1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/evacuationInfo.hpp"
  30 #include "gc_implementation/g1/g1AllocRegion.hpp"
  31 #include "gc_implementation/g1/g1HRPrinter.hpp"
  32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  33 #include "gc_implementation/g1/g1RemSet.hpp"
  34 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  35 #include "gc_implementation/g1/g1YCTypes.hpp"
  36 #include "gc_implementation/g1/heapRegionSeq.hpp"
  37 #include "gc_implementation/g1/heapRegionSets.hpp"
  38 #include "gc_implementation/shared/hSpaceCounters.hpp"
  39 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  40 #include "memory/barrierSet.hpp"
  41 #include "memory/memRegion.hpp"
  42 #include "memory/sharedHeap.hpp"
  43 #include "utilities/stack.hpp"
  44 
  45 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  46 // It uses the "Garbage First" heap organization and algorithm, which
  47 // may combine concurrent marking with parallel, incremental compaction of
  48 // heap subsets that will yield large amounts of garbage.
  49 
  50 // Forward declarations
  51 class HeapRegion;
  52 class HRRSCleanupTask;
  53 class GenerationSpec;
  54 class OopsInHeapRegionClosure;
  55 class G1KlassScanClosure;
  56 class G1ScanHeapEvacClosure;
  57 class ObjectClosure;
  58 class SpaceClosure;
  59 class CompactibleSpaceClosure;
  60 class Space;
  61 class G1CollectorPolicy;
  62 class GenRemSet;
  63 class G1RemSet;
  64 class HeapRegionRemSetIterator;
  65 class ConcurrentMark;
  66 class ConcurrentMarkThread;
  67 class ConcurrentG1Refine;
  68 class ConcurrentGCTimer;
  69 class GenerationCounters;
  70 class STWGCTimer;
  71 class G1NewTracer;
  72 class G1OldTracer;
  73 class EvacuationFailedInfo;
  74 class nmethod;
  75 
  76 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  77 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  78 
  79 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  80 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  81 
  82 enum GCAllocPurpose {
  83   GCAllocForTenured,
  84   GCAllocForSurvived,
  85   GCAllocPurposeCount
  86 };
  87 
  88 class YoungList : public CHeapObj<mtGC> {
  89 private:
  90   G1CollectedHeap* _g1h;
  91 
  92   HeapRegion* _head;
  93 
  94   HeapRegion* _survivor_head;
  95   HeapRegion* _survivor_tail;
  96 
  97   HeapRegion* _curr;
  98 
  99   uint        _length;
 100   uint        _survivor_length;
 101 
 102   size_t      _last_sampled_rs_lengths;
 103   size_t      _sampled_rs_lengths;
 104 
 105   void         empty_list(HeapRegion* list);
 106 
 107 public:
 108   YoungList(G1CollectedHeap* g1h);
 109 
 110   void         push_region(HeapRegion* hr);
 111   void         add_survivor_region(HeapRegion* hr);
 112 
 113   void         empty_list();
 114   bool         is_empty() { return _length == 0; }
 115   uint         length() { return _length; }
 116   uint         survivor_length() { return _survivor_length; }
 117 
 118   // Currently we do not keep track of the used byte sum for the
 119   // young list and the survivors and it'd be quite a lot of work to
 120   // do so. When we'll eventually replace the young list with
 121   // instances of HeapRegionLinkedList we'll get that for free. So,
 122   // we'll report the more accurate information then.
 123   size_t       eden_used_bytes() {
 124     assert(length() >= survivor_length(), "invariant");
 125     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
 126   }
 127   size_t       survivor_used_bytes() {
 128     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 129   }
 130 
 131   void rs_length_sampling_init();
 132   bool rs_length_sampling_more();
 133   void rs_length_sampling_next();
 134 
 135   void reset_sampled_info() {
 136     _last_sampled_rs_lengths =   0;
 137   }
 138   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 139 
 140   // for development purposes
 141   void reset_auxilary_lists();
 142   void clear() { _head = NULL; _length = 0; }
 143 
 144   void clear_survivors() {
 145     _survivor_head    = NULL;
 146     _survivor_tail    = NULL;
 147     _survivor_length  = 0;
 148   }
 149 
 150   HeapRegion* first_region() { return _head; }
 151   HeapRegion* first_survivor_region() { return _survivor_head; }
 152   HeapRegion* last_survivor_region() { return _survivor_tail; }
 153 
 154   // debugging
 155   bool          check_list_well_formed();
 156   bool          check_list_empty(bool check_sample = true);
 157   void          print();
 158 };
 159 
 160 class MutatorAllocRegion : public G1AllocRegion {
 161 protected:
 162   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 163   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 164 public:
 165   MutatorAllocRegion()
 166     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 167 };
 168 
 169 class SurvivorGCAllocRegion : public G1AllocRegion {
 170 protected:
 171   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 172   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 173 public:
 174   SurvivorGCAllocRegion()
 175   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
 176 };
 177 
 178 class OldGCAllocRegion : public G1AllocRegion {
 179 protected:
 180   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 181   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 182 public:
 183   OldGCAllocRegion()
 184   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
 185 };
 186 
 187 // The G1 STW is alive closure.
 188 // An instance is embedded into the G1CH and used as the
 189 // (optional) _is_alive_non_header closure in the STW
 190 // reference processor. It is also extensively used during
 191 // reference processing during STW evacuation pauses.
 192 class G1STWIsAliveClosure: public BoolObjectClosure {
 193   G1CollectedHeap* _g1;
 194 public:
 195   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 196   bool do_object_b(oop p);
 197 };
 198 
 199 class RefineCardTableEntryClosure;
 200 
 201 class G1CollectedHeap : public SharedHeap {
 202   friend class VM_G1CollectForAllocation;
 203   friend class VM_G1CollectFull;
 204   friend class VM_G1IncCollectionPause;
 205   friend class VMStructs;
 206   friend class MutatorAllocRegion;
 207   friend class SurvivorGCAllocRegion;
 208   friend class OldGCAllocRegion;
 209 
 210   // Closures used in implementation.
 211   template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
 212   friend class G1ParCopyClosure;
 213   friend class G1IsAliveClosure;
 214   friend class G1EvacuateFollowersClosure;
 215   friend class G1ParScanThreadState;
 216   friend class G1ParScanClosureSuper;
 217   friend class G1ParEvacuateFollowersClosure;
 218   friend class G1ParTask;
 219   friend class G1FreeGarbageRegionClosure;
 220   friend class RefineCardTableEntryClosure;
 221   friend class G1PrepareCompactClosure;
 222   friend class RegionSorter;
 223   friend class RegionResetter;
 224   friend class CountRCClosure;
 225   friend class EvacPopObjClosure;
 226   friend class G1ParCleanupCTTask;
 227 
 228   // Other related classes.
 229   friend class G1MarkSweep;
 230 
 231 private:
 232   // The one and only G1CollectedHeap, so static functions can find it.
 233   static G1CollectedHeap* _g1h;
 234 
 235   static size_t _humongous_object_threshold_in_words;
 236 
 237   // Storage for the G1 heap.
 238   VirtualSpace _g1_storage;
 239   MemRegion    _g1_reserved;
 240 
 241   // The part of _g1_storage that is currently committed.
 242   MemRegion _g1_committed;
 243 
 244   // The master free list. It will satisfy all new region allocations.
 245   MasterFreeRegionList      _free_list;
 246 
 247   // The secondary free list which contains regions that have been
 248   // freed up during the cleanup process. This will be appended to the
 249   // master free list when appropriate.
 250   SecondaryFreeRegionList   _secondary_free_list;
 251 
 252   // It keeps track of the old regions.
 253   MasterOldRegionSet        _old_set;
 254 
 255   // It keeps track of the humongous regions.
 256   MasterHumongousRegionSet  _humongous_set;
 257 
 258   // The number of regions we could create by expansion.
 259   uint _expansion_regions;
 260 
 261   // The block offset table for the G1 heap.
 262   G1BlockOffsetSharedArray* _bot_shared;
 263 
 264   // Tears down the region sets / lists so that they are empty and the
 265   // regions on the heap do not belong to a region set / list. The
 266   // only exception is the humongous set which we leave unaltered. If
 267   // free_list_only is true, it will only tear down the master free
 268   // list. It is called before a Full GC (free_list_only == false) or
 269   // before heap shrinking (free_list_only == true).
 270   void tear_down_region_sets(bool free_list_only);
 271 
 272   // Rebuilds the region sets / lists so that they are repopulated to
 273   // reflect the contents of the heap. The only exception is the
 274   // humongous set which was not torn down in the first place. If
 275   // free_list_only is true, it will only rebuild the master free
 276   // list. It is called after a Full GC (free_list_only == false) or
 277   // after heap shrinking (free_list_only == true).
 278   void rebuild_region_sets(bool free_list_only);
 279 
 280   // The sequence of all heap regions in the heap.
 281   HeapRegionSeq _hrs;
 282 
 283   // Alloc region used to satisfy mutator allocation requests.
 284   MutatorAllocRegion _mutator_alloc_region;
 285 
 286   // Alloc region used to satisfy allocation requests by the GC for
 287   // survivor objects.
 288   SurvivorGCAllocRegion _survivor_gc_alloc_region;
 289 
 290   // PLAB sizing policy for survivors.
 291   PLABStats _survivor_plab_stats;
 292 
 293   // Alloc region used to satisfy allocation requests by the GC for
 294   // old objects.
 295   OldGCAllocRegion _old_gc_alloc_region;
 296 
 297   // PLAB sizing policy for tenured objects.
