1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc_implementation/shared/gcHeapSummary.hpp"
  28 #include "gc_implementation/shared/gcTrace.hpp"
  29 #include "gc_implementation/shared/gcTraceTime.hpp"
  30 #include "gc_implementation/shared/gcWhen.hpp"
  31 #include "gc_implementation/shared/vmGCOperations.hpp"
  32 #include "gc_interface/allocTracer.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "gc_interface/collectedHeap.inline.hpp"
  35 #include "memory/metaspace.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/instanceMirrorKlass.hpp"
  38 #include "runtime/init.hpp"
  39 #include "runtime/thread.inline.hpp"
  40 #include "services/heapDumper.hpp"
  41 
  42 
  43 #ifdef ASSERT
  44 int CollectedHeap::_fire_out_of_memory_count = 0;
  45 #endif
  46 
  47 size_t CollectedHeap::_filler_array_max_size = 0;
  48 
  49 template <>
  50 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
  51   st->print_cr("GC heap %s", m.is_before ? "before" : "after");
  52   st->print_raw(m);
  53 }
  54 
  55 void GCHeapLog::log_heap(bool before) {
  56   if (!should_log()) {
  57     return;
  58   }
  59 
  60   double timestamp = fetch_timestamp();
  61   MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
  62   int index = compute_log_index();
  63   _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
  64   _records[index].timestamp = timestamp;
  65   _records[index].data.is_before = before;
  66   stringStream st(_records[index].data.buffer(), _records[index].data.size());
  67   if (before) {
  68     Universe::print_heap_before_gc(&st, true);
  69   } else {
  70     Universe::print_heap_after_gc(&st, true);
  71   }
  72 }
  73 
  74 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
  75   size_t capacity_in_words = capacity() / HeapWordSize;
  76 
  77   return VirtualSpaceSummary(
  78     reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end());
  79 }
  80 
  81 GCHeapSummary CollectedHeap::create_heap_summary() {
  82   VirtualSpaceSummary heap_space = create_heap_space_summary();
  83   return GCHeapSummary(heap_space, used());
  84 }
  85 
  86 MetaspaceSummary CollectedHeap::create_metaspace_summary() {
  87   const MetaspaceSizes meta_space(
  88       MetaspaceAux::allocated_capacity_bytes(),
  89       MetaspaceAux::allocated_used_bytes(),
  90       MetaspaceAux::reserved_bytes());
  91   const MetaspaceSizes data_space(
  92       MetaspaceAux::allocated_capacity_bytes(Metaspace::NonClassType),
  93       MetaspaceAux::allocated_used_bytes(Metaspace::NonClassType),
  94       MetaspaceAux::reserved_bytes(Metaspace::NonClassType));
  95   const MetaspaceSizes class_space(
  96       MetaspaceAux::allocated_capacity_bytes(Metaspace::ClassType),
  97       MetaspaceAux::allocated_used_bytes(Metaspace::ClassType),
  98       MetaspaceAux::reserved_bytes(Metaspace::ClassType));
  99 
 100   return MetaspaceSummary(meta_space, data_space, class_space);
 101 }
 102 
 103 void CollectedHeap::print_heap_before_gc() {
 104   if (PrintHeapAtGC) {
 105     Universe::print_heap_before_gc();
 106   }
 107   if (_gc_heap_log != NULL) {
 108     _gc_heap_log->log_heap_before();
 109   }
 110 }
 111 
 112 void CollectedHeap::print_heap_after_gc() {
 113   if (PrintHeapAtGC) {
 114     Universe::print_heap_after_gc();
 115   }
 116   if (_gc_heap_log != NULL) {
 117     _gc_heap_log->log_heap_after();
 118   }
 119 }
 120 
 121 void CollectedHeap::register_nmethod(nmethod* nm) {
 122   assert_locked_or_safepoint(CodeCache_lock);
 123 }
 124 
 125 void CollectedHeap::unregister_nmethod(nmethod* nm) {
 126   assert_locked_or_safepoint(CodeCache_lock);
 127 }
 128 
 129 void CollectedHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
 130   const GCHeapSummary& heap_summary = create_heap_summary();
 131   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 132   gc_tracer->report_gc_heap_summary(when, heap_summary, metaspace_summary);
 133 }
 134 
 135 void CollectedHeap::trace_heap_before_gc(GCTracer* gc_tracer) {
 136   trace_heap(GCWhen::BeforeGC, gc_tracer);
 137 }
 138 
 139 void CollectedHeap::trace_heap_after_gc(GCTracer* gc_tracer) {
 140   trace_heap(GCWhen::AfterGC, gc_tracer);
 141 }
 142 
 143 // Memory state functions.
 144 
 145 
 146 CollectedHeap::CollectedHeap() : _n_par_threads(0)
 147 {
 148   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
 149   const size_t elements_per_word = HeapWordSize / sizeof(jint);
 150   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
 151                                              max_len / elements_per_word);
 152 
 153   _barrier_set = NULL;
 154   _is_gc_active = false;
 155   _total_collections = _total_full_collections = 0;
 156   _gc_cause = _gc_lastcause = GCCause::_no_gc;
 157   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
 158   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
 159 
 160   if (UsePerfData) {
 161     EXCEPTION_MARK;
 162 
 163     // create the gc cause jvmstat counters
 164     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
 165                              80, GCCause::to_string(_gc_cause), CHECK);
 166 
 167     _perf_gc_lastcause =
 168                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
 169                              80, GCCause::to_string(_gc_lastcause), CHECK);
 170   }
 171   _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
 172   // Create the ring log
 173   if (LogEvents) {
 174     _gc_heap_log = new GCHeapLog();
 175   } else {
 176     _gc_heap_log = NULL;
 177   }
 178 }
 179 
 180 // This interface assumes that it's being called by the
 181 // vm thread. It collects the heap assuming that the
 182 // heap lock is already held and that we are executing in
 183 // the context of the vm thread.
 184 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
 185   assert(Thread::current()->is_VM_thread(), "Precondition#1");
 186   assert(Heap_lock->is_locked(), "Precondition#2");
 187   GCCauseSetter gcs(this, cause);
 188   switch (cause) {
 189     case GCCause::_heap_inspection:
 190     case GCCause::_heap_dump:
 191     case GCCause::_metadata_GC_threshold : {
 192       HandleMark hm;
 193       do_full_collection(false);        // don't clear all soft refs
 194       break;
 195     }
 196     case GCCause::_last_ditch_collection: {
 197       HandleMark hm;
 198       do_full_collection(true);         // do clear all soft refs
 199       break;
 200     }
 201     default:
 202       ShouldNotReachHere(); // Unexpected use of this function
 203   }
 204 }
 205 
 206 void CollectedHeap::pre_initialize() {
 207   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
 208   // otherwise remains unused.
 209 #ifdef COMPILER2
 210   _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
 211                              && (DeferInitialCardMark || card_mark_must_follow_store());
 212 #else
 213   assert(_defer_initial_card_mark == false, "Who would set it?");
 214 #endif
 215 }
 216 
 217 #ifndef PRODUCT
 218 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
 219   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 220     for (size_t slot = 0; slot < size; slot += 1) {
 221       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
 222              "Found badHeapWordValue in post-allocation check");
 223     }
 224   }
 225 }
 226 
 227 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
 228   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 229     for (size_t slot = 0; slot < size; slot += 1) {
 230       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
 231              "Found non badHeapWordValue in pre-allocation check");
 232     }
 233   }
 234 }
 235 #endif // PRODUCT
 236 
 237 #ifdef ASSERT
 238 void CollectedHeap::check_for_valid_allocation_state() {
 239   Thread *thread = Thread::current();
 240   // How to choose between a pending exception and a potential
 241   // OutOfMemoryError?  Don't allow pending exceptions.
 242   // This is a VM policy failure, so how do we exhaustively test it?
 243   assert(!thread->has_pending_exception(),
 244          "shouldn't be allocating with pending exception");
 245   if (StrictSafepointChecks) {
 246     assert(thread->allow_allocation(),
 247            "Allocation done by thread for which allocation is blocked "
 248            "by No_Allocation_Verifier!");
 249     // Allocation of an oop can always invoke a safepoint,
 250     // hence, the true argument
 251     thread->check_for_valid_safepoint_state(true);
 252   }
 253 }
 254 #endif
 255 
 256 HeapWord* CollectedHeap::allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size) {
 257 
 258   // Retain tlab and allocate object in shared space if
 259   // the amount free in the tlab is too large to discard.
 260   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
 261     thread->tlab().record_slow_allocation(size);
 262     return NULL;
 263   }
 264 
 265   // Discard tlab and allocate a new one.
 266   // To minimize fragmentation, the last TLAB may be smaller than the rest.
 267   size_t new_tlab_size = thread->tlab().compute_size(size);
 268 
 269   thread->tlab().clear_before_allocation();
 270 
 271   if (new_tlab_size == 0) {
 272     return NULL;
 273   }
 274 
 275   // Allocate a new TLAB...
 276   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
 277   if (obj == NULL) {
 278     return NULL;
 279   }
 280 
 281   AllocTracer::send_allocation_in_new_tlab_event(klass, new_tlab_size * HeapWordSize, size * HeapWordSize);
 282 
 283   if (ZeroTLAB) {
 284     // ..and clear it.
 285     Copy::zero_to_words(obj, new_tlab_size);
 286   } else {
 287     // ...and zap just allocated object.
 288 #ifdef ASSERT
 289     // Skip mangling the space corresponding to the object header to
 290     // ensure that the returned space is not considered parsable by
 291     // any concurrent GC thread.
 292     size_t hdr_size = oopDesc::header_size();
 293     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
 294 #endif // ASSERT
 295   }
 296   thread->tlab().fill(obj, obj + size, new_tlab_size);
 297   return obj;
 298 }
 299 
 300 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
 301   MemRegion deferred = thread->deferred_card_mark();
 302   if (!deferred.is_empty()) {
 303     assert(_defer_initial_card_mark, "Otherwise should be empty");
 304     {
 305       // Verify that the storage points to a parsable object in heap
 306       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
 307       assert(is_in(old_obj), "Not in allocated heap");
 308       assert(!can_elide_initializing_store_barrier(old_obj),
 309              "Else should have been filtered in new_store_pre_barrier()");
 310       assert(old_obj->is_oop(true), "Not an oop");
 311       assert(deferred.word_size() == (size_t)(old_obj->size()),
 312              "Mismatch: multiple objects?");
 313     }
 314     BarrierSet* bs = barrier_set();
 315     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 316     bs->write_region(deferred);
 317     // "Clear" the deferred_card_mark field
 318     thread->set_deferred_card_mark(MemRegion());
 319   }
 320   assert(thread->deferred_card_mark().is_empty(), "invariant");
 321 }
 322 
 323 // Helper for ReduceInitialCardMarks. For performance,
 324 // compiled code may elide card-marks for initializing stores
 325 // to a newly allocated object along the fast-path. We
 326 // compensate for such elided card-marks as follows:
 327 // (a) Generational, non-concurrent collectors, such as
 328 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
 329 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
 330 //     need the card-mark if and only if the region is
 331 //     in the old gen, and do not care if the card-mark
 332 //     succeeds or precedes the initializing stores themselves,
 333 //     so long as the card-mark is completed before the next
 334 //     scavenge. For all these cases, we can do a card mark
 335 //     at the point at which we do a slow path allocation
 336 //     in the old gen, i.e. in this call.
 337 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
 338 //     in addition that the card-mark for an old gen allocated
 339 //     object strictly follow any associated initializing stores.
 340 //     In these cases, the memRegion remembered below is
 341 //     used to card-mark the entire region either just before the next
 342 //     slow-path allocation by this thread or just before the next scavenge or
 343 //     CMS-associated safepoint, whichever of these events happens first.
 344 //     (The implicit assumption is that the object has been fully
 345 //     initialized by this point, a fact that we assert when doing the
 346 //     card-mark.)
 347 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
 348 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
 349 //     is used to remember the pre-value of any store. Initializing
 350 //     stores will not need this barrier, so we need not worry about
 351 //     compensating for the missing pre-barrier here. Turning now
 352 //     to the post-barrier, we note that G1 needs a RS update barrier
 353 //     which simply enqueues a (sequence of) dirty cards which may
 354 //     optionally be refined by the concurrent update threads. Note
 355 //     that this barrier need only be applied to a non-young write,
 356 //     but, like in CMS, because of the presence of concurrent refinement
 357 //     (much like CMS' precleaning), must strictly follow the oop-store.
 358 //     Thus, using the same protocol for maintaining the intended
 359 //     invariants turns out, serendepitously, to be the same for both
 360 //     G1 and CMS.
 361 //
 362 // For any future collector, this code should be reexamined with
 363 // that specific collector in mind, and the documentation above suitably
 364 // extended and updated.
 365 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
 366   // If a previous card-mark was deferred, flush it now.
 367   flush_deferred_store_barrier(thread);
 368   if (can_elide_initializing_store_barrier(new_obj)) {
 369     // The deferred_card_mark region should be empty
 370     // following the flush above.
 371     assert(thread->deferred_card_mark().is_empty(), "Error");
 372   } else {
 373     MemRegion mr((HeapWord*)new_obj, new_obj->size());
 374     assert(!mr.is_empty(), "Error");
 375     if (_defer_initial_card_mark) {
 376       // Defer the card mark
 377       thread->set_deferred_card_mark(mr);
 378     } else {
 379       // Do the card mark
 380       BarrierSet* bs = barrier_set();
 381       assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 382       bs->write_region(mr);
 383     }
 384   }
 385   return new_obj;
 386 }
 387 
 388 size_t CollectedHeap::filler_array_hdr_size() {
 389   return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
 390 }
 391 
 392 size_t CollectedHeap::filler_array_min_size() {
 393   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 394 }
 395 
 396 #ifdef ASSERT
 397 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 398 {
 399   assert(words >= min_fill_size(), "too small to fill");
 400   assert(words % MinObjAlignment == 0, "unaligned size");
 401   assert(Universe::heap()->is_in_reserved(start), "not in heap");
 402   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
 403 }
 404 
 405 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 406 {
 407   if (ZapFillerObjects && zap) {
 408     Copy::fill_to_words(start + filler_array_hdr_size(),
 409                         words - filler_array_hdr_size(), 0XDEAFBABE);
 410   }
 411 }
 412 #endif // ASSERT
 413 
 414 void
 415 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 416 {
 417   assert(words >= filler_array_min_size(), "too small for an array");
 418   assert(words <= filler_array_max_size(), "too big for a single object");
 419 
 420   const size_t payload_size = words - filler_array_hdr_size();
 421   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 422   assert((int)len >= 0, err_msg("size too large " SIZE_FORMAT " becomes %d", words, (int)len));
 423 
 424   // Set the length first for concurrent GC.
 425   ((arrayOop)start)->set_length((int)len);
 426   post_allocation_setup_common(Universe::intArrayKlassObj(), start);
 427   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 428 }
 429 
 430 void
 431 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 432 {
 433   assert(words <= filler_array_max_size(), "too big for a single object");
 434 
 435   if (words >= filler_array_min_size()) {
 436     fill_with_array(start, words, zap);
 437   } else if (words > 0) {
 438     assert(words == min_fill_size(), "unaligned size");
 439     post_allocation_setup_common(SystemDictionary::Object_klass(), start);
 440   }
 441 }
 442 
 443 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 444 {
 445   DEBUG_ONLY(fill_args_check(start, words);)
 446   HandleMark hm;  // Free handles before leaving.
 447   fill_with_object_impl(start, words, zap);
 448 }
 449 
 450 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 451 {
 452   DEBUG_ONLY(fill_args_check(start, words);)
 453   HandleMark hm;  // Free handles before leaving.
 454 
 455 #ifdef _LP64
 456   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
 457   // First fill with arrays, ensuring that any remaining space is big enough to
 458   // fill.  The remainder is filled with a single object.
 459   const size_t min = min_fill_size();
 460   const size_t max = filler_array_max_size();
 461   while (words > max) {
 462     const size_t cur = words - max >= min ? max : max - min;
 463     fill_with_array(start, cur, zap);
 464     start += cur;
 465     words -= cur;
 466   }
 467 #endif
 468 
 469   fill_with_object_impl(start, words, zap);
 470 }
 471 
 472 void CollectedHeap::post_initialize() {
 473   collector_policy()->post_heap_initialize();
 474 }
 475 
 476 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
 477   guarantee(false, "thread-local allocation buffers not supported");
 478   return NULL;
 479 }
 480 
 481 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 482   // The second disjunct in the assertion below makes a concession
 483   // for the start-up verification done while the VM is being
 484   // created. Callers be careful that you know that mutators
 485   // aren't going to interfere -- for instance, this is permissible
 486   // if we are still single-threaded and have either not yet
 487   // started allocating (nothing much to verify) or we have
 488   // started allocating but are now a full-fledged JavaThread
 489   // (and have thus made our TLAB's) available for filling.
 490   assert(SafepointSynchronize::is_at_safepoint() ||
 491          !is_init_completed(),
 492          "Should only be called at a safepoint or at start-up"
 493          " otherwise concurrent mutator activity may make heap "
 494          " unparsable again");
 495   const bool use_tlab = UseTLAB;
 496   const bool deferred = _defer_initial_card_mark;
 497   // The main thread starts allocating via a TLAB even before it
 498   // has added itself to the threads list at vm boot-up.
 499   assert(!use_tlab || Threads::first() != NULL,
 500          "Attempt to fill tlabs before main thread has been added"
 501          " to threads list is doomed to failure!");
 502   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 503      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
 504 #ifdef COMPILER2
 505      // The deferred store barriers must all have been flushed to the
 506      // card-table (or other remembered set structure) before GC starts
 507      // processing the card-table (or other remembered set).
 508      if (deferred) flush_deferred_store_barrier(thread);
 509 #else
 510      assert(!deferred, "Should be false");
 511      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
 512 #endif
 513   }
 514 }
 515 
 516 void CollectedHeap::accumulate_statistics_all_tlabs() {
 517   if (UseTLAB) {
 518     assert(SafepointSynchronize::is_at_safepoint() ||
 519          !is_init_completed(),
 520          "should only accumulate statistics on tlabs at safepoint");
 521 
 522     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
 523   }
 524 }
 525 
 526 void CollectedHeap::resize_all_tlabs() {
 527   if (UseTLAB) {
 528     assert(SafepointSynchronize::is_at_safepoint() ||
 529          !is_init_completed(),
 530          "should only resize tlabs at safepoint");
 531 
 532     ThreadLocalAllocBuffer::resize_all_tlabs();
 533   }
 534 }
 535 
 536 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
 537   if (HeapDumpBeforeFullGC) {
 538     GCTraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, timer);
 539     // We are doing a "major" collection and a heap dump before
 540     // major collection has been requested.
 541     HeapDumper::dump_heap();
 542   }
 543   if (PrintClassHistogramBeforeFullGC) {
 544     GCTraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, timer);
 545     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */);
 546     inspector.doit();
 547   }
 548 }
 549 
 550 void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
 551   if (HeapDumpAfterFullGC) {
 552     GCTraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, timer);
 553     HeapDumper::dump_heap();
 554   }
 555   if (PrintClassHistogramAfterFullGC) {
 556     GCTraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, timer);
 557     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */);
 558     inspector.doit();
 559   }
 560 }
 561 
 562 oop CollectedHeap::Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS) {
 563   debug_only(check_for_valid_allocation_state());
 564   assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed");
 565   assert(size >= 0, "int won't convert to size_t");
 566   HeapWord* obj;
 567     assert(ScavengeRootsInCode > 0, "must be");
 568     obj = common_mem_allocate_init(real_klass, size, CHECK_NULL);
 569   post_allocation_setup_common(klass, obj);
 570   assert(Universe::is_bootstrapping() ||
 571          !((oop)obj)->is_array(), "must not be an array");
 572   NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size));
 573   oop mirror = (oop)obj;
 574 
 575   java_lang_Class::set_oop_size(mirror, size);
 576 
 577   // Setup indirections
 578   if (!real_klass.is_null()) {
 579     java_lang_Class::set_klass(mirror, real_klass());
 580     real_klass->set_java_mirror(mirror);
 581   }
 582 
 583   InstanceMirrorKlass* mk = InstanceMirrorKlass::cast(mirror->klass());
 584   assert(size == mk->instance_size(real_klass), "should have been set");
 585 
 586   // notify jvmti and dtrace
 587   post_allocation_notify(klass, (oop)obj);
 588 
 589   return mirror;
 590 }
 591 
 592 /////////////// Unit tests ///////////////
 593 
 594 #ifndef PRODUCT
 595 void CollectedHeap::test_is_in() {
 596   CollectedHeap* heap = Universe::heap();
 597 
 598   uintptr_t epsilon    = (uintptr_t) MinObjAlignment;
 599   uintptr_t heap_start = (uintptr_t) heap->_reserved.start();
 600   uintptr_t heap_end   = (uintptr_t) heap->_reserved.end();
 601 
 602   // Test that NULL is not in the heap.
 603   assert(!heap->is_in(NULL), "NULL is unexpectedly in the heap");
 604 
 605   // Test that a pointer to before the heap start is reported as outside the heap.
 606   assert(heap_start >= ((uintptr_t)NULL + epsilon), "sanity");
 607   void* before_heap = (void*)(heap_start - epsilon);
 608   assert(!heap->is_in(before_heap),
 609       err_msg("before_heap: " PTR_FORMAT " is unexpectedly in the heap", before_heap));
 610 
 611   // Test that a pointer to after the heap end is reported as outside the heap.
 612   assert(heap_end <= ((uintptr_t)-1 - epsilon), "sanity");
 613   void* after_heap = (void*)(heap_end + epsilon);
 614   assert(!heap->is_in(after_heap),
 615       err_msg("after_heap: " PTR_FORMAT " is unexpectedly in the heap", after_heap));
 616 }
 617 #endif