1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc_implementation/g1/collectionSetChooser.hpp"
  29 #include "gc_implementation/g1/g1MMUTracker.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 
  32 // A G1CollectorPolicy makes policy decisions that determine the
  33 // characteristics of the collector.  Examples include:
  34 //   * choice of collection set.
  35 //   * when to collect.
  36 
  37 class HeapRegion;
  38 class CollectionSetChooser;
  39 class G1GCPhaseTimes;
  40 
  41 // TraceGen0Time collects data on _both_ young and mixed evacuation pauses
  42 // (the latter may contain non-young regions - i.e. regions that are
  43 // technically in Gen1) while TraceGen1Time collects data about full GCs.
  44 class TraceGen0TimeData : public CHeapObj<mtGC> {
  45  private:
  46   unsigned  _young_pause_num;
  47   unsigned  _mixed_pause_num;
  48 
  49   NumberSeq _all_stop_world_times_ms;
  50   NumberSeq _all_yield_times_ms;
  51 
  52   NumberSeq _total;
  53   NumberSeq _other;
  54   NumberSeq _root_region_scan_wait;
  55   NumberSeq _parallel;
  56   NumberSeq _ext_root_scan;
  57   NumberSeq _satb_filtering;
  58   NumberSeq _update_rs;
  59   NumberSeq _scan_rs;
  60   NumberSeq _obj_copy;
  61   NumberSeq _termination;
  62   NumberSeq _parallel_other;
  63   NumberSeq _clear_ct;
  64 
  65   void print_summary(const char* str, const NumberSeq* seq) const;
  66   void print_summary_sd(const char* str, const NumberSeq* seq) const;
  67 
  68 public:
  69    TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
  70   void record_start_collection(double time_to_stop_the_world_ms);
  71   void record_yield_time(double yield_time_ms);
  72   void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
  73   void increment_young_collection_count();
  74   void increment_mixed_collection_count();
  75   void print() const;
  76 };
  77 
  78 class TraceGen1TimeData : public CHeapObj<mtGC> {
  79  private:
  80   NumberSeq _all_full_gc_times;
  81 
  82  public:
  83   void record_full_collection(double full_gc_time_ms);
  84   void print() const;
  85 };
  86 
  87 // There are three command line options related to the young gen size:
  88 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
  89 // just a short form for NewSize==MaxNewSize). G1 will use its internal
  90 // heuristics to calculate the actual young gen size, so these options
  91 // basically only limit the range within which G1 can pick a young gen
  92 // size. Also, these are general options taking byte sizes. G1 will
  93 // internally work with a number of regions instead. So, some rounding
  94 // will occur.
  95 //
  96 // If nothing related to the the young gen size is set on the command
  97 // line we should allow the young gen to be between G1NewSizePercent
  98 // and G1MaxNewSizePercent of the heap size. This means that every time
  99 // the heap size changes, the limits for the young gen size will be
 100 // recalculated.
 101 //
 102 // If only -XX:NewSize is set we should use the specified value as the
 103 // minimum size for young gen. Still using G1MaxNewSizePercent of the
 104 // heap as maximum.
 105 //
 106 // If only -XX:MaxNewSize is set we should use the specified value as the
 107 // maximum size for young gen. Still using G1NewSizePercent of the heap
 108 // as minimum.
 109 //
 110 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
 111 // No updates when the heap size changes. There is a special case when
 112 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
 113 // different heuristic for calculating the collection set when we do mixed
 114 // collection.
 115 //
 116 // If only -XX:NewRatio is set we should use the specified ratio of the heap
 117 // as both min and max. This will be interpreted as "fixed" just like the
 118 // NewSize==MaxNewSize case above. But we will update the min and max
 119 // everytime the heap size changes.
