1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  35 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 
  41 // Different defaults for different number of GC threads
  42 // They were chosen by running GCOld and SPECjbb on debris with different
  43 //   numbers of GC threads and choosing them based on the results
  44 
  45 // all the same
  46 static double rs_length_diff_defaults[] = {
  47   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  48 };
  49 
  50 static double cost_per_card_ms_defaults[] = {
  51   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  52 };
  53 
  54 // all the same
  55 static double young_cards_per_entry_ratio_defaults[] = {
  56   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  57 };
  58 
  59 static double cost_per_entry_ms_defaults[] = {
  60   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  61 };
  62 
  63 static double cost_per_byte_ms_defaults[] = {
  64   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  65 };
  66 
  67 // these should be pretty consistent
  68 static double constant_other_time_ms_defaults[] = {
  69   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  70 };
  71 
  72 
  73 static double young_other_cost_per_region_ms_defaults[] = {
  74   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  75 };
  76 
  77 static double non_young_other_cost_per_region_ms_defaults[] = {
  78   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  79 };
  80 
  81 G1CollectorPolicy::G1CollectorPolicy() :
  82   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
  83                         ? ParallelGCThreads : 1),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86   _stop_world_start(0.0),
  87 
  88   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90 
  91   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  92   _prev_collection_pause_end_ms(0.0),
  93   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _gcs_are_young(true),
 112 
 113   _during_marking(false),
 114   _in_marking_window(false),
 115   _in_marking_window_im(false),
 116 
 117   _recent_prev_end_times_for_all_gcs_sec(
 118                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 119 
 120   _recent_avg_pause_time_ratio(0.0),
 121 
 122   _initiate_conc_mark_if_possible(false),
 123   _during_initial_mark_pause(false),
 124   _last_young_gc(false),
 125   _last_gc_was_young(false),
 126 
 127   _eden_used_bytes_before_gc(0),
 128   _survivor_used_bytes_before_gc(0),
 129   _heap_used_bytes_before_gc(0),
 130   _metaspace_used_bytes_before_gc(0),
 131   _eden_capacity_bytes_before_gc(0),
 132   _heap_capacity_bytes_before_gc(0),
 133 
 134   _eden_cset_region_length(0),
 135   _survivor_cset_region_length(0),
 136   _old_cset_region_length(0),
 137 
 138   _collection_set(NULL),
 139   _collection_set_bytes_used_before(0),
 140 
 141   // Incremental CSet attributes
 142   _inc_cset_build_state(Inactive),
 143   _inc_cset_head(NULL),
 144   _inc_cset_tail(NULL),
 145   _inc_cset_bytes_used_before(0),
 146   _inc_cset_max_finger(NULL),
 147   _inc_cset_recorded_rs_lengths(0),
 148   _inc_cset_recorded_rs_lengths_diffs(0),
 149   _inc_cset_predicted_elapsed_time_ms(0.0),
 150   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 151 
 152 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 153 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 154 #endif // _MSC_VER
 155 
 156   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 157                                                  G1YoungSurvRateNumRegionsSummary)),
 158   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 159                                               G1YoungSurvRateNumRegionsSummary)),
 160   // add here any more surv rate groups
 161   _recorded_survivor_regions(0),
 162   _recorded_survivor_head(NULL),
 163   _recorded_survivor_tail(NULL),
 164   _survivors_age_table(true),
 165 
 166   _gc_overhead_perc(0.0) {
 167 
 168   // Set up the region size and associated fields. Given that the
 169   // policy is created before the heap, we have to set this up here,
 170   // so it's done as soon as possible.
 171 
 172   // It would have been natural to pass initial_heap_byte_size() and
 173   // max_heap_byte_size() to setup_heap_region_size() but those have
 174   // not been set up at this point since they should be aligned with
 175   // the region size. So, there is a circular dependency here. We base
 176   // the region size on the heap size, but the heap size should be
 177   // aligned with the region size. To get around this we use the
 178   // unaligned values for the heap.
 179   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 180   HeapRegionRemSet::setup_remset_size();
 181 
 182   G1ErgoVerbose::initialize();
 183   if (PrintAdaptiveSizePolicy) {
 184     // Currently, we only use a single switch for all the heuristics.
 185     G1ErgoVerbose::set_enabled(true);
 186     // Given that we don't currently have a verboseness level
 187     // parameter, we'll hardcode this to high. This can be easily
 188     // changed in the future.
 189     G1ErgoVerbose::set_level(ErgoHigh);
 190   } else {
 191     G1ErgoVerbose::set_enabled(false);
 192   }
 193 
 194   // Verify PLAB sizes
 195   const size_t region_size = HeapRegion::GrainWords;
 196   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 197     char buffer[128];
 198     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 199                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 200     vm_exit_during_initialization(buffer);
 201   }
 202 
 203   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 204   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 205 
 206   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 207 
 208   int index = MIN2(_parallel_gc_threads - 1, 7);
 209 
 210   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 211   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 212   _young_cards_per_entry_ratio_seq->add(
 213                                   young_cards_per_entry_ratio_defaults[index]);
 214   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 215   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 216   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 217   _young_other_cost_per_region_ms_seq->add(
 218                                young_other_cost_per_region_ms_defaults[index]);
 219   _non_young_other_cost_per_region_ms_seq->add(
 220                            non_young_other_cost_per_region_ms_defaults[index]);
 221 
 222   // Below, we might need to calculate the pause time target based on
 223   // the pause interval. When we do so we are going to give G1 maximum
 224   // flexibility and allow it to do pauses when it needs to. So, we'll
 225   // arrange that the pause interval to be pause time target + 1 to
 226   // ensure that a) the pause time target is maximized with respect to
 227   // the pause interval and b) we maintain the invariant that pause
 228   // time target < pause interval. If the user does not want this
 229   // maximum flexibility, they will have to set the pause interval
 230   // explicitly.
 231 
 232   // First make sure that, if either parameter is set, its value is
 233   // reasonable.
 234   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 235     if (MaxGCPauseMillis < 1) {
 236       vm_exit_during_initialization("MaxGCPauseMillis should be "
 237                                     "greater than 0");
 238     }
 239   }
 240   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 241     if (GCPauseIntervalMillis < 1) {
 242       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 243                                     "greater than 0");
 244     }
 245   }
 246 
 247   // Then, if the pause time target parameter was not set, set it to
 248   // the default value.
 249   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 250     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 251       // The default pause time target in G1 is 200ms
 252       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 253     } else {
 254       // We do not allow the pause interval to be set without the
 255       // pause time target
 256       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 257                                     "without setting MaxGCPauseMillis");
 258     }
 259   }
 260 
 261   // Then, if the interval parameter was not set, set it according to
 262   // the pause time target (this will also deal with the case when the
 263   // pause time target is the default value).
 264   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 265     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 266   }
 267 
 268   // Finally, make sure that the two parameters are consistent.
 269   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 270     char buffer[256];
 271     jio_snprintf(buffer, 256,
 272                  "MaxGCPauseMillis (%u) should be less than "
 273                  "GCPauseIntervalMillis (%u)",
 274                  MaxGCPauseMillis, GCPauseIntervalMillis);
 275     vm_exit_during_initialization(buffer);
 276   }
 277 
 278   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 279   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 280   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 281 
 282   uintx confidence_perc = G1ConfidencePercent;
 283   // Put an artificial ceiling on this so that it's not set to a silly value.
 284   if (confidence_perc > 100) {
 285     confidence_perc = 100;
 286     warning("G1ConfidencePercent is set to a value that is too large, "
 287             "it's been updated to %u", confidence_perc);
 288   }
 289   _sigma = (double) confidence_perc / 100.0;
 290 
 291   // start conservatively (around 50ms is about right)
 292   _concurrent_mark_remark_times_ms->add(0.05);
 293   _concurrent_mark_cleanup_times_ms->add(0.20);
 294   _tenuring_threshold = MaxTenuringThreshold;
 295   // _max_survivor_regions will be calculated by
 296   // update_young_list_target_length() during initialization.
 297   _max_survivor_regions = 0;
 298 
 299   assert(GCTimeRatio > 0,
 300          "we should have set it to a default value set_g1_gc_flags() "
 301          "if a user set it to 0");
 302   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 303 
 304   uintx reserve_perc = G1ReservePercent;
 305   // Put an artificial ceiling on this so that it's not set to a silly value.
 306   if (reserve_perc > 50) {
 307     reserve_perc = 50;
 308     warning("G1ReservePercent is set to a value that is too large, "
 309             "it's been updated to %u", reserve_perc);
 310   }
 311   _reserve_factor = (double) reserve_perc / 100.0;
 312   // This will be set when the heap is expanded
 313   // for the first time during initialization.
 314   _reserve_regions = 0;
 315 
 316   _collectionSetChooser = new CollectionSetChooser();
 317 }
 318 
 319 void G1CollectorPolicy::initialize_alignments() {
 320   _space_alignment = HeapRegion::GrainBytes;
 321   size_t card_table_alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
 322   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 323   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 324 }
 325 
 326 void G1CollectorPolicy::initialize_flags() {
 327   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 328     FLAG_SET_ERGO(uintx, G1HeapRegionSize, HeapRegion::GrainBytes);
 329   }
 330 
 331   if (SurvivorRatio < 1) {
 332     vm_exit_during_initialization("Invalid survivor ratio specified");
 333   }
 334   CollectorPolicy::initialize_flags();
 335   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 336 }
 337 
 338 void G1CollectorPolicy::post_heap_initialize() {
 339   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 340   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 341   if (max_young_size != MaxNewSize) {
 342     FLAG_SET_ERGO(uintx, MaxNewSize, max_young_size);
 343   }
 344 }
 345 
 346 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 347         _min_desired_young_length(0), _max_desired_young_length(0) {
 348   if (FLAG_IS_CMDLINE(NewRatio)) {
 349     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 350       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 351     } else {
 352       _sizer_kind = SizerNewRatio;
 353       _adaptive_size = false;
 354       return;
 355     }
 356   }
 357 
 358   if (NewSize > MaxNewSize) {
 359     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 360       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 361               "A new max generation size of " SIZE_FORMAT "k will be used.",
 362               NewSize/K, MaxNewSize/K, NewSize/K);
 363     }
 364     MaxNewSize = NewSize;
 365   }
 366 
 367   if (FLAG_IS_CMDLINE(NewSize)) {
 368     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 369                                      1U);
 370     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 371       _max_desired_young_length =
 372                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 373                                   1U);
 374       _sizer_kind = SizerMaxAndNewSize;
 375       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 376     } else {
 377       _sizer_kind = SizerNewSizeOnly;
 378     }
 379   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 380     _max_desired_young_length =
 381                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 382                                   1U);
 383     _sizer_kind = SizerMaxNewSizeOnly;
 384   }
 385 }
 386 
 387 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 388   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 389   return MAX2(1U, default_value);
 390 }
 391 
 392 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 393   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 394   return MAX2(1U, default_value);
 395 }
 396 
 397 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 398   assert(number_of_heap_regions > 0, "Heap must be initialized");
 399 
 400   switch (_sizer_kind) {
 401     case SizerDefaults:
 402       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 403       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 404       break;
 405     case SizerNewSizeOnly:
 406       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 407       *max_young_length = MAX2(*min_young_length, *max_young_length);
 408       break;
 409     case SizerMaxNewSizeOnly:
 410       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 411       *min_young_length = MIN2(*min_young_length, *max_young_length);
 412       break;
 413     case SizerMaxAndNewSize:
 414       // Do nothing. Values set on the command line, don't update them at runtime.
 415       break;
 416     case SizerNewRatio:
 417       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 418       *max_young_length = *min_young_length;
 419       break;
 420     default:
 421       ShouldNotReachHere();
 422   }
 423 
 424   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 425 }
 426 
 427 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 428   // We need to pass the desired values because recalculation may not update these
 429   // values in some cases.
 430   uint temp = _min_desired_young_length;
 431   uint result = _max_desired_young_length;
 432   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 433   return result;
 434 }
 435 
 436 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 437   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 438           &_max_desired_young_length);
 439 }
 440 
 441 void G1CollectorPolicy::init() {
 442   // Set aside an initial future to_space.
 443   _g1 = G1CollectedHeap::heap();
 444 
 445   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 446 
 447   initialize_gc_policy_counters();
 448 
 449   if (adaptive_young_list_length()) {
 450     _young_list_fixed_length = 0;
 451   } else {
 452     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 453   }
 454   _free_regions_at_end_of_collection = _g1->free_regions();
 455   update_young_list_target_length();
 456 
 457   // We may immediately start allocating regions and placing them on the
 458   // collection set list. Initialize the per-collection set info
 459   start_incremental_cset_building();
 460 }
 461 
 462 // Create the jstat counters for the policy.
 463 void G1CollectorPolicy::initialize_gc_policy_counters() {
 464   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 465 }
 466 
 467 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 468                                          double base_time_ms,
 469                                          uint base_free_regions,
 470                                          double target_pause_time_ms) {
 471   if (young_length >= base_free_regions) {
 472     // end condition 1: not enough space for the young regions
 473     return false;
 474   }
 475 
 476   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 477   size_t bytes_to_copy =
 478                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 479   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 480   double young_other_time_ms = predict_young_other_time_ms(young_length);
 481   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 482   if (pause_time_ms > target_pause_time_ms) {
 483     // end condition 2: prediction is over the target pause time
 484     return false;
 485   }
 486 
 487   size_t free_bytes =
 488                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 489   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 490     // end condition 3: out-of-space (conservatively!)
 491     return false;
 492   }
 493 
 494   // success!
 495   return true;
 496 }
 497 
 498 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 499   // re-calculate the necessary reserve
 500   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 501   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 502   // smaller than 1.0) we'll get 1.
 503   _reserve_regions = (uint) ceil(reserve_regions_d);
 504 
 505   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 506 }
 507 
 508 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 509                                                        uint base_min_length) {
 510   uint desired_min_length = 0;
 511   if (adaptive_young_list_length()) {
 512     if (_alloc_rate_ms_seq->num() > 3) {
 513       double now_sec = os::elapsedTime();
 514       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 515       double alloc_rate_ms = predict_alloc_rate_ms();
 516       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 517     } else {
 518       // otherwise we don't have enough info to make the prediction
 519     }
 520   }
 521   desired_min_length += base_min_length;
 522   // make sure we don't go below any user-defined minimum bound
 523   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 524 }
 525 
 526 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 527   // Here, we might want to also take into account any additional
 528   // constraints (i.e., user-defined minimum bound). Currently, we
 529   // effectively don't set this bound.
 530   return _young_gen_sizer->max_desired_young_length();
 531 }
 532 
 533 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 534   if (rs_lengths == (size_t) -1) {
 535     // if it's set to the default value (-1), we should predict it;
 536     // otherwise, use the given value.
 537     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 538   }
 539 
 540   // Calculate the absolute and desired min bounds.
 541 
 542   // This is how many young regions we already have (currently: the survivors).
 543   uint base_min_length = recorded_survivor_regions();
 544   // This is the absolute minimum young length, which ensures that we
 545   // can allocate one eden region in the worst-case.
 546   uint absolute_min_length = base_min_length + 1;
 547   uint desired_min_length =
 548                      calculate_young_list_desired_min_length(base_min_length);
 549   if (desired_min_length < absolute_min_length) {
 550     desired_min_length = absolute_min_length;
 551   }
 552 
 553   // Calculate the absolute and desired max bounds.
 554 
 555   // We will try our best not to "eat" into the reserve.
 556   uint absolute_max_length = 0;
 557   if (_free_regions_at_end_of_collection > _reserve_regions) {
 558     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 559   }
 560   uint desired_max_length = calculate_young_list_desired_max_length();
 561   if (desired_max_length > absolute_max_length) {
 562     desired_max_length = absolute_max_length;
 563   }
 564 
 565   uint young_list_target_length = 0;
 566   if (adaptive_young_list_length()) {
 567     if (gcs_are_young()) {
 568       young_list_target_length =
 569                         calculate_young_list_target_length(rs_lengths,
 570                                                            base_min_length,
 571                                                            desired_min_length,
 572                                                            desired_max_length);
 573       _rs_lengths_prediction = rs_lengths;
 574     } else {
 575       // Don't calculate anything and let the code below bound it to
 576       // the desired_min_length, i.e., do the next GC as soon as
 577       // possible to maximize how many old regions we can add to it.
 578     }
 579   } else {
 580     // The user asked for a fixed young gen so we'll fix the young gen
 581     // whether the next GC is young or mixed.
 582     young_list_target_length = _young_list_fixed_length;
 583   }
 584 
 585   // Make sure we don't go over the desired max length, nor under the
 586   // desired min length. In case they clash, desired_min_length wins
 587   // which is why that test is second.
 588   if (young_list_target_length > desired_max_length) {
 589     young_list_target_length = desired_max_length;
 590   }
 591   if (young_list_target_length < desired_min_length) {
 592     young_list_target_length = desired_min_length;
 593   }
 594 
 595   assert(young_list_target_length > recorded_survivor_regions(),
 596          "we should be able to allocate at least one eden region");
 597   assert(young_list_target_length >= absolute_min_length, "post-condition");
 598   _young_list_target_length = young_list_target_length;
 599 
 600   update_max_gc_locker_expansion();
 601 }
 602 
 603 uint
 604 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 605                                                      uint base_min_length,
 606                                                      uint desired_min_length,
 607                                                      uint desired_max_length) {
 608   assert(adaptive_young_list_length(), "pre-condition");
 609   assert(gcs_are_young(), "only call this for young GCs");
 610 
 611   // In case some edge-condition makes the desired max length too small...
 612   if (desired_max_length <= desired_min_length) {
 613     return desired_min_length;
 614   }
 615 
 616   // We'll adjust min_young_length and max_young_length not to include
 617   // the already allocated young regions (i.e., so they reflect the
 618   // min and max eden regions we'll allocate). The base_min_length
 619   // will be reflected in the predictions by the
 620   // survivor_regions_evac_time prediction.
 621   assert(desired_min_length > base_min_length, "invariant");
 622   uint min_young_length = desired_min_length - base_min_length;
 623   assert(desired_max_length > base_min_length, "invariant");
 624   uint max_young_length = desired_max_length - base_min_length;
 625 
 626   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 627   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 628   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 629   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 630   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 631   double base_time_ms =
 632     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 633     survivor_regions_evac_time;
 634   uint available_free_regions = _free_regions_at_end_of_collection;
 635   uint base_free_regions = 0;
 636   if (available_free_regions > _reserve_regions) {
 637     base_free_regions = available_free_regions - _reserve_regions;
 638   }
 639 
 640   // Here, we will make sure that the shortest young length that
 641   // makes sense fits within the target pause time.
 642 
 643   if (predict_will_fit(min_young_length, base_time_ms,
 644                        base_free_regions, target_pause_time_ms)) {
 645     // The shortest young length will fit into the target pause time;
 646     // we'll now check whether the absolute maximum number of young
 647     // regions will fit in the target pause time. If not, we'll do
 648     // a binary search between min_young_length and max_young_length.
 649     if (predict_will_fit(max_young_length, base_time_ms,
 650                          base_free_regions, target_pause_time_ms)) {
 651       // The maximum young length will fit into the target pause time.
 652       // We are done so set min young length to the maximum length (as
 653       // the result is assumed to be returned in min_young_length).
 654       min_young_length = max_young_length;
 655     } else {
 656       // The maximum possible number of young regions will not fit within
 657       // the target pause time so we'll search for the optimal
 658       // length. The loop invariants are:
 659       //
 660       // min_young_length < max_young_length
 661       // min_young_length is known to fit into the target pause time
 662       // max_young_length is known not to fit into the target pause time
 663       //
 664       // Going into the loop we know the above hold as we've just
 665       // checked them. Every time around the loop we check whether
 666       // the middle value between min_young_length and
 667       // max_young_length fits into the target pause time. If it
 668       // does, it becomes the new min. If it doesn't, it becomes
 669       // the new max. This way we maintain the loop invariants.
 670 
 671       assert(min_young_length < max_young_length, "invariant");
 672       uint diff = (max_young_length - min_young_length) / 2;
 673       while (diff > 0) {
 674         uint young_length = min_young_length + diff;
 675         if (predict_will_fit(young_length, base_time_ms,
 676                              base_free_regions, target_pause_time_ms)) {
 677           min_young_length = young_length;
 678         } else {
 679           max_young_length = young_length;
 680         }
 681         assert(min_young_length <  max_young_length, "invariant");
 682         diff = (max_young_length - min_young_length) / 2;
 683       }
 684       // The results is min_young_length which, according to the
 685       // loop invariants, should fit within the target pause time.
 686 
 687       // These are the post-conditions of the binary search above:
 688       assert(min_young_length < max_young_length,
 689              "otherwise we should have discovered that max_young_length "
 690              "fits into the pause target and not done the binary search");
 691       assert(predict_will_fit(min_young_length, base_time_ms,
 692                               base_free_regions, target_pause_time_ms),
 693              "min_young_length, the result of the binary search, should "
 694              "fit into the pause target");
 695       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 696                                base_free_regions, target_pause_time_ms),
 697              "min_young_length, the result of the binary search, should be "
 698              "optimal, so no larger length should fit into the pause target");
 699     }
 700   } else {
 701     // Even the minimum length doesn't fit into the pause time
 702     // target, return it as the result nevertheless.
 703   }
 704   return base_min_length + min_young_length;
 705 }
 706 
 707 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 708   double survivor_regions_evac_time = 0.0;
 709   for (HeapRegion * r = _recorded_survivor_head;
 710        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 711        r = r->get_next_young_region()) {
 712     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
 713   }
 714   return survivor_regions_evac_time;
 715 }
 716 
 717 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 718   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 719 
 720   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 721   if (rs_lengths > _rs_lengths_prediction) {
 722     // add 10% to avoid having to recalculate often
 723     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 724     update_young_list_target_length(rs_lengths_prediction);
 725   }
 726 }
 727 
 728 
 729 
 730 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 731                                                bool is_tlab,
 732                                                bool* gc_overhead_limit_was_exceeded) {
 733   guarantee(false, "Not using this policy feature yet.");
 734   return NULL;
 735 }
 736 
 737 // This method controls how a collector handles one or more
 738 // of its generations being fully allocated.
 739 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 740                                                        bool is_tlab) {
 741   guarantee(false, "Not using this policy feature yet.");
 742   return NULL;
 743 }
 744 
 745 
 746 #ifndef PRODUCT
 747 bool G1CollectorPolicy::verify_young_ages() {
 748   HeapRegion* head = _g1->young_list()->first_region();
 749   return
 750     verify_young_ages(head, _short_lived_surv_rate_group);
 751   // also call verify_young_ages on any additional surv rate groups
 752 }
 753 
 754 bool
 755 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 756                                      SurvRateGroup *surv_rate_group) {
 757   guarantee( surv_rate_group != NULL, "pre-condition" );
 758 
 759   const char* name = surv_rate_group->name();
 760   bool ret = true;
 761   int prev_age = -1;
 762 
 763   for (HeapRegion* curr = head;
 764        curr != NULL;
 765        curr = curr->get_next_young_region()) {
 766     SurvRateGroup* group = curr->surv_rate_group();
 767     if (group == NULL && !curr->is_survivor()) {
 768       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 769       ret = false;
 770     }
 771 
 772     if (surv_rate_group == group) {
 773       int age = curr->age_in_surv_rate_group();
 774 
 775       if (age < 0) {
 776         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 777         ret = false;
 778       }
 779 
 780       if (age <= prev_age) {
 781         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 782                                "(%d, %d)", name, age, prev_age);
 783         ret = false;
 784       }
 785       prev_age = age;
 786     }
 787   }
 788 
 789   return ret;
 790 }
 791 #endif // PRODUCT
 792 
 793 void G1CollectorPolicy::record_full_collection_start() {
 794   _full_collection_start_sec = os::elapsedTime();
 795   record_heap_size_info_at_start(true /* full */);
 796   // Release the future to-space so that it is available for compaction into.
 797   _g1->set_full_collection();
 798 }
 799 
 800 void G1CollectorPolicy::record_full_collection_end() {
 801   // Consider this like a collection pause for the purposes of allocation
 802   // since last pause.
 803   double end_sec = os::elapsedTime();
 804   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 805   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 806 
 807   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
 808 
 809   update_recent_gc_times(end_sec, full_gc_time_ms);
 810 
 811   _g1->clear_full_collection();
 812 
 813   // "Nuke" the heuristics that control the young/mixed GC
 814   // transitions and make sure we start with young GCs after the Full GC.
 815   set_gcs_are_young(true);
 816   _last_young_gc = false;
 817   clear_initiate_conc_mark_if_possible();
 818   clear_during_initial_mark_pause();
 819   _in_marking_window = false;
 820   _in_marking_window_im = false;
 821 
 822   _short_lived_surv_rate_group->start_adding_regions();
 823   // also call this on any additional surv rate groups
 824 
 825   record_survivor_regions(0, NULL, NULL);
 826 
 827   _free_regions_at_end_of_collection = _g1->free_regions();
 828   // Reset survivors SurvRateGroup.
 829   _survivor_surv_rate_group->reset();
 830   update_young_list_target_length();
 831   _collectionSetChooser->clear();
 832 }
 833 
 834 void G1CollectorPolicy::record_stop_world_start() {
 835   _stop_world_start = os::elapsedTime();
 836 }
 837 
 838 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 839   // We only need to do this here as the policy will only be applied
 840   // to the GC we're about to start. so, no point is calculating this
 841   // every time we calculate / recalculate the target young length.
 842   update_survivors_policy();
 843 
 844   assert(_g1->used() == _g1->recalculate_used(),
 845          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 846                  _g1->used(), _g1->recalculate_used()));
 847 
 848   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 849   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
 850   _stop_world_start = 0.0;
 851 
 852   record_heap_size_info_at_start(false /* full */);
 853 
 854   phase_times()->record_cur_collection_start_sec(start_time_sec);
 855   _pending_cards = _g1->pending_card_num();
 856 
 857   _collection_set_bytes_used_before = 0;
 858   _bytes_copied_during_gc = 0;
 859 
 860   _last_gc_was_young = false;
 861 
 862   // do that for any other surv rate groups
 863   _short_lived_surv_rate_group->stop_adding_regions();
 864   _survivors_age_table.clear();
 865 
 866   assert( verify_young_ages(), "region age verification" );
 867 }
 868 
 869 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 870                                                    mark_init_elapsed_time_ms) {
 871   _during_marking = true;
 872   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 873   clear_during_initial_mark_pause();
 874   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 875 }
 876 
 877 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 878   _mark_remark_start_sec = os::elapsedTime();
 879   _during_marking = false;
 880 }
 881 
 882 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 883   double end_time_sec = os::elapsedTime();
 884   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 885   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 886   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 887   _prev_collection_pause_end_ms += elapsed_time_ms;
 888 
 889   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 890 }
 891 
 892 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 893   _mark_cleanup_start_sec = os::elapsedTime();
 894 }
 895 
 896 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 897   _last_young_gc = true;
 898   _in_marking_window = false;
 899 }
 900 
 901 void G1CollectorPolicy::record_concurrent_pause() {
 902   if (_stop_world_start > 0.0) {
 903     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 904     _trace_gen0_time_data.record_yield_time(yield_ms);
 905   }
 906 }
 907 
 908 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 909   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 910     return false;
 911   }
 912 
 913   size_t marking_initiating_used_threshold =
 914     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 915   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 916   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 917 
 918   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 919     if (gcs_are_young() && !_last_young_gc) {
 920       ergo_verbose5(ErgoConcCycles,
 921         "request concurrent cycle initiation",
 922         ergo_format_reason("occupancy higher than threshold")
 923         ergo_format_byte("occupancy")
 924         ergo_format_byte("allocation request")
 925         ergo_format_byte_perc("threshold")
 926         ergo_format_str("source"),
 927         cur_used_bytes,
 928         alloc_byte_size,
 929         marking_initiating_used_threshold,
 930         (double) InitiatingHeapOccupancyPercent,
 931         source);
 932       return true;
 933     } else {
 934       ergo_verbose5(ErgoConcCycles,
 935         "do not request concurrent cycle initiation",
 936         ergo_format_reason("still doing mixed collections")
 937         ergo_format_byte("occupancy")
 938         ergo_format_byte("allocation request")
 939         ergo_format_byte_perc("threshold")
 940         ergo_format_str("source"),
 941         cur_used_bytes,
 942         alloc_byte_size,
 943         marking_initiating_used_threshold,
 944         (double) InitiatingHeapOccupancyPercent,
 945         source);
 946     }
 947   }
 948 
 949   return false;
 950 }
 951 
 952 // Anything below that is considered to be zero
 953 #define MIN_TIMER_GRANULARITY 0.0000001
 954 
 955 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
 956   double end_time_sec = os::elapsedTime();
 957   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 958          "otherwise, the subtraction below does not make sense");
 959   size_t rs_size =
 960             _cur_collection_pause_used_regions_at_start - cset_region_length();
 961   size_t cur_used_bytes = _g1->used();
 962   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 963   bool last_pause_included_initial_mark = false;
 964   bool update_stats = !_g1->evacuation_failed();
 965 
 966 #ifndef PRODUCT
 967   if (G1YoungSurvRateVerbose) {
 968     gclog_or_tty->print_cr("");
 969     _short_lived_surv_rate_group->print();
 970     // do that for any other surv rate groups too
 971   }
 972 #endif // PRODUCT
 973 
 974   last_pause_included_initial_mark = during_initial_mark_pause();
 975   if (last_pause_included_initial_mark) {
 976     record_concurrent_mark_init_end(0.0);
 977   } else if (need_to_start_conc_mark("end of GC")) {
 978     // Note: this might have already been set, if during the last
 979     // pause we decided to start a cycle but at the beginning of
 980     // this pause we decided to postpone it. That's OK.
 981     set_initiate_conc_mark_if_possible();
 982   }
 983 
 984   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 985                           end_time_sec, false);
 986 
 987   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
 988   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
 989 
 990   if (update_stats) {
 991     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
 992     // this is where we update the allocation rate of the application
 993     double app_time_ms =
 994       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 995     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 996       // This usually happens due to the timer not having the required
 997       // granularity. Some Linuxes are the usual culprits.
 998       // We'll just set it to something (arbitrarily) small.
 999       app_time_ms = 1.0;
1000     }
1001     // We maintain the invariant that all objects allocated by mutator
1002     // threads will be allocated out of eden regions. So, we can use
1003     // the eden region number allocated since the previous GC to
1004     // calculate the application's allocate rate. The only exception
1005     // to that is humongous objects that are allocated separately. But
1006     // given that humongous object allocations do not really affect
1007     // either the pause's duration nor when the next pause will take
1008     // place we can safely ignore them here.
1009     uint regions_allocated = eden_cset_region_length();
1010     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1011     _alloc_rate_ms_seq->add(alloc_rate_ms);
1012 
1013     double interval_ms =
1014       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1015     update_recent_gc_times(end_time_sec, pause_time_ms);
1016     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1017     if (recent_avg_pause_time_ratio() < 0.0 ||
1018         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1019 #ifndef PRODUCT
1020       // Dump info to allow post-facto debugging
1021       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1022       gclog_or_tty->print_cr("-------------------------------------------");
1023       gclog_or_tty->print_cr("Recent GC Times (ms):");
1024       _recent_gc_times_ms->dump();
1025       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1026       _recent_prev_end_times_for_all_gcs_sec->dump();
1027       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1028                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1029       // In debug mode, terminate the JVM if the user wants to debug at this point.
1030       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1031 #endif  // !PRODUCT
1032       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1033       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1034       if (_recent_avg_pause_time_ratio < 0.0) {
1035         _recent_avg_pause_time_ratio = 0.0;
1036       } else {
1037         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1038         _recent_avg_pause_time_ratio = 1.0;
1039       }
1040     }
1041   }
1042 
1043   bool new_in_marking_window = _in_marking_window;
1044   bool new_in_marking_window_im = false;
1045   if (during_initial_mark_pause()) {
1046     new_in_marking_window = true;
1047     new_in_marking_window_im = true;
1048   }
1049 
1050   if (_last_young_gc) {
1051     // This is supposed to to be the "last young GC" before we start
1052     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1053 
1054     if (!last_pause_included_initial_mark) {
1055       if (next_gc_should_be_mixed("start mixed GCs",
1056                                   "do not start mixed GCs")) {
1057         set_gcs_are_young(false);
1058       }
1059     } else {
1060       ergo_verbose0(ErgoMixedGCs,
1061                     "do not start mixed GCs",
1062                     ergo_format_reason("concurrent cycle is about to start"));
1063     }
1064     _last_young_gc = false;
1065   }
1066 
1067   if (!_last_gc_was_young) {
1068     // This is a mixed GC. Here we decide whether to continue doing
1069     // mixed GCs or not.
1070 
1071     if (!next_gc_should_be_mixed("continue mixed GCs",
1072                                  "do not continue mixed GCs")) {
1073       set_gcs_are_young(true);
1074     }
1075   }
1076 
1077   _short_lived_surv_rate_group->start_adding_regions();
1078   // do that for any other surv rate groupsx
1079 
1080   if (update_stats) {
1081     double cost_per_card_ms = 0.0;
1082     if (_pending_cards > 0) {
1083       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1084       _cost_per_card_ms_seq->add(cost_per_card_ms);
1085     }
1086 
1087     size_t cards_scanned = _g1->cards_scanned();
1088 
1089     double cost_per_entry_ms = 0.0;
1090     if (cards_scanned > 10) {
1091       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1092       if (_last_gc_was_young) {
1093         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1094       } else {
1095         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1096       }
1097     }
1098 
1099     if (_max_rs_lengths > 0) {
1100       double cards_per_entry_ratio =
1101         (double) cards_scanned / (double) _max_rs_lengths;
1102       if (_last_gc_was_young) {
1103         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1104       } else {
1105         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1106       }
1107     }
1108 
1109     // This is defensive. For a while _max_rs_lengths could get
1110     // smaller than _recorded_rs_lengths which was causing
1111     // rs_length_diff to get very large and mess up the RSet length
1112     // predictions. The reason was unsafe concurrent updates to the
1113     // _inc_cset_recorded_rs_lengths field which the code below guards
1114     // against (see CR 7118202). This bug has now been fixed (see CR
1115     // 7119027). However, I'm still worried that
1116     // _inc_cset_recorded_rs_lengths might still end up somewhat
1117     // inaccurate. The concurrent refinement thread calculates an
1118     // RSet's length concurrently with other CR threads updating it
1119     // which might cause it to calculate the length incorrectly (if,
1120     // say, it's in mid-coarsening). So I'll leave in the defensive
1121     // conditional below just in case.
1122     size_t rs_length_diff = 0;
1123     if (_max_rs_lengths > _recorded_rs_lengths) {
1124       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1125     }
1126     _rs_length_diff_seq->add((double) rs_length_diff);
1127 
1128     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1129     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1130     double cost_per_byte_ms = 0.0;
1131 
1132     if (copied_bytes > 0) {
1133       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1134       if (_in_marking_window) {
1135         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1136       } else {
1137         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1138       }
1139     }
1140 
1141     double all_other_time_ms = pause_time_ms -
1142       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
1143       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1144 
1145     double young_other_time_ms = 0.0;
1146     if (young_cset_region_length() > 0) {
1147       young_other_time_ms =
1148         phase_times()->young_cset_choice_time_ms() +
1149         phase_times()->young_free_cset_time_ms();
1150       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1151                                           (double) young_cset_region_length());
1152     }
1153     double non_young_other_time_ms = 0.0;
1154     if (old_cset_region_length() > 0) {
1155       non_young_other_time_ms =
1156         phase_times()->non_young_cset_choice_time_ms() +
1157         phase_times()->non_young_free_cset_time_ms();
1158 
1159       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1160                                             (double) old_cset_region_length());
1161     }
1162 
1163     double constant_other_time_ms = all_other_time_ms -
1164       (young_other_time_ms + non_young_other_time_ms);
1165     _constant_other_time_ms_seq->add(constant_other_time_ms);
1166 
1167     double survival_ratio = 0.0;
1168     if (_collection_set_bytes_used_before > 0) {
1169       survival_ratio = (double) _bytes_copied_during_gc /
1170                                    (double) _collection_set_bytes_used_before;
1171     }
1172 
1173     _pending_cards_seq->add((double) _pending_cards);
1174     _rs_lengths_seq->add((double) _max_rs_lengths);
1175   }
1176 
1177   _in_marking_window = new_in_marking_window;
1178   _in_marking_window_im = new_in_marking_window_im;
1179   _free_regions_at_end_of_collection = _g1->free_regions();
1180   update_young_list_target_length();
1181 
1182   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1183   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1184   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
1185                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1186 
1187   _collectionSetChooser->verify();
1188 }
1189 
1190 #define EXT_SIZE_FORMAT "%.1f%s"
1191 #define EXT_SIZE_PARAMS(bytes)                                  \
1192   byte_size_in_proper_unit((double)(bytes)),                    \
1193   proper_unit_for_byte_size((bytes))
1194 
1195 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1196   YoungList* young_list = _g1->young_list();
1197   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1198   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1199   _heap_capacity_bytes_before_gc = _g1->capacity();
1200   _heap_used_bytes_before_gc = _g1->used();
1201   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
1202 
1203   _eden_capacity_bytes_before_gc =
1204          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1205 
1206   if (full) {
1207     _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
1208   }
1209 }
1210 
1211 void G1CollectorPolicy::print_heap_transition() {
1212   _g1->print_size_transition(gclog_or_tty,
1213                              _heap_used_bytes_before_gc,
1214                              _g1->used(),
1215                              _g1->capacity());
1216 }
1217 
1218 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
1219   YoungList* young_list = _g1->young_list();
1220 
1221   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1222   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1223   size_t heap_used_bytes_after_gc = _g1->used();
1224 
1225   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1226   size_t eden_capacity_bytes_after_gc =
1227     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1228 
1229   gclog_or_tty->print(
1230     "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1231     "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1232     "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1233     EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1234     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1235     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1236     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1237     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1238     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1239     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1240     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1241     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1242     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1243     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1244 
1245   if (full) {
1246     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1247   }
1248 
1249   gclog_or_tty->cr();
1250 }
1251 
1252 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1253                                                      double update_rs_processed_buffers,
1254                                                      double goal_ms) {
1255   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1256   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1257 
1258   if (G1UseAdaptiveConcRefinement) {
1259     const int k_gy = 3, k_gr = 6;
1260     const double inc_k = 1.1, dec_k = 0.9;
1261 
1262     int g = cg1r->green_zone();
1263     if (update_rs_time > goal_ms) {
1264       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1265     } else {
1266       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1267         g = (int)MAX2(g * inc_k, g + 1.0);
1268       }
1269     }
1270     // Change the refinement threads params
1271     cg1r->set_green_zone(g);
1272     cg1r->set_yellow_zone(g * k_gy);
1273     cg1r->set_red_zone(g * k_gr);
1274     cg1r->reinitialize_threads();
1275 
1276     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1277     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1278                                     cg1r->yellow_zone());
1279     // Change the barrier params
1280     dcqs.set_process_completed_threshold(processing_threshold);
1281     dcqs.set_max_completed_queue(cg1r->red_zone());
1282   }
1283 
1284   int curr_queue_size = dcqs.completed_buffers_num();
1285   if (curr_queue_size >= cg1r->yellow_zone()) {
1286     dcqs.set_completed_queue_padding(curr_queue_size);
1287   } else {
1288     dcqs.set_completed_queue_padding(0);
1289   }
1290   dcqs.notify_if_necessary();
1291 }
1292 
1293 double
1294 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1295                                                 size_t scanned_cards) {
1296   return
1297     predict_rs_update_time_ms(pending_cards) +
1298     predict_rs_scan_time_ms(scanned_cards) +
1299     predict_constant_other_time_ms();
1300 }
1301 
1302 double
1303 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1304   size_t rs_length = predict_rs_length_diff();
1305   size_t card_num;
1306   if (gcs_are_young()) {
1307     card_num = predict_young_card_num(rs_length);
1308   } else {
1309     card_num = predict_non_young_card_num(rs_length);
1310   }
1311   return predict_base_elapsed_time_ms(pending_cards, card_num);
1312 }
1313 
1314 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1315   size_t bytes_to_copy;
1316   if (hr->is_marked())
1317     bytes_to_copy = hr->max_live_bytes();
1318   else {
1319     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1320     int age = hr->age_in_surv_rate_group();
1321     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1322     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1323   }
1324   return bytes_to_copy;
1325 }
1326 
1327 double
1328 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1329                                                   bool for_young_gc) {
1330   size_t rs_length = hr->rem_set()->occupied();
1331   size_t card_num;
1332 
1333   // Predicting the number of cards is based on which type of GC
1334   // we're predicting for.
1335   if (for_young_gc) {
1336     card_num = predict_young_card_num(rs_length);
1337   } else {
1338     card_num = predict_non_young_card_num(rs_length);
1339   }
1340   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1341 
1342   double region_elapsed_time_ms =
1343     predict_rs_scan_time_ms(card_num) +
1344     predict_object_copy_time_ms(bytes_to_copy);
1345 
1346   // The prediction of the "other" time for this region is based
1347   // upon the region type and NOT the GC type.
1348   if (hr->is_young()) {
1349     region_elapsed_time_ms += predict_young_other_time_ms(1);
1350   } else {
1351     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1352   }
1353   return region_elapsed_time_ms;
1354 }
1355 
1356 void
1357 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1358                                             uint survivor_cset_region_length) {
1359   _eden_cset_region_length     = eden_cset_region_length;
1360   _survivor_cset_region_length = survivor_cset_region_length;
1361   _old_cset_region_length      = 0;
1362 }
1363 
1364 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1365   _recorded_rs_lengths = rs_lengths;
1366 }
1367 
1368 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1369                                                double elapsed_ms) {
1370   _recent_gc_times_ms->add(elapsed_ms);
1371   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1372   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1373 }
1374 
1375 size_t G1CollectorPolicy::expansion_amount() {
1376   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1377   double threshold = _gc_overhead_perc;
1378   if (recent_gc_overhead > threshold) {
1379     // We will double the existing space, or take
1380     // G1ExpandByPercentOfAvailable % of the available expansion
1381     // space, whichever is smaller, bounded below by a minimum
1382     // expansion (unless that's all that's left.)
1383     const size_t min_expand_bytes = 1*M;
1384     size_t reserved_bytes = _g1->max_capacity();
1385     size_t committed_bytes = _g1->capacity();
1386     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1387     size_t expand_bytes;
1388     size_t expand_bytes_via_pct =
1389       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1390     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1391     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1392     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1393 
1394     ergo_verbose5(ErgoHeapSizing,
1395                   "attempt heap expansion",
1396                   ergo_format_reason("recent GC overhead higher than "
1397                                      "threshold after GC")
1398                   ergo_format_perc("recent GC overhead")
1399                   ergo_format_perc("threshold")
1400                   ergo_format_byte("uncommitted")
1401                   ergo_format_byte_perc("calculated expansion amount"),
1402                   recent_gc_overhead, threshold,
1403                   uncommitted_bytes,
1404                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1405 
1406     return expand_bytes;
1407   } else {
1408     return 0;
1409   }
1410 }
1411 
1412 void G1CollectorPolicy::print_tracing_info() const {
1413   _trace_gen0_time_data.print();
1414   _trace_gen1_time_data.print();
1415 }
1416 
1417 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1418 #ifndef PRODUCT
1419   _short_lived_surv_rate_group->print_surv_rate_summary();
1420   // add this call for any other surv rate groups
1421 #endif // PRODUCT
1422 }
1423 
1424 uint G1CollectorPolicy::max_regions(int purpose) {
1425   switch (purpose) {
1426     case GCAllocForSurvived:
1427       return _max_survivor_regions;
1428     case GCAllocForTenured:
1429       return REGIONS_UNLIMITED;
1430     default:
1431       ShouldNotReachHere();
1432       return REGIONS_UNLIMITED;
1433   };
1434 }
1435 
1436 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1437   uint expansion_region_num = 0;
1438   if (GCLockerEdenExpansionPercent > 0) {
1439     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1440     double expansion_region_num_d = perc * (double) _young_list_target_length;
1441     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1442     // less than 1.0) we'll get 1.
1443     expansion_region_num = (uint) ceil(expansion_region_num_d);
1444   } else {
1445     assert(expansion_region_num == 0, "sanity");
1446   }
1447   _young_list_max_length = _young_list_target_length + expansion_region_num;
1448   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1449 }
1450 
1451 // Calculates survivor space parameters.
1452 void G1CollectorPolicy::update_survivors_policy() {
1453   double max_survivor_regions_d =
1454                  (double) _young_list_target_length / (double) SurvivorRatio;
1455   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1456   // smaller than 1.0) we'll get 1.
1457   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1458 
1459   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1460         HeapRegion::GrainWords * _max_survivor_regions);
1461 }
1462 
1463 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1464                                                      GCCause::Cause gc_cause) {
1465   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1466   if (!during_cycle) {
1467     ergo_verbose1(ErgoConcCycles,
1468                   "request concurrent cycle initiation",
1469                   ergo_format_reason("requested by GC cause")
1470                   ergo_format_str("GC cause"),
1471                   GCCause::to_string(gc_cause));
1472     set_initiate_conc_mark_if_possible();
1473     return true;
1474   } else {
1475     ergo_verbose1(ErgoConcCycles,
1476                   "do not request concurrent cycle initiation",
1477                   ergo_format_reason("concurrent cycle already in progress")
1478                   ergo_format_str("GC cause"),
1479                   GCCause::to_string(gc_cause));
1480     return false;
1481   }
1482 }
1483 
1484 void
1485 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1486   // We are about to decide on whether this pause will be an
1487   // initial-mark pause.
1488 
1489   // First, during_initial_mark_pause() should not be already set. We
1490   // will set it here if we have to. However, it should be cleared by
1491   // the end of the pause (it's only set for the duration of an
1492   // initial-mark pause).
1493   assert(!during_initial_mark_pause(), "pre-condition");
1494 
1495   if (initiate_conc_mark_if_possible()) {
1496     // We had noticed on a previous pause that the heap occupancy has
1497     // gone over the initiating threshold and we should start a
1498     // concurrent marking cycle. So we might initiate one.
1499 
1500     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1501     if (!during_cycle) {
1502       // The concurrent marking thread is not "during a cycle", i.e.,
1503       // it has completed the last one. So we can go ahead and
1504       // initiate a new cycle.
1505 
1506       set_during_initial_mark_pause();
1507       // We do not allow mixed GCs during marking.
1508       if (!gcs_are_young()) {
1509         set_gcs_are_young(true);
1510         ergo_verbose0(ErgoMixedGCs,
1511                       "end mixed GCs",
1512                       ergo_format_reason("concurrent cycle is about to start"));
1513       }
1514 
1515       // And we can now clear initiate_conc_mark_if_possible() as
1516       // we've already acted on it.
1517       clear_initiate_conc_mark_if_possible();
1518 
1519       ergo_verbose0(ErgoConcCycles,
1520                   "initiate concurrent cycle",
1521                   ergo_format_reason("concurrent cycle initiation requested"));
1522     } else {
1523       // The concurrent marking thread is still finishing up the
1524       // previous cycle. If we start one right now the two cycles
1525       // overlap. In particular, the concurrent marking thread might
1526       // be in the process of clearing the next marking bitmap (which
1527       // we will use for the next cycle if we start one). Starting a
1528       // cycle now will be bad given that parts of the marking
1529       // information might get cleared by the marking thread. And we
1530       // cannot wait for the marking thread to finish the cycle as it
1531       // periodically yields while clearing the next marking bitmap
1532       // and, if it's in a yield point, it's waiting for us to
1533       // finish. So, at this point we will not start a cycle and we'll
1534       // let the concurrent marking thread complete the last one.
1535       ergo_verbose0(ErgoConcCycles,
1536                     "do not initiate concurrent cycle",
1537                     ergo_format_reason("concurrent cycle already in progress"));
1538     }
1539   }
1540 }
1541 
1542 class KnownGarbageClosure: public HeapRegionClosure {
1543   G1CollectedHeap* _g1h;
1544   CollectionSetChooser* _hrSorted;
1545 
1546 public:
1547   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1548     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1549 
1550   bool doHeapRegion(HeapRegion* r) {
1551     // We only include humongous regions in collection
1552     // sets when concurrent mark shows that their contained object is
1553     // unreachable.
1554 
1555     // Do we have any marking information for this region?
1556     if (r->is_marked()) {
1557       // We will skip any region that's currently used as an old GC
1558       // alloc region (we should not consider those for collection
1559       // before we fill them up).
1560       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1561         _hrSorted->add_region(r);
1562       }
1563     }
1564     return false;
1565   }
1566 };
1567 
1568 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1569   G1CollectedHeap* _g1h;
1570   CSetChooserParUpdater _cset_updater;
1571 
1572 public:
1573   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1574                            uint chunk_size) :
1575     _g1h(G1CollectedHeap::heap()),
1576     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1577 
1578   bool doHeapRegion(HeapRegion* r) {
1579     // Do we have any marking information for this region?
1580     if (r->is_marked()) {
1581       // We will skip any region that's currently used as an old GC
1582       // alloc region (we should not consider those for collection
1583       // before we fill them up).
1584       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1585         _cset_updater.add_region(r);
1586       }
1587     }
1588     return false;
1589   }
1590 };
1591 
1592 class ParKnownGarbageTask: public AbstractGangTask {
1593   CollectionSetChooser* _hrSorted;
1594   uint _chunk_size;
1595   G1CollectedHeap* _g1;
1596 public:
1597   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1598     AbstractGangTask("ParKnownGarbageTask"),
1599     _hrSorted(hrSorted), _chunk_size(chunk_size),
1600     _g1(G1CollectedHeap::heap()) { }
1601 
1602   void work(uint worker_id) {
1603     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1604 
1605     // Back to zero for the claim value.
1606     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1607                                          _g1->workers()->active_workers(),
1608                                          HeapRegion::InitialClaimValue);
1609   }
1610 };
1611 
1612 void
1613 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1614   _collectionSetChooser->clear();
1615 
1616   uint region_num = _g1->n_regions();
1617   if (G1CollectedHeap::use_parallel_gc_threads()) {
1618     const uint OverpartitionFactor = 4;
1619     uint WorkUnit;
1620     // The use of MinChunkSize = 8 in the original code
1621     // causes some assertion failures when the total number of
1622     // region is less than 8.  The code here tries to fix that.
1623     // Should the original code also be fixed?
1624     if (no_of_gc_threads > 0) {
1625       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
1626       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
1627                       MinWorkUnit);
1628     } else {
1629       assert(no_of_gc_threads > 0,
1630         "The active gc workers should be greater than 0");
1631       // In a product build do something reasonable to avoid a crash.
1632       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1633       WorkUnit =
1634         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1635              MinWorkUnit);
1636     }
1637     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
1638                                                            WorkUnit);
1639     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1640                                             (int) WorkUnit);
1641     _g1->workers()->run_task(&parKnownGarbageTask);
1642 
1643     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1644            "sanity check");
1645   } else {
1646     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
1647     _g1->heap_region_iterate(&knownGarbagecl);
1648   }
1649 
1650   _collectionSetChooser->sort_regions();
1651 
1652   double end_sec = os::elapsedTime();
1653   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1654   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1655   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1656   _prev_collection_pause_end_ms += elapsed_time_ms;
1657   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1658 }
1659 
1660 // Add the heap region at the head of the non-incremental collection set
1661 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1662   assert(_inc_cset_build_state == Active, "Precondition");
1663   assert(!hr->is_young(), "non-incremental add of young region");
1664 
1665   assert(!hr->in_collection_set(), "should not already be in the CSet");
1666   hr->set_in_collection_set(true);
1667   hr->set_next_in_collection_set(_collection_set);
1668   _collection_set = hr;
1669   _collection_set_bytes_used_before += hr->used();
1670   _g1->register_region_with_in_cset_fast_test(hr);
1671   size_t rs_length = hr->rem_set()->occupied();
1672   _recorded_rs_lengths += rs_length;
1673   _old_cset_region_length += 1;
1674 }
1675 
1676 // Initialize the per-collection-set information
1677 void G1CollectorPolicy::start_incremental_cset_building() {
1678   assert(_inc_cset_build_state == Inactive, "Precondition");
1679 
1680   _inc_cset_head = NULL;
1681   _inc_cset_tail = NULL;
1682   _inc_cset_bytes_used_before = 0;
1683 
1684   _inc_cset_max_finger = 0;
1685   _inc_cset_recorded_rs_lengths = 0;
1686   _inc_cset_recorded_rs_lengths_diffs = 0;
1687   _inc_cset_predicted_elapsed_time_ms = 0.0;
1688   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1689   _inc_cset_build_state = Active;
1690 }
1691 
1692 void G1CollectorPolicy::finalize_incremental_cset_building() {
1693   assert(_inc_cset_build_state == Active, "Precondition");
1694   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1695 
1696   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1697   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1698   // that adds a new region to the CSet. Further updates by the
1699   // concurrent refinement thread that samples the young RSet lengths
1700   // are accumulated in the *_diffs fields. Here we add the diffs to
1701   // the "main" fields.
1702 
1703   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1704     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1705   } else {
1706     // This is defensive. The diff should in theory be always positive
1707     // as RSets can only grow between GCs. However, given that we
1708     // sample their size concurrently with other threads updating them
1709     // it's possible that we might get the wrong size back, which
1710     // could make the calculations somewhat inaccurate.
1711     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1712     if (_inc_cset_recorded_rs_lengths >= diffs) {
1713       _inc_cset_recorded_rs_lengths -= diffs;
1714     } else {
1715       _inc_cset_recorded_rs_lengths = 0;
1716     }
1717   }
1718   _inc_cset_predicted_elapsed_time_ms +=
1719                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1720 
1721   _inc_cset_recorded_rs_lengths_diffs = 0;
1722   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1723 }
1724 
1725 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1726   // This routine is used when:
1727   // * adding survivor regions to the incremental cset at the end of an
1728   //   evacuation pause,
1729   // * adding the current allocation region to the incremental cset
1730   //   when it is retired, and
1731   // * updating existing policy information for a region in the
1732   //   incremental cset via young list RSet sampling.
1733   // Therefore this routine may be called at a safepoint by the
1734   // VM thread, or in-between safepoints by mutator threads (when
1735   // retiring the current allocation region) or a concurrent
1736   // refine thread (RSet sampling).
1737 
1738   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1739   size_t used_bytes = hr->used();
1740   _inc_cset_recorded_rs_lengths += rs_length;
1741   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1742   _inc_cset_bytes_used_before += used_bytes;
1743 
1744   // Cache the values we have added to the aggregated informtion
1745   // in the heap region in case we have to remove this region from
1746   // the incremental collection set, or it is updated by the
1747   // rset sampling code
1748   hr->set_recorded_rs_length(rs_length);
1749   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1750 }
1751 
1752 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1753                                                      size_t new_rs_length) {
1754   // Update the CSet information that is dependent on the new RS length
1755   assert(hr->is_young(), "Precondition");
1756   assert(!SafepointSynchronize::is_at_safepoint(),
1757                                                "should not be at a safepoint");
1758 
1759   // We could have updated _inc_cset_recorded_rs_lengths and
1760   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1761   // that atomically, as this code is executed by a concurrent
1762   // refinement thread, potentially concurrently with a mutator thread
1763   // allocating a new region and also updating the same fields. To
1764   // avoid the atomic operations we accumulate these updates on two
1765   // separate fields (*_diffs) and we'll just add them to the "main"
1766   // fields at the start of a GC.
1767 
1768   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1769   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1770   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1771 
1772   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1773   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1774   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1775   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1776 
1777   hr->set_recorded_rs_length(new_rs_length);
1778   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1779 }
1780 
1781 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1782   assert(hr->is_young(), "invariant");
1783   assert(hr->young_index_in_cset() > -1, "should have already been set");
1784   assert(_inc_cset_build_state == Active, "Precondition");
1785 
1786   // We need to clear and set the cached recorded/cached collection set
1787   // information in the heap region here (before the region gets added
1788   // to the collection set). An individual heap region's cached values
1789   // are calculated, aggregated with the policy collection set info,
1790   // and cached in the heap region here (initially) and (subsequently)
1791   // by the Young List sampling code.
1792 
1793   size_t rs_length = hr->rem_set()->occupied();
1794   add_to_incremental_cset_info(hr, rs_length);
1795 
1796   HeapWord* hr_end = hr->end();
1797   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1798 
1799   assert(!hr->in_collection_set(), "invariant");
1800   hr->set_in_collection_set(true);
1801   assert( hr->next_in_collection_set() == NULL, "invariant");
1802 
1803   _g1->register_region_with_in_cset_fast_test(hr);
1804 }
1805 
1806 // Add the region at the RHS of the incremental cset
1807 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1808   // We should only ever be appending survivors at the end of a pause
1809   assert( hr->is_survivor(), "Logic");
1810 
1811   // Do the 'common' stuff
1812   add_region_to_incremental_cset_common(hr);
1813 
1814   // Now add the region at the right hand side
1815   if (_inc_cset_tail == NULL) {
1816     assert(_inc_cset_head == NULL, "invariant");
1817     _inc_cset_head = hr;
1818   } else {
1819     _inc_cset_tail->set_next_in_collection_set(hr);
1820   }
1821   _inc_cset_tail = hr;
1822 }
1823 
1824 // Add the region to the LHS of the incremental cset
1825 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1826   // Survivors should be added to the RHS at the end of a pause
1827   assert(!hr->is_survivor(), "Logic");
1828 
1829   // Do the 'common' stuff
1830   add_region_to_incremental_cset_common(hr);
1831 
1832   // Add the region at the left hand side
1833   hr->set_next_in_collection_set(_inc_cset_head);
1834   if (_inc_cset_head == NULL) {
1835     assert(_inc_cset_tail == NULL, "Invariant");
1836     _inc_cset_tail = hr;
1837   }
1838   _inc_cset_head = hr;
1839 }
1840 
1841 #ifndef PRODUCT
1842 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1843   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1844 
1845   st->print_cr("\nCollection_set:");
1846   HeapRegion* csr = list_head;
1847   while (csr != NULL) {
1848     HeapRegion* next = csr->next_in_collection_set();
1849     assert(csr->in_collection_set(), "bad CS");
1850     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
1851                  HR_FORMAT_PARAMS(csr),
1852                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
1853                  csr->age_in_surv_rate_group_cond());
1854     csr = next;
1855   }
1856 }
1857 #endif // !PRODUCT
1858 
1859 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1860   // Returns the given amount of reclaimable bytes (that represents
1861   // the amount of reclaimable space still to be collected) as a
1862   // percentage of the current heap capacity.
1863   size_t capacity_bytes = _g1->capacity();
1864   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1865 }
1866 
1867 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1868                                                 const char* false_action_str) {
1869   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1870   if (cset_chooser->is_empty()) {
1871     ergo_verbose0(ErgoMixedGCs,
1872                   false_action_str,
1873                   ergo_format_reason("candidate old regions not available"));
1874     return false;
1875   }
1876 
1877   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1878   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1879   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1880   double threshold = (double) G1HeapWastePercent;
1881   if (reclaimable_perc <= threshold) {
1882     ergo_verbose4(ErgoMixedGCs,
1883               false_action_str,
1884               ergo_format_reason("reclaimable percentage not over threshold")
1885               ergo_format_region("candidate old regions")
1886               ergo_format_byte_perc("reclaimable")
1887               ergo_format_perc("threshold"),
1888               cset_chooser->remaining_regions(),
1889               reclaimable_bytes,
1890               reclaimable_perc, threshold);
1891     return false;
1892   }
1893 
1894   ergo_verbose4(ErgoMixedGCs,
1895                 true_action_str,
1896                 ergo_format_reason("candidate old regions available")
1897                 ergo_format_region("candidate old regions")
1898                 ergo_format_byte_perc("reclaimable")
1899                 ergo_format_perc("threshold"),
1900                 cset_chooser->remaining_regions(),
1901                 reclaimable_bytes,
1902                 reclaimable_perc, threshold);
1903   return true;
1904 }
1905 
1906 uint G1CollectorPolicy::calc_min_old_cset_length() {
1907   // The min old CSet region bound is based on the maximum desired
1908   // number of mixed GCs after a cycle. I.e., even if some old regions
1909   // look expensive, we should add them to the CSet anyway to make
1910   // sure we go through the available old regions in no more than the
1911   // maximum desired number of mixed GCs.
1912   //
1913   // The calculation is based on the number of marked regions we added
1914   // to the CSet chooser in the first place, not how many remain, so
1915   // that the result is the same during all mixed GCs that follow a cycle.
1916 
1917   const size_t region_num = (size_t) _collectionSetChooser->length();
1918   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1919   size_t result = region_num / gc_num;
1920   // emulate ceiling
1921   if (result * gc_num < region_num) {
1922     result += 1;
1923   }
1924   return (uint) result;
1925 }
1926 
1927 uint G1CollectorPolicy::calc_max_old_cset_length() {
1928   // The max old CSet region bound is based on the threshold expressed
1929   // as a percentage of the heap size. I.e., it should bound the
1930   // number of old regions added to the CSet irrespective of how many
1931   // of them are available.
1932 
1933   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1934   const size_t region_num = g1h->n_regions();
1935   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1936   size_t result = region_num * perc / 100;
1937   // emulate ceiling
1938   if (100 * result < region_num * perc) {
1939     result += 1;
1940   }
1941   return (uint) result;
1942 }
1943 
1944 
1945 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1946   double young_start_time_sec = os::elapsedTime();
1947 
1948   YoungList* young_list = _g1->young_list();
1949   finalize_incremental_cset_building();
1950 
1951   guarantee(target_pause_time_ms > 0.0,
1952             err_msg("target_pause_time_ms = %1.6lf should be positive",
1953                     target_pause_time_ms));
1954   guarantee(_collection_set == NULL, "Precondition");
1955 
1956   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1957   double predicted_pause_time_ms = base_time_ms;
1958   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1959 
1960   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1961                 "start choosing CSet",
1962                 ergo_format_size("_pending_cards")
1963                 ergo_format_ms("predicted base time")
1964                 ergo_format_ms("remaining time")
1965                 ergo_format_ms("target pause time"),
1966                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1967 
1968   _last_gc_was_young = gcs_are_young() ? true : false;
1969 
1970   if (_last_gc_was_young) {
1971     _trace_gen0_time_data.increment_young_collection_count();
1972   } else {
1973     _trace_gen0_time_data.increment_mixed_collection_count();
1974   }
1975 
1976   // The young list is laid with the survivor regions from the previous
1977   // pause are appended to the RHS of the young list, i.e.
1978   //   [Newly Young Regions ++ Survivors from last pause].
1979 
1980   uint survivor_region_length = young_list->survivor_length();
1981   uint eden_region_length = young_list->length() - survivor_region_length;
1982   init_cset_region_lengths(eden_region_length, survivor_region_length);
1983 
1984   HeapRegion* hr = young_list->first_survivor_region();
1985   while (hr != NULL) {
1986     assert(hr->is_survivor(), "badly formed young list");
1987     hr->set_young();
1988     hr = hr->get_next_young_region();
1989   }
1990 
1991   // Clear the fields that point to the survivor list - they are all young now.
1992   young_list->clear_survivors();
1993 
1994   _collection_set = _inc_cset_head;
1995   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1996   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1997   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1998 
1999   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
2000                 "add young regions to CSet",
2001                 ergo_format_region("eden")
2002                 ergo_format_region("survivors")
2003                 ergo_format_ms("predicted young region time"),
2004                 eden_region_length, survivor_region_length,
2005                 _inc_cset_predicted_elapsed_time_ms);
2006 
2007   // The number of recorded young regions is the incremental
2008   // collection set's current size
2009   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2010 
2011   double young_end_time_sec = os::elapsedTime();
2012   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2013 
2014   // Set the start of the non-young choice time.
2015   double non_young_start_time_sec = young_end_time_sec;
2016 
2017   if (!gcs_are_young()) {
2018     CollectionSetChooser* cset_chooser = _collectionSetChooser;
2019     cset_chooser->verify();
2020     const uint min_old_cset_length = calc_min_old_cset_length();
2021     const uint max_old_cset_length = calc_max_old_cset_length();
2022 
2023     uint expensive_region_num = 0;
2024     bool check_time_remaining = adaptive_young_list_length();
2025 
2026     HeapRegion* hr = cset_chooser->peek();
2027     while (hr != NULL) {
2028       if (old_cset_region_length() >= max_old_cset_length) {
2029         // Added maximum number of old regions to the CSet.
2030         ergo_verbose2(ErgoCSetConstruction,
2031                       "finish adding old regions to CSet",
2032                       ergo_format_reason("old CSet region num reached max")
2033                       ergo_format_region("old")
2034                       ergo_format_region("max"),
2035                       old_cset_region_length(), max_old_cset_length);
2036         break;
2037       }
2038 
2039 
2040       // Stop adding regions if the remaining reclaimable space is
2041       // not above G1HeapWastePercent.
2042       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2043       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2044       double threshold = (double) G1HeapWastePercent;
2045       if (reclaimable_perc <= threshold) {
2046         // We've added enough old regions that the amount of uncollected
2047         // reclaimable space is at or below the waste threshold. Stop
2048         // adding old regions to the CSet.
2049         ergo_verbose5(ErgoCSetConstruction,
2050                       "finish adding old regions to CSet",
2051                       ergo_format_reason("reclaimable percentage not over threshold")
2052                       ergo_format_region("old")
2053                       ergo_format_region("max")
2054                       ergo_format_byte_perc("reclaimable")
2055                       ergo_format_perc("threshold"),
2056                       old_cset_region_length(),
2057                       max_old_cset_length,
2058                       reclaimable_bytes,
2059                       reclaimable_perc, threshold);
2060         break;
2061       }
2062 
2063       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2064       if (check_time_remaining) {
2065         if (predicted_time_ms > time_remaining_ms) {
2066           // Too expensive for the current CSet.
2067 
2068           if (old_cset_region_length() >= min_old_cset_length) {
2069             // We have added the minimum number of old regions to the CSet,
2070             // we are done with this CSet.
2071             ergo_verbose4(ErgoCSetConstruction,
2072                           "finish adding old regions to CSet",
2073                           ergo_format_reason("predicted time is too high")
2074                           ergo_format_ms("predicted time")
2075                           ergo_format_ms("remaining time")
2076                           ergo_format_region("old")
2077                           ergo_format_region("min"),
2078                           predicted_time_ms, time_remaining_ms,
2079                           old_cset_region_length(), min_old_cset_length);
2080             break;
2081           }
2082 
2083           // We'll add it anyway given that we haven't reached the
2084           // minimum number of old regions.
2085           expensive_region_num += 1;
2086         }
2087       } else {
2088         if (old_cset_region_length() >= min_old_cset_length) {
2089           // In the non-auto-tuning case, we'll finish adding regions
2090           // to the CSet if we reach the minimum.
2091           ergo_verbose2(ErgoCSetConstruction,
2092                         "finish adding old regions to CSet",
2093                         ergo_format_reason("old CSet region num reached min")
2094                         ergo_format_region("old")
2095                         ergo_format_region("min"),
2096                         old_cset_region_length(), min_old_cset_length);
2097           break;
2098         }
2099       }
2100 
2101       // We will add this region to the CSet.
2102       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2103       predicted_pause_time_ms += predicted_time_ms;
2104       cset_chooser->remove_and_move_to_next(hr);
2105       _g1->old_set_remove(hr);
2106       add_old_region_to_cset(hr);
2107 
2108       hr = cset_chooser->peek();
2109     }
2110     if (hr == NULL) {
2111       ergo_verbose0(ErgoCSetConstruction,
2112                     "finish adding old regions to CSet",
2113                     ergo_format_reason("candidate old regions not available"));
2114     }
2115 
2116     if (expensive_region_num > 0) {
2117       // We print the information once here at the end, predicated on
2118       // whether we added any apparently expensive regions or not, to
2119       // avoid generating output per region.
2120       ergo_verbose4(ErgoCSetConstruction,
2121                     "added expensive regions to CSet",
2122                     ergo_format_reason("old CSet region num not reached min")
2123                     ergo_format_region("old")
2124                     ergo_format_region("expensive")
2125                     ergo_format_region("min")
2126                     ergo_format_ms("remaining time"),
2127                     old_cset_region_length(),
2128                     expensive_region_num,
2129                     min_old_cset_length,
2130                     time_remaining_ms);
2131     }
2132 
2133     cset_chooser->verify();
2134   }
2135 
2136   stop_incremental_cset_building();
2137 
2138   ergo_verbose5(ErgoCSetConstruction,
2139                 "finish choosing CSet",
2140                 ergo_format_region("eden")
2141                 ergo_format_region("survivors")
2142                 ergo_format_region("old")
2143                 ergo_format_ms("predicted pause time")
2144                 ergo_format_ms("target pause time"),
2145                 eden_region_length, survivor_region_length,
2146                 old_cset_region_length(),
2147                 predicted_pause_time_ms, target_pause_time_ms);
2148 
2149   double non_young_end_time_sec = os::elapsedTime();
2150   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2151   evacuation_info.set_collectionset_regions(cset_region_length());
2152 }
2153 
2154 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
2155   if(TraceGen0Time) {
2156     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2157   }
2158 }
2159 
2160 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
2161   if(TraceGen0Time) {
2162     _all_yield_times_ms.add(yield_time_ms);
2163   }
2164 }
2165 
2166 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2167   if(TraceGen0Time) {
2168     _total.add(pause_time_ms);
2169     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2170     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2171     _parallel.add(phase_times->cur_collection_par_time_ms());
2172     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
2173     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
2174     _update_rs.add(phase_times->average_last_update_rs_time());
2175     _scan_rs.add(phase_times->average_last_scan_rs_time());
2176     _obj_copy.add(phase_times->average_last_obj_copy_time());
2177     _termination.add(phase_times->average_last_termination_time());
2178 
2179     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
2180       phase_times->average_last_satb_filtering_times_ms() +
2181       phase_times->average_last_update_rs_time() +
2182       phase_times->average_last_scan_rs_time() +
2183       phase_times->average_last_obj_copy_time() +
2184       + phase_times->average_last_termination_time();
2185 
2186     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2187     _parallel_other.add(parallel_other_time);
2188     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2189   }
2190 }
2191 
2192 void TraceGen0TimeData::increment_young_collection_count() {
2193   if(TraceGen0Time) {
2194     ++_young_pause_num;
2195   }
2196 }
2197 
2198 void TraceGen0TimeData::increment_mixed_collection_count() {
2199   if(TraceGen0Time) {
2200     ++_mixed_pause_num;
2201   }
2202 }
2203 
2204 void TraceGen0TimeData::print_summary(const char* str,
2205                                       const NumberSeq* seq) const {
2206   double sum = seq->sum();
2207   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2208                 str, sum / 1000.0, seq->avg());
2209 }
2210 
2211 void TraceGen0TimeData::print_summary_sd(const char* str,
2212                                          const NumberSeq* seq) const {
2213   print_summary(str, seq);
2214   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2215                 "(num", seq->num(), seq->sd(), seq->maximum());
2216 }
2217 
2218 void TraceGen0TimeData::print() const {
2219   if (!TraceGen0Time) {
2220     return;
2221   }
2222 
2223   gclog_or_tty->print_cr("ALL PAUSES");
2224   print_summary_sd("   Total", &_total);
2225   gclog_or_tty->print_cr("");
2226   gclog_or_tty->print_cr("");
2227   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2228   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2229   gclog_or_tty->print_cr("");
2230 
2231   gclog_or_tty->print_cr("EVACUATION PAUSES");
2232 
2233   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2234     gclog_or_tty->print_cr("none");
2235   } else {
2236     print_summary_sd("   Evacuation Pauses", &_total);
2237     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2238     print_summary("      Parallel Time", &_parallel);
2239     print_summary("         Ext Root Scanning", &_ext_root_scan);
2240     print_summary("         SATB Filtering", &_satb_filtering);
2241     print_summary("         Update RS", &_update_rs);
2242     print_summary("         Scan RS", &_scan_rs);
2243     print_summary("         Object Copy", &_obj_copy);
2244     print_summary("         Termination", &_termination);
2245     print_summary("         Parallel Other", &_parallel_other);
2246     print_summary("      Clear CT", &_clear_ct);
2247     print_summary("      Other", &_other);
2248   }
2249   gclog_or_tty->print_cr("");
2250 
2251   gclog_or_tty->print_cr("MISC");
2252   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2253   print_summary_sd("   Yields", &_all_yield_times_ms);
2254 }
2255 
2256 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
2257   if (TraceGen1Time) {
2258     _all_full_gc_times.add(full_gc_time_ms);
2259   }
2260 }
2261 
2262 void TraceGen1TimeData::print() const {
2263   if (!TraceGen1Time) {
2264     return;
2265   }
2266 
2267   if (_all_full_gc_times.num() > 0) {
2268     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2269       _all_full_gc_times.num(),
2270       _all_full_gc_times.sum() / 1000.0);
2271     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2272     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2273       _all_full_gc_times.sd(),
2274       _all_full_gc_times.maximum());
2275   }
2276 }