1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {
  56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  57 };
  58 
  59 static double cost_per_entry_ms_defaults[] = {
  60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  61 };
  62 
  63 static double cost_per_byte_ms_defaults[] = {
  64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  65 };
  66 
  67 // these should be pretty consistent
  68 static double constant_other_time_ms_defaults[] = {
  69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  70 };
  71 
  72 
  73 static double young_other_cost_per_region_ms_defaults[] = {
  74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  75 };
  76 
  77 static double non_young_other_cost_per_region_ms_defaults[] = {
  78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  79 };
  80 
  81 G1CollectorPolicy::G1CollectorPolicy() :
  82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
  83                         ? ParallelGCThreads : 1),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _stop_world_start(0.0),
  87 
  88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90 
  91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  92   _prev_collection_pause_end_ms(0.0),
  93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _gcs_are_young(true),
 112 
 113   _during_marking(false),
 114   _in_marking_window(false),
 115   _in_marking_window_im(false),
 116 
 117   _recent_prev_end_times_for_all_gcs_sec(
 118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 119 
 120   _recent_avg_pause_time_ratio(0.0),
 121 
 122   _initiate_conc_mark_if_possible(false),
 123   _during_initial_mark_pause(false),
 124   _last_young_gc(false),
 125   _last_gc_was_young(false),
 126 
 127   _eden_used_bytes_before_gc(0),
 128   _survivor_used_bytes_before_gc(0),
 129   _heap_used_bytes_before_gc(0),
 130   _metaspace_used_bytes_before_gc(0),
 131   _eden_capacity_bytes_before_gc(0),
 132   _heap_capacity_bytes_before_gc(0),
 133 
 134   _eden_cset_region_length(0),
 135   _survivor_cset_region_length(0),
 136   _old_cset_region_length(0),
 137 
 138   _collection_set(NULL),
 139   _collection_set_bytes_used_before(0),
 140 
 141   // Incremental CSet attributes
 142   _inc_cset_build_state(Inactive),
 143   _inc_cset_head(NULL),
 144   _inc_cset_tail(NULL),
 145   _inc_cset_bytes_used_before(0),
 146   _inc_cset_max_finger(NULL),
 147   _inc_cset_recorded_rs_lengths(0),
 148   _inc_cset_recorded_rs_lengths_diffs(0),
 149   _inc_cset_predicted_elapsed_time_ms(0.0),
 150   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 151 
 152 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 153 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 154 #endif // _MSC_VER
 155 
 156   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 157                                                  G1YoungSurvRateNumRegionsSummary)),
 158   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 159                                               G1YoungSurvRateNumRegionsSummary)),
 160   // add here any more surv rate groups
 161   _recorded_survivor_regions(0),
 162   _recorded_survivor_head(NULL),
 163   _recorded_survivor_tail(NULL),
 164   _survivors_age_table(true),
 165 
 166   _gc_overhead_perc(0.0) {
 167 
 168   // Set up the region size and associated fields. Given that the
 169   // policy is created before the heap, we have to set this up here,
 170   // so it's done as soon as possible.
 171 
 172   // It would have been natural to pass initial_heap_byte_size() and
 173   // max_heap_byte_size() to setup_heap_region_size() but those have
 174   // not been set up at this point since they should be aligned with
 175   // the region size. So, there is a circular dependency here. We base
 176   // the region size on the heap size, but the heap size should be
 177   // aligned with the region size. To get around this we use the
 178   // unaligned values for the heap.
 179   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 180   HeapRegionRemSet::setup_remset_size();
 181 
 182   G1ErgoVerbose::initialize();
 183   if (PrintAdaptiveSizePolicy) {
 184     // Currently, we only use a single switch for all the heuristics.
 185     G1ErgoVerbose::set_enabled(true);
 186     // Given that we don't currently have a verboseness level
 187     // parameter, we'll hardcode this to high. This can be easily
 188     // changed in the future.
 189     G1ErgoVerbose::set_level(ErgoHigh);
 190   } else {
 191     G1ErgoVerbose::set_enabled(false);
 192   }
 193 
 194   // Verify PLAB sizes
 195   const size_t region_size = HeapRegion::GrainWords;
 196   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 197     char buffer[128];
 198     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 199                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 200     vm_exit_during_initialization(buffer);
 201   }
 202 
 203   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 204   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 205 
 206   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 207 
 208   int index = MIN2(_parallel_gc_threads - 1, 7);
 209 
 210   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 211   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 212   _young_cards_per_entry_ratio_seq->add(
 213                                   young_cards_per_entry_ratio_defaults[index]);
 214   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 215   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 216   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 217   _young_other_cost_per_region_ms_seq->add(
 218                                young_other_cost_per_region_ms_defaults[index]);
 219   _non_young_other_cost_per_region_ms_seq->add(
 220                            non_young_other_cost_per_region_ms_defaults[index]);
 221 
 222   // Below, we might need to calculate the pause time target based on
 223   // the pause interval. When we do so we are going to give G1 maximum
 224   // flexibility and allow it to do pauses when it needs to. So, we'll
 225   // arrange that the pause interval to be pause time target + 1 to
 226   // ensure that a) the pause time target is maximized with respect to
 227   // the pause interval and b) we maintain the invariant that pause
 228   // time target < pause interval. If the user does not want this
 229   // maximum flexibility, they will have to set the pause interval
 230   // explicitly.
 231 
 232   // First make sure that, if either parameter is set, its value is
 233   // reasonable.
 234   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 235     if (MaxGCPauseMillis < 1) {
 236       vm_exit_during_initialization("MaxGCPauseMillis should be "
 237                                     "greater than 0");
 238     }
 239   }
 240   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 241     if (GCPauseIntervalMillis < 1) {
 242       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 243                                     "greater than 0");
 244     }
 245   }
 246 
 247   // Then, if the pause time target parameter was not set, set it to
 248   // the default value.
 249   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 250     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 251       // The default pause time target in G1 is 200ms
 252       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 253     } else {
 254       // We do not allow the pause interval to be set without the
 255       // pause time target
 256       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 257                                     "without setting MaxGCPauseMillis");
 258     }
 259   }
 260 
 261   // Then, if the interval parameter was not set, set it according to
 262   // the pause time target (this will also deal with the case when the
 263   // pause time target is the default value).
 264   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 265     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 266   }
 267 
 268   // Finally, make sure that the two parameters are consistent.
 269   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 270     char buffer[256];
 271     jio_snprintf(buffer, 256,
 272                  "MaxGCPauseMillis (%u) should be less than "
 273                  "GCPauseIntervalMillis (%u)",
 274                  MaxGCPauseMillis, GCPauseIntervalMillis);
 275     vm_exit_during_initialization(buffer);
 276   }
 277 
 278   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 279   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 280   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 281 
 282   uintx confidence_perc = G1ConfidencePercent;
 283   // Put an artificial ceiling on this so that it's not set to a silly value.
 284   if (confidence_perc > 100) {
 285     confidence_perc = 100;
 286     warning("G1ConfidencePercent is set to a value that is too large, "
 287             "it's been updated to %u", confidence_perc);
 288   }
 289   _sigma = (double) confidence_perc / 100.0;
 290 
 291   // start conservatively (around 50ms is about right)
 292   _concurrent_mark_remark_times_ms->add(0.05);
 293   _concurrent_mark_cleanup_times_ms->add(0.20);
 294   _tenuring_threshold = MaxTenuringThreshold;
 295   // _max_survivor_regions will be calculated by
 296   // update_young_list_target_length() during initialization.
 297   _max_survivor_regions = 0;
 298 
 299   assert(GCTimeRatio > 0,
 300          "we should have set it to a default value set_g1_gc_flags() "
 301          "if a user set it to 0");
 302   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 303 
 304   uintx reserve_perc = G1ReservePercent;
 305   // Put an artificial ceiling on this so that it's not set to a silly value.
 306   if (reserve_perc > 50) {
 307     reserve_perc = 50;
 308     warning("G1ReservePercent is set to a value that is too large, "
 309             "it's been updated to %u", reserve_perc);
 310   }
 311   _reserve_factor = (double) reserve_perc / 100.0;
 312   // This will be set when the heap is expanded
 313   // for the first time during initialization.
 314   _reserve_regions = 0;
 315 
 316   _collectionSetChooser = new CollectionSetChooser();
 317 }
 318 
 319 void G1CollectorPolicy::initialize_alignments() {
 320   _space_alignment = HeapRegion::GrainBytes;
 321   size_t card_table_alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 322   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 323   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 324 }
 325 
 326 void G1CollectorPolicy::initialize_flags() {
 327   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 328     FLAG_SET_ERGO(uintx, G1HeapRegionSize, HeapRegion::GrainBytes);
 329   }
 330 
 331   if (SurvivorRatio < 1) {
 332     vm_exit_during_initialization("Invalid survivor ratio specified");
 333   }
 334   CollectorPolicy::initialize_flags();
 335   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 336 }
 337 
 338 void G1CollectorPolicy::post_heap_initialize() {
 339   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 340   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 341   if (max_young_size != MaxNewSize) {
 342     FLAG_SET_ERGO(uintx, MaxNewSize, max_young_size);
 343   }
 344 }
 345 
 346 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 347         _min_desired_young_length(0), _max_desired_young_length(0) {
 348   if (FLAG_IS_CMDLINE(NewRatio)) {
 349     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 350       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 351     } else {
 352       _sizer_kind = SizerNewRatio;
 353       _adaptive_size = false;
 354       return;
 355     }
 356   }
 357 
 358   if (FLAG_IS_CMDLINE(NewSize) && FLAG_IS_CMDLINE(MaxNewSize) && NewSize > MaxNewSize) {
 359     vm_exit_during_initialization("Initial young gen size set larger than the maximum young gen size");
 360   }
 361 
 362   if (FLAG_IS_CMDLINE(NewSize)) {
 363     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 364                                      1U);
 365     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 366       _max_desired_young_length =
 367                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 368                                   1U);
 369       _sizer_kind = SizerMaxAndNewSize;
 370       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 371     } else {
 372       _sizer_kind = SizerNewSizeOnly;
 373     }
 374   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 375     _max_desired_young_length =
 376                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 377                                   1U);
 378     _sizer_kind = SizerMaxNewSizeOnly;
 379   }
 380 }
 381 
 382 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 383   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 384   return MAX2(1U, default_value);
 385 }
 386 
 387 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 388   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 389   return MAX2(1U, default_value);
 390 }
 391 
 392 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 393   assert(number_of_heap_regions > 0, "Heap must be initialized");
 394 
 395   switch (_sizer_kind) {
 396     case SizerDefaults:
 397       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 398       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 399       break;
 400     case SizerNewSizeOnly:
 401       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 402       *max_young_length = MAX2(*min_young_length, *max_young_length);
 403       break;
 404     case SizerMaxNewSizeOnly:
 405       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 406       *min_young_length = MIN2(*min_young_length, *max_young_length);
 407       break;
 408     case SizerMaxAndNewSize:
 409       // Do nothing. Values set on the command line, don't update them at runtime.
 410       break;
 411     case SizerNewRatio:
 412       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 413       *max_young_length = *min_young_length;
 414       break;
 415     default:
 416       ShouldNotReachHere();
 417   }
 418 
 419   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 420 }
 421 
 422 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 423   // We need to pass the desired values because recalculation may not update these
 424   // values in some cases.
 425   uint temp = _min_desired_young_length;
 426   uint result = _max_desired_young_length;
 427   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 428   return result;
 429 }
 430 
 431 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 432   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 433           &_max_desired_young_length);
 434 }
 435 
 436 void G1CollectorPolicy::init() {
 437   // Set aside an initial future to_space.
 438   _g1 = G1CollectedHeap::heap();
 439 
 440   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 441 
 442   initialize_gc_policy_counters();
 443 
 444   if (adaptive_young_list_length()) {
 445     _young_list_fixed_length = 0;
 446   } else {
 447     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 448   }
 449   _free_regions_at_end_of_collection = _g1->free_regions();
 450   update_young_list_target_length();
 451 
 452   // We may immediately start allocating regions and placing them on the
 453   // collection set list. Initialize the per-collection set info
 454   start_incremental_cset_building();
 455 }
 456 
 457 // Create the jstat counters for the policy.
 458 void G1CollectorPolicy::initialize_gc_policy_counters() {
 459   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 460 }
 461 
 462 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 463                                          double base_time_ms,
 464                                          uint base_free_regions,
 465                                          double target_pause_time_ms) {
 466   if (young_length >= base_free_regions) {
 467     // end condition 1: not enough space for the young regions
 468     return false;
 469   }
 470 
 471   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 472   size_t bytes_to_copy =
 473                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 474   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 475   double young_other_time_ms = predict_young_other_time_ms(young_length);
 476   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 477   if (pause_time_ms > target_pause_time_ms) {
 478     // end condition 2: prediction is over the target pause time
 479     return false;
 480   }
 481 
 482   size_t free_bytes =
 483                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 484   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 485     // end condition 3: out-of-space (conservatively!)
 486     return false;
 487   }
 488 
 489   // success!
 490   return true;
 491 }
 492 
 493 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 494   // re-calculate the necessary reserve
 495   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 496   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 497   // smaller than 1.0) we'll get 1.
 498   _reserve_regions = (uint) ceil(reserve_regions_d);
 499 
 500   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 501 }
 502 
 503 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 504                                                        uint base_min_length) {
 505   uint desired_min_length = 0;
 506   if (adaptive_young_list_length()) {
 507     if (_alloc_rate_ms_seq->num() > 3) {
 508       double now_sec = os::elapsedTime();
 509       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 510       double alloc_rate_ms = predict_alloc_rate_ms();
 511       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 512     } else {
 513       // otherwise we don't have enough info to make the prediction
 514     }
 515   }
 516   desired_min_length += base_min_length;
 517   // make sure we don't go below any user-defined minimum bound
 518   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 519 }
 520 
 521 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 522   // Here, we might want to also take into account any additional
 523   // constraints (i.e., user-defined minimum bound). Currently, we
 524   // effectively don't set this bound.
 525   return _young_gen_sizer->max_desired_young_length();
 526 }
 527 
 528 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 529   if (rs_lengths == (size_t) -1) {
 530     // if it's set to the default value (-1), we should predict it;
 531     // otherwise, use the given value.
 532     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 533   }
 534 
 535   // Calculate the absolute and desired min bounds.
 536 
 537   // This is how many young regions we already have (currently: the survivors).
 538   uint base_min_length = recorded_survivor_regions();
 539   // This is the absolute minimum young length, which ensures that we
 540   // can allocate one eden region in the worst-case.
 541   uint absolute_min_length = base_min_length + 1;
 542   uint desired_min_length =
 543                      calculate_young_list_desired_min_length(base_min_length);
 544   if (desired_min_length < absolute_min_length) {
 545     desired_min_length = absolute_min_length;
 546   }
 547 
 548   // Calculate the absolute and desired max bounds.
 549 
 550   // We will try our best not to "eat" into the reserve.
 551   uint absolute_max_length = 0;
 552   if (_free_regions_at_end_of_collection > _reserve_regions) {
 553     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 554   }
 555   uint desired_max_length = calculate_young_list_desired_max_length();
 556   if (desired_max_length > absolute_max_length) {
 557     desired_max_length = absolute_max_length;
 558   }
 559 
 560   uint young_list_target_length = 0;
 561   if (adaptive_young_list_length()) {
 562     if (gcs_are_young()) {
 563       young_list_target_length =
 564                         calculate_young_list_target_length(rs_lengths,
 565                                                            base_min_length,
 566                                                            desired_min_length,
 567                                                            desired_max_length);
 568       _rs_lengths_prediction = rs_lengths;
 569     } else {
 570       // Don't calculate anything and let the code below bound it to
 571       // the desired_min_length, i.e., do the next GC as soon as
 572       // possible to maximize how many old regions we can add to it.
 573     }
 574   } else {
 575     // The user asked for a fixed young gen so we'll fix the young gen
 576     // whether the next GC is young or mixed.
 577     young_list_target_length = _young_list_fixed_length;
 578   }
 579 
 580   // Make sure we don't go over the desired max length, nor under the
 581   // desired min length. In case they clash, desired_min_length wins
 582   // which is why that test is second.
 583   if (young_list_target_length > desired_max_length) {
 584     young_list_target_length = desired_max_length;
 585   }
 586   if (young_list_target_length < desired_min_length) {
 587     young_list_target_length = desired_min_length;
 588   }
 589 
 590   assert(young_list_target_length > recorded_survivor_regions(),
 591          "we should be able to allocate at least one eden region");
 592   assert(young_list_target_length >= absolute_min_length, "post-condition");
 593   _young_list_target_length = young_list_target_length;
 594 
 595   update_max_gc_locker_expansion();
 596 }
 597 
 598 uint
 599 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 600                                                      uint base_min_length,
 601                                                      uint desired_min_length,
 602                                                      uint desired_max_length) {
 603   assert(adaptive_young_list_length(), "pre-condition");
 604   assert(gcs_are_young(), "only call this for young GCs");
 605 
 606   // In case some edge-condition makes the desired max length too small...
 607   if (desired_max_length <= desired_min_length) {
 608     return desired_min_length;
 609   }
 610 
 611   // We'll adjust min_young_length and max_young_length not to include
 612   // the already allocated young regions (i.e., so they reflect the
 613   // min and max eden regions we'll allocate). The base_min_length
 614   // will be reflected in the predictions by the
 615   // survivor_regions_evac_time prediction.
 616   assert(desired_min_length > base_min_length, "invariant");
 617   uint min_young_length = desired_min_length - base_min_length;
 618   assert(desired_max_length > base_min_length, "invariant");
 619   uint max_young_length = desired_max_length - base_min_length;
 620 
 621   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 622   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 623   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 624   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 625   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 626   double base_time_ms =
 627     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 628     survivor_regions_evac_time;
 629   uint available_free_regions = _free_regions_at_end_of_collection;
 630   uint base_free_regions = 0;
 631   if (available_free_regions > _reserve_regions) {
 632     base_free_regions = available_free_regions - _reserve_regions;
 633   }
 634 
 635   // Here, we will make sure that the shortest young length that
 636   // makes sense fits within the target pause time.
 637 
 638   if (predict_will_fit(min_young_length, base_time_ms,
 639                        base_free_regions, target_pause_time_ms)) {
 640     // The shortest young length will fit into the target pause time;
 641     // we'll now check whether the absolute maximum number of young
 642     // regions will fit in the target pause time. If not, we'll do
 643     // a binary search between min_young_length and max_young_length.
 644     if (predict_will_fit(max_young_length, base_time_ms,
 645                          base_free_regions, target_pause_time_ms)) {
 646       // The maximum young length will fit into the target pause time.
 647       // We are done so set min young length to the maximum length (as
 648       // the result is assumed to be returned in min_young_length).
 649       min_young_length = max_young_length;
 650     } else {
 651       // The maximum possible number of young regions will not fit within
 652       // the target pause time so we'll search for the optimal
 653       // length. The loop invariants are:
 654       //
 655       // min_young_length < max_young_length
 656       // min_young_length is known to fit into the target pause time
 657       // max_young_length is known not to fit into the target pause time
 658       //
 659       // Going into the loop we know the above hold as we've just
 660       // checked them. Every time around the loop we check whether
 661       // the middle value between min_young_length and
 662       // max_young_length fits into the target pause time. If it
 663       // does, it becomes the new min. If it doesn't, it becomes
 664       // the new max. This way we maintain the loop invariants.
 665 
 666       assert(min_young_length < max_young_length, "invariant");
 667       uint diff = (max_young_length - min_young_length) / 2;
 668       while (diff > 0) {
 669         uint young_length = min_young_length + diff;
 670         if (predict_will_fit(young_length, base_time_ms,
 671                              base_free_regions, target_pause_time_ms)) {
 672           min_young_length = young_length;
 673         } else {
 674           max_young_length = young_length;
 675         }
 676         assert(min_young_length <  max_young_length, "invariant");
 677         diff = (max_young_length - min_young_length) / 2;
 678       }
 679       // The results is min_young_length which, according to the
 680       // loop invariants, should fit within the target pause time.
 681 
 682       // These are the post-conditions of the binary search above:
 683       assert(min_young_length < max_young_length,
 684              "otherwise we should have discovered that max_young_length "
 685              "fits into the pause target and not done the binary search");
 686       assert(predict_will_fit(min_young_length, base_time_ms,
 687                               base_free_regions, target_pause_time_ms),
 688              "min_young_length, the result of the binary search, should "
 689              "fit into the pause target");
 690       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 691                                base_free_regions, target_pause_time_ms),
 692              "min_young_length, the result of the binary search, should be "
 693              "optimal, so no larger length should fit into the pause target");
 694     }
 695   } else {
 696     // Even the minimum length doesn't fit into the pause time
 697     // target, return it as the result nevertheless.
 698   }
 699   return base_min_length + min_young_length;
 700 }
 701 
 702 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 703   double survivor_regions_evac_time = 0.0;
 704   for (HeapRegion * r = _recorded_survivor_head;
 705        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 706        r = r->get_next_young_region()) {
 707     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
 708   }
 709   return survivor_regions_evac_time;
 710 }
 711 
 712 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 713   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 714 
 715   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 716   if (rs_lengths > _rs_lengths_prediction) {
 717     // add 10% to avoid having to recalculate often
 718     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 719     update_young_list_target_length(rs_lengths_prediction);
 720   }
 721 }
 722 
 723 
 724 
 725 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 726                                                bool is_tlab,
 727                                                bool* gc_overhead_limit_was_exceeded) {
 728   guarantee(false, "Not using this policy feature yet.");
 729   return NULL;
 730 }
 731 
 732 // This method controls how a collector handles one or more
 733 // of its generations being fully allocated.
 734 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 735                                                        bool is_tlab) {
 736   guarantee(false, "Not using this policy feature yet.");
 737   return NULL;
 738 }
 739 
 740 
 741 #ifndef PRODUCT
 742 bool G1CollectorPolicy::verify_young_ages() {
 743   HeapRegion* head = _g1->young_list()->first_region();
 744   return
 745     verify_young_ages(head, _short_lived_surv_rate_group);
 746   // also call verify_young_ages on any additional surv rate groups
 747 }
 748 
 749 bool
 750 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 751                                      SurvRateGroup *surv_rate_group) {
 752   guarantee( surv_rate_group != NULL, "pre-condition" );
 753 
 754   const char* name = surv_rate_group->name();
 755   bool ret = true;
 756   int prev_age = -1;
 757 
 758   for (HeapRegion* curr = head;
 759        curr != NULL;
 760        curr = curr->get_next_young_region()) {
 761     SurvRateGroup* group = curr->surv_rate_group();
 762     if (group == NULL && !curr->is_survivor()) {
 763       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 764       ret = false;
 765     }
 766 
 767     if (surv_rate_group == group) {
 768       int age = curr->age_in_surv_rate_group();
 769 
 770       if (age < 0) {
 771         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 772         ret = false;
 773       }
 774 
 775       if (age <= prev_age) {
 776         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 777                                "(%d, %d)", name, age, prev_age);
 778         ret = false;
 779       }
 780       prev_age = age;
 781     }
 782   }
 783 
 784   return ret;
 785 }
 786 #endif // PRODUCT
 787 
 788 void G1CollectorPolicy::record_full_collection_start() {
 789   _full_collection_start_sec = os::elapsedTime();
 790   record_heap_size_info_at_start(true /* full */);
 791   // Release the future to-space so that it is available for compaction into.
 792   _g1->set_full_collection();
 793 }
 794 
 795 void G1CollectorPolicy::record_full_collection_end() {
 796   // Consider this like a collection pause for the purposes of allocation
 797   // since last pause.
 798   double end_sec = os::elapsedTime();
 799   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 800   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 801 
 802   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
 803 
 804   update_recent_gc_times(end_sec, full_gc_time_ms);
 805 
 806   _g1->clear_full_collection();
 807 
 808   // "Nuke" the heuristics that control the young/mixed GC
 809   // transitions and make sure we start with young GCs after the Full GC.
 810   set_gcs_are_young(true);
 811   _last_young_gc = false;
 812   clear_initiate_conc_mark_if_possible();
 813   clear_during_initial_mark_pause();
 814   _in_marking_window = false;
 815   _in_marking_window_im = false;
 816 
 817   _short_lived_surv_rate_group->start_adding_regions();
 818   // also call this on any additional surv rate groups
 819 
 820   record_survivor_regions(0, NULL, NULL);
 821 
 822   _free_regions_at_end_of_collection = _g1->free_regions();
 823   // Reset survivors SurvRateGroup.
 824   _survivor_surv_rate_group->reset();
 825   update_young_list_target_length();
 826   _collectionSetChooser->clear();
 827 }
 828 
 829 void G1CollectorPolicy::record_stop_world_start() {
 830   _stop_world_start = os::elapsedTime();
 831 }
 832 
 833 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 834   // We only need to do this here as the policy will only be applied
 835   // to the GC we're about to start. so, no point is calculating this
 836   // every time we calculate / recalculate the target young length.
 837   update_survivors_policy();
 838 
 839   assert(_g1->used() == _g1->recalculate_used(),
 840          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 841                  _g1->used(), _g1->recalculate_used()));
 842 
 843   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 844   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
 845   _stop_world_start = 0.0;
 846 
 847   record_heap_size_info_at_start(false /* full */);
 848 
 849   phase_times()->record_cur_collection_start_sec(start_time_sec);
 850   _pending_cards = _g1->pending_card_num();
 851 
 852   _collection_set_bytes_used_before = 0;
 853   _bytes_copied_during_gc = 0;
 854 
 855   _last_gc_was_young = false;
 856 
 857   // do that for any other surv rate groups
 858   _short_lived_surv_rate_group->stop_adding_regions();
 859   _survivors_age_table.clear();
 860 
 861   assert( verify_young_ages(), "region age verification" );
 862 }
 863 
 864 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 865                                                    mark_init_elapsed_time_ms) {
 866   _during_marking = true;
 867   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 868   clear_during_initial_mark_pause();
 869   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 870 }
 871 
 872 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 873   _mark_remark_start_sec = os::elapsedTime();
 874   _during_marking = false;
 875 }
 876 
 877 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 878   double end_time_sec = os::elapsedTime();
 879   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 880   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 881   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 882   _prev_collection_pause_end_ms += elapsed_time_ms;
 883 
 884   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 885 }
 886 
 887 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 888   _mark_cleanup_start_sec = os::elapsedTime();
 889 }
 890 
 891 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 892   _last_young_gc = true;
 893   _in_marking_window = false;
 894 }
 895 
 896 void G1CollectorPolicy::record_concurrent_pause() {
 897   if (_stop_world_start > 0.0) {
 898     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 899     _trace_gen0_time_data.record_yield_time(yield_ms);
 900   }
 901 }
 902 
 903 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 904   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 905     return false;
 906   }
 907 
 908   size_t marking_initiating_used_threshold =
 909     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 910   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 911   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 912 
 913   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 914     if (gcs_are_young() && !_last_young_gc) {
 915       ergo_verbose5(ErgoConcCycles,
 916         "request concurrent cycle initiation",
 917         ergo_format_reason("occupancy higher than threshold")
 918         ergo_format_byte("occupancy")
 919         ergo_format_byte("allocation request")
 920         ergo_format_byte_perc("threshold")
 921         ergo_format_str("source"),
 922         cur_used_bytes,
 923         alloc_byte_size,
 924         marking_initiating_used_threshold,
 925         (double) InitiatingHeapOccupancyPercent,
 926         source);
 927       return true;
 928     } else {
 929       ergo_verbose5(ErgoConcCycles,
 930         "do not request concurrent cycle initiation",
 931         ergo_format_reason("still doing mixed collections")
 932         ergo_format_byte("occupancy")
 933         ergo_format_byte("allocation request")
 934         ergo_format_byte_perc("threshold")
 935         ergo_format_str("source"),
 936         cur_used_bytes,
 937         alloc_byte_size,
 938         marking_initiating_used_threshold,
 939         (double) InitiatingHeapOccupancyPercent,
 940         source);
 941     }
 942   }
 943 
 944   return false;
 945 }
 946 
 947 // Anything below that is considered to be zero
 948 #define MIN_TIMER_GRANULARITY 0.0000001
 949 
 950 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
 951   double end_time_sec = os::elapsedTime();
 952   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 953          "otherwise, the subtraction below does not make sense");
 954   size_t rs_size =
 955             _cur_collection_pause_used_regions_at_start - cset_region_length();
 956   size_t cur_used_bytes = _g1->used();
 957   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 958   bool last_pause_included_initial_mark = false;
 959   bool update_stats = !_g1->evacuation_failed();
 960 
 961 #ifndef PRODUCT
 962   if (G1YoungSurvRateVerbose) {
 963     gclog_or_tty->print_cr("");
 964     _short_lived_surv_rate_group->print();
 965     // do that for any other surv rate groups too
 966   }
 967 #endif // PRODUCT
 968 
 969   last_pause_included_initial_mark = during_initial_mark_pause();
 970   if (last_pause_included_initial_mark) {
 971     record_concurrent_mark_init_end(0.0);
 972   } else if (need_to_start_conc_mark("end of GC")) {
 973     // Note: this might have already been set, if during the last
 974     // pause we decided to start a cycle but at the beginning of
 975     // this pause we decided to postpone it. That's OK.
 976     set_initiate_conc_mark_if_possible();
 977   }
 978 
 979   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 980                           end_time_sec, false);
 981 
 982   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
 983   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
 984 
 985   if (update_stats) {
 986     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
 987     // this is where we update the allocation rate of the application
 988     double app_time_ms =
 989       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 990     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 991       // This usually happens due to the timer not having the required
 992       // granularity. Some Linuxes are the usual culprits.
 993       // We'll just set it to something (arbitrarily) small.
 994       app_time_ms = 1.0;
 995     }
 996     // We maintain the invariant that all objects allocated by mutator
 997     // threads will be allocated out of eden regions. So, we can use
 998     // the eden region number allocated since the previous GC to
 999     // calculate the application's allocate rate. The only exception
1000     // to that is humongous objects that are allocated separately. But
1001     // given that humongous object allocations do not really affect
1002     // either the pause's duration nor when the next pause will take
1003     // place we can safely ignore them here.
1004     uint regions_allocated = eden_cset_region_length();
1005     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1006     _alloc_rate_ms_seq->add(alloc_rate_ms);
1007 
1008     double interval_ms =
1009       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1010     update_recent_gc_times(end_time_sec, pause_time_ms);
1011     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1012     if (recent_avg_pause_time_ratio() < 0.0 ||
1013         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1014 #ifndef PRODUCT
1015       // Dump info to allow post-facto debugging
1016       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1017       gclog_or_tty->print_cr("-------------------------------------------");
1018       gclog_or_tty->print_cr("Recent GC Times (ms):");
1019       _recent_gc_times_ms->dump();
1020       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1021       _recent_prev_end_times_for_all_gcs_sec->dump();
1022       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1023                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1024       // In debug mode, terminate the JVM if the user wants to debug at this point.
1025       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1026 #endif  // !PRODUCT
1027       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1028       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1029       if (_recent_avg_pause_time_ratio < 0.0) {
1030         _recent_avg_pause_time_ratio = 0.0;
1031       } else {
1032         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1033         _recent_avg_pause_time_ratio = 1.0;
1034       }
1035     }
1036   }
1037 
1038   bool new_in_marking_window = _in_marking_window;
1039   bool new_in_marking_window_im = false;
1040   if (during_initial_mark_pause()) {
1041     new_in_marking_window = true;
1042     new_in_marking_window_im = true;
1043   }
1044 
1045   if (_last_young_gc) {
1046     // This is supposed to to be the "last young GC" before we start
1047     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1048 
1049     if (!last_pause_included_initial_mark) {
1050       if (next_gc_should_be_mixed("start mixed GCs",
1051                                   "do not start mixed GCs")) {
1052         set_gcs_are_young(false);
1053       }
1054     } else {
1055       ergo_verbose0(ErgoMixedGCs,
1056                     "do not start mixed GCs",
1057                     ergo_format_reason("concurrent cycle is about to start"));
1058     }
1059     _last_young_gc = false;
1060   }
1061 
1062   if (!_last_gc_was_young) {
1063     // This is a mixed GC. Here we decide whether to continue doing
1064     // mixed GCs or not.
1065 
1066     if (!next_gc_should_be_mixed("continue mixed GCs",
1067                                  "do not continue mixed GCs")) {
1068       set_gcs_are_young(true);
1069     }
1070   }
1071 
1072   _short_lived_surv_rate_group->start_adding_regions();
1073   // do that for any other surv rate groupsx
1074 
1075   if (update_stats) {
1076     double cost_per_card_ms = 0.0;
1077     if (_pending_cards > 0) {
1078       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1079       _cost_per_card_ms_seq->add(cost_per_card_ms);
1080     }
1081 
1082     size_t cards_scanned = _g1->cards_scanned();
1083 
1084     double cost_per_entry_ms = 0.0;
1085     if (cards_scanned > 10) {
1086       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1087       if (_last_gc_was_young) {
1088         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1089       } else {
1090         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1091       }
1092     }
1093 
1094     if (_max_rs_lengths > 0) {
1095       double cards_per_entry_ratio =
1096         (double) cards_scanned / (double) _max_rs_lengths;
1097       if (_last_gc_was_young) {
1098         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1099       } else {
1100         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1101       }
1102     }
1103 
1104     // This is defensive. For a while _max_rs_lengths could get
1105     // smaller than _recorded_rs_lengths which was causing
1106     // rs_length_diff to get very large and mess up the RSet length
1107     // predictions. The reason was unsafe concurrent updates to the
1108     // _inc_cset_recorded_rs_lengths field which the code below guards
1109     // against (see CR 7118202). This bug has now been fixed (see CR
1110     // 7119027). However, I'm still worried that
1111     // _inc_cset_recorded_rs_lengths might still end up somewhat
1112     // inaccurate. The concurrent refinement thread calculates an
1113     // RSet's length concurrently with other CR threads updating it
1114     // which might cause it to calculate the length incorrectly (if,
1115     // say, it's in mid-coarsening). So I'll leave in the defensive
1116     // conditional below just in case.
1117     size_t rs_length_diff = 0;
1118     if (_max_rs_lengths > _recorded_rs_lengths) {
1119       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1120     }
1121     _rs_length_diff_seq->add((double) rs_length_diff);
1122 
1123     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1124     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1125     double cost_per_byte_ms = 0.0;
1126 
1127     if (copied_bytes > 0) {
1128       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1129       if (_in_marking_window) {
1130         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1131       } else {
1132         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1133       }
1134     }
1135 
1136     double all_other_time_ms = pause_time_ms -
1137       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
1138       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1139 
1140     double young_other_time_ms = 0.0;
1141     if (young_cset_region_length() > 0) {
1142       young_other_time_ms =
1143         phase_times()->young_cset_choice_time_ms() +
1144         phase_times()->young_free_cset_time_ms();
1145       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1146                                           (double) young_cset_region_length());
1147     }
1148     double non_young_other_time_ms = 0.0;
1149     if (old_cset_region_length() > 0) {
1150       non_young_other_time_ms =
1151         phase_times()->non_young_cset_choice_time_ms() +
1152         phase_times()->non_young_free_cset_time_ms();
1153 
1154       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1155                                             (double) old_cset_region_length());
1156     }
1157 
1158     double constant_other_time_ms = all_other_time_ms -
1159       (young_other_time_ms + non_young_other_time_ms);
1160     _constant_other_time_ms_seq->add(constant_other_time_ms);
1161 
1162     double survival_ratio = 0.0;
1163     if (_collection_set_bytes_used_before > 0) {
1164       survival_ratio = (double) _bytes_copied_during_gc /
1165                                    (double) _collection_set_bytes_used_before;
1166     }
1167 
1168     _pending_cards_seq->add((double) _pending_cards);
1169     _rs_lengths_seq->add((double) _max_rs_lengths);
1170   }
1171 
1172   _in_marking_window = new_in_marking_window;
1173   _in_marking_window_im = new_in_marking_window_im;
1174   _free_regions_at_end_of_collection = _g1->free_regions();
1175   update_young_list_target_length();
1176 
1177   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1178   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1179   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
1180                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1181 
1182   _collectionSetChooser->verify();
1183 }
1184 
1185 #define EXT_SIZE_FORMAT "%.1f%s"
1186 #define EXT_SIZE_PARAMS(bytes)                                  \
1187   byte_size_in_proper_unit((double)(bytes)),                    \
1188   proper_unit_for_byte_size((bytes))
1189 
1190 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1191   YoungList* young_list = _g1->young_list();
1192   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1193   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1194   _heap_capacity_bytes_before_gc = _g1->capacity();
1195   _heap_used_bytes_before_gc = _g1->used();
1196   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
1197 
1198   _eden_capacity_bytes_before_gc =
1199          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1200 
1201   if (full) {
1202     _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
1203   }
1204 }
1205 
1206 void G1CollectorPolicy::print_heap_transition() {
1207   _g1->print_size_transition(gclog_or_tty,
1208                              _heap_used_bytes_before_gc,
1209                              _g1->used(),
1210                              _g1->capacity());
1211 }
1212 
1213 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
1214   YoungList* young_list = _g1->young_list();
1215 
1216   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1217   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1218   size_t heap_used_bytes_after_gc = _g1->used();
1219 
1220   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1221   size_t eden_capacity_bytes_after_gc =
1222     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1223 
1224   gclog_or_tty->print(
1225     "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1226     "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1227     "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1228     EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1229     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1230     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1231     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1232     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1233     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1234     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1235     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1236     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1237     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1238     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1239 
1240   if (full) {
1241     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1242   }
1243 
1244   gclog_or_tty->cr();
1245 }
1246 
1247 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1248                                                      double update_rs_processed_buffers,
1249                                                      double goal_ms) {
1250   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1251   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1252 
1253   if (G1UseAdaptiveConcRefinement) {
1254     const int k_gy = 3, k_gr = 6;
1255     const double inc_k = 1.1, dec_k = 0.9;
1256 
1257     int g = cg1r->green_zone();
1258     if (update_rs_time > goal_ms) {
1259       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1260     } else {
1261       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1262         g = (int)MAX2(g * inc_k, g + 1.0);
1263       }
1264     }
1265     // Change the refinement threads params
1266     cg1r->set_green_zone(g);
1267     cg1r->set_yellow_zone(g * k_gy);
1268     cg1r->set_red_zone(g * k_gr);
1269     cg1r->reinitialize_threads();
1270 
1271     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1272     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1273                                     cg1r->yellow_zone());
1274     // Change the barrier params
1275     dcqs.set_process_completed_threshold(processing_threshold);
1276     dcqs.set_max_completed_queue(cg1r->red_zone());
1277   }
1278 
1279   int curr_queue_size = dcqs.completed_buffers_num();
1280   if (curr_queue_size >= cg1r->yellow_zone()) {
1281     dcqs.set_completed_queue_padding(curr_queue_size);
1282   } else {
1283     dcqs.set_completed_queue_padding(0);
1284   }
1285   dcqs.notify_if_necessary();
1286 }
1287 
1288 double
1289 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1290                                                 size_t scanned_cards) {
1291   return
1292     predict_rs_update_time_ms(pending_cards) +
1293     predict_rs_scan_time_ms(scanned_cards) +
1294     predict_constant_other_time_ms();
1295 }
1296 
1297 double
1298 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1299   size_t rs_length = predict_rs_length_diff();
1300   size_t card_num;
1301   if (gcs_are_young()) {
1302     card_num = predict_young_card_num(rs_length);
1303   } else {
1304     card_num = predict_non_young_card_num(rs_length);
1305   }
1306   return predict_base_elapsed_time_ms(pending_cards, card_num);
1307 }
1308 
1309 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1310   size_t bytes_to_copy;
1311   if (hr->is_marked())
1312     bytes_to_copy = hr->max_live_bytes();
1313   else {
1314     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1315     int age = hr->age_in_surv_rate_group();
1316     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1317     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1318   }
1319   return bytes_to_copy;
1320 }
1321 
1322 double
1323 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1324                                                   bool for_young_gc) {
1325   size_t rs_length = hr->rem_set()->occupied();
1326   size_t card_num;
1327 
1328   // Predicting the number of cards is based on which type of GC
1329   // we're predicting for.
1330   if (for_young_gc) {
1331     card_num = predict_young_card_num(rs_length);
1332   } else {
1333     card_num = predict_non_young_card_num(rs_length);
1334   }
1335   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1336 
1337   double region_elapsed_time_ms =
1338     predict_rs_scan_time_ms(card_num) +
1339     predict_object_copy_time_ms(bytes_to_copy);
1340 
1341   // The prediction of the "other" time for this region is based
1342   // upon the region type and NOT the GC type.
1343   if (hr->is_young()) {
1344     region_elapsed_time_ms += predict_young_other_time_ms(1);
1345   } else {
1346     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1347   }
1348   return region_elapsed_time_ms;
1349 }
1350 
1351 void
1352 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1353                                             uint survivor_cset_region_length) {
1354   _eden_cset_region_length     = eden_cset_region_length;
1355   _survivor_cset_region_length = survivor_cset_region_length;
1356   _old_cset_region_length      = 0;
1357 }
1358 
1359 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1360   _recorded_rs_lengths = rs_lengths;
1361 }
1362 
1363 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1364                                                double elapsed_ms) {
1365   _recent_gc_times_ms->add(elapsed_ms);
1366   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1367   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1368 }
1369 
1370 size_t G1CollectorPolicy::expansion_amount() {
1371   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1372   double threshold = _gc_overhead_perc;
1373   if (recent_gc_overhead > threshold) {
1374     // We will double the existing space, or take
1375     // G1ExpandByPercentOfAvailable % of the available expansion
1376     // space, whichever is smaller, bounded below by a minimum
1377     // expansion (unless that's all that's left.)
1378     const size_t min_expand_bytes = 1*M;
1379     size_t reserved_bytes = _g1->max_capacity();
1380     size_t committed_bytes = _g1->capacity();
1381     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1382     size_t expand_bytes;
1383     size_t expand_bytes_via_pct =
1384       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1385     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1386     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1387     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1388 
1389     ergo_verbose5(ErgoHeapSizing,
1390                   "attempt heap expansion",
1391                   ergo_format_reason("recent GC overhead higher than "
1392                                      "threshold after GC")
1393                   ergo_format_perc("recent GC overhead")
1394                   ergo_format_perc("threshold")
1395                   ergo_format_byte("uncommitted")
1396                   ergo_format_byte_perc("calculated expansion amount"),
1397                   recent_gc_overhead, threshold,
1398                   uncommitted_bytes,
1399                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1400 
1401     return expand_bytes;
1402   } else {
1403     return 0;
1404   }
1405 }
1406 
1407 void G1CollectorPolicy::print_tracing_info() const {
1408   _trace_gen0_time_data.print();
1409   _trace_gen1_time_data.print();
1410 }
1411 
1412 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1413 #ifndef PRODUCT
1414   _short_lived_surv_rate_group->print_surv_rate_summary();
1415   // add this call for any other surv rate groups
1416 #endif // PRODUCT
1417 }
1418 
1419 uint G1CollectorPolicy::max_regions(int purpose) {
1420   switch (purpose) {
1421     case GCAllocForSurvived:
1422       return _max_survivor_regions;
1423     case GCAllocForTenured:
1424       return REGIONS_UNLIMITED;
1425     default:
1426       ShouldNotReachHere();
1427       return REGIONS_UNLIMITED;
1428   };
1429 }
1430 
1431 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1432   uint expansion_region_num = 0;
1433   if (GCLockerEdenExpansionPercent > 0) {
1434     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1435     double expansion_region_num_d = perc * (double) _young_list_target_length;
1436     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1437     // less than 1.0) we'll get 1.
1438     expansion_region_num = (uint) ceil(expansion_region_num_d);
1439   } else {
1440     assert(expansion_region_num == 0, "sanity");
1441   }
1442   _young_list_max_length = _young_list_target_length + expansion_region_num;
1443   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1444 }
1445 
1446 // Calculates survivor space parameters.
1447 void G1CollectorPolicy::update_survivors_policy() {
1448   double max_survivor_regions_d =
1449                  (double) _young_list_target_length / (double) SurvivorRatio;
1450   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1451   // smaller than 1.0) we'll get 1.
1452   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1453 
1454   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1455         HeapRegion::GrainWords * _max_survivor_regions);
1456 }
1457 
1458 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1459                                                      GCCause::Cause gc_cause) {
1460   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1461   if (!during_cycle) {
1462     ergo_verbose1(ErgoConcCycles,
1463                   "request concurrent cycle initiation",
1464                   ergo_format_reason("requested by GC cause")
1465                   ergo_format_str("GC cause"),
1466                   GCCause::to_string(gc_cause));
1467     set_initiate_conc_mark_if_possible();
1468     return true;
1469   } else {
1470     ergo_verbose1(ErgoConcCycles,
1471                   "do not request concurrent cycle initiation",
1472                   ergo_format_reason("concurrent cycle already in progress")
1473                   ergo_format_str("GC cause"),
1474                   GCCause::to_string(gc_cause));
1475     return false;
1476   }
1477 }
1478 
1479 void
1480 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1481   // We are about to decide on whether this pause will be an
1482   // initial-mark pause.
1483 
1484   // First, during_initial_mark_pause() should not be already set. We
1485   // will set it here if we have to. However, it should be cleared by
1486   // the end of the pause (it's only set for the duration of an
1487   // initial-mark pause).
1488   assert(!during_initial_mark_pause(), "pre-condition");
1489 
1490   if (initiate_conc_mark_if_possible()) {
1491     // We had noticed on a previous pause that the heap occupancy has
1492     // gone over the initiating threshold and we should start a
1493     // concurrent marking cycle. So we might initiate one.
1494 
1495     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1496     if (!during_cycle) {
1497       // The concurrent marking thread is not "during a cycle", i.e.,
1498       // it has completed the last one. So we can go ahead and
1499       // initiate a new cycle.
1500 
1501       set_during_initial_mark_pause();
1502       // We do not allow mixed GCs during marking.
1503       if (!gcs_are_young()) {
1504         set_gcs_are_young(true);
1505         ergo_verbose0(ErgoMixedGCs,
1506                       "end mixed GCs",
1507                       ergo_format_reason("concurrent cycle is about to start"));
1508       }
1509 
1510       // And we can now clear initiate_conc_mark_if_possible() as
1511       // we've already acted on it.
1512       clear_initiate_conc_mark_if_possible();
1513 
1514       ergo_verbose0(ErgoConcCycles,
1515                   "initiate concurrent cycle",
1516                   ergo_format_reason("concurrent cycle initiation requested"));
1517     } else {
1518       // The concurrent marking thread is still finishing up the
1519       // previous cycle. If we start one right now the two cycles
1520       // overlap. In particular, the concurrent marking thread might
1521       // be in the process of clearing the next marking bitmap (which
1522       // we will use for the next cycle if we start one). Starting a
1523       // cycle now will be bad given that parts of the marking
1524       // information might get cleared by the marking thread. And we
1525       // cannot wait for the marking thread to finish the cycle as it
1526       // periodically yields while clearing the next marking bitmap
1527       // and, if it's in a yield point, it's waiting for us to
1528       // finish. So, at this point we will not start a cycle and we'll
1529       // let the concurrent marking thread complete the last one.
1530       ergo_verbose0(ErgoConcCycles,
1531                     "do not initiate concurrent cycle",
1532                     ergo_format_reason("concurrent cycle already in progress"));
1533     }
1534   }
1535 }
1536 
1537 class KnownGarbageClosure: public HeapRegionClosure {
1538   G1CollectedHeap* _g1h;
1539   CollectionSetChooser* _hrSorted;
1540 
1541 public:
1542   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1543     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1544 
1545   bool doHeapRegion(HeapRegion* r) {
1546     // We only include humongous regions in collection
1547     // sets when concurrent mark shows that their contained object is
1548     // unreachable.
1549 
1550     // Do we have any marking information for this region?
1551     if (r->is_marked()) {
1552       // We will skip any region that's currently used as an old GC
1553       // alloc region (we should not consider those for collection
1554       // before we fill them up).
1555       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1556         _hrSorted->add_region(r);
1557       }
1558     }
1559     return false;
1560   }
1561 };
1562 
1563 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1564   G1CollectedHeap* _g1h;
1565   CSetChooserParUpdater _cset_updater;
1566 
1567 public:
1568   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1569                            uint chunk_size) :
1570     _g1h(G1CollectedHeap::heap()),
1571     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1572 
1573   bool doHeapRegion(HeapRegion* r) {
1574     // Do we have any marking information for this region?
1575     if (r->is_marked()) {
1576       // We will skip any region that's currently used as an old GC
1577       // alloc region (we should not consider those for collection
1578       // before we fill them up).
1579       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1580         _cset_updater.add_region(r);
1581       }
1582     }
1583     return false;
1584   }
1585 };
1586 
1587 class ParKnownGarbageTask: public AbstractGangTask {
1588   CollectionSetChooser* _hrSorted;
1589   uint _chunk_size;
1590   G1CollectedHeap* _g1;
1591 public:
1592   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1593     AbstractGangTask("ParKnownGarbageTask"),
1594     _hrSorted(hrSorted), _chunk_size(chunk_size),
1595     _g1(G1CollectedHeap::heap()) { }
1596 
1597   void work(uint worker_id) {
1598     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1599 
1600     // Back to zero for the claim value.
1601     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1602                                          _g1->workers()->active_workers(),
1603                                          HeapRegion::InitialClaimValue);
1604   }
1605 };
1606 
1607 void
1608 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1609   _collectionSetChooser->clear();
1610 
1611   uint region_num = _g1->n_regions();
1612   if (G1CollectedHeap::use_parallel_gc_threads()) {
1613     const uint OverpartitionFactor = 4;
1614     uint WorkUnit;
1615     // The use of MinChunkSize = 8 in the original code
1616     // causes some assertion failures when the total number of
1617     // region is less than 8.  The code here tries to fix that.
1618     // Should the original code also be fixed?
1619     if (no_of_gc_threads > 0) {
1620       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
1621       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
1622                       MinWorkUnit);
1623     } else {
1624       assert(no_of_gc_threads > 0,
1625         "The active gc workers should be greater than 0");
1626       // In a product build do something reasonable to avoid a crash.
1627       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1628       WorkUnit =
1629         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1630              MinWorkUnit);
1631     }
1632     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
1633                                                            WorkUnit);
1634     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1635                                             (int) WorkUnit);
1636     _g1->workers()->run_task(&parKnownGarbageTask);
1637 
1638     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1639            "sanity check");
1640   } else {
1641     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
1642     _g1->heap_region_iterate(&knownGarbagecl);
1643   }
1644 
1645   _collectionSetChooser->sort_regions();
1646 
1647   double end_sec = os::elapsedTime();
1648   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1649   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1650   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1651   _prev_collection_pause_end_ms += elapsed_time_ms;
1652   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1653 }
1654 
1655 // Add the heap region at the head of the non-incremental collection set
1656 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1657   assert(_inc_cset_build_state == Active, "Precondition");
1658   assert(!hr->is_young(), "non-incremental add of young region");
1659 
1660   assert(!hr->in_collection_set(), "should not already be in the CSet");
1661   hr->set_in_collection_set(true);
1662   hr->set_next_in_collection_set(_collection_set);
1663   _collection_set = hr;
1664   _collection_set_bytes_used_before += hr->used();
1665   _g1->register_region_with_in_cset_fast_test(hr);
1666   size_t rs_length = hr->rem_set()->occupied();
1667   _recorded_rs_lengths += rs_length;
1668   _old_cset_region_length += 1;
1669 }
1670 
1671 // Initialize the per-collection-set information
1672 void G1CollectorPolicy::start_incremental_cset_building() {
1673   assert(_inc_cset_build_state == Inactive, "Precondition");
1674 
1675   _inc_cset_head = NULL;
1676   _inc_cset_tail = NULL;
1677   _inc_cset_bytes_used_before = 0;
1678 
1679   _inc_cset_max_finger = 0;
1680   _inc_cset_recorded_rs_lengths = 0;
1681   _inc_cset_recorded_rs_lengths_diffs = 0;
1682   _inc_cset_predicted_elapsed_time_ms = 0.0;
1683   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1684   _inc_cset_build_state = Active;
1685 }
1686 
1687 void G1CollectorPolicy::finalize_incremental_cset_building() {
1688   assert(_inc_cset_build_state == Active, "Precondition");
1689   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1690 
1691   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1692   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1693   // that adds a new region to the CSet. Further updates by the
1694   // concurrent refinement thread that samples the young RSet lengths
1695   // are accumulated in the *_diffs fields. Here we add the diffs to
1696   // the "main" fields.
1697 
1698   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1699     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1700   } else {
1701     // This is defensive. The diff should in theory be always positive
1702     // as RSets can only grow between GCs. However, given that we
1703     // sample their size concurrently with other threads updating them
1704     // it's possible that we might get the wrong size back, which
1705     // could make the calculations somewhat inaccurate.
1706     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1707     if (_inc_cset_recorded_rs_lengths >= diffs) {
1708       _inc_cset_recorded_rs_lengths -= diffs;
1709     } else {
1710       _inc_cset_recorded_rs_lengths = 0;
1711     }
1712   }
1713   _inc_cset_predicted_elapsed_time_ms +=
1714                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1715 
1716   _inc_cset_recorded_rs_lengths_diffs = 0;
1717   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1718 }
1719 
1720 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1721   // This routine is used when:
1722   // * adding survivor regions to the incremental cset at the end of an
1723   //   evacuation pause,
1724   // * adding the current allocation region to the incremental cset
1725   //   when it is retired, and
1726   // * updating existing policy information for a region in the
1727   //   incremental cset via young list RSet sampling.
1728   // Therefore this routine may be called at a safepoint by the
1729   // VM thread, or in-between safepoints by mutator threads (when
1730   // retiring the current allocation region) or a concurrent
1731   // refine thread (RSet sampling).
1732 
1733   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1734   size_t used_bytes = hr->used();
1735   _inc_cset_recorded_rs_lengths += rs_length;
1736   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1737   _inc_cset_bytes_used_before += used_bytes;
1738 
1739   // Cache the values we have added to the aggregated informtion
1740   // in the heap region in case we have to remove this region from
1741   // the incremental collection set, or it is updated by the
1742   // rset sampling code
1743   hr->set_recorded_rs_length(rs_length);
1744   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1745 }
1746 
1747 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1748                                                      size_t new_rs_length) {
1749   // Update the CSet information that is dependent on the new RS length
1750   assert(hr->is_young(), "Precondition");
1751   assert(!SafepointSynchronize::is_at_safepoint(),
1752                                                "should not be at a safepoint");
1753 
1754   // We could have updated _inc_cset_recorded_rs_lengths and
1755   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1756   // that atomically, as this code is executed by a concurrent
1757   // refinement thread, potentially concurrently with a mutator thread
1758   // allocating a new region and also updating the same fields. To
1759   // avoid the atomic operations we accumulate these updates on two
1760   // separate fields (*_diffs) and we'll just add them to the "main"
1761   // fields at the start of a GC.
1762 
1763   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1764   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1765   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1766 
1767   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1768   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1769   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1770   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1771 
1772   hr->set_recorded_rs_length(new_rs_length);
1773   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1774 }
1775 
1776 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1777   assert(hr->is_young(), "invariant");
1778   assert(hr->young_index_in_cset() > -1, "should have already been set");
1779   assert(_inc_cset_build_state == Active, "Precondition");
1780 
1781   // We need to clear and set the cached recorded/cached collection set
1782   // information in the heap region here (before the region gets added
1783   // to the collection set). An individual heap region's cached values
1784   // are calculated, aggregated with the policy collection set info,
1785   // and cached in the heap region here (initially) and (subsequently)
1786   // by the Young List sampling code.
1787 
1788   size_t rs_length = hr->rem_set()->occupied();
1789   add_to_incremental_cset_info(hr, rs_length);
1790 
1791   HeapWord* hr_end = hr->end();
1792   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1793 
1794   assert(!hr->in_collection_set(), "invariant");
1795   hr->set_in_collection_set(true);
1796   assert( hr->next_in_collection_set() == NULL, "invariant");
1797 
1798   _g1->register_region_with_in_cset_fast_test(hr);
1799 }
1800 
1801 // Add the region at the RHS of the incremental cset
1802 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1803   // We should only ever be appending survivors at the end of a pause
1804   assert( hr->is_survivor(), "Logic");
1805 
1806   // Do the 'common' stuff
1807   add_region_to_incremental_cset_common(hr);
1808 
1809   // Now add the region at the right hand side
1810   if (_inc_cset_tail == NULL) {
1811     assert(_inc_cset_head == NULL, "invariant");
1812     _inc_cset_head = hr;
1813   } else {
1814     _inc_cset_tail->set_next_in_collection_set(hr);
1815   }
1816   _inc_cset_tail = hr;
1817 }
1818 
1819 // Add the region to the LHS of the incremental cset
1820 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1821   // Survivors should be added to the RHS at the end of a pause
1822   assert(!hr->is_survivor(), "Logic");
1823 
1824   // Do the 'common' stuff
1825   add_region_to_incremental_cset_common(hr);
1826 
1827   // Add the region at the left hand side
1828   hr->set_next_in_collection_set(_inc_cset_head);
1829   if (_inc_cset_head == NULL) {
1830     assert(_inc_cset_tail == NULL, "Invariant");
1831     _inc_cset_tail = hr;
1832   }
1833   _inc_cset_head = hr;
1834 }
1835 
1836 #ifndef PRODUCT
1837 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1838   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1839 
1840   st->print_cr("\nCollection_set:");
1841   HeapRegion* csr = list_head;
1842   while (csr != NULL) {
1843     HeapRegion* next = csr->next_in_collection_set();
1844     assert(csr->in_collection_set(), "bad CS");
1845     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
1846                  HR_FORMAT_PARAMS(csr),
1847                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
1848                  csr->age_in_surv_rate_group_cond());
1849     csr = next;
1850   }
1851 }
1852 #endif // !PRODUCT
1853 
1854 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1855   // Returns the given amount of reclaimable bytes (that represents
1856   // the amount of reclaimable space still to be collected) as a
1857   // percentage of the current heap capacity.
1858   size_t capacity_bytes = _g1->capacity();
1859   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1860 }
1861 
1862 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1863                                                 const char* false_action_str) {
1864   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1865   if (cset_chooser->is_empty()) {
1866     ergo_verbose0(ErgoMixedGCs,
1867                   false_action_str,
1868                   ergo_format_reason("candidate old regions not available"));
1869     return false;
1870   }
1871 
1872   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1873   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1874   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1875   double threshold = (double) G1HeapWastePercent;
1876   if (reclaimable_perc <= threshold) {
1877     ergo_verbose4(ErgoMixedGCs,
1878               false_action_str,
1879               ergo_format_reason("reclaimable percentage not over threshold")
1880               ergo_format_region("candidate old regions")
1881               ergo_format_byte_perc("reclaimable")
1882               ergo_format_perc("threshold"),
1883               cset_chooser->remaining_regions(),
1884               reclaimable_bytes,
1885               reclaimable_perc, threshold);
1886     return false;
1887   }
1888 
1889   ergo_verbose4(ErgoMixedGCs,
1890                 true_action_str,
1891                 ergo_format_reason("candidate old regions available")
1892                 ergo_format_region("candidate old regions")
1893                 ergo_format_byte_perc("reclaimable")
1894                 ergo_format_perc("threshold"),
1895                 cset_chooser->remaining_regions(),
1896                 reclaimable_bytes,
1897                 reclaimable_perc, threshold);
1898   return true;
1899 }
1900 
1901 uint G1CollectorPolicy::calc_min_old_cset_length() {
1902   // The min old CSet region bound is based on the maximum desired
1903   // number of mixed GCs after a cycle. I.e., even if some old regions
1904   // look expensive, we should add them to the CSet anyway to make
1905   // sure we go through the available old regions in no more than the
1906   // maximum desired number of mixed GCs.
1907   //
1908   // The calculation is based on the number of marked regions we added
1909   // to the CSet chooser in the first place, not how many remain, so
1910   // that the result is the same during all mixed GCs that follow a cycle.
1911 
1912   const size_t region_num = (size_t) _collectionSetChooser->length();
1913   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1914   size_t result = region_num / gc_num;
1915   // emulate ceiling
1916   if (result * gc_num < region_num) {
1917     result += 1;
1918   }
1919   return (uint) result;
1920 }
1921 
1922 uint G1CollectorPolicy::calc_max_old_cset_length() {
1923   // The max old CSet region bound is based on the threshold expressed
1924   // as a percentage of the heap size. I.e., it should bound the
1925   // number of old regions added to the CSet irrespective of how many
1926   // of them are available.
1927 
1928   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1929   const size_t region_num = g1h->n_regions();
1930   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1931   size_t result = region_num * perc / 100;
1932   // emulate ceiling
1933   if (100 * result < region_num * perc) {
1934     result += 1;
1935   }
1936   return (uint) result;
1937 }
1938 
1939 
1940 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1941   double young_start_time_sec = os::elapsedTime();
1942 
1943   YoungList* young_list = _g1->young_list();
1944   finalize_incremental_cset_building();
1945 
1946   guarantee(target_pause_time_ms > 0.0,
1947             err_msg("target_pause_time_ms = %1.6lf should be positive",
1948                     target_pause_time_ms));
1949   guarantee(_collection_set == NULL, "Precondition");
1950 
1951   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1952   double predicted_pause_time_ms = base_time_ms;
1953   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1954 
1955   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1956                 "start choosing CSet",
1957                 ergo_format_size("_pending_cards")
1958                 ergo_format_ms("predicted base time")
1959                 ergo_format_ms("remaining time")
1960                 ergo_format_ms("target pause time"),
1961                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1962 
1963   _last_gc_was_young = gcs_are_young() ? true : false;
1964 
1965   if (_last_gc_was_young) {
1966     _trace_gen0_time_data.increment_young_collection_count();
1967   } else {
1968     _trace_gen0_time_data.increment_mixed_collection_count();
1969   }
1970 
1971   // The young list is laid with the survivor regions from the previous
1972   // pause are appended to the RHS of the young list, i.e.
1973   //   [Newly Young Regions ++ Survivors from last pause].
1974 
1975   uint survivor_region_length = young_list->survivor_length();
1976   uint eden_region_length = young_list->length() - survivor_region_length;
1977   init_cset_region_lengths(eden_region_length, survivor_region_length);
1978 
1979   HeapRegion* hr = young_list->first_survivor_region();
1980   while (hr != NULL) {
1981     assert(hr->is_survivor(), "badly formed young list");
1982     hr->set_young();
1983     hr = hr->get_next_young_region();
1984   }
1985 
1986   // Clear the fields that point to the survivor list - they are all young now.
1987   young_list->clear_survivors();
1988 
1989   _collection_set = _inc_cset_head;
1990   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1991   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1992   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1993 
1994   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
1995                 "add young regions to CSet",
1996                 ergo_format_region("eden")
1997                 ergo_format_region("survivors")
1998                 ergo_format_ms("predicted young region time"),
1999                 eden_region_length, survivor_region_length,
2000                 _inc_cset_predicted_elapsed_time_ms);
2001 
2002   // The number of recorded young regions is the incremental
2003   // collection set's current size
2004   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2005 
2006   double young_end_time_sec = os::elapsedTime();
2007   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2008 
2009   // Set the start of the non-young choice time.
2010   double non_young_start_time_sec = young_end_time_sec;
2011 
2012   if (!gcs_are_young()) {
2013     CollectionSetChooser* cset_chooser = _collectionSetChooser;
2014     cset_chooser->verify();
2015     const uint min_old_cset_length = calc_min_old_cset_length();
2016     const uint max_old_cset_length = calc_max_old_cset_length();
2017 
2018     uint expensive_region_num = 0;
2019     bool check_time_remaining = adaptive_young_list_length();
2020 
2021     HeapRegion* hr = cset_chooser->peek();
2022     while (hr != NULL) {
2023       if (old_cset_region_length() >= max_old_cset_length) {
2024         // Added maximum number of old regions to the CSet.
2025         ergo_verbose2(ErgoCSetConstruction,
2026                       "finish adding old regions to CSet",
2027                       ergo_format_reason("old CSet region num reached max")
2028                       ergo_format_region("old")
2029                       ergo_format_region("max"),
2030                       old_cset_region_length(), max_old_cset_length);
2031         break;
2032       }
2033 
2034 
2035       // Stop adding regions if the remaining reclaimable space is
2036       // not above G1HeapWastePercent.
2037       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2038       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2039       double threshold = (double) G1HeapWastePercent;
2040       if (reclaimable_perc <= threshold) {
2041         // We've added enough old regions that the amount of uncollected
2042         // reclaimable space is at or below the waste threshold. Stop
2043         // adding old regions to the CSet.
2044         ergo_verbose5(ErgoCSetConstruction,
2045                       "finish adding old regions to CSet",
2046                       ergo_format_reason("reclaimable percentage not over threshold")
2047                       ergo_format_region("old")
2048                       ergo_format_region("max")
2049                       ergo_format_byte_perc("reclaimable")
2050                       ergo_format_perc("threshold"),
2051                       old_cset_region_length(),
2052                       max_old_cset_length,
2053                       reclaimable_bytes,
2054                       reclaimable_perc, threshold);
2055         break;
2056       }
2057 
2058       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2059       if (check_time_remaining) {
2060         if (predicted_time_ms > time_remaining_ms) {
2061           // Too expensive for the current CSet.
2062 
2063           if (old_cset_region_length() >= min_old_cset_length) {
2064             // We have added the minimum number of old regions to the CSet,
2065             // we are done with this CSet.
2066             ergo_verbose4(ErgoCSetConstruction,
2067                           "finish adding old regions to CSet",
2068                           ergo_format_reason("predicted time is too high")
2069                           ergo_format_ms("predicted time")
2070                           ergo_format_ms("remaining time")
2071                           ergo_format_region("old")
2072                           ergo_format_region("min"),
2073                           predicted_time_ms, time_remaining_ms,
2074                           old_cset_region_length(), min_old_cset_length);
2075             break;
2076           }
2077 
2078           // We'll add it anyway given that we haven't reached the
2079           // minimum number of old regions.
2080           expensive_region_num += 1;
2081         }
2082       } else {
2083         if (old_cset_region_length() >= min_old_cset_length) {
2084           // In the non-auto-tuning case, we'll finish adding regions
2085           // to the CSet if we reach the minimum.
2086           ergo_verbose2(ErgoCSetConstruction,
2087                         "finish adding old regions to CSet",
2088                         ergo_format_reason("old CSet region num reached min")
2089                         ergo_format_region("old")
2090                         ergo_format_region("min"),
2091                         old_cset_region_length(), min_old_cset_length);
2092           break;
2093         }
2094       }
2095 
2096       // We will add this region to the CSet.
2097       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2098       predicted_pause_time_ms += predicted_time_ms;
2099       cset_chooser->remove_and_move_to_next(hr);
2100       _g1->old_set_remove(hr);
2101       add_old_region_to_cset(hr);
2102 
2103       hr = cset_chooser->peek();
2104     }
2105     if (hr == NULL) {
2106       ergo_verbose0(ErgoCSetConstruction,
2107                     "finish adding old regions to CSet",
2108                     ergo_format_reason("candidate old regions not available"));
2109     }
2110 
2111     if (expensive_region_num > 0) {
2112       // We print the information once here at the end, predicated on
2113       // whether we added any apparently expensive regions or not, to
2114       // avoid generating output per region.
2115       ergo_verbose4(ErgoCSetConstruction,
2116                     "added expensive regions to CSet",
2117                     ergo_format_reason("old CSet region num not reached min")
2118                     ergo_format_region("old")
2119                     ergo_format_region("expensive")
2120                     ergo_format_region("min")
2121                     ergo_format_ms("remaining time"),
2122                     old_cset_region_length(),
2123                     expensive_region_num,
2124                     min_old_cset_length,
2125                     time_remaining_ms);
2126     }
2127 
2128     cset_chooser->verify();
2129   }
2130 
2131   stop_incremental_cset_building();
2132 
2133   ergo_verbose5(ErgoCSetConstruction,
2134                 "finish choosing CSet",
2135                 ergo_format_region("eden")
2136                 ergo_format_region("survivors")
2137                 ergo_format_region("old")
2138                 ergo_format_ms("predicted pause time")
2139                 ergo_format_ms("target pause time"),
2140                 eden_region_length, survivor_region_length,
2141                 old_cset_region_length(),
2142                 predicted_pause_time_ms, target_pause_time_ms);
2143 
2144   double non_young_end_time_sec = os::elapsedTime();
2145   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2146   evacuation_info.set_collectionset_regions(cset_region_length());
2147 }
2148 
2149 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
2150   if(TraceGen0Time) {
2151     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2152   }
2153 }
2154 
2155 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
2156   if(TraceGen0Time) {
2157     _all_yield_times_ms.add(yield_time_ms);
2158   }
2159 }
2160 
2161 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2162   if(TraceGen0Time) {
2163     _total.add(pause_time_ms);
2164     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2165     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2166     _parallel.add(phase_times->cur_collection_par_time_ms());
2167     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
2168     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
2169     _update_rs.add(phase_times->average_last_update_rs_time());
2170     _scan_rs.add(phase_times->average_last_scan_rs_time());
2171     _obj_copy.add(phase_times->average_last_obj_copy_time());
2172     _termination.add(phase_times->average_last_termination_time());
2173 
2174     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
2175       phase_times->average_last_satb_filtering_times_ms() +
2176       phase_times->average_last_update_rs_time() +
2177       phase_times->average_last_scan_rs_time() +
2178       phase_times->average_last_obj_copy_time() +
2179       + phase_times->average_last_termination_time();
2180 
2181     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2182     _parallel_other.add(parallel_other_time);
2183     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2184   }
2185 }
2186 
2187 void TraceGen0TimeData::increment_young_collection_count() {
2188   if(TraceGen0Time) {
2189     ++_young_pause_num;
2190   }
2191 }
2192 
2193 void TraceGen0TimeData::increment_mixed_collection_count() {
2194   if(TraceGen0Time) {
2195     ++_mixed_pause_num;
2196   }
2197 }
2198 
2199 void TraceGen0TimeData::print_summary(const char* str,
2200                                       const NumberSeq* seq) const {
2201   double sum = seq->sum();
2202   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2203                 str, sum / 1000.0, seq->avg());
2204 }
2205 
2206 void TraceGen0TimeData::print_summary_sd(const char* str,
2207                                          const NumberSeq* seq) const {
2208   print_summary(str, seq);
2209   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2210                 "(num", seq->num(), seq->sd(), seq->maximum());
2211 }
2212 
2213 void TraceGen0TimeData::print() const {
2214   if (!TraceGen0Time) {
2215     return;
2216   }
2217 
2218   gclog_or_tty->print_cr("ALL PAUSES");
2219   print_summary_sd("   Total", &_total);
2220   gclog_or_tty->print_cr("");
2221   gclog_or_tty->print_cr("");
2222   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2223   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2224   gclog_or_tty->print_cr("");
2225 
2226   gclog_or_tty->print_cr("EVACUATION PAUSES");
2227 
2228   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2229     gclog_or_tty->print_cr("none");
2230   } else {
2231     print_summary_sd("   Evacuation Pauses", &_total);
2232     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2233     print_summary("      Parallel Time", &_parallel);
2234     print_summary("         Ext Root Scanning", &_ext_root_scan);
2235     print_summary("         SATB Filtering", &_satb_filtering);
2236     print_summary("         Update RS", &_update_rs);
2237     print_summary("         Scan RS", &_scan_rs);
2238     print_summary("         Object Copy", &_obj_copy);
2239     print_summary("         Termination", &_termination);
2240     print_summary("         Parallel Other", &_parallel_other);
2241     print_summary("      Clear CT", &_clear_ct);
2242     print_summary("      Other", &_other);
2243   }
2244   gclog_or_tty->print_cr("");
2245 
2246   gclog_or_tty->print_cr("MISC");
2247   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2248   print_summary_sd("   Yields", &_all_yield_times_ms);
2249 }
2250 
2251 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
2252   if (TraceGen1Time) {
2253     _all_full_gc_times.add(full_gc_time_ms);
2254   }
2255 }
2256 
2257 void TraceGen1TimeData::print() const {
2258   if (!TraceGen1Time) {
2259     return;
2260   }
2261 
2262   if (_all_full_gc_times.num() > 0) {
2263     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2264       _all_full_gc_times.num(),
2265       _all_full_gc_times.sum() / 1000.0);
2266     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2267     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2268       _all_full_gc_times.sd(),
2269       _all_full_gc_times.maximum());
2270   }
2271 }