 120 //
 121 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
 122 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
 123 class G1YoungGenSizer : public CHeapObj<mtGC> {
 124 private:
 125   enum SizerKind {
 126     SizerDefaults,
 127     SizerNewSizeOnly,
 128     SizerMaxNewSizeOnly,
 129     SizerMaxAndNewSize,
 130     SizerNewRatio
 131   };
 132   SizerKind _sizer_kind;
 133   uint _min_desired_young_length;
 134   uint _max_desired_young_length;
 135   bool _adaptive_size;
 136   uint calculate_default_min_length(uint new_number_of_heap_regions);
 137   uint calculate_default_max_length(uint new_number_of_heap_regions);
 138 
 139 public:
 140   G1YoungGenSizer();
 141   void heap_size_changed(uint new_number_of_heap_regions);
 142   uint min_desired_young_length() {
 143     return _min_desired_young_length;
 144   }
 145   uint max_desired_young_length() {
 146     return _max_desired_young_length;
 147   }
 148   bool adaptive_young_list_length() {
 149     return _adaptive_size;
 150   }
 151 };
 152 
 153 class G1CollectorPolicy: public CollectorPolicy {
 154 private:
 155   // either equal to the number of parallel threads, if ParallelGCThreads
 156   // has been set, or 1 otherwise
 157   int _parallel_gc_threads;
 158 
 159   // The number of GC threads currently active.
 160   uintx _no_of_gc_threads;
 161 
 162   enum SomePrivateConstants {
 163     NumPrevPausesForHeuristics = 10
 164   };
 165 
 166   G1MMUTracker* _mmu_tracker;
 167 
 168   void initialize_flags();
 169 
 170   void initialize_all() {
 171     initialize_flags();
 172     initialize_size_info();
 173   }
 174 
 175   CollectionSetChooser* _collectionSetChooser;
 176 
 177   double _full_collection_start_sec;
 178   uint   _cur_collection_pause_used_regions_at_start;
 179 
 180   // These exclude marking times.
 181   TruncatedSeq* _recent_gc_times_ms;
 182 
 183   TruncatedSeq* _concurrent_mark_remark_times_ms;
 184   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 185 
 186   TraceGen0TimeData _trace_gen0_time_data;
 187   TraceGen1TimeData _trace_gen1_time_data;
 188 
 189   double _stop_world_start;
 190 
 191   // indicates whether we are in young or mixed GC mode
 192   bool _gcs_are_young;
 193 
 194   uint _young_list_target_length;
 195   uint _young_list_fixed_length;
 196 
 197   // The max number of regions we can extend the eden by while the GC
 198   // locker is active. This should be >= _young_list_target_length;
 199   uint _young_list_max_length;
 200 
 201   bool                  _last_gc_was_young;
 202 
 203   bool                  _during_marking;
 204   bool                  _in_marking_window;
 205   bool                  _in_marking_window_im;
 206 
 207   SurvRateGroup*        _short_lived_surv_rate_group;
 208   SurvRateGroup*        _survivor_surv_rate_group;
 209   // add here any more surv rate groups
 210 
 211   double                _gc_overhead_perc;
 212 
 213   double _reserve_factor;
 214   uint _reserve_regions;
 215 
 216   bool during_marking() {
 217     return _during_marking;
 218   }
 219 
 220   enum PredictionConstants {
 221     TruncatedSeqLength = 10
 222   };
 223 
 224   TruncatedSeq* _alloc_rate_ms_seq;
 225   double        _prev_collection_pause_end_ms;
 226 
 227   TruncatedSeq* _rs_length_diff_seq;
 228   TruncatedSeq* _cost_per_card_ms_seq;
 229   TruncatedSeq* _young_cards_per_entry_ratio_seq;
 230   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
 231   TruncatedSeq* _cost_per_entry_ms_seq;
 232   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
 233   TruncatedSeq* _cost_per_byte_ms_seq;
 234   TruncatedSeq* _constant_other_time_ms_seq;
 235   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 236   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 237 
 238   TruncatedSeq* _pending_cards_seq;
 239   TruncatedSeq* _rs_lengths_seq;
 240 
 241   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 242 
 243   G1YoungGenSizer* _young_gen_sizer;
 244 
 245   uint _eden_cset_region_length;
 246   uint _survivor_cset_region_length;
 247   uint _old_cset_region_length;
 248 
 249   void init_cset_region_lengths(uint eden_cset_region_length,
 250                                 uint survivor_cset_region_length);
 251 
 252   uint eden_cset_region_length()     { return _eden_cset_region_length;     }
 253   uint survivor_cset_region_length() { return _survivor_cset_region_length; }
 254   uint old_cset_region_length()      { return _old_cset_region_length;      }
 255 
 256   uint _free_regions_at_end_of_collection;
 257 
 258   size_t _recorded_rs_lengths;
 259   size_t _max_rs_lengths;
 260   double _sigma;
 261 
 262   size_t _rs_lengths_prediction;
 263 
 264   double sigma() { return _sigma; }
 265 
 266   // A function that prevents us putting too much stock in small sample
 267   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 268   // of samples.  5 or more samples yields one; fewer scales linearly from
 269   // 2.0 at 1 sample to 1.0 at 5.
 270   double confidence_factor(int samples) {
 271     if (samples > 4) return 1.0;
 272     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 273   }
 274 
 275   double get_new_neg_prediction(TruncatedSeq* seq) {
 276     return seq->davg() - sigma() * seq->dsd();
 277   }
 278 
 279 #ifndef PRODUCT
 280   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 281 #endif // PRODUCT
 282 
 283   void adjust_concurrent_refinement(double update_rs_time,
 284                                     double update_rs_processed_buffers,
 285                                     double goal_ms);
 286 
 287   uintx no_of_gc_threads() { return _no_of_gc_threads; }
 288   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
 289 
 290   double _pause_time_target_ms;
 291 
 292   size_t _pending_cards;
 293 
 294 public:
 295   // Accessors
 296 
 297   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
 298     hr->set_young();
 299     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 300     hr->set_young_index_in_cset(young_index_in_cset);
 301   }
 302 
 303   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
 304     assert(hr->is_young() && hr->is_survivor(), "pre-condition");
 305     hr->install_surv_rate_group(_survivor_surv_rate_group);
 306     hr->set_young_index_in_cset(young_index_in_cset);
 307   }
 308 
 309 #ifndef PRODUCT
 310   bool verify_young_ages();
 311 #endif // PRODUCT
 312 
 313   double get_new_prediction(TruncatedSeq* seq) {
 314     return MAX2(seq->davg() + sigma() * seq->dsd(),
 315                 seq->davg() * confidence_factor(seq->num()));
 316   }
 317 
 318   void record_max_rs_lengths(size_t rs_lengths) {
 319     _max_rs_lengths = rs_lengths;
 320   }
 321 
 322   size_t predict_rs_length_diff() {
 323     return (size_t) get_new_prediction(_rs_length_diff_seq);
 324   }
 325 
 326   double predict_alloc_rate_ms() {
 327     return get_new_prediction(_alloc_rate_ms_seq);
 328   }
 329 
 330   double predict_cost_per_card_ms() {
 331     return get_new_prediction(_cost_per_card_ms_seq);
 332   }
 333 
 334   double predict_rs_update_time_ms(size_t pending_cards) {
 335     return (double) pending_cards * predict_cost_per_card_ms();
 336   }
 337 
 338   double predict_young_cards_per_entry_ratio() {
 339     return get_new_prediction(_young_cards_per_entry_ratio_seq);
 340   }
 341 
 342   double predict_mixed_cards_per_entry_ratio() {
 343     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
 344       return predict_young_cards_per_entry_ratio();
 345     } else {
 346       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
 347     }
 348   }
 349 
 350   size_t predict_young_card_num(size_t rs_length) {
 351     return (size_t) ((double) rs_length *
 352                      predict_young_cards_per_entry_ratio());
 353   }
 354 
 355   size_t predict_non_young_card_num(size_t rs_length) {
 356     return (size_t) ((double) rs_length *
 357                      predict_mixed_cards_per_entry_ratio());
 358   }
 359 
 360   double predict_rs_scan_time_ms(size_t card_num) {
 361     if (gcs_are_young()) {
 362       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 363     } else {
 364       return predict_mixed_rs_scan_time_ms(card_num);
 365     }
 366   }
 367 
 368   double predict_mixed_rs_scan_time_ms(size_t card_num) {
 369     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
 370       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 371     } else {
 372       return (double) (card_num *
 373                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
 374     }
 375   }
 376 
 377   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 378     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
 379       return (1.1 * (double) bytes_to_copy) *
 380               get_new_prediction(_cost_per_byte_ms_seq);
 381     } else {
 382       return (double) bytes_to_copy *
 383              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 384     }
 385   }
 386 
 387   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 388     if (_in_marking_window && !_in_marking_window_im) {
 389       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 390     } else {
 391       return (double) bytes_to_copy *
 392               get_new_prediction(_cost_per_byte_ms_seq);
 393     }
 394   }
 395 
 396   double predict_constant_other_time_ms() {
 397     return get_new_prediction(_constant_other_time_ms_seq);
 398   }
 399 
 400   double predict_young_other_time_ms(size_t young_num) {
 401     return (double) young_num *
 402            get_new_prediction(_young_other_cost_per_region_ms_seq);
 403   }
 404 
 405   double predict_non_young_other_time_ms(size_t non_young_num) {
 406     return (double) non_young_num *
 407            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 408   }
 409 
 410   double predict_base_elapsed_time_ms(size_t pending_cards);
 411   double predict_base_elapsed_time_ms(size_t pending_cards,
 412                                       size_t scanned_cards);
 413   size_t predict_bytes_to_copy(HeapRegion* hr);
 414   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
 415 
 416   void set_recorded_rs_lengths(size_t rs_lengths);
 417 
 418   uint cset_region_length()       { return young_cset_region_length() +
 419                                            old_cset_region_length(); }
 420   uint young_cset_region_length() { return eden_cset_region_length() +
 421                                            survivor_cset_region_length(); }
 422 
 423   double predict_survivor_regions_evac_time();
 424 
 425   void cset_regions_freed() {
 426     bool propagate = _last_gc_was_young && !_in_marking_window;
 427     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 428     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 429     // also call it on any more surv rate groups
 430   }
 431 
 432   G1MMUTracker* mmu_tracker() {
 433     return _mmu_tracker;
 434   }
 435 
 436   double max_pause_time_ms() {
 437     return _mmu_tracker->max_gc_time() * 1000.0;
 438   }
 439 
 440   double predict_remark_time_ms() {
 441     return get_new_prediction(_concurrent_mark_remark_times_ms);
 442   }
 443 
 444   double predict_cleanup_time_ms() {
 445     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 446   }
 447 
 448   // Returns an estimate of the survival rate of the region at yg-age
 449   // "yg_age".
 450   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 451     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 452     if (seq->num() == 0)
 453       gclog_or_tty->print("BARF! age is %d", age);
 454     guarantee( seq->num() > 0, "invariant" );
 455     double pred = get_new_prediction(seq);
 456     if (pred > 1.0)
 457       pred = 1.0;
 458     return pred;
 459   }
 460 
 461   double predict_yg_surv_rate(int age) {
 462     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 463   }
 464 
 465   double accum_yg_surv_rate_pred(int age) {
 466     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 467   }
 468 
 469 private:
 470   // Statistics kept per GC stoppage, pause or full.
 471   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 472 
 473   // Add a new GC of the given duration and end time to the record.
 474   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 475 
 476   // The head of the list (via "next_in_collection_set()") representing the
 477   // current collection set. Set from the incrementally built collection
 478   // set at the start of the pause.
 479   HeapRegion* _collection_set;
 480 
 481   // The number of bytes in the collection set before the pause. Set from
 482   // the incrementally built collection set at the start of an evacuation
 483   // pause, and incremented in finalize_cset() when adding old regions
 484   // (if any) to the collection set.
 485   size_t _collection_set_bytes_used_before;
 486 
 487   // The number of bytes copied during the GC.
 488   size_t _bytes_copied_during_gc;
 489 
 490   // The associated information that is maintained while the incremental
 491   // collection set is being built with young regions. Used to populate
 492   // the recorded info for the evacuation pause.
 493 
 494   enum CSetBuildType {
 495     Active,             // We are actively building the collection set
 496     Inactive            // We are not actively building the collection set
 497   };
 498 
 499   CSetBuildType _inc_cset_build_state;
 500 
 501   // The head of the incrementally built collection set.
 502   HeapRegion* _inc_cset_head;
 503 
 504   // The tail of the incrementally built collection set.
 505   HeapRegion* _inc_cset_tail;
 506 
 507   // The number of bytes in the incrementally built collection set.
 508   // Used to set _collection_set_bytes_used_before at the start of
 509   // an evacuation pause.
 510   size_t _inc_cset_bytes_used_before;
 511 
 512   // Used to record the highest end of heap region in collection set
 513   HeapWord* _inc_cset_max_finger;
 514 
 515   // The RSet lengths recorded for regions in the CSet. It is updated
 516   // by the thread that adds a new region to the CSet. We assume that
 517   // only one thread can be allocating a new CSet region (currently,
 518   // it does so after taking the Heap_lock) hence no need to
 519   // synchronize updates to this field.
 520   size_t _inc_cset_recorded_rs_lengths;
 521 
 522   // A concurrent refinement thread periodcially samples the young
 523   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
 524   // the RSets grow. Instead of having to syncronize updates to that
 525   // field we accumulate them in this field and add it to
 526   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
 527   ssize_t _inc_cset_recorded_rs_lengths_diffs;
 528 
 529   // The predicted elapsed time it will take to collect the regions in
 530   // the CSet. This is updated by the thread that adds a new region to
 531   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
 532   // MT-safety assumptions.
 533   double _inc_cset_predicted_elapsed_time_ms;
 534 
 535   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
 536   double _inc_cset_predicted_elapsed_time_ms_diffs;
 537 
 538   // Stash a pointer to the g1 heap.
 539   G1CollectedHeap* _g1;
 540 
 541   G1GCPhaseTimes* _phase_times;
 542 
 543   // The ratio of gc time to elapsed time, computed over recent pauses.
 544   double _recent_avg_pause_time_ratio;
 545 
 546   double recent_avg_pause_time_ratio() {
 547     return _recent_avg_pause_time_ratio;
 548   }
 549 
 550   // At the end of a pause we check the heap occupancy and we decide
 551   // whether we will start a marking cycle during the next pause. If
 552   // we decide that we want to do that, we will set this parameter to
 553   // true. So, this parameter will stay true between the end of a
 554   // pause and the beginning of a subsequent pause (not necessarily
 555   // the next one, see the comments on the next field) when we decide
 556   // that we will indeed start a marking cycle and do the initial-mark
 557   // work.
 558   volatile bool _initiate_conc_mark_if_possible;
 559 
 560   // If initiate_conc_mark_if_possible() is set at the beginning of a
 561   // pause, it is a suggestion that the pause should start a marking
 562   // cycle by doing the initial-mark work. However, it is possible
 563   // that the concurrent marking thread is still finishing up the
 564   // previous marking cycle (e.g., clearing the next marking
 565   // bitmap). If that is the case we cannot start a new cycle and
 566   // we'll have to wait for the concurrent marking thread to finish
 567   // what it is doing. In this case we will postpone the marking cycle
 568   // initiation decision for the next pause. When we eventually decide
 569   // to start a cycle, we will set _during_initial_mark_pause which
 570   // will stay true until the end of the initial-mark pause and it's
 571   // the condition that indicates that a pause is doing the
 572   // initial-mark work.
 573   volatile bool _during_initial_mark_pause;
 574 
 575   bool _last_young_gc;
 576 
 577   // This set of variables tracks the collector efficiency, in order to
 578   // determine whether we should initiate a new marking.
 579   double _cur_mark_stop_world_time_ms;
 580   double _mark_remark_start_sec;
 581   double _mark_cleanup_start_sec;
 582 
 583   // Update the young list target length either by setting it to the
 584   // desired fixed value or by calculating it using G1's pause
 585   // prediction model. If no rs_lengths parameter is passed, predict
 586   // the RS lengths using the prediction model, otherwise use the
 587   // given rs_lengths as the prediction.
 588   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
 589 
 590   // Calculate and return the minimum desired young list target
 591   // length. This is the minimum desired young list length according
 592   // to the user's inputs.
 593   uint calculate_young_list_desired_min_length(uint base_min_length);
 594 
 595   // Calculate and return the maximum desired young list target
 596   // length. This is the maximum desired young list length according
 597   // to the user's inputs.
 598   uint calculate_young_list_desired_max_length();
 599 
 600   // Calculate and return the maximum young list target length that
 601   // can fit into the pause time goal. The parameters are: rs_lengths
 602   // represent the prediction of how large the young RSet lengths will
 603   // be, base_min_length is the alreay existing number of regions in
 604   // the young list, min_length and max_length are the desired min and
 605   // max young list length according to the user's inputs.
 606   uint calculate_young_list_target_length(size_t rs_lengths,
 607                                           uint base_min_length,
 608                                           uint desired_min_length,
 609                                           uint desired_max_length);
 610 
 611   // Check whether a given young length (young_length) fits into the
 612   // given target pause time and whether the prediction for the amount
 613   // of objects to be copied for the given length will fit into the
 614   // given free space (expressed by base_free_regions).  It is used by
 615   // calculate_young_list_target_length().
 616   bool predict_will_fit(uint young_length, double base_time_ms,
 617                         uint base_free_regions, double target_pause_time_ms);
 618 
 619   // Calculate the minimum number of old regions we'll add to the CSet
 620   // during a mixed GC.
 621   uint calc_min_old_cset_length();
 622 
 623   // Calculate the maximum number of old regions we'll add to the CSet
 624   // during a mixed GC.
 625   uint calc_max_old_cset_length();
 626 
 627   // Returns the given amount of uncollected reclaimable space
 628   // as a percentage of the current heap capacity.
 629   double reclaimable_bytes_perc(size_t reclaimable_bytes);
 630 
 631 public:
 632 
 633   G1CollectorPolicy();
 634 
 635   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 636 
 637   virtual CollectorPolicy::Name kind() {
 638     return CollectorPolicy::G1CollectorPolicyKind;
 639   }
 640 
 641   G1GCPhaseTimes* phase_times() const { return _phase_times; }
 642 
 643   // Check the current value of the young list RSet lengths and
 644   // compare it against the last prediction. If the current value is
 645   // higher, recalculate the young list target length prediction.
 646   void revise_young_list_target_length_if_necessary();
 647 
 648   // This should be called after the heap is resized.
 649   void record_new_heap_size(uint new_number_of_regions);
 650 
 651   void init();
 652 
 653   // Create jstat counters for the policy.
 654   virtual void initialize_gc_policy_counters();
 655 
 656   virtual HeapWord* mem_allocate_work(size_t size,
 657                                       bool is_tlab,
 658                                       bool* gc_overhead_limit_was_exceeded);
 659 
 660   // This method controls how a collector handles one or more
 661   // of its generations being fully allocated.
 662   virtual HeapWord* satisfy_failed_allocation(size_t size,
 663                                               bool is_tlab);
 664 
 665   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 666 
 667   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
 668 
 669   // Record the start and end of an evacuation pause.
 670   void record_collection_pause_start(double start_time_sec);
 671   void record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info);
 672 
 673   // Record the start and end of a full collection.
 674   void record_full_collection_start();
 675   void record_full_collection_end();
 676 
 677   // Must currently be called while the world is stopped.
 678   void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
 679 
 680   // Record start and end of remark.
 681   void record_concurrent_mark_remark_start();
 682   void record_concurrent_mark_remark_end();
 683 
 684   // Record start, end, and completion of cleanup.
 685   void record_concurrent_mark_cleanup_start();
 686   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
 687   void record_concurrent_mark_cleanup_completed();
 688 
 689   // Records the information about the heap size for reporting in
 690   // print_detailed_heap_transition
 691   void record_heap_size_info_at_start(bool full);
 692 
 693   // Print heap sizing transition (with less and more detail).
 694   void print_heap_transition();
 695   void print_detailed_heap_transition(bool full = false);
 696 
 697   void record_stop_world_start();
 698   void record_concurrent_pause();
 699 
 700   // Record how much space we copied during a GC. This is typically
 701   // called when a GC alloc region is being retired.
 702   void record_bytes_copied_during_gc(size_t bytes) {
 703     _bytes_copied_during_gc += bytes;
 704   }
 705 
 706   // The amount of space we copied during a GC.
 707   size_t bytes_copied_during_gc() {
 708     return _bytes_copied_during_gc;
 709   }
 710 
 711   // Determine whether there are candidate regions so that the
 712   // next GC should be mixed. The two action strings are used
 713   // in the ergo output when the method returns true or false.
 714   bool next_gc_should_be_mixed(const char* true_action_str,
 715                                const char* false_action_str);
 716 
 717   // Choose a new collection set.  Marks the chosen regions as being
 718   // "in_collection_set", and links them together.  The head and number of
 719   // the collection set are available via access methods.
 720   void finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info);
 721 
 722   // The head of the list (via "next_in_collection_set()") representing the
 723   // current collection set.
 724   HeapRegion* collection_set() { return _collection_set; }
 725 
 726   void clear_collection_set() { _collection_set = NULL; }
 727 
 728   // Add old region "hr" to the CSet.
 729   void add_old_region_to_cset(HeapRegion* hr);
 730 
 731   // Incremental CSet Support
 732 
 733   // The head of the incrementally built collection set.
 734   HeapRegion* inc_cset_head() { return _inc_cset_head; }
 735 
 736   // The tail of the incrementally built collection set.
 737   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
 738 
 739   // Initialize incremental collection set info.
 740   void start_incremental_cset_building();
 741 
 742   // Perform any final calculations on the incremental CSet fields
 743   // before we can use them.
 744   void finalize_incremental_cset_building();
 745 
 746   void clear_incremental_cset() {
 747     _inc_cset_head = NULL;
 748     _inc_cset_tail = NULL;
 749   }
 750 
 751   // Stop adding regions to the incremental collection set
 752   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
 753 
 754   // Add information about hr to the aggregated information for the
 755   // incrementally built collection set.
 756   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
 757 
 758   // Update information about hr in the aggregated information for
 759   // the incrementally built collection set.
 760   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
 761 
 762 private:
 763   // Update the incremental cset information when adding a region
 764   // (should not be called directly).
 765   void add_region_to_incremental_cset_common(HeapRegion* hr);
 766 
 767 public:
 768   // Add hr to the LHS of the incremental collection set.
 769   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
 770 
 771   // Add hr to the RHS of the incremental collection set.
 772   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
 773 
 774 #ifndef PRODUCT
 775   void print_collection_set(HeapRegion* list_head, outputStream* st);
 776 #endif // !PRODUCT
 777 
 778   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
 779   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
 780   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
 781 
 782   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
 783   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
 784   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
 785 
 786   // This sets the initiate_conc_mark_if_possible() flag to start a
 787   // new cycle, as long as we are not already in one. It's best if it
 788   // is called during a safepoint when the test whether a cycle is in
 789   // progress or not is stable.
 790   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 791 
 792   // This is called at the very beginning of an evacuation pause (it
 793   // has to be the first thing that the pause does). If
 794   // initiate_conc_mark_if_possible() is true, and the concurrent
 795   // marking thread has completed its work during the previous cycle,
 796   // it will set during_initial_mark_pause() to so that the pause does
 797   // the initial-mark work and start a marking cycle.
 798   void decide_on_conc_mark_initiation();
 799 
 800   // If an expansion would be appropriate, because recent GC overhead had
 801   // exceeded the desired limit, return an amount to expand by.
 802   size_t expansion_amount();
 803 
 804   // Print tracing information.
 805   void print_tracing_info() const;
 806 
 807   // Print stats on young survival ratio
 808   void print_yg_surv_rate_info() const;
 809 
 810   void finished_recalculating_age_indexes(bool is_survivors) {
 811     if (is_survivors) {
 812       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 813     } else {
 814       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 815     }
 816     // do that for any other surv rate groups
 817   }
 818 
 819   bool is_young_list_full() {
 820     uint young_list_length = _g1->young_list()->length();
 821     uint young_list_target_length = _young_list_target_length;
 822     return young_list_length >= young_list_target_length;
 823   }
 824 
 825   bool can_expand_young_list() {
 826     uint young_list_length = _g1->young_list()->length();
 827     uint young_list_max_length = _young_list_max_length;
 828     return young_list_length < young_list_max_length;
 829   }
 830 
 831   uint young_list_max_length() {
 832     return _young_list_max_length;
 833   }
 834 
 835   bool gcs_are_young() {
 836     return _gcs_are_young;
 837   }
 838   void set_gcs_are_young(bool gcs_are_young) {
 839     _gcs_are_young = gcs_are_young;
 840   }
 841 
 842   bool adaptive_young_list_length() {
 843     return _young_gen_sizer->adaptive_young_list_length();
 844   }
 845 
 846 private:
 847   //
 848   // Survivor regions policy.
 849   //
 850 
 851   // Current tenuring threshold, set to 0 if the collector reaches the
 852   // maximum amount of survivors regions.
 853   uint _tenuring_threshold;
 854 
 855   // The limit on the number of regions allocated for survivors.
 856   uint _max_survivor_regions;
 857 
 858   // For reporting purposes.
 859   // The value of _heap_bytes_before_gc is also used to calculate
 860   // the cost of copying.
 861 
 862   size_t _eden_used_bytes_before_gc;         // Eden occupancy before GC
 863   size_t _survivor_used_bytes_before_gc;     // Survivor occupancy before GC
 864   size_t _heap_used_bytes_before_gc;         // Heap occupancy before GC
 865   size_t _metaspace_used_bytes_before_gc;    // Metaspace occupancy before GC
 866 
 867   size_t _eden_capacity_bytes_before_gc;     // Eden capacity before GC
 868   size_t _heap_capacity_bytes_before_gc;     // Heap capacity before GC
 869 
 870   // The amount of survivor regions after a collection.
 871   uint _recorded_survivor_regions;
 872   // List of survivor regions.
 873   HeapRegion* _recorded_survivor_head;
 874   HeapRegion* _recorded_survivor_tail;
 875 
 876   ageTable _survivors_age_table;
 877 
 878 public:
 879   uint tenuring_threshold() const { return _tenuring_threshold; }
 880 
 881   inline GCAllocPurpose
 882     evacuation_destination(HeapRegion* src_region, uint age, size_t word_sz) {
 883       if (age < _tenuring_threshold && src_region->is_young()) {
 884         return GCAllocForSurvived;
 885       } else {
 886         return GCAllocForTenured;
 887       }
 888   }
 889 
 890   inline bool track_object_age(GCAllocPurpose purpose) {
 891     return purpose == GCAllocForSurvived;
 892   }
 893 
 894   static const uint REGIONS_UNLIMITED = (uint) -1;
 895 
 896   uint max_regions(int purpose);
 897 
 898   // The limit on regions for a particular purpose is reached.
 899   void note_alloc_region_limit_reached(int purpose) {
 900     if (purpose == GCAllocForSurvived) {
 901       _tenuring_threshold = 0;
 902     }
 903   }
 904 
 905   void note_start_adding_survivor_regions() {
 906     _survivor_surv_rate_group->start_adding_regions();
 907   }
 908 
 909   void note_stop_adding_survivor_regions() {
 910     _survivor_surv_rate_group->stop_adding_regions();
 911   }
 912 
 913   void record_survivor_regions(uint regions,
 914                                HeapRegion* head,
 915                                HeapRegion* tail) {
 916     _recorded_survivor_regions = regions;
 917     _recorded_survivor_head    = head;
 918     _recorded_survivor_tail    = tail;
 919   }
 920 
 921   uint recorded_survivor_regions() {
 922     return _recorded_survivor_regions;
 923   }
 924 
 925   void record_thread_age_table(ageTable* age_table) {
 926     _survivors_age_table.merge_par(age_table);
 927   }
 928 
 929   void update_max_gc_locker_expansion();
 930 
 931   // Calculates survivor space parameters.
 932   void update_survivors_policy();
 933 
 934 };
 935 
 936 // This should move to some place more general...
 937 
 938 // If we have "n" measurements, and we've kept track of their "sum" and the
 939 // "sum_of_squares" of the measurements, this returns the variance of the
 940 // sequence.
 941 inline double variance(int n, double sum_of_squares, double sum) {
 942   double n_d = (double)n;
 943   double avg = sum/n_d;
 944   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
 945 }
 946 
 947 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP