1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP
  27 
  28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
  29 #include "gc_implementation/parallelScavenge/psGCAdaptivePolicyCounters.hpp"
  30 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  31 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
  32 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  33 #include "gc_implementation/shared/gcWhen.hpp"
  34 #include "gc_interface/collectedHeap.inline.hpp"
  35 #include "utilities/ostream.hpp"
  36 
  37 class AdjoiningGenerations;
  38 class GCHeapSummary;
  39 class GCTaskManager;
  40 class GenerationSizer;
  41 class CollectorPolicy;
  42 class PSAdaptiveSizePolicy;
  43 class PSHeapSummary;
  44 
  45 class ParallelScavengeHeap : public CollectedHeap {
  46   friend class VMStructs;
  47  private:
  48   static PSYoungGen* _young_gen;
  49   static PSOldGen*   _old_gen;
  50 
  51   // Sizing policy for entire heap
  52   static PSAdaptiveSizePolicy*       _size_policy;
  53   static PSGCAdaptivePolicyCounters* _gc_policy_counters;
  54 
  55   static ParallelScavengeHeap* _psh;
  56 
  57   size_t _young_gen_alignment;
  58   size_t _old_gen_alignment;
  59 
  60   GenerationSizer* _collector_policy;
  61 
  62   inline size_t set_alignment(size_t& var, size_t val);
  63 
  64   // Collection of generations that are adjacent in the
  65   // space reserved for the heap.
  66   AdjoiningGenerations* _gens;
  67   unsigned int _death_march_count;
  68 
  69   // The task manager
  70   static GCTaskManager* _gc_task_manager;
  71 
  72   void trace_heap(GCWhen::Type when, GCTracer* tracer);
  73 
  74  protected:
  75   static inline size_t total_invocations();
  76   HeapWord* allocate_new_tlab(size_t size);
  77 
  78   inline bool should_alloc_in_eden(size_t size) const;
  79   inline void death_march_check(HeapWord* const result, size_t size);
  80   HeapWord* mem_allocate_old_gen(size_t size);
  81 
  82  public:
  83   ParallelScavengeHeap() : CollectedHeap(), _death_march_count(0) {
  84     set_alignment(_young_gen_alignment, intra_heap_alignment());
  85     set_alignment(_old_gen_alignment, intra_heap_alignment());
  86   }
  87 
  88   // Return the (conservative) maximum heap alignment
  89   static size_t conservative_max_heap_alignment() {
  90     return GenCollectorPolicy::intra_heap_alignment();
  91   }
  92 
  93   // For use by VM operations
  94   enum CollectionType {
  95     Scavenge,
  96     MarkSweep
  97   };
  98 
  99   ParallelScavengeHeap::Name kind() const {
 100     return CollectedHeap::ParallelScavengeHeap;
 101   }
 102 
 103   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector_policy; }
 104 
 105   static PSYoungGen* young_gen() { return _young_gen; }
 106   static PSOldGen* old_gen()     { return _old_gen; }
 107 
 108   virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; }
 109 
 110   static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; }
 111 
 112   static ParallelScavengeHeap* heap();
 113 
 114   static GCTaskManager* const gc_task_manager() { return _gc_task_manager; }
 115 
 116   AdjoiningGenerations* gens() { return _gens; }
 117 
 118   // Returns JNI_OK on success
 119   virtual jint initialize();
 120 
 121   void post_initialize();
 122   void update_counters();
 123   // The alignment used for the various generations.
 124   size_t young_gen_alignment() const { return _young_gen_alignment; }
 125   size_t old_gen_alignment()  const { return _old_gen_alignment; }
 126 
 127   // The alignment used for eden and survivors within the young gen
 128   // and for boundary between young gen and old gen.
 129   size_t intra_heap_alignment() { return GenCollectorPolicy::intra_heap_alignment(); }
 130 
 131   size_t capacity() const;
 132   size_t used() const;
 133 
 134   // Return "true" if all generations have reached the
 135   // maximal committed limit that they can reach, without a garbage
 136   // collection.
 137   virtual bool is_maximal_no_gc() const;
 138 
 139   // Return true if the reference points to an object that
 140   // can be moved in a partial collection.  For currently implemented
 141   // generational collectors that means during a collection of
 142   // the young gen.
 143   virtual bool is_scavengable(const void* addr);
 144 
 145   // Does this heap support heap inspection? (+PrintClassHistogram)
 146   bool supports_heap_inspection() const { return true; }
 147 
 148   size_t max_capacity() const;
 149 
 150   // Whether p is in the allocated part of the heap
 151   bool is_in(const void* p) const;
 152 
 153   bool is_in_reserved(const void* p) const;
 154 
 155 #ifdef ASSERT
 156   virtual bool is_in_partial_collection(const void *p);
 157 #endif
 158 
 159   bool is_in_young(oop p);  // reserved part
 160   bool is_in_old(oop p);    // reserved part
 161 
 162   // Memory allocation.   "gc_time_limit_was_exceeded" will
 163   // be set to true if the adaptive size policy determine that
 164   // an excessive amount of time is being spent doing collections
 165   // and caused a NULL to be returned.  If a NULL is not returned,
 166   // "gc_time_limit_was_exceeded" has an undefined meaning.
 167   HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded);
 168 
 169   // Allocation attempt(s) during a safepoint. It should never be called
 170   // to allocate a new TLAB as this allocation might be satisfied out
 171   // of the old generation.
 172   HeapWord* failed_mem_allocate(size_t size);
 173 
 174   // Support for System.gc()
 175   void collect(GCCause::Cause cause);
 176 
 177   // These also should be called by the vm thread at a safepoint (e.g., from a
 178   // VM operation).
 179   //
 180   // The first collects the young generation only, unless the scavenge fails; it
 181   // will then attempt a full gc.  The second collects the entire heap; if
 182   // maximum_compaction is true, it will compact everything and clear all soft
 183   // references.
 184   inline void invoke_scavenge();
 185 
 186   // Perform a full collection
 187   virtual void do_full_collection(bool clear_all_soft_refs);
 188 
 189   bool supports_inline_contig_alloc() const { return !UseNUMA; }
 190 
 191   HeapWord** top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord**)-1; }
 192   HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; }
 193 
 194   void ensure_parsability(bool retire_tlabs);
 195   void accumulate_statistics_all_tlabs();
 196   void resize_all_tlabs();
 197 
 198   size_t unsafe_max_alloc();
 199 
 200   bool supports_tlab_allocation() const { return true; }
 201 
 202   size_t tlab_capacity(Thread* thr) const;
 203   size_t unsafe_max_tlab_alloc(Thread* thr) const;
 204 
 205   // Can a compiler initialize a new object without store barriers?
 206   // This permission only extends from the creation of a new object
 207   // via a TLAB up to the first subsequent safepoint.
 208   virtual bool can_elide_tlab_store_barriers() const {
 209     return true;
 210   }
 211 
 212   virtual bool card_mark_must_follow_store() const {
 213     return false;
 214   }
 215 
 216   // Return true if we don't we need a store barrier for
 217   // initializing stores to an object at this address.
 218   virtual bool can_elide_initializing_store_barrier(oop new_obj);
 219 
 220   void oop_iterate(ExtendedOopClosure* cl);
 221   void object_iterate(ObjectClosure* cl);
 222   void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); }
 223 
 224   HeapWord* block_start(const void* addr) const;
 225   size_t block_size(const HeapWord* addr) const;
 226   bool block_is_obj(const HeapWord* addr) const;
 227 
 228   jlong millis_since_last_gc();
 229 
 230   void prepare_for_verify();
 231   PSHeapSummary create_ps_heap_summary();
 232   virtual void print_on(outputStream* st) const;
 233   virtual void print_on_error(outputStream* st) const;
 234   virtual void print_gc_threads_on(outputStream* st) const;
 235   virtual void gc_threads_do(ThreadClosure* tc) const;
 236   virtual void print_tracing_info() const;
 237 
 238   void verify(bool silent, VerifyOption option /* ignored */);
 239 
 240   void print_heap_change(size_t prev_used);
 241 
 242   // Resize the young generation.  The reserved space for the
 243   // generation may be expanded in preparation for the resize.
 244   void resize_young_gen(size_t eden_size, size_t survivor_size);
 245 
 246   // Resize the old generation.  The reserved space for the
 247   // generation may be expanded in preparation for the resize.
 248   void resize_old_gen(size_t desired_free_space);
 249 
 250   // Save the tops of the spaces in all generations
 251   void record_gen_tops_before_GC() PRODUCT_RETURN;
 252 
 253   // Mangle the unused parts of all spaces in the heap
 254   void gen_mangle_unused_area() PRODUCT_RETURN;
 255 
 256   // Call these in sequential code around the processing of strong roots.
 257   class ParStrongRootsScope : public MarkingCodeBlobClosure::MarkScope {
 258    public:
 259     ParStrongRootsScope();
 260     ~ParStrongRootsScope();
 261   };
 262 };
 263 
 264 inline size_t ParallelScavengeHeap::set_alignment(size_t& var, size_t val)
 265 {
 266   assert(is_power_of_2((intptr_t)val), "must be a power of 2");
 267   var = round_to(val, intra_heap_alignment());
 268   return var;
 269 }
 270 
 271 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP