableEntryClosure() :
 128     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set())
 129   {
 130     for (int i = 0; i < 256; i++) _histo[i] = 0;
 131   }
 132   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 133     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 134       _calls++;
 135       unsigned char* ujb = (unsigned char*)card_ptr;
 136       int ind = (int)(*ujb);
 137       _histo[ind]++;
 138       *card_ptr = -1;
 139     }
 140     return true;
 141   }
 142   int calls() { return _calls; }
 143   void print_histo() {
 144     gclog_or_tty->print_cr("Card table value histogram:");
 145     for (int i = 0; i < 256; i++) {
 146       if (_histo[i] != 0) {
 147         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 148       }
 149     }
 150   }
 151 };
 152 
 153 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 154   int _calls;
 155   G1CollectedHeap* _g1h;
 156   CardTableModRefBS* _ctbs;
 157 public:
 158   RedirtyLoggedCardTableEntryClosure() :
 159     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {}
 160 
 161   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 162     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 163       _calls++;
 164       *card_ptr = 0;
 165     }
 166     return true;
 167   }
 168   int calls() { return _calls; }
 169 };
 170 
 171 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 172 public:
 173   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 174     *card_ptr = CardTableModRefBS::dirty_card_val();
 175     return true;
 176   }
 177 };
 178 
 179 YoungList::YoungList(G1CollectedHeap* g1h) :
 180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 182   guarantee(check_list_empty(false), "just making sure...");
 183 }
 184 
 185 void YoungList::push_region(HeapRegion *hr) {
 186   assert(!hr->is_young(), "should not already be young");
 187   assert(hr->get_next_young_region() == NULL, "cause it should!");
 188 
 189   hr->set_next_young_region(_head);
 190   _head = hr;
 191 
 192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 193   ++_length;
 194 }
 195 
 196 void YoungList::add_survivor_region(HeapRegion* hr) {
 197   assert(hr->is_survivor(), "should be flagged as survivor region");
 198   assert(hr->get_next_young_region() == NULL, "cause it should!");
 199 
 200   hr->set_next_young_region(_survivor_head);
 201   if (_survivor_head == NULL) {
 202     _survivor_tail = hr;
 203   }
 204   _survivor_head = hr;
 205   ++_survivor_length;
 206 }
 207 
 208 void YoungList::empty_list(HeapRegion* list) {
 209   while (list != NULL) {
 210     HeapRegion* next = list->get_next_young_region();
 211     list->set_next_young_region(NULL);
 212     list->uninstall_surv_rate_group();
 213     list->set_not_young();
 214     list = next;
 215   }
 216 }
 217 
 218 void YoungList::empty_list() {
 219   assert(check_list_well_formed(), "young list should be well formed");
 220 
 221   empty_list(_head);
 222   _head = NULL;
 223   _length = 0;
 224 
 225   empty_list(_survivor_head);
 226   _survivor_head = NULL;
 227   _survivor_tail = NULL;
 228   _survivor_length = 0;
 229 
 230   _last_sampled_rs_lengths = 0;
 231 
 232   assert(check_list_empty(false), "just making sure...");
 233 }
 234 
 235 bool YoungList::check_list_well_formed() {
 236   bool ret = true;
 237 
 238   uint length = 0;
 239   HeapRegion* curr = _head;
 240   HeapRegion* last = NULL;
 241   while (curr != NULL) {
 242     if (!curr->is_young()) {
 243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 244                              "incorrectly tagged (y: %d, surv: %d)",
 245                              curr->bottom(), curr->end(),
 246                              curr->is_young(), curr->is_survivor());
 247       ret = false;
 248     }
 249     ++length;
 250     last = curr;
 251     curr = curr->get_next_young_region();
 252   }
 253   ret = ret && (length == _length);
 254 
 255   if (!ret) {
 256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 258                            length, _length);
 259   }
 260 
 261   return ret;
 262 }
 263 
 264 bool YoungList::check_list_empty(bool check_sample) {
 265   bool ret = true;
 266 
 267   if (_length != 0) {
 268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 269                   _length);
 270     ret = false;
 271   }
 272   if (check_sample && _last_sampled_rs_lengths != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 274     ret = false;
 275   }
 276   if (_head != NULL) {
 277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 278     ret = false;
 279   }
 280   if (!ret) {
 281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 282   }
 283 
 284   return ret;
 285 }
 286 
 287 void
 288 YoungList::rs_length_sampling_init() {
 289   _sampled_rs_lengths = 0;
 290   _curr               = _head;
 291 }
 292 
 293 bool
 294 YoungList::rs_length_sampling_more() {
 295   return _curr != NULL;
 296 }
 297 
 298 void
 299 YoungList::rs_length_sampling_next() {
 300   assert( _curr != NULL, "invariant" );
 301   size_t rs_length = _curr->rem_set()->occupied();
 302 
 303   _sampled_rs_lengths += rs_length;
 304 
 305   // The current region may not yet have been added to the
 306   // incremental collection set (it gets added when it is
 307   // retired as the current allocation region).
 308   if (_curr->in_collection_set()) {
 309     // Update the collection set policy information for this region
 310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 311   }
 312 
 313   _curr = _curr->get_next_young_region();
 314   if (_curr == NULL) {
 315     _last_sampled_rs_lengths = _sampled_rs_lengths;
 316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 317   }
 318 }
 319 
 320 void
 321 YoungList::reset_auxilary_lists() {
 322   guarantee( is_empty(), "young list should be empty" );
 323   assert(check_list_well_formed(), "young list should be well formed");
 324 
 325   // Add survivor regions to SurvRateGroup.
 326   _g1h->g1_policy()->note_start_adding_survivor_regions();
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 328 
 329   int young_index_in_cset = 0;
 330   for (HeapRegion* curr = _survivor_head;
 331        curr != NULL;
 332        curr = curr->get_next_young_region()) {
 333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 334 
 335     // The region is a non-empty survivor so let's add it to
 336     // the incremental collection set for the next evacuation
 337     // pause.
 338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 339     young_index_in_cset += 1;
 340   }
 341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 343 
 344   _head   = _survivor_head;
 345   _length = _survivor_length;
 346   if (_survivor_head != NULL) {
 347     assert(_survivor_tail != NULL, "cause it shouldn't be");
 348     assert(_survivor_length > 0, "invariant");
 349     _survivor_tail->set_next_young_region(NULL);
 350   }
 351 
 352   // Don't clear the survivor list handles until the start of
 353   // the next evacuation pause - we need it in order to re-tag
 354   // the survivor regions from this evacuation pause as 'young'
 355   // at the start of the next.
 356 
 357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 358 
 359   assert(check_list_well_formed(), "young list should be well formed");
 360 }
 361 
 362 void YoungList::print() {
 363   HeapRegion* lists[] = {_head,   _survivor_head};
 364   const char* names[] = {"YOUNG", "SURVIVOR"};
 365 
 366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 368     HeapRegion *curr = lists[list];
 369     if (curr == NULL)
 370       gclog_or_tty->print_cr("  empty");
 371     while (curr != NULL) {
 372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 373                              HR_FORMAT_PARAMS(curr),
 374                              curr->prev_top_at_mark_start(),
 375                              curr->next_top_at_mark_start(),
 376                              curr->age_in_surv_rate_group_cond());
 377       curr = curr->get_next_young_region();
 378     }
 379   }
 380 
 381   gclog_or_tty->print_cr("");
 382 }
 383 
 384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 385 {
 386   // Claim the right to put the region on the dirty cards region list
 387   // by installing a self pointer.
 388   HeapRegion* next = hr->get_next_dirty_cards_region();
 389   if (next == NULL) {
 390     HeapRegion* res = (HeapRegion*)
 391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 392                           NULL);
 393     if (res == NULL) {
 394       HeapRegion* head;
 395       do {
 396         // Put the region to the dirty cards region list.
 397         head = _dirty_cards_region_list;
 398         next = (HeapRegion*)
 399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 400         if (next == head) {
 401           assert(hr->get_next_dirty_cards_region() == hr,
 402                  "hr->get_next_dirty_cards_region() != hr");
 403           if (next == NULL) {
 404             // The last region in the list points to itself.
 405             hr->set_next_dirty_cards_region(hr);
 406           } else {
 407             hr->set_next_dirty_cards_region(next);
 408           }
 409         }
 410       } while (next != head);
 411     }
 412   }
 413 }
 414 
 415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 416 {
 417   HeapRegion* head;
 418   HeapRegion* hr;
 419   do {
 420     head = _dirty_cards_region_list;
 421     if (head == NULL) {
 422       return NULL;
 423     }
 424     HeapRegion* new_head = head->get_next_dirty_cards_region();
 425     if (head == new_head) {
 426       // The last region.
 427       new_head = NULL;
 428     }
 429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 430                                           head);
 431   } while (hr != head);
 432   assert(hr != NULL, "invariant");
 433   hr->set_next_dirty_cards_region(NULL);
 434   return hr;
 435 }
 436 
 437 void G1CollectedHeap::stop_conc_gc_threads() {
 438   _cg1r->stop();
 439   _cmThread->stop();
 440 }
 441 
 442 #ifdef ASSERT
 443 // A region is added to the collection set as it is retired
 444 // so an address p can point to a region which will be in the
 445 // collection set but has not yet been retired.  This method
 446 // therefore is only accurate during a GC pause after all
 447 // regions have been retired.  It is used for debugging
 448 // to check if an nmethod has references to objects that can
 449 // be move during a partial collection.  Though it can be
 450 // inaccurate, it is sufficient for G1 because the conservative
 451 // implementation of is_scavengable() for G1 will indicate that
 452 // all nmethods must be scanned during a partial collection.
 453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 454   HeapRegion* hr = heap_region_containing(p);
 455   return hr != NULL && hr->in_collection_set();
 456 }
 457 #endif
 458 
 459 // Returns true if the reference points to an object that
 460 // can move in an incremental collection.
 461 bool G1CollectedHeap::is_scavengable(const void* p) {
 462   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 463   G1CollectorPolicy* g1p = g1h->g1_policy();
 464   HeapRegion* hr = heap_region_containing(p);
 465   if (hr == NULL) {
 466      // null
 467      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 468      return false;
 469   } else {
 470     return !hr->isHumongous();
 471   }
 472 }
 473 
 474 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 475   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 476   CardTableModRefBS* ct_bs = g1_barrier_set();
 477 
 478   // Count the dirty cards at the start.
 479   CountNonCleanMemRegionClosure count1(this);
 480   ct_bs->mod_card_iterate(&count1);
 481   int orig_count = count1.n();
 482 
 483   // First clear the logged cards.
 484   ClearLoggedCardTableEntryClosure clear;
 485   dcqs.set_closure(&clear);
 486   dcqs.apply_closure_to_all_completed_buffers();
 487   dcqs.iterate_closure_all_threads(false);
 488   clear.print_histo();
 489 
 490   // Now ensure that there's no dirty cards.
 491   CountNonCleanMemRegionClosure count2(this);
 492   ct_bs->mod_card_iterate(&count2);
 493   if (count2.n() != 0) {
 494     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 495                            count2.n(), orig_count);
 496   }
 497   guarantee(count2.n() == 0, "Card table should be clean.");
 498 
 499   RedirtyLoggedCardTableEntryClosure redirty;
 500   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 501   dcqs.apply_closure_to_all_completed_buffers();
 502   dcqs.iterate_closure_all_threads(false);
 503   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 504                          clear.calls(), orig_count);
 505   guarantee(redirty.calls() == clear.calls(),
 506             "Or else mechanism is broken.");
 507 
 508   CountNonCleanMemRegionClosure count3(this);
 509   ct_bs->mod_card_iterate(&count3);
 510   if (count3.n() != orig_count) {
 511     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 512                            orig_count, count3.n());
 513     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 514   }
 515 
 516   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 517 }
 518 
 519 // Private class members.
 520 
 521 G1CollectedHeap* G1CollectedHeap::_g1h;
 522 
 523 // Private methods.
 524 
 525 HeapRegion*
 526 G1CollectedHeap::new_region_try_secondary_free_list() {
 527   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 528   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 529     if (!_secondary_free_list.is_empty()) {
 530       if (G1ConcRegionFreeingVerbose) {
 531         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 532                                "secondary_free_list has %u entries",
 533                                _secondary_free_list.length());
 534       }
 535       // It looks as if there are free regions available on the
 536       // secondary_free_list. Let's move them to the free_list and try
 537       // again to allocate from it.
 538       append_secondary_free_list();
 539 
 540       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 541              "empty we should have moved at least one entry to the free_list");
 542       HeapRegion* res = _free_list.remove_head();
 543       if (G1ConcRegionFreeingVerbose) {
 544         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 545                                "allocated "HR_FORMAT" from secondary_free_list",
 546                                HR_FORMAT_PARAMS(res));
 547       }
 548       return res;
 549     }
 550 
 551     // Wait here until we get notified either when (a) there are no
 552     // more free regions coming or (b) some regions have been moved on
 553     // the secondary_free_list.
 554     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 555   }
 556 
 557   if (G1ConcRegionFreeingVerbose) {
 558     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 559                            "could not allocate from secondary_free_list");
 560   }
 561   return NULL;
 562 }
 563 
 564 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 565   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 566          "the only time we use this to allocate a humongous region is "
 567          "when we are allocating a single humongous region");
 568 
 569   HeapRegion* res;
 570   if (G1StressConcRegionFreeing) {
 571     if (!_secondary_free_list.is_empty()) {
 572       if (G1ConcRegionFreeingVerbose) {
 573         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 574                                "forced to look at the secondary_free_list");
 575       }
 576       res = new_region_try_secondary_free_list();
 577       if (res != NULL) {
 578         return res;
 579       }
 580     }
 581   }
 582   res = _free_list.remove_head_or_null();
 583   if (res == NULL) {
 584     if (G1ConcRegionFreeingVerbose) {
 585       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 586                              "res == NULL, trying the secondary_free_list");
 587     }
 588     res = new_region_try_secondary_free_list();
 589   }
 590   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 591     // Currently, only attempts to allocate GC alloc regions set
 592     // do_expand to true. So, we should only reach here during a
 593     // safepoint. If this assumption changes we might have to
 594     // reconsider the use of _expand_heap_after_alloc_failure.
 595     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 596 
 597     ergo_verbose1(ErgoHeapSizing,
 598                   "attempt heap expansion",
 599                   ergo_format_reason("region allocation request failed")
 600                   ergo_format_byte("allocation request"),
 601                   word_size * HeapWordSize);
 602     if (expand(word_size * HeapWordSize)) {
 603       // Given that expand() succeeded in expanding the heap, and we
 604       // always expand the heap by an amount aligned to the heap
 605       // region size, the free list should in theory not be empty. So
 606       // it would probably be OK to use remove_head(). But the extra
 607       // check for NULL is unlikely to be a performance issue here (we
 608       // just expanded the heap!) so let's just be conservative and
 609       // use remove_head_or_null().
 610       res = _free_list.remove_head_or_null();
 611     } else {
 612       _expand_heap_after_alloc_failure = false;
 613     }
 614   }
 615   return res;
 616 }
 617 
 618 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 619                                                         size_t word_size) {
 620   assert(isHumongous(word_size), "word_size should be humongous");
 621   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 622 
 623   uint first = G1_NULL_HRS_INDEX;
 624   if (num_regions == 1) {
 625     // Only one region to allocate, no need to go through the slower
 626     // path. The caller will attempt the expansion if this fails, so
 627     // let's not try to expand here too.
 628     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 629     if (hr != NULL) {
 630       first = hr->hrs_index();
 631     } else {
 632       first = G1_NULL_HRS_INDEX;
 633     }
 634   } else {
 635     // We can't allocate humongous regions while cleanupComplete() is
 636     // running, since some of the regions we find to be empty might not
 637     // yet be added to the free list and it is not straightforward to
 638     // know which list they are on so that we can remove them. Note
 639     // that we only need to do this if we need to allocate more than
 640     // one region to satisfy the current humongous allocation
 641     // request. If we are only allocating one region we use the common
 642     // region allocation code (see above).
 643     wait_while_free_regions_coming();
 644     append_secondary_free_list_if_not_empty_with_lock();
 645 
 646     if (free_regions() >= num_regions) {
 647       first = _hrs.find_contiguous(num_regions);
 648       if (first != G1_NULL_HRS_INDEX) {
 649         for (uint i = first; i < first + num_regions; ++i) {
 650           HeapRegion* hr = region_at(i);
 651           assert(hr->is_empty(), "sanity");
 652           assert(is_on_master_free_list(hr), "sanity");
 653           hr->set_pending_removal(true);
 654         }
 655         _free_list.remove_all_pending(num_regions);
 656       }
 657     }
 658   }
 659   return first;
 660 }
 661 
 662 HeapWord*
 663 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 664                                                            uint num_regions,
 665                                                            size_t word_size) {
 666   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 667   assert(isHumongous(word_size), "word_size should be humongous");
 668   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 669 
 670   // Index of last region in the series + 1.
 671   uint last = first + num_regions;
 672 
 673   // We need to initialize the region(s) we just discovered. This is
 674   // a bit tricky given that it can happen concurrently with
 675   // refinement threads refining cards on these regions and
 676   // potentially wanting to refine the BOT as they are scanning
 677   // those cards (this can happen shortly after a cleanup; see CR
 678   // 6991377). So we have to set up the region(s) carefully and in
 679   // a specific order.
 680 
 681   // The word size sum of all the regions we will allocate.
 682   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 683   assert(word_size <= word_size_sum, "sanity");
 684 
 685   // This will be the "starts humongous" region.
 686   HeapRegion* first_hr = region_at(first);
 687   // The header of the new object will be placed at the bottom of
 688   // the first region.
 689   HeapWord* new_obj = first_hr->bottom();
 690   // This will be the new end of the first region in the series that
 691   // should also match the end of the last region in the series.
 692   HeapWord* new_end = new_obj + word_size_sum;
 693   // This will be the new top of the first region that will reflect
 694   // this allocation.
 695   HeapWord* new_top = new_obj + word_size;
 696 
 697   // First, we need to zero the header of the space that we will be
 698   // allocating. When we update top further down, some refinement
 699   // threads might try to scan the region. By zeroing the header we
 700   // ensure that any thread that will try to scan the region will
 701   // come across the zero klass word and bail out.
 702   //
 703   // NOTE: It would not have been correct to have used
 704   // CollectedHeap::fill_with_object() and make the space look like
 705   // an int array. The thread that is doing the allocation will
 706   // later update the object header to a potentially different array
 707   // type and, for a very short period of time, the klass and length
 708   // fields will be inconsistent. This could cause a refinement
 709   // thread to calculate the object size incorrectly.
 710   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 711 
 712   // We will set up the first region as "starts humongous". This
 713   // will also update the BOT covering all the regions to reflect
 714   // that there is a single object that starts at the bottom of the
 715   // first region.
 716   first_hr->set_startsHumongous(new_top, new_end);
 717 
 718   // Then, if there are any, we will set up the "continues
 719   // humongous" regions.
 720   HeapRegion* hr = NULL;
 721   for (uint i = first + 1; i < last; ++i) {
 722     hr = region_at(i);
 723     hr->set_continuesHumongous(first_hr);
 724   }
 725   // If we have "continues humongous" regions (hr != NULL), then the
 726   // end of the last one should match new_end.
 727   assert(hr == NULL || hr->end() == new_end, "sanity");
 728 
 729   // Up to this point no concurrent thread would have been able to
 730   // do any scanning on any region in this series. All the top
 731   // fields still point to bottom, so the intersection between
 732   // [bottom,top] and [card_start,card_end] will be empty. Before we
 733   // update the top fields, we'll do a storestore to make sure that
 734   // no thread sees the update to top before the zeroing of the
 735   // object header and the BOT initialization.
 736   OrderAccess::storestore();
 737 
 738   // Now that the BOT and the object header have been initialized,
 739   // we can update top of the "starts humongous" region.
 740   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 741          "new_top should be in this region");
 742   first_hr->set_top(new_top);
 743   if (_hr_printer.is_active()) {
 744     HeapWord* bottom = first_hr->bottom();
 745     HeapWord* end = first_hr->orig_end();
 746     if ((first + 1) == last) {
 747       // the series has a single humongous region
 748       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 749     } else {
 750       // the series has more than one humongous regions
 751       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 752     }
 753   }
 754 
 755   // Now, we will update the top fields of the "continues humongous"
 756   // regions. The reason we need to do this is that, otherwise,
 757   // these regions would look empty and this will confuse parts of
 758   // G1. For example, the code that looks for a consecutive number
 759   // of empty regions will consider them empty and try to
 760   // re-allocate them. We can extend is_empty() to also include
 761   // !continuesHumongous(), but it is easier to just update the top
 762   // fields here. The way we set top for all regions (i.e., top ==
 763   // end for all regions but the last one, top == new_top for the
 764   // last one) is actually used when we will free up the humongous
 765   // region in free_humongous_region().
 766   hr = NULL;
 767   for (uint i = first + 1; i < last; ++i) {
 768     hr = region_at(i);
 769     if ((i + 1) == last) {
 770       // last continues humongous region
 771       assert(hr->bottom() < new_top && new_top <= hr->end(),
 772              "new_top should fall on this region");
 773       hr->set_top(new_top);
 774       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 775     } else {
 776       // not last one
 777       assert(new_top > hr->end(), "new_top should be above this region");
 778       hr->set_top(hr->end());
 779       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 780     }
 781   }
 782   // If we have continues humongous regions (hr != NULL), then the
 783   // end of the last one should match new_end and its top should
 784   // match new_top.
 785   assert(hr == NULL ||
 786          (hr->end() == new_end && hr->top() == new_top), "sanity");
 787 
 788   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 789   _summary_bytes_used += first_hr->used();
 790   _humongous_set.add(first_hr);
 791 
 792   return new_obj;
 793 }
 794 
 795 // If could fit into free regions w/o expansion, try.
 796 // Otherwise, if can expand, do so.
 797 // Otherwise, if using ex regions might help, try with ex given back.
 798 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 799   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 800 
 801   verify_region_sets_optional();
 802 
 803   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 804   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 805   uint x_num = expansion_regions();
 806   uint fs = _hrs.free_suffix();
 807   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 808   if (first == G1_NULL_HRS_INDEX) {
 809     // The only thing we can do now is attempt expansion.
 810     if (fs + x_num >= num_regions) {
 811       // If the number of regions we're trying to allocate for this
 812       // object is at most the number of regions in the free suffix,
 813       // then the call to humongous_obj_allocate_find_first() above
 814       // should have succeeded and we wouldn't be here.
 815       //
 816       // We should only be trying to expand when the free suffix is
 817       // not sufficient for the object _and_ we have some expansion
 818       // room available.
 819       assert(num_regions > fs, "earlier allocation should have succeeded");
 820 
 821       ergo_verbose1(ErgoHeapSizing,
 822                     "attempt heap expansion",
 823                     ergo_format_reason("humongous allocation request failed")
 824                     ergo_format_byte("allocation request"),
 825                     word_size * HeapWordSize);
 826       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 827         // Even though the heap was expanded, it might not have
 828         // reached the desired size. So, we cannot assume that the
 829         // allocation will succeed.
 830         first = humongous_obj_allocate_find_first(num_regions, word_size);
 831       }
 832     }
 833   }
 834 
 835   HeapWord* result = NULL;
 836   if (first != G1_NULL_HRS_INDEX) {
 837     result =
 838       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 839     assert(result != NULL, "it should always return a valid result");
 840 
 841     // A successful humongous object allocation changes the used space
 842     // information of the old generation so we need to recalculate the
 843     // sizes and update the jstat counters here.
 844     g1mm()->update_sizes();
 845   }
 846 
 847   verify_region_sets_optional();
 848 
 849   return result;
 850 }
 851 
 852 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 853   assert_heap_not_locked_and_not_at_safepoint();
 854   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 855 
 856   unsigned int dummy_gc_count_before;
 857   int dummy_gclocker_retry_count = 0;
 858   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 859 }
 860 
 861 HeapWord*
 862 G1CollectedHeap::mem_allocate(size_t word_size,
 863                               bool*  gc_overhead_limit_was_exceeded) {
 864   assert_heap_not_locked_and_not_at_safepoint();
 865 
 866   // Loop until the allocation is satisfied, or unsatisfied after GC.
 867   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 868     unsigned int gc_count_before;
 869 
 870     HeapWord* result = NULL;
 871     if (!isHumongous(word_size)) {
 872       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 873     } else {
 874       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 875     }
 876     if (result != NULL) {
 877       return result;
 878     }
 879 
 880     // Create the garbage collection operation...
 881     VM_G1CollectForAllocation op(gc_count_before, word_size);
 882     // ...and get the VM thread to execute it.
 883     VMThread::execute(&op);
 884 
 885     if (op.prologue_succeeded() && op.pause_succeeded()) {
 886       // If the operation was successful we'll return the result even
 887       // if it is NULL. If the allocation attempt failed immediately
 888       // after a Full GC, it's unlikely we'll be able to allocate now.
 889       HeapWord* result = op.result();
 890       if (result != NULL && !isHumongous(word_size)) {
 891         // Allocations that take place on VM operations do not do any
 892         // card dirtying and we have to do it here. We only have to do
 893         // this for non-humongous allocations, though.
 894         dirty_young_block(result, word_size);
 895       }
 896       return result;
 897     } else {
 898       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 899         return NULL;
 900       }
 901       assert(op.result() == NULL,
 902              "the result should be NULL if the VM op did not succeed");
 903     }
 904 
 905     // Give a warning if we seem to be looping forever.
 906     if ((QueuedAllocationWarningCount > 0) &&
 907         (try_count % QueuedAllocationWarningCount == 0)) {
 908       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 909     }
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 917                                            unsigned int *gc_count_before_ret,
 918                                            int* gclocker_retry_count_ret) {
 919   // Make sure you read the note in attempt_allocation_humongous().
 920 
 921   assert_heap_not_locked_and_not_at_safepoint();
 922   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 923          "be called for humongous allocation requests");
 924 
 925   // We should only get here after the first-level allocation attempt
 926   // (attempt_allocation()) failed to allocate.
 927 
 928   // We will loop until a) we manage to successfully perform the
 929   // allocation or b) we successfully schedule a collection which
 930   // fails to perform the allocation. b) is the only case when we'll
 931   // return NULL.
 932   HeapWord* result = NULL;
 933   for (int try_count = 1; /* we'll return */; try_count += 1) {
 934     bool should_try_gc;
 935     unsigned int gc_count_before;
 936 
 937     {
 938       MutexLockerEx x(Heap_lock);
 939 
 940       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 941                                                       false /* bot_updates */);
 942       if (result != NULL) {
 943         return result;
 944       }
 945 
 946       // If we reach here, attempt_allocation_locked() above failed to
 947       // allocate a new region. So the mutator alloc region should be NULL.
 948       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 949 
 950       if (GC_locker::is_active_and_needs_gc()) {
 951         if (g1_policy()->can_expand_young_list()) {
 952           // No need for an ergo verbose message here,
 953           // can_expand_young_list() does this when it returns true.
 954           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 955                                                       false /* bot_updates */);
 956           if (result != NULL) {
 957             return result;
 958           }
 959         }
 960         should_try_gc = false;
 961       } else {
 962         // The GCLocker may not be active but the GCLocker initiated
 963         // GC may not yet have been performed (GCLocker::needs_gc()
 964         // returns true). In this case we do not try this GC and
 965         // wait until the GCLocker initiated GC is performed, and
 966         // then retry the allocation.
 967         if (GC_locker::needs_gc()) {
 968           should_try_gc = false;
 969         } else {
 970           // Read the GC count while still holding the Heap_lock.
 971           gc_count_before = total_collections();
 972           should_try_gc = true;
 973         }
 974       }
 975     }
 976 
 977     if (should_try_gc) {
 978       bool succeeded;
 979       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 980           GCCause::_g1_inc_collection_pause);
 981       if (result != NULL) {
 982         assert(succeeded, "only way to get back a non-NULL result");
 983         return result;
 984       }
 985 
 986       if (succeeded) {
 987         // If we get here we successfully scheduled a collection which
 988         // failed to allocate. No point in trying to allocate
 989         // further. We'll just return NULL.
 990         MutexLockerEx x(Heap_lock);
 991         *gc_count_before_ret = total_collections();
 992         return NULL;
 993       }
 994     } else {
 995       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 996         MutexLockerEx x(Heap_lock);
 997         *gc_count_before_ret = total_collections();
 998         return NULL;
 999       }
1000       // The GCLocker is either active or the GCLocker initiated
1001       // GC has not yet been performed. Stall until it is and
1002       // then retry the allocation.
1003       GC_locker::stall_until_clear();
1004       (*gclocker_retry_count_ret) += 1;
1005     }
1006 
1007     // We can reach here if we were unsuccessful in scheduling a
1008     // collection (because another thread beat us to it) or if we were
1009     // stalled due to the GC locker. In either can we should retry the
1010     // allocation attempt in case another thread successfully
1011     // performed a collection and reclaimed enough space. We do the
1012     // first attempt (without holding the Heap_lock) here and the
1013     // follow-on attempt will be at the start of the next loop
1014     // iteration (after taking the Heap_lock).
1015     result = _mutator_alloc_region.attempt_allocation(word_size,
1016                                                       false /* bot_updates */);
1017     if (result != NULL) {
1018       return result;
1019     }
1020 
1021     // Give a warning if we seem to be looping forever.
1022     if ((QueuedAllocationWarningCount > 0) &&
1023         (try_count % QueuedAllocationWarningCount == 0)) {
1024       warning("G1CollectedHeap::attempt_allocation_slow() "
1025               "retries %d times", try_count);
1026     }
1027   }
1028 
1029   ShouldNotReachHere();
1030   return NULL;
1031 }
1032 
1033 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1034                                           unsigned int * gc_count_before_ret,
1035                                           int* gclocker_retry_count_ret) {
1036   // The structure of this method has a lot of similarities to
1037   // attempt_allocation_slow(). The reason these two were not merged
1038   // into a single one is that such a method would require several "if
1039   // allocation is not humongous do this, otherwise do that"
1040   // conditional paths which would obscure its flow. In fact, an early
1041   // version of this code did use a unified method which was harder to
1042   // follow and, as a result, it had subtle bugs that were hard to
1043   // track down. So keeping these two methods separate allows each to
1044   // be more readable. It will be good to keep these two in sync as
1045   // much as possible.
1046 
1047   assert_heap_not_locked_and_not_at_safepoint();
1048   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1049          "should only be called for humongous allocations");
1050 
1051   // Humongous objects can exhaust the heap quickly, so we should check if we
1052   // need to start a marking cycle at each humongous object allocation. We do
1053   // the check before we do the actual allocation. The reason for doing it
1054   // before the allocation is that we avoid having to keep track of the newly
1055   // allocated memory while we do a GC.
1056   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1057                                            word_size)) {
1058     collect(GCCause::_g1_humongous_allocation);
1059   }
1060 
1061   // We will loop until a) we manage to successfully perform the
1062   // allocation or b) we successfully schedule a collection which
1063   // fails to perform the allocation. b) is the only case when we'll
1064   // return NULL.
1065   HeapWord* result = NULL;
1066   for (int try_count = 1; /* we'll return */; try_count += 1) {
1067     bool should_try_gc;
1068     unsigned int gc_count_before;
1069 
1070     {
1071       MutexLockerEx x(Heap_lock);
1072 
1073       // Given that humongous objects are not allocated in young
1074       // regions, we'll first try to do the allocation without doing a
1075       // collection hoping that there's enough space in the heap.
1076       result = humongous_obj_allocate(word_size);
1077       if (result != NULL) {
1078         return result;
1079       }
1080 
1081       if (GC_locker::is_active_and_needs_gc()) {
1082         should_try_gc = false;
1083       } else {
1084          // The GCLocker may not be active but the GCLocker initiated
1085         // GC may not yet have been performed (GCLocker::needs_gc()
1086         // returns true). In this case we do not try this GC and
1087         // wait until the GCLocker initiated GC is performed, and
1088         // then retry the allocation.
1089         if (GC_locker::needs_gc()) {
1090           should_try_gc = false;
1091         } else {
1092           // Read the GC count while still holding the Heap_lock.
1093           gc_count_before = total_collections();
1094           should_try_gc = true;
1095         }
1096       }
1097     }
1098 
1099     if (should_try_gc) {
1100       // If we failed to allocate the humongous object, we should try to
1101       // do a collection pause (if we're allowed) in case it reclaims
1102       // enough space for the allocation to succeed after the pause.
1103 
1104       bool succeeded;
1105       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1106           GCCause::_g1_humongous_allocation);
1107       if (result != NULL) {
1108         assert(succeeded, "only way to get back a non-NULL result");
1109         return result;
1110       }
1111 
1112       if (succeeded) {
1113         // If we get here we successfully scheduled a collection which
1114         // failed to allocate. No point in trying to allocate
1115         // further. We'll just return NULL.
1116         MutexLockerEx x(Heap_lock);
1117         *gc_count_before_ret = total_collections();
1118         return NULL;
1119       }
1120     } else {
1121       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1122         MutexLockerEx x(Heap_lock);
1123         *gc_count_before_ret = total_collections();
1124         return NULL;
1125       }
1126       // The GCLocker is either active or the GCLocker initiated
1127       // GC has not yet been performed. Stall until it is and
1128       // then retry the allocation.
1129       GC_locker::stall_until_clear();
1130       (*gclocker_retry_count_ret) += 1;
1131     }
1132 
1133     // We can reach here if we were unsuccessful in scheduling a
1134     // collection (because another thread beat us to it) or if we were
1135     // stalled due to the GC locker. In either can we should retry the
1136     // allocation attempt in case another thread successfully
1137     // performed a collection and reclaimed enough space.  Give a
1138     // warning if we seem to be looping forever.
1139 
1140     if ((QueuedAllocationWarningCount > 0) &&
1141         (try_count % QueuedAllocationWarningCount == 0)) {
1142       warning("G1CollectedHeap::attempt_allocation_humongous() "
1143               "retries %d times", try_count);
1144     }
1145   }
1146 
1147   ShouldNotReachHere();
1148   return NULL;
1149 }
1150 
1151 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1152                                        bool expect_null_mutator_alloc_region) {
1153   assert_at_safepoint(true /* should_be_vm_thread */);
1154   assert(_mutator_alloc_region.get() == NULL ||
1155                                              !expect_null_mutator_alloc_region,
1156          "the current alloc region was unexpectedly found to be non-NULL");
1157 
1158   if (!isHumongous(word_size)) {
1159     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1160                                                       false /* bot_updates */);
1161   } else {
1162     HeapWord* result = humongous_obj_allocate(word_size);
1163     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1164       g1_policy()->set_initiate_conc_mark_if_possible();
1165     }
1166     return result;
1167   }
1168 
1169   ShouldNotReachHere();
1170 }
1171 
1172 class PostMCRemSetClearClosure: public HeapRegionClosure {
1173   G1CollectedHeap* _g1h;
1174   ModRefBarrierSet* _mr_bs;
1175 public:
1176   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1177     _g1h(g1h), _mr_bs(mr_bs) {}
1178 
1179   bool doHeapRegion(HeapRegion* r) {
1180     HeapRegionRemSet* hrrs = r->rem_set();
1181 
1182     if (r->continuesHumongous()) {
1183       // We'll assert that the strong code root list and RSet is empty
1184       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1185       assert(hrrs->occupied() == 0, "RSet should be empty");
1186       return false;
1187     }
1188 
1189     _g1h->reset_gc_time_stamps(r);
1190     hrrs->clear();
1191     // You might think here that we could clear just the cards
1192     // corresponding to the used region.  But no: if we leave a dirty card
1193     // in a region we might allocate into, then it would prevent that card
1194     // from being enqueued, and cause it to be missed.
1195     // Re: the performance cost: we shouldn't be doing full GC anyway!
1196     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1197 
1198     return false;
1199   }
1200 };
1201 
1202 void G1CollectedHeap::clear_rsets_post_compaction() {
1203   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1204   heap_region_iterate(&rs_clear);
1205 }
1206 
1207 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1208   G1CollectedHeap*   _g1h;
1209   UpdateRSOopClosure _cl;
1210   int                _worker_i;
1211 public:
1212   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1213     _cl(g1->g1_rem_set(), worker_i),
1214     _worker_i(worker_i),
1215     _g1h(g1)
1216   { }
1217 
1218   bool doHeapRegion(HeapRegion* r) {
1219     if (!r->continuesHumongous()) {
1220       _cl.set_from(r);
1221       r->oop_iterate(&_cl);
1222     }
1223     return false;
1224   }
1225 };
1226 
1227 class ParRebuildRSTask: public AbstractGangTask {
1228   G1CollectedHeap* _g1;
1229 public:
1230   ParRebuildRSTask(G1CollectedHeap* g1)
1231     : AbstractGangTask("ParRebuildRSTask"),
1232       _g1(g1)
1233   { }
1234 
1235   void work(uint worker_id) {
1236     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1237     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1238                                           _g1->workers()->active_workers(),
1239                                          HeapRegion::RebuildRSClaimValue);
1240   }
1241 };
1242 
1243 class PostCompactionPrinterClosure: public HeapRegionClosure {
1244 private:
1245   G1HRPrinter* _hr_printer;
1246 public:
1247   bool doHeapRegion(HeapRegion* hr) {
1248     assert(!hr->is_young(), "not expecting to find young regions");
1249     // We only generate output for non-empty regions.
1250     if (!hr->is_empty()) {
1251       if (!hr->isHumongous()) {
1252         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1253       } else if (hr->startsHumongous()) {
1254         if (hr->region_num() == 1) {
1255           // single humongous region
1256           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1257         } else {
1258           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1259         }
1260       } else {
1261         assert(hr->continuesHumongous(), "only way to get here");
1262         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1263       }
1264     }
1265     return false;
1266   }
1267 
1268   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1269     : _hr_printer(hr_printer) { }
1270 };
1271 
1272 void G1CollectedHeap::print_hrs_post_compaction() {
1273   PostCompactionPrinterClosure cl(hr_printer());
1274   heap_region_iterate(&cl);
1275 }
1276 
1277 bool G1CollectedHeap::do_collection(bool explicit_gc,
1278                                     bool clear_all_soft_refs,
1279                                     size_t word_size) {
1280   assert_at_safepoint(true /* should_be_vm_thread */);
1281 
1282   if (GC_locker::check_active_before_gc()) {
1283     return false;
1284   }
1285 
1286   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1287   gc_timer->register_gc_start(os::elapsed_counter());
1288 
1289   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1290   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1291 
1292   SvcGCMarker sgcm(SvcGCMarker::FULL);
1293   ResourceMark rm;
1294 
1295   print_heap_before_gc();
1296   trace_heap_before_gc(gc_tracer);
1297 
1298   size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
1299 
1300   HRSPhaseSetter x(HRSPhaseFullGC);
1301   verify_region_sets_optional();
1302 
1303   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1304                            collector_policy()->should_clear_all_soft_refs();
1305 
1306   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1307 
1308   {
1309     IsGCActiveMark x;
1310 
1311     // Timing
1312     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1313     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1314     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1315 
1316     {
1317       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1318       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1319       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1320 
1321       double start = os::elapsedTime();
1322       g1_policy()->record_full_collection_start();
1323 
1324       // Note: When we have a more flexible GC logging framework that
1325       // allows us to add optional attributes to a GC log record we
1326       // could consider timing and reporting how long we wait in the
1327       // following two methods.
1328       wait_while_free_regions_coming();
1329       // If we start the compaction before the CM threads finish
1330       // scanning the root regions we might trip them over as we'll
1331       // be moving objects / updating references. So let's wait until
1332       // they are done. By telling them to abort, they should complete
1333       // early.
1334       _cm->root_regions()->abort();
1335       _cm->root_regions()->wait_until_scan_finished();
1336       append_secondary_free_list_if_not_empty_with_lock();
1337 
1338       gc_prologue(true);
1339       increment_total_collections(true /* full gc */);
1340       increment_old_marking_cycles_started();
1341 
1342       assert(used() == recalculate_used(), "Should be equal");
1343 
1344       verify_before_gc();
1345 
1346       pre_full_gc_dump(gc_timer);
1347 
1348       COMPILER2_PRESENT(DerivedPointerTable::clear());
1349 
1350       // Disable discovery and empty the discovered lists
1351       // for the CM ref processor.
1352       ref_processor_cm()->disable_discovery();
1353       ref_processor_cm()->abandon_partial_discovery();
1354       ref_processor_cm()->verify_no_references_recorded();
1355 
1356       // Abandon current iterations of concurrent marking and concurrent
1357       // refinement, if any are in progress. We have to do this before
1358       // wait_until_scan_finished() below.
1359       concurrent_mark()->abort();
1360 
1361       // Make sure we'll choose a new allocation region afterwards.
1362       release_mutator_alloc_region();
1363       abandon_gc_alloc_regions();
1364       g1_rem_set()->cleanupHRRS();
1365 
1366       // We should call this after we retire any currently active alloc
1367       // regions so that all the ALLOC / RETIRE events are generated
1368       // before the start GC event.
1369       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1370 
1371       // We may have added regions to the current incremental collection
1372       // set between the last GC or pause and now. We need to clear the
1373       // incremental collection set and then start rebuilding it afresh
1374       // after this full GC.
1375       abandon_collection_set(g1_policy()->inc_cset_head());
1376       g1_policy()->clear_incremental_cset();
1377       g1_policy()->stop_incremental_cset_building();
1378 
1379       tear_down_region_sets(false /* free_list_only */);
1380       g1_policy()->set_gcs_are_young(true);
1381 
1382       // See the comments in g1CollectedHeap.hpp and
1383       // G1CollectedHeap::ref_processing_init() about
1384       // how reference processing currently works in G1.
1385 
1386       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1387       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1388 
1389       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1390       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1391 
1392       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1393       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1394 
1395       // Do collection work
1396       {
1397         HandleMark hm;  // Discard invalid handles created during gc
1398         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1399       }
1400 
1401       assert(free_regions() == 0, "we should not have added any free regions");
1402       rebuild_region_sets(false /* free_list_only */);
1403 
1404       // Enqueue any discovered reference objects that have
1405       // not been removed from the discovered lists.
1406       ref_processor_stw()->enqueue_discovered_references();
1407 
1408       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1409 
1410       MemoryService::track_memory_usage();
1411 
1412       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1413       ref_processor_stw()->verify_no_references_recorded();
1414 
1415       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1416       ClassLoaderDataGraph::purge();
1417       MetaspaceAux::verify_metrics();
1418 
1419       // Note: since we've just done a full GC, concurrent
1420       // marking is no longer active. Therefore we need not
1421       // re-enable reference discovery for the CM ref processor.
1422       // That will be done at the start of the next marking cycle.
1423       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1424       ref_processor_cm()->verify_no_references_recorded();
1425 
1426       reset_gc_time_stamp();
1427       // Since everything potentially moved, we will clear all remembered
1428       // sets, and clear all cards.  Later we will rebuild remembered
1429       // sets. We will also reset the GC time stamps of the regions.
1430       clear_rsets_post_compaction();
1431       check_gc_time_stamps();
1432 
1433       // Resize the heap if necessary.
1434       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1435 
1436       if (_hr_printer.is_active()) {
1437         // We should do this after we potentially resize the heap so
1438         // that all the COMMIT / UNCOMMIT events are generated before
1439         // the end GC event.
1440 
1441         print_hrs_post_compaction();
1442         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1443       }
1444 
1445       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1446       if (hot_card_cache->use_cache()) {
1447         hot_card_cache->reset_card_counts();
1448         hot_card_cache->reset_hot_cache();
1449       }
1450 
1451       // Rebuild remembered sets of all regions.
1452       if (G1CollectedHeap::use_parallel_gc_threads()) {
1453         uint n_workers =
1454           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1455                                                   workers()->active_workers(),
1456                                                   Threads::number_of_non_daemon_threads());
1457         assert(UseDynamicNumberOfGCThreads ||
1458                n_workers == workers()->total_workers(),
1459                "If not dynamic should be using all the  workers");
1460         workers()->set_active_workers(n_workers);
1461         // Set parallel threads in the heap (_n_par_threads) only
1462         // before a parallel phase and always reset it to 0 after
1463         // the phase so that the number of parallel threads does
1464         // no get carried forward to a serial phase where there
1465         // may be code that is "possibly_parallel".
1466         set_par_threads(n_workers);
1467 
1468         ParRebuildRSTask rebuild_rs_task(this);
1469         assert(check_heap_region_claim_values(
1470                HeapRegion::InitialClaimValue), "sanity check");
1471         assert(UseDynamicNumberOfGCThreads ||
1472                workers()->active_workers() == workers()->total_workers(),
1473                "Unless dynamic should use total workers");
1474         // Use the most recent number of  active workers
1475         assert(workers()->active_workers() > 0,
1476                "Active workers not properly set");
1477         set_par_threads(workers()->active_workers());
1478         workers()->run_task(&rebuild_rs_task);
1479         set_par_threads(0);
1480         assert(check_heap_region_claim_values(
1481                HeapRegion::RebuildRSClaimValue), "sanity check");
1482         reset_heap_region_claim_values();
1483       } else {
1484         RebuildRSOutOfRegionClosure rebuild_rs(this);
1485         heap_region_iterate(&rebuild_rs);
1486       }
1487 
1488       // Rebuild the strong code root lists for each region
1489       rebuild_strong_code_roots();
1490 
1491       if (true) { // FIXME
1492         MetaspaceGC::compute_new_size();
1493       }
1494 
1495 #ifdef TRACESPINNING
1496       ParallelTaskTerminator::print_termination_counts();
1497 #endif
1498 
1499       // Discard all rset updates
1500       JavaThread::dirty_card_queue_set().abandon_logs();
1501       assert(!G1DeferredRSUpdate
1502              || (G1DeferredRSUpdate &&
1503                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1504 
1505       _young_list->reset_sampled_info();
1506       // At this point there should be no regions in the
1507       // entire heap tagged as young.
1508       assert(check_young_list_empty(true /* check_heap */),
1509              "young list should be empty at this point");
1510 
1511       // Update the number of full collections that have been completed.
1512       increment_old_marking_cycles_completed(false /* concurrent */);
1513 
1514       _hrs.verify_optional();
1515       verify_region_sets_optional();
1516 
1517       verify_after_gc();
1518 
1519       // Start a new incremental collection set for the next pause
1520       assert(g1_policy()->collection_set() == NULL, "must be");
1521       g1_policy()->start_incremental_cset_building();
1522 
1523       // Clear the _cset_fast_test bitmap in anticipation of adding
1524       // regions to the incremental collection set for the next
1525       // evacuation pause.
1526       clear_cset_fast_test();
1527 
1528       init_mutator_alloc_region();
1529 
1530       double end = os::elapsedTime();
1531       g1_policy()->record_full_collection_end();
1532 
1533       if (G1Log::fine()) {
1534         g1_policy()->print_heap_transition();
1535       }
1536 
1537       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1538       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1539       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1540       // before any GC notifications are raised.
1541       g1mm()->update_sizes();
1542 
1543       gc_epilogue(true);
1544     }
1545 
1546     if (G1Log::finer()) {
1547       g1_policy()->print_detailed_heap_transition(true /* full */);
1548     }
1549 
1550     print_heap_after_gc();
1551     trace_heap_after_gc(gc_tracer);
1552 
1553     post_full_gc_dump(gc_timer);
1554 
1555     gc_timer->register_gc_end(os::elapsed_counter());
1556     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1557   }
1558 
1559   return true;
1560 }
1561 
1562 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1563   // do_collection() will return whether it succeeded in performing
1564   // the GC. Currently, there is no facility on the
1565   // do_full_collection() API to notify the caller than the collection
1566   // did not succeed (e.g., because it was locked out by the GC
1567   // locker). So, right now, we'll ignore the return value.
1568   bool dummy = do_collection(true,                /* explicit_gc */
1569                              clear_all_soft_refs,
1570                              0                    /* word_size */);
1571 }
1572 
1573 // This code is mostly copied from TenuredGeneration.
1574 void
1575 G1CollectedHeap::
1576 resize_if_necessary_after_full_collection(size_t word_size) {
1577   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1578 
1579   // Include the current allocation, if any, and bytes that will be
1580   // pre-allocated to support collections, as "used".
1581   const size_t used_after_gc = used();
1582   const size_t capacity_after_gc = capacity();
1583   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1584 
1585   // This is enforced in arguments.cpp.
1586   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1587          "otherwise the code below doesn't make sense");
1588 
1589   // We don't have floating point command-line arguments
1590   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1591   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1592   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1593   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1594 
1595   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1596   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1597 
1598   // We have to be careful here as these two calculations can overflow
1599   // 32-bit size_t's.
1600   double used_after_gc_d = (double) used_after_gc;
1601   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1602   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1603 
1604   // Let's make sure that they are both under the max heap size, which
1605   // by default will make them fit into a size_t.
1606   double desired_capacity_upper_bound = (double) max_heap_size;
1607   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1608                                     desired_capacity_upper_bound);
1609   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1610                                     desired_capacity_upper_bound);
1611 
1612   // We can now safely turn them into size_t's.
1613   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1614   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1615 
1616   // This assert only makes sense here, before we adjust them
1617   // with respect to the min and max heap size.
1618   assert(minimum_desired_capacity <= maximum_desired_capacity,
1619          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1620                  "maximum_desired_capacity = "SIZE_FORMAT,
1621                  minimum_desired_capacity, maximum_desired_capacity));
1622 
1623   // Should not be greater than the heap max size. No need to adjust
1624   // it with respect to the heap min size as it's a lower bound (i.e.,
1625   // we'll try to make the capacity larger than it, not smaller).
1626   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1627   // Should not be less than the heap min size. No need to adjust it
1628   // with respect to the heap max size as it's an upper bound (i.e.,
1629   // we'll try to make the capacity smaller than it, not greater).
1630   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1631 
1632   if (capacity_after_gc < minimum_desired_capacity) {
1633     // Don't expand unless it's significant
1634     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1635     ergo_verbose4(ErgoHeapSizing,
1636                   "attempt heap expansion",
1637                   ergo_format_reason("capacity lower than "
1638                                      "min desired capacity after Full GC")
1639                   ergo_format_byte("capacity")
1640                   ergo_format_byte("occupancy")
1641                   ergo_format_byte_perc("min desired capacity"),
1642                   capacity_after_gc, used_after_gc,
1643                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1644     expand(expand_bytes);
1645 
1646     // No expansion, now see if we want to shrink
1647   } else if (capacity_after_gc > maximum_desired_capacity) {
1648     // Capacity too large, compute shrinking size
1649     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1650     ergo_verbose4(ErgoHeapSizing,
1651                   "attempt heap shrinking",
1652                   ergo_format_reason("capacity higher than "
1653                                      "max desired capacity after Full GC")
1654                   ergo_format_byte("capacity")
1655                   ergo_format_byte("occupancy")
1656                   ergo_format_byte_perc("max desired capacity"),
1657                   capacity_after_gc, used_after_gc,
1658                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1659     shrink(shrink_bytes);
1660   }
1661 }
1662 
1663 
1664 HeapWord*
1665 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1666                                            bool* succeeded) {
1667   assert_at_safepoint(true /* should_be_vm_thread */);
1668 
1669   *succeeded = true;
1670   // Let's attempt the allocation first.
1671   HeapWord* result =
1672     attempt_allocation_at_safepoint(word_size,
1673                                  false /* expect_null_mutator_alloc_region */);
1674   if (result != NULL) {
1675     assert(*succeeded, "sanity");
1676     return result;
1677   }
1678 
1679   // In a G1 heap, we're supposed to keep allocation from failing by
1680   // incremental pauses.  Therefore, at least for now, we'll favor
1681   // expansion over collection.  (This might change in the future if we can
1682   // do something smarter than full collection to satisfy a failed alloc.)
1683   result = expand_and_allocate(word_size);
1684   if (result != NULL) {
1685     assert(*succeeded, "sanity");
1686     return result;
1687   }
1688 
1689   // Expansion didn't work, we'll try to do a Full GC.
1690   bool gc_succeeded = do_collection(false, /* explicit_gc */
1691                                     false, /* clear_all_soft_refs */
1692                                     word_size);
1693   if (!gc_succeeded) {
1694     *succeeded = false;
1695     return NULL;
1696   }
1697 
1698   // Retry the allocation
1699   result = attempt_allocation_at_safepoint(word_size,
1700                                   true /* expect_null_mutator_alloc_region */);
1701   if (result != NULL) {
1702     assert(*succeeded, "sanity");
1703     return result;
1704   }
1705 
1706   // Then, try a Full GC that will collect all soft references.
1707   gc_succeeded = do_collection(false, /* explicit_gc */
1708                                true,  /* clear_all_soft_refs */
1709                                word_size);
1710   if (!gc_succeeded) {
1711     *succeeded = false;
1712     return NULL;
1713   }
1714 
1715   // Retry the allocation once more
1716   result = attempt_allocation_at_safepoint(word_size,
1717                                   true /* expect_null_mutator_alloc_region */);
1718   if (result != NULL) {
1719     assert(*succeeded, "sanity");
1720     return result;
1721   }
1722 
1723   assert(!collector_policy()->should_clear_all_soft_refs(),
1724          "Flag should have been handled and cleared prior to this point");
1725 
1726   // What else?  We might try synchronous finalization later.  If the total
1727   // space available is large enough for the allocation, then a more
1728   // complete compaction phase than we've tried so far might be
1729   // appropriate.
1730   assert(*succeeded, "sanity");
1731   return NULL;
1732 }
1733 
1734 // Attempting to expand the heap sufficiently
1735 // to support an allocation of the given "word_size".  If
1736 // successful, perform the allocation and return the address of the
1737 // allocated block, or else "NULL".
1738 
1739 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1740   assert_at_safepoint(true /* should_be_vm_thread */);
1741 
1742   verify_region_sets_optional();
1743 
1744   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1745   ergo_verbose1(ErgoHeapSizing,
1746                 "attempt heap expansion",
1747                 ergo_format_reason("allocation request failed")
1748                 ergo_format_byte("allocation request"),
1749                 word_size * HeapWordSize);
1750   if (expand(expand_bytes)) {
1751     _hrs.verify_optional();
1752     verify_region_sets_optional();
1753     return attempt_allocation_at_safepoint(word_size,
1754                                  false /* expect_null_mutator_alloc_region */);
1755   }
1756   return NULL;
1757 }
1758 
1759 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1760                                              HeapWord* new_end) {
1761   assert(old_end != new_end, "don't call this otherwise");
1762   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1763 
1764   // Update the committed mem region.
1765   _g1_committed.set_end(new_end);
1766   // Tell the card table about the update.
1767   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1768   // Tell the BOT about the update.
1769   _bot_shared->resize(_g1_committed.word_size());
1770   // Tell the hot card cache about the update
1771   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1772 }
1773 
1774 bool G1CollectedHeap::expand(size_t expand_bytes) {
1775   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1776   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1777                                        HeapRegion::GrainBytes);
1778   ergo_verbose2(ErgoHeapSizing,
1779                 "expand the heap",
1780                 ergo_format_byte("requested expansion amount")
1781                 ergo_format_byte("attempted expansion amount"),
1782                 expand_bytes, aligned_expand_bytes);
1783 
1784   if (_g1_storage.uncommitted_size() == 0) {
1785     ergo_verbose0(ErgoHeapSizing,
1786                       "did not expand the heap",
1787                       ergo_format_reason("heap already fully expanded"));
1788     return false;
1789   }
1790 
1791   // First commit the memory.
1792   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1793   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1794   if (successful) {
1795     // Then propagate this update to the necessary data structures.
1796     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1797     update_committed_space(old_end, new_end);
1798 
1799     FreeRegionList expansion_list("Local Expansion List");
1800     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1801     assert(mr.start() == old_end, "post-condition");
1802     // mr might be a smaller region than what was requested if
1803     // expand_by() was unable to allocate the HeapRegion instances
1804     assert(mr.end() <= new_end, "post-condition");
1805 
1806     size_t actual_expand_bytes = mr.byte_size();
1807     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1808     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1809            "post-condition");
1810     if (actual_expand_bytes < aligned_expand_bytes) {
1811       // We could not expand _hrs to the desired size. In this case we
1812       // need to shrink the committed space accordingly.
1813       assert(mr.end() < new_end, "invariant");
1814 
1815       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1816       // First uncommit the memory.
1817       _g1_storage.shrink_by(diff_bytes);
1818       // Then propagate this update to the necessary data structures.
1819       update_committed_space(new_end, mr.end());
1820     }
1821     _free_list.add_as_tail(&expansion_list);
1822 
1823     if (_hr_printer.is_active()) {
1824       HeapWord* curr = mr.start();
1825       while (curr < mr.end()) {
1826         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1827         _hr_printer.commit(curr, curr_end);
1828         curr = curr_end;
1829       }
1830       assert(curr == mr.end(), "post-condition");
1831     }
1832     g1_policy()->record_new_heap_size(n_regions());
1833   } else {
1834     ergo_verbose0(ErgoHeapSizing,
1835                   "did not expand the heap",
1836                   ergo_format_reason("heap expansion operation failed"));
1837     // The expansion of the virtual storage space was unsuccessful.
1838     // Let's see if it was because we ran out of swap.
1839     if (G1ExitOnExpansionFailure &&
1840         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1841       // We had head room...
1842       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1843     }
1844   }
1845   return successful;
1846 }
1847 
1848 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1849   size_t aligned_shrink_bytes =
1850     ReservedSpace::page_align_size_down(shrink_bytes);
1851   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1852                                          HeapRegion::GrainBytes);
1853   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1854 
1855   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1856   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1857   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1858 
1859   ergo_verbose3(ErgoHeapSizing,
1860                 "shrink the heap",
1861                 ergo_format_byte("requested shrinking amount")
1862                 ergo_format_byte("aligned shrinking amount")
1863                 ergo_format_byte("attempted shrinking amount"),
1864                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1865   if (num_regions_removed > 0) {
1866     _g1_storage.shrink_by(shrunk_bytes);
1867     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1868 
1869     if (_hr_printer.is_active()) {
1870       HeapWord* curr = old_end;
1871       while (curr > new_end) {
1872         HeapWord* curr_end = curr;
1873         curr -= HeapRegion::GrainWords;
1874         _hr_printer.uncommit(curr, curr_end);
1875       }
1876     }
1877 
1878     _expansion_regions += num_regions_removed;
1879     update_committed_space(old_end, new_end);
1880     HeapRegionRemSet::shrink_heap(n_regions());
1881     g1_policy()->record_new_heap_size(n_regions());
1882   } else {
1883     ergo_verbose0(ErgoHeapSizing,
1884                   "did not shrink the heap",
1885                   ergo_format_reason("heap shrinking operation failed"));
1886   }
1887 }
1888 
1889 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1890   verify_region_sets_optional();
1891 
1892   // We should only reach here at the end of a Full GC which means we
1893   // should not not be holding to any GC alloc regions. The method
1894   // below will make sure of that and do any remaining clean up.
1895   abandon_gc_alloc_regions();
1896 
1897   // Instead of tearing down / rebuilding the free lists here, we
1898   // could instead use the remove_all_pending() method on free_list to
1899   // remove only the ones that we need to remove.
1900   tear_down_region_sets(true /* free_list_only */);
1901   shrink_helper(shrink_bytes);
1902   rebuild_region_sets(true /* free_list_only */);
1903 
1904   _hrs.verify_optional();
1905   verify_region_sets_optional();
1906 }
1907 
1908 // Public methods.
1909 
1910 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1911 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1912 #endif // _MSC_VER
1913 
1914 
1915 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1916   SharedHeap(policy_),
1917   _g1_policy(policy_),
1918   _dirty_card_queue_set(false),
1919   _into_cset_dirty_card_queue_set(false),
1920   _is_alive_closure_cm(this),
1921   _is_alive_closure_stw(this),
1922   _ref_processor_cm(NULL),
1923   _ref_processor_stw(NULL),
1924   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1925   _bot_shared(NULL),
1926   _evac_failure_scan_stack(NULL),
1927   _mark_in_progress(false),
1928   _cg1r(NULL), _summary_bytes_used(0),
1929   _g1mm(NULL),
1930   _refine_cte_cl(NULL),
1931   _full_collection(false),
1932   _free_list("Master Free List"),
1933   _secondary_free_list("Secondary Free List"),
1934   _old_set("Old Set"),
1935   _humongous_set("Master Humongous Set"),
1936   _free_regions_coming(false),
1937   _young_list(new YoungList(this)),
1938   _gc_time_stamp(0),
1939   _retained_old_gc_alloc_region(NULL),
1940   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1941   _old_plab_stats(OldPLABSize, PLABWeight),
1942   _expand_heap_after_alloc_failure(true),
1943   _surviving_young_words(NULL),
1944   _old_marking_cycles_started(0),
1945   _old_marking_cycles_completed(0),
1946   _concurrent_cycle_started(false),
1947   _in_cset_fast_test(NULL),
1948   _in_cset_fast_test_base(NULL),
1949   _dirty_cards_region_list(NULL),
1950   _worker_cset_start_region(NULL),
1951   _worker_cset_start_region_time_stamp(NULL),
1952   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1953   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1954   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1955   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1956 
1957   _g1h = this;
1958   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1959     vm_exit_during_initialization("Failed necessary allocation.");
1960   }
1961 
1962   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1963 
1964   int n_queues = MAX2((int)ParallelGCThreads, 1);
1965   _task_queues = new RefToScanQueueSet(n_queues);
1966 
1967   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1968   assert(n_rem_sets > 0, "Invariant.");
1969 
1970   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1971   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1972   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1973 
1974   for (int i = 0; i < n_queues; i++) {
1975     RefToScanQueue* q = new RefToScanQueue();
1976     q->initialize();
1977     _task_queues->register_queue(i, q);
1978     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1979   }
1980   clear_cset_start_regions();
1981 
1982   // Initialize the G1EvacuationFailureALot counters and flags.
1983   NOT_PRODUCT(reset_evacuation_should_fail();)
1984 
1985   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1986 }
1987 
1988 jint G1CollectedHeap::initialize() {
1989   CollectedHeap::pre_initialize();
1990   os::enable_vtime();
1991 
1992   G1Log::init();
1993 
1994   // Necessary to satisfy locking discipline assertions.
1995 
1996   MutexLocker x(Heap_lock);
1997 
1998   // We have to initialize the printer before committing the heap, as
1999   // it will be used then.
2000   _hr_printer.set_active(G1PrintHeapRegions);
2001 
2002   // While there are no constraints in the GC code that HeapWordSize
2003   // be any particular value, there are multiple other areas in the
2004   // system which believe this to be true (e.g. oop->object_size in some
2005   // cases incorrectly returns the size in wordSize units rather than
2006   // HeapWordSize).
2007   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2008 
2009   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2010   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2011   size_t heap_alignment = collector_policy()->max_alignment();
2012 
2013   // Ensure that the sizes are properly aligned.
2014   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2015   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2016   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2017 
2018   _cg1r = new ConcurrentG1Refine(this);
2019 
2020   // Reserve the maximum.
2021 
2022   // When compressed oops are enabled, the preferred heap base
2023   // is calculated by subtracting the requested size from the
2024   // 32Gb boundary and using the result as the base address for
2025   // heap reservation. If the requested size is not aligned to
2026   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2027   // into the ReservedHeapSpace constructor) then the actual
2028   // base of the reserved heap may end up differing from the
2029   // address that was requested (i.e. the preferred heap base).
2030   // If this happens then we could end up using a non-optimal
2031   // compressed oops mode.
2032 
2033   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2034                                                  heap_alignment);
2035 
2036   // It is important to do this in a way such that concurrent readers can't
2037   // temporarily think something is in the heap.  (I've actually seen this
2038   // happen in asserts: DLD.)
2039   _reserved.set_word_size(0);
2040   _reserved.set_start((HeapWord*)heap_rs.base());
2041   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2042 
2043   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2044 
2045   // Create the gen rem set (and barrier set) for the entire reserved region.
2046   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2047   set_barrier_set(rem_set()->bs());
2048   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
2049     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2050     return JNI_ENOMEM;
2051   }
2052 
2053   // Also create a G1 rem set.
2054   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2055 
2056   // Carve out the G1 part of the heap.
2057 
2058   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2059   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2060                            g1_rs.size()/HeapWordSize);
2061 
2062   _g1_storage.initialize(g1_rs, 0);
2063   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2064   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2065                   (HeapWord*) _g1_reserved.end());
2066   assert(_hrs.max_length() == _expansion_regions,
2067          err_msg("max length: %u expansion regions: %u",
2068                  _hrs.max_length(), _expansion_regions));
2069 
2070   // Do later initialization work for concurrent refinement.
2071   _cg1r->init();
2072 
2073   // 6843694 - ensure that the maximum region index can fit
2074   // in the remembered set structures.
2075   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2076   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2077 
2078   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2079   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2080   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2081             "too many cards per region");
2082 
2083   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2084 
2085   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2086                                              heap_word_size(init_byte_size));
2087 
2088   _g1h = this;
2089 
2090   _in_cset_fast_test_length = max_regions();
2091   _in_cset_fast_test_base =
2092                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2093 
2094   // We're biasing _in_cset_fast_test to avoid subtracting the
2095   // beginning of the heap every time we want to index; basically
2096   // it's the same with what we do with the card table.
2097   _in_cset_fast_test = _in_cset_fast_test_base -
2098                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2099 
2100   // Clear the _cset_fast_test bitmap in anticipation of adding
2101   // regions to the incremental collection set for the first
2102   // evacuation pause.
2103   clear_cset_fast_test();
2104 
2105   // Create the ConcurrentMark data structure and thread.
2106   // (Must do this late, so that "max_regions" is defined.)
2107   _cm = new ConcurrentMark(this, heap_rs);
2108   if (_cm == NULL || !_cm->completed_initialization()) {
2109     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2110     return JNI_ENOMEM;
2111   }
2112   _cmThread = _cm->cmThread();
2113 
2114   // Initialize the from_card cache structure of HeapRegionRemSet.
2115   HeapRegionRemSet::init_heap(max_regions());
2116 
2117   // Now expand into the initial heap size.
2118   if (!expand(init_byte_size)) {
2119     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2120     return JNI_ENOMEM;
2121   }
2122 
2123   // Perform any initialization actions delegated to the policy.
2124   g1_policy()->init();
2125 
2126   _refine_cte_cl =
2127     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2128                                     g1_rem_set(),
2129                                     concurrent_g1_refine());
2130   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2131 
2132   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2133                                                SATB_Q_FL_lock,
2134                                                G1SATBProcessCompletedThreshold,
2135                                                Shared_SATB_Q_lock);
2136 
2137   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2138                                                 DirtyCardQ_FL_lock,
2139                                                 concurrent_g1_refine()->yellow_zone(),
2140                                                 concurrent_g1_refine()->red_zone(),
2141                                                 Shared_DirtyCardQ_lock);
2142 
2143   if (G1DeferredRSUpdate) {
2144     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2145                                       DirtyCardQ_FL_lock,
2146                                       -1, // never trigger processing
2147                                       -1, // no limit on length
2148                                       Shared_DirtyCardQ_lock,
2149                                       &JavaThread::dirty_card_queue_set());
2150   }
2151 
2152   // Initialize the card queue set used to hold cards containing
2153   // references into the collection set.
2154   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2155                                              DirtyCardQ_FL_lock,
2156                                              -1, // never trigger processing
2157                                              -1, // no limit on length
2158                                              Shared_DirtyCardQ_lock,
2159                                              &JavaThread::dirty_card_queue_set());
2160 
2161   // In case we're keeping closure specialization stats, initialize those
2162   // counts and that mechanism.
2163   SpecializationStats::clear();
2164 
2165   // Here we allocate the dummy full region that is required by the
2166   // G1AllocRegion class. If we don't pass an address in the reserved
2167   // space here, lots of asserts fire.
2168 
2169   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2170                                              _g1_reserved.start());
2171   // We'll re-use the same region whether the alloc region will
2172   // require BOT updates or not and, if it doesn't, then a non-young
2173   // region will complain that it cannot support allocations without
2174   // BOT updates. So we'll tag the dummy region as young to avoid that.
2175   dummy_region->set_young();
2176   // Make sure it's full.
2177   dummy_region->set_top(dummy_region->end());
2178   G1AllocRegion::setup(this, dummy_region);
2179 
2180   init_mutator_alloc_region();
2181 
2182   // Do create of the monitoring and management support so that
2183   // values in the heap have been properly initialized.
2184   _g1mm = new G1MonitoringSupport(this);
2185 
2186   return JNI_OK;
2187 }
2188 
2189 void G1CollectedHeap::ref_processing_init() {
2190   // Reference processing in G1 currently works as follows:
2191   //
2192   // * There are two reference processor instances. One is
2193   //   used to record and process discovered references
2194   //   during concurrent marking; the other is used to
2195   //   record and process references during STW pauses
2196   //   (both full and incremental).
2197   // * Both ref processors need to 'span' the entire heap as
2198   //   the regions in the collection set may be dotted around.
2199   //
2200   // * For the concurrent marking ref processor:
2201   //   * Reference discovery is enabled at initial marking.
2202   //   * Reference discovery is disabled and the discovered
2203   //     references processed etc during remarking.
2204   //   * Reference discovery is MT (see below).
2205   //   * Reference discovery requires a barrier (see below).
2206   //   * Reference processing may or may not be MT
2207   //     (depending on the value of ParallelRefProcEnabled
2208   //     and ParallelGCThreads).
2209   //   * A full GC disables reference discovery by the CM
2210   //     ref processor and abandons any entries on it's
2211   //     discovered lists.
2212   //
2213   // * For the STW processor:
2214   //   * Non MT discovery is enabled at the start of a full GC.
2215   //   * Processing and enqueueing during a full GC is non-MT.
2216   //   * During a full GC, references are processed after marking.
2217   //
2218   //   * Discovery (may or may not be MT) is enabled at the start
2219   //     of an incremental evacuation pause.
2220   //   * References are processed near the end of a STW evacuation pause.
2221   //   * For both types of GC:
2222   //     * Discovery is atomic - i.e. not concurrent.
2223   //     * Reference discovery will not need a barrier.
2224 
2225   SharedHeap::ref_processing_init();
2226   MemRegion mr = reserved_region();
2227 
2228   // Concurrent Mark ref processor
2229   _ref_processor_cm =
2230     new ReferenceProcessor(mr,    // span
2231                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2232                                 // mt processing
2233                            (int) ParallelGCThreads,
2234                                 // degree of mt processing
2235                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2236                                 // mt discovery
2237                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2238                                 // degree of mt discovery
2239                            false,
2240                                 // Reference discovery is not atomic
2241                            &_is_alive_closure_cm,
2242                                 // is alive closure
2243                                 // (for efficiency/performance)
2244                            true);
2245                                 // Setting next fields of discovered
2246                                 // lists requires a barrier.
2247 
2248   // STW ref processor
2249   _ref_processor_stw =
2250     new ReferenceProcessor(mr,    // span
2251                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2252                                 // mt processing
2253                            MAX2((int)ParallelGCThreads, 1),
2254                                 // degree of mt processing
2255                            (ParallelGCThreads > 1),
2256                                 // mt discovery
2257                            MAX2((int)ParallelGCThreads, 1),
2258                                 // degree of mt discovery
2259                            true,
2260                                 // Reference discovery is atomic
2261                            &_is_alive_closure_stw,
2262                                 // is alive closure
2263                                 // (for efficiency/performance)
2264                            false);
2265                                 // Setting next fields of discovered
2266                                 // lists requires a barrier.
2267 }
2268 
2269 size_t G1CollectedHeap::capacity() const {
2270   return _g1_committed.byte_size();
2271 }
2272 
2273 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2274   assert(!hr->continuesHumongous(), "pre-condition");
2275   hr->reset_gc_time_stamp();
2276   if (hr->startsHumongous()) {
2277     uint first_index = hr->hrs_index() + 1;
2278     uint last_index = hr->last_hc_index();
2279     for (uint i = first_index; i < last_index; i += 1) {
2280       HeapRegion* chr = region_at(i);
2281       assert(chr->continuesHumongous(), "sanity");
2282       chr->reset_gc_time_stamp();
2283     }
2284   }
2285 }
2286 
2287 #ifndef PRODUCT
2288 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2289 private:
2290   unsigned _gc_time_stamp;
2291   bool _failures;
2292 
2293 public:
2294   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2295     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2296 
2297   virtual bool doHeapRegion(HeapRegion* hr) {
2298     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2299     if (_gc_time_stamp != region_gc_time_stamp) {
2300       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2301                              "expected %d", HR_FORMAT_PARAMS(hr),
2302                              region_gc_time_stamp, _gc_time_stamp);
2303       _failures = true;
2304     }
2305     return false;
2306   }
2307 
2308   bool failures() { return _failures; }
2309 };
2310 
2311 void G1CollectedHeap::check_gc_time_stamps() {
2312   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2313   heap_region_iterate(&cl);
2314   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2315 }
2316 #endif // PRODUCT
2317 
2318 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2319                                                  DirtyCardQueue* into_cset_dcq,
2320                                                  bool concurrent,
2321                                                  int worker_i) {
2322   // Clean cards in the hot card cache
2323   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2324   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2325 
2326   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2327   int n_completed_buffers = 0;
2328   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2329     n_completed_buffers++;
2330   }
2331   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2332   dcqs.clear_n_completed_buffers();
2333   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2334 }
2335 
2336 
2337 // Computes the sum of the storage used by the various regions.
2338 
2339 size_t G1CollectedHeap::used() const {
2340   assert(Heap_lock->owner() != NULL,
2341          "Should be owned on this thread's behalf.");
2342   size_t result = _summary_bytes_used;
2343   // Read only once in case it is set to NULL concurrently
2344   HeapRegion* hr = _mutator_alloc_region.get();
2345   if (hr != NULL)
2346     result += hr->used();
2347   return result;
2348 }
2349 
2350 size_t G1CollectedHeap::used_unlocked() const {
2351   size_t result = _summary_bytes_used;
2352   return result;
2353 }
2354 
2355 class SumUsedClosure: public HeapRegionClosure {
2356   size_t _used;
2357 public:
2358   SumUsedClosure() : _used(0) {}
2359   bool doHeapRegion(HeapRegion* r) {
2360     if (!r->continuesHumongous()) {
2361       _used += r->used();
2362     }
2363     return false;
2364   }
2365   size_t result() { return _used; }
2366 };
2367 
2368 size_t G1CollectedHeap::recalculate_used() const {
2369   SumUsedClosure blk;
2370   heap_region_iterate(&blk);
2371   return blk.result();
2372 }
2373 
2374 size_t G1CollectedHeap::unsafe_max_alloc() {
2375   if (free_regions() > 0) return HeapRegion::GrainBytes;
2376   // otherwise, is there space in the current allocation region?
2377 
2378   // We need to store the current allocation region in a local variable
2379   // here. The problem is that this method doesn't take any locks and
2380   // there may be other threads which overwrite the current allocation
2381   // region field. attempt_allocation(), for example, sets it to NULL
2382   // and this can happen *after* the NULL check here but before the call
2383   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2384   // to be a problem in the optimized build, since the two loads of the
2385   // current allocation region field are optimized away.
2386   HeapRegion* hr = _mutator_alloc_region.get();
2387   if (hr == NULL) {
2388     return 0;
2389   }
2390   return hr->free();
2391 }
2392 
2393 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2394   switch (cause) {
2395     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2396     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2397     case GCCause::_g1_humongous_allocation: return true;
2398     default:                                return false;
2399   }
2400 }
2401 
2402 #ifndef PRODUCT
2403 void G1CollectedHeap::allocate_dummy_regions() {
2404   // Let's fill up most of the region
2405   size_t word_size = HeapRegion::GrainWords - 1024;
2406   // And as a result the region we'll allocate will be humongous.
2407   guarantee(isHumongous(word_size), "sanity");
2408 
2409   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2410     // Let's use the existing mechanism for the allocation
2411     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2412     if (dummy_obj != NULL) {
2413       MemRegion mr(dummy_obj, word_size);
2414       CollectedHeap::fill_with_object(mr);
2415     } else {
2416       // If we can't allocate once, we probably cannot allocate
2417       // again. Let's get out of the loop.
2418       break;
2419     }
2420   }
2421 }
2422 #endif // !PRODUCT
2423 
2424 void G1CollectedHeap::increment_old_marking_cycles_started() {
2425   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2426     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2427     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2428     _old_marking_cycles_started, _old_marking_cycles_completed));
2429 
2430   _old_marking_cycles_started++;
2431 }
2432 
2433 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2434   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2435 
2436   // We assume that if concurrent == true, then the caller is a
2437   // concurrent thread that was joined the Suspendible Thread
2438   // Set. If there's ever a cheap way to check this, we should add an
2439   // assert here.
2440 
2441   // Given that this method is called at the end of a Full GC or of a
2442   // concurrent cycle, and those can be nested (i.e., a Full GC can
2443   // interrupt a concurrent cycle), the number of full collections
2444   // completed should be either one (in the case where there was no
2445   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2446   // behind the number of full collections started.
2447 
2448   // This is the case for the inner caller, i.e. a Full GC.
2449   assert(concurrent ||
2450          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2451          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2452          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2453                  "is inconsistent with _old_marking_cycles_completed = %u",
2454                  _old_marking_cycles_started, _old_marking_cycles_completed));
2455 
2456   // This is the case for the outer caller, i.e. the concurrent cycle.
2457   assert(!concurrent ||
2458          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2459          err_msg("for outer caller (concurrent cycle): "
2460                  "_old_marking_cycles_started = %u "
2461                  "is inconsistent with _old_marking_cycles_completed = %u",
2462                  _old_marking_cycles_started, _old_marking_cycles_completed));
2463 
2464   _old_marking_cycles_completed += 1;
2465 
2466   // We need to clear the "in_progress" flag in the CM thread before
2467   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2468   // is set) so that if a waiter requests another System.gc() it doesn't
2469   // incorrectly see that a marking cycle is still in progress.
2470   if (concurrent) {
2471     _cmThread->clear_in_progress();
2472   }
2473 
2474   // This notify_all() will ensure that a thread that called
2475   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2476   // and it's waiting for a full GC to finish will be woken up. It is
2477   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2478   FullGCCount_lock->notify_all();
2479 }
2480 
2481 void G1CollectedHeap::register_concurrent_cycle_start(jlong start_time) {
2482   _concurrent_cycle_started = true;
2483   _gc_timer_cm->register_gc_start(start_time);
2484 
2485   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2486   trace_heap_before_gc(_gc_tracer_cm);
2487 }
2488 
2489 void G1CollectedHeap::register_concurrent_cycle_end() {
2490   if (_concurrent_cycle_started) {
2491     if (_cm->has_aborted()) {
2492       _gc_tracer_cm->report_concurrent_mode_failure();
2493     }
2494 
2495     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2496     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2497 
2498     _concurrent_cycle_started = false;
2499   }
2500 }
2501 
2502 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2503   if (_concurrent_cycle_started) {
2504     trace_heap_after_gc(_gc_tracer_cm);
2505   }
2506 }
2507 
2508 G1YCType G1CollectedHeap::yc_type() {
2509   bool is_young = g1_policy()->gcs_are_young();
2510   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2511   bool is_during_mark = mark_in_progress();
2512 
2513   if (is_initial_mark) {
2514     return InitialMark;
2515   } else if (is_during_mark) {
2516     return DuringMark;
2517   } else if (is_young) {
2518     return Normal;
2519   } else {
2520     return Mixed;
2521   }
2522 }
2523 
2524 void G1CollectedHeap::collect(GCCause::Cause cause) {
2525   assert_heap_not_locked();
2526 
2527   unsigned int gc_count_before;
2528   unsigned int old_marking_count_before;
2529   bool retry_gc;
2530 
2531   do {
2532     retry_gc = false;
2533 
2534     {
2535       MutexLocker ml(Heap_lock);
2536 
2537       // Read the GC count while holding the Heap_lock
2538       gc_count_before = total_collections();
2539       old_marking_count_before = _old_marking_cycles_started;
2540     }
2541 
2542     if (should_do_concurrent_full_gc(cause)) {
2543       // Schedule an initial-mark evacuation pause that will start a
2544       // concurrent cycle. We're setting word_size to 0 which means that
2545       // we are not requesting a post-GC allocation.
2546       VM_G1IncCollectionPause op(gc_count_before,
2547                                  0,     /* word_size */
2548                                  true,  /* should_initiate_conc_mark */
2549                                  g1_policy()->max_pause_time_ms(),
2550                                  cause);
2551 
2552       VMThread::execute(&op);
2553       if (!op.pause_succeeded()) {
2554         if (old_marking_count_before == _old_marking_cycles_started) {
2555           retry_gc = op.should_retry_gc();
2556         } else {
2557           // A Full GC happened while we were trying to schedule the
2558           // initial-mark GC. No point in starting a new cycle given
2559           // that the whole heap was collected anyway.
2560         }
2561 
2562         if (retry_gc) {
2563           if (GC_locker::is_active_and_needs_gc()) {
2564             GC_locker::stall_until_clear();
2565           }
2566         }
2567       }
2568     } else {
2569       if (cause == GCCause::_gc_locker
2570           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2571 
2572         // Schedule a standard evacuation pause. We're setting word_size
2573         // to 0 which means that we are not requesting a post-GC allocation.
2574         VM_G1IncCollectionPause op(gc_count_before,
2575                                    0,     /* word_size */
2576                                    false, /* should_initiate_conc_mark */
2577                                    g1_policy()->max_pause_time_ms(),
2578                                    cause);
2579         VMThread::execute(&op);
2580       } else {
2581         // Schedule a Full GC.
2582         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2583         VMThread::execute(&op);
2584       }
2585     }
2586   } while (retry_gc);
2587 }
2588 
2589 bool G1CollectedHeap::is_in(const void* p) const {
2590   if (_g1_committed.contains(p)) {
2591     // Given that we know that p is in the committed space,
2592     // heap_region_containing_raw() should successfully
2593     // return the containing region.
2594     HeapRegion* hr = heap_region_containing_raw(p);
2595     return hr->is_in(p);
2596   } else {
2597     return false;
2598   }
2599 }
2600 
2601 // Iteration functions.
2602 
2603 // Iterates an OopClosure over all ref-containing fields of objects
2604 // within a HeapRegion.
2605 
2606 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2607   MemRegion _mr;
2608   ExtendedOopClosure* _cl;
2609 public:
2610   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2611     : _mr(mr), _cl(cl) {}
2612   bool doHeapRegion(HeapRegion* r) {
2613     if (!r->continuesHumongous()) {
2614       r->oop_iterate(_cl);
2615     }
2616     return false;
2617   }
2618 };
2619 
2620 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2621   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2622   heap_region_iterate(&blk);
2623 }
2624 
2625 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2626   IterateOopClosureRegionClosure blk(mr, cl);
2627   heap_region_iterate(&blk);
2628 }
2629 
2630 // Iterates an ObjectClosure over all objects within a HeapRegion.
2631 
2632 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2633   ObjectClosure* _cl;
2634 public:
2635   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2636   bool doHeapRegion(HeapRegion* r) {
2637     if (! r->continuesHumongous()) {
2638       r->object_iterate(_cl);
2639     }
2640     return false;
2641   }
2642 };
2643 
2644 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2645   IterateObjectClosureRegionClosure blk(cl);
2646   heap_region_iterate(&blk);
2647 }
2648 
2649 // Calls a SpaceClosure on a HeapRegion.
2650 
2651 class SpaceClosureRegionClosure: public HeapRegionClosure {
2652   SpaceClosure* _cl;
2653 public:
2654   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2655   bool doHeapRegion(HeapRegion* r) {
2656     _cl->do_space(r);
2657     return false;
2658   }
2659 };
2660 
2661 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2662   SpaceClosureRegionClosure blk(cl);
2663   heap_region_iterate(&blk);
2664 }
2665 
2666 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2667   _hrs.iterate(cl);
2668 }
2669 
2670 void
2671 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2672                                                  uint worker_id,
2673                                                  uint no_of_par_workers,
2674                                                  jint claim_value) {
2675   const uint regions = n_regions();
2676   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2677                              no_of_par_workers :
2678                              1);
2679   assert(UseDynamicNumberOfGCThreads ||
2680          no_of_par_workers == workers()->total_workers(),
2681          "Non dynamic should use fixed number of workers");
2682   // try to spread out the starting points of the workers
2683   const HeapRegion* start_hr =
2684                         start_region_for_worker(worker_id, no_of_par_workers);
2685   const uint start_index = start_hr->hrs_index();
2686 
2687   // each worker will actually look at all regions
2688   for (uint count = 0; count < regions; ++count) {
2689     const uint index = (start_index + count) % regions;
2690     assert(0 <= index && index < regions, "sanity");
2691     HeapRegion* r = region_at(index);
2692     // we'll ignore "continues humongous" regions (we'll process them
2693     // when we come across their corresponding "start humongous"
2694     // region) and regions already claimed
2695     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2696       continue;
2697     }
2698     // OK, try to claim it
2699     if (r->claimHeapRegion(claim_value)) {
2700       // success!
2701       assert(!r->continuesHumongous(), "sanity");
2702       if (r->startsHumongous()) {
2703         // If the region is "starts humongous" we'll iterate over its
2704         // "continues humongous" first; in fact we'll do them
2705         // first. The order is important. In on case, calling the
2706         // closure on the "starts humongous" region might de-allocate
2707         // and clear all its "continues humongous" regions and, as a
2708         // result, we might end up processing them twice. So, we'll do
2709         // them first (notice: most closures will ignore them anyway) and
2710         // then we'll do the "starts humongous" region.
2711         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2712           HeapRegion* chr = region_at(ch_index);
2713 
2714           // if the region has already been claimed or it's not
2715           // "continues humongous" we're done
2716           if (chr->claim_value() == claim_value ||
2717               !chr->continuesHumongous()) {
2718             break;
2719           }
2720 
2721           // No one should have claimed it directly. We can given
2722           // that we claimed its "starts humongous" region.
2723           assert(chr->claim_value() != claim_value, "sanity");
2724           assert(chr->humongous_start_region() == r, "sanity");
2725 
2726           if (chr->claimHeapRegion(claim_value)) {
2727             // we should always be able to claim it; no one else should
2728             // be trying to claim this region
2729 
2730             bool res2 = cl->doHeapRegion(chr);
2731             assert(!res2, "Should not abort");
2732 
2733             // Right now, this holds (i.e., no closure that actually
2734             // does something with "continues humongous" regions
2735             // clears them). We might have to weaken it in the future,
2736             // but let's leave these two asserts here for extra safety.
2737             assert(chr->continuesHumongous(), "should still be the case");
2738             assert(chr->humongous_start_region() == r, "sanity");
2739           } else {
2740             guarantee(false, "we should not reach here");
2741           }
2742         }
2743       }
2744 
2745       assert(!r->continuesHumongous(), "sanity");
2746       bool res = cl->doHeapRegion(r);
2747       assert(!res, "Should not abort");
2748     }
2749   }
2750 }
2751 
2752 class ResetClaimValuesClosure: public HeapRegionClosure {
2753 public:
2754   bool doHeapRegion(HeapRegion* r) {
2755     r->set_claim_value(HeapRegion::InitialClaimValue);
2756     return false;
2757   }
2758 };
2759 
2760 void G1CollectedHeap::reset_heap_region_claim_values() {
2761   ResetClaimValuesClosure blk;
2762   heap_region_iterate(&blk);
2763 }
2764 
2765 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2766   ResetClaimValuesClosure blk;
2767   collection_set_iterate(&blk);
2768 }
2769 
2770 #ifdef ASSERT
2771 // This checks whether all regions in the heap have the correct claim
2772 // value. I also piggy-backed on this a check to ensure that the
2773 // humongous_start_region() information on "continues humongous"
2774 // regions is correct.
2775 
2776 class CheckClaimValuesClosure : public HeapRegionClosure {
2777 private:
2778   jint _claim_value;
2779   uint _failures;
2780   HeapRegion* _sh_region;
2781 
2782 public:
2783   CheckClaimValuesClosure(jint claim_value) :
2784     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2785   bool doHeapRegion(HeapRegion* r) {
2786     if (r->claim_value() != _claim_value) {
2787       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2788                              "claim value = %d, should be %d",
2789                              HR_FORMAT_PARAMS(r),
2790                              r->claim_value(), _claim_value);
2791       ++_failures;
2792     }
2793     if (!r->isHumongous()) {
2794       _sh_region = NULL;
2795     } else if (r->startsHumongous()) {
2796       _sh_region = r;
2797     } else if (r->continuesHumongous()) {
2798       if (r->humongous_start_region() != _sh_region) {
2799         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2800                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2801                                HR_FORMAT_PARAMS(r),
2802                                r->humongous_start_region(),
2803                                _sh_region);
2804         ++_failures;
2805       }
2806     }
2807     return false;
2808   }
2809   uint failures() { return _failures; }
2810 };
2811 
2812 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2813   CheckClaimValuesClosure cl(claim_value);
2814   heap_region_iterate(&cl);
2815   return cl.failures() == 0;
2816 }
2817 
2818 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2819 private:
2820   jint _claim_value;
2821   uint _failures;
2822 
2823 public:
2824   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2825     _claim_value(claim_value), _failures(0) { }
2826 
2827   uint failures() { return _failures; }
2828 
2829   bool doHeapRegion(HeapRegion* hr) {
2830     assert(hr->in_collection_set(), "how?");
2831     assert(!hr->isHumongous(), "H-region in CSet");
2832     if (hr->claim_value() != _claim_value) {
2833       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2834                              "claim value = %d, should be %d",
2835                              HR_FORMAT_PARAMS(hr),
2836                              hr->claim_value(), _claim_value);
2837       _failures += 1;
2838     }
2839     return false;
2840   }
2841 };
2842 
2843 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2844   CheckClaimValuesInCSetHRClosure cl(claim_value);
2845   collection_set_iterate(&cl);
2846   return cl.failures() == 0;
2847 }
2848 #endif // ASSERT
2849 
2850 // Clear the cached CSet starting regions and (more importantly)
2851 // the time stamps. Called when we reset the GC time stamp.
2852 void G1CollectedHeap::clear_cset_start_regions() {
2853   assert(_worker_cset_start_region != NULL, "sanity");
2854   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2855 
2856   int n_queues = MAX2((int)ParallelGCThreads, 1);
2857   for (int i = 0; i < n_queues; i++) {
2858     _worker_cset_start_region[i] = NULL;
2859     _worker_cset_start_region_time_stamp[i] = 0;
2860   }
2861 }
2862 
2863 // Given the id of a worker, obtain or calculate a suitable
2864 // starting region for iterating over the current collection set.
2865 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2866   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2867 
2868   HeapRegion* result = NULL;
2869   unsigned gc_time_stamp = get_gc_time_stamp();
2870 
2871   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2872     // Cached starting region for current worker was set
2873     // during the current pause - so it's valid.
2874     // Note: the cached starting heap region may be NULL
2875     // (when the collection set is empty).
2876     result = _worker_cset_start_region[worker_i];
2877     assert(result == NULL || result->in_collection_set(), "sanity");
2878     return result;
2879   }
2880 
2881   // The cached entry was not valid so let's calculate
2882   // a suitable starting heap region for this worker.
2883 
2884   // We want the parallel threads to start their collection
2885   // set iteration at different collection set regions to
2886   // avoid contention.
2887   // If we have:
2888   //          n collection set regions
2889   //          p threads
2890   // Then thread t will start at region floor ((t * n) / p)
2891 
2892   result = g1_policy()->collection_set();
2893   if (G1CollectedHeap::use_parallel_gc_threads()) {
2894     uint cs_size = g1_policy()->cset_region_length();
2895     uint active_workers = workers()->active_workers();
2896     assert(UseDynamicNumberOfGCThreads ||
2897              active_workers == workers()->total_workers(),
2898              "Unless dynamic should use total workers");
2899 
2900     uint end_ind   = (cs_size * worker_i) / active_workers;
2901     uint start_ind = 0;
2902 
2903     if (worker_i > 0 &&
2904         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2905       // Previous workers starting region is valid
2906       // so let's iterate from there
2907       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2908       result = _worker_cset_start_region[worker_i - 1];
2909     }
2910 
2911     for (uint i = start_ind; i < end_ind; i++) {
2912       result = result->next_in_collection_set();
2913     }
2914   }
2915 
2916   // Note: the calculated starting heap region may be NULL
2917   // (when the collection set is empty).
2918   assert(result == NULL || result->in_collection_set(), "sanity");
2919   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2920          "should be updated only once per pause");
2921   _worker_cset_start_region[worker_i] = result;
2922   OrderAccess::storestore();
2923   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2924   return result;
2925 }
2926 
2927 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2928                                                      uint no_of_par_workers) {
2929   uint worker_num =
2930            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2931   assert(UseDynamicNumberOfGCThreads ||
2932          no_of_par_workers == workers()->total_workers(),
2933          "Non dynamic should use fixed number of workers");
2934   const uint start_index = n_regions() * worker_i / worker_num;
2935   return region_at(start_index);
2936 }
2937 
2938 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2939   HeapRegion* r = g1_policy()->collection_set();
2940   while (r != NULL) {
2941     HeapRegion* next = r->next_in_collection_set();
2942     if (cl->doHeapRegion(r)) {
2943       cl->incomplete();
2944       return;
2945     }
2946     r = next;
2947   }
2948 }
2949 
2950 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2951                                                   HeapRegionClosure *cl) {
2952   if (r == NULL) {
2953     // The CSet is empty so there's nothing to do.
2954     return;
2955   }
2956 
2957   assert(r->in_collection_set(),
2958          "Start region must be a member of the collection set.");
2959   HeapRegion* cur = r;
2960   while (cur != NULL) {
2961     HeapRegion* next = cur->next_in_collection_set();
2962     if (cl->doHeapRegion(cur) && false) {
2963       cl->incomplete();
2964       return;
2965     }
2966     cur = next;
2967   }
2968   cur = g1_policy()->collection_set();
2969   while (cur != r) {
2970     HeapRegion* next = cur->next_in_collection_set();
2971     if (cl->doHeapRegion(cur) && false) {
2972       cl->incomplete();
2973       return;
2974     }
2975     cur = next;
2976   }
2977 }
2978 
2979 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2980   return n_regions() > 0 ? region_at(0) : NULL;
2981 }
2982 
2983 
2984 Space* G1CollectedHeap::space_containing(const void* addr) const {
2985   Space* res = heap_region_containing(addr);
2986   return res;
2987 }
2988 
2989 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2990   Space* sp = space_containing(addr);
2991   if (sp != NULL) {
2992     return sp->block_start(addr);
2993   }
2994   return NULL;
2995 }
2996 
2997 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2998   Space* sp = space_containing(addr);
2999   assert(sp != NULL, "block_size of address outside of heap");
3000   return sp->block_size(addr);
3001 }
3002 
3003 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
3004   Space* sp = space_containing(addr);
3005   return sp->block_is_obj(addr);
3006 }
3007 
3008 bool G1CollectedHeap::supports_tlab_allocation() const {
3009   return true;
3010 }
3011 
3012 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
3013   return HeapRegion::GrainBytes;
3014 }
3015 
3016 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3017   // Return the remaining space in the cur alloc region, but not less than
3018   // the min TLAB size.
3019 
3020   // Also, this value can be at most the humongous object threshold,
3021   // since we can't allow tlabs to grow big enough to accommodate
3022   // humongous objects.
3023 
3024   HeapRegion* hr = _mutator_alloc_region.get();
3025   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
3026   if (hr == NULL) {
3027     return max_tlab_size;
3028   } else {
3029     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
3030   }
3031 }
3032 
3033 size_t G1CollectedHeap::max_capacity() const {
3034   return _g1_reserved.byte_size();
3035 }
3036 
3037 jlong G1CollectedHeap::millis_since_last_gc() {
3038   // assert(false, "NYI");
3039   return 0;
3040 }
3041 
3042 void G1CollectedHeap::prepare_for_verify() {
3043   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3044     ensure_parsability(false);
3045   }
3046   g1_rem_set()->prepare_for_verify();
3047 }
3048 
3049 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3050                                               VerifyOption vo) {
3051   switch (vo) {
3052   case VerifyOption_G1UsePrevMarking:
3053     return hr->obj_allocated_since_prev_marking(obj);
3054   case VerifyOption_G1UseNextMarking:
3055     return hr->obj_allocated_since_next_marking(obj);
3056   case VerifyOption_G1UseMarkWord:
3057     return false;
3058   default:
3059     ShouldNotReachHere();
3060   }
3061   return false; // keep some compilers happy
3062 }
3063 
3064 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3065   switch (vo) {
3066   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3067   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3068   case VerifyOption_G1UseMarkWord:    return NULL;
3069   default:                            ShouldNotReachHere();
3070   }
3071   return NULL; // keep some compilers happy
3072 }
3073 
3074 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3075   switch (vo) {
3076   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3077   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3078   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3079   default:                            ShouldNotReachHere();
3080   }
3081   return false; // keep some compilers happy
3082 }
3083 
3084 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3085   switch (vo) {
3086   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3087   case VerifyOption_G1UseNextMarking: return "NTAMS";
3088   case VerifyOption_G1UseMarkWord:    return "NONE";
3089   default:                            ShouldNotReachHere();
3090   }
3091   return NULL; // keep some compilers happy
3092 }
3093 
3094 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
3095 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
3096 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
3097 //       we can change this closure to extend the simpler OopClosure.
3098 class VerifyRootsClosure: public OopsInGenClosure {
3099 private:
3100   G1CollectedHeap* _g1h;
3101   VerifyOption     _vo;
3102   bool             _failures;
3103 public:
3104   // _vo == UsePrevMarking -> use "prev" marking information,
3105   // _vo == UseNextMarking -> use "next" marking information,
3106   // _vo == UseMarkWord    -> use mark word from object header.
3107   VerifyRootsClosure(VerifyOption vo) :
3108     _g1h(G1CollectedHeap::heap()),
3109     _vo(vo),
3110     _failures(false) { }
3111 
3112   bool failures() { return _failures; }
3113 
3114   template <class T> void do_oop_nv(T* p) {
3115     T heap_oop = oopDesc::load_heap_oop(p);
3116     if (!oopDesc::is_null(heap_oop)) {
3117       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3118       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3119         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3120                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3121         if (_vo == VerifyOption_G1UseMarkWord) {
3122           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3123         }
3124         obj->print_on(gclog_or_tty);
3125         _failures = true;
3126       }
3127     }
3128   }
3129 
3130   void do_oop(oop* p)       { do_oop_nv(p); }
3131   void do_oop(narrowOop* p) { do_oop_nv(p); }
3132 };
3133 
3134 class G1VerifyCodeRootOopClosure: public OopsInGenClosure {
3135   G1CollectedHeap* _g1h;
3136   OopClosure* _root_cl;
3137   nmethod* _nm;
3138   VerifyOption _vo;
3139   bool _failures;
3140 
3141   template <class T> void do_oop_work(T* p) {
3142     // First verify that this root is live
3143     _root_cl->do_oop(p);
3144 
3145     if (!G1VerifyHeapRegionCodeRoots) {
3146       // We're not verifying the code roots attached to heap region.
3147       return;
3148     }
3149 
3150     // Don't check the code roots during marking verification in a full GC
3151     if (_vo == VerifyOption_G1UseMarkWord) {
3152       return;
3153     }
3154 
3155     // Now verify that the current nmethod (which contains p) is
3156     // in the code root list of the heap region containing the
3157     // object referenced by p.
3158 
3159     T heap_oop = oopDesc::load_heap_oop(p);
3160     if (!oopDesc::is_null(heap_oop)) {
3161       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3162 
3163       // Now fetch the region containing the object
3164       HeapRegion* hr = _g1h->heap_region_containing(obj);
3165       HeapRegionRemSet* hrrs = hr->rem_set();
3166       // Verify that the strong code root list for this region
3167       // contains the nmethod
3168       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3169         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3170                               "from nmethod "PTR_FORMAT" not in strong "
3171                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3172                               p, _nm, hr->bottom(), hr->end());
3173         _failures = true;
3174       }
3175     }
3176   }
3177 
3178 public:
3179   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3180     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3181 
3182   void do_oop(oop* p) { do_oop_work(p); }
3183   void do_oop(narrowOop* p) { do_oop_work(p); }
3184 
3185   void set_nmethod(nmethod* nm) { _nm = nm; }
3186   bool failures() { return _failures; }
3187 };
3188 
3189 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3190   G1VerifyCodeRootOopClosure* _oop_cl;
3191 
3192 public:
3193   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3194     _oop_cl(oop_cl) {}
3195 
3196   void do_code_blob(CodeBlob* cb) {
3197     nmethod* nm = cb->as_nmethod_or_null();
3198     if (nm != NULL) {
3199       _oop_cl->set_nmethod(nm);
3200       nm->oops_do(_oop_cl);
3201     }
3202   }
3203 };
3204 
3205 class YoungRefCounterClosure : public OopClosure {
3206   G1CollectedHeap* _g1h;
3207   int              _count;
3208  public:
3209   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3210   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3211   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3212 
3213   int count() { return _count; }
3214   void reset_count() { _count = 0; };
3215 };
3216 
3217 class VerifyKlassClosure: public KlassClosure {
3218   YoungRefCounterClosure _young_ref_counter_closure;
3219   OopClosure *_oop_closure;
3220  public:
3221   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3222   void do_klass(Klass* k) {
3223     k->oops_do(_oop_closure);
3224 
3225     _young_ref_counter_closure.reset_count();
3226     k->oops_do(&_young_ref_counter_closure);
3227     if (_young_ref_counter_closure.count() > 0) {
3228       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3229     }
3230   }
3231 };
3232 
3233 class VerifyLivenessOopClosure: public OopClosure {
3234   G1CollectedHeap* _g1h;
3235   VerifyOption _vo;
3236 public:
3237   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3238     _g1h(g1h), _vo(vo)
3239   { }
3240   void do_oop(narrowOop *p) { do_oop_work(p); }
3241   void do_oop(      oop *p) { do_oop_work(p); }
3242 
3243   template <class T> void do_oop_work(T *p) {
3244     oop obj = oopDesc::load_decode_heap_oop(p);
3245     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3246               "Dead object referenced by a not dead object");
3247   }
3248 };
3249 
3250 class VerifyObjsInRegionClosure: public ObjectClosure {
3251 private:
3252   G1CollectedHeap* _g1h;
3253   size_t _live_bytes;
3254   HeapRegion *_hr;
3255   VerifyOption _vo;
3256 public:
3257   // _vo == UsePrevMarking -> use "prev" marking information,
3258   // _vo == UseNextMarking -> use "next" marking information,
3259   // _vo == UseMarkWord    -> use mark word from object header.
3260   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3261     : _live_bytes(0), _hr(hr), _vo(vo) {
3262     _g1h = G1CollectedHeap::heap();
3263   }
3264   void do_object(oop o) {
3265     VerifyLivenessOopClosure isLive(_g1h, _vo);
3266     assert(o != NULL, "Huh?");
3267     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3268       // If the object is alive according to the mark word,
3269       // then verify that the marking information agrees.
3270       // Note we can't verify the contra-positive of the
3271       // above: if the object is dead (according to the mark
3272       // word), it may not be marked, or may have been marked
3273       // but has since became dead, or may have been allocated
3274       // since the last marking.
3275       if (_vo == VerifyOption_G1UseMarkWord) {
3276         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3277       }
3278 
3279       o->oop_iterate_no_header(&isLive);
3280       if (!_hr->obj_allocated_since_prev_marking(o)) {
3281         size_t obj_size = o->size();    // Make sure we don't overflow
3282         _live_bytes += (obj_size * HeapWordSize);
3283       }
3284     }
3285   }
3286   size_t live_bytes() { return _live_bytes; }
3287 };
3288 
3289 class PrintObjsInRegionClosure : public ObjectClosure {
3290   HeapRegion *_hr;
3291   G1CollectedHeap *_g1;
3292 public:
3293   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3294     _g1 = G1CollectedHeap::heap();
3295   };
3296 
3297   void do_object(oop o) {
3298     if (o != NULL) {
3299       HeapWord *start = (HeapWord *) o;
3300       size_t word_sz = o->size();
3301       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3302                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3303                           (void*) o, word_sz,
3304                           _g1->isMarkedPrev(o),
3305                           _g1->isMarkedNext(o),
3306                           _hr->obj_allocated_since_prev_marking(o));
3307       HeapWord *end = start + word_sz;
3308       HeapWord *cur;
3309       int *val;
3310       for (cur = start; cur < end; cur++) {
3311         val = (int *) cur;
3312         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3313       }
3314     }
3315   }
3316 };
3317 
3318 class VerifyRegionClosure: public HeapRegionClosure {
3319 private:
3320   bool             _par;
3321   VerifyOption     _vo;
3322   bool             _failures;
3323 public:
3324   // _vo == UsePrevMarking -> use "prev" marking information,
3325   // _vo == UseNextMarking -> use "next" marking information,
3326   // _vo == UseMarkWord    -> use mark word from object header.
3327   VerifyRegionClosure(bool par, VerifyOption vo)
3328     : _par(par),
3329       _vo(vo),
3330       _failures(false) {}
3331 
3332   bool failures() {
3333     return _failures;
3334   }
3335 
3336   bool doHeapRegion(HeapRegion* r) {
3337     if (!r->continuesHumongous()) {
3338       bool failures = false;
3339       r->verify(_vo, &failures);
3340       if (failures) {
3341         _failures = true;
3342       } else {
3343         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3344         r->object_iterate(&not_dead_yet_cl);
3345         if (_vo != VerifyOption_G1UseNextMarking) {
3346           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3347             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3348                                    "max_live_bytes "SIZE_FORMAT" "
3349                                    "< calculated "SIZE_FORMAT,
3350                                    r->bottom(), r->end(),
3351                                    r->max_live_bytes(),
3352                                  not_dead_yet_cl.live_bytes());
3353             _failures = true;
3354           }
3355         } else {
3356           // When vo == UseNextMarking we cannot currently do a sanity
3357           // check on the live bytes as the calculation has not been
3358           // finalized yet.
3359         }
3360       }
3361     }
3362     return false; // stop the region iteration if we hit a failure
3363   }
3364 };
3365 
3366 // This is the task used for parallel verification of the heap regions
3367 
3368 class G1ParVerifyTask: public AbstractGangTask {
3369 private:
3370   G1CollectedHeap* _g1h;
3371   VerifyOption     _vo;
3372   bool             _failures;
3373 
3374 public:
3375   // _vo == UsePrevMarking -> use "prev" marking information,
3376   // _vo == UseNextMarking -> use "next" marking information,
3377   // _vo == UseMarkWord    -> use mark word from object header.
3378   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3379     AbstractGangTask("Parallel verify task"),
3380     _g1h(g1h),
3381     _vo(vo),
3382     _failures(false) { }
3383 
3384   bool failures() {
3385     return _failures;
3386   }
3387 
3388   void work(uint worker_id) {
3389     HandleMark hm;
3390     VerifyRegionClosure blk(true, _vo);
3391     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3392                                           _g1h->workers()->active_workers(),
3393                                           HeapRegion::ParVerifyClaimValue);
3394     if (blk.failures()) {
3395       _failures = true;
3396     }
3397   }
3398 };
3399 
3400 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3401   if (SafepointSynchronize::is_at_safepoint()) {
3402     assert(Thread::current()->is_VM_thread(),
3403            "Expected to be executed serially by the VM thread at this point");
3404 
3405     if (!silent) { gclog_or_tty->print("Roots "); }
3406     VerifyRootsClosure rootsCl(vo);
3407     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3408     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3409     VerifyKlassClosure klassCl(this, &rootsCl);
3410 
3411     // We apply the relevant closures to all the oops in the
3412     // system dictionary, the string table and the code cache.
3413     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3414 
3415     // Need cleared claim bits for the strong roots processing
3416     ClassLoaderDataGraph::clear_claimed_marks();
3417 
3418     process_strong_roots(true,      // activate StrongRootsScope
3419                          false,     // we set "is scavenging" to false,
3420                                     // so we don't reset the dirty cards.
3421                          ScanningOption(so),  // roots scanning options
3422                          &rootsCl,
3423                          &blobsCl,
3424                          &klassCl
3425                          );
3426 
3427     bool failures = rootsCl.failures() || codeRootsCl.failures();
3428 
3429     if (vo != VerifyOption_G1UseMarkWord) {
3430       // If we're verifying during a full GC then the region sets
3431       // will have been torn down at the start of the GC. Therefore
3432       // verifying the region sets will fail. So we only verify
3433       // the region sets when not in a full GC.
3434       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3435       verify_region_sets();
3436     }
3437 
3438     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3439     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3440       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3441              "sanity check");
3442 
3443       G1ParVerifyTask task(this, vo);
3444       assert(UseDynamicNumberOfGCThreads ||
3445         workers()->active_workers() == workers()->total_workers(),
3446         "If not dynamic should be using all the workers");
3447       int n_workers = workers()->active_workers();
3448       set_par_threads(n_workers);
3449       workers()->run_task(&task);
3450       set_par_threads(0);
3451       if (task.failures()) {
3452         failures = true;
3453       }
3454 
3455       // Checks that the expected amount of parallel work was done.
3456       // The implication is that n_workers is > 0.
3457       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3458              "sanity check");
3459 
3460       reset_heap_region_claim_values();
3461 
3462       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3463              "sanity check");
3464     } else {
3465       VerifyRegionClosure blk(false, vo);
3466       heap_region_iterate(&blk);
3467       if (blk.failures()) {
3468         failures = true;
3469       }
3470     }
3471     if (!silent) gclog_or_tty->print("RemSet ");
3472     rem_set()->verify();
3473 
3474     if (failures) {
3475       gclog_or_tty->print_cr("Heap:");
3476       // It helps to have the per-region information in the output to
3477       // help us track down what went wrong. This is why we call
3478       // print_extended_on() instead of print_on().
3479       print_extended_on(gclog_or_tty);
3480       gclog_or_tty->print_cr("");
3481 #ifndef PRODUCT
3482       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3483         concurrent_mark()->print_reachable("at-verification-failure",
3484                                            vo, false /* all */);
3485       }
3486 #endif
3487       gclog_or_tty->flush();
3488     }
3489     guarantee(!failures, "there should not have been any failures");
3490   } else {
3491     if (!silent)
3492       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3493   }
3494 }
3495 
3496 void G1CollectedHeap::verify(bool silent) {
3497   verify(silent, VerifyOption_G1UsePrevMarking);
3498 }
3499 
3500 double G1CollectedHeap::verify(bool guard, const char* msg) {
3501   double verify_time_ms = 0.0;
3502 
3503   if (guard && total_collections() >= VerifyGCStartAt) {
3504     double verify_start = os::elapsedTime();
3505     HandleMark hm;  // Discard invalid handles created during verification
3506     prepare_for_verify();
3507     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3508     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3509   }
3510 
3511   return verify_time_ms;
3512 }
3513 
3514 void G1CollectedHeap::verify_before_gc() {
3515   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3516   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3517 }
3518 
3519 void G1CollectedHeap::verify_after_gc() {
3520   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3521   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3522 }
3523 
3524 class PrintRegionClosure: public HeapRegionClosure {
3525   outputStream* _st;
3526 public:
3527   PrintRegionClosure(outputStream* st) : _st(st) {}
3528   bool doHeapRegion(HeapRegion* r) {
3529     r->print_on(_st);
3530     return false;
3531   }
3532 };
3533 
3534 void G1CollectedHeap::print_on(outputStream* st) const {
3535   st->print(" %-20s", "garbage-first heap");
3536   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3537             capacity()/K, used_unlocked()/K);
3538   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3539             _g1_storage.low_boundary(),
3540             _g1_storage.high(),
3541             _g1_storage.high_boundary());
3542   st->cr();
3543   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3544   uint young_regions = _young_list->length();
3545   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3546             (size_t) young_regions * HeapRegion::GrainBytes / K);
3547   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3548   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3549             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3550   st->cr();
3551   MetaspaceAux::print_on(st);
3552 }
3553 
3554 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3555   print_on(st);
3556 
3557   // Print the per-region information.
3558   st->cr();
3559   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3560                "HS=humongous(starts), HC=humongous(continues), "
3561                "CS=collection set, F=free, TS=gc time stamp, "
3562                "PTAMS=previous top-at-mark-start, "
3563                "NTAMS=next top-at-mark-start)");
3564   PrintRegionClosure blk(st);
3565   heap_region_iterate(&blk);
3566 }
3567 
3568 void G1CollectedHeap::print_on_error(outputStream* st) const {
3569   this->CollectedHeap::print_on_error(st);
3570 
3571   if (_cm != NULL) {
3572     st->cr();
3573     _cm->print_on_error(st);
3574   }
3575 }
3576 
3577 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3578   if (G1CollectedHeap::use_parallel_gc_threads()) {
3579     workers()->print_worker_threads_on(st);
3580   }
3581   _cmThread->print_on(st);
3582   st->cr();
3583   _cm->print_worker_threads_on(st);
3584   _cg1r->print_worker_threads_on(st);
3585 }
3586 
3587 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3588   if (G1CollectedHeap::use_parallel_gc_threads()) {
3589     workers()->threads_do(tc);
3590   }
3591   tc->do_thread(_cmThread);
3592   _cg1r->threads_do(tc);
3593 }
3594 
3595 void G1CollectedHeap::print_tracing_info() const {
3596   // We'll overload this to mean "trace GC pause statistics."
3597   if (TraceGen0Time || TraceGen1Time) {
3598     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3599     // to that.
3600     g1_policy()->print_tracing_info();
3601   }
3602   if (G1SummarizeRSetStats) {
3603     g1_rem_set()->print_summary_info();
3604   }
3605   if (G1SummarizeConcMark) {
3606     concurrent_mark()->print_summary_info();
3607   }
3608   g1_policy()->print_yg_surv_rate_info();
3609   SpecializationStats::print();
3610 }
3611 
3612 #ifndef PRODUCT
3613 // Helpful for debugging RSet issues.
3614 
3615 class PrintRSetsClosure : public HeapRegionClosure {
3616 private:
3617   const char* _msg;
3618   size_t _occupied_sum;
3619 
3620 public:
3621   bool doHeapRegion(HeapRegion* r) {
3622     HeapRegionRemSet* hrrs = r->rem_set();
3623     size_t occupied = hrrs->occupied();
3624     _occupied_sum += occupied;
3625 
3626     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3627                            HR_FORMAT_PARAMS(r));
3628     if (occupied == 0) {
3629       gclog_or_tty->print_cr("  RSet is empty");
3630     } else {
3631       hrrs->print();
3632     }
3633     gclog_or_tty->print_cr("----------");
3634     return false;
3635   }
3636 
3637   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3638     gclog_or_tty->cr();
3639     gclog_or_tty->print_cr("========================================");
3640     gclog_or_tty->print_cr(msg);
3641     gclog_or_tty->cr();
3642   }
3643 
3644   ~PrintRSetsClosure() {
3645     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3646     gclog_or_tty->print_cr("========================================");
3647     gclog_or_tty->cr();
3648   }
3649 };
3650 
3651 void G1CollectedHeap::print_cset_rsets() {
3652   PrintRSetsClosure cl("Printing CSet RSets");
3653   collection_set_iterate(&cl);
3654 }
3655 
3656 void G1CollectedHeap::print_all_rsets() {
3657   PrintRSetsClosure cl("Printing All RSets");;
3658   heap_region_iterate(&cl);
3659 }
3660 #endif // PRODUCT
3661 
3662 G1CollectedHeap* G1CollectedHeap::heap() {
3663   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3664          "not a garbage-first heap");
3665   return _g1h;
3666 }
3667 
3668 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3669   // always_do_update_barrier = false;
3670   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3671   // Fill TLAB's and such
3672   ensure_parsability(true);
3673 
3674   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3675       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3676     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3677   }
3678 }
3679 
3680 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3681 
3682   if (G1SummarizeRSetStats &&
3683       (G1SummarizeRSetStatsPeriod > 0) &&
3684       // we are at the end of the GC. Total collections has already been increased.
3685       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3686     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3687   }
3688 
3689   // FIXME: what is this about?
3690   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3691   // is set.
3692   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3693                         "derived pointer present"));
3694   // always_do_update_barrier = true;
3695 
3696   // We have just completed a GC. Update the soft reference
3697   // policy with the new heap occupancy
3698   Universe::update_heap_info_at_gc();
3699 }
3700 
3701 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3702                                                unsigned int gc_count_before,
3703                                                bool* succeeded,
3704                                                GCCause::Cause gc_cause) {
3705   assert_heap_not_locked_and_not_at_safepoint();
3706   g1_policy()->record_stop_world_start();
3707   VM_G1IncCollectionPause op(gc_count_before,
3708                              word_size,
3709                              false, /* should_initiate_conc_mark */
3710                              g1_policy()->max_pause_time_ms(),
3711                              gc_cause);
3712   VMThread::execute(&op);
3713 
3714   HeapWord* result = op.result();
3715   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3716   assert(result == NULL || ret_succeeded,
3717          "the result should be NULL if the VM did not succeed");
3718   *succeeded = ret_succeeded;
3719 
3720   assert_heap_not_locked();
3721   return result;
3722 }
3723 
3724 void
3725 G1CollectedHeap::doConcurrentMark() {
3726   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3727   if (!_cmThread->in_progress()) {
3728     _cmThread->set_started();
3729     CGC_lock->notify();
3730   }
3731 }
3732 
3733 size_t G1CollectedHeap::pending_card_num() {
3734   size_t extra_cards = 0;
3735   JavaThread *curr = Threads::first();
3736   while (curr != NULL) {
3737     DirtyCardQueue& dcq = curr->dirty_card_queue();
3738     extra_cards += dcq.size();
3739     curr = curr->next();
3740   }
3741   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3742   size_t buffer_size = dcqs.buffer_size();
3743   size_t buffer_num = dcqs.completed_buffers_num();
3744 
3745   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3746   // in bytes - not the number of 'entries'. We need to convert
3747   // into a number of cards.
3748   return (buffer_size * buffer_num + extra_cards) / oopSize;
3749 }
3750 
3751 size_t G1CollectedHeap::cards_scanned() {
3752   return g1_rem_set()->cardsScanned();
3753 }
3754 
3755 void
3756 G1CollectedHeap::setup_surviving_young_words() {
3757   assert(_surviving_young_words == NULL, "pre-condition");
3758   uint array_length = g1_policy()->young_cset_region_length();
3759   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3760   if (_surviving_young_words == NULL) {
3761     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3762                           "Not enough space for young surv words summary.");
3763   }
3764   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3765 #ifdef ASSERT
3766   for (uint i = 0;  i < array_length; ++i) {
3767     assert( _surviving_young_words[i] == 0, "memset above" );
3768   }
3769 #endif // !ASSERT
3770 }
3771 
3772 void
3773 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3774   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3775   uint array_length = g1_policy()->young_cset_region_length();
3776   for (uint i = 0; i < array_length; ++i) {
3777     _surviving_young_words[i] += surv_young_words[i];
3778   }
3779 }
3780 
3781 void
3782 G1CollectedHeap::cleanup_surviving_young_words() {
3783   guarantee( _surviving_young_words != NULL, "pre-condition" );
3784   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3785   _surviving_young_words = NULL;
3786 }
3787 
3788 #ifdef ASSERT
3789 class VerifyCSetClosure: public HeapRegionClosure {
3790 public:
3791   bool doHeapRegion(HeapRegion* hr) {
3792     // Here we check that the CSet region's RSet is ready for parallel
3793     // iteration. The fields that we'll verify are only manipulated
3794     // when the region is part of a CSet and is collected. Afterwards,
3795     // we reset these fields when we clear the region's RSet (when the
3796     // region is freed) so they are ready when the region is
3797     // re-allocated. The only exception to this is if there's an
3798     // evacuation failure and instead of freeing the region we leave
3799     // it in the heap. In that case, we reset these fields during
3800     // evacuation failure handling.
3801     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3802 
3803     // Here's a good place to add any other checks we'd like to
3804     // perform on CSet regions.
3805     return false;
3806   }
3807 };
3808 #endif // ASSERT
3809 
3810 #if TASKQUEUE_STATS
3811 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3812   st->print_raw_cr("GC Task Stats");
3813   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3814   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3815 }
3816 
3817 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3818   print_taskqueue_stats_hdr(st);
3819 
3820   TaskQueueStats totals;
3821   const int n = workers() != NULL ? workers()->total_workers() : 1;
3822   for (int i = 0; i < n; ++i) {
3823     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3824     totals += task_queue(i)->stats;
3825   }
3826   st->print_raw("tot "); totals.print(st); st->cr();
3827 
3828   DEBUG_ONLY(totals.verify());
3829 }
3830 
3831 void G1CollectedHeap::reset_taskqueue_stats() {
3832   const int n = workers() != NULL ? workers()->total_workers() : 1;
3833   for (int i = 0; i < n; ++i) {
3834     task_queue(i)->stats.reset();
3835   }
3836 }
3837 #endif // TASKQUEUE_STATS
3838 
3839 void G1CollectedHeap::log_gc_header() {
3840   if (!G1Log::fine()) {
3841     return;
3842   }
3843 
3844   gclog_or_tty->date_stamp(PrintGCDateStamps);
3845   gclog_or_tty->stamp(PrintGCTimeStamps);
3846 
3847   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3848     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3849     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3850 
3851   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3852 }
3853 
3854 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3855   if (!G1Log::fine()) {
3856     return;
3857   }
3858 
3859   if (G1Log::finer()) {
3860     if (evacuation_failed()) {
3861       gclog_or_tty->print(" (to-space exhausted)");
3862     }
3863     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3864     g1_policy()->phase_times()->note_gc_end();
3865     g1_policy()->phase_times()->print(pause_time_sec);
3866     g1_policy()->print_detailed_heap_transition();
3867   } else {
3868     if (evacuation_failed()) {
3869       gclog_or_tty->print("--");
3870     }
3871     g1_policy()->print_heap_transition();
3872     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3873   }
3874   gclog_or_tty->flush();
3875 }
3876 
3877 bool
3878 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3879   assert_at_safepoint(true /* should_be_vm_thread */);
3880   guarantee(!is_gc_active(), "collection is not reentrant");
3881 
3882   if (GC_locker::check_active_before_gc()) {
3883     return false;
3884   }
3885 
3886   _gc_timer_stw->register_gc_start(os::elapsed_counter());
3887 
3888   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3889 
3890   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3891   ResourceMark rm;
3892 
3893   print_heap_before_gc();
3894   trace_heap_before_gc(_gc_tracer_stw);
3895 
3896   HRSPhaseSetter x(HRSPhaseEvacuation);
3897   verify_region_sets_optional();
3898   verify_dirty_young_regions();
3899 
3900   // This call will decide whether this pause is an initial-mark
3901   // pause. If it is, during_initial_mark_pause() will return true
3902   // for the duration of this pause.
3903   g1_policy()->decide_on_conc_mark_initiation();
3904 
3905   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3906   assert(!g1_policy()->during_initial_mark_pause() ||
3907           g1_policy()->gcs_are_young(), "sanity");
3908 
3909   // We also do not allow mixed GCs during marking.
3910   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3911 
3912   // Record whether this pause is an initial mark. When the current
3913   // thread has completed its logging output and it's safe to signal
3914   // the CM thread, the flag's value in the policy has been reset.
3915   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3916 
3917   // Inner scope for scope based logging, timers, and stats collection
3918   {
3919     EvacuationInfo evacuation_info;
3920 
3921     if (g1_policy()->during_initial_mark_pause()) {
3922       // We are about to start a marking cycle, so we increment the
3923       // full collection counter.
3924       increment_old_marking_cycles_started();
3925       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3926     }
3927 
3928     _gc_tracer_stw->report_yc_type(yc_type());
3929 
3930     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3931 
3932     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3933                                 workers()->active_workers() : 1);
3934     double pause_start_sec = os::elapsedTime();
3935     g1_policy()->phase_times()->note_gc_start(active_workers);
3936     log_gc_header();
3937 
3938     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3939     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3940 
3941     // If the secondary_free_list is not empty, append it to the
3942     // free_list. No need to wait for the cleanup operation to finish;
3943     // the region allocation code will check the secondary_free_list
3944     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3945     // set, skip this step so that the region allocation code has to
3946     // get entries from the secondary_free_list.
3947     if (!G1StressConcRegionFreeing) {
3948       append_secondary_free_list_if_not_empty_with_lock();
3949     }
3950 
3951     assert(check_young_list_well_formed(), "young list should be well formed");
3952     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3953            "sanity check");
3954 
3955     // Don't dynamically change the number of GC threads this early.  A value of
3956     // 0 is used to indicate serial work.  When parallel work is done,
3957     // it will be set.
3958 
3959     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3960       IsGCActiveMark x;
3961 
3962       gc_prologue(false);
3963       increment_total_collections(false /* full gc */);
3964       increment_gc_time_stamp();
3965 
3966       verify_before_gc();
3967 
3968       COMPILER2_PRESENT(DerivedPointerTable::clear());
3969 
3970       // Please see comment in g1CollectedHeap.hpp and
3971       // G1CollectedHeap::ref_processing_init() to see how
3972       // reference processing currently works in G1.
3973 
3974       // Enable discovery in the STW reference processor
3975       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3976                                             true /*verify_no_refs*/);
3977 
3978       {
3979         // We want to temporarily turn off discovery by the
3980         // CM ref processor, if necessary, and turn it back on
3981         // on again later if we do. Using a scoped
3982         // NoRefDiscovery object will do this.
3983         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3984 
3985         // Forget the current alloc region (we might even choose it to be part
3986         // of the collection set!).
3987         release_mutator_alloc_region();
3988 
3989         // We should call this after we retire the mutator alloc
3990         // region(s) so that all the ALLOC / RETIRE events are generated
3991         // before the start GC event.
3992         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3993 
3994         // This timing is only used by the ergonomics to handle our pause target.
3995         // It is unclear why this should not include the full pause. We will
3996         // investigate this in CR 7178365.
3997         //
3998         // Preserving the old comment here if that helps the investigation:
3999         //
4000         // The elapsed time induced by the start time below deliberately elides
4001         // the possible verification above.
4002         double sample_start_time_sec = os::elapsedTime();
4003 
4004 #if YOUNG_LIST_VERBOSE
4005         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4006         _young_list->print();
4007         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4008 #endif // YOUNG_LIST_VERBOSE
4009 
4010         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4011 
4012         double scan_wait_start = os::elapsedTime();
4013         // We have to wait until the CM threads finish scanning the
4014         // root regions as it's the only way to ensure that all the
4015         // objects on them have been correctly scanned before we start
4016         // moving them during the GC.
4017         bool waited = _cm->root_regions()->wait_until_scan_finished();
4018         double wait_time_ms = 0.0;
4019         if (waited) {
4020           double scan_wait_end = os::elapsedTime();
4021           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4022         }
4023         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4024 
4025 #if YOUNG_LIST_VERBOSE
4026         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4027         _young_list->print();
4028 #endif // YOUNG_LIST_VERBOSE
4029 
4030         if (g1_policy()->during_initial_mark_pause()) {
4031           concurrent_mark()->checkpointRootsInitialPre();
4032         }
4033 
4034 #if YOUNG_LIST_VERBOSE
4035         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4036         _young_list->print();
4037         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4038 #endif // YOUNG_LIST_VERBOSE
4039 
4040         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4041 
4042         _cm->note_start_of_gc();
4043         // We should not verify the per-thread SATB buffers given that
4044         // we have not filtered them yet (we'll do so during the
4045         // GC). We also call this after finalize_cset() to
4046         // ensure that the CSet has been finalized.
4047         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4048                                  true  /* verify_enqueued_buffers */,
4049                                  false /* verify_thread_buffers */,
4050                                  true  /* verify_fingers */);
4051 
4052         if (_hr_printer.is_active()) {
4053           HeapRegion* hr = g1_policy()->collection_set();
4054           while (hr != NULL) {
4055             G1HRPrinter::RegionType type;
4056             if (!hr->is_young()) {
4057               type = G1HRPrinter::Old;
4058             } else if (hr->is_survivor()) {
4059               type = G1HRPrinter::Survivor;
4060             } else {
4061               type = G1HRPrinter::Eden;
4062             }
4063             _hr_printer.cset(hr);
4064             hr = hr->next_in_collection_set();
4065           }
4066         }
4067 
4068 #ifdef ASSERT
4069         VerifyCSetClosure cl;
4070         collection_set_iterate(&cl);
4071 #endif // ASSERT
4072 
4073         setup_surviving_young_words();
4074 
4075         // Initialize the GC alloc regions.
4076         init_gc_alloc_regions(evacuation_info);
4077 
4078         // Actually do the work...
4079         evacuate_collection_set(evacuation_info);
4080 
4081         // We do this to mainly verify the per-thread SATB buffers
4082         // (which have been filtered by now) since we didn't verify
4083         // them earlier. No point in re-checking the stacks / enqueued
4084         // buffers given that the CSet has not changed since last time
4085         // we checked.
4086         _cm->verify_no_cset_oops(false /* verify_stacks */,
4087                                  false /* verify_enqueued_buffers */,
4088                                  true  /* verify_thread_buffers */,
4089                                  true  /* verify_fingers */);
4090 
4091         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4092         g1_policy()->clear_collection_set();
4093 
4094         cleanup_surviving_young_words();
4095 
4096         // Start a new incremental collection set for the next pause.
4097         g1_policy()->start_incremental_cset_building();
4098 
4099         // Clear the _cset_fast_test bitmap in anticipation of adding
4100         // regions to the incremental collection set for the next
4101         // evacuation pause.
4102         clear_cset_fast_test();
4103 
4104         _young_list->reset_sampled_info();
4105 
4106         // Don't check the whole heap at this point as the
4107         // GC alloc regions from this pause have been tagged
4108         // as survivors and moved on to the survivor list.
4109         // Survivor regions will fail the !is_young() check.
4110         assert(check_young_list_empty(false /* check_heap */),
4111           "young list should be empty");
4112 
4113 #if YOUNG_LIST_VERBOSE
4114         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4115         _young_list->print();
4116 #endif // YOUNG_LIST_VERBOSE
4117 
4118         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4119                                              _young_list->first_survivor_region(),
4120                                              _young_list->last_survivor_region());
4121 
4122         _young_list->reset_auxilary_lists();
4123 
4124         if (evacuation_failed()) {
4125           _summary_bytes_used = recalculate_used();
4126           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4127           for (uint i = 0; i < n_queues; i++) {
4128             if (_evacuation_failed_info_array[i].has_failed()) {
4129               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4130             }
4131           }
4132         } else {
4133           // The "used" of the the collection set have already been subtracted
4134           // when they were freed.  Add in the bytes evacuated.
4135           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4136         }
4137 
4138         if (g1_policy()->during_initial_mark_pause()) {
4139           // We have to do this before we notify the CM threads that
4140           // they can start working to make sure that all the
4141           // appropriate initialization is done on the CM object.
4142           concurrent_mark()->checkpointRootsInitialPost();
4143           set_marking_started();
4144           // Note that we don't actually trigger the CM thread at
4145           // this point. We do that later when we're sure that
4146           // the current thread has completed its logging output.
4147         }
4148 
4149         allocate_dummy_regions();
4150 
4151 #if YOUNG_LIST_VERBOSE
4152         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4153         _young_list->print();
4154         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4155 #endif // YOUNG_LIST_VERBOSE
4156 
4157         init_mutator_alloc_region();
4158 
4159         {
4160           size_t expand_bytes = g1_policy()->expansion_amount();
4161           if (expand_bytes > 0) {
4162             size_t bytes_before = capacity();
4163             // No need for an ergo verbose message here,
4164             // expansion_amount() does this when it returns a value > 0.
4165             if (!expand(expand_bytes)) {
4166               // We failed to expand the heap so let's verify that
4167               // committed/uncommitted amount match the backing store
4168               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4169               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4170             }
4171           }
4172         }
4173 
4174         // We redo the verification but now wrt to the new CSet which
4175         // has just got initialized after the previous CSet was freed.
4176         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4177                                  true  /* verify_enqueued_buffers */,
4178                                  true  /* verify_thread_buffers */,
4179                                  true  /* verify_fingers */);
4180         _cm->note_end_of_gc();
4181 
4182         // This timing is only used by the ergonomics to handle our pause target.
4183         // It is unclear why this should not include the full pause. We will
4184         // investigate this in CR 7178365.
4185         double sample_end_time_sec = os::elapsedTime();
4186         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4187         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4188 
4189         MemoryService::track_memory_usage();
4190 
4191         // In prepare_for_verify() below we'll need to scan the deferred
4192         // update buffers to bring the RSets up-to-date if
4193         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4194         // the update buffers we'll probably need to scan cards on the
4195         // regions we just allocated to (i.e., the GC alloc
4196         // regions). However, during the last GC we called
4197         // set_saved_mark() on all the GC alloc regions, so card
4198         // scanning might skip the [saved_mark_word()...top()] area of
4199         // those regions (i.e., the area we allocated objects into
4200         // during the last GC). But it shouldn't. Given that
4201         // saved_mark_word() is conditional on whether the GC time stamp
4202         // on the region is current or not, by incrementing the GC time
4203         // stamp here we invalidate all the GC time stamps on all the
4204         // regions and saved_mark_word() will simply return top() for
4205         // all the regions. This is a nicer way of ensuring this rather
4206         // than iterating over the regions and fixing them. In fact, the
4207         // GC time stamp increment here also ensures that
4208         // saved_mark_word() will return top() between pauses, i.e.,
4209         // during concurrent refinement. So we don't need the
4210         // is_gc_active() check to decided which top to use when
4211         // scanning cards (see CR 7039627).
4212         increment_gc_time_stamp();
4213 
4214         verify_after_gc();
4215 
4216         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4217         ref_processor_stw()->verify_no_references_recorded();
4218 
4219         // CM reference discovery will be re-enabled if necessary.
4220       }
4221 
4222       // We should do this after we potentially expand the heap so
4223       // that all the COMMIT events are generated before the end GC
4224       // event, and after we retire the GC alloc regions so that all
4225       // RETIRE events are generated before the end GC event.
4226       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4227 
4228       if (mark_in_progress()) {
4229         concurrent_mark()->update_g1_committed();
4230       }
4231 
4232 #ifdef TRACESPINNING
4233       ParallelTaskTerminator::print_termination_counts();
4234 #endif
4235 
4236       gc_epilogue(false);
4237     }
4238 
4239     // Print the remainder of the GC log output.
4240     log_gc_footer(os::elapsedTime() - pause_start_sec);
4241 
4242     // It is not yet to safe to tell the concurrent mark to
4243     // start as we have some optional output below. We don't want the
4244     // output from the concurrent mark thread interfering with this
4245     // logging output either.
4246 
4247     _hrs.verify_optional();
4248     verify_region_sets_optional();
4249 
4250     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4251     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4252 
4253     print_heap_after_gc();
4254     trace_heap_after_gc(_gc_tracer_stw);
4255 
4256     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4257     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4258     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4259     // before any GC notifications are raised.
4260     g1mm()->update_sizes();
4261 
4262     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4263     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4264     _gc_timer_stw->register_gc_end(os::elapsed_counter());
4265     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4266   }
4267   // It should now be safe to tell the concurrent mark thread to start
4268   // without its logging output interfering with the logging output
4269   // that came from the pause.
4270 
4271   if (should_start_conc_mark) {
4272     // CAUTION: after the doConcurrentMark() call below,
4273     // the concurrent marking thread(s) could be running
4274     // concurrently with us. Make sure that anything after
4275     // this point does not assume that we are the only GC thread
4276     // running. Note: of course, the actual marking work will
4277     // not start until the safepoint itself is released in
4278     // ConcurrentGCThread::safepoint_desynchronize().
4279     doConcurrentMark();
4280   }
4281 
4282   return true;
4283 }
4284 
4285 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4286 {
4287   size_t gclab_word_size;
4288   switch (purpose) {
4289     case GCAllocForSurvived:
4290       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4291       break;
4292     case GCAllocForTenured:
4293       gclab_word_size = _old_plab_stats.desired_plab_sz();
4294       break;
4295     default:
4296       assert(false, "unknown GCAllocPurpose");
4297       gclab_word_size = _old_plab_stats.desired_plab_sz();
4298       break;
4299   }
4300 
4301   // Prevent humongous PLAB sizes for two reasons:
4302   // * PLABs are allocated using a similar paths as oops, but should
4303   //   never be in a humongous region
4304   // * Allowing humongous PLABs needlessly churns the region free lists
4305   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4306 }
4307 
4308 void G1CollectedHeap::init_mutator_alloc_region() {
4309   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4310   _mutator_alloc_region.init();
4311 }
4312 
4313 void G1CollectedHeap::release_mutator_alloc_region() {
4314   _mutator_alloc_region.release();
4315   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4316 }
4317 
4318 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4319   assert_at_safepoint(true /* should_be_vm_thread */);
4320 
4321   _survivor_gc_alloc_region.init();
4322   _old_gc_alloc_region.init();
4323   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4324   _retained_old_gc_alloc_region = NULL;
4325 
4326   // We will discard the current GC alloc region if:
4327   // a) it's in the collection set (it can happen!),
4328   // b) it's already full (no point in using it),
4329   // c) it's empty (this means that it was emptied during
4330   // a cleanup and it should be on the free list now), or
4331   // d) it's humongous (this means that it was emptied
4332   // during a cleanup and was added to the free list, but
4333   // has been subsequently used to allocate a humongous
4334   // object that may be less than the region size).
4335   if (retained_region != NULL &&
4336       !retained_region->in_collection_set() &&
4337       !(retained_region->top() == retained_region->end()) &&
4338       !retained_region->is_empty() &&
4339       !retained_region->isHumongous()) {
4340     retained_region->set_saved_mark();
4341     // The retained region was added to the old region set when it was
4342     // retired. We have to remove it now, since we don't allow regions
4343     // we allocate to in the region sets. We'll re-add it later, when
4344     // it's retired again.
4345     _old_set.remove(retained_region);
4346     bool during_im = g1_policy()->during_initial_mark_pause();
4347     retained_region->note_start_of_copying(during_im);
4348     _old_gc_alloc_region.set(retained_region);
4349     _hr_printer.reuse(retained_region);
4350     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4351   }
4352 }
4353 
4354 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4355   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4356                                          _old_gc_alloc_region.count());
4357   _survivor_gc_alloc_region.release();
4358   // If we have an old GC alloc region to release, we'll save it in
4359   // _retained_old_gc_alloc_region. If we don't
4360   // _retained_old_gc_alloc_region will become NULL. This is what we
4361   // want either way so no reason to check explicitly for either
4362   // condition.
4363   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4364 
4365   if (ResizePLAB) {
4366     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4367     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4368   }
4369 }
4370 
4371 void G1CollectedHeap::abandon_gc_alloc_regions() {
4372   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4373   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4374   _retained_old_gc_alloc_region = NULL;
4375 }
4376 
4377 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4378   _drain_in_progress = false;
4379   set_evac_failure_closure(cl);
4380   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4381 }
4382 
4383 void G1CollectedHeap::finalize_for_evac_failure() {
4384   assert(_evac_failure_scan_stack != NULL &&
4385          _evac_failure_scan_stack->length() == 0,
4386          "Postcondition");
4387   assert(!_drain_in_progress, "Postcondition");
4388   delete _evac_failure_scan_stack;
4389   _evac_failure_scan_stack = NULL;
4390 }
4391 
4392 void G1CollectedHeap::remove_self_forwarding_pointers() {
4393   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4394 
4395   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4396 
4397   if (G1CollectedHeap::use_parallel_gc_threads()) {
4398     set_par_threads();
4399     workers()->run_task(&rsfp_task);
4400     set_par_threads(0);
4401   } else {
4402     rsfp_task.work(0);
4403   }
4404 
4405   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4406 
4407   // Reset the claim values in the regions in the collection set.
4408   reset_cset_heap_region_claim_values();
4409 
4410   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4411 
4412   // Now restore saved marks, if any.
4413   assert(_objs_with_preserved_marks.size() ==
4414             _preserved_marks_of_objs.size(), "Both or none.");
4415   while (!_objs_with_preserved_marks.is_empty()) {
4416     oop obj = _objs_with_preserved_marks.pop();
4417     markOop m = _preserved_marks_of_objs.pop();
4418     obj->set_mark(m);
4419   }
4420   _objs_with_preserved_marks.clear(true);
4421   _preserved_marks_of_objs.clear(true);
4422 }
4423 
4424 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4425   _evac_failure_scan_stack->push(obj);
4426 }
4427 
4428 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4429   assert(_evac_failure_scan_stack != NULL, "precondition");
4430 
4431   while (_evac_failure_scan_stack->length() > 0) {
4432      oop obj = _evac_failure_scan_stack->pop();
4433      _evac_failure_closure->set_region(heap_region_containing(obj));
4434      obj->oop_iterate_backwards(_evac_failure_closure);
4435   }
4436 }
4437 
4438 oop
4439 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4440                                                oop old) {
4441   assert(obj_in_cs(old),
4442          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4443                  (HeapWord*) old));
4444   markOop m = old->mark();
4445   oop forward_ptr = old->forward_to_atomic(old);
4446   if (forward_ptr == NULL) {
4447     // Forward-to-self succeeded.
4448     assert(_par_scan_state != NULL, "par scan state");
4449     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4450     uint queue_num = _par_scan_state->queue_num();
4451 
4452     _evacuation_failed = true;
4453     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4454     if (_evac_failure_closure != cl) {
4455       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4456       assert(!_drain_in_progress,
4457              "Should only be true while someone holds the lock.");
4458       // Set the global evac-failure closure to the current thread's.
4459       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4460       set_evac_failure_closure(cl);
4461       // Now do the common part.
4462       handle_evacuation_failure_common(old, m);
4463       // Reset to NULL.
4464       set_evac_failure_closure(NULL);
4465     } else {
4466       // The lock is already held, and this is recursive.
4467       assert(_drain_in_progress, "This should only be the recursive case.");
4468       handle_evacuation_failure_common(old, m);
4469     }
4470     return old;
4471   } else {
4472     // Forward-to-self failed. Either someone else managed to allocate
4473     // space for this object (old != forward_ptr) or they beat us in
4474     // self-forwarding it (old == forward_ptr).
4475     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4476            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4477                    "should not be in the CSet",
4478                    (HeapWord*) old, (HeapWord*) forward_ptr));
4479     return forward_ptr;
4480   }
4481 }
4482 
4483 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4484   preserve_mark_if_necessary(old, m);
4485 
4486   HeapRegion* r = heap_region_containing(old);
4487   if (!r->evacuation_failed()) {
4488     r->set_evacuation_failed(true);
4489     _hr_printer.evac_failure(r);
4490   }
4491 
4492   push_on_evac_failure_scan_stack(old);
4493 
4494   if (!_drain_in_progress) {
4495     // prevent recursion in copy_to_survivor_space()
4496     _drain_in_progress = true;
4497     drain_evac_failure_scan_stack();
4498     _drain_in_progress = false;
4499   }
4500 }
4501 
4502 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4503   assert(evacuation_failed(), "Oversaving!");
4504   // We want to call the "for_promotion_failure" version only in the
4505   // case of a promotion failure.
4506   if (m->must_be_preserved_for_promotion_failure(obj)) {
4507     _objs_with_preserved_marks.push(obj);
4508     _preserved_marks_of_objs.push(m);
4509   }
4510 }
4511 
4512 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4513                                                   size_t word_size) {
4514   if (purpose == GCAllocForSurvived) {
4515     HeapWord* result = survivor_attempt_allocation(word_size);
4516     if (result != NULL) {
4517       return result;
4518     } else {
4519       // Let's try to allocate in the old gen in case we can fit the
4520       // object there.
4521       return old_attempt_allocation(word_size);
4522     }
4523   } else {
4524     assert(purpose ==  GCAllocForTenured, "sanity");
4525     HeapWord* result = old_attempt_allocation(word_size);
4526     if (result != NULL) {
4527       return result;
4528     } else {
4529       // Let's try to allocate in the survivors in case we can fit the
4530       // object there.
4531       return survivor_attempt_allocation(word_size);
4532     }
4533   }
4534 
4535   ShouldNotReachHere();
4536   // Trying to keep some compilers happy.
4537   return NULL;
4538 }
4539 
4540 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4541   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4542 
4543 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4544   : _g1h(g1h),
4545     _refs(g1h->task_queue(queue_num)),
4546     _dcq(&g1h->dirty_card_queue_set()),
4547     _ct_bs(g1h->g1_barrier_set()),
4548     _g1_rem(g1h->g1_rem_set()),
4549     _hash_seed(17), _queue_num(queue_num),
4550     _term_attempts(0),
4551     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4552     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4553     _age_table(false),
4554     _strong_roots_time(0), _term_time(0),
4555     _alloc_buffer_waste(0), _undo_waste(0) {
4556   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4557   // we "sacrifice" entry 0 to keep track of surviving bytes for
4558   // non-young regions (where the age is -1)
4559   // We also add a few elements at the beginning and at the end in
4560   // an attempt to eliminate cache contention
4561   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4562   uint array_length = PADDING_ELEM_NUM +
4563                       real_length +
4564                       PADDING_ELEM_NUM;
4565   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4566   if (_surviving_young_words_base == NULL)
4567     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4568                           "Not enough space for young surv histo.");
4569   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4570   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4571 
4572   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4573   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4574 
4575   _start = os::elapsedTime();
4576 }
4577 
4578 void
4579 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4580 {
4581   st->print_raw_cr("GC Termination Stats");
4582   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4583                    " ------waste (KiB)------");
4584   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4585                    "  total   alloc    undo");
4586   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4587                    " ------- ------- -------");
4588 }
4589 
4590 void
4591 G1ParScanThreadState::print_termination_stats(int i,
4592                                               outputStream* const st) const
4593 {
4594   const double elapsed_ms = elapsed_time() * 1000.0;
4595   const double s_roots_ms = strong_roots_time() * 1000.0;
4596   const double term_ms    = term_time() * 1000.0;
4597   st->print_cr("%3d %9.2f %9.2f %6.2f "
4598                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4599                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4600                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4601                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4602                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4603                alloc_buffer_waste() * HeapWordSize / K,
4604                undo_waste() * HeapWordSize / K);
4605 }
4606 
4607 #ifdef ASSERT
4608 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4609   assert(ref != NULL, "invariant");
4610   assert(UseCompressedOops, "sanity");
4611   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4612   oop p = oopDesc::load_decode_heap_oop(ref);
4613   assert(_g1h->is_in_g1_reserved(p),
4614          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4615   return true;
4616 }
4617 
4618 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4619   assert(ref != NULL, "invariant");
4620   if (has_partial_array_mask(ref)) {
4621     // Must be in the collection set--it's already been copied.
4622     oop p = clear_partial_array_mask(ref);
4623     assert(_g1h->obj_in_cs(p),
4624            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4625   } else {
4626     oop p = oopDesc::load_decode_heap_oop(ref);
4627     assert(_g1h->is_in_g1_reserved(p),
4628            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4629   }
4630   return true;
4631 }
4632 
4633 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4634   if (ref.is_narrow()) {
4635     return verify_ref((narrowOop*) ref);
4636   } else {
4637     return verify_ref((oop*) ref);
4638   }
4639 }
4640 #endif // ASSERT
4641 
4642 void G1ParScanThreadState::trim_queue() {
4643   assert(_evac_cl != NULL, "not set");
4644   assert(_evac_failure_cl != NULL, "not set");
4645   assert(_partial_scan_cl != NULL, "not set");
4646 
4647   StarTask ref;
4648   do {
4649     // Drain the overflow stack first, so other threads can steal.
4650     while (refs()->pop_overflow(ref)) {
4651       deal_with_reference(ref);
4652     }
4653 
4654     while (refs()->pop_local(ref)) {
4655       deal_with_reference(ref);
4656     }
4657   } while (!refs()->is_empty());
4658 }
4659 
4660 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4661                                      G1ParScanThreadState* par_scan_state) :
4662   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4663   _par_scan_state(par_scan_state),
4664   _worker_id(par_scan_state->queue_num()),
4665   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4666   _mark_in_progress(_g1->mark_in_progress()) { }
4667 
4668 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4669 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4670 #ifdef ASSERT
4671   HeapRegion* hr = _g1->heap_region_containing(obj);
4672   assert(hr != NULL, "sanity");
4673   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4674 #endif // ASSERT
4675 
4676   // We know that the object is not moving so it's safe to read its size.
4677   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4678 }
4679 
4680 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4681 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4682   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4683 #ifdef ASSERT
4684   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4685   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4686   assert(from_obj != to_obj, "should not be self-forwarded");
4687 
4688   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4689   assert(from_hr != NULL, "sanity");
4690   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4691 
4692   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4693   assert(to_hr != NULL, "sanity");
4694   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4695 #endif // ASSERT
4696 
4697   // The object might be in the process of being copied by another
4698   // worker so we cannot trust that its to-space image is
4699   // well-formed. So we have to read its size from its from-space
4700   // image which we know should not be changing.
4701   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4702 }
4703 
4704 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4705 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4706   ::copy_to_survivor_space(oop old) {
4707   size_t word_sz = old->size();
4708   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4709   // +1 to make the -1 indexes valid...
4710   int       young_index = from_region->young_index_in_cset()+1;
4711   assert( (from_region->is_young() && young_index >  0) ||
4712          (!from_region->is_young() && young_index == 0), "invariant" );
4713   G1CollectorPolicy* g1p = _g1->g1_policy();
4714   markOop m = old->mark();
4715   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4716                                            : m->age();
4717   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4718                                                              word_sz);
4719   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4720 #ifndef PRODUCT
4721   // Should this evacuation fail?
4722   if (_g1->evacuation_should_fail()) {
4723     if (obj_ptr != NULL) {
4724       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4725       obj_ptr = NULL;
4726     }
4727   }
4728 #endif // !PRODUCT
4729 
4730   if (obj_ptr == NULL) {
4731     // This will either forward-to-self, or detect that someone else has
4732     // installed a forwarding pointer.
4733     return _g1->handle_evacuation_failure_par(_par_scan_state, old);
4734   }
4735 
4736   oop obj = oop(obj_ptr);
4737 
4738   // We're going to allocate linearly, so might as well prefetch ahead.
4739   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4740 
4741   oop forward_ptr = old->forward_to_atomic(obj);
4742   if (forward_ptr == NULL) {
4743     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4744     if (g1p->track_object_age(alloc_purpose)) {
4745       // We could simply do obj->incr_age(). However, this causes a
4746       // performance issue. obj->incr_age() will first check whether
4747       // the object has a displaced mark by checking its mark word;
4748       // getting the mark word from the new location of the object
4749       // stalls. So, given that we already have the mark word and we
4750       // are about to install it anyway, it's better to increase the
4751       // age on the mark word, when the object does not have a
4752       // displaced mark word. We're not expecting many objects to have
4753       // a displaced marked word, so that case is not optimized
4754       // further (it could be...) and we simply call obj->incr_age().
4755 
4756       if (m->has_displaced_mark_helper()) {
4757         // in this case, we have to install the mark word first,
4758         // otherwise obj looks to be forwarded (the old mark word,
4759         // which contains the forward pointer, was copied)
4760         obj->set_mark(m);
4761         obj->incr_age();
4762       } else {
4763         m = m->incr_age();
4764         obj->set_mark(m);
4765       }
4766       _par_scan_state->age_table()->add(obj, word_sz);
4767     } else {
4768       obj->set_mark(m);
4769     }
4770 
4771     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4772     surv_young_words[young_index] += word_sz;
4773 
4774     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4775       // We keep track of the next start index in the length field of
4776       // the to-space object. The actual length can be found in the
4777       // length field of the from-space object.
4778       arrayOop(obj)->set_length(0);
4779       oop* old_p = set_partial_array_mask(old);
4780       _par_scan_state->push_on_queue(old_p);
4781     } else {
4782       // No point in using the slower heap_region_containing() method,
4783       // given that we know obj is in the heap.
4784       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4785       obj->oop_iterate_backwards(&_scanner);
4786     }
4787   } else {
4788     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4789     obj = forward_ptr;
4790   }
4791   return obj;
4792 }
4793 
4794 template <class T>
4795 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4796   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4797     _scanned_klass->record_modified_oops();
4798   }
4799 }
4800 
4801 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4802 template <class T>
4803 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4804 ::do_oop_work(T* p) {
4805   oop obj = oopDesc::load_decode_heap_oop(p);
4806   assert(barrier != G1BarrierRS || obj != NULL,
4807          "Precondition: G1BarrierRS implies obj is non-NULL");
4808 
4809   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4810 
4811   // here the null check is implicit in the cset_fast_test() test
4812   if (_g1->in_cset_fast_test(obj)) {
4813     oop forwardee;
4814     if (obj->is_forwarded()) {
4815       forwardee = obj->forwardee();
4816     } else {
4817       forwardee = copy_to_survivor_space(obj);
4818     }
4819     assert(forwardee != NULL, "forwardee should not be NULL");
4820     oopDesc::encode_store_heap_oop(p, forwardee);
4821     if (do_mark_object && forwardee != obj) {
4822       // If the object is self-forwarded we don't need to explicitly
4823       // mark it, the evacuation failure protocol will do so.
4824       mark_forwarded_object(obj, forwardee);
4825     }
4826 
4827     // When scanning the RS, we only care about objs in CS.
4828     if (barrier == G1BarrierRS) {
4829       _par_scan_state->update_rs(_from, p, _worker_id);
4830     } else if (barrier == G1BarrierKlass) {
4831       do_klass_barrier(p, forwardee);
4832     }
4833   } else {
4834     // The object is not in collection set. If we're a root scanning
4835     // closure during an initial mark pause (i.e. do_mark_object will
4836     // be true) then attempt to mark the object.
4837     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4838       mark_object(obj);
4839     }
4840   }
4841 
4842   if (barrier == G1BarrierEvac && obj != NULL) {
4843     _par_scan_state->update_rs(_from, p, _worker_id);
4844   }
4845 
4846   if (do_gen_barrier && obj != NULL) {
4847     par_do_barrier(p);
4848   }
4849 }
4850 
4851 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4852 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4853 
4854 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4855   assert(has_partial_array_mask(p), "invariant");
4856   oop from_obj = clear_partial_array_mask(p);
4857 
4858   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4859   assert(from_obj->is_objArray(), "must be obj array");
4860   objArrayOop from_obj_array = objArrayOop(from_obj);
4861   // The from-space object contains the real length.
4862   int length                 = from_obj_array->length();
4863 
4864   assert(from_obj->is_forwarded(), "must be forwarded");
4865   oop to_obj                 = from_obj->forwardee();
4866   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4867   objArrayOop to_obj_array   = objArrayOop(to_obj);
4868   // We keep track of the next start index in the length field of the
4869   // to-space object.
4870   int next_index             = to_obj_array->length();
4871   assert(0 <= next_index && next_index < length,
4872          err_msg("invariant, next index: %d, length: %d", next_index, length));
4873 
4874   int start                  = next_index;
4875   int end                    = length;
4876   int remainder              = end - start;
4877   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4878   if (remainder > 2 * ParGCArrayScanChunk) {
4879     end = start + ParGCArrayScanChunk;
4880     to_obj_array->set_length(end);
4881     // Push the remainder before we process the range in case another
4882     // worker has run out of things to do and can steal it.
4883     oop* from_obj_p = set_partial_array_mask(from_obj);
4884     _par_scan_state->push_on_queue(from_obj_p);
4885   } else {
4886     assert(length == end, "sanity");
4887     // We'll process the final range for this object. Restore the length
4888     // so that the heap remains parsable in case of evacuation failure.
4889     to_obj_array->set_length(end);
4890   }
4891   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4892   // Process indexes [start,end). It will also process the header
4893   // along with the first chunk (i.e., the chunk with start == 0).
4894   // Note that at this point the length field of to_obj_array is not
4895   // correct given that we are using it to keep track of the next
4896   // start index. oop_iterate_range() (thankfully!) ignores the length
4897   // field and only relies on the start / end parameters.  It does
4898   // however return the size of the object which will be incorrect. So
4899   // we have to ignore it even if we wanted to use it.
4900   to_obj_array->oop_iterate_range(&_scanner, start, end);
4901 }
4902 
4903 class G1ParEvacuateFollowersClosure : public VoidClosure {
4904 protected:
4905   G1CollectedHeap*              _g1h;
4906   G1ParScanThreadState*         _par_scan_state;
4907   RefToScanQueueSet*            _queues;
4908   ParallelTaskTerminator*       _terminator;
4909 
4910   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4911   RefToScanQueueSet*      queues()         { return _queues; }
4912   ParallelTaskTerminator* terminator()     { return _terminator; }
4913 
4914 public:
4915   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4916                                 G1ParScanThreadState* par_scan_state,
4917                                 RefToScanQueueSet* queues,
4918                                 ParallelTaskTerminator* terminator)
4919     : _g1h(g1h), _par_scan_state(par_scan_state),
4920       _queues(queues), _terminator(terminator) {}
4921 
4922   void do_void();
4923 
4924 private:
4925   inline bool offer_termination();
4926 };
4927 
4928 bool G1ParEvacuateFollowersClosure::offer_termination() {
4929   G1ParScanThreadState* const pss = par_scan_state();
4930   pss->start_term_time();
4931   const bool res = terminator()->offer_termination();
4932   pss->end_term_time();
4933   return res;
4934 }
4935 
4936 void G1ParEvacuateFollowersClosure::do_void() {
4937   StarTask stolen_task;
4938   G1ParScanThreadState* const pss = par_scan_state();
4939   pss->trim_queue();
4940 
4941   do {
4942     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4943       assert(pss->verify_task(stolen_task), "sanity");
4944       if (stolen_task.is_narrow()) {
4945         pss->deal_with_reference((narrowOop*) stolen_task);
4946       } else {
4947         pss->deal_with_reference((oop*) stolen_task);
4948       }
4949 
4950       // We've just processed a reference and we might have made
4951       // available new entries on the queues. So we have to make sure
4952       // we drain the queues as necessary.
4953       pss->trim_queue();
4954     }
4955   } while (!offer_termination());
4956 
4957   pss->retire_alloc_buffers();
4958 }
4959 
4960 class G1KlassScanClosure : public KlassClosure {
4961  G1ParCopyHelper* _closure;
4962  bool             _process_only_dirty;
4963  int              _count;
4964  public:
4965   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4966       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4967   void do_klass(Klass* klass) {
4968     // If the klass has not been dirtied we know that there's
4969     // no references into  the young gen and we can skip it.
4970    if (!_process_only_dirty || klass->has_modified_oops()) {
4971       // Clean the klass since we're going to scavenge all the metadata.
4972       klass->clear_modified_oops();
4973 
4974       // Tell the closure that this klass is the Klass to scavenge
4975       // and is the one to dirty if oops are left pointing into the young gen.
4976       _closure->set_scanned_klass(klass);
4977 
4978       klass->oops_do(_closure);
4979 
4980       _closure->set_scanned_klass(NULL);
4981     }
4982     _count++;
4983   }
4984 };
4985 
4986 class G1ParTask : public AbstractGangTask {
4987 protected:
4988   G1CollectedHeap*       _g1h;
4989   RefToScanQueueSet      *_queues;
4990   ParallelTaskTerminator _terminator;
4991   uint _n_workers;
4992 
4993   Mutex _stats_lock;
4994   Mutex* stats_lock() { return &_stats_lock; }
4995 
4996   size_t getNCards() {
4997     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4998       / G1BlockOffsetSharedArray::N_bytes;
4999   }
5000 
5001 public:
5002   G1ParTask(G1CollectedHeap* g1h,
5003             RefToScanQueueSet *task_queues)
5004     : AbstractGangTask("G1 collection"),
5005       _g1h(g1h),
5006       _queues(task_queues),
5007       _terminator(0, _queues),
5008       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
5009   {}
5010 
5011   RefToScanQueueSet* queues() { return _queues; }
5012 
5013   RefToScanQueue *work_queue(int i) {
5014     return queues()->queue(i);
5015   }
5016 
5017   ParallelTaskTerminator* terminator() { return &_terminator; }
5018 
5019   virtual void set_for_termination(int active_workers) {
5020     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
5021     // in the young space (_par_seq_tasks) in the G1 heap
5022     // for SequentialSubTasksDone.
5023     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
5024     // both of which need setting by set_n_termination().
5025     _g1h->SharedHeap::set_n_termination(active_workers);
5026     _g1h->set_n_termination(active_workers);
5027     terminator()->reset_for_reuse(active_workers);
5028     _n_workers = active_workers;
5029   }
5030 
5031   void work(uint worker_id) {
5032     if (worker_id >= _n_workers) return;  // no work needed this round
5033 
5034     double start_time_ms = os::elapsedTime() * 1000.0;
5035     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5036 
5037     {
5038       ResourceMark rm;
5039       HandleMark   hm;
5040 
5041       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5042 
5043       G1ParScanThreadState            pss(_g1h, worker_id);
5044       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
5045       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5046       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
5047 
5048       pss.set_evac_closure(&scan_evac_cl);
5049       pss.set_evac_failure_closure(&evac_failure_cl);
5050       pss.set_partial_scan_closure(&partial_scan_cl);
5051 
5052       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5053       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5054 
5055       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5056       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5057 
5058       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5059       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5060       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5061 
5062       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5063       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5064 
5065       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5066         // We also need to mark copied objects.
5067         scan_root_cl = &scan_mark_root_cl;
5068         scan_klasses_cl = &scan_mark_klasses_cl_s;
5069       }
5070 
5071       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5072 
5073       // Don't scan the scavengable methods in the code cache as part
5074       // of strong root scanning. The code roots that point into a
5075       // region in the collection set are scanned when we scan the
5076       // region's RSet.
5077       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5078 
5079       pss.start_strong_roots();
5080       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5081                                     SharedHeap::ScanningOption(so),
5082                                     scan_root_cl,
5083                                     &push_heap_rs_cl,
5084                                     scan_klasses_cl,
5085                                     worker_id);
5086       pss.end_strong_roots();
5087 
5088       {
5089         double start = os::elapsedTime();
5090         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5091         evac.do_void();
5092         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5093         double term_ms = pss.term_time()*1000.0;
5094         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5095         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5096       }
5097       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5098       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5099 
5100       if (ParallelGCVerbose) {
5101         MutexLocker x(stats_lock());
5102         pss.print_termination_stats(worker_id);
5103       }
5104 
5105       assert(pss.refs()->is_empty(), "should be empty");
5106 
5107       // Close the inner scope so that the ResourceMark and HandleMark
5108       // destructors are executed here and are included as part of the
5109       // "GC Worker Time".
5110     }
5111 
5112     double end_time_ms = os::elapsedTime() * 1000.0;
5113     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5114   }
5115 };
5116 
5117 // *** Common G1 Evacuation Stuff
5118 
5119 // This method is run in a GC worker.
5120 
5121 void
5122 G1CollectedHeap::
5123 g1_process_strong_roots(bool is_scavenging,
5124                         ScanningOption so,
5125                         OopClosure* scan_non_heap_roots,
5126                         OopsInHeapRegionClosure* scan_rs,
5127                         G1KlassScanClosure* scan_klasses,
5128                         int worker_i) {
5129 
5130   // First scan the strong roots
5131   double ext_roots_start = os::elapsedTime();
5132   double closure_app_time_sec = 0.0;
5133 
5134   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5135 
5136   assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
5137   // Walk the code cache/strong code roots w/o buffering, because StarTask
5138   // cannot handle unaligned oop locations.
5139   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5140 
5141   process_strong_roots(false, // no scoping; this is parallel code
5142                        is_scavenging, so,
5143                        &buf_scan_non_heap_roots,
5144                        &eager_scan_code_roots,
5145                        scan_klasses
5146                        );
5147 
5148   // Now the CM ref_processor roots.
5149   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5150     // We need to treat the discovered reference lists of the
5151     // concurrent mark ref processor as roots and keep entries
5152     // (which are added by the marking threads) on them live
5153     // until they can be processed at the end of marking.
5154     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5155   }
5156 
5157   // Finish up any enqueued closure apps (attributed as object copy time).
5158   buf_scan_non_heap_roots.done();
5159 
5160   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5161 
5162   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5163 
5164   double ext_root_time_ms =
5165     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5166 
5167   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5168 
5169   // During conc marking we have to filter the per-thread SATB buffers
5170   // to make sure we remove any oops into the CSet (which will show up
5171   // as implicitly live).
5172   double satb_filtering_ms = 0.0;
5173   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5174     if (mark_in_progress()) {
5175       double satb_filter_start = os::elapsedTime();
5176 
5177       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5178 
5179       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5180     }
5181   }
5182   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5183 
5184   // If this is an initial mark pause, and we're not scanning
5185   // the entire code cache, we need to mark the oops in the
5186   // strong code root lists for the regions that are not in
5187   // the collection set.
5188   // Note all threads participate in this set of root tasks.
5189   double mark_strong_code_roots_ms = 0.0;
5190   if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
5191     double mark_strong_roots_start = os::elapsedTime();
5192     mark_strong_code_roots(worker_i);
5193     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
5194   }
5195   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
5196 
5197   // Now scan the complement of the collection set.
5198   if (scan_rs != NULL) {
5199     g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5200   }
5201   _process_strong_tasks->all_tasks_completed();
5202 }
5203 
5204 void
5205 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5206   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5207   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5208 }
5209 
5210 // Weak Reference Processing support
5211 
5212 // An always "is_alive" closure that is used to preserve referents.
5213 // If the object is non-null then it's alive.  Used in the preservation
5214 // of referent objects that are pointed to by reference objects
5215 // discovered by the CM ref processor.
5216 class G1AlwaysAliveClosure: public BoolObjectClosure {
5217   G1CollectedHeap* _g1;
5218 public:
5219   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5220   bool do_object_b(oop p) {
5221     if (p != NULL) {
5222       return true;
5223     }
5224     return false;
5225   }
5226 };
5227 
5228 bool G1STWIsAliveClosure::do_object_b(oop p) {
5229   // An object is reachable if it is outside the collection set,
5230   // or is inside and copied.
5231   return !_g1->obj_in_cs(p) || p->is_forwarded();
5232 }
5233 
5234 // Non Copying Keep Alive closure
5235 class G1KeepAliveClosure: public OopClosure {
5236   G1CollectedHeap* _g1;
5237 public:
5238   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5239   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5240   void do_oop(      oop* p) {
5241     oop obj = *p;
5242 
5243     if (_g1->obj_in_cs(obj)) {
5244       assert( obj->is_forwarded(), "invariant" );
5245       *p = obj->forwardee();
5246     }
5247   }
5248 };
5249 
5250 // Copying Keep Alive closure - can be called from both
5251 // serial and parallel code as long as different worker
5252 // threads utilize different G1ParScanThreadState instances
5253 // and different queues.
5254 
5255 class G1CopyingKeepAliveClosure: public OopClosure {
5256   G1CollectedHeap*         _g1h;
5257   OopClosure*              _copy_non_heap_obj_cl;
5258   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5259   G1ParScanThreadState*    _par_scan_state;
5260 
5261 public:
5262   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5263                             OopClosure* non_heap_obj_cl,
5264                             OopsInHeapRegionClosure* metadata_obj_cl,
5265                             G1ParScanThreadState* pss):
5266     _g1h(g1h),
5267     _copy_non_heap_obj_cl(non_heap_obj_cl),
5268     _copy_metadata_obj_cl(metadata_obj_cl),
5269     _par_scan_state(pss)
5270   {}
5271 
5272   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5273   virtual void do_oop(      oop* p) { do_oop_work(p); }
5274 
5275   template <class T> void do_oop_work(T* p) {
5276     oop obj = oopDesc::load_decode_heap_oop(p);
5277 
5278     if (_g1h->obj_in_cs(obj)) {
5279       // If the referent object has been forwarded (either copied
5280       // to a new location or to itself in the event of an
5281       // evacuation failure) then we need to update the reference
5282       // field and, if both reference and referent are in the G1
5283       // heap, update the RSet for the referent.
5284       //
5285       // If the referent has not been forwarded then we have to keep
5286       // it alive by policy. Therefore we have copy the referent.
5287       //
5288       // If the reference field is in the G1 heap then we can push
5289       // on the PSS queue. When the queue is drained (after each
5290       // phase of reference processing) the object and it's followers
5291       // will be copied, the reference field set to point to the
5292       // new location, and the RSet updated. Otherwise we need to
5293       // use the the non-heap or metadata closures directly to copy
5294       // the referent object and update the pointer, while avoiding
5295       // updating the RSet.
5296 
5297       if (_g1h->is_in_g1_reserved(p)) {
5298         _par_scan_state->push_on_queue(p);
5299       } else {
5300         assert(!ClassLoaderDataGraph::contains((address)p),
5301                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5302                               PTR_FORMAT, p));
5303           _copy_non_heap_obj_cl->do_oop(p);
5304         }
5305       }
5306     }
5307 };
5308 
5309 // Serial drain queue closure. Called as the 'complete_gc'
5310 // closure for each discovered list in some of the
5311 // reference processing phases.
5312 
5313 class G1STWDrainQueueClosure: public VoidClosure {
5314 protected:
5315   G1CollectedHeap* _g1h;
5316   G1ParScanThreadState* _par_scan_state;
5317 
5318   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5319 
5320 public:
5321   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5322     _g1h(g1h),
5323     _par_scan_state(pss)
5324   { }
5325 
5326   void do_void() {
5327     G1ParScanThreadState* const pss = par_scan_state();
5328     pss->trim_queue();
5329   }
5330 };
5331 
5332 // Parallel Reference Processing closures
5333 
5334 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5335 // processing during G1 evacuation pauses.
5336 
5337 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5338 private:
5339   G1CollectedHeap*   _g1h;
5340   RefToScanQueueSet* _queues;
5341   FlexibleWorkGang*  _workers;
5342   int                _active_workers;
5343 
5344 public:
5345   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5346                         FlexibleWorkGang* workers,
5347                         RefToScanQueueSet *task_queues,
5348                         int n_workers) :
5349     _g1h(g1h),
5350     _queues(task_queues),
5351     _workers(workers),
5352     _active_workers(n_workers)
5353   {
5354     assert(n_workers > 0, "shouldn't call this otherwise");
5355   }
5356 
5357   // Executes the given task using concurrent marking worker threads.
5358   virtual void execute(ProcessTask& task);
5359   virtual void execute(EnqueueTask& task);
5360 };
5361 
5362 // Gang task for possibly parallel reference processing
5363 
5364 class G1STWRefProcTaskProxy: public AbstractGangTask {
5365   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5366   ProcessTask&     _proc_task;
5367   G1CollectedHeap* _g1h;
5368   RefToScanQueueSet *_task_queues;
5369   ParallelTaskTerminator* _terminator;
5370 
5371 public:
5372   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5373                      G1CollectedHeap* g1h,
5374                      RefToScanQueueSet *task_queues,
5375                      ParallelTaskTerminator* terminator) :
5376     AbstractGangTask("Process reference objects in parallel"),
5377     _proc_task(proc_task),
5378     _g1h(g1h),
5379     _task_queues(task_queues),
5380     _terminator(terminator)
5381   {}
5382 
5383   virtual void work(uint worker_id) {
5384     // The reference processing task executed by a single worker.
5385     ResourceMark rm;
5386     HandleMark   hm;
5387 
5388     G1STWIsAliveClosure is_alive(_g1h);
5389 
5390     G1ParScanThreadState pss(_g1h, worker_id);
5391 
5392     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5393     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5394     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5395 
5396     pss.set_evac_closure(&scan_evac_cl);
5397     pss.set_evac_failure_closure(&evac_failure_cl);
5398     pss.set_partial_scan_closure(&partial_scan_cl);
5399 
5400     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5401     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5402 
5403     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5404     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5405 
5406     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5407     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5408 
5409     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5410       // We also need to mark copied objects.
5411       copy_non_heap_cl = &copy_mark_non_heap_cl;
5412       copy_metadata_cl = &copy_mark_metadata_cl;
5413     }
5414 
5415     // Keep alive closure.
5416     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5417 
5418     // Complete GC closure
5419     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5420 
5421     // Call the reference processing task's work routine.
5422     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5423 
5424     // Note we cannot assert that the refs array is empty here as not all
5425     // of the processing tasks (specifically phase2 - pp2_work) execute
5426     // the complete_gc closure (which ordinarily would drain the queue) so
5427     // the queue may not be empty.
5428   }
5429 };
5430 
5431 // Driver routine for parallel reference processing.
5432 // Creates an instance of the ref processing gang
5433 // task and has the worker threads execute it.
5434 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5435   assert(_workers != NULL, "Need parallel worker threads.");
5436 
5437   ParallelTaskTerminator terminator(_active_workers, _queues);
5438   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5439 
5440   _g1h->set_par_threads(_active_workers);
5441   _workers->run_task(&proc_task_proxy);
5442   _g1h->set_par_threads(0);
5443 }
5444 
5445 // Gang task for parallel reference enqueueing.
5446 
5447 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5448   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5449   EnqueueTask& _enq_task;
5450 
5451 public:
5452   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5453     AbstractGangTask("Enqueue reference objects in parallel"),
5454     _enq_task(enq_task)
5455   { }
5456 
5457   virtual void work(uint worker_id) {
5458     _enq_task.work(worker_id);
5459   }
5460 };
5461 
5462 // Driver routine for parallel reference enqueueing.
5463 // Creates an instance of the ref enqueueing gang
5464 // task and has the worker threads execute it.
5465 
5466 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5467   assert(_workers != NULL, "Need parallel worker threads.");
5468 
5469   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5470 
5471   _g1h->set_par_threads(_active_workers);
5472   _workers->run_task(&enq_task_proxy);
5473   _g1h->set_par_threads(0);
5474 }
5475 
5476 // End of weak reference support closures
5477 
5478 // Abstract task used to preserve (i.e. copy) any referent objects
5479 // that are in the collection set and are pointed to by reference
5480 // objects discovered by the CM ref processor.
5481 
5482 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5483 protected:
5484   G1CollectedHeap* _g1h;
5485   RefToScanQueueSet      *_queues;
5486   ParallelTaskTerminator _terminator;
5487   uint _n_workers;
5488 
5489 public:
5490   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5491     AbstractGangTask("ParPreserveCMReferents"),
5492     _g1h(g1h),
5493     _queues(task_queues),
5494     _terminator(workers, _queues),
5495     _n_workers(workers)
5496   { }
5497 
5498   void work(uint worker_id) {
5499     ResourceMark rm;
5500     HandleMark   hm;
5501 
5502     G1ParScanThreadState            pss(_g1h, worker_id);
5503     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5504     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5505     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5506 
5507     pss.set_evac_closure(&scan_evac_cl);
5508     pss.set_evac_failure_closure(&evac_failure_cl);
5509     pss.set_partial_scan_closure(&partial_scan_cl);
5510 
5511     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5512 
5513 
5514     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5515     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5516 
5517     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5518     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5519 
5520     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5521     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5522 
5523     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5524       // We also need to mark copied objects.
5525       copy_non_heap_cl = &copy_mark_non_heap_cl;
5526       copy_metadata_cl = &copy_mark_metadata_cl;
5527     }
5528 
5529     // Is alive closure
5530     G1AlwaysAliveClosure always_alive(_g1h);
5531 
5532     // Copying keep alive closure. Applied to referent objects that need
5533     // to be copied.
5534     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5535 
5536     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5537 
5538     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5539     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5540 
5541     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5542     // So this must be true - but assert just in case someone decides to
5543     // change the worker ids.
5544     assert(0 <= worker_id && worker_id < limit, "sanity");
5545     assert(!rp->discovery_is_atomic(), "check this code");
5546 
5547     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5548     for (uint idx = worker_id; idx < limit; idx += stride) {
5549       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5550 
5551       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5552       while (iter.has_next()) {
5553         // Since discovery is not atomic for the CM ref processor, we
5554         // can see some null referent objects.
5555         iter.load_ptrs(DEBUG_ONLY(true));
5556         oop ref = iter.obj();
5557 
5558         // This will filter nulls.
5559         if (iter.is_referent_alive()) {
5560           iter.make_referent_alive();
5561         }
5562         iter.move_to_next();
5563       }
5564     }
5565 
5566     // Drain the queue - which may cause stealing
5567     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5568     drain_queue.do_void();
5569     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5570     assert(pss.refs()->is_empty(), "should be");
5571   }
5572 };
5573 
5574 // Weak Reference processing during an evacuation pause (part 1).
5575 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5576   double ref_proc_start = os::elapsedTime();
5577 
5578   ReferenceProcessor* rp = _ref_processor_stw;
5579   assert(rp->discovery_enabled(), "should have been enabled");
5580 
5581   // Any reference objects, in the collection set, that were 'discovered'
5582   // by the CM ref processor should have already been copied (either by
5583   // applying the external root copy closure to the discovered lists, or
5584   // by following an RSet entry).
5585   //
5586   // But some of the referents, that are in the collection set, that these
5587   // reference objects point to may not have been copied: the STW ref
5588   // processor would have seen that the reference object had already
5589   // been 'discovered' and would have skipped discovering the reference,
5590   // but would not have treated the reference object as a regular oop.
5591   // As a result the copy closure would not have been applied to the
5592   // referent object.
5593   //
5594   // We need to explicitly copy these referent objects - the references
5595   // will be processed at the end of remarking.
5596   //
5597   // We also need to do this copying before we process the reference
5598   // objects discovered by the STW ref processor in case one of these
5599   // referents points to another object which is also referenced by an
5600   // object discovered by the STW ref processor.
5601 
5602   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5603            no_of_gc_workers == workers()->active_workers(),
5604            "Need to reset active GC workers");
5605 
5606   set_par_threads(no_of_gc_workers);
5607   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5608                                                  no_of_gc_workers,
5609                                                  _task_queues);
5610 
5611   if (G1CollectedHeap::use_parallel_gc_threads()) {
5612     workers()->run_task(&keep_cm_referents);
5613   } else {
5614     keep_cm_referents.work(0);
5615   }
5616 
5617   set_par_threads(0);
5618 
5619   // Closure to test whether a referent is alive.
5620   G1STWIsAliveClosure is_alive(this);
5621 
5622   // Even when parallel reference processing is enabled, the processing
5623   // of JNI refs is serial and performed serially by the current thread
5624   // rather than by a worker. The following PSS will be used for processing
5625   // JNI refs.
5626 
5627   // Use only a single queue for this PSS.
5628   G1ParScanThreadState pss(this, 0);
5629 
5630   // We do not embed a reference processor in the copying/scanning
5631   // closures while we're actually processing the discovered
5632   // reference objects.
5633   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5634   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5635   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5636 
5637   pss.set_evac_closure(&scan_evac_cl);
5638   pss.set_evac_failure_closure(&evac_failure_cl);
5639   pss.set_partial_scan_closure(&partial_scan_cl);
5640 
5641   assert(pss.refs()->is_empty(), "pre-condition");
5642 
5643   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5644   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5645 
5646   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5647   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5648 
5649   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5650   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5651 
5652   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5653     // We also need to mark copied objects.
5654     copy_non_heap_cl = &copy_mark_non_heap_cl;
5655     copy_metadata_cl = &copy_mark_metadata_cl;
5656   }
5657 
5658   // Keep alive closure.
5659   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5660 
5661   // Serial Complete GC closure
5662   G1STWDrainQueueClosure drain_queue(this, &pss);
5663 
5664   // Setup the soft refs policy...
5665   rp->setup_policy(false);
5666 
5667   ReferenceProcessorStats stats;
5668   if (!rp->processing_is_mt()) {
5669     // Serial reference processing...
5670     stats = rp->process_discovered_references(&is_alive,
5671                                               &keep_alive,
5672                                               &drain_queue,
5673                                               NULL,
5674                                               _gc_timer_stw);
5675   } else {
5676     // Parallel reference processing
5677     assert(rp->num_q() == no_of_gc_workers, "sanity");
5678     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5679 
5680     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5681     stats = rp->process_discovered_references(&is_alive,
5682                                               &keep_alive,
5683                                               &drain_queue,
5684                                               &par_task_executor,
5685                                               _gc_timer_stw);
5686   }
5687 
5688   _gc_tracer_stw->report_gc_reference_stats(stats);
5689   // We have completed copying any necessary live referent objects
5690   // (that were not copied during the actual pause) so we can
5691   // retire any active alloc buffers
5692   pss.retire_alloc_buffers();
5693   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5694 
5695   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5696   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5697 }
5698 
5699 // Weak Reference processing during an evacuation pause (part 2).
5700 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5701   double ref_enq_start = os::elapsedTime();
5702 
5703   ReferenceProcessor* rp = _ref_processor_stw;
5704   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5705 
5706   // Now enqueue any remaining on the discovered lists on to
5707   // the pending list.
5708   if (!rp->processing_is_mt()) {
5709     // Serial reference processing...
5710     rp->enqueue_discovered_references();
5711   } else {
5712     // Parallel reference enqueueing
5713 
5714     assert(no_of_gc_workers == workers()->active_workers(),
5715            "Need to reset active workers");
5716     assert(rp->num_q() == no_of_gc_workers, "sanity");
5717     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5718 
5719     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5720     rp->enqueue_discovered_references(&par_task_executor);
5721   }
5722 
5723   rp->verify_no_references_recorded();
5724   assert(!rp->discovery_enabled(), "should have been disabled");
5725 
5726   // FIXME
5727   // CM's reference processing also cleans up the string and symbol tables.
5728   // Should we do that here also? We could, but it is a serial operation
5729   // and could significantly increase the pause time.
5730 
5731   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5732   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5733 }
5734 
5735 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5736   _expand_heap_after_alloc_failure = true;
5737   _evacuation_failed = false;
5738 
5739   // Should G1EvacuationFailureALot be in effect for this GC?
5740   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5741 
5742   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5743 
5744   // Disable the hot card cache.
5745   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5746   hot_card_cache->reset_hot_cache_claimed_index();
5747   hot_card_cache->set_use_cache(false);
5748 
5749   uint n_workers;
5750   if (G1CollectedHeap::use_parallel_gc_threads()) {
5751     n_workers =
5752       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5753                                      workers()->active_workers(),
5754                                      Threads::number_of_non_daemon_threads());
5755     assert(UseDynamicNumberOfGCThreads ||
5756            n_workers == workers()->total_workers(),
5757            "If not dynamic should be using all the  workers");
5758     workers()->set_active_workers(n_workers);
5759     set_par_threads(n_workers);
5760   } else {
5761     assert(n_par_threads() == 0,
5762            "Should be the original non-parallel value");
5763     n_workers = 1;
5764   }
5765 
5766   G1ParTask g1_par_task(this, _task_queues);
5767 
5768   init_for_evac_failure(NULL);
5769 
5770   rem_set()->prepare_for_younger_refs_iterate(true);
5771 
5772   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5773   double start_par_time_sec = os::elapsedTime();
5774   double end_par_time_sec;
5775 
5776   {
5777     StrongRootsScope srs(this);
5778 
5779     if (G1CollectedHeap::use_parallel_gc_threads()) {
5780       // The individual threads will set their evac-failure closures.
5781       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5782       // These tasks use ShareHeap::_process_strong_tasks
5783       assert(UseDynamicNumberOfGCThreads ||
5784              workers()->active_workers() == workers()->total_workers(),
5785              "If not dynamic should be using all the  workers");
5786       workers()->run_task(&g1_par_task);
5787     } else {
5788       g1_par_task.set_for_termination(n_workers);
5789       g1_par_task.work(0);
5790     }
5791     end_par_time_sec = os::elapsedTime();
5792 
5793     // Closing the inner scope will execute the destructor
5794     // for the StrongRootsScope object. We record the current
5795     // elapsed time before closing the scope so that time
5796     // taken for the SRS destructor is NOT included in the
5797     // reported parallel time.
5798   }
5799 
5800   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5801   g1_policy()->phase_times()->record_par_time(par_time_ms);
5802 
5803   double code_root_fixup_time_ms =
5804         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5805   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5806 
5807   set_par_threads(0);
5808 
5809   // Process any discovered reference objects - we have
5810   // to do this _before_ we retire the GC alloc regions
5811   // as we may have to copy some 'reachable' referent
5812   // objects (and their reachable sub-graphs) that were
5813   // not copied during the pause.
5814   process_discovered_references(n_workers);
5815 
5816   // Weak root processing.
5817   {
5818     G1STWIsAliveClosure is_alive(this);
5819     G1KeepAliveClosure keep_alive(this);
5820     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5821   }
5822 
5823   release_gc_alloc_regions(n_workers, evacuation_info);
5824   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5825 
5826   // Reset and re-enable the hot card cache.
5827   // Note the counts for the cards in the regions in the
5828   // collection set are reset when the collection set is freed.
5829   hot_card_cache->reset_hot_cache();
5830   hot_card_cache->set_use_cache(true);
5831 
5832   // Migrate the strong code roots attached to each region in
5833   // the collection set. Ideally we would like to do this
5834   // after we have finished the scanning/evacuation of the
5835   // strong code roots for a particular heap region.
5836   migrate_strong_code_roots();
5837 
5838   if (g1_policy()->during_initial_mark_pause()) {
5839     // Reset the claim values set during marking the strong code roots
5840     reset_heap_region_claim_values();
5841   }
5842 
5843   finalize_for_evac_failure();
5844 
5845   if (evacuation_failed()) {
5846     remove_self_forwarding_pointers();
5847 
5848     // Reset the G1EvacuationFailureALot counters and flags
5849     // Note: the values are reset only when an actual
5850     // evacuation failure occurs.
5851     NOT_PRODUCT(reset_evacuation_should_fail();)
5852   }
5853 
5854   // Enqueue any remaining references remaining on the STW
5855   // reference processor's discovered lists. We need to do
5856   // this after the card table is cleaned (and verified) as
5857   // the act of enqueueing entries on to the pending list
5858   // will log these updates (and dirty their associated
5859   // cards). We need these updates logged to update any
5860   // RSets.
5861   enqueue_discovered_references(n_workers);
5862 
5863   if (G1DeferredRSUpdate) {
5864     RedirtyLoggedCardTableEntryFastClosure redirty;
5865     dirty_card_queue_set().set_closure(&redirty);
5866     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5867 
5868     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5869     dcq.merge_bufferlists(&dirty_card_queue_set());
5870     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5871   }
5872   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5873 }
5874 
5875 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5876                                      size_t* pre_used,
5877                                      FreeRegionList* free_list,
5878                                      OldRegionSet* old_proxy_set,
5879                                      HumongousRegionSet* humongous_proxy_set,
5880                                      HRRSCleanupTask* hrrs_cleanup_task,
5881                                      bool par) {
5882   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5883     if (hr->isHumongous()) {
5884       assert(hr->startsHumongous(), "we should only see starts humongous");
5885       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5886     } else {
5887       _old_set.remove_with_proxy(hr, old_proxy_set);
5888       free_region(hr, pre_used, free_list, par);
5889     }
5890   } else {
5891     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5892   }
5893 }
5894 
5895 void G1CollectedHeap::free_region(HeapRegion* hr,
5896                                   size_t* pre_used,
5897                                   FreeRegionList* free_list,
5898                                   bool par) {
5899   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5900   assert(!hr->is_empty(), "the region should not be empty");
5901   assert(free_list != NULL, "pre-condition");
5902 
5903   // Clear the card counts for this region.
5904   // Note: we only need to do this if the region is not young
5905   // (since we don't refine cards in young regions).
5906   if (!hr->is_young()) {
5907     _cg1r->hot_card_cache()->reset_card_counts(hr);
5908   }
5909   *pre_used += hr->used();
5910   hr->hr_clear(par, true /* clear_space */);
5911   free_list->add_as_head(hr);
5912 }
5913 
5914 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5915                                      size_t* pre_used,
5916                                      FreeRegionList* free_list,
5917                                      HumongousRegionSet* humongous_proxy_set,
5918                                      bool par) {
5919   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5920   assert(free_list != NULL, "pre-condition");
5921   assert(humongous_proxy_set != NULL, "pre-condition");
5922 
5923   size_t hr_used = hr->used();
5924   size_t hr_capacity = hr->capacity();
5925   size_t hr_pre_used = 0;
5926   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5927   // We need to read this before we make the region non-humongous,
5928   // otherwise the information will be gone.
5929   uint last_index = hr->last_hc_index();
5930   hr->set_notHumongous();
5931   free_region(hr, &hr_pre_used, free_list, par);
5932 
5933   uint i = hr->hrs_index() + 1;
5934   while (i < last_index) {
5935     HeapRegion* curr_hr = region_at(i);
5936     assert(curr_hr->continuesHumongous(), "invariant");
5937     curr_hr->set_notHumongous();
5938     free_region(curr_hr, &hr_pre_used, free_list, par);
5939     i += 1;
5940   }
5941   assert(hr_pre_used == hr_used,
5942          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5943                  "should be the same", hr_pre_used, hr_used));
5944   *pre_used += hr_pre_used;
5945 }
5946 
5947 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5948                                        FreeRegionList* free_list,
5949                                        OldRegionSet* old_proxy_set,
5950                                        HumongousRegionSet* humongous_proxy_set,
5951                                        bool par) {
5952   if (pre_used > 0) {
5953     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5954     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5955     assert(_summary_bytes_used >= pre_used,
5956            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5957                    "should be >= pre_used: "SIZE_FORMAT,
5958                    _summary_bytes_used, pre_used));
5959     _summary_bytes_used -= pre_used;
5960   }
5961   if (free_list != NULL && !free_list->is_empty()) {
5962     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5963     _free_list.add_as_head(free_list);
5964   }
5965   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5966     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5967     _old_set.update_from_proxy(old_proxy_set);
5968   }
5969   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5970     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5971     _humongous_set.update_from_proxy(humongous_proxy_set);
5972   }
5973 }
5974 
5975 class G1ParCleanupCTTask : public AbstractGangTask {
5976   G1SATBCardTableModRefBS* _ct_bs;
5977   G1CollectedHeap* _g1h;
5978   HeapRegion* volatile _su_head;
5979 public:
5980   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5981                      G1CollectedHeap* g1h) :
5982     AbstractGangTask("G1 Par Cleanup CT Task"),
5983     _ct_bs(ct_bs), _g1h(g1h) { }
5984 
5985   void work(uint worker_id) {
5986     HeapRegion* r;
5987     while (r = _g1h->pop_dirty_cards_region()) {
5988       clear_cards(r);
5989     }
5990   }
5991 
5992   void clear_cards(HeapRegion* r) {
5993     // Cards of the survivors should have already been dirtied.
5994     if (!r->is_survivor()) {
5995       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5996     }
5997   }
5998 };
5999 
6000 #ifndef PRODUCT
6001 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6002   G1CollectedHeap* _g1h;
6003   G1SATBCardTableModRefBS* _ct_bs;
6004 public:
6005   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6006     : _g1h(g1h), _ct_bs(ct_bs) { }
6007   virtual bool doHeapRegion(HeapRegion* r) {
6008     if (r->is_survivor()) {
6009       _g1h->verify_dirty_region(r);
6010     } else {
6011       _g1h->verify_not_dirty_region(r);
6012     }
6013     return false;
6014   }
6015 };
6016 
6017 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6018   // All of the region should be clean.
6019   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6020   MemRegion mr(hr->bottom(), hr->end());
6021   ct_bs->verify_not_dirty_region(mr);
6022 }
6023 
6024 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6025   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6026   // dirty allocated blocks as they allocate them. The thread that
6027   // retires each region and replaces it with a new one will do a
6028   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6029   // not dirty that area (one less thing to have to do while holding
6030   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6031   // is dirty.
6032   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6033   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6034   if (hr->is_young()) {
6035     ct_bs->verify_g1_young_region(mr);
6036   } else {
6037     ct_bs->verify_dirty_region(mr);
6038   }
6039 }
6040 
6041 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6042   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6043   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6044     verify_dirty_region(hr);
6045   }
6046 }
6047 
6048 void G1CollectedHeap::verify_dirty_young_regions() {
6049   verify_dirty_young_list(_young_list->first_region());
6050 }
6051 #endif
6052 
6053 void G1CollectedHeap::cleanUpCardTable() {
6054   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6055   double start = os::elapsedTime();
6056 
6057   {
6058     // Iterate over the dirty cards region list.
6059     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6060 
6061     if (G1CollectedHeap::use_parallel_gc_threads()) {
6062       set_par_threads();
6063       workers()->run_task(&cleanup_task);
6064       set_par_threads(0);
6065     } else {
6066       while (_dirty_cards_region_list) {
6067         HeapRegion* r = _dirty_cards_region_list;
6068         cleanup_task.clear_cards(r);
6069         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6070         if (_dirty_cards_region_list == r) {
6071           // The last region.
6072           _dirty_cards_region_list = NULL;
6073         }
6074         r->set_next_dirty_cards_region(NULL);
6075       }
6076     }
6077 #ifndef PRODUCT
6078     if (G1VerifyCTCleanup || VerifyAfterGC) {
6079       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6080       heap_region_iterate(&cleanup_verifier);
6081     }
6082 #endif
6083   }
6084 
6085   double elapsed = os::elapsedTime() - start;
6086   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6087 }
6088 
6089 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6090   size_t pre_used = 0;
6091   FreeRegionList local_free_list("Local List for CSet Freeing");
6092 
6093   double young_time_ms     = 0.0;
6094   double non_young_time_ms = 0.0;
6095 
6096   // Since the collection set is a superset of the the young list,
6097   // all we need to do to clear the young list is clear its
6098   // head and length, and unlink any young regions in the code below
6099   _young_list->clear();
6100 
6101   G1CollectorPolicy* policy = g1_policy();
6102 
6103   double start_sec = os::elapsedTime();
6104   bool non_young = true;
6105 
6106   HeapRegion* cur = cs_head;
6107   int age_bound = -1;
6108   size_t rs_lengths = 0;
6109 
6110   while (cur != NULL) {
6111     assert(!is_on_master_free_list(cur), "sanity");
6112     if (non_young) {
6113       if (cur->is_young()) {
6114         double end_sec = os::elapsedTime();
6115         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6116         non_young_time_ms += elapsed_ms;
6117 
6118         start_sec = os::elapsedTime();
6119         non_young = false;
6120       }
6121     } else {
6122       if (!cur->is_young()) {
6123         double end_sec = os::elapsedTime();
6124         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6125         young_time_ms += elapsed_ms;
6126 
6127         start_sec = os::elapsedTime();
6128         non_young = true;
6129       }
6130     }
6131 
6132     rs_lengths += cur->rem_set()->occupied();
6133 
6134     HeapRegion* next = cur->next_in_collection_set();
6135     assert(cur->in_collection_set(), "bad CS");
6136     cur->set_next_in_collection_set(NULL);
6137     cur->set_in_collection_set(false);
6138 
6139     if (cur->is_young()) {
6140       int index = cur->young_index_in_cset();
6141       assert(index != -1, "invariant");
6142       assert((uint) index < policy->young_cset_region_length(), "invariant");
6143       size_t words_survived = _surviving_young_words[index];
6144       cur->record_surv_words_in_group(words_survived);
6145 
6146       // At this point the we have 'popped' cur from the collection set
6147       // (linked via next_in_collection_set()) but it is still in the
6148       // young list (linked via next_young_region()). Clear the
6149       // _next_young_region field.
6150       cur->set_next_young_region(NULL);
6151     } else {
6152       int index = cur->young_index_in_cset();
6153       assert(index == -1, "invariant");
6154     }
6155 
6156     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6157             (!cur->is_young() && cur->young_index_in_cset() == -1),
6158             "invariant" );
6159 
6160     if (!cur->evacuation_failed()) {
6161       MemRegion used_mr = cur->used_region();
6162 
6163       // And the region is empty.
6164       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6165       free_region(cur, &pre_used, &local_free_list, false /* par */);
6166     } else {
6167       cur->uninstall_surv_rate_group();
6168       if (cur->is_young()) {
6169         cur->set_young_index_in_cset(-1);
6170       }
6171       cur->set_not_young();
6172       cur->set_evacuation_failed(false);
6173       // The region is now considered to be old.
6174       _old_set.add(cur);
6175       evacuation_info.increment_collectionset_used_after(cur->used());
6176     }
6177     cur = next;
6178   }
6179 
6180   evacuation_info.set_regions_freed(local_free_list.length());
6181   policy->record_max_rs_lengths(rs_lengths);
6182   policy->cset_regions_freed();
6183 
6184   double end_sec = os::elapsedTime();
6185   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6186 
6187   if (non_young) {
6188     non_young_time_ms += elapsed_ms;
6189   } else {
6190     young_time_ms += elapsed_ms;
6191   }
6192 
6193   update_sets_after_freeing_regions(pre_used, &local_free_list,
6194                                     NULL /* old_proxy_set */,
6195                                     NULL /* humongous_proxy_set */,
6196                                     false /* par */);
6197   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6198   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6199 }
6200 
6201 // This routine is similar to the above but does not record
6202 // any policy statistics or update free lists; we are abandoning
6203 // the current incremental collection set in preparation of a
6204 // full collection. After the full GC we will start to build up
6205 // the incremental collection set again.
6206 // This is only called when we're doing a full collection
6207 // and is immediately followed by the tearing down of the young list.
6208 
6209 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6210   HeapRegion* cur = cs_head;
6211 
6212   while (cur != NULL) {
6213     HeapRegion* next = cur->next_in_collection_set();
6214     assert(cur->in_collection_set(), "bad CS");
6215     cur->set_next_in_collection_set(NULL);
6216     cur->set_in_collection_set(false);
6217     cur->set_young_index_in_cset(-1);
6218     cur = next;
6219   }
6220 }
6221 
6222 void G1CollectedHeap::set_free_regions_coming() {
6223   if (G1ConcRegionFreeingVerbose) {
6224     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6225                            "setting free regions coming");
6226   }
6227 
6228   assert(!free_regions_coming(), "pre-condition");
6229   _free_regions_coming = true;
6230 }
6231 
6232 void G1CollectedHeap::reset_free_regions_coming() {
6233   assert(free_regions_coming(), "pre-condition");
6234 
6235   {
6236     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6237     _free_regions_coming = false;
6238     SecondaryFreeList_lock->notify_all();
6239   }
6240 
6241   if (G1ConcRegionFreeingVerbose) {
6242     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6243                            "reset free regions coming");
6244   }
6245 }
6246 
6247 void G1CollectedHeap::wait_while_free_regions_coming() {
6248   // Most of the time we won't have to wait, so let's do a quick test
6249   // first before we take the lock.
6250   if (!free_regions_coming()) {
6251     return;
6252   }
6253 
6254   if (G1ConcRegionFreeingVerbose) {
6255     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6256                            "waiting for free regions");
6257   }
6258 
6259   {
6260     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6261     while (free_regions_coming()) {
6262       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6263     }
6264   }
6265 
6266   if (G1ConcRegionFreeingVerbose) {
6267     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6268                            "done waiting for free regions");
6269   }
6270 }
6271 
6272 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6273   assert(heap_lock_held_for_gc(),
6274               "the heap lock should already be held by or for this thread");
6275   _young_list->push_region(hr);
6276 }
6277 
6278 class NoYoungRegionsClosure: public HeapRegionClosure {
6279 private:
6280   bool _success;
6281 public:
6282   NoYoungRegionsClosure() : _success(true) { }
6283   bool doHeapRegion(HeapRegion* r) {
6284     if (r->is_young()) {
6285       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6286                              r->bottom(), r->end());
6287       _success = false;
6288     }
6289     return false;
6290   }
6291   bool success() { return _success; }
6292 };
6293 
6294 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6295   bool ret = _young_list->check_list_empty(check_sample);
6296 
6297   if (check_heap) {
6298     NoYoungRegionsClosure closure;
6299     heap_region_iterate(&closure);
6300     ret = ret && closure.success();
6301   }
6302 
6303   return ret;
6304 }
6305 
6306 class TearDownRegionSetsClosure : public HeapRegionClosure {
6307 private:
6308   OldRegionSet *_old_set;
6309 
6310 public:
6311   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6312 
6313   bool doHeapRegion(HeapRegion* r) {
6314     if (r->is_empty()) {
6315       // We ignore empty regions, we'll empty the free list afterwards
6316     } else if (r->is_young()) {
6317       // We ignore young regions, we'll empty the young list afterwards
6318     } else if (r->isHumongous()) {
6319       // We ignore humongous regions, we're not tearing down the
6320       // humongous region set
6321     } else {
6322       // The rest should be old
6323       _old_set->remove(r);
6324     }
6325     return false;
6326   }
6327 
6328   ~TearDownRegionSetsClosure() {
6329     assert(_old_set->is_empty(), "post-condition");
6330   }
6331 };
6332 
6333 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6334   assert_at_safepoint(true /* should_be_vm_thread */);
6335 
6336   if (!free_list_only) {
6337     TearDownRegionSetsClosure cl(&_old_set);
6338     heap_region_iterate(&cl);
6339 
6340     // Need to do this after the heap iteration to be able to
6341     // recognize the young regions and ignore them during the iteration.
6342     _young_list->empty_list();
6343   }
6344   _free_list.remove_all();
6345 }
6346 
6347 class RebuildRegionSetsClosure : public HeapRegionClosure {
6348 private:
6349   bool            _free_list_only;
6350   OldRegionSet*   _old_set;
6351   FreeRegionList* _free_list;
6352   size_t          _total_used;
6353 
6354 public:
6355   RebuildRegionSetsClosure(bool free_list_only,
6356                            OldRegionSet* old_set, FreeRegionList* free_list) :
6357     _free_list_only(free_list_only),
6358     _old_set(old_set), _free_list(free_list), _total_used(0) {
6359     assert(_free_list->is_empty(), "pre-condition");
6360     if (!free_list_only) {
6361       assert(_old_set->is_empty(), "pre-condition");
6362     }
6363   }
6364 
6365   bool doHeapRegion(HeapRegion* r) {
6366     if (r->continuesHumongous()) {
6367       return false;
6368     }
6369 
6370     if (r->is_empty()) {
6371       // Add free regions to the free list
6372       _free_list->add_as_tail(r);
6373     } else if (!_free_list_only) {
6374       assert(!r->is_young(), "we should not come across young regions");
6375 
6376       if (r->isHumongous()) {
6377         // We ignore humongous regions, we left the humongous set unchanged
6378       } else {
6379         // The rest should be old, add them to the old set
6380         _old_set->add(r);
6381       }
6382       _total_used += r->used();
6383     }
6384 
6385     return false;
6386   }
6387 
6388   size_t total_used() {
6389     return _total_used;
6390   }
6391 };
6392 
6393 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6394   assert_at_safepoint(true /* should_be_vm_thread */);
6395 
6396   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6397   heap_region_iterate(&cl);
6398 
6399   if (!free_list_only) {
6400     _summary_bytes_used = cl.total_used();
6401   }
6402   assert(_summary_bytes_used == recalculate_used(),
6403          err_msg("inconsistent _summary_bytes_used, "
6404                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6405                  _summary_bytes_used, recalculate_used()));
6406 }
6407 
6408 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6409   _refine_cte_cl->set_concurrent(concurrent);
6410 }
6411 
6412 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6413   HeapRegion* hr = heap_region_containing(p);
6414   if (hr == NULL) {
6415     return false;
6416   } else {
6417     return hr->is_in(p);
6418   }
6419 }
6420 
6421 // Methods for the mutator alloc region
6422 
6423 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6424                                                       bool force) {
6425   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6426   assert(!force || g1_policy()->can_expand_young_list(),
6427          "if force is true we should be able to expand the young list");
6428   bool young_list_full = g1_policy()->is_young_list_full();
6429   if (force || !young_list_full) {
6430     HeapRegion* new_alloc_region = new_region(word_size,
6431                                               false /* do_expand */);
6432     if (new_alloc_region != NULL) {
6433       set_region_short_lived_locked(new_alloc_region);
6434       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6435       return new_alloc_region;
6436     }
6437   }
6438   return NULL;
6439 }
6440 
6441 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6442                                                   size_t allocated_bytes) {
6443   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6444   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6445 
6446   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6447   _summary_bytes_used += allocated_bytes;
6448   _hr_printer.retire(alloc_region);
6449   // We update the eden sizes here, when the region is retired,
6450   // instead of when it's allocated, since this is the point that its
6451   // used space has been recored in _summary_bytes_used.
6452   g1mm()->update_eden_size();
6453 }
6454 
6455 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6456                                                     bool force) {
6457   return _g1h->new_mutator_alloc_region(word_size, force);
6458 }
6459 
6460 void G1CollectedHeap::set_par_threads() {
6461   // Don't change the number of workers.  Use the value previously set
6462   // in the workgroup.
6463   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6464   uint n_workers = workers()->active_workers();
6465   assert(UseDynamicNumberOfGCThreads ||
6466            n_workers == workers()->total_workers(),
6467       "Otherwise should be using the total number of workers");
6468   if (n_workers == 0) {
6469     assert(false, "Should have been set in prior evacuation pause.");
6470     n_workers = ParallelGCThreads;
6471     workers()->set_active_workers(n_workers);
6472   }
6473   set_par_threads(n_workers);
6474 }
6475 
6476 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6477                                        size_t allocated_bytes) {
6478   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6479 }
6480 
6481 // Methods for the GC alloc regions
6482 
6483 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6484                                                  uint count,
6485                                                  GCAllocPurpose ap) {
6486   assert(FreeList_lock->owned_by_self(), "pre-condition");
6487 
6488   if (count < g1_policy()->max_regions(ap)) {
6489     HeapRegion* new_alloc_region = new_region(word_size,
6490                                               true /* do_expand */);
6491     if (new_alloc_region != NULL) {
6492       // We really only need to do this for old regions given that we
6493       // should never scan survivors. But it doesn't hurt to do it
6494       // for survivors too.
6495       new_alloc_region->set_saved_mark();
6496       if (ap == GCAllocForSurvived) {
6497         new_alloc_region->set_survivor();
6498         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6499       } else {
6500         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6501       }
6502       bool during_im = g1_policy()->during_initial_mark_pause();
6503       new_alloc_region->note_start_of_copying(during_im);
6504       return new_alloc_region;
6505     } else {
6506       g1_policy()->note_alloc_region_limit_reached(ap);
6507     }
6508   }
6509   return NULL;
6510 }
6511 
6512 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6513                                              size_t allocated_bytes,
6514                                              GCAllocPurpose ap) {
6515   bool during_im = g1_policy()->during_initial_mark_pause();
6516   alloc_region->note_end_of_copying(during_im);
6517   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6518   if (ap == GCAllocForSurvived) {
6519     young_list()->add_survivor_region(alloc_region);
6520   } else {
6521     _old_set.add(alloc_region);
6522   }
6523   _hr_printer.retire(alloc_region);
6524 }
6525 
6526 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6527                                                        bool force) {
6528   assert(!force, "not supported for GC alloc regions");
6529   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6530 }
6531 
6532 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6533                                           size_t allocated_bytes) {
6534   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6535                                GCAllocForSurvived);
6536 }
6537 
6538 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6539                                                   bool force) {
6540   assert(!force, "not supported for GC alloc regions");
6541   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6542 }
6543 
6544 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6545                                      size_t allocated_bytes) {
6546   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6547                                GCAllocForTenured);
6548 }
6549 // Heap region set verification
6550 
6551 class VerifyRegionListsClosure : public HeapRegionClosure {
6552 private:
6553   FreeRegionList*     _free_list;
6554   OldRegionSet*       _old_set;
6555   HumongousRegionSet* _humongous_set;
6556   uint                _region_count;
6557 
6558 public:
6559   VerifyRegionListsClosure(OldRegionSet* old_set,
6560                            HumongousRegionSet* humongous_set,
6561                            FreeRegionList* free_list) :
6562     _old_set(old_set), _humongous_set(humongous_set),
6563     _free_list(free_list), _region_count(0) { }
6564 
6565   uint region_count() { return _region_count; }
6566 
6567   bool doHeapRegion(HeapRegion* hr) {
6568     _region_count += 1;
6569 
6570     if (hr->continuesHumongous()) {
6571       return false;
6572     }
6573 
6574     if (hr->is_young()) {
6575       // TODO
6576     } else if (hr->startsHumongous()) {
6577       _humongous_set->verify_next_region(hr);
6578     } else if (hr->is_empty()) {
6579       _free_list->verify_next_region(hr);
6580     } else {
6581       _old_set->verify_next_region(hr);
6582     }
6583     return false;
6584   }
6585 };
6586 
6587 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6588                                              HeapWord* bottom) {
6589   HeapWord* end = bottom + HeapRegion::GrainWords;
6590   MemRegion mr(bottom, end);
6591   assert(_g1_reserved.contains(mr), "invariant");
6592   // This might return NULL if the allocation fails
6593   return new HeapRegion(hrs_index, _bot_shared, mr);
6594 }
6595 
6596 void G1CollectedHeap::verify_region_sets() {
6597   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6598 
6599   // First, check the explicit lists.
6600   _free_list.verify();
6601   {
6602     // Given that a concurrent operation might be adding regions to
6603     // the secondary free list we have to take the lock before
6604     // verifying it.
6605     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6606     _secondary_free_list.verify();
6607   }
6608   _old_set.verify();
6609   _humongous_set.verify();
6610 
6611   // If a concurrent region freeing operation is in progress it will
6612   // be difficult to correctly attributed any free regions we come
6613   // across to the correct free list given that they might belong to
6614   // one of several (free_list, secondary_free_list, any local lists,
6615   // etc.). So, if that's the case we will skip the rest of the
6616   // verification operation. Alternatively, waiting for the concurrent
6617   // operation to complete will have a non-trivial effect on the GC's
6618   // operation (no concurrent operation will last longer than the
6619   // interval between two calls to verification) and it might hide
6620   // any issues that we would like to catch during testing.
6621   if (free_regions_coming()) {
6622     return;
6623   }
6624 
6625   // Make sure we append the secondary_free_list on the free_list so
6626   // that all free regions we will come across can be safely
6627   // attributed to the free_list.
6628   append_secondary_free_list_if_not_empty_with_lock();
6629 
6630   // Finally, make sure that the region accounting in the lists is
6631   // consistent with what we see in the heap.
6632   _old_set.verify_start();
6633   _humongous_set.verify_start();
6634   _free_list.verify_start();
6635 
6636   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6637   heap_region_iterate(&cl);
6638 
6639   _old_set.verify_end();
6640   _humongous_set.verify_end();
6641   _free_list.verify_end();
6642 }
6643 
6644 // Optimized nmethod scanning
6645 
6646 class RegisterNMethodOopClosure: public OopClosure {
6647   G1CollectedHeap* _g1h;
6648   nmethod* _nm;
6649 
6650   template <class T> void do_oop_work(T* p) {
6651     T heap_oop = oopDesc::load_heap_oop(p);
6652     if (!oopDesc::is_null(heap_oop)) {
6653       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6654       HeapRegion* hr = _g1h->heap_region_containing(obj);
6655       assert(!hr->isHumongous(), "code root in humongous region?");
6656 
6657       // HeapRegion::add_strong_code_root() avoids adding duplicate
6658       // entries but having duplicates is  OK since we "mark" nmethods
6659       // as visited when we scan the strong code root lists during the GC.
6660       hr->add_strong_code_root(_nm);
6661       assert(hr->rem_set()->strong_code_roots_list_contains(_nm), "add failed?");
6662     }
6663   }
6664 
6665 public:
6666   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6667     _g1h(g1h), _nm(nm) {}
6668 
6669   void do_oop(oop* p)       { do_oop_work(p); }
6670   void do_oop(narrowOop* p) { do_oop_work(p); }
6671 };
6672 
6673 class UnregisterNMethodOopClosure: public OopClosure {
6674   G1CollectedHeap* _g1h;
6675   nmethod* _nm;
6676 
6677   template <class T> void do_oop_work(T* p) {
6678     T heap_oop = oopDesc::load_heap_oop(p);
6679     if (!oopDesc::is_null(heap_oop)) {
6680       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6681       HeapRegion* hr = _g1h->heap_region_containing(obj);
6682       assert(!hr->isHumongous(), "code root in humongous region?");
6683       hr->remove_strong_code_root(_nm);
6684       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm), "remove failed?");
6685     }
6686   }
6687 
6688 public:
6689   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6690     _g1h(g1h), _nm(nm) {}
6691 
6692   void do_oop(oop* p)       { do_oop_work(p); }
6693   void do_oop(narrowOop* p) { do_oop_work(p); }
6694 };
6695 
6696 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6697   CollectedHeap::register_nmethod(nm);
6698 
6699   guarantee(nm != NULL, "sanity");
6700   RegisterNMethodOopClosure reg_cl(this, nm);
6701   nm->oops_do(&reg_cl);
6702 }
6703 
6704 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6705   CollectedHeap::unregister_nmethod(nm);
6706 
6707   guarantee(nm != NULL, "sanity");
6708   UnregisterNMethodOopClosure reg_cl(this, nm);
6709   nm->oops_do(&reg_cl, true);
6710 }
6711 
6712 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6713 public:
6714   bool doHeapRegion(HeapRegion *hr) {
6715     assert(!hr->isHumongous(), "humongous region in collection set?");
6716     hr->migrate_strong_code_roots();
6717     return false;
6718   }
6719 };
6720 
6721 void G1CollectedHeap::migrate_strong_code_roots() {
6722   MigrateCodeRootsHeapRegionClosure cl;
6723   double migrate_start = os::elapsedTime();
6724   collection_set_iterate(&cl);
6725   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6726   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6727 }
6728 
6729 // Mark all the code roots that point into regions *not* in the
6730 // collection set.
6731 //
6732 // Note we do not want to use a "marking" CodeBlobToOopClosure while
6733 // walking the the code roots lists of regions not in the collection
6734 // set. Suppose we have an nmethod (M) that points to objects in two
6735 // separate regions - one in the collection set (R1) and one not (R2).
6736 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
6737 // nmethod M when walking the code roots for R1. When we come to scan
6738 // the code roots for R2, we would see that M is already marked and it
6739 // would be skipped and the objects in R2 that are referenced from M
6740 // would not be evacuated.
6741 
6742 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
6743 
6744   class MarkStrongCodeRootOopClosure: public OopClosure {
6745     ConcurrentMark* _cm;
6746     HeapRegion* _hr;
6747     uint _worker_id;
6748 
6749     template <class T> void do_oop_work(T* p) {
6750       T heap_oop = oopDesc::load_heap_oop(p);
6751       if (!oopDesc::is_null(heap_oop)) {
6752         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6753         // Only mark objects in the region (which is assumed
6754         // to be not in the collection set).
6755         if (_hr->is_in(obj)) {
6756           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
6757         }
6758       }
6759     }
6760 
6761   public:
6762     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
6763       _cm(cm), _hr(hr), _worker_id(worker_id) {
6764       assert(!_hr->in_collection_set(), "sanity");
6765     }
6766 
6767     void do_oop(narrowOop* p) { do_oop_work(p); }
6768     void do_oop(oop* p)       { do_oop_work(p); }
6769   };
6770 
6771   MarkStrongCodeRootOopClosure _oop_cl;
6772 
6773 public:
6774   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
6775     _oop_cl(cm, hr, worker_id) {}
6776 
6777   void do_code_blob(CodeBlob* cb) {
6778     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
6779     if (nm != NULL) {
6780       nm->oops_do(&_oop_cl);
6781     }
6782   }
6783 };
6784 
6785 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
6786   G1CollectedHeap* _g1h;
6787   uint _worker_id;
6788 
6789 public:
6790   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
6791     _g1h(g1h), _worker_id(worker_id) {}
6792 
6793   bool doHeapRegion(HeapRegion *hr) {
6794     HeapRegionRemSet* hrrs = hr->rem_set();
6795     if (hr->isHumongous()) {
6796       // Code roots should never be attached to a humongous region
6797       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
6798       return false;
6799     }
6800 
6801     if (hr->in_collection_set()) {
6802       // Don't mark code roots into regions in the collection set here.
6803       // They will be marked when we scan them.
6804       return false;
6805     }
6806 
6807     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
6808     hr->strong_code_roots_do(&cb_cl);
6809     return false;
6810   }
6811 };
6812 
6813 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
6814   MarkStrongCodeRootsHRClosure cl(this, worker_id);
6815   if (G1CollectedHeap::use_parallel_gc_threads()) {
6816     heap_region_par_iterate_chunked(&cl,
6817                                     worker_id,
6818                                     workers()->active_workers(),
6819                                     HeapRegion::ParMarkRootClaimValue);
6820   } else {
6821     heap_region_iterate(&cl);
6822   }
6823 }
6824 
6825 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6826   G1CollectedHeap* _g1h;
6827 
6828 public:
6829   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6830     _g1h(g1h) {}
6831 
6832   void do_code_blob(CodeBlob* cb) {
6833     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6834     if (nm == NULL) {
6835       return;
6836     }
6837 
6838     if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
6839       _g1h->register_nmethod(nm);
6840     }
6841   }
6842 };
6843 
6844 void G1CollectedHeap::rebuild_strong_code_roots() {
6845   RebuildStrongCodeRootClosure blob_cl(this);
6846   CodeCache::blobs_do(&blob_cl);
6847 }