 298   PLABStats _old_plab_stats;
 299 
 300   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
 301     PLABStats* stats = NULL;
 302 
 303     switch (purpose) {
 304     case GCAllocForSurvived:
 305       stats = &_survivor_plab_stats;
 306       break;
 307     case GCAllocForTenured:
 308       stats = &_old_plab_stats;
 309       break;
 310     default:
 311       assert(false, "unrecognized GCAllocPurpose");
 312     }
 313 
 314     return stats;
 315   }
 316 
 317   // The last old region we allocated to during the last GC.
 318   // Typically, it is not full so we should re-use it during the next GC.
 319   HeapRegion* _retained_old_gc_alloc_region;
 320 
 321   // It specifies whether we should attempt to expand the heap after a
 322   // region allocation failure. If heap expansion fails we set this to
 323   // false so that we don't re-attempt the heap expansion (it's likely
 324   // that subsequent expansion attempts will also fail if one fails).
 325   // Currently, it is only consulted during GC and it's reset at the
 326   // start of each GC.
 327   bool _expand_heap_after_alloc_failure;
 328 
 329   // It resets the mutator alloc region before new allocations can take place.
 330   void init_mutator_alloc_region();
 331 
 332   // It releases the mutator alloc region.
 333   void release_mutator_alloc_region();
 334 
 335   // It initializes the GC alloc regions at the start of a GC.
 336   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
 337 
 338   // It releases the GC alloc regions at the end of a GC.
 339   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
 340 
 341   // It does any cleanup that needs to be done on the GC alloc regions
 342   // before a Full GC.
 343   void abandon_gc_alloc_regions();
 344 
 345   // Helper for monitoring and management support.
 346   G1MonitoringSupport* _g1mm;
 347 
 348   // Determines PLAB size for a particular allocation purpose.
 349   size_t desired_plab_sz(GCAllocPurpose purpose);
 350 
 351   // Outside of GC pauses, the number of bytes used in all regions other
 352   // than the current allocation region.
 353   size_t _summary_bytes_used;
 354 
 355   // This is used for a quick test on whether a reference points into
 356   // the collection set or not. Basically, we have an array, with one
 357   // byte per region, and that byte denotes whether the corresponding
 358   // region is in the collection set or not. The entry corresponding
 359   // the bottom of the heap, i.e., region 0, is pointed to by
 360   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
 361   // biased so that it actually points to address 0 of the address
 362   // space, to make the test as fast as possible (we can simply shift
 363   // the address to address into it, instead of having to subtract the
 364   // bottom of the heap from the address before shifting it; basically
 365   // it works in the same way the card table works).
 366   bool* _in_cset_fast_test;
 367 
 368   // The allocated array used for the fast test on whether a reference
 369   // points into the collection set or not. This field is also used to
 370   // free the array.
 371   bool* _in_cset_fast_test_base;
 372 
 373   // The length of the _in_cset_fast_test_base array.
 374   uint _in_cset_fast_test_length;
 375 
 376   volatile unsigned _gc_time_stamp;
 377 
 378   size_t* _surviving_young_words;
 379 
 380   G1HRPrinter _hr_printer;
 381 
 382   void setup_surviving_young_words();
 383   void update_surviving_young_words(size_t* surv_young_words);
 384   void cleanup_surviving_young_words();
 385 
 386   // It decides whether an explicit GC should start a concurrent cycle
 387   // instead of doing a STW GC. Currently, a concurrent cycle is
 388   // explicitly started if:
 389   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 390   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 391   // (c) cause == _g1_humongous_allocation
 392   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 393 
 394   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 395   // concurrent cycles) we have started.
 396   volatile unsigned int _old_marking_cycles_started;
 397 
 398   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 399   // concurrent cycles) we have completed.
 400   volatile unsigned int _old_marking_cycles_completed;
 401 
 402   bool _concurrent_cycle_started;
 403 
 404   // This is a non-product method that is helpful for testing. It is
 405   // called at the end of a GC and artificially expands the heap by
 406   // allocating a number of dead regions. This way we can induce very
 407   // frequent marking cycles and stress the cleanup / concurrent
 408   // cleanup code more (as all the regions that will be allocated by
 409   // this method will be found dead by the marking cycle).
 410   void allocate_dummy_regions() PRODUCT_RETURN;
 411 
 412   // Clear RSets after a compaction. It also resets the GC time stamps.
 413   void clear_rsets_post_compaction();
 414 
 415   // If the HR printer is active, dump the state of the regions in the
 416   // heap after a compaction.
 417   void print_hrs_post_compaction();
 418 
 419   double verify(bool guard, const char* msg);
 420   void verify_before_gc();
 421   void verify_after_gc();
 422 
 423   void log_gc_header();
 424   void log_gc_footer(double pause_time_sec);
 425 
 426   // These are macros so that, if the assert fires, we get the correct
 427   // line number, file, etc.
 428 
 429 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 430   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 431           (_extra_message_),                                                  \
 432           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 433           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 434           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 435 
 436 #define assert_heap_locked()                                                  \
 437   do {                                                                        \
 438     assert(Heap_lock->owned_by_self(),                                        \
 439            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 440   } while (0)
 441 
 442 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 443   do {                                                                        \
 444     assert(Heap_lock->owned_by_self() ||                                      \
 445            (SafepointSynchronize::is_at_safepoint() &&                        \
 446              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 447            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 448                                         "should be at a safepoint"));         \
 449   } while (0)
 450 
 451 #define assert_heap_locked_and_not_at_safepoint()                             \
 452   do {                                                                        \
 453     assert(Heap_lock->owned_by_self() &&                                      \
 454                                     !SafepointSynchronize::is_at_safepoint(), \
 455           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 456                                        "should not be at a safepoint"));      \
 457   } while (0)
 458 
 459 #define assert_heap_not_locked()                                              \
 460   do {                                                                        \
 461     assert(!Heap_lock->owned_by_self(),                                       \
 462         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 463   } while (0)
 464 
 465 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 466   do {                                                                        \
 467     assert(!Heap_lock->owned_by_self() &&                                     \
 468                                     !SafepointSynchronize::is_at_safepoint(), \
 469       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 470                                    "should not be at a safepoint"));          \
 471   } while (0)
 472 
 473 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 474   do {                                                                        \
 475     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 476               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 477            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 478   } while (0)
 479 
 480 #define assert_not_at_safepoint()                                             \
 481   do {                                                                        \
 482     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 483            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 484   } while (0)
 485 
 486 protected:
 487 
 488   // The young region list.
 489   YoungList*  _young_list;
 490 
 491   // The current policy object for the collector.
 492   G1CollectorPolicy* _g1_policy;
 493 
 494   // This is the second level of trying to allocate a new region. If
 495   // new_region() didn't find a region on the free_list, this call will
 496   // check whether there's anything available on the
 497   // secondary_free_list and/or wait for more regions to appear on
 498   // that list, if _free_regions_coming is set.
 499   HeapRegion* new_region_try_secondary_free_list();
 500 
 501   // Try to allocate a single non-humongous HeapRegion sufficient for
 502   // an allocation of the given word_size. If do_expand is true,
 503   // attempt to expand the heap if necessary to satisfy the allocation
 504   // request.
 505   HeapRegion* new_region(size_t word_size, bool do_expand);
 506 
 507   // Attempt to satisfy a humongous allocation request of the given
 508   // size by finding a contiguous set of free regions of num_regions
 509   // length and remove them from the master free list. Return the
 510   // index of the first region or G1_NULL_HRS_INDEX if the search
 511   // was unsuccessful.
 512   uint humongous_obj_allocate_find_first(uint num_regions,
 513                                          size_t word_size);
 514 
 515   // Initialize a contiguous set of free regions of length num_regions
 516   // and starting at index first so that they appear as a single
 517   // humongous region.
 518   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 519                                                       uint num_regions,
 520                                                       size_t word_size);
 521 
 522   // Attempt to allocate a humongous object of the given size. Return
 523   // NULL if unsuccessful.
 524   HeapWord* humongous_obj_allocate(size_t word_size);
 525 
 526   // The following two methods, allocate_new_tlab() and
 527   // mem_allocate(), are the two main entry points from the runtime
 528   // into the G1's allocation routines. They have the following
 529   // assumptions:
 530   //
 531   // * They should both be called outside safepoints.
 532   //
 533   // * They should both be called without holding the Heap_lock.
 534   //
 535   // * All allocation requests for new TLABs should go to
 536   //   allocate_new_tlab().
 537   //
 538   // * All non-TLAB allocation requests should go to mem_allocate().
 539   //
 540   // * If either call cannot satisfy the allocation request using the
 541   //   current allocating region, they will try to get a new one. If
 542   //   this fails, they will attempt to do an evacuation pause and
 543   //   retry the allocation.
 544   //
 545   // * If all allocation attempts fail, even after trying to schedule
 546   //   an evacuation pause, allocate_new_tlab() will return NULL,
 547   //   whereas mem_allocate() will attempt a heap expansion and/or
 548   //   schedule a Full GC.
 549   //
 550   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 551   //   should never be called with word_size being humongous. All
 552   //   humongous allocation requests should go to mem_allocate() which
 553   //   will satisfy them with a special path.
 554 
 555   virtual HeapWord* allocate_new_tlab(size_t word_size);
 556 
 557   virtual HeapWord* mem_allocate(size_t word_size,
 558                                  bool*  gc_overhead_limit_was_exceeded);
 559 
 560   // The following three methods take a gc_count_before_ret
 561   // parameter which is used to return the GC count if the method
 562   // returns NULL. Given that we are required to read the GC count
 563   // while holding the Heap_lock, and these paths will take the
 564   // Heap_lock at some point, it's easier to get them to read the GC
 565   // count while holding the Heap_lock before they return NULL instead
 566   // of the caller (namely: mem_allocate()) having to also take the
 567   // Heap_lock just to read the GC count.
