1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 void CollectorPolicy::initialize_flags() {
  51   assert(_max_alignment >= _min_alignment,
  52          err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  53                  _max_alignment, _min_alignment));
  54   assert(_max_alignment % _min_alignment == 0,
  55          err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  56                  _max_alignment, _min_alignment));
  57 
  58   if (MaxHeapSize < InitialHeapSize) {
  59     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  60   }
  61 
  62   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, _min_alignment);
  63 }
  64 
  65 void CollectorPolicy::initialize_size_info() {
  66   // User inputs from -mx and ms must be aligned
  67   _min_heap_byte_size = align_size_up(Arguments::min_heap_size(), _min_alignment);
  68   _initial_heap_byte_size = align_size_up(InitialHeapSize, _min_alignment);
  69   _max_heap_byte_size = align_size_up(MaxHeapSize, _max_alignment);
  70 
  71   // Check heap parameter properties
  72   if (_initial_heap_byte_size < M) {
  73     vm_exit_during_initialization("Too small initial heap");
  74   }
  75   // Check heap parameter properties
  76   if (_min_heap_byte_size < M) {
  77     vm_exit_during_initialization("Too small minimum heap");
  78   }
  79   if (_initial_heap_byte_size <= NewSize) {
  80      // make sure there is at least some room in old space
  81     vm_exit_during_initialization("Too small initial heap for new size specified");
  82   }
  83   if (_max_heap_byte_size < _min_heap_byte_size) {
  84     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
  85   }
  86   if (_initial_heap_byte_size < _min_heap_byte_size) {
  87     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
  88   }
  89   if (_max_heap_byte_size < _initial_heap_byte_size) {
  90     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  91   }
  92 
  93   if (PrintGCDetails && Verbose) {
  94     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
  95       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
  96       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
  97   }
  98 }
  99 
 100 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 101   bool result = _should_clear_all_soft_refs;
 102   set_should_clear_all_soft_refs(false);
 103   return result;
 104 }
 105 
 106 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 107                                            int max_covered_regions) {
 108   return new CardTableRS(whole_heap, max_covered_regions);
 109 }
 110 
 111 void CollectorPolicy::cleared_all_soft_refs() {
 112   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 113   // have been cleared in the last collection but if the gc overhear
 114   // limit continues to be near, SoftRefs should still be cleared.
 115   if (size_policy() != NULL) {
 116     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 117   }
 118   _all_soft_refs_clear = true;
 119 }
 120 
 121 size_t CollectorPolicy::compute_max_alignment() {
 122   // The card marking array and the offset arrays for old generations are
 123   // committed in os pages as well. Make sure they are entirely full (to
 124   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 125   // byte entry and the os page size is 4096, the maximum heap size should
 126   // be 512*4096 = 2MB aligned.
 127 
 128   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
 129   // is supported.
 130   // Requirements of any new remembered set implementations must be added here.
 131   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 132 
 133   // Parallel GC does its own alignment of the generations to avoid requiring a
 134   // large page (256M on some platforms) for the permanent generation.  The
 135   // other collectors should also be updated to do their own alignment and then
 136   // this use of lcm() should be removed.
 137   if (UseLargePages && !UseParallelGC) {
 138       // in presence of large pages we have to make sure that our
 139       // alignment is large page aware
 140       alignment = lcm(os::large_page_size(), alignment);
 141   }
 142 
 143   return alignment;
 144 }
 145 
 146 // GenCollectorPolicy methods.
 147 
 148 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 149   return align_size_down_bounded(base_size / (NewRatio + 1), _min_alignment);
 150 }
 151 
 152 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 153                                                  size_t maximum_size) {
 154   size_t alignment = _min_alignment;
 155   size_t max_minus = maximum_size - alignment;
 156   return desired_size < max_minus ? desired_size : max_minus;
 157 }
 158 
 159 
 160 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 161                                                 size_t init_promo_size,
 162                                                 size_t init_survivor_size) {
 163   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 164   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 165                                         init_promo_size,
 166                                         init_survivor_size,
 167                                         max_gc_pause_sec,
 168                                         GCTimeRatio);
 169 }
 170 
 171 void GenCollectorPolicy::initialize_flags() {
 172   // All sizes must be multiples of the generation granularity.
 173   _min_alignment = (uintx) Generation::GenGrain;
 174   _max_alignment = compute_max_alignment();
 175 
 176   CollectorPolicy::initialize_flags();
 177 
 178   // All generational heaps have a youngest gen; handle those flags here.
 179 
 180   // Adjust max size parameters
 181   if (NewSize > MaxNewSize) {
 182     MaxNewSize = NewSize;
 183   }
 184   NewSize = align_size_down(NewSize, _min_alignment);
 185   MaxNewSize = align_size_down(MaxNewSize, _min_alignment);
 186 
 187   // Check validity of heap flags
 188   assert(NewSize     % _min_alignment == 0, "eden space alignment");
 189   assert(MaxNewSize  % _min_alignment == 0, "survivor space alignment");
 190 
 191   if (NewSize < 3 * _min_alignment) {
 192      // make sure there room for eden and two survivor spaces
 193     vm_exit_during_initialization("Too small new size specified");
 194   }
 195 
 196   if (SurvivorRatio < 1 || NewRatio < 1) {
 197     vm_exit_during_initialization("Invalid young gen ratio specified");
 198   }
 199 }
 200 
 201 void TwoGenerationCollectorPolicy::initialize_flags() {
 202   GenCollectorPolicy::initialize_flags();
 203 
 204   OldSize = align_size_down(OldSize, _min_alignment);
 205 
 206   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 207     // NewRatio will be used later to set the young generation size so we use
 208     // it to calculate how big the heap should be based on the requested OldSize
 209     // and NewRatio.
 210     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 211     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 212 
 213     calculated_heapsize = align_size_up(calculated_heapsize, _max_alignment);
 214     MaxHeapSize = calculated_heapsize;
 215     InitialHeapSize = calculated_heapsize;
 216   }
 217   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 218 
 219   // adjust max heap size if necessary
 220   if (NewSize + OldSize > MaxHeapSize) {
 221     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 222       // somebody set a maximum heap size with the intention that we should not
 223       // exceed it. Adjust New/OldSize as necessary.
 224       uintx calculated_size = NewSize + OldSize;
 225       double shrink_factor = (double) MaxHeapSize / calculated_size;
 226       // align
 227       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 228       // OldSize is already aligned because above we aligned MaxHeapSize to
 229       // _max_alignment, and we just made sure that NewSize is aligned to
 230       // _min_alignment. In initialize_flags() we verified that _max_alignment
 231       // is a multiple of _min_alignment.
 232       OldSize = MaxHeapSize - NewSize;
 233     } else {
 234       MaxHeapSize = NewSize + OldSize;
 235     }
 236   }
 237   // need to do this again
 238   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 239 
 240   // adjust max heap size if necessary
 241   if (NewSize + OldSize > MaxHeapSize) {
 242     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 243       // somebody set a maximum heap size with the intention that we should not
 244       // exceed it. Adjust New/OldSize as necessary.
 245       uintx calculated_size = NewSize + OldSize;
 246       double shrink_factor = (double) MaxHeapSize / calculated_size;
 247       // align
 248       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
 249       // OldSize is already aligned because above we aligned MaxHeapSize to
 250       // _max_alignment, and we just made sure that NewSize is aligned to
 251       // _min_alignment. In initialize_flags() we verified that _max_alignment
 252       // is a multiple of _min_alignment.
 253       OldSize = MaxHeapSize - NewSize;
 254     } else {
 255       MaxHeapSize = NewSize + OldSize;
 256     }
 257   }
 258   // need to do this again
 259   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
 260 
 261   always_do_update_barrier = UseConcMarkSweepGC;
 262 
 263   // Check validity of heap flags
 264   assert(OldSize     % _min_alignment == 0, "old space alignment");
 265   assert(MaxHeapSize % _max_alignment == 0, "maximum heap alignment");
 266 }
 267 
 268 // Values set on the command line win over any ergonomically
 269 // set command line parameters.
 270 // Ergonomic choice of parameters are done before this
 271 // method is called.  Values for command line parameters such as NewSize
 272 // and MaxNewSize feed those ergonomic choices into this method.
 273 // This method makes the final generation sizings consistent with
 274 // themselves and with overall heap sizings.
 275 // In the absence of explicitly set command line flags, policies
 276 // such as the use of NewRatio are used to size the generation.
 277 void GenCollectorPolicy::initialize_size_info() {
 278   CollectorPolicy::initialize_size_info();
 279 
 280   // _min_alignment is used for alignment within a generation.
 281   // There is additional alignment done down stream for some
 282   // collectors that sometimes causes unwanted rounding up of
 283   // generations sizes.
 284 
 285   // Determine maximum size of gen0
 286 
 287   size_t max_new_size = 0;
 288   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 289     if (MaxNewSize < _min_alignment) {
 290       max_new_size = _min_alignment;
 291     }
 292     if (MaxNewSize >= _max_heap_byte_size) {
 293       max_new_size = align_size_down(_max_heap_byte_size - _min_alignment,
 294                                      _min_alignment);
 295       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 296         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 297         "new generation size of " SIZE_FORMAT "k will be used.",
 298         MaxNewSize/K, _max_heap_byte_size/K, max_new_size/K);
 299     } else {
 300       max_new_size = align_size_down(MaxNewSize, _min_alignment);
 301     }
 302 
 303   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 304   // specially at this point to just use an ergonomically set
 305   // MaxNewSize to set max_new_size.  For cases with small
 306   // heaps such a policy often did not work because the MaxNewSize
 307   // was larger than the entire heap.  The interpretation given
 308   // to ergonomically set flags is that the flags are set
 309   // by different collectors for their own special needs but
 310   // are not allowed to badly shape the heap.  This allows the
 311   // different collectors to decide what's best for themselves
 312   // without having to factor in the overall heap shape.  It
 313   // can be the case in the future that the collectors would
 314   // only make "wise" ergonomics choices and this policy could
 315   // just accept those choices.  The choices currently made are
 316   // not always "wise".
 317   } else {
 318     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 319     // Bound the maximum size by NewSize below (since it historically
 320     // would have been NewSize and because the NewRatio calculation could
 321     // yield a size that is too small) and bound it by MaxNewSize above.
 322     // Ergonomics plays here by previously calculating the desired
 323     // NewSize and MaxNewSize.
 324     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 325   }
 326   assert(max_new_size > 0, "All paths should set max_new_size");
 327 
 328   // Given the maximum gen0 size, determine the initial and
 329   // minimum gen0 sizes.
 330 
 331   if (_max_heap_byte_size == _min_heap_byte_size) {
 332     // The maximum and minimum heap sizes are the same so
 333     // the generations minimum and initial must be the
 334     // same as its maximum.
 335     _min_gen0_size = max_new_size;
 336     _initial_gen0_size = max_new_size;
 337     _max_gen0_size = max_new_size;
 338   } else {
 339     size_t desired_new_size = 0;
 340     if (!FLAG_IS_DEFAULT(NewSize)) {
 341       // If NewSize is set ergonomically (for example by cms), it
 342       // would make sense to use it.  If it is used, also use it
 343       // to set the initial size.  Although there is no reason
 344       // the minimum size and the initial size have to be the same,
 345       // the current implementation gets into trouble during the calculation
 346       // of the tenured generation sizes if they are different.
 347       // Note that this makes the initial size and the minimum size
 348       // generally small compared to the NewRatio calculation.
 349       _min_gen0_size = NewSize;
 350       desired_new_size = NewSize;
 351       max_new_size = MAX2(max_new_size, NewSize);
 352     } else {
 353       // For the case where NewSize is the default, use NewRatio
 354       // to size the minimum and initial generation sizes.
 355       // Use the default NewSize as the floor for these values.  If
 356       // NewRatio is overly large, the resulting sizes can be too
 357       // small.
 358       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);
 359       desired_new_size =
 360         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
 361     }
 362 
 363     assert(_min_gen0_size > 0, "Sanity check");
 364     _initial_gen0_size = desired_new_size;
 365     _max_gen0_size = max_new_size;
 366 
 367     // At this point the desirable initial and minimum sizes have been
 368     // determined without regard to the maximum sizes.
 369 
 370     // Bound the sizes by the corresponding overall heap sizes.
 371     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 372     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 373     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
 374 
 375     // At this point all three sizes have been checked against the
 376     // maximum sizes but have not been checked for consistency
 377     // among the three.
 378 
 379     // Final check min <= initial <= max
 380     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 381     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 382     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
 383   }
 384 
 385   if (PrintGCDetails && Verbose) {
 386     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 387       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 388       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 389   }
 390 }
 391 
 392 // Call this method during the sizing of the gen1 to make
 393 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 394 // the most freedom in sizing because it is done before the
 395 // policy for gen1 is applied.  Once gen1 policies have been applied,
 396 // there may be conflicts in the shape of the heap and this method
 397 // is used to make the needed adjustments.  The application of the
 398 // policies could be more sophisticated (iterative for example) but
 399 // keeping it simple also seems a worthwhile goal.
 400 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 401                                                      size_t* gen1_size_ptr,
 402                                                      const size_t heap_size,
 403                                                      const size_t min_gen1_size) {
 404   bool result = false;
 405 
 406   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 407     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 408         (heap_size >= min_gen1_size + _min_alignment)) {
 409       // Adjust gen0 down to accommodate min_gen1_size
 410       *gen0_size_ptr = align_size_down_bounded(heap_size - min_gen1_size, _min_alignment);
 411       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 412       result = true;
 413     } else {
 414       *gen1_size_ptr = align_size_down_bounded(heap_size - *gen0_size_ptr, _min_alignment);
 415     }
 416   }
 417   return result;
 418 }
 419 
 420 // Minimum sizes of the generations may be different than
 421 // the initial sizes.  An inconsistently is permitted here
 422 // in the total size that can be specified explicitly by
 423 // command line specification of OldSize and NewSize and
 424 // also a command line specification of -Xms.  Issue a warning
 425 // but allow the values to pass.
 426 
 427 void TwoGenerationCollectorPolicy::initialize_size_info() {
 428   GenCollectorPolicy::initialize_size_info();
 429 
 430   // At this point the minimum, initial and maximum sizes
 431   // of the overall heap and of gen0 have been determined.
 432   // The maximum gen1 size can be determined from the maximum gen0
 433   // and maximum heap size since no explicit flags exits
 434   // for setting the gen1 maximum.
 435   _max_gen1_size = _max_heap_byte_size - _max_gen0_size;
 436   _max_gen1_size =
 437     MAX2((uintx)align_size_down(_max_gen1_size, _min_alignment), _min_alignment);
 438   // If no explicit command line flag has been set for the
 439   // gen1 size, use what is left for gen1.
 440   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 441     // The user has not specified any value or ergonomics
 442     // has chosen a value (which may or may not be consistent
 443     // with the overall heap size).  In either case make
 444     // the minimum, maximum and initial sizes consistent
 445     // with the gen0 sizes and the overall heap sizes.
 446     assert(_min_heap_byte_size > _min_gen0_size,
 447       "gen0 has an unexpected minimum size");
 448     _min_gen1_size = _min_heap_byte_size - _min_gen0_size;
 449     _min_gen1_size =
 450       MAX2((uintx)align_size_down(_min_gen1_size, _min_alignment), _min_alignment);
 451     _initial_gen1_size = _initial_heap_byte_size - _initial_gen0_size;
 452     _initial_gen1_size =
 453       MAX2((uintx)align_size_down(_initial_gen1_size, _min_alignment), _min_alignment);
 454   } else {
 455     // It's been explicitly set on the command line.  Use the
 456     // OldSize and then determine the consequences.
 457     _min_gen1_size = OldSize;
 458     _initial_gen1_size = OldSize;
 459 
 460     // If the user has explicitly set an OldSize that is inconsistent
 461     // with other command line flags, issue a warning.
 462     // The generation minimums and the overall heap mimimum should
 463     // be within one heap alignment.
 464     if ((_min_gen1_size + _min_gen0_size + _min_alignment) < _min_heap_byte_size) {
 465       warning("Inconsistency between minimum heap size and minimum "
 466               "generation sizes: using minimum heap = " SIZE_FORMAT,
 467               _min_heap_byte_size);
 468     }
 469     if (OldSize > _max_gen1_size) {
 470       warning("Inconsistency between maximum heap size and maximum "
 471               "generation sizes: using maximum heap = " SIZE_FORMAT
 472               " -XX:OldSize flag is being ignored",
 473               _max_heap_byte_size);
 474     }
 475     // If there is an inconsistency between the OldSize and the minimum and/or
 476     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 477     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 478                           _min_heap_byte_size, OldSize)) {
 479       if (PrintGCDetails && Verbose) {
 480         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 481               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 482               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 483       }
 484     }
 485     // Initial size
 486     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 487                           _initial_heap_byte_size, OldSize)) {
 488       if (PrintGCDetails && Verbose) {
 489         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 490           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 491           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 492       }
 493     }
 494   }
 495   // Enforce the maximum gen1 size.
 496   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 497 
 498   // Check that min gen1 <= initial gen1 <= max gen1
 499   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 500   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 501 
 502   if (PrintGCDetails && Verbose) {
 503     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 504       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 505       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 506   }
 507 }
 508 
 509 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 510                                         bool is_tlab,
 511                                         bool* gc_overhead_limit_was_exceeded) {
 512   GenCollectedHeap *gch = GenCollectedHeap::heap();
 513 
 514   debug_only(gch->check_for_valid_allocation_state());
 515   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 516 
 517   // In general gc_overhead_limit_was_exceeded should be false so
 518   // set it so here and reset it to true only if the gc time
 519   // limit is being exceeded as checked below.
 520   *gc_overhead_limit_was_exceeded = false;
 521 
 522   HeapWord* result = NULL;
 523 
 524   // Loop until the allocation is satisified,
 525   // or unsatisfied after GC.
 526   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 527     HandleMark hm; // discard any handles allocated in each iteration
 528 
 529     // First allocation attempt is lock-free.
 530     Generation *gen0 = gch->get_gen(0);
 531     assert(gen0->supports_inline_contig_alloc(),
 532       "Otherwise, must do alloc within heap lock");
 533     if (gen0->should_allocate(size, is_tlab)) {
 534       result = gen0->par_allocate(size, is_tlab);
 535       if (result != NULL) {
 536         assert(gch->is_in_reserved(result), "result not in heap");
 537         return result;
 538       }
 539     }
 540     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 541     {
 542       MutexLocker ml(Heap_lock);
 543       if (PrintGC && Verbose) {
 544         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 545                       " attempting locked slow path allocation");
 546       }
 547       // Note that only large objects get a shot at being
 548       // allocated in later generations.
 549       bool first_only = ! should_try_older_generation_allocation(size);
 550 
 551       result = gch->attempt_allocation(size, is_tlab, first_only);
 552       if (result != NULL) {
 553         assert(gch->is_in_reserved(result), "result not in heap");
 554         return result;
 555       }
 556 
 557       if (GC_locker::is_active_and_needs_gc()) {
 558         if (is_tlab) {
 559           return NULL;  // Caller will retry allocating individual object
 560         }
 561         if (!gch->is_maximal_no_gc()) {
 562           // Try and expand heap to satisfy request
 563           result = expand_heap_and_allocate(size, is_tlab);
 564           // result could be null if we are out of space
 565           if (result != NULL) {
 566             return result;
 567           }
 568         }
 569 
 570         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 571           return NULL; // we didn't get to do a GC and we didn't get any memory
 572         }
 573 
 574         // If this thread is not in a jni critical section, we stall
 575         // the requestor until the critical section has cleared and
 576         // GC allowed. When the critical section clears, a GC is
 577         // initiated by the last thread exiting the critical section; so
 578         // we retry the allocation sequence from the beginning of the loop,
 579         // rather than causing more, now probably unnecessary, GC attempts.
 580         JavaThread* jthr = JavaThread::current();
 581         if (!jthr->in_critical()) {
 582           MutexUnlocker mul(Heap_lock);
 583           // Wait for JNI critical section to be exited
 584           GC_locker::stall_until_clear();
 585           gclocker_stalled_count += 1;
 586           continue;
 587         } else {
 588           if (CheckJNICalls) {
 589             fatal("Possible deadlock due to allocating while"
 590                   " in jni critical section");
 591           }
 592           return NULL;
 593         }
 594       }
 595 
 596       // Read the gc count while the heap lock is held.
 597       gc_count_before = Universe::heap()->total_collections();
 598     }
 599 
 600     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 601     VMThread::execute(&op);
 602     if (op.prologue_succeeded()) {
 603       result = op.result();
 604       if (op.gc_locked()) {
 605          assert(result == NULL, "must be NULL if gc_locked() is true");
 606          continue;  // retry and/or stall as necessary
 607       }
 608 
 609       // Allocation has failed and a collection
 610       // has been done.  If the gc time limit was exceeded the
 611       // this time, return NULL so that an out-of-memory
 612       // will be thrown.  Clear gc_overhead_limit_exceeded
 613       // so that the overhead exceeded does not persist.
 614 
 615       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 616       const bool softrefs_clear = all_soft_refs_clear();
 617 
 618       if (limit_exceeded && softrefs_clear) {
 619         *gc_overhead_limit_was_exceeded = true;
 620         size_policy()->set_gc_overhead_limit_exceeded(false);
 621         if (op.result() != NULL) {
 622           CollectedHeap::fill_with_object(op.result(), size);
 623         }
 624         return NULL;
 625       }
 626       assert(result == NULL || gch->is_in_reserved(result),
 627              "result not in heap");
 628       return result;
 629     }
 630 
 631     // Give a warning if we seem to be looping forever.
 632     if ((QueuedAllocationWarningCount > 0) &&
 633         (try_count % QueuedAllocationWarningCount == 0)) {
 634           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 635                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 636     }
 637   }
 638 }
 639 
 640 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 641                                                        bool   is_tlab) {
 642   GenCollectedHeap *gch = GenCollectedHeap::heap();
 643   HeapWord* result = NULL;
 644   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 645     Generation *gen = gch->get_gen(i);
 646     if (gen->should_allocate(size, is_tlab)) {
 647       result = gen->expand_and_allocate(size, is_tlab);
 648     }
 649   }
 650   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 651   return result;
 652 }
 653 
 654 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 655                                                         bool   is_tlab) {
 656   GenCollectedHeap *gch = GenCollectedHeap::heap();
 657   GCCauseSetter x(gch, GCCause::_allocation_failure);
 658   HeapWord* result = NULL;
 659 
 660   assert(size != 0, "Precondition violated");
 661   if (GC_locker::is_active_and_needs_gc()) {
 662     // GC locker is active; instead of a collection we will attempt
 663     // to expand the heap, if there's room for expansion.
 664     if (!gch->is_maximal_no_gc()) {
 665       result = expand_heap_and_allocate(size, is_tlab);
 666     }
 667     return result;   // could be null if we are out of space
 668   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 669     // Do an incremental collection.
 670     gch->do_collection(false            /* full */,
 671                        false            /* clear_all_soft_refs */,
 672                        size             /* size */,
 673                        is_tlab          /* is_tlab */,
 674                        number_of_generations() - 1 /* max_level */);
 675   } else {
 676     if (Verbose && PrintGCDetails) {
 677       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 678     }
 679     // Try a full collection; see delta for bug id 6266275
 680     // for the original code and why this has been simplified
 681     // with from-space allocation criteria modified and
 682     // such allocation moved out of the safepoint path.
 683     gch->do_collection(true             /* full */,
 684                        false            /* clear_all_soft_refs */,
 685                        size             /* size */,
 686                        is_tlab          /* is_tlab */,
 687                        number_of_generations() - 1 /* max_level */);
 688   }
 689 
 690   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 691 
 692   if (result != NULL) {
 693     assert(gch->is_in_reserved(result), "result not in heap");
 694     return result;
 695   }
 696 
 697   // OK, collection failed, try expansion.
 698   result = expand_heap_and_allocate(size, is_tlab);
 699   if (result != NULL) {
 700     return result;
 701   }
 702 
 703   // If we reach this point, we're really out of memory. Try every trick
 704   // we can to reclaim memory. Force collection of soft references. Force
 705   // a complete compaction of the heap. Any additional methods for finding
 706   // free memory should be here, especially if they are expensive. If this
 707   // attempt fails, an OOM exception will be thrown.
 708   {
 709     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 710 
 711     gch->do_collection(true             /* full */,
 712                        true             /* clear_all_soft_refs */,
 713                        size             /* size */,
 714                        is_tlab          /* is_tlab */,
 715                        number_of_generations() - 1 /* max_level */);
 716   }
 717 
 718   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 719   if (result != NULL) {
 720     assert(gch->is_in_reserved(result), "result not in heap");
 721     return result;
 722   }
 723 
 724   assert(!should_clear_all_soft_refs(),
 725     "Flag should have been handled and cleared prior to this point");
 726 
 727   // What else?  We might try synchronous finalization later.  If the total
 728   // space available is large enough for the allocation, then a more
 729   // complete compaction phase than we've tried so far might be
 730   // appropriate.
 731   return NULL;
 732 }
 733 
 734 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 735                                                  ClassLoaderData* loader_data,
 736                                                  size_t word_size,
 737                                                  Metaspace::MetadataType mdtype) {
 738   uint loop_count = 0;
 739   uint gc_count = 0;
 740   uint full_gc_count = 0;
 741 
 742   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 743 
 744   do {
 745     MetaWord* result = NULL;
 746     if (GC_locker::is_active_and_needs_gc()) {
 747       // If the GC_locker is active, just expand and allocate.
 748       // If that does not succeed, wait if this thread is not
 749       // in a critical section itself.
 750       result =
 751         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 752                                                                mdtype);
 753       if (result != NULL) {
 754         return result;
 755       }
 756       JavaThread* jthr = JavaThread::current();
 757       if (!jthr->in_critical()) {
 758         // Wait for JNI critical section to be exited
 759         GC_locker::stall_until_clear();
 760         // The GC invoked by the last thread leaving the critical
 761         // section will be a young collection and a full collection
 762         // is (currently) needed for unloading classes so continue
 763         // to the next iteration to get a full GC.
 764         continue;
 765       } else {
 766         if (CheckJNICalls) {
 767           fatal("Possible deadlock due to allocating while"
 768                 " in jni critical section");
 769         }
 770         return NULL;
 771       }
 772     }
 773 
 774     {  // Need lock to get self consistent gc_count's
 775       MutexLocker ml(Heap_lock);
 776       gc_count      = Universe::heap()->total_collections();
 777       full_gc_count = Universe::heap()->total_full_collections();
 778     }
 779 
 780     // Generate a VM operation
 781     VM_CollectForMetadataAllocation op(loader_data,
 782                                        word_size,
 783                                        mdtype,
 784                                        gc_count,
 785                                        full_gc_count,
 786                                        GCCause::_metadata_GC_threshold);
 787     VMThread::execute(&op);
 788 
 789     // If GC was locked out, try again.  Check
 790     // before checking success because the prologue
 791     // could have succeeded and the GC still have
 792     // been locked out.
 793     if (op.gc_locked()) {
 794       continue;
 795     }
 796 
 797     if (op.prologue_succeeded()) {
 798       return op.result();
 799     }
 800     loop_count++;
 801     if ((QueuedAllocationWarningCount > 0) &&
 802         (loop_count % QueuedAllocationWarningCount == 0)) {
 803       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 804               " size=%d", loop_count, word_size);
 805     }
 806   } while (true);  // Until a GC is done
 807 }
 808 
 809 // Return true if any of the following is true:
 810 // . the allocation won't fit into the current young gen heap
 811 // . gc locker is occupied (jni critical section)
 812 // . heap memory is tight -- the most recent previous collection
 813 //   was a full collection because a partial collection (would
 814 //   have) failed and is likely to fail again
 815 bool GenCollectorPolicy::should_try_older_generation_allocation(
 816         size_t word_size) const {
 817   GenCollectedHeap* gch = GenCollectedHeap::heap();
 818   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 819   return    (word_size > heap_word_size(gen0_capacity))
 820          || GC_locker::is_active_and_needs_gc()
 821          || gch->incremental_collection_failed();
 822 }
 823 
 824 
 825 //
 826 // MarkSweepPolicy methods
 827 //
 828 
 829 MarkSweepPolicy::MarkSweepPolicy() {
 830   initialize_all();
 831 }
 832 
 833 void MarkSweepPolicy::initialize_generations() {
 834   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 835   if (_generations == NULL) {
 836     vm_exit_during_initialization("Unable to allocate gen spec");
 837   }
 838 
 839   if (UseParNewGC) {
 840     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 841   } else {
 842     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 843   }
 844   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 845 
 846   if (_generations[0] == NULL || _generations[1] == NULL) {
 847     vm_exit_during_initialization("Unable to allocate gen spec");
 848   }
 849 }
 850 
 851 void MarkSweepPolicy::initialize_gc_policy_counters() {
 852   // initialize the policy counters - 2 collectors, 3 generations
 853   if (UseParNewGC) {
 854     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 855   } else {
 856     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 857   }
 858 }