 568 
 569   // First-level mutator allocation attempt: try to allocate out of
 570   // the mutator alloc region without taking the Heap_lock. This
 571   // should only be used for non-humongous allocations.
 572   inline HeapWord* attempt_allocation(size_t word_size,
 573                                       unsigned int* gc_count_before_ret,
 574                                       int* gclocker_retry_count_ret);
 575 
 576   // Second-level mutator allocation attempt: take the Heap_lock and
 577   // retry the allocation attempt, potentially scheduling a GC
 578   // pause. This should only be used for non-humongous allocations.
 579   HeapWord* attempt_allocation_slow(size_t word_size,
 580                                     unsigned int* gc_count_before_ret,
 581                                     int* gclocker_retry_count_ret);
 582 
 583   // Takes the Heap_lock and attempts a humongous allocation. It can
 584   // potentially schedule a GC pause.
 585   HeapWord* attempt_allocation_humongous(size_t word_size,
 586                                          unsigned int* gc_count_before_ret,
 587                                          int* gclocker_retry_count_ret);
 588 
 589   // Allocation attempt that should be called during safepoints (e.g.,
 590   // at the end of a successful GC). expect_null_mutator_alloc_region
 591   // specifies whether the mutator alloc region is expected to be NULL
 592   // or not.
 593   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 594                                        bool expect_null_mutator_alloc_region);
 595 
 596   // It dirties the cards that cover the block so that so that the post
 597   // write barrier never queues anything when updating objects on this
 598   // block. It is assumed (and in fact we assert) that the block
 599   // belongs to a young region.
 600   inline void dirty_young_block(HeapWord* start, size_t word_size);
 601 
 602   // Allocate blocks during garbage collection. Will ensure an
 603   // allocation region, either by picking one or expanding the
 604   // heap, and then allocate a block of the given size. The block
 605   // may not be a humongous - it must fit into a single heap region.
 606   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 607 
 608   // Ensure that no further allocations can happen in "r", bearing in mind
 609   // that parallel threads might be attempting allocations.
 610   void par_allocate_remaining_space(HeapRegion* r);
 611 
 612   // Allocation attempt during GC for a survivor object / PLAB.
 613   inline HeapWord* survivor_attempt_allocation(size_t word_size);
 614 
 615   // Allocation attempt during GC for an old object / PLAB.
 616   inline HeapWord* old_attempt_allocation(size_t word_size);
 617 
 618   // These methods are the "callbacks" from the G1AllocRegion class.
 619 
 620   // For mutator alloc regions.
 621   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 622   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 623                                    size_t allocated_bytes);
 624 
 625   // For GC alloc regions.
 626   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 627                                   GCAllocPurpose ap);
 628   void retire_gc_alloc_region(HeapRegion* alloc_region,
 629                               size_t allocated_bytes, GCAllocPurpose ap);
 630 
 631   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 632   //   inspection request and should collect the entire heap
 633   // - if clear_all_soft_refs is true, all soft references should be
 634   //   cleared during the GC
 635   // - if explicit_gc is false, word_size describes the allocation that
 636   //   the GC should attempt (at least) to satisfy
 637   // - it returns false if it is unable to do the collection due to the
 638   //   GC locker being active, true otherwise
 639   bool do_collection(bool explicit_gc,
 640                      bool clear_all_soft_refs,
 641                      size_t word_size);
 642 
 643   // Callback from VM_G1CollectFull operation.
 644   // Perform a full collection.
 645   virtual void do_full_collection(bool clear_all_soft_refs);
 646 
 647   // Resize the heap if necessary after a full collection.  If this is
 648   // after a collect-for allocation, "word_size" is the allocation size,
 649   // and will be considered part of the used portion of the heap.
 650   void resize_if_necessary_after_full_collection(size_t word_size);
 651 
 652   // Callback from VM_G1CollectForAllocation operation.
 653   // This function does everything necessary/possible to satisfy a
 654   // failed allocation request (including collection, expansion, etc.)
 655   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
 656 
 657   // Attempting to expand the heap sufficiently
 658   // to support an allocation of the given "word_size".  If
 659   // successful, perform the allocation and return the address of the
 660   // allocated block, or else "NULL".
 661   HeapWord* expand_and_allocate(size_t word_size);
 662 
 663   // Process any reference objects discovered during
 664   // an incremental evacuation pause.
 665   void process_discovered_references(uint no_of_gc_workers);
 666 
 667   // Enqueue any remaining discovered references
 668   // after processing.
 669   void enqueue_discovered_references(uint no_of_gc_workers);
 670 
 671 public:
 672 
 673   G1MonitoringSupport* g1mm() {
 674     assert(_g1mm != NULL, "should have been initialized");
 675     return _g1mm;
 676   }
 677 
 678   // Expand the garbage-first heap by at least the given size (in bytes!).
 679   // Returns true if the heap was expanded by the requested amount;
 680   // false otherwise.
 681   // (Rounds up to a HeapRegion boundary.)
 682   bool expand(size_t expand_bytes);
 683 
 684   // Do anything common to GC's.
 685   virtual void gc_prologue(bool full);
 686   virtual void gc_epilogue(bool full);
 687 
 688   // We register a region with the fast "in collection set" test. We
 689   // simply set to true the array slot corresponding to this region.
 690   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 691     assert(_in_cset_fast_test_base != NULL, "sanity");
 692     assert(r->in_collection_set(), "invariant");
 693     uint index = r->hrs_index();
 694     assert(index < _in_cset_fast_test_length, "invariant");
 695     assert(!_in_cset_fast_test_base[index], "invariant");
 696     _in_cset_fast_test_base[index] = true;
 697   }
 698 
 699   // This is a fast test on whether a reference points into the
 700   // collection set or not. It does not assume that the reference
 701   // points into the heap; if it doesn't, it will return false.
 702   bool in_cset_fast_test(oop obj) {
 703     assert(_in_cset_fast_test != NULL, "sanity");
 704     if (_g1_committed.contains((HeapWord*) obj)) {
 705       // no need to subtract the bottom of the heap from obj,
 706       // _in_cset_fast_test is biased
 707       uintx index = cast_from_oop<uintx>(obj) >> HeapRegion::LogOfHRGrainBytes;
 708       bool ret = _in_cset_fast_test[index];
 709       // let's make sure the result is consistent with what the slower
 710       // test returns
 711       assert( ret || !obj_in_cs(obj), "sanity");
 712       assert(!ret ||  obj_in_cs(obj), "sanity");
 713       return ret;
 714     } else {
 715       return false;
 716     }
 717   }
 718 
 719   void clear_cset_fast_test() {
 720     assert(_in_cset_fast_test_base != NULL, "sanity");
 721     memset(_in_cset_fast_test_base, false,
 722            (size_t) _in_cset_fast_test_length * sizeof(bool));
 723   }
 724 
 725   // This is called at the start of either a concurrent cycle or a Full
 726   // GC to update the number of old marking cycles started.
 727   void increment_old_marking_cycles_started();
 728 
 729   // This is called at the end of either a concurrent cycle or a Full
 730   // GC to update the number of old marking cycles completed. Those two
 731   // can happen in a nested fashion, i.e., we start a concurrent
 732   // cycle, a Full GC happens half-way through it which ends first,
 733   // and then the cycle notices that a Full GC happened and ends
 734   // too. The concurrent parameter is a boolean to help us do a bit
 735   // tighter consistency checking in the method. If concurrent is
 736   // false, the caller is the inner caller in the nesting (i.e., the
 737   // Full GC). If concurrent is true, the caller is the outer caller
 738   // in this nesting (i.e., the concurrent cycle). Further nesting is
 739   // not currently supported. The end of this call also notifies
 740   // the FullGCCount_lock in case a Java thread is waiting for a full
 741   // GC to happen (e.g., it called System.gc() with
 742   // +ExplicitGCInvokesConcurrent).
 743   void increment_old_marking_cycles_completed(bool concurrent);
 744 
 745   unsigned int old_marking_cycles_completed() {
 746     return _old_marking_cycles_completed;
 747   }
 748 
 749   void register_concurrent_cycle_start(jlong start_time);
 750   void register_concurrent_cycle_end();
 751   void trace_heap_after_concurrent_cycle();
 752 
 753   G1YCType yc_type();
 754 
 755   G1HRPrinter* hr_printer() { return &_hr_printer; }
 756 
 757 protected:
 758 
 759   // Shrink the garbage-first heap by at most the given size (in bytes!).
 760   // (Rounds down to a HeapRegion boundary.)
 761   virtual void shrink(size_t expand_bytes);
 762   void shrink_helper(size_t expand_bytes);
 763 
 764   #if TASKQUEUE_STATS
 765   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 766   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 767   void reset_taskqueue_stats();
 768   #endif // TASKQUEUE_STATS
 769 
 770   // Schedule the VM operation that will do an evacuation pause to
 771   // satisfy an allocation request of word_size. *succeeded will
 772   // return whether the VM operation was successful (it did do an
 773   // evacuation pause) or not (another thread beat us to it or the GC
 774   // locker was active). Given that we should not be holding the
 775   // Heap_lock when we enter this method, we will pass the
 776   // gc_count_before (i.e., total_collections()) as a parameter since
 777   // it has to be read while holding the Heap_lock. Currently, both
 778   // methods that call do_collection_pause() release the Heap_lock
 779   // before the call, so it's easy to read gc_count_before just before.
 780   HeapWord* do_collection_pause(size_t         word_size,
 781                                 unsigned int   gc_count_before,
 782                                 bool*          succeeded,
 783                                 GCCause::Cause gc_cause);
 784 
 785   // The guts of the incremental collection pause, executed by the vm
 786   // thread. It returns false if it is unable to do the collection due
 787   // to the GC locker being active, true otherwise
 788   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 789 
 790   // Actually do the work of evacuating the collection set.
 791   void evacuate_collection_set(EvacuationInfo& evacuation_info);
 792 
 793   // The g1 remembered set of the heap.
 794   G1RemSet* _g1_rem_set;
 795 
 796   // A set of cards that cover the objects for which the Rsets should be updated
 797   // concurrently after the collection.
 798   DirtyCardQueueSet _dirty_card_queue_set;
 799 
 800   // The closure used to refine a single card.
 801   RefineCardTableEntryClosure* _refine_cte_cl;
 802 
 803   // A function to check the consistency of dirty card logs.
 804   void check_ct_logs_at_safepoint();
 805 
 806   // A DirtyCardQueueSet that is used to hold cards that contain
 807   // references into the current collection set. This is used to
 808   // update the remembered sets of the regions in the collection
 809   // set in the event of an evacuation failure.
 810   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 811 
 812   // After a collection pause, make the regions in the CS into free
 813   // regions.
 814   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
 815 
 816   // Abandon the current collection set without recording policy
 817   // statistics or updating free lists.
 818   void abandon_collection_set(HeapRegion* cs_head);
 819 
 820   // Applies "scan_non_heap_roots" to roots outside the heap,
 821   // "scan_rs" to roots inside the heap (having done "set_region" to
 822   // indicate the region in which the root resides),
 823   // and does "scan_metadata" If "scan_rs" is
 824   // NULL, then this step is skipped.  The "worker_i"
 825   // param is for use with parallel roots processing, and should be
 826   // the "i" of the calling parallel worker thread's work(i) function.
 827   // In the sequential case this param will be ignored.
 828   void g1_process_strong_roots(bool is_scavenging,
 829                                ScanningOption so,
 830                                OopClosure* scan_non_heap_roots,
 831                                OopsInHeapRegionClosure* scan_rs,
 832                                G1KlassScanClosure* scan_klasses,
 833                                int worker_i);
 834 
 835   // Apply "blk" to all the weak roots of the system.  These include
 836   // JNI weak roots, the code cache, system dictionary, symbol table,
 837   // string table, and referents of reachable weak refs.
 838   void g1_process_weak_roots(OopClosure* root_closure);
 839 
 840   // Frees a non-humongous region by initializing its contents and
 841   // adding it to the free list that's passed as a parameter (this is
 842   // usually a local list which will be appended to the master free
 843   // list later). The used bytes of freed regions are accumulated in
 844   // pre_used. If par is true, the region's RSet will not be freed
 845   // up. The assumption is that this will be done later.
 846   void free_region(HeapRegion* hr,
 847                    size_t* pre_used,
 848                    FreeRegionList* free_list,
 849                    bool par);
 850 
 851   // Frees a humongous region by collapsing it into individual regions
 852   // and calling free_region() for each of them. The freed regions
 853   // will be added to the free list that's passed as a parameter (this
 854   // is usually a local list which will be appended to the master free
 855   // list later). The used bytes of freed regions are accumulated in
 856   // pre_used. If par is true, the region's RSet will not be freed
 857   // up. The assumption is that this will be done later.
 858   void free_humongous_region(HeapRegion* hr,
 859                              size_t* pre_used,
 860                              FreeRegionList* free_list,
 861                              HumongousRegionSet* humongous_proxy_set,
 862                              bool par);
 863 
 864   // Notifies all the necessary spaces that the committed space has
 865   // been updated (either expanded or shrunk). It should be called
 866   // after _g1_storage is updated.
 867   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
 868 
 869   // The concurrent marker (and the thread it runs in.)
 870   ConcurrentMark* _cm;
 871   ConcurrentMarkThread* _cmThread;
 872   bool _mark_in_progress;
 873 
 874   // The concurrent refiner.
 875   ConcurrentG1Refine* _cg1r;
 876 
 877   // The parallel task queues
 878   RefToScanQueueSet *_task_queues;
 879 
 880   // True iff a evacuation has failed in the current collection.
 881   bool _evacuation_failed;
 882 
 883   EvacuationFailedInfo* _evacuation_failed_info_array;
 884 
 885   // Failed evacuations cause some logical from-space objects to have
 886   // forwarding pointers to themselves.  Reset them.
 887   void remove_self_forwarding_pointers();
 888 
 889   // Together, these store an object with a preserved mark, and its mark value.
 890   Stack<oop, mtGC>     _objs_with_preserved_marks;
 891   Stack<markOop, mtGC> _preserved_marks_of_objs;
 892 
 893   // Preserve the mark of "obj", if necessary, in preparation for its mark
 894   // word being overwritten with a self-forwarding-pointer.
 895   void preserve_mark_if_necessary(oop obj, markOop m);
 896 
 897   // The stack of evac-failure objects left to be scanned.
 898   GrowableArray<oop>*    _evac_failure_scan_stack;
 899   // The closure to apply to evac-failure objects.
 900 
 901   OopsInHeapRegionClosure* _evac_failure_closure;
 902   // Set the field above.
 903   void
 904   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 905     _evac_failure_closure = evac_failure_closure;
 906   }
 907 
 908   // Push "obj" on the scan stack.
 909   void push_on_evac_failure_scan_stack(oop obj);
 910   // Process scan stack entries until the stack is empty.
 911   void drain_evac_failure_scan_stack();
 912   // True iff an invocation of "drain_scan_stack" is in progress; to
 913   // prevent unnecessary recursion.
 914   bool _drain_in_progress;
 915 
 916   // Do any necessary initialization for evacuation-failure handling.
 917   // "cl" is the closure that will be used to process evac-failure
 918   // objects.
 919   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 920   // Do any necessary cleanup for evacuation-failure handling data
 921   // structures.
 922   void finalize_for_evac_failure();
 923 
 924   // An attempt to evacuate "obj" has failed; take necessary steps.
 925   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
 926   void handle_evacuation_failure_common(oop obj, markOop m);
 927 
 928 #ifndef PRODUCT
 929   // Support for forcing evacuation failures. Analogous to
 930   // PromotionFailureALot for the other collectors.
 931 
 932   // Records whether G1EvacuationFailureALot should be in effect
 933   // for the current GC
 934   bool _evacuation_failure_alot_for_current_gc;
 935 
 936   // Used to record the GC number for interval checking when
 937   // determining whether G1EvaucationFailureALot is in effect
 938   // for the current GC.
 939   size_t _evacuation_failure_alot_gc_number;
 940 
 941   // Count of the number of evacuations between failures.
 942   volatile size_t _evacuation_failure_alot_count;
 943 
 944   // Set whether G1EvacuationFailureALot should be in effect
 945   // for the current GC (based upon the type of GC and which
 946   // command line flags are set);
 947   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 948                                                   bool during_initial_mark,
 949                                                   bool during_marking);
 950 
 951   inline void set_evacuation_failure_alot_for_current_gc();
 952 
 953   // Return true if it's time to cause an evacuation failure.
 954   inline bool evacuation_should_fail();
 955 
 956   // Reset the G1EvacuationFailureALot counters.  Should be called at
 957   // the end of an evacuation pause in which an evacuation failure occurred.
 958   inline void reset_evacuation_should_fail();
 959 #endif // !PRODUCT
 960 
 961   // ("Weak") Reference processing support.
 962   //
 963   // G1 has 2 instances of the reference processor class. One
 964   // (_ref_processor_cm) handles reference object discovery
 965   // and subsequent processing during concurrent marking cycles.
 966   //
 967   // The other (_ref_processor_stw) handles reference object
 968   // discovery and processing during full GCs and incremental
 969   // evacuation pauses.
 970   //
 971   // During an incremental pause, reference discovery will be
 972   // temporarily disabled for _ref_processor_cm and will be
 973   // enabled for _ref_processor_stw. At the end of the evacuation
 974   // pause references discovered by _ref_processor_stw will be
 975   // processed and discovery will be disabled. The previous
 976   // setting for reference object discovery for _ref_processor_cm
 977   // will be re-instated.
 978   //
 979   // At the start of marking:
 980   //  * Discovery by the CM ref processor is verified to be inactive
 981   //    and it's discovered lists are empty.
 982   //  * Discovery by the CM ref processor is then enabled.
 983   //
 984   // At the end of marking:
 985   //  * Any references on the CM ref processor's discovered
 986   //    lists are processed (possibly MT).
 987   //
 988   // At the start of full GC we:
 989   //  * Disable discovery by the CM ref processor and
 990   //    empty CM ref processor's discovered lists
 991   //    (without processing any entries).
 992   //  * Verify that the STW ref processor is inactive and it's
 993   //    discovered lists are empty.
 994   //  * Temporarily set STW ref processor discovery as single threaded.
 995   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 996   //    field.
 997   //  * Finally enable discovery by the STW ref processor.
 998   //
 999   // The STW ref processor is used to record any discovered
1000   // references during the full GC.
1001   //
1002   // At the end of a full GC we:
1003   //  * Enqueue any reference objects discovered by the STW ref processor
1004   //    that have non-live referents. This has the side-effect of
1005   //    making the STW ref processor inactive by disabling discovery.
1006   //  * Verify that the CM ref processor is still inactive
1007   //    and no references have been placed on it's discovered
1008   //    lists (also checked as a precondition during initial marking).
1009 
1010   // The (stw) reference processor...
1011   ReferenceProcessor* _ref_processor_stw;
1012 
1013   STWGCTimer* _gc_timer_stw;
1014   ConcurrentGCTimer* _gc_timer_cm;
1015 
1016   G1OldTracer* _gc_tracer_cm;
1017   G1NewTracer* _gc_tracer_stw;
1018 
1019   // During reference object discovery, the _is_alive_non_header
1020   // closure (if non-null) is applied to the referent object to
1021   // determine whether the referent is live. If so then the
1022   // reference object does not need to be 'discovered' and can
1023   // be treated as a regular oop. This has the benefit of reducing
1024   // the number of 'discovered' reference objects that need to
1025   // be processed.
1026   //
1027   // Instance of the is_alive closure for embedding into the
1028   // STW reference processor as the _is_alive_non_header field.
1029   // Supplying a value for the _is_alive_non_header field is
1030   // optional but doing so prevents unnecessary additions to
1031   // the discovered lists during reference discovery.
1032   G1STWIsAliveClosure _is_alive_closure_stw;
1033 
1034   // The (concurrent marking) reference processor...
1035   ReferenceProcessor* _ref_processor_cm;
1036 
1037   // Instance of the concurrent mark is_alive closure for embedding
1038   // into the Concurrent Marking reference processor as the
1039   // _is_alive_non_header field. Supplying a value for the
1040   // _is_alive_non_header field is optional but doing so prevents
1041   // unnecessary additions to the discovered lists during reference
1042   // discovery.
1043   G1CMIsAliveClosure _is_alive_closure_cm;
1044 
1045   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
1046   HeapRegion** _worker_cset_start_region;
1047 
1048   // Time stamp to validate the regions recorded in the cache
1049   // used by G1CollectedHeap::start_cset_region_for_worker().
1050   // The heap region entry for a given worker is valid iff
1051   // the associated time stamp value matches the current value
1052   // of G1CollectedHeap::_gc_time_stamp.
1053   unsigned int* _worker_cset_start_region_time_stamp;
1054 
1055   enum G1H_process_strong_roots_tasks {
1056     G1H_PS_filter_satb_buffers,
1057     G1H_PS_refProcessor_oops_do,
1058     // Leave this one last.
1059     G1H_PS_NumElements
1060   };
1061 
1062   SubTasksDone* _process_strong_tasks;
1063 
1064   volatile bool _free_regions_coming;
1065 
1066 public:
1067 
1068   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
1069 
1070   void set_refine_cte_cl_concurrency(bool concurrent);
1071 
1072   RefToScanQueue *task_queue(int i) const;
1073 
1074   // A set of cards where updates happened during the GC
1075   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1076 
1077   // A DirtyCardQueueSet that is used to hold cards that contain
1078   // references into the current collection set. This is used to
1079   // update the remembered sets of the regions in the collection
1080   // set in the event of an evacuation failure.
1081   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1082         { return _into_cset_dirty_card_queue_set; }
1083 
1084   // Create a G1CollectedHeap with the specified policy.
1085   // Must call the initialize method afterwards.
1086   // May not return if something goes wrong.
1087   G1CollectedHeap(G1CollectorPolicy* policy);
1088 
1089   // Initialize the G1CollectedHeap to have the initial and
1090   // maximum sizes and remembered and barrier sets
1091   // specified by the policy object.
1092   jint initialize();
1093 
1094   // Return the (conservative) maximum heap alignment for any G1 heap
1095   static size_t conservative_max_heap_alignment() {
1096     return HeapRegion::max_region_size();
1097   }
1098 
1099   // Initialize weak reference processing.
1100   virtual void ref_processing_init();
1101 
1102   void set_par_threads(uint t) {
1103     SharedHeap::set_par_threads(t);
1104     // Done in SharedHeap but oddly there are
1105     // two _process_strong_tasks's in a G1CollectedHeap
1106     // so do it here too.
1107     _process_strong_tasks->set_n_threads(t);
1108   }
1109 
1110   // Set _n_par_threads according to a policy TBD.
1111   void set_par_threads();
1112 
1113   void set_n_termination(int t) {
1114     _process_strong_tasks->set_n_threads(t);
1115   }
1116 
1117   virtual CollectedHeap::Name kind() const {
1118     return CollectedHeap::G1CollectedHeap;
1119   }
1120 
1121   // The current policy object for the collector.
1122   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1123 
1124   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1125 
1126   // Adaptive size policy.  No such thing for g1.
1127   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1128 
1129   // The rem set and barrier set.
1130   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1131 
1132   unsigned get_gc_time_stamp() {
1133     return _gc_time_stamp;
1134   }
1135 
1136   void reset_gc_time_stamp() {
1137     _gc_time_stamp = 0;
1138     OrderAccess::fence();
1139     // Clear the cached CSet starting regions and time stamps.
1140     // Their validity is dependent on the GC timestamp.
1141     clear_cset_start_regions();
1142   }
1143 
1144   void check_gc_time_stamps() PRODUCT_RETURN;
1145 
1146   void increment_gc_time_stamp() {
1147     ++_gc_time_stamp;
1148     OrderAccess::fence();
1149   }
1150 
1151   // Reset the given region's GC timestamp. If it's starts humongous,
1152   // also reset the GC timestamp of its corresponding
1153   // continues humongous regions too.
1154   void reset_gc_time_stamps(HeapRegion* hr);
1155 
1156   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1157                                   DirtyCardQueue* into_cset_dcq,
1158                                   bool concurrent, int worker_i);
1159 
1160   // The shared block offset table array.
1161   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1162 
1163   // Reference Processing accessors
1164 
1165   // The STW reference processor....
1166   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1167 
1168   // The Concurrent Marking reference processor...
1169   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1170 
1171   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1172   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1173 
1174   virtual size_t capacity() const;
1175   virtual size_t used() const;
1176   // This should be called when we're not holding the heap lock. The
1177   // result might be a bit inaccurate.
1178   size_t used_unlocked() const;
1179   size_t recalculate_used() const;
1180 
1181   // These virtual functions do the actual allocation.
1182   // Some heaps may offer a contiguous region for shared non-blocking
1183   // allocation, via inlined code (by exporting the address of the top and
1184   // end fields defining the extent of the contiguous allocation region.)
1185   // But G1CollectedHeap doesn't yet support this.
1186 
1187   // Return an estimate of the maximum allocation that could be performed
1188   // without triggering any collection or expansion activity.  In a
1189   // generational collector, for example, this is probably the largest
1190   // allocation that could be supported (without expansion) in the youngest
1191   // generation.  It is "unsafe" because no locks are taken; the result
1192   // should be treated as an approximation, not a guarantee, for use in
1193   // heuristic resizing decisions.
1194   virtual size_t unsafe_max_alloc();
1195 
1196   virtual bool is_maximal_no_gc() const {
1197     return _g1_storage.uncommitted_size() == 0;
1198   }
1199 
1200   // The total number of regions in the heap.
1201   uint n_regions() { return _hrs.length(); }
1202 
1203   // The max number of regions in the heap.
1204   uint max_regions() { return _hrs.max_length(); }
1205 
1206   // The number of regions that are completely free.
1207   uint free_regions() { return _free_list.length(); }
1208 
1209   // The number of regions that are not completely free.
1210   uint used_regions() { return n_regions() - free_regions(); }
1211 
1212   // The number of regions available for "regular" expansion.
1213   uint expansion_regions() { return _expansion_regions; }
1214 
1215   // Factory method for HeapRegion instances. It will return NULL if
1216   // the allocation fails.
1217   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
1218 
1219   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1220   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1221   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1222   void verify_dirty_young_regions() PRODUCT_RETURN;
1223 
1224   // verify_region_sets() performs verification over the region
1225   // lists. It will be compiled in the product code to be used when
1226   // necessary (i.e., during heap verification).
1227   void verify_region_sets();
1228 
1229   // verify_region_sets_optional() is planted in the code for
1230   // list verification in non-product builds (and it can be enabled in
1231   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1232 #if HEAP_REGION_SET_FORCE_VERIFY
1233   void verify_region_sets_optional() {
1234     verify_region_sets();
1235   }
1236 #else // HEAP_REGION_SET_FORCE_VERIFY
1237   void verify_region_sets_optional() { }
1238 #endif // HEAP_REGION_SET_FORCE_VERIFY
1239 
1240 #ifdef ASSERT
1241   bool is_on_master_free_list(HeapRegion* hr) {
1242     return hr->containing_set() == &_free_list;
1243   }
1244 
1245   bool is_in_humongous_set(HeapRegion* hr) {
1246     return hr->containing_set() == &_humongous_set;
1247   }
1248 #endif // ASSERT
1249 
1250   // Wrapper for the region list operations that can be called from
1251   // methods outside this class.
1252 
1253   void secondary_free_list_add_as_tail(FreeRegionList* list) {
1254     _secondary_free_list.add_as_tail(list);
1255   }
1256 
1257   void append_secondary_free_list() {
1258     _free_list.add_as_head(&_secondary_free_list);
1259   }
1260 
1261   void append_secondary_free_list_if_not_empty_with_lock() {
1262     // If the secondary free list looks empty there's no reason to
1263     // take the lock and then try to append it.
1264     if (!_secondary_free_list.is_empty()) {
1265       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1266       append_secondary_free_list();
1267     }
1268   }
1269 
1270   void old_set_remove(HeapRegion* hr) {
1271     _old_set.remove(hr);
1272   }
1273 
1274   size_t non_young_capacity_bytes() {
1275     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1276   }
1277 
1278   void set_free_regions_coming();
1279   void reset_free_regions_coming();
1280   bool free_regions_coming() { return _free_regions_coming; }
1281   void wait_while_free_regions_coming();
1282 
1283   // Determine whether the given region is one that we are using as an
1284   // old GC alloc region.
1285   bool is_old_gc_alloc_region(HeapRegion* hr) {
1286     return hr == _retained_old_gc_alloc_region;
1287   }
1288 
1289   // Perform a collection of the heap; intended for use in implementing
1290   // "System.gc".  This probably implies as full a collection as the
1291   // "CollectedHeap" supports.
1292   virtual void collect(GCCause::Cause cause);
1293 
1294   // The same as above but assume that the caller holds the Heap_lock.
1295   void collect_locked(GCCause::Cause cause);
1296 
1297   // True iff an evacuation has failed in the most-recent collection.
1298   bool evacuation_failed() { return _evacuation_failed; }
1299 
1300   // It will free a region if it has allocated objects in it that are
1301   // all dead. It calls either free_region() or
1302   // free_humongous_region() depending on the type of the region that
1303   // is passed to it.
1304   void free_region_if_empty(HeapRegion* hr,
1305                             size_t* pre_used,
1306                             FreeRegionList* free_list,
1307                             OldRegionSet* old_proxy_set,
1308                             HumongousRegionSet* humongous_proxy_set,
1309                             HRRSCleanupTask* hrrs_cleanup_task,
1310                             bool par);
1311 
1312   // It appends the free list to the master free list and updates the
1313   // master humongous list according to the contents of the proxy
1314   // list. It also adjusts the total used bytes according to pre_used
1315   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
1316   void update_sets_after_freeing_regions(size_t pre_used,
1317                                        FreeRegionList* free_list,
1318                                        OldRegionSet* old_proxy_set,
1319                                        HumongousRegionSet* humongous_proxy_set,
1320                                        bool par);
1321 
1322   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1323   virtual bool is_in(const void* p) const;
1324 
1325   // Return "TRUE" iff the given object address is within the collection
1326   // set.
1327   inline bool obj_in_cs(oop obj);
1328 
1329   // Return "TRUE" iff the given object address is in the reserved
1330   // region of g1.
1331   bool is_in_g1_reserved(const void* p) const {
1332     return _g1_reserved.contains(p);
1333   }
1334 
1335   // Returns a MemRegion that corresponds to the space that has been
1336   // reserved for the heap
1337   MemRegion g1_reserved() {
1338     return _g1_reserved;
1339   }
1340 
1341   // Returns a MemRegion that corresponds to the space that has been
1342   // committed in the heap
1343   MemRegion g1_committed() {
1344     return _g1_committed;
1345   }
1346 
1347   virtual bool is_in_closed_subset(const void* p) const;
1348 
1349   G1SATBCardTableModRefBS* g1_barrier_set() {
1350     return (G1SATBCardTableModRefBS*) barrier_set();
1351   }
1352 
1353   // This resets the card table to all zeros.  It is used after
1354   // a collection pause which used the card table to claim cards.
1355   void cleanUpCardTable();
1356 
1357   // Iteration functions.
1358 
1359   // Iterate over all the ref-containing fields of all objects, calling
1360   // "cl.do_oop" on each.
1361   virtual void oop_iterate(ExtendedOopClosure* cl);
1362 
1363   // Same as above, restricted to a memory region.
1364   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
1365 
1366   // Iterate over all objects, calling "cl.do_object" on each.
1367   virtual void object_iterate(ObjectClosure* cl);
1368 
1369   virtual void safe_object_iterate(ObjectClosure* cl) {
1370     object_iterate(cl);
1371   }
1372 
1373   // Iterate over all spaces in use in the heap, in ascending address order.
1374   virtual void space_iterate(SpaceClosure* cl);
1375 
1376   // Iterate over heap regions, in address order, terminating the
1377   // iteration early if the "doHeapRegion" method returns "true".
1378   void heap_region_iterate(HeapRegionClosure* blk) const;
1379 
1380   // Return the region with the given index. It assumes the index is valid.
1381   HeapRegion* region_at(uint index) const { return _hrs.at(index); }
1382 
1383   // Divide the heap region sequence into "chunks" of some size (the number
1384   // of regions divided by the number of parallel threads times some
1385   // overpartition factor, currently 4).  Assumes that this will be called
1386   // in parallel by ParallelGCThreads worker threads with discinct worker
1387   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1388   // calls will use the same "claim_value", and that that claim value is
1389   // different from the claim_value of any heap region before the start of
1390   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1391   // attempting to claim the first region in each chunk, and, if
1392   // successful, applying the closure to each region in the chunk (and
1393   // setting the claim value of the second and subsequent regions of the
1394   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1395   // i.e., that a closure never attempt to abort a traversal.
1396   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1397                                        uint worker,
1398                                        uint no_of_par_workers,
1399                                        jint claim_value);
1400 
1401   // It resets all the region claim values to the default.
1402   void reset_heap_region_claim_values();
1403 
1404   // Resets the claim values of regions in the current
1405   // collection set to the default.
1406   void reset_cset_heap_region_claim_values();
1407 
1408 #ifdef ASSERT
1409   bool check_heap_region_claim_values(jint claim_value);
1410 
1411   // Same as the routine above but only checks regions in the
1412   // current collection set.
1413   bool check_cset_heap_region_claim_values(jint claim_value);
1414 #endif // ASSERT
1415 
1416   // Clear the cached cset start regions and (more importantly)
1417   // the time stamps. Called when we reset the GC time stamp.
1418   void clear_cset_start_regions();
1419 
1420   // Given the id of a worker, obtain or calculate a suitable
1421   // starting region for iterating over the current collection set.
1422   HeapRegion* start_cset_region_for_worker(int worker_i);
1423 
1424   // This is a convenience method that is used by the
1425   // HeapRegionIterator classes to calculate the starting region for
1426   // each worker so that they do not all start from the same region.
1427   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
1428 
1429   // Iterate over the regions (if any) in the current collection set.
1430   void collection_set_iterate(HeapRegionClosure* blk);
1431 
1432   // As above but starting from region r
1433   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1434 
1435   // Returns the first (lowest address) compactible space in the heap.
1436   virtual CompactibleSpace* first_compactible_space();
1437 
1438   // A CollectedHeap will contain some number of spaces.  This finds the
1439   // space containing a given address, or else returns NULL.
1440   virtual Space* space_containing(const void* addr) const;
1441 
1442   // A G1CollectedHeap will contain some number of heap regions.  This
1443   // finds the region containing a given address, or else returns NULL.
1444   template <class T>
1445   inline HeapRegion* heap_region_containing(const T addr) const;
1446 
1447   // Like the above, but requires "addr" to be in the heap (to avoid a
1448   // null-check), and unlike the above, may return an continuing humongous
1449   // region.
1450   template <class T>
1451   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1452 
1453   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1454   // each address in the (reserved) heap is a member of exactly
1455   // one block.  The defining characteristic of a block is that it is
1456   // possible to find its size, and thus to progress forward to the next
1457   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1458   // represent Java objects, or they might be free blocks in a
1459   // free-list-based heap (or subheap), as long as the two kinds are
1460   // distinguishable and the size of each is determinable.
1461 
1462   // Returns the address of the start of the "block" that contains the
1463   // address "addr".  We say "blocks" instead of "object" since some heaps
1464   // may not pack objects densely; a chunk may either be an object or a
1465   // non-object.
1466   virtual HeapWord* block_start(const void* addr) const;
1467 
1468   // Requires "addr" to be the start of a chunk, and returns its size.
1469   // "addr + size" is required to be the start of a new chunk, or the end
1470   // of the active area of the heap.
1471   virtual size_t block_size(const HeapWord* addr) const;
1472 
1473   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1474   // the block is an object.
1475   virtual bool block_is_obj(const HeapWord* addr) const;
1476 
1477   // Does this heap support heap inspection? (+PrintClassHistogram)
1478   virtual bool supports_heap_inspection() const { return true; }
1479 
1480   // Section on thread-local allocation buffers (TLABs)
1481   // See CollectedHeap for semantics.
1482 
1483   virtual bool supports_tlab_allocation() const;
1484   virtual size_t tlab_capacity(Thread* thr) const;
1485   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
1486 
1487   // Can a compiler initialize a new object without store barriers?
1488   // This permission only extends from the creation of a new object
1489   // via a TLAB up to the first subsequent safepoint. If such permission
1490   // is granted for this heap type, the compiler promises to call
1491   // defer_store_barrier() below on any slow path allocation of
1492   // a new object for which such initializing store barriers will
1493   // have been elided. G1, like CMS, allows this, but should be
1494   // ready to provide a compensating write barrier as necessary
1495   // if that storage came out of a non-young region. The efficiency
1496   // of this implementation depends crucially on being able to
1497   // answer very efficiently in constant time whether a piece of
1498   // storage in the heap comes from a young region or not.
1499   // See ReduceInitialCardMarks.
1500   virtual bool can_elide_tlab_store_barriers() const {
1501     return true;
1502   }
1503 
1504   virtual bool card_mark_must_follow_store() const {
1505     return true;
1506   }
1507 
1508   bool is_in_young(const oop obj) {
1509     HeapRegion* hr = heap_region_containing(obj);
1510     return hr != NULL && hr->is_young();
1511   }
1512 
1513 #ifdef ASSERT
1514   virtual bool is_in_partial_collection(const void* p);
1515 #endif
1516 
1517   virtual bool is_scavengable(const void* addr);
1518 
1519   // We don't need barriers for initializing stores to objects
1520   // in the young gen: for the SATB pre-barrier, there is no
1521   // pre-value that needs to be remembered; for the remembered-set
1522   // update logging post-barrier, we don't maintain remembered set
1523   // information for young gen objects.
1524   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
1525     return is_in_young(new_obj);
1526   }
1527 
1528   // Returns "true" iff the given word_size is "very large".
1529   static bool isHumongous(size_t word_size) {
1530     // Note this has to be strictly greater-than as the TLABs
1531     // are capped at the humongous thresold and we want to
1532     // ensure that we don't try to allocate a TLAB as
1533     // humongous and that we don't allocate a humongous
1534     // object in a TLAB.
1535     return word_size > _humongous_object_threshold_in_words;
1536   }
1537 
1538   // Update mod union table with the set of dirty cards.
1539   void updateModUnion();
1540 
1541   // Set the mod union bits corresponding to the given memRegion.  Note
1542   // that this is always a safe operation, since it doesn't clear any
1543   // bits.
1544   void markModUnionRange(MemRegion mr);
1545 
1546   // Records the fact that a marking phase is no longer in progress.
1547   void set_marking_complete() {
1548     _mark_in_progress = false;
1549   }
1550   void set_marking_started() {
1551     _mark_in_progress = true;
1552   }
1553   bool mark_in_progress() {
1554     return _mark_in_progress;
1555   }
1556 
1557   // Print the maximum heap capacity.
1558   virtual size_t max_capacity() const;
1559 
1560   virtual jlong millis_since_last_gc();
1561 
1562 
1563   // Convenience function to be used in situations where the heap type can be
1564   // asserted to be this type.
1565   static G1CollectedHeap* heap();
1566 
1567   void set_region_short_lived_locked(HeapRegion* hr);
1568   // add appropriate methods for any other surv rate groups
1569 
1570   YoungList* young_list() { return _young_list; }
1571 
1572   // debugging
1573   bool check_young_list_well_formed() {
1574     return _young_list->check_list_well_formed();
1575   }
1576 
1577   bool check_young_list_empty(bool check_heap,
1578                               bool check_sample = true);
1579 
1580   // *** Stuff related to concurrent marking.  It's not clear to me that so
1581   // many of these need to be public.
1582 
1583   // The functions below are helper functions that a subclass of
1584   // "CollectedHeap" can use in the implementation of its virtual
1585   // functions.
1586   // This performs a concurrent marking of the live objects in a
1587   // bitmap off to the side.
1588   void doConcurrentMark();
1589 
1590   bool isMarkedPrev(oop obj) const;
1591   bool isMarkedNext(oop obj) const;
1592 
1593   // Determine if an object is dead, given the object and also
1594   // the region to which the object belongs. An object is dead
1595   // iff a) it was not allocated since the last mark and b) it
1596   // is not marked.
1597 
1598   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1599     return
1600       !hr->obj_allocated_since_prev_marking(obj) &&
1601       !isMarkedPrev(obj);
1602   }
1603 
1604   // This function returns true when an object has been
1605   // around since the previous marking and hasn't yet
1606   // been marked during this marking.
1607 
1608   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1609     return
1610       !hr->obj_allocated_since_next_marking(obj) &&
1611       !isMarkedNext(obj);
1612   }
1613 
1614   // Determine if an object is dead, given only the object itself.
1615   // This will find the region to which the object belongs and
1616   // then call the region version of the same function.
1617 
1618   // Added if it is NULL it isn't dead.
1619 
1620   bool is_obj_dead(const oop obj) const {
1621     const HeapRegion* hr = heap_region_containing(obj);
1622     if (hr == NULL) {
1623       if (obj == NULL) return false;
1624       else return true;
1625     }
1626     else return is_obj_dead(obj, hr);
1627   }
1628 
1629   bool is_obj_ill(const oop obj) const {
1630     const HeapRegion* hr = heap_region_containing(obj);
1631     if (hr == NULL) {
1632       if (obj == NULL) return false;
1633       else return true;
1634     }
1635     else return is_obj_ill(obj, hr);
1636   }
1637 
1638   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1639   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1640   bool is_marked(oop obj, VerifyOption vo);
1641   const char* top_at_mark_start_str(VerifyOption vo);
1642 
1643   ConcurrentMark* concurrent_mark() const { return _cm; }
1644 
1645   // Refinement
1646 
1647   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1648 
1649   // The dirty cards region list is used to record a subset of regions
1650   // whose cards need clearing. The list if populated during the
1651   // remembered set scanning and drained during the card table
1652   // cleanup. Although the methods are reentrant, population/draining
1653   // phases must not overlap. For synchronization purposes the last
1654   // element on the list points to itself.
1655   HeapRegion* _dirty_cards_region_list;
1656   void push_dirty_cards_region(HeapRegion* hr);
1657   HeapRegion* pop_dirty_cards_region();
1658 
1659   // Optimized nmethod scanning support routines
1660 
1661   // Register the given nmethod with the G1 heap
1662   virtual void register_nmethod(nmethod* nm);
1663 
1664   // Unregister the given nmethod from the G1 heap
1665   virtual void unregister_nmethod(nmethod* nm);
1666 
1667   // Migrate the nmethods in the code root lists of the regions
1668   // in the collection set to regions in to-space. In the event
1669   // of an evacuation failure, nmethods that reference objects
1670   // that were not successfullly evacuated are not migrated.
1671   void migrate_strong_code_roots();
1672 
1673   // During an initial mark pause, mark all the code roots that
1674   // point into regions *not* in the collection set.
1675   void mark_strong_code_roots(uint worker_id);
1676 
1677   // Rebuild the stong code root lists for each region
1678   // after a full GC
1679   void rebuild_strong_code_roots();
1680 
1681   // Verification
1682 
1683   // The following is just to alert the verification code
1684   // that a full collection has occurred and that the
1685   // remembered sets are no longer up to date.
1686   bool _full_collection;
1687   void set_full_collection() { _full_collection = true;}
1688   void clear_full_collection() {_full_collection = false;}
1689   bool full_collection() {return _full_collection;}
1690 
1691   // Perform any cleanup actions necessary before allowing a verification.
1692   virtual void prepare_for_verify();
1693 
1694   // Perform verification.
1695 
1696   // vo == UsePrevMarking  -> use "prev" marking information,
1697   // vo == UseNextMarking -> use "next" marking information
1698   // vo == UseMarkWord    -> use the mark word in the object header
1699   //
1700   // NOTE: Only the "prev" marking information is guaranteed to be
1701   // consistent most of the time, so most calls to this should use
1702   // vo == UsePrevMarking.
1703   // Currently, there is only one case where this is called with
1704   // vo == UseNextMarking, which is to verify the "next" marking
1705   // information at the end of remark.
1706   // Currently there is only one place where this is called with
1707   // vo == UseMarkWord, which is to verify the marking during a
1708   // full GC.
1709   void verify(bool silent, VerifyOption vo);
1710 
1711   // Override; it uses the "prev" marking information
1712   virtual void verify(bool silent);
1713 
1714   // The methods below are here for convenience and dispatch the
1715   // appropriate method depending on value of the given VerifyOption
1716   // parameter. The values for that parameter, and their meanings,
1717   // are the same as those above.
1718 
1719   bool is_obj_dead_cond(const oop obj,
1720                         const HeapRegion* hr,
1721                         const VerifyOption vo) const {
1722     switch (vo) {
1723     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
1724     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
1725     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
1726     default:                            ShouldNotReachHere();
1727     }
1728     return false; // keep some compilers happy
1729   }
1730 
1731   bool is_obj_dead_cond(const oop obj,
1732                         const VerifyOption vo) const {
1733     switch (vo) {
1734     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
1735     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
1736     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
1737     default:                            ShouldNotReachHere();
1738     }
1739     return false; // keep some compilers happy
1740   }
1741 
1742   // Printing
1743 
1744   virtual void print_on(outputStream* st) const;
1745   virtual void print_extended_on(outputStream* st) const;
1746   virtual void print_on_error(outputStream* st) const;
1747 
1748   virtual void print_gc_threads_on(outputStream* st) const;
1749   virtual void gc_threads_do(ThreadClosure* tc) const;
1750 
1751   // Override
1752   void print_tracing_info() const;
1753 
1754   // The following two methods are helpful for debugging RSet issues.
1755   void print_cset_rsets() PRODUCT_RETURN;
1756   void print_all_rsets() PRODUCT_RETURN;
1757 
1758 public:
1759   void stop_conc_gc_threads();
1760 
1761   size_t pending_card_num();
1762   size_t cards_scanned();
1763 
1764 protected:
1765   size_t _max_heap_capacity;
1766 };
1767 
1768 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1769 private:
1770   bool        _retired;
1771 
1772 public:
1773   G1ParGCAllocBuffer(size_t gclab_word_size);
1774 
1775   void set_buf(HeapWord* buf) {
1776     ParGCAllocBuffer::set_buf(buf);
1777     _retired = false;
1778   }
1779 
1780   void retire(bool end_of_gc, bool retain) {
1781     if (_retired)
1782       return;
1783     ParGCAllocBuffer::retire(end_of_gc, retain);
1784     _retired = true;
1785   }
1786 
1787   bool is_retired() {
1788     return _retired;
1789   }
1790 };
1791 
1792 class G1ParGCAllocBufferContainer {
1793 protected:
1794   static int const _priority_max = 2;
1795   G1ParGCAllocBuffer* _priority_buffer[_priority_max];
1796 
1797 public:
1798   G1ParGCAllocBufferContainer(size_t gclab_word_size) {
1799     for (int pr = 0; pr < _priority_max; ++pr) {
1800       _priority_buffer[pr] = new G1ParGCAllocBuffer(gclab_word_size);
1801     }
1802   }
1803 
1804   ~G1ParGCAllocBufferContainer() {
1805     for (int pr = 0; pr < _priority_max; ++pr) {
1806       assert(_priority_buffer[pr]->is_retired(), "alloc buffers should all retire at this point.");
1807       delete _priority_buffer[pr];
1808     }
1809   }
1810 
1811   HeapWord* allocate(size_t word_sz) {
1812     HeapWord* obj;
1813     for (int pr = 0; pr < _priority_max; ++pr) {
1814       obj = _priority_buffer[pr]->allocate(word_sz);
1815       if (obj != NULL) return obj;
1816     }
1817     return obj;
1818   }
1819 
1820   bool contains(void* addr) {
1821     for (int pr = 0; pr < _priority_max; ++pr) {
1822       if (_priority_buffer[pr]->contains(addr)) return true;
1823     }
1824     return false;
1825   }
1826 
1827   void undo_allocation(HeapWord* obj, size_t word_sz) {
1828     bool finish_undo;
1829     for (int pr = 0; pr < _priority_max; ++pr) {
1830       if (_priority_buffer[pr]->contains(obj)) {
1831         _priority_buffer[pr]->undo_allocation(obj, word_sz);
1832         finish_undo = true;
1833       }
1834     }
1835     if (!finish_undo) ShouldNotReachHere();
1836   }
1837 
1838   size_t words_remaining() {
1839     size_t result = 0;
1840     for (int pr = 0; pr < _priority_max; ++pr) {
1841       result += _priority_buffer[pr]->words_remaining();
1842     }
1843     return result;
1844   }
1845 
1846   size_t words_remaining_in_retired_buffer() {
1847     G1ParGCAllocBuffer* retired = _priority_buffer[0];
1848     return retired->words_remaining();
1849   }
1850 
1851   void flush_stats_and_retire(PLABStats* stats, bool end_of_gc, bool retain) {
1852     for (int pr = 0; pr < _priority_max; ++pr) {
1853       _priority_buffer[pr]->flush_stats_and_retire(stats, end_of_gc, retain);
1854     }
1855   }
1856 
1857   void update(bool end_of_gc, bool retain, HeapWord* buf, size_t word_sz) {
1858     G1ParGCAllocBuffer* retired_and_set = _priority_buffer[0];
1859     retired_and_set->retire(end_of_gc, retain);
1860     retired_and_set->set_buf(buf);
1861     retired_and_set->set_word_size(word_sz);
1862     adjust_priority_order();
1863   }
1864 
1865 private:
1866   void adjust_priority_order() {
1867     G1ParGCAllocBuffer* retired_and_set = _priority_buffer[0];
1868 
1869     int last = _priority_max - 1;
1870     for (int pr = 0; pr < last; ++pr) {
1871       _priority_buffer[pr] = _priority_buffer[pr + 1];
1872     }
1873     _priority_buffer[last] = retired_and_set;
1874   }
1875 };
1876 
1877 class G1ParScanThreadState : public StackObj {
1878 protected:
1879   G1CollectedHeap* _g1h;
1880   RefToScanQueue*  _refs;
1881   DirtyCardQueue   _dcq;
1882   G1SATBCardTableModRefBS* _ct_bs;
1883   G1RemSet* _g1_rem;
1884 
1885   G1ParGCAllocBufferContainer  _surviving_alloc_buffer;
1886   G1ParGCAllocBufferContainer  _tenured_alloc_buffer;
1887   G1ParGCAllocBufferContainer* _alloc_buffers[GCAllocPurposeCount];
1888   ageTable            _age_table;
1889 
1890   size_t           _alloc_buffer_waste;
1891   size_t           _undo_waste;
1892 
1893   OopsInHeapRegionClosure*      _evac_failure_cl;
1894   G1ParScanHeapEvacClosure*     _evac_cl;
1895   G1ParScanPartialArrayClosure* _partial_scan_cl;
1896 
1897   int  _hash_seed;
1898   uint _queue_num;
1899 
1900   size_t _term_attempts;
1901 
1902   double _start;
1903   double _start_strong_roots;
1904   double _strong_roots_time;
1905   double _start_term;
1906   double _term_time;
1907 
1908   // Map from young-age-index (0 == not young, 1 is youngest) to
1909   // surviving words. base is what we get back from the malloc call
1910   size_t* _surviving_young_words_base;
1911   // this points into the array, as we use the first few entries for padding
1912   size_t* _surviving_young_words;
1913 
1914 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1915 
1916   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
1917 
1918   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
1919 
1920   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
1921   G1SATBCardTableModRefBS* ctbs()                { return _ct_bs; }
1922 
1923   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
1924     if (!from->is_survivor()) {
1925       _g1_rem->par_write_ref(from, p, tid);
1926     }
1927   }
1928 
1929   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
1930     // If the new value of the field points to the same region or
1931     // is the to-space, we don't need to include it in the Rset updates.
1932     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
1933       size_t card_index = ctbs()->index_for(p);
1934       // If the card hasn't been added to the buffer, do it.
1935       if (ctbs()->mark_card_deferred(card_index)) {
1936         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
1937       }
1938     }
1939   }
1940 
1941 public:
1942   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
1943 
1944   ~G1ParScanThreadState() {
1945     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
1946   }
1947 
1948   RefToScanQueue*   refs()            { return _refs;             }
1949   ageTable*         age_table()       { return &_age_table;       }
1950 
1951   G1ParGCAllocBufferContainer* alloc_buffer(GCAllocPurpose purpose) {
1952     return _alloc_buffers[purpose];
1953   }
1954 
1955   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
1956   size_t undo_waste() const                      { return _undo_waste; }
1957 
1958 #ifdef ASSERT
1959   bool verify_ref(narrowOop* ref) const;
1960   bool verify_ref(oop* ref) const;
1961   bool verify_task(StarTask ref) const;
1962 #endif // ASSERT
1963 
1964   template <class T> void push_on_queue(T* ref) {
1965     assert(verify_ref(ref), "sanity");
1966     refs()->push(ref);
1967   }
1968 
1969   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
1970     if (G1DeferredRSUpdate) {
1971       deferred_rs_update(from, p, tid);
1972     } else {
1973       immediate_rs_update(from, p, tid);
1974     }
1975   }
1976 
1977   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
1978     HeapWord* obj = NULL;
1979     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
1980     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1981       G1ParGCAllocBufferContainer* alloc_buf = alloc_buffer(purpose);
1982 
1983       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1984       if (buf == NULL) return NULL; // Let caller handle allocation failure.
1985 
1986       add_to_alloc_buffer_waste(alloc_buf->words_remaining_in_retired_buffer());
1987       alloc_buf->update(false /* end_of_gc */, false /* retain */, buf, gclab_word_size);
1988 
1989       obj = alloc_buf->allocate(word_sz);
1990       assert(obj != NULL, "buffer was definitely big enough...");
1991     } else {
1992       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
1993     }
1994     return obj;
1995   }
1996 
1997   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
1998     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
1999     if (obj != NULL) return obj;
2000     return allocate_slow(purpose, word_sz);
2001   }
2002 
2003   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
2004     if (alloc_buffer(purpose)->contains(obj)) {
2005       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
2006              "should contain whole object");
2007       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
2008     } else {
2009       CollectedHeap::fill_with_object(obj, word_sz);
2010       add_to_undo_waste(word_sz);
2011     }
2012   }
2013 
2014   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
2015     _evac_failure_cl = evac_failure_cl;
2016   }
2017   OopsInHeapRegionClosure* evac_failure_closure() {
2018     return _evac_failure_cl;
2019   }
2020 
2021   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
2022     _evac_cl = evac_cl;
2023   }
2024 
2025   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
2026     _partial_scan_cl = partial_scan_cl;
2027   }
2028 
2029   int* hash_seed() { return &_hash_seed; }
2030   uint queue_num() { return _queue_num; }
2031 
2032   size_t term_attempts() const  { return _term_attempts; }
2033   void note_term_attempt() { _term_attempts++; }
2034 
2035   void start_strong_roots() {
2036     _start_strong_roots = os::elapsedTime();
2037   }
2038   void end_strong_roots() {
2039     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
2040   }
2041   double strong_roots_time() const { return _strong_roots_time; }
2042 
2043   void start_term_time() {
2044     note_term_attempt();
2045     _start_term = os::elapsedTime();
2046   }
2047   void end_term_time() {
2048     _term_time += (os::elapsedTime() - _start_term);
2049   }
2050   double term_time() const { return _term_time; }
2051 
2052   double elapsed_time() const {
2053     return os::elapsedTime() - _start;
2054   }
2055 
2056   static void
2057     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
2058   void
2059     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
2060 
2061   size_t* surviving_young_words() {
2062     // We add on to hide entry 0 which accumulates surviving words for
2063     // age -1 regions (i.e. non-young ones)
2064     return _surviving_young_words;
2065   }
2066 
2067   void retire_alloc_buffers() {
2068     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2069       size_t waste = _alloc_buffers[ap]->words_remaining();
2070       add_to_alloc_buffer_waste(waste);
2071       _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
2072                                                  true /* end_of_gc */,
2073                                                  false /* retain */);
2074     }
2075   }
2076 
2077   template <class T> void deal_with_reference(T* ref_to_scan) {
2078     if (has_partial_array_mask(ref_to_scan)) {
2079       _partial_scan_cl->do_oop_nv(ref_to_scan);
2080     } else {
2081       // Note: we can use "raw" versions of "region_containing" because
2082       // "obj_to_scan" is definitely in the heap, and is not in a
2083       // humongous region.
2084       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
2085       _evac_cl->set_region(r);
2086       _evac_cl->do_oop_nv(ref_to_scan);
2087     }
2088   }
2089 
2090   void deal_with_reference(StarTask ref) {
2091     assert(verify_task(ref), "sanity");
2092     if (ref.is_narrow()) {
2093       deal_with_reference((narrowOop*)ref);
2094     } else {
2095       deal_with_reference((oop*)ref);
2096     }
2097   }
2098 
2099   void trim_queue();
2100 };
2101 
2102 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP