1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "code/icBuffer.hpp"
  28 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  29 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  30 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  31 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  32 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  35 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  36 #include "gc_implementation/g1/g1EvacFailure.hpp"
  37 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  38 #include "gc_implementation/g1/g1Log.hpp"
  39 #include "gc_implementation/g1/g1MarkSweep.hpp"
  40 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  41 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  42 #include "gc_implementation/g1/g1StringDedup.hpp"
  43 #include "gc_implementation/g1/g1YCTypes.hpp"
  44 #include "gc_implementation/g1/heapRegion.inline.hpp"
  45 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  46 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  47 #include "gc_implementation/g1/vm_operations_g1.hpp"
  48 #include "gc_implementation/shared/gcHeapSummary.hpp"
  49 #include "gc_implementation/shared/gcTimer.hpp"
  50 #include "gc_implementation/shared/gcTrace.hpp"
  51 #include "gc_implementation/shared/gcTraceTime.hpp"
  52 #include "gc_implementation/shared/isGCActiveMark.hpp"
  53 #include "memory/gcLocker.inline.hpp"
  54 #include "memory/generationSpec.hpp"
  55 #include "memory/iterator.hpp"
  56 #include "memory/referenceProcessor.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/oop.pcgc.inline.hpp"
  59 #include "runtime/vmThread.hpp"
  60 #include "utilities/globalDefinitions.hpp"
  61 #include "utilities/ticks.hpp"
  62 
  63 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  64 
  65 // turn it on so that the contents of the young list (scan-only /
  66 // to-be-collected) are printed at "strategic" points before / during
  67 // / after the collection --- this is useful for debugging
  68 #define YOUNG_LIST_VERBOSE 0
  69 // CURRENT STATUS
  70 // This file is under construction.  Search for "FIXME".
  71 
  72 // INVARIANTS/NOTES
  73 //
  74 // All allocation activity covered by the G1CollectedHeap interface is
  75 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  76 // and allocate_new_tlab, which are the "entry" points to the
  77 // allocation code from the rest of the JVM.  (Note that this does not
  78 // apply to TLAB allocation, which is not part of this interface: it
  79 // is done by clients of this interface.)
  80 
  81 // Notes on implementation of parallelism in different tasks.
  82 //
  83 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  84 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  85 // It does use run_task() which sets _n_workers in the task.
  86 // G1ParTask executes g1_process_strong_roots() ->
  87 // SharedHeap::process_strong_roots() which calls eventually to
  88 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  89 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  90 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  91 //
  92 
  93 // Local to this file.
  94 
  95 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  96   bool _concurrent;
  97 public:
  98   RefineCardTableEntryClosure() : _concurrent(true) { }
  99 
 100   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 101     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 102     // This path is executed by the concurrent refine or mutator threads,
 103     // concurrently, and so we do not care if card_ptr contains references
 104     // that point into the collection set.
 105     assert(!oops_into_cset, "should be");
 106 
 107     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 108       // Caller will actually yield.
 109       return false;
 110     }
 111     // Otherwise, we finished successfully; return true.
 112     return true;
 113   }
 114 
 115   void set_concurrent(bool b) { _concurrent = b; }
 116 };
 117 
 118 
 119 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 120   size_t _num_processed;
 121   CardTableModRefBS* _ctbs;
 122   int _histo[256];
 123 
 124  public:
 125   ClearLoggedCardTableEntryClosure() :
 126     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
 127   {
 128     for (int i = 0; i < 256; i++) _histo[i] = 0;
 129   }
 130 
 131   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 132     unsigned char* ujb = (unsigned char*)card_ptr;
 133     int ind = (int)(*ujb);
 134     _histo[ind]++;
 135 
 136     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
 137     _num_processed++;
 138 
 139     return true;
 140   }
 141 
 142   size_t num_processed() { return _num_processed; }
 143 
 144   void print_histo() {
 145     gclog_or_tty->print_cr("Card table value histogram:");
 146     for (int i = 0; i < 256; i++) {
 147       if (_histo[i] != 0) {
 148         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 149       }
 150     }
 151   }
 152 };
 153 
 154 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 155  private:
 156   size_t _num_processed;
 157 
 158  public:
 159   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 160 
 161   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 162     *card_ptr = CardTableModRefBS::dirty_card_val();
 163     _num_processed++;
 164     return true;
 165   }
 166 
 167   size_t num_processed() const { return _num_processed; }
 168 };
 169 
 170 YoungList::YoungList(G1CollectedHeap* g1h) :
 171     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 172     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 173   guarantee(check_list_empty(false), "just making sure...");
 174 }
 175 
 176 void YoungList::push_region(HeapRegion *hr) {
 177   assert(!hr->is_young(), "should not already be young");
 178   assert(hr->get_next_young_region() == NULL, "cause it should!");
 179 
 180   hr->set_next_young_region(_head);
 181   _head = hr;
 182 
 183   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 184   ++_length;
 185 }
 186 
 187 void YoungList::add_survivor_region(HeapRegion* hr) {
 188   assert(hr->is_survivor(), "should be flagged as survivor region");
 189   assert(hr->get_next_young_region() == NULL, "cause it should!");
 190 
 191   hr->set_next_young_region(_survivor_head);
 192   if (_survivor_head == NULL) {
 193     _survivor_tail = hr;
 194   }
 195   _survivor_head = hr;
 196   ++_survivor_length;
 197 }
 198 
 199 void YoungList::empty_list(HeapRegion* list) {
 200   while (list != NULL) {
 201     HeapRegion* next = list->get_next_young_region();
 202     list->set_next_young_region(NULL);
 203     list->uninstall_surv_rate_group();
 204     list->set_not_young();
 205     list = next;
 206   }
 207 }
 208 
 209 void YoungList::empty_list() {
 210   assert(check_list_well_formed(), "young list should be well formed");
 211 
 212   empty_list(_head);
 213   _head = NULL;
 214   _length = 0;
 215 
 216   empty_list(_survivor_head);
 217   _survivor_head = NULL;
 218   _survivor_tail = NULL;
 219   _survivor_length = 0;
 220 
 221   _last_sampled_rs_lengths = 0;
 222 
 223   assert(check_list_empty(false), "just making sure...");
 224 }
 225 
 226 bool YoungList::check_list_well_formed() {
 227   bool ret = true;
 228 
 229   uint length = 0;
 230   HeapRegion* curr = _head;
 231   HeapRegion* last = NULL;
 232   while (curr != NULL) {
 233     if (!curr->is_young()) {
 234       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 235                              "incorrectly tagged (y: %d, surv: %d)",
 236                              curr->bottom(), curr->end(),
 237                              curr->is_young(), curr->is_survivor());
 238       ret = false;
 239     }
 240     ++length;
 241     last = curr;
 242     curr = curr->get_next_young_region();
 243   }
 244   ret = ret && (length == _length);
 245 
 246   if (!ret) {
 247     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 248     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 249                            length, _length);
 250   }
 251 
 252   return ret;
 253 }
 254 
 255 bool YoungList::check_list_empty(bool check_sample) {
 256   bool ret = true;
 257 
 258   if (_length != 0) {
 259     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 260                   _length);
 261     ret = false;
 262   }
 263   if (check_sample && _last_sampled_rs_lengths != 0) {
 264     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 265     ret = false;
 266   }
 267   if (_head != NULL) {
 268     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 269     ret = false;
 270   }
 271   if (!ret) {
 272     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 273   }
 274 
 275   return ret;
 276 }
 277 
 278 void
 279 YoungList::rs_length_sampling_init() {
 280   _sampled_rs_lengths = 0;
 281   _curr               = _head;
 282 }
 283 
 284 bool
 285 YoungList::rs_length_sampling_more() {
 286   return _curr != NULL;
 287 }
 288 
 289 void
 290 YoungList::rs_length_sampling_next() {
 291   assert( _curr != NULL, "invariant" );
 292   size_t rs_length = _curr->rem_set()->occupied();
 293 
 294   _sampled_rs_lengths += rs_length;
 295 
 296   // The current region may not yet have been added to the
 297   // incremental collection set (it gets added when it is
 298   // retired as the current allocation region).
 299   if (_curr->in_collection_set()) {
 300     // Update the collection set policy information for this region
 301     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 302   }
 303 
 304   _curr = _curr->get_next_young_region();
 305   if (_curr == NULL) {
 306     _last_sampled_rs_lengths = _sampled_rs_lengths;
 307     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 308   }
 309 }
 310 
 311 void
 312 YoungList::reset_auxilary_lists() {
 313   guarantee( is_empty(), "young list should be empty" );
 314   assert(check_list_well_formed(), "young list should be well formed");
 315 
 316   // Add survivor regions to SurvRateGroup.
 317   _g1h->g1_policy()->note_start_adding_survivor_regions();
 318   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 319 
 320   int young_index_in_cset = 0;
 321   for (HeapRegion* curr = _survivor_head;
 322        curr != NULL;
 323        curr = curr->get_next_young_region()) {
 324     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 325 
 326     // The region is a non-empty survivor so let's add it to
 327     // the incremental collection set for the next evacuation
 328     // pause.
 329     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 330     young_index_in_cset += 1;
 331   }
 332   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 333   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 334 
 335   _head   = _survivor_head;
 336   _length = _survivor_length;
 337   if (_survivor_head != NULL) {
 338     assert(_survivor_tail != NULL, "cause it shouldn't be");
 339     assert(_survivor_length > 0, "invariant");
 340     _survivor_tail->set_next_young_region(NULL);
 341   }
 342 
 343   // Don't clear the survivor list handles until the start of
 344   // the next evacuation pause - we need it in order to re-tag
 345   // the survivor regions from this evacuation pause as 'young'
 346   // at the start of the next.
 347 
 348   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 349 
 350   assert(check_list_well_formed(), "young list should be well formed");
 351 }
 352 
 353 void YoungList::print() {
 354   HeapRegion* lists[] = {_head,   _survivor_head};
 355   const char* names[] = {"YOUNG", "SURVIVOR"};
 356 
 357   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 358     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 359     HeapRegion *curr = lists[list];
 360     if (curr == NULL)
 361       gclog_or_tty->print_cr("  empty");
 362     while (curr != NULL) {
 363       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 364                              HR_FORMAT_PARAMS(curr),
 365                              curr->prev_top_at_mark_start(),
 366                              curr->next_top_at_mark_start(),
 367                              curr->age_in_surv_rate_group_cond());
 368       curr = curr->get_next_young_region();
 369     }
 370   }
 371 
 372   gclog_or_tty->print_cr("");
 373 }
 374 
 375 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 376 {
 377   // Claim the right to put the region on the dirty cards region list
 378   // by installing a self pointer.
 379   HeapRegion* next = hr->get_next_dirty_cards_region();
 380   if (next == NULL) {
 381     HeapRegion* res = (HeapRegion*)
 382       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 383                           NULL);
 384     if (res == NULL) {
 385       HeapRegion* head;
 386       do {
 387         // Put the region to the dirty cards region list.
 388         head = _dirty_cards_region_list;
 389         next = (HeapRegion*)
 390           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 391         if (next == head) {
 392           assert(hr->get_next_dirty_cards_region() == hr,
 393                  "hr->get_next_dirty_cards_region() != hr");
 394           if (next == NULL) {
 395             // The last region in the list points to itself.
 396             hr->set_next_dirty_cards_region(hr);
 397           } else {
 398             hr->set_next_dirty_cards_region(next);
 399           }
 400         }
 401       } while (next != head);
 402     }
 403   }
 404 }
 405 
 406 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 407 {
 408   HeapRegion* head;
 409   HeapRegion* hr;
 410   do {
 411     head = _dirty_cards_region_list;
 412     if (head == NULL) {
 413       return NULL;
 414     }
 415     HeapRegion* new_head = head->get_next_dirty_cards_region();
 416     if (head == new_head) {
 417       // The last region.
 418       new_head = NULL;
 419     }
 420     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 421                                           head);
 422   } while (hr != head);
 423   assert(hr != NULL, "invariant");
 424   hr->set_next_dirty_cards_region(NULL);
 425   return hr;
 426 }
 427 
 428 void G1CollectedHeap::stop_conc_gc_threads() {
 429   _cg1r->stop();
 430   _cmThread->stop();
 431   if (G1StringDedup::is_enabled()) {
 432     G1StringDedup::stop();
 433   }
 434 }
 435 
 436 #ifdef ASSERT
 437 // A region is added to the collection set as it is retired
 438 // so an address p can point to a region which will be in the
 439 // collection set but has not yet been retired.  This method
 440 // therefore is only accurate during a GC pause after all
 441 // regions have been retired.  It is used for debugging
 442 // to check if an nmethod has references to objects that can
 443 // be move during a partial collection.  Though it can be
 444 // inaccurate, it is sufficient for G1 because the conservative
 445 // implementation of is_scavengable() for G1 will indicate that
 446 // all nmethods must be scanned during a partial collection.
 447 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 448   if (p == NULL) {
 449     return false;
 450   }
 451   return heap_region_containing(p)->in_collection_set();
 452 }
 453 #endif
 454 
 455 // Returns true if the reference points to an object that
 456 // can move in an incremental collection.
 457 bool G1CollectedHeap::is_scavengable(const void* p) {
 458   HeapRegion* hr = heap_region_containing(p);
 459   return !hr->isHumongous();
 460 }
 461 
 462 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 463   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 464   CardTableModRefBS* ct_bs = g1_barrier_set();
 465 
 466   // Count the dirty cards at the start.
 467   CountNonCleanMemRegionClosure count1(this);
 468   ct_bs->mod_card_iterate(&count1);
 469   int orig_count = count1.n();
 470 
 471   // First clear the logged cards.
 472   ClearLoggedCardTableEntryClosure clear;
 473   dcqs.apply_closure_to_all_completed_buffers(&clear);
 474   dcqs.iterate_closure_all_threads(&clear, false);
 475   clear.print_histo();
 476 
 477   // Now ensure that there's no dirty cards.
 478   CountNonCleanMemRegionClosure count2(this);
 479   ct_bs->mod_card_iterate(&count2);
 480   if (count2.n() != 0) {
 481     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 482                            count2.n(), orig_count);
 483   }
 484   guarantee(count2.n() == 0, "Card table should be clean.");
 485 
 486   RedirtyLoggedCardTableEntryClosure redirty;
 487   dcqs.apply_closure_to_all_completed_buffers(&redirty);
 488   dcqs.iterate_closure_all_threads(&redirty, false);
 489   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 490                          clear.num_processed(), orig_count);
 491   guarantee(redirty.num_processed() == clear.num_processed(),
 492             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
 493                     redirty.num_processed(), clear.num_processed()));
 494 
 495   CountNonCleanMemRegionClosure count3(this);
 496   ct_bs->mod_card_iterate(&count3);
 497   if (count3.n() != orig_count) {
 498     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 499                            orig_count, count3.n());
 500     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 501   }
 502 }
 503 
 504 // Private class members.
 505 
 506 G1CollectedHeap* G1CollectedHeap::_g1h;
 507 
 508 // Private methods.
 509 
 510 HeapRegion*
 511 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 512   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 513   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 514     if (!_secondary_free_list.is_empty()) {
 515       if (G1ConcRegionFreeingVerbose) {
 516         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 517                                "secondary_free_list has %u entries",
 518                                _secondary_free_list.length());
 519       }
 520       // It looks as if there are free regions available on the
 521       // secondary_free_list. Let's move them to the free_list and try
 522       // again to allocate from it.
 523       append_secondary_free_list();
 524 
 525       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 526              "empty we should have moved at least one entry to the free_list");
 527       HeapRegion* res = _free_list.remove_region(is_old);
 528       if (G1ConcRegionFreeingVerbose) {
 529         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 530                                "allocated "HR_FORMAT" from secondary_free_list",
 531                                HR_FORMAT_PARAMS(res));
 532       }
 533       return res;
 534     }
 535 
 536     // Wait here until we get notified either when (a) there are no
 537     // more free regions coming or (b) some regions have been moved on
 538     // the secondary_free_list.
 539     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 540   }
 541 
 542   if (G1ConcRegionFreeingVerbose) {
 543     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 544                            "could not allocate from secondary_free_list");
 545   }
 546   return NULL;
 547 }
 548 
 549 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 550   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 551          "the only time we use this to allocate a humongous region is "
 552          "when we are allocating a single humongous region");
 553 
 554   HeapRegion* res;
 555   if (G1StressConcRegionFreeing) {
 556     if (!_secondary_free_list.is_empty()) {
 557       if (G1ConcRegionFreeingVerbose) {
 558         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 559                                "forced to look at the secondary_free_list");
 560       }
 561       res = new_region_try_secondary_free_list(is_old);
 562       if (res != NULL) {
 563         return res;
 564       }
 565     }
 566   }
 567 
 568   res = _free_list.remove_region(is_old);
 569 
 570   if (res == NULL) {
 571     if (G1ConcRegionFreeingVerbose) {
 572       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 573                              "res == NULL, trying the secondary_free_list");
 574     }
 575     res = new_region_try_secondary_free_list(is_old);
 576   }
 577   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 578     // Currently, only attempts to allocate GC alloc regions set
 579     // do_expand to true. So, we should only reach here during a
 580     // safepoint. If this assumption changes we might have to
 581     // reconsider the use of _expand_heap_after_alloc_failure.
 582     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 583 
 584     ergo_verbose1(ErgoHeapSizing,
 585                   "attempt heap expansion",
 586                   ergo_format_reason("region allocation request failed")
 587                   ergo_format_byte("allocation request"),
 588                   word_size * HeapWordSize);
 589     if (expand(word_size * HeapWordSize)) {
 590       // Given that expand() succeeded in expanding the heap, and we
 591       // always expand the heap by an amount aligned to the heap
 592       // region size, the free list should in theory not be empty.
 593       // In either case remove_region() will check for NULL.
 594       res = _free_list.remove_region(is_old);
 595     } else {
 596       _expand_heap_after_alloc_failure = false;
 597     }
 598   }
 599   return res;
 600 }
 601 
 602 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 603                                                         size_t word_size) {
 604   assert(isHumongous(word_size), "word_size should be humongous");
 605   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 606 
 607   uint first = G1_NULL_HRS_INDEX;
 608   if (num_regions == 1) {
 609     // Only one region to allocate, no need to go through the slower
 610     // path. The caller will attempt the expansion if this fails, so
 611     // let's not try to expand here too.
 612     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 613     if (hr != NULL) {
 614       first = hr->hrs_index();
 615     } else {
 616       first = G1_NULL_HRS_INDEX;
 617     }
 618   } else {
 619     // We can't allocate humongous regions while cleanupComplete() is
 620     // running, since some of the regions we find to be empty might not
 621     // yet be added to the free list and it is not straightforward to
 622     // know which list they are on so that we can remove them. Note
 623     // that we only need to do this if we need to allocate more than
 624     // one region to satisfy the current humongous allocation
 625     // request. If we are only allocating one region we use the common
 626     // region allocation code (see above).
 627     wait_while_free_regions_coming();
 628     append_secondary_free_list_if_not_empty_with_lock();
 629 
 630     if (free_regions() >= num_regions) {
 631       first = _hrs.find_contiguous(num_regions);
 632       if (first != G1_NULL_HRS_INDEX) {
 633         for (uint i = first; i < first + num_regions; ++i) {
 634           HeapRegion* hr = region_at(i);
 635           assert(hr->is_empty(), "sanity");
 636           assert(is_on_master_free_list(hr), "sanity");
 637           hr->set_pending_removal(true);
 638         }
 639         _free_list.remove_all_pending(num_regions);
 640       }
 641     }
 642   }
 643   return first;
 644 }
 645 
 646 HeapWord*
 647 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 648                                                            uint num_regions,
 649                                                            size_t word_size) {
 650   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 651   assert(isHumongous(word_size), "word_size should be humongous");
 652   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 653 
 654   // Index of last region in the series + 1.
 655   uint last = first + num_regions;
 656 
 657   // We need to initialize the region(s) we just discovered. This is
 658   // a bit tricky given that it can happen concurrently with
 659   // refinement threads refining cards on these regions and
 660   // potentially wanting to refine the BOT as they are scanning
 661   // those cards (this can happen shortly after a cleanup; see CR
 662   // 6991377). So we have to set up the region(s) carefully and in
 663   // a specific order.
 664 
 665   // The word size sum of all the regions we will allocate.
 666   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 667   assert(word_size <= word_size_sum, "sanity");
 668 
 669   // This will be the "starts humongous" region.
 670   HeapRegion* first_hr = region_at(first);
 671   // The header of the new object will be placed at the bottom of
 672   // the first region.
 673   HeapWord* new_obj = first_hr->bottom();
 674   // This will be the new end of the first region in the series that
 675   // should also match the end of the last region in the series.
 676   HeapWord* new_end = new_obj + word_size_sum;
 677   // This will be the new top of the first region that will reflect
 678   // this allocation.
 679   HeapWord* new_top = new_obj + word_size;
 680 
 681   // First, we need to zero the header of the space that we will be
 682   // allocating. When we update top further down, some refinement
 683   // threads might try to scan the region. By zeroing the header we
 684   // ensure that any thread that will try to scan the region will
 685   // come across the zero klass word and bail out.
 686   //
 687   // NOTE: It would not have been correct to have used
 688   // CollectedHeap::fill_with_object() and make the space look like
 689   // an int array. The thread that is doing the allocation will
 690   // later update the object header to a potentially different array
 691   // type and, for a very short period of time, the klass and length
 692   // fields will be inconsistent. This could cause a refinement
 693   // thread to calculate the object size incorrectly.
 694   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 695 
 696   // We will set up the first region as "starts humongous". This
 697   // will also update the BOT covering all the regions to reflect
 698   // that there is a single object that starts at the bottom of the
 699   // first region.
 700   first_hr->set_startsHumongous(new_top, new_end);
 701 
 702   // Then, if there are any, we will set up the "continues
 703   // humongous" regions.
 704   HeapRegion* hr = NULL;
 705   for (uint i = first + 1; i < last; ++i) {
 706     hr = region_at(i);
 707     hr->set_continuesHumongous(first_hr);
 708   }
 709   // If we have "continues humongous" regions (hr != NULL), then the
 710   // end of the last one should match new_end.
 711   assert(hr == NULL || hr->end() == new_end, "sanity");
 712 
 713   // Up to this point no concurrent thread would have been able to
 714   // do any scanning on any region in this series. All the top
 715   // fields still point to bottom, so the intersection between
 716   // [bottom,top] and [card_start,card_end] will be empty. Before we
 717   // update the top fields, we'll do a storestore to make sure that
 718   // no thread sees the update to top before the zeroing of the
 719   // object header and the BOT initialization.
 720   OrderAccess::storestore();
 721 
 722   // Now that the BOT and the object header have been initialized,
 723   // we can update top of the "starts humongous" region.
 724   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 725          "new_top should be in this region");
 726   first_hr->set_top(new_top);
 727   if (_hr_printer.is_active()) {
 728     HeapWord* bottom = first_hr->bottom();
 729     HeapWord* end = first_hr->orig_end();
 730     if ((first + 1) == last) {
 731       // the series has a single humongous region
 732       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 733     } else {
 734       // the series has more than one humongous regions
 735       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 736     }
 737   }
 738 
 739   // Now, we will update the top fields of the "continues humongous"
 740   // regions. The reason we need to do this is that, otherwise,
 741   // these regions would look empty and this will confuse parts of
 742   // G1. For example, the code that looks for a consecutive number
 743   // of empty regions will consider them empty and try to
 744   // re-allocate them. We can extend is_empty() to also include
 745   // !continuesHumongous(), but it is easier to just update the top
 746   // fields here. The way we set top for all regions (i.e., top ==
 747   // end for all regions but the last one, top == new_top for the
 748   // last one) is actually used when we will free up the humongous
 749   // region in free_humongous_region().
 750   hr = NULL;
 751   for (uint i = first + 1; i < last; ++i) {
 752     hr = region_at(i);
 753     if ((i + 1) == last) {
 754       // last continues humongous region
 755       assert(hr->bottom() < new_top && new_top <= hr->end(),
 756              "new_top should fall on this region");
 757       hr->set_top(new_top);
 758       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 759     } else {
 760       // not last one
 761       assert(new_top > hr->end(), "new_top should be above this region");
 762       hr->set_top(hr->end());
 763       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 764     }
 765   }
 766   // If we have continues humongous regions (hr != NULL), then the
 767   // end of the last one should match new_end and its top should
 768   // match new_top.
 769   assert(hr == NULL ||
 770          (hr->end() == new_end && hr->top() == new_top), "sanity");
 771   check_bitmaps("Humongous Region Allocation", first_hr);
 772 
 773   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 774   _summary_bytes_used += first_hr->used();
 775   _humongous_set.add(first_hr);
 776 
 777   return new_obj;
 778 }
 779 
 780 // If could fit into free regions w/o expansion, try.
 781 // Otherwise, if can expand, do so.
 782 // Otherwise, if using ex regions might help, try with ex given back.
 783 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 784   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 785 
 786   verify_region_sets_optional();
 787 
 788   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 789   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 790   uint x_num = expansion_regions();
 791   uint fs = _hrs.free_suffix();
 792   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 793   if (first == G1_NULL_HRS_INDEX) {
 794     // The only thing we can do now is attempt expansion.
 795     if (fs + x_num >= num_regions) {
 796       // If the number of regions we're trying to allocate for this
 797       // object is at most the number of regions in the free suffix,
 798       // then the call to humongous_obj_allocate_find_first() above
 799       // should have succeeded and we wouldn't be here.
 800       //
 801       // We should only be trying to expand when the free suffix is
 802       // not sufficient for the object _and_ we have some expansion
 803       // room available.
 804       assert(num_regions > fs, "earlier allocation should have succeeded");
 805 
 806       ergo_verbose1(ErgoHeapSizing,
 807                     "attempt heap expansion",
 808                     ergo_format_reason("humongous allocation request failed")
 809                     ergo_format_byte("allocation request"),
 810                     word_size * HeapWordSize);
 811       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 812         // Even though the heap was expanded, it might not have
 813         // reached the desired size. So, we cannot assume that the
 814         // allocation will succeed.
 815         first = humongous_obj_allocate_find_first(num_regions, word_size);
 816       }
 817     }
 818   }
 819 
 820   HeapWord* result = NULL;
 821   if (first != G1_NULL_HRS_INDEX) {
 822     result =
 823       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 824     assert(result != NULL, "it should always return a valid result");
 825 
 826     // A successful humongous object allocation changes the used space
 827     // information of the old generation so we need to recalculate the
 828     // sizes and update the jstat counters here.
 829     g1mm()->update_sizes();
 830   }
 831 
 832   verify_region_sets_optional();
 833 
 834   return result;
 835 }
 836 
 837 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 838   assert_heap_not_locked_and_not_at_safepoint();
 839   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 840 
 841   unsigned int dummy_gc_count_before;
 842   int dummy_gclocker_retry_count = 0;
 843   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 844 }
 845 
 846 HeapWord*
 847 G1CollectedHeap::mem_allocate(size_t word_size,
 848                               bool*  gc_overhead_limit_was_exceeded) {
 849   assert_heap_not_locked_and_not_at_safepoint();
 850 
 851   // Loop until the allocation is satisfied, or unsatisfied after GC.
 852   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 853     unsigned int gc_count_before;
 854 
 855     HeapWord* result = NULL;
 856     if (!isHumongous(word_size)) {
 857       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 858     } else {
 859       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 860     }
 861     if (result != NULL) {
 862       return result;
 863     }
 864 
 865     // Create the garbage collection operation...
 866     VM_G1CollectForAllocation op(gc_count_before, word_size);
 867     // ...and get the VM thread to execute it.
 868     VMThread::execute(&op);
 869 
 870     if (op.prologue_succeeded() && op.pause_succeeded()) {
 871       // If the operation was successful we'll return the result even
 872       // if it is NULL. If the allocation attempt failed immediately
 873       // after a Full GC, it's unlikely we'll be able to allocate now.
 874       HeapWord* result = op.result();
 875       if (result != NULL && !isHumongous(word_size)) {
 876         // Allocations that take place on VM operations do not do any
 877         // card dirtying and we have to do it here. We only have to do
 878         // this for non-humongous allocations, though.
 879         dirty_young_block(result, word_size);
 880       }
 881       return result;
 882     } else {
 883       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 884         return NULL;
 885       }
 886       assert(op.result() == NULL,
 887              "the result should be NULL if the VM op did not succeed");
 888     }
 889 
 890     // Give a warning if we seem to be looping forever.
 891     if ((QueuedAllocationWarningCount > 0) &&
 892         (try_count % QueuedAllocationWarningCount == 0)) {
 893       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 894     }
 895   }
 896 
 897   ShouldNotReachHere();
 898   return NULL;
 899 }
 900 
 901 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 902                                            unsigned int *gc_count_before_ret,
 903                                            int* gclocker_retry_count_ret) {
 904   // Make sure you read the note in attempt_allocation_humongous().
 905 
 906   assert_heap_not_locked_and_not_at_safepoint();
 907   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 908          "be called for humongous allocation requests");
 909 
 910   // We should only get here after the first-level allocation attempt
 911   // (attempt_allocation()) failed to allocate.
 912 
 913   // We will loop until a) we manage to successfully perform the
 914   // allocation or b) we successfully schedule a collection which
 915   // fails to perform the allocation. b) is the only case when we'll
 916   // return NULL.
 917   HeapWord* result = NULL;
 918   for (int try_count = 1; /* we'll return */; try_count += 1) {
 919     bool should_try_gc;
 920     unsigned int gc_count_before;
 921 
 922     {
 923       MutexLockerEx x(Heap_lock);
 924 
 925       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 926                                                       false /* bot_updates */);
 927       if (result != NULL) {
 928         return result;
 929       }
 930 
 931       // If we reach here, attempt_allocation_locked() above failed to
 932       // allocate a new region. So the mutator alloc region should be NULL.
 933       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 934 
 935       if (GC_locker::is_active_and_needs_gc()) {
 936         if (g1_policy()->can_expand_young_list()) {
 937           // No need for an ergo verbose message here,
 938           // can_expand_young_list() does this when it returns true.
 939           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 940                                                       false /* bot_updates */);
 941           if (result != NULL) {
 942             return result;
 943           }
 944         }
 945         should_try_gc = false;
 946       } else {
 947         // The GCLocker may not be active but the GCLocker initiated
 948         // GC may not yet have been performed (GCLocker::needs_gc()
 949         // returns true). In this case we do not try this GC and
 950         // wait until the GCLocker initiated GC is performed, and
 951         // then retry the allocation.
 952         if (GC_locker::needs_gc()) {
 953           should_try_gc = false;
 954         } else {
 955           // Read the GC count while still holding the Heap_lock.
 956           gc_count_before = total_collections();
 957           should_try_gc = true;
 958         }
 959       }
 960     }
 961 
 962     if (should_try_gc) {
 963       bool succeeded;
 964       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 965           GCCause::_g1_inc_collection_pause);
 966       if (result != NULL) {
 967         assert(succeeded, "only way to get back a non-NULL result");
 968         return result;
 969       }
 970 
 971       if (succeeded) {
 972         // If we get here we successfully scheduled a collection which
 973         // failed to allocate. No point in trying to allocate
 974         // further. We'll just return NULL.
 975         MutexLockerEx x(Heap_lock);
 976         *gc_count_before_ret = total_collections();
 977         return NULL;
 978       }
 979     } else {
 980       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 981         MutexLockerEx x(Heap_lock);
 982         *gc_count_before_ret = total_collections();
 983         return NULL;
 984       }
 985       // The GCLocker is either active or the GCLocker initiated
 986       // GC has not yet been performed. Stall until it is and
 987       // then retry the allocation.
 988       GC_locker::stall_until_clear();
 989       (*gclocker_retry_count_ret) += 1;
 990     }
 991 
 992     // We can reach here if we were unsuccessful in scheduling a
 993     // collection (because another thread beat us to it) or if we were
 994     // stalled due to the GC locker. In either can we should retry the
 995     // allocation attempt in case another thread successfully
 996     // performed a collection and reclaimed enough space. We do the
 997     // first attempt (without holding the Heap_lock) here and the
 998     // follow-on attempt will be at the start of the next loop
 999     // iteration (after taking the Heap_lock).
1000     result = _mutator_alloc_region.attempt_allocation(word_size,
1001                                                       false /* bot_updates */);
1002     if (result != NULL) {
1003       return result;
1004     }
1005 
1006     // Give a warning if we seem to be looping forever.
1007     if ((QueuedAllocationWarningCount > 0) &&
1008         (try_count % QueuedAllocationWarningCount == 0)) {
1009       warning("G1CollectedHeap::attempt_allocation_slow() "
1010               "retries %d times", try_count);
1011     }
1012   }
1013 
1014   ShouldNotReachHere();
1015   return NULL;
1016 }
1017 
1018 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1019                                           unsigned int * gc_count_before_ret,
1020                                           int* gclocker_retry_count_ret) {
1021   // The structure of this method has a lot of similarities to
1022   // attempt_allocation_slow(). The reason these two were not merged
1023   // into a single one is that such a method would require several "if
1024   // allocation is not humongous do this, otherwise do that"
1025   // conditional paths which would obscure its flow. In fact, an early
1026   // version of this code did use a unified method which was harder to
1027   // follow and, as a result, it had subtle bugs that were hard to
1028   // track down. So keeping these two methods separate allows each to
1029   // be more readable. It will be good to keep these two in sync as
1030   // much as possible.
1031 
1032   assert_heap_not_locked_and_not_at_safepoint();
1033   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1034          "should only be called for humongous allocations");
1035 
1036   // Humongous objects can exhaust the heap quickly, so we should check if we
1037   // need to start a marking cycle at each humongous object allocation. We do
1038   // the check before we do the actual allocation. The reason for doing it
1039   // before the allocation is that we avoid having to keep track of the newly
1040   // allocated memory while we do a GC.
1041   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1042                                            word_size)) {
1043     collect(GCCause::_g1_humongous_allocation);
1044   }
1045 
1046   // We will loop until a) we manage to successfully perform the
1047   // allocation or b) we successfully schedule a collection which
1048   // fails to perform the allocation. b) is the only case when we'll
1049   // return NULL.
1050   HeapWord* result = NULL;
1051   for (int try_count = 1; /* we'll return */; try_count += 1) {
1052     bool should_try_gc;
1053     unsigned int gc_count_before;
1054 
1055     {
1056       MutexLockerEx x(Heap_lock);
1057 
1058       // Given that humongous objects are not allocated in young
1059       // regions, we'll first try to do the allocation without doing a
1060       // collection hoping that there's enough space in the heap.
1061       result = humongous_obj_allocate(word_size);
1062       if (result != NULL) {
1063         return result;
1064       }
1065 
1066       if (GC_locker::is_active_and_needs_gc()) {
1067         should_try_gc = false;
1068       } else {
1069          // The GCLocker may not be active but the GCLocker initiated
1070         // GC may not yet have been performed (GCLocker::needs_gc()
1071         // returns true). In this case we do not try this GC and
1072         // wait until the GCLocker initiated GC is performed, and
1073         // then retry the allocation.
1074         if (GC_locker::needs_gc()) {
1075           should_try_gc = false;
1076         } else {
1077           // Read the GC count while still holding the Heap_lock.
1078           gc_count_before = total_collections();
1079           should_try_gc = true;
1080         }
1081       }
1082     }
1083 
1084     if (should_try_gc) {
1085       // If we failed to allocate the humongous object, we should try to
1086       // do a collection pause (if we're allowed) in case it reclaims
1087       // enough space for the allocation to succeed after the pause.
1088 
1089       bool succeeded;
1090       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1091           GCCause::_g1_humongous_allocation);
1092       if (result != NULL) {
1093         assert(succeeded, "only way to get back a non-NULL result");
1094         return result;
1095       }
1096 
1097       if (succeeded) {
1098         // If we get here we successfully scheduled a collection which
1099         // failed to allocate. No point in trying to allocate
1100         // further. We'll just return NULL.
1101         MutexLockerEx x(Heap_lock);
1102         *gc_count_before_ret = total_collections();
1103         return NULL;
1104       }
1105     } else {
1106       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1107         MutexLockerEx x(Heap_lock);
1108         *gc_count_before_ret = total_collections();
1109         return NULL;
1110       }
1111       // The GCLocker is either active or the GCLocker initiated
1112       // GC has not yet been performed. Stall until it is and
1113       // then retry the allocation.
1114       GC_locker::stall_until_clear();
1115       (*gclocker_retry_count_ret) += 1;
1116     }
1117 
1118     // We can reach here if we were unsuccessful in scheduling a
1119     // collection (because another thread beat us to it) or if we were
1120     // stalled due to the GC locker. In either can we should retry the
1121     // allocation attempt in case another thread successfully
1122     // performed a collection and reclaimed enough space.  Give a
1123     // warning if we seem to be looping forever.
1124 
1125     if ((QueuedAllocationWarningCount > 0) &&
1126         (try_count % QueuedAllocationWarningCount == 0)) {
1127       warning("G1CollectedHeap::attempt_allocation_humongous() "
1128               "retries %d times", try_count);
1129     }
1130   }
1131 
1132   ShouldNotReachHere();
1133   return NULL;
1134 }
1135 
1136 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1137                                        bool expect_null_mutator_alloc_region) {
1138   assert_at_safepoint(true /* should_be_vm_thread */);
1139   assert(_mutator_alloc_region.get() == NULL ||
1140                                              !expect_null_mutator_alloc_region,
1141          "the current alloc region was unexpectedly found to be non-NULL");
1142 
1143   if (!isHumongous(word_size)) {
1144     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1145                                                       false /* bot_updates */);
1146   } else {
1147     HeapWord* result = humongous_obj_allocate(word_size);
1148     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1149       g1_policy()->set_initiate_conc_mark_if_possible();
1150     }
1151     return result;
1152   }
1153 
1154   ShouldNotReachHere();
1155 }
1156 
1157 class PostMCRemSetClearClosure: public HeapRegionClosure {
1158   G1CollectedHeap* _g1h;
1159   ModRefBarrierSet* _mr_bs;
1160 public:
1161   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1162     _g1h(g1h), _mr_bs(mr_bs) {}
1163 
1164   bool doHeapRegion(HeapRegion* r) {
1165     HeapRegionRemSet* hrrs = r->rem_set();
1166 
1167     if (r->continuesHumongous()) {
1168       // We'll assert that the strong code root list and RSet is empty
1169       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1170       assert(hrrs->occupied() == 0, "RSet should be empty");
1171       return false;
1172     }
1173 
1174     _g1h->reset_gc_time_stamps(r);
1175     hrrs->clear();
1176     // You might think here that we could clear just the cards
1177     // corresponding to the used region.  But no: if we leave a dirty card
1178     // in a region we might allocate into, then it would prevent that card
1179     // from being enqueued, and cause it to be missed.
1180     // Re: the performance cost: we shouldn't be doing full GC anyway!
1181     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1182 
1183     return false;
1184   }
1185 };
1186 
1187 void G1CollectedHeap::clear_rsets_post_compaction() {
1188   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1189   heap_region_iterate(&rs_clear);
1190 }
1191 
1192 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1193   G1CollectedHeap*   _g1h;
1194   UpdateRSOopClosure _cl;
1195   int                _worker_i;
1196 public:
1197   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1198     _cl(g1->g1_rem_set(), worker_i),
1199     _worker_i(worker_i),
1200     _g1h(g1)
1201   { }
1202 
1203   bool doHeapRegion(HeapRegion* r) {
1204     if (!r->continuesHumongous()) {
1205       _cl.set_from(r);
1206       r->oop_iterate(&_cl);
1207     }
1208     return false;
1209   }
1210 };
1211 
1212 class ParRebuildRSTask: public AbstractGangTask {
1213   G1CollectedHeap* _g1;
1214 public:
1215   ParRebuildRSTask(G1CollectedHeap* g1)
1216     : AbstractGangTask("ParRebuildRSTask"),
1217       _g1(g1)
1218   { }
1219 
1220   void work(uint worker_id) {
1221     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1222     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1223                                           _g1->workers()->active_workers(),
1224                                          HeapRegion::RebuildRSClaimValue);
1225   }
1226 };
1227 
1228 class PostCompactionPrinterClosure: public HeapRegionClosure {
1229 private:
1230   G1HRPrinter* _hr_printer;
1231 public:
1232   bool doHeapRegion(HeapRegion* hr) {
1233     assert(!hr->is_young(), "not expecting to find young regions");
1234     // We only generate output for non-empty regions.
1235     if (!hr->is_empty()) {
1236       if (!hr->isHumongous()) {
1237         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1238       } else if (hr->startsHumongous()) {
1239         if (hr->region_num() == 1) {
1240           // single humongous region
1241           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1242         } else {
1243           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1244         }
1245       } else {
1246         assert(hr->continuesHumongous(), "only way to get here");
1247         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1248       }
1249     }
1250     return false;
1251   }
1252 
1253   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1254     : _hr_printer(hr_printer) { }
1255 };
1256 
1257 void G1CollectedHeap::print_hrs_post_compaction() {
1258   PostCompactionPrinterClosure cl(hr_printer());
1259   heap_region_iterate(&cl);
1260 }
1261 
1262 bool G1CollectedHeap::do_collection(bool explicit_gc,
1263                                     bool clear_all_soft_refs,
1264                                     size_t word_size) {
1265   assert_at_safepoint(true /* should_be_vm_thread */);
1266 
1267   if (GC_locker::check_active_before_gc()) {
1268     return false;
1269   }
1270 
1271   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1272   gc_timer->register_gc_start();
1273 
1274   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1275   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1276 
1277   SvcGCMarker sgcm(SvcGCMarker::FULL);
1278   ResourceMark rm;
1279 
1280   print_heap_before_gc();
1281   trace_heap_before_gc(gc_tracer);
1282 
1283   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1284 
1285   verify_region_sets_optional();
1286 
1287   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1288                            collector_policy()->should_clear_all_soft_refs();
1289 
1290   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1291 
1292   {
1293     IsGCActiveMark x;
1294 
1295     // Timing
1296     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1297     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1298     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1299 
1300     {
1301       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1302       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1303       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1304 
1305       double start = os::elapsedTime();
1306       g1_policy()->record_full_collection_start();
1307 
1308       // Note: When we have a more flexible GC logging framework that
1309       // allows us to add optional attributes to a GC log record we
1310       // could consider timing and reporting how long we wait in the
1311       // following two methods.
1312       wait_while_free_regions_coming();
1313       // If we start the compaction before the CM threads finish
1314       // scanning the root regions we might trip them over as we'll
1315       // be moving objects / updating references. So let's wait until
1316       // they are done. By telling them to abort, they should complete
1317       // early.
1318       _cm->root_regions()->abort();
1319       _cm->root_regions()->wait_until_scan_finished();
1320       append_secondary_free_list_if_not_empty_with_lock();
1321 
1322       gc_prologue(true);
1323       increment_total_collections(true /* full gc */);
1324       increment_old_marking_cycles_started();
1325 
1326       assert(used() == recalculate_used(), "Should be equal");
1327 
1328       verify_before_gc();
1329 
1330       check_bitmaps("Full GC Start");
1331       pre_full_gc_dump(gc_timer);
1332 
1333       COMPILER2_PRESENT(DerivedPointerTable::clear());
1334 
1335       // Disable discovery and empty the discovered lists
1336       // for the CM ref processor.
1337       ref_processor_cm()->disable_discovery();
1338       ref_processor_cm()->abandon_partial_discovery();
1339       ref_processor_cm()->verify_no_references_recorded();
1340 
1341       // Abandon current iterations of concurrent marking and concurrent
1342       // refinement, if any are in progress. We have to do this before
1343       // wait_until_scan_finished() below.
1344       concurrent_mark()->abort();
1345 
1346       // Make sure we'll choose a new allocation region afterwards.
1347       release_mutator_alloc_region();
1348       abandon_gc_alloc_regions();
1349       g1_rem_set()->cleanupHRRS();
1350 
1351       // We should call this after we retire any currently active alloc
1352       // regions so that all the ALLOC / RETIRE events are generated
1353       // before the start GC event.
1354       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1355 
1356       // We may have added regions to the current incremental collection
1357       // set between the last GC or pause and now. We need to clear the
1358       // incremental collection set and then start rebuilding it afresh
1359       // after this full GC.
1360       abandon_collection_set(g1_policy()->inc_cset_head());
1361       g1_policy()->clear_incremental_cset();
1362       g1_policy()->stop_incremental_cset_building();
1363 
1364       tear_down_region_sets(false /* free_list_only */);
1365       g1_policy()->set_gcs_are_young(true);
1366 
1367       // See the comments in g1CollectedHeap.hpp and
1368       // G1CollectedHeap::ref_processing_init() about
1369       // how reference processing currently works in G1.
1370 
1371       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1372       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1373 
1374       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1375       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1376 
1377       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1378       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1379 
1380       // Do collection work
1381       {
1382         HandleMark hm;  // Discard invalid handles created during gc
1383         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1384       }
1385 
1386       assert(free_regions() == 0, "we should not have added any free regions");
1387       rebuild_region_sets(false /* free_list_only */);
1388 
1389       // Enqueue any discovered reference objects that have
1390       // not been removed from the discovered lists.
1391       ref_processor_stw()->enqueue_discovered_references();
1392 
1393       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1394 
1395       MemoryService::track_memory_usage();
1396 
1397       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1398       ref_processor_stw()->verify_no_references_recorded();
1399 
1400       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1401       ClassLoaderDataGraph::purge();
1402       MetaspaceAux::verify_metrics();
1403 
1404       // Note: since we've just done a full GC, concurrent
1405       // marking is no longer active. Therefore we need not
1406       // re-enable reference discovery for the CM ref processor.
1407       // That will be done at the start of the next marking cycle.
1408       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1409       ref_processor_cm()->verify_no_references_recorded();
1410 
1411       reset_gc_time_stamp();
1412       // Since everything potentially moved, we will clear all remembered
1413       // sets, and clear all cards.  Later we will rebuild remembered
1414       // sets. We will also reset the GC time stamps of the regions.
1415       clear_rsets_post_compaction();
1416       check_gc_time_stamps();
1417 
1418       // Resize the heap if necessary.
1419       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1420 
1421       if (_hr_printer.is_active()) {
1422         // We should do this after we potentially resize the heap so
1423         // that all the COMMIT / UNCOMMIT events are generated before
1424         // the end GC event.
1425 
1426         print_hrs_post_compaction();
1427         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1428       }
1429 
1430       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1431       if (hot_card_cache->use_cache()) {
1432         hot_card_cache->reset_card_counts();
1433         hot_card_cache->reset_hot_cache();
1434       }
1435 
1436       // Rebuild remembered sets of all regions.
1437       if (G1CollectedHeap::use_parallel_gc_threads()) {
1438         uint n_workers =
1439           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1440                                                   workers()->active_workers(),
1441                                                   Threads::number_of_non_daemon_threads());
1442         assert(UseDynamicNumberOfGCThreads ||
1443                n_workers == workers()->total_workers(),
1444                "If not dynamic should be using all the  workers");
1445         workers()->set_active_workers(n_workers);
1446         // Set parallel threads in the heap (_n_par_threads) only
1447         // before a parallel phase and always reset it to 0 after
1448         // the phase so that the number of parallel threads does
1449         // no get carried forward to a serial phase where there
1450         // may be code that is "possibly_parallel".
1451         set_par_threads(n_workers);
1452 
1453         ParRebuildRSTask rebuild_rs_task(this);
1454         assert(check_heap_region_claim_values(
1455                HeapRegion::InitialClaimValue), "sanity check");
1456         assert(UseDynamicNumberOfGCThreads ||
1457                workers()->active_workers() == workers()->total_workers(),
1458                "Unless dynamic should use total workers");
1459         // Use the most recent number of  active workers
1460         assert(workers()->active_workers() > 0,
1461                "Active workers not properly set");
1462         set_par_threads(workers()->active_workers());
1463         workers()->run_task(&rebuild_rs_task);
1464         set_par_threads(0);
1465         assert(check_heap_region_claim_values(
1466                HeapRegion::RebuildRSClaimValue), "sanity check");
1467         reset_heap_region_claim_values();
1468       } else {
1469         RebuildRSOutOfRegionClosure rebuild_rs(this);
1470         heap_region_iterate(&rebuild_rs);
1471       }
1472 
1473       // Rebuild the strong code root lists for each region
1474       rebuild_strong_code_roots();
1475 
1476       if (true) { // FIXME
1477         MetaspaceGC::compute_new_size();
1478       }
1479 
1480 #ifdef TRACESPINNING
1481       ParallelTaskTerminator::print_termination_counts();
1482 #endif
1483 
1484       // Discard all rset updates
1485       JavaThread::dirty_card_queue_set().abandon_logs();
1486       assert(!G1DeferredRSUpdate
1487              || (G1DeferredRSUpdate &&
1488                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1489 
1490       _young_list->reset_sampled_info();
1491       // At this point there should be no regions in the
1492       // entire heap tagged as young.
1493       assert(check_young_list_empty(true /* check_heap */),
1494              "young list should be empty at this point");
1495 
1496       // Update the number of full collections that have been completed.
1497       increment_old_marking_cycles_completed(false /* concurrent */);
1498 
1499       _hrs.verify_optional();
1500       verify_region_sets_optional();
1501 
1502       verify_after_gc();
1503 
1504       // Clear the previous marking bitmap, if needed for bitmap verification.
1505       // Note we cannot do this when we clear the next marking bitmap in
1506       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1507       // objects marked during a full GC against the previous bitmap.
1508       // But we need to clear it before calling check_bitmaps below since
1509       // the full GC has compacted objects and updated TAMS but not updated
1510       // the prev bitmap.
1511       if (G1VerifyBitmaps) {
1512         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1513       }
1514       check_bitmaps("Full GC End");
1515 
1516       // Start a new incremental collection set for the next pause
1517       assert(g1_policy()->collection_set() == NULL, "must be");
1518       g1_policy()->start_incremental_cset_building();
1519 
1520       clear_cset_fast_test();
1521 
1522       init_mutator_alloc_region();
1523 
1524       double end = os::elapsedTime();
1525       g1_policy()->record_full_collection_end();
1526 
1527       if (G1Log::fine()) {
1528         g1_policy()->print_heap_transition();
1529       }
1530 
1531       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1532       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1533       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1534       // before any GC notifications are raised.
1535       g1mm()->update_sizes();
1536 
1537       gc_epilogue(true);
1538     }
1539 
1540     if (G1Log::finer()) {
1541       g1_policy()->print_detailed_heap_transition(true /* full */);
1542     }
1543 
1544     print_heap_after_gc();
1545     trace_heap_after_gc(gc_tracer);
1546 
1547     post_full_gc_dump(gc_timer);
1548 
1549     gc_timer->register_gc_end();
1550     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1551   }
1552 
1553   return true;
1554 }
1555 
1556 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1557   // do_collection() will return whether it succeeded in performing
1558   // the GC. Currently, there is no facility on the
1559   // do_full_collection() API to notify the caller than the collection
1560   // did not succeed (e.g., because it was locked out by the GC
1561   // locker). So, right now, we'll ignore the return value.
1562   bool dummy = do_collection(true,                /* explicit_gc */
1563                              clear_all_soft_refs,
1564                              0                    /* word_size */);
1565 }
1566 
1567 // This code is mostly copied from TenuredGeneration.
1568 void
1569 G1CollectedHeap::
1570 resize_if_necessary_after_full_collection(size_t word_size) {
1571   // Include the current allocation, if any, and bytes that will be
1572   // pre-allocated to support collections, as "used".
1573   const size_t used_after_gc = used();
1574   const size_t capacity_after_gc = capacity();
1575   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1576 
1577   // This is enforced in arguments.cpp.
1578   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1579          "otherwise the code below doesn't make sense");
1580 
1581   // We don't have floating point command-line arguments
1582   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1583   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1584   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1585   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1586 
1587   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1588   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1589 
1590   // We have to be careful here as these two calculations can overflow
1591   // 32-bit size_t's.
1592   double used_after_gc_d = (double) used_after_gc;
1593   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1594   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1595 
1596   // Let's make sure that they are both under the max heap size, which
1597   // by default will make them fit into a size_t.
1598   double desired_capacity_upper_bound = (double) max_heap_size;
1599   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1600                                     desired_capacity_upper_bound);
1601   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1602                                     desired_capacity_upper_bound);
1603 
1604   // We can now safely turn them into size_t's.
1605   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1606   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1607 
1608   // This assert only makes sense here, before we adjust them
1609   // with respect to the min and max heap size.
1610   assert(minimum_desired_capacity <= maximum_desired_capacity,
1611          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1612                  "maximum_desired_capacity = "SIZE_FORMAT,
1613                  minimum_desired_capacity, maximum_desired_capacity));
1614 
1615   // Should not be greater than the heap max size. No need to adjust
1616   // it with respect to the heap min size as it's a lower bound (i.e.,
1617   // we'll try to make the capacity larger than it, not smaller).
1618   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1619   // Should not be less than the heap min size. No need to adjust it
1620   // with respect to the heap max size as it's an upper bound (i.e.,
1621   // we'll try to make the capacity smaller than it, not greater).
1622   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1623 
1624   if (capacity_after_gc < minimum_desired_capacity) {
1625     // Don't expand unless it's significant
1626     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1627     ergo_verbose4(ErgoHeapSizing,
1628                   "attempt heap expansion",
1629                   ergo_format_reason("capacity lower than "
1630                                      "min desired capacity after Full GC")
1631                   ergo_format_byte("capacity")
1632                   ergo_format_byte("occupancy")
1633                   ergo_format_byte_perc("min desired capacity"),
1634                   capacity_after_gc, used_after_gc,
1635                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1636     expand(expand_bytes);
1637 
1638     // No expansion, now see if we want to shrink
1639   } else if (capacity_after_gc > maximum_desired_capacity) {
1640     // Capacity too large, compute shrinking size
1641     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1642     ergo_verbose4(ErgoHeapSizing,
1643                   "attempt heap shrinking",
1644                   ergo_format_reason("capacity higher than "
1645                                      "max desired capacity after Full GC")
1646                   ergo_format_byte("capacity")
1647                   ergo_format_byte("occupancy")
1648                   ergo_format_byte_perc("max desired capacity"),
1649                   capacity_after_gc, used_after_gc,
1650                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1651     shrink(shrink_bytes);
1652   }
1653 }
1654 
1655 
1656 HeapWord*
1657 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1658                                            bool* succeeded) {
1659   assert_at_safepoint(true /* should_be_vm_thread */);
1660 
1661   *succeeded = true;
1662   // Let's attempt the allocation first.
1663   HeapWord* result =
1664     attempt_allocation_at_safepoint(word_size,
1665                                  false /* expect_null_mutator_alloc_region */);
1666   if (result != NULL) {
1667     assert(*succeeded, "sanity");
1668     return result;
1669   }
1670 
1671   // In a G1 heap, we're supposed to keep allocation from failing by
1672   // incremental pauses.  Therefore, at least for now, we'll favor
1673   // expansion over collection.  (This might change in the future if we can
1674   // do something smarter than full collection to satisfy a failed alloc.)
1675   result = expand_and_allocate(word_size);
1676   if (result != NULL) {
1677     assert(*succeeded, "sanity");
1678     return result;
1679   }
1680 
1681   // Expansion didn't work, we'll try to do a Full GC.
1682   bool gc_succeeded = do_collection(false, /* explicit_gc */
1683                                     false, /* clear_all_soft_refs */
1684                                     word_size);
1685   if (!gc_succeeded) {
1686     *succeeded = false;
1687     return NULL;
1688   }
1689 
1690   // Retry the allocation
1691   result = attempt_allocation_at_safepoint(word_size,
1692                                   true /* expect_null_mutator_alloc_region */);
1693   if (result != NULL) {
1694     assert(*succeeded, "sanity");
1695     return result;
1696   }
1697 
1698   // Then, try a Full GC that will collect all soft references.
1699   gc_succeeded = do_collection(false, /* explicit_gc */
1700                                true,  /* clear_all_soft_refs */
1701                                word_size);
1702   if (!gc_succeeded) {
1703     *succeeded = false;
1704     return NULL;
1705   }
1706 
1707   // Retry the allocation once more
1708   result = attempt_allocation_at_safepoint(word_size,
1709                                   true /* expect_null_mutator_alloc_region */);
1710   if (result != NULL) {
1711     assert(*succeeded, "sanity");
1712     return result;
1713   }
1714 
1715   assert(!collector_policy()->should_clear_all_soft_refs(),
1716          "Flag should have been handled and cleared prior to this point");
1717 
1718   // What else?  We might try synchronous finalization later.  If the total
1719   // space available is large enough for the allocation, then a more
1720   // complete compaction phase than we've tried so far might be
1721   // appropriate.
1722   assert(*succeeded, "sanity");
1723   return NULL;
1724 }
1725 
1726 // Attempting to expand the heap sufficiently
1727 // to support an allocation of the given "word_size".  If
1728 // successful, perform the allocation and return the address of the
1729 // allocated block, or else "NULL".
1730 
1731 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1732   assert_at_safepoint(true /* should_be_vm_thread */);
1733 
1734   verify_region_sets_optional();
1735 
1736   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1737   ergo_verbose1(ErgoHeapSizing,
1738                 "attempt heap expansion",
1739                 ergo_format_reason("allocation request failed")
1740                 ergo_format_byte("allocation request"),
1741                 word_size * HeapWordSize);
1742   if (expand(expand_bytes)) {
1743     _hrs.verify_optional();
1744     verify_region_sets_optional();
1745     return attempt_allocation_at_safepoint(word_size,
1746                                  false /* expect_null_mutator_alloc_region */);
1747   }
1748   return NULL;
1749 }
1750 
1751 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1752                                              HeapWord* new_end) {
1753   assert(old_end != new_end, "don't call this otherwise");
1754   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1755 
1756   // Update the committed mem region.
1757   _g1_committed.set_end(new_end);
1758   // Tell the card table about the update.
1759   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1760   // Tell the BOT about the update.
1761   _bot_shared->resize(_g1_committed.word_size());
1762   // Tell the hot card cache about the update
1763   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1764 }
1765 
1766 bool G1CollectedHeap::expand(size_t expand_bytes) {
1767   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1768   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1769                                        HeapRegion::GrainBytes);
1770   ergo_verbose2(ErgoHeapSizing,
1771                 "expand the heap",
1772                 ergo_format_byte("requested expansion amount")
1773                 ergo_format_byte("attempted expansion amount"),
1774                 expand_bytes, aligned_expand_bytes);
1775 
1776   if (_g1_storage.uncommitted_size() == 0) {
1777     ergo_verbose0(ErgoHeapSizing,
1778                       "did not expand the heap",
1779                       ergo_format_reason("heap already fully expanded"));
1780     return false;
1781   }
1782 
1783   // First commit the memory.
1784   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1785   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1786   if (successful) {
1787     // Then propagate this update to the necessary data structures.
1788     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1789     update_committed_space(old_end, new_end);
1790 
1791     FreeRegionList expansion_list("Local Expansion List");
1792     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1793     assert(mr.start() == old_end, "post-condition");
1794     // mr might be a smaller region than what was requested if
1795     // expand_by() was unable to allocate the HeapRegion instances
1796     assert(mr.end() <= new_end, "post-condition");
1797 
1798     size_t actual_expand_bytes = mr.byte_size();
1799     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1800     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1801            "post-condition");
1802     if (actual_expand_bytes < aligned_expand_bytes) {
1803       // We could not expand _hrs to the desired size. In this case we
1804       // need to shrink the committed space accordingly.
1805       assert(mr.end() < new_end, "invariant");
1806 
1807       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1808       // First uncommit the memory.
1809       _g1_storage.shrink_by(diff_bytes);
1810       // Then propagate this update to the necessary data structures.
1811       update_committed_space(new_end, mr.end());
1812     }
1813     _free_list.add_as_tail(&expansion_list);
1814 
1815     if (_hr_printer.is_active()) {
1816       HeapWord* curr = mr.start();
1817       while (curr < mr.end()) {
1818         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1819         _hr_printer.commit(curr, curr_end);
1820         curr = curr_end;
1821       }
1822       assert(curr == mr.end(), "post-condition");
1823     }
1824     g1_policy()->record_new_heap_size(n_regions());
1825   } else {
1826     ergo_verbose0(ErgoHeapSizing,
1827                   "did not expand the heap",
1828                   ergo_format_reason("heap expansion operation failed"));
1829     // The expansion of the virtual storage space was unsuccessful.
1830     // Let's see if it was because we ran out of swap.
1831     if (G1ExitOnExpansionFailure &&
1832         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1833       // We had head room...
1834       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1835     }
1836   }
1837   return successful;
1838 }
1839 
1840 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1841   size_t aligned_shrink_bytes =
1842     ReservedSpace::page_align_size_down(shrink_bytes);
1843   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1844                                          HeapRegion::GrainBytes);
1845   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1846 
1847   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1848   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1849   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1850 
1851   ergo_verbose3(ErgoHeapSizing,
1852                 "shrink the heap",
1853                 ergo_format_byte("requested shrinking amount")
1854                 ergo_format_byte("aligned shrinking amount")
1855                 ergo_format_byte("attempted shrinking amount"),
1856                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1857   if (num_regions_removed > 0) {
1858     _g1_storage.shrink_by(shrunk_bytes);
1859     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1860 
1861     if (_hr_printer.is_active()) {
1862       HeapWord* curr = old_end;
1863       while (curr > new_end) {
1864         HeapWord* curr_end = curr;
1865         curr -= HeapRegion::GrainWords;
1866         _hr_printer.uncommit(curr, curr_end);
1867       }
1868     }
1869 
1870     _expansion_regions += num_regions_removed;
1871     update_committed_space(old_end, new_end);
1872     HeapRegionRemSet::shrink_heap(n_regions());
1873     g1_policy()->record_new_heap_size(n_regions());
1874   } else {
1875     ergo_verbose0(ErgoHeapSizing,
1876                   "did not shrink the heap",
1877                   ergo_format_reason("heap shrinking operation failed"));
1878   }
1879 }
1880 
1881 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1882   verify_region_sets_optional();
1883 
1884   // We should only reach here at the end of a Full GC which means we
1885   // should not not be holding to any GC alloc regions. The method
1886   // below will make sure of that and do any remaining clean up.
1887   abandon_gc_alloc_regions();
1888 
1889   // Instead of tearing down / rebuilding the free lists here, we
1890   // could instead use the remove_all_pending() method on free_list to
1891   // remove only the ones that we need to remove.
1892   tear_down_region_sets(true /* free_list_only */);
1893   shrink_helper(shrink_bytes);
1894   rebuild_region_sets(true /* free_list_only */);
1895 
1896   _hrs.verify_optional();
1897   verify_region_sets_optional();
1898 }
1899 
1900 // Public methods.
1901 
1902 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1903 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1904 #endif // _MSC_VER
1905 
1906 
1907 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1908   SharedHeap(policy_),
1909   _g1_policy(policy_),
1910   _dirty_card_queue_set(false),
1911   _into_cset_dirty_card_queue_set(false),
1912   _is_alive_closure_cm(this),
1913   _is_alive_closure_stw(this),
1914   _ref_processor_cm(NULL),
1915   _ref_processor_stw(NULL),
1916   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1917   _bot_shared(NULL),
1918   _evac_failure_scan_stack(NULL),
1919   _mark_in_progress(false),
1920   _cg1r(NULL), _summary_bytes_used(0),
1921   _g1mm(NULL),
1922   _refine_cte_cl(NULL),
1923   _full_collection(false),
1924   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
1925   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1926   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1927   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1928   _free_regions_coming(false),
1929   _young_list(new YoungList(this)),
1930   _gc_time_stamp(0),
1931   _retained_old_gc_alloc_region(NULL),
1932   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1933   _old_plab_stats(OldPLABSize, PLABWeight),
1934   _expand_heap_after_alloc_failure(true),
1935   _surviving_young_words(NULL),
1936   _old_marking_cycles_started(0),
1937   _old_marking_cycles_completed(0),
1938   _concurrent_cycle_started(false),
1939   _in_cset_fast_test(),
1940   _dirty_cards_region_list(NULL),
1941   _worker_cset_start_region(NULL),
1942   _worker_cset_start_region_time_stamp(NULL),
1943   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1944   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1945   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1946   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1947 
1948   _g1h = this;
1949   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1950     vm_exit_during_initialization("Failed necessary allocation.");
1951   }
1952 
1953   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1954 
1955   int n_queues = MAX2((int)ParallelGCThreads, 1);
1956   _task_queues = new RefToScanQueueSet(n_queues);
1957 
1958   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1959   assert(n_rem_sets > 0, "Invariant.");
1960 
1961   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1962   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1963   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1964 
1965   for (int i = 0; i < n_queues; i++) {
1966     RefToScanQueue* q = new RefToScanQueue();
1967     q->initialize();
1968     _task_queues->register_queue(i, q);
1969     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1970   }
1971   clear_cset_start_regions();
1972 
1973   // Initialize the G1EvacuationFailureALot counters and flags.
1974   NOT_PRODUCT(reset_evacuation_should_fail();)
1975 
1976   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1977 }
1978 
1979 jint G1CollectedHeap::initialize() {
1980   CollectedHeap::pre_initialize();
1981   os::enable_vtime();
1982 
1983   G1Log::init();
1984 
1985   // Necessary to satisfy locking discipline assertions.
1986 
1987   MutexLocker x(Heap_lock);
1988 
1989   // We have to initialize the printer before committing the heap, as
1990   // it will be used then.
1991   _hr_printer.set_active(G1PrintHeapRegions);
1992 
1993   // While there are no constraints in the GC code that HeapWordSize
1994   // be any particular value, there are multiple other areas in the
1995   // system which believe this to be true (e.g. oop->object_size in some
1996   // cases incorrectly returns the size in wordSize units rather than
1997   // HeapWordSize).
1998   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1999 
2000   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2001   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2002   size_t heap_alignment = collector_policy()->heap_alignment();
2003 
2004   // Ensure that the sizes are properly aligned.
2005   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2006   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2007   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2008 
2009   _refine_cte_cl = new RefineCardTableEntryClosure();
2010 
2011   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2012 
2013   // Reserve the maximum.
2014 
2015   // When compressed oops are enabled, the preferred heap base
2016   // is calculated by subtracting the requested size from the
2017   // 32Gb boundary and using the result as the base address for
2018   // heap reservation. If the requested size is not aligned to
2019   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2020   // into the ReservedHeapSpace constructor) then the actual
2021   // base of the reserved heap may end up differing from the
2022   // address that was requested (i.e. the preferred heap base).
2023   // If this happens then we could end up using a non-optimal
2024   // compressed oops mode.
2025 
2026   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2027                                                  heap_alignment);
2028 
2029   // It is important to do this in a way such that concurrent readers can't
2030   // temporarily think something is in the heap.  (I've actually seen this
2031   // happen in asserts: DLD.)
2032   _reserved.set_word_size(0);
2033   _reserved.set_start((HeapWord*)heap_rs.base());
2034   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2035 
2036   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2037 
2038   // Create the gen rem set (and barrier set) for the entire reserved region.
2039   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2040   set_barrier_set(rem_set()->bs());
2041   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
2042     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2043     return JNI_ENOMEM;
2044   }
2045 
2046   // Also create a G1 rem set.
2047   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2048 
2049   // Carve out the G1 part of the heap.
2050 
2051   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2052   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2053                            g1_rs.size()/HeapWordSize);
2054 
2055   _g1_storage.initialize(g1_rs, 0);
2056   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2057   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2058                   (HeapWord*) _g1_reserved.end());
2059   assert(_hrs.max_length() == _expansion_regions,
2060          err_msg("max length: %u expansion regions: %u",
2061                  _hrs.max_length(), _expansion_regions));
2062 
2063   // Do later initialization work for concurrent refinement.
2064   _cg1r->init();
2065 
2066   // 6843694 - ensure that the maximum region index can fit
2067   // in the remembered set structures.
2068   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2069   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2070 
2071   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2072   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2073   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2074             "too many cards per region");
2075 
2076   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2077 
2078   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2079                                              heap_word_size(init_byte_size));
2080 
2081   _g1h = this;
2082 
2083   _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
2084 
2085   // Create the ConcurrentMark data structure and thread.
2086   // (Must do this late, so that "max_regions" is defined.)
2087   _cm = new ConcurrentMark(this, heap_rs);
2088   if (_cm == NULL || !_cm->completed_initialization()) {
2089     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2090     return JNI_ENOMEM;
2091   }
2092   _cmThread = _cm->cmThread();
2093 
2094   // Initialize the from_card cache structure of HeapRegionRemSet.
2095   HeapRegionRemSet::init_heap(max_regions());
2096 
2097   // Now expand into the initial heap size.
2098   if (!expand(init_byte_size)) {
2099     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2100     return JNI_ENOMEM;
2101   }
2102 
2103   // Perform any initialization actions delegated to the policy.
2104   g1_policy()->init();
2105 
2106   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2107                                                SATB_Q_FL_lock,
2108                                                G1SATBProcessCompletedThreshold,
2109                                                Shared_SATB_Q_lock);
2110 
2111   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2112                                                 DirtyCardQ_CBL_mon,
2113                                                 DirtyCardQ_FL_lock,
2114                                                 concurrent_g1_refine()->yellow_zone(),
2115                                                 concurrent_g1_refine()->red_zone(),
2116                                                 Shared_DirtyCardQ_lock);
2117 
2118   if (G1DeferredRSUpdate) {
2119     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2120                                       DirtyCardQ_CBL_mon,
2121                                       DirtyCardQ_FL_lock,
2122                                       -1, // never trigger processing
2123                                       -1, // no limit on length
2124                                       Shared_DirtyCardQ_lock,
2125                                       &JavaThread::dirty_card_queue_set());
2126   }
2127 
2128   // Initialize the card queue set used to hold cards containing
2129   // references into the collection set.
2130   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2131                                              DirtyCardQ_CBL_mon,
2132                                              DirtyCardQ_FL_lock,
2133                                              -1, // never trigger processing
2134                                              -1, // no limit on length
2135                                              Shared_DirtyCardQ_lock,
2136                                              &JavaThread::dirty_card_queue_set());
2137 
2138   // In case we're keeping closure specialization stats, initialize those
2139   // counts and that mechanism.
2140   SpecializationStats::clear();
2141 
2142   // Here we allocate the dummy full region that is required by the
2143   // G1AllocRegion class. If we don't pass an address in the reserved
2144   // space here, lots of asserts fire.
2145 
2146   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2147                                              _g1_reserved.start());
2148   // We'll re-use the same region whether the alloc region will
2149   // require BOT updates or not and, if it doesn't, then a non-young
2150   // region will complain that it cannot support allocations without
2151   // BOT updates. So we'll tag the dummy region as young to avoid that.
2152   dummy_region->set_young();
2153   // Make sure it's full.
2154   dummy_region->set_top(dummy_region->end());
2155   G1AllocRegion::setup(this, dummy_region);
2156 
2157   init_mutator_alloc_region();
2158 
2159   // Do create of the monitoring and management support so that
2160   // values in the heap have been properly initialized.
2161   _g1mm = new G1MonitoringSupport(this);
2162 
2163   G1StringDedup::initialize();
2164 
2165   return JNI_OK;
2166 }
2167 
2168 void G1CollectedHeap::stop() {
2169 #if 0
2170   // Stopping concurrent worker threads is currently disabled until
2171   // some bugs in concurrent mark has been resolve. Without fixing
2172   // those bugs first we risk haning during VM exit when trying to
2173   // stop these threads.
2174 
2175   // Abort any ongoing concurrent root region scanning and stop all
2176   // concurrent threads. We do this to make sure these threads do
2177   // not continue to execute and access resources (e.g. gclog_or_tty)
2178   // that are destroyed during shutdown.
2179   _cm->root_regions()->abort();
2180   _cm->root_regions()->wait_until_scan_finished();
2181   stop_conc_gc_threads();
2182 #endif
2183 }
2184 
2185 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2186   return HeapRegion::max_region_size();
2187 }
2188 
2189 void G1CollectedHeap::ref_processing_init() {
2190   // Reference processing in G1 currently works as follows:
2191   //
2192   // * There are two reference processor instances. One is
2193   //   used to record and process discovered references
2194   //   during concurrent marking; the other is used to
2195   //   record and process references during STW pauses
2196   //   (both full and incremental).
2197   // * Both ref processors need to 'span' the entire heap as
2198   //   the regions in the collection set may be dotted around.
2199   //
2200   // * For the concurrent marking ref processor:
2201   //   * Reference discovery is enabled at initial marking.
2202   //   * Reference discovery is disabled and the discovered
2203   //     references processed etc during remarking.
2204   //   * Reference discovery is MT (see below).
2205   //   * Reference discovery requires a barrier (see below).
2206   //   * Reference processing may or may not be MT
2207   //     (depending on the value of ParallelRefProcEnabled
2208   //     and ParallelGCThreads).
2209   //   * A full GC disables reference discovery by the CM
2210   //     ref processor and abandons any entries on it's
2211   //     discovered lists.
2212   //
2213   // * For the STW processor:
2214   //   * Non MT discovery is enabled at the start of a full GC.
2215   //   * Processing and enqueueing during a full GC is non-MT.
2216   //   * During a full GC, references are processed after marking.
2217   //
2218   //   * Discovery (may or may not be MT) is enabled at the start
2219   //     of an incremental evacuation pause.
2220   //   * References are processed near the end of a STW evacuation pause.
2221   //   * For both types of GC:
2222   //     * Discovery is atomic - i.e. not concurrent.
2223   //     * Reference discovery will not need a barrier.
2224 
2225   SharedHeap::ref_processing_init();
2226   MemRegion mr = reserved_region();
2227 
2228   // Concurrent Mark ref processor
2229   _ref_processor_cm =
2230     new ReferenceProcessor(mr,    // span
2231                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2232                                 // mt processing
2233                            (int) ParallelGCThreads,
2234                                 // degree of mt processing
2235                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2236                                 // mt discovery
2237                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2238                                 // degree of mt discovery
2239                            false,
2240                                 // Reference discovery is not atomic
2241                            &_is_alive_closure_cm,
2242                                 // is alive closure
2243                                 // (for efficiency/performance)
2244                            true);
2245                                 // Setting next fields of discovered
2246                                 // lists requires a barrier.
2247 
2248   // STW ref processor
2249   _ref_processor_stw =
2250     new ReferenceProcessor(mr,    // span
2251                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2252                                 // mt processing
2253                            MAX2((int)ParallelGCThreads, 1),
2254                                 // degree of mt processing
2255                            (ParallelGCThreads > 1),
2256                                 // mt discovery
2257                            MAX2((int)ParallelGCThreads, 1),
2258                                 // degree of mt discovery
2259                            true,
2260                                 // Reference discovery is atomic
2261                            &_is_alive_closure_stw,
2262                                 // is alive closure
2263                                 // (for efficiency/performance)
2264                            false);
2265                                 // Setting next fields of discovered
2266                                 // lists does not require a barrier.
2267 }
2268 
2269 size_t G1CollectedHeap::capacity() const {
2270   return _g1_committed.byte_size();
2271 }
2272 
2273 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2274   assert(!hr->continuesHumongous(), "pre-condition");
2275   hr->reset_gc_time_stamp();
2276   if (hr->startsHumongous()) {
2277     uint first_index = hr->hrs_index() + 1;
2278     uint last_index = hr->last_hc_index();
2279     for (uint i = first_index; i < last_index; i += 1) {
2280       HeapRegion* chr = region_at(i);
2281       assert(chr->continuesHumongous(), "sanity");
2282       chr->reset_gc_time_stamp();
2283     }
2284   }
2285 }
2286 
2287 #ifndef PRODUCT
2288 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2289 private:
2290   unsigned _gc_time_stamp;
2291   bool _failures;
2292 
2293 public:
2294   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2295     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2296 
2297   virtual bool doHeapRegion(HeapRegion* hr) {
2298     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2299     if (_gc_time_stamp != region_gc_time_stamp) {
2300       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2301                              "expected %d", HR_FORMAT_PARAMS(hr),
2302                              region_gc_time_stamp, _gc_time_stamp);
2303       _failures = true;
2304     }
2305     return false;
2306   }
2307 
2308   bool failures() { return _failures; }
2309 };
2310 
2311 void G1CollectedHeap::check_gc_time_stamps() {
2312   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2313   heap_region_iterate(&cl);
2314   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2315 }
2316 #endif // PRODUCT
2317 
2318 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2319                                                  DirtyCardQueue* into_cset_dcq,
2320                                                  bool concurrent,
2321                                                  uint worker_i) {
2322   // Clean cards in the hot card cache
2323   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2324   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2325 
2326   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2327   int n_completed_buffers = 0;
2328   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2329     n_completed_buffers++;
2330   }
2331   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2332   dcqs.clear_n_completed_buffers();
2333   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2334 }
2335 
2336 
2337 // Computes the sum of the storage used by the various regions.
2338 
2339 size_t G1CollectedHeap::used() const {
2340   assert(Heap_lock->owner() != NULL,
2341          "Should be owned on this thread's behalf.");
2342   size_t result = _summary_bytes_used;
2343   // Read only once in case it is set to NULL concurrently
2344   HeapRegion* hr = _mutator_alloc_region.get();
2345   if (hr != NULL)
2346     result += hr->used();
2347   return result;
2348 }
2349 
2350 size_t G1CollectedHeap::used_unlocked() const {
2351   size_t result = _summary_bytes_used;
2352   return result;
2353 }
2354 
2355 class SumUsedClosure: public HeapRegionClosure {
2356   size_t _used;
2357 public:
2358   SumUsedClosure() : _used(0) {}
2359   bool doHeapRegion(HeapRegion* r) {
2360     if (!r->continuesHumongous()) {
2361       _used += r->used();
2362     }
2363     return false;
2364   }
2365   size_t result() { return _used; }
2366 };
2367 
2368 size_t G1CollectedHeap::recalculate_used() const {
2369   double recalculate_used_start = os::elapsedTime();
2370 
2371   SumUsedClosure blk;
2372   heap_region_iterate(&blk);
2373 
2374   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2375   return blk.result();
2376 }
2377 
2378 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2379   switch (cause) {
2380     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2381     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2382     case GCCause::_g1_humongous_allocation: return true;
2383     default:                                return false;
2384   }
2385 }
2386 
2387 #ifndef PRODUCT
2388 void G1CollectedHeap::allocate_dummy_regions() {
2389   // Let's fill up most of the region
2390   size_t word_size = HeapRegion::GrainWords - 1024;
2391   // And as a result the region we'll allocate will be humongous.
2392   guarantee(isHumongous(word_size), "sanity");
2393 
2394   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2395     // Let's use the existing mechanism for the allocation
2396     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2397     if (dummy_obj != NULL) {
2398       MemRegion mr(dummy_obj, word_size);
2399       CollectedHeap::fill_with_object(mr);
2400     } else {
2401       // If we can't allocate once, we probably cannot allocate
2402       // again. Let's get out of the loop.
2403       break;
2404     }
2405   }
2406 }
2407 #endif // !PRODUCT
2408 
2409 void G1CollectedHeap::increment_old_marking_cycles_started() {
2410   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2411     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2412     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2413     _old_marking_cycles_started, _old_marking_cycles_completed));
2414 
2415   _old_marking_cycles_started++;
2416 }
2417 
2418 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2419   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2420 
2421   // We assume that if concurrent == true, then the caller is a
2422   // concurrent thread that was joined the Suspendible Thread
2423   // Set. If there's ever a cheap way to check this, we should add an
2424   // assert here.
2425 
2426   // Given that this method is called at the end of a Full GC or of a
2427   // concurrent cycle, and those can be nested (i.e., a Full GC can
2428   // interrupt a concurrent cycle), the number of full collections
2429   // completed should be either one (in the case where there was no
2430   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2431   // behind the number of full collections started.
2432 
2433   // This is the case for the inner caller, i.e. a Full GC.
2434   assert(concurrent ||
2435          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2436          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2437          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2438                  "is inconsistent with _old_marking_cycles_completed = %u",
2439                  _old_marking_cycles_started, _old_marking_cycles_completed));
2440 
2441   // This is the case for the outer caller, i.e. the concurrent cycle.
2442   assert(!concurrent ||
2443          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2444          err_msg("for outer caller (concurrent cycle): "
2445                  "_old_marking_cycles_started = %u "
2446                  "is inconsistent with _old_marking_cycles_completed = %u",
2447                  _old_marking_cycles_started, _old_marking_cycles_completed));
2448 
2449   _old_marking_cycles_completed += 1;
2450 
2451   // We need to clear the "in_progress" flag in the CM thread before
2452   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2453   // is set) so that if a waiter requests another System.gc() it doesn't
2454   // incorrectly see that a marking cycle is still in progress.
2455   if (concurrent) {
2456     _cmThread->clear_in_progress();
2457   }
2458 
2459   // This notify_all() will ensure that a thread that called
2460   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2461   // and it's waiting for a full GC to finish will be woken up. It is
2462   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2463   FullGCCount_lock->notify_all();
2464 }
2465 
2466 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2467   _concurrent_cycle_started = true;
2468   _gc_timer_cm->register_gc_start(start_time);
2469 
2470   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2471   trace_heap_before_gc(_gc_tracer_cm);
2472 }
2473 
2474 void G1CollectedHeap::register_concurrent_cycle_end() {
2475   if (_concurrent_cycle_started) {
2476     if (_cm->has_aborted()) {
2477       _gc_tracer_cm->report_concurrent_mode_failure();
2478     }
2479 
2480     _gc_timer_cm->register_gc_end();
2481     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2482 
2483     _concurrent_cycle_started = false;
2484   }
2485 }
2486 
2487 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2488   if (_concurrent_cycle_started) {
2489     trace_heap_after_gc(_gc_tracer_cm);
2490   }
2491 }
2492 
2493 G1YCType G1CollectedHeap::yc_type() {
2494   bool is_young = g1_policy()->gcs_are_young();
2495   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2496   bool is_during_mark = mark_in_progress();
2497 
2498   if (is_initial_mark) {
2499     return InitialMark;
2500   } else if (is_during_mark) {
2501     return DuringMark;
2502   } else if (is_young) {
2503     return Normal;
2504   } else {
2505     return Mixed;
2506   }
2507 }
2508 
2509 void G1CollectedHeap::collect(GCCause::Cause cause) {
2510   assert_heap_not_locked();
2511 
2512   unsigned int gc_count_before;
2513   unsigned int old_marking_count_before;
2514   bool retry_gc;
2515 
2516   do {
2517     retry_gc = false;
2518 
2519     {
2520       MutexLocker ml(Heap_lock);
2521 
2522       // Read the GC count while holding the Heap_lock
2523       gc_count_before = total_collections();
2524       old_marking_count_before = _old_marking_cycles_started;
2525     }
2526 
2527     if (should_do_concurrent_full_gc(cause)) {
2528       // Schedule an initial-mark evacuation pause that will start a
2529       // concurrent cycle. We're setting word_size to 0 which means that
2530       // we are not requesting a post-GC allocation.
2531       VM_G1IncCollectionPause op(gc_count_before,
2532                                  0,     /* word_size */
2533                                  true,  /* should_initiate_conc_mark */
2534                                  g1_policy()->max_pause_time_ms(),
2535                                  cause);
2536 
2537       VMThread::execute(&op);
2538       if (!op.pause_succeeded()) {
2539         if (old_marking_count_before == _old_marking_cycles_started) {
2540           retry_gc = op.should_retry_gc();
2541         } else {
2542           // A Full GC happened while we were trying to schedule the
2543           // initial-mark GC. No point in starting a new cycle given
2544           // that the whole heap was collected anyway.
2545         }
2546 
2547         if (retry_gc) {
2548           if (GC_locker::is_active_and_needs_gc()) {
2549             GC_locker::stall_until_clear();
2550           }
2551         }
2552       }
2553     } else {
2554       if (cause == GCCause::_gc_locker
2555           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2556 
2557         // Schedule a standard evacuation pause. We're setting word_size
2558         // to 0 which means that we are not requesting a post-GC allocation.
2559         VM_G1IncCollectionPause op(gc_count_before,
2560                                    0,     /* word_size */
2561                                    false, /* should_initiate_conc_mark */
2562                                    g1_policy()->max_pause_time_ms(),
2563                                    cause);
2564         VMThread::execute(&op);
2565       } else {
2566         // Schedule a Full GC.
2567         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2568         VMThread::execute(&op);
2569       }
2570     }
2571   } while (retry_gc);
2572 }
2573 
2574 bool G1CollectedHeap::is_in(const void* p) const {
2575   if (_g1_committed.contains(p)) {
2576     // Given that we know that p is in the committed space,
2577     // heap_region_containing_raw() should successfully
2578     // return the containing region.
2579     HeapRegion* hr = heap_region_containing_raw(p);
2580     return hr->is_in(p);
2581   } else {
2582     return false;
2583   }
2584 }
2585 
2586 // Iteration functions.
2587 
2588 // Iterates an OopClosure over all ref-containing fields of objects
2589 // within a HeapRegion.
2590 
2591 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2592   MemRegion _mr;
2593   ExtendedOopClosure* _cl;
2594 public:
2595   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2596     : _mr(mr), _cl(cl) {}
2597   bool doHeapRegion(HeapRegion* r) {
2598     if (!r->continuesHumongous()) {
2599       r->oop_iterate(_cl);
2600     }
2601     return false;
2602   }
2603 };
2604 
2605 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2606   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2607   heap_region_iterate(&blk);
2608 }
2609 
2610 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2611   IterateOopClosureRegionClosure blk(mr, cl);
2612   heap_region_iterate(&blk);
2613 }
2614 
2615 // Iterates an ObjectClosure over all objects within a HeapRegion.
2616 
2617 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2618   ObjectClosure* _cl;
2619 public:
2620   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2621   bool doHeapRegion(HeapRegion* r) {
2622     if (! r->continuesHumongous()) {
2623       r->object_iterate(_cl);
2624     }
2625     return false;
2626   }
2627 };
2628 
2629 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2630   IterateObjectClosureRegionClosure blk(cl);
2631   heap_region_iterate(&blk);
2632 }
2633 
2634 // Calls a SpaceClosure on a HeapRegion.
2635 
2636 class SpaceClosureRegionClosure: public HeapRegionClosure {
2637   SpaceClosure* _cl;
2638 public:
2639   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2640   bool doHeapRegion(HeapRegion* r) {
2641     _cl->do_space(r);
2642     return false;
2643   }
2644 };
2645 
2646 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2647   SpaceClosureRegionClosure blk(cl);
2648   heap_region_iterate(&blk);
2649 }
2650 
2651 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2652   _hrs.iterate(cl);
2653 }
2654 
2655 void
2656 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2657                                                  uint worker_id,
2658                                                  uint no_of_par_workers,
2659                                                  jint claim_value) {
2660   const uint regions = n_regions();
2661   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2662                              no_of_par_workers :
2663                              1);
2664   assert(UseDynamicNumberOfGCThreads ||
2665          no_of_par_workers == workers()->total_workers(),
2666          "Non dynamic should use fixed number of workers");
2667   // try to spread out the starting points of the workers
2668   const HeapRegion* start_hr =
2669                         start_region_for_worker(worker_id, no_of_par_workers);
2670   const uint start_index = start_hr->hrs_index();
2671 
2672   // each worker will actually look at all regions
2673   for (uint count = 0; count < regions; ++count) {
2674     const uint index = (start_index + count) % regions;
2675     assert(0 <= index && index < regions, "sanity");
2676     HeapRegion* r = region_at(index);
2677     // we'll ignore "continues humongous" regions (we'll process them
2678     // when we come across their corresponding "start humongous"
2679     // region) and regions already claimed
2680     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2681       continue;
2682     }
2683     // OK, try to claim it
2684     if (r->claimHeapRegion(claim_value)) {
2685       // success!
2686       assert(!r->continuesHumongous(), "sanity");
2687       if (r->startsHumongous()) {
2688         // If the region is "starts humongous" we'll iterate over its
2689         // "continues humongous" first; in fact we'll do them
2690         // first. The order is important. In on case, calling the
2691         // closure on the "starts humongous" region might de-allocate
2692         // and clear all its "continues humongous" regions and, as a
2693         // result, we might end up processing them twice. So, we'll do
2694         // them first (notice: most closures will ignore them anyway) and
2695         // then we'll do the "starts humongous" region.
2696         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2697           HeapRegion* chr = region_at(ch_index);
2698 
2699           // if the region has already been claimed or it's not
2700           // "continues humongous" we're done
2701           if (chr->claim_value() == claim_value ||
2702               !chr->continuesHumongous()) {
2703             break;
2704           }
2705 
2706           // No one should have claimed it directly. We can given
2707           // that we claimed its "starts humongous" region.
2708           assert(chr->claim_value() != claim_value, "sanity");
2709           assert(chr->humongous_start_region() == r, "sanity");
2710 
2711           if (chr->claimHeapRegion(claim_value)) {
2712             // we should always be able to claim it; no one else should
2713             // be trying to claim this region
2714 
2715             bool res2 = cl->doHeapRegion(chr);
2716             assert(!res2, "Should not abort");
2717 
2718             // Right now, this holds (i.e., no closure that actually
2719             // does something with "continues humongous" regions
2720             // clears them). We might have to weaken it in the future,
2721             // but let's leave these two asserts here for extra safety.
2722             assert(chr->continuesHumongous(), "should still be the case");
2723             assert(chr->humongous_start_region() == r, "sanity");
2724           } else {
2725             guarantee(false, "we should not reach here");
2726           }
2727         }
2728       }
2729 
2730       assert(!r->continuesHumongous(), "sanity");
2731       bool res = cl->doHeapRegion(r);
2732       assert(!res, "Should not abort");
2733     }
2734   }
2735 }
2736 
2737 class ResetClaimValuesClosure: public HeapRegionClosure {
2738 public:
2739   bool doHeapRegion(HeapRegion* r) {
2740     r->set_claim_value(HeapRegion::InitialClaimValue);
2741     return false;
2742   }
2743 };
2744 
2745 void G1CollectedHeap::reset_heap_region_claim_values() {
2746   ResetClaimValuesClosure blk;
2747   heap_region_iterate(&blk);
2748 }
2749 
2750 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2751   ResetClaimValuesClosure blk;
2752   collection_set_iterate(&blk);
2753 }
2754 
2755 #ifdef ASSERT
2756 // This checks whether all regions in the heap have the correct claim
2757 // value. I also piggy-backed on this a check to ensure that the
2758 // humongous_start_region() information on "continues humongous"
2759 // regions is correct.
2760 
2761 class CheckClaimValuesClosure : public HeapRegionClosure {
2762 private:
2763   jint _claim_value;
2764   uint _failures;
2765   HeapRegion* _sh_region;
2766 
2767 public:
2768   CheckClaimValuesClosure(jint claim_value) :
2769     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2770   bool doHeapRegion(HeapRegion* r) {
2771     if (r->claim_value() != _claim_value) {
2772       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2773                              "claim value = %d, should be %d",
2774                              HR_FORMAT_PARAMS(r),
2775                              r->claim_value(), _claim_value);
2776       ++_failures;
2777     }
2778     if (!r->isHumongous()) {
2779       _sh_region = NULL;
2780     } else if (r->startsHumongous()) {
2781       _sh_region = r;
2782     } else if (r->continuesHumongous()) {
2783       if (r->humongous_start_region() != _sh_region) {
2784         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2785                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2786                                HR_FORMAT_PARAMS(r),
2787                                r->humongous_start_region(),
2788                                _sh_region);
2789         ++_failures;
2790       }
2791     }
2792     return false;
2793   }
2794   uint failures() { return _failures; }
2795 };
2796 
2797 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2798   CheckClaimValuesClosure cl(claim_value);
2799   heap_region_iterate(&cl);
2800   return cl.failures() == 0;
2801 }
2802 
2803 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2804 private:
2805   jint _claim_value;
2806   uint _failures;
2807 
2808 public:
2809   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2810     _claim_value(claim_value), _failures(0) { }
2811 
2812   uint failures() { return _failures; }
2813 
2814   bool doHeapRegion(HeapRegion* hr) {
2815     assert(hr->in_collection_set(), "how?");
2816     assert(!hr->isHumongous(), "H-region in CSet");
2817     if (hr->claim_value() != _claim_value) {
2818       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2819                              "claim value = %d, should be %d",
2820                              HR_FORMAT_PARAMS(hr),
2821                              hr->claim_value(), _claim_value);
2822       _failures += 1;
2823     }
2824     return false;
2825   }
2826 };
2827 
2828 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2829   CheckClaimValuesInCSetHRClosure cl(claim_value);
2830   collection_set_iterate(&cl);
2831   return cl.failures() == 0;
2832 }
2833 #endif // ASSERT
2834 
2835 // Clear the cached CSet starting regions and (more importantly)
2836 // the time stamps. Called when we reset the GC time stamp.
2837 void G1CollectedHeap::clear_cset_start_regions() {
2838   assert(_worker_cset_start_region != NULL, "sanity");
2839   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2840 
2841   int n_queues = MAX2((int)ParallelGCThreads, 1);
2842   for (int i = 0; i < n_queues; i++) {
2843     _worker_cset_start_region[i] = NULL;
2844     _worker_cset_start_region_time_stamp[i] = 0;
2845   }
2846 }
2847 
2848 // Given the id of a worker, obtain or calculate a suitable
2849 // starting region for iterating over the current collection set.
2850 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2851   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2852 
2853   HeapRegion* result = NULL;
2854   unsigned gc_time_stamp = get_gc_time_stamp();
2855 
2856   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2857     // Cached starting region for current worker was set
2858     // during the current pause - so it's valid.
2859     // Note: the cached starting heap region may be NULL
2860     // (when the collection set is empty).
2861     result = _worker_cset_start_region[worker_i];
2862     assert(result == NULL || result->in_collection_set(), "sanity");
2863     return result;
2864   }
2865 
2866   // The cached entry was not valid so let's calculate
2867   // a suitable starting heap region for this worker.
2868 
2869   // We want the parallel threads to start their collection
2870   // set iteration at different collection set regions to
2871   // avoid contention.
2872   // If we have:
2873   //          n collection set regions
2874   //          p threads
2875   // Then thread t will start at region floor ((t * n) / p)
2876 
2877   result = g1_policy()->collection_set();
2878   if (G1CollectedHeap::use_parallel_gc_threads()) {
2879     uint cs_size = g1_policy()->cset_region_length();
2880     uint active_workers = workers()->active_workers();
2881     assert(UseDynamicNumberOfGCThreads ||
2882              active_workers == workers()->total_workers(),
2883              "Unless dynamic should use total workers");
2884 
2885     uint end_ind   = (cs_size * worker_i) / active_workers;
2886     uint start_ind = 0;
2887 
2888     if (worker_i > 0 &&
2889         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2890       // Previous workers starting region is valid
2891       // so let's iterate from there
2892       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2893       result = _worker_cset_start_region[worker_i - 1];
2894     }
2895 
2896     for (uint i = start_ind; i < end_ind; i++) {
2897       result = result->next_in_collection_set();
2898     }
2899   }
2900 
2901   // Note: the calculated starting heap region may be NULL
2902   // (when the collection set is empty).
2903   assert(result == NULL || result->in_collection_set(), "sanity");
2904   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2905          "should be updated only once per pause");
2906   _worker_cset_start_region[worker_i] = result;
2907   OrderAccess::storestore();
2908   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2909   return result;
2910 }
2911 
2912 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2913                                                      uint no_of_par_workers) {
2914   uint worker_num =
2915            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2916   assert(UseDynamicNumberOfGCThreads ||
2917          no_of_par_workers == workers()->total_workers(),
2918          "Non dynamic should use fixed number of workers");
2919   const uint start_index = n_regions() * worker_i / worker_num;
2920   return region_at(start_index);
2921 }
2922 
2923 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2924   HeapRegion* r = g1_policy()->collection_set();
2925   while (r != NULL) {
2926     HeapRegion* next = r->next_in_collection_set();
2927     if (cl->doHeapRegion(r)) {
2928       cl->incomplete();
2929       return;
2930     }
2931     r = next;
2932   }
2933 }
2934 
2935 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2936                                                   HeapRegionClosure *cl) {
2937   if (r == NULL) {
2938     // The CSet is empty so there's nothing to do.
2939     return;
2940   }
2941 
2942   assert(r->in_collection_set(),
2943          "Start region must be a member of the collection set.");
2944   HeapRegion* cur = r;
2945   while (cur != NULL) {
2946     HeapRegion* next = cur->next_in_collection_set();
2947     if (cl->doHeapRegion(cur) && false) {
2948       cl->incomplete();
2949       return;
2950     }
2951     cur = next;
2952   }
2953   cur = g1_policy()->collection_set();
2954   while (cur != r) {
2955     HeapRegion* next = cur->next_in_collection_set();
2956     if (cl->doHeapRegion(cur) && false) {
2957       cl->incomplete();
2958       return;
2959     }
2960     cur = next;
2961   }
2962 }
2963 
2964 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2965   return n_regions() > 0 ? region_at(0) : NULL;
2966 }
2967 
2968 
2969 Space* G1CollectedHeap::space_containing(const void* addr) const {
2970   return heap_region_containing(addr);
2971 }
2972 
2973 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2974   Space* sp = space_containing(addr);
2975   return sp->block_start(addr);
2976 }
2977 
2978 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2979   Space* sp = space_containing(addr);
2980   return sp->block_size(addr);
2981 }
2982 
2983 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2984   Space* sp = space_containing(addr);
2985   return sp->block_is_obj(addr);
2986 }
2987 
2988 bool G1CollectedHeap::supports_tlab_allocation() const {
2989   return true;
2990 }
2991 
2992 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2993   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2994 }
2995 
2996 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2997   return young_list()->eden_used_bytes();
2998 }
2999 
3000 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
3001 // must be smaller than the humongous object limit.
3002 size_t G1CollectedHeap::max_tlab_size() const {
3003   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
3004 }
3005 
3006 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3007   // Return the remaining space in the cur alloc region, but not less than
3008   // the min TLAB size.
3009 
3010   // Also, this value can be at most the humongous object threshold,
3011   // since we can't allow tlabs to grow big enough to accommodate
3012   // humongous objects.
3013 
3014   HeapRegion* hr = _mutator_alloc_region.get();
3015   size_t max_tlab = max_tlab_size() * wordSize;
3016   if (hr == NULL) {
3017     return max_tlab;
3018   } else {
3019     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3020   }
3021 }
3022 
3023 size_t G1CollectedHeap::max_capacity() const {
3024   return _g1_reserved.byte_size();
3025 }
3026 
3027 jlong G1CollectedHeap::millis_since_last_gc() {
3028   // assert(false, "NYI");
3029   return 0;
3030 }
3031 
3032 void G1CollectedHeap::prepare_for_verify() {
3033   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3034     ensure_parsability(false);
3035   }
3036   g1_rem_set()->prepare_for_verify();
3037 }
3038 
3039 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3040                                               VerifyOption vo) {
3041   switch (vo) {
3042   case VerifyOption_G1UsePrevMarking:
3043     return hr->obj_allocated_since_prev_marking(obj);
3044   case VerifyOption_G1UseNextMarking:
3045     return hr->obj_allocated_since_next_marking(obj);
3046   case VerifyOption_G1UseMarkWord:
3047     return false;
3048   default:
3049     ShouldNotReachHere();
3050   }
3051   return false; // keep some compilers happy
3052 }
3053 
3054 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3055   switch (vo) {
3056   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3057   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3058   case VerifyOption_G1UseMarkWord:    return NULL;
3059   default:                            ShouldNotReachHere();
3060   }
3061   return NULL; // keep some compilers happy
3062 }
3063 
3064 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3065   switch (vo) {
3066   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3067   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3068   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3069   default:                            ShouldNotReachHere();
3070   }
3071   return false; // keep some compilers happy
3072 }
3073 
3074 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3075   switch (vo) {
3076   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3077   case VerifyOption_G1UseNextMarking: return "NTAMS";
3078   case VerifyOption_G1UseMarkWord:    return "NONE";
3079   default:                            ShouldNotReachHere();
3080   }
3081   return NULL; // keep some compilers happy
3082 }
3083 
3084 class VerifyRootsClosure: public OopClosure {
3085 private:
3086   G1CollectedHeap* _g1h;
3087   VerifyOption     _vo;
3088   bool             _failures;
3089 public:
3090   // _vo == UsePrevMarking -> use "prev" marking information,
3091   // _vo == UseNextMarking -> use "next" marking information,
3092   // _vo == UseMarkWord    -> use mark word from object header.
3093   VerifyRootsClosure(VerifyOption vo) :
3094     _g1h(G1CollectedHeap::heap()),
3095     _vo(vo),
3096     _failures(false) { }
3097 
3098   bool failures() { return _failures; }
3099 
3100   template <class T> void do_oop_nv(T* p) {
3101     T heap_oop = oopDesc::load_heap_oop(p);
3102     if (!oopDesc::is_null(heap_oop)) {
3103       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3104       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3105         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3106                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3107         if (_vo == VerifyOption_G1UseMarkWord) {
3108           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3109         }
3110         obj->print_on(gclog_or_tty);
3111         _failures = true;
3112       }
3113     }
3114   }
3115 
3116   void do_oop(oop* p)       { do_oop_nv(p); }
3117   void do_oop(narrowOop* p) { do_oop_nv(p); }
3118 };
3119 
3120 class G1VerifyCodeRootOopClosure: public OopClosure {
3121   G1CollectedHeap* _g1h;
3122   OopClosure* _root_cl;
3123   nmethod* _nm;
3124   VerifyOption _vo;
3125   bool _failures;
3126 
3127   template <class T> void do_oop_work(T* p) {
3128     // First verify that this root is live
3129     _root_cl->do_oop(p);
3130 
3131     if (!G1VerifyHeapRegionCodeRoots) {
3132       // We're not verifying the code roots attached to heap region.
3133       return;
3134     }
3135 
3136     // Don't check the code roots during marking verification in a full GC
3137     if (_vo == VerifyOption_G1UseMarkWord) {
3138       return;
3139     }
3140 
3141     // Now verify that the current nmethod (which contains p) is
3142     // in the code root list of the heap region containing the
3143     // object referenced by p.
3144 
3145     T heap_oop = oopDesc::load_heap_oop(p);
3146     if (!oopDesc::is_null(heap_oop)) {
3147       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3148 
3149       // Now fetch the region containing the object
3150       HeapRegion* hr = _g1h->heap_region_containing(obj);
3151       HeapRegionRemSet* hrrs = hr->rem_set();
3152       // Verify that the strong code root list for this region
3153       // contains the nmethod
3154       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3155         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3156                               "from nmethod "PTR_FORMAT" not in strong "
3157                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3158                               p, _nm, hr->bottom(), hr->end());
3159         _failures = true;
3160       }
3161     }
3162   }
3163 
3164 public:
3165   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3166     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3167 
3168   void do_oop(oop* p) { do_oop_work(p); }
3169   void do_oop(narrowOop* p) { do_oop_work(p); }
3170 
3171   void set_nmethod(nmethod* nm) { _nm = nm; }
3172   bool failures() { return _failures; }
3173 };
3174 
3175 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3176   G1VerifyCodeRootOopClosure* _oop_cl;
3177 
3178 public:
3179   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3180     _oop_cl(oop_cl) {}
3181 
3182   void do_code_blob(CodeBlob* cb) {
3183     nmethod* nm = cb->as_nmethod_or_null();
3184     if (nm != NULL) {
3185       _oop_cl->set_nmethod(nm);
3186       nm->oops_do(_oop_cl);
3187     }
3188   }
3189 };
3190 
3191 class YoungRefCounterClosure : public OopClosure {
3192   G1CollectedHeap* _g1h;
3193   int              _count;
3194  public:
3195   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3196   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3197   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3198 
3199   int count() { return _count; }
3200   void reset_count() { _count = 0; };
3201 };
3202 
3203 class VerifyKlassClosure: public KlassClosure {
3204   YoungRefCounterClosure _young_ref_counter_closure;
3205   OopClosure *_oop_closure;
3206  public:
3207   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3208   void do_klass(Klass* k) {
3209     k->oops_do(_oop_closure);
3210 
3211     _young_ref_counter_closure.reset_count();
3212     k->oops_do(&_young_ref_counter_closure);
3213     if (_young_ref_counter_closure.count() > 0) {
3214       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
3215     }
3216   }
3217 };
3218 
3219 class VerifyLivenessOopClosure: public OopClosure {
3220   G1CollectedHeap* _g1h;
3221   VerifyOption _vo;
3222 public:
3223   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3224     _g1h(g1h), _vo(vo)
3225   { }
3226   void do_oop(narrowOop *p) { do_oop_work(p); }
3227   void do_oop(      oop *p) { do_oop_work(p); }
3228 
3229   template <class T> void do_oop_work(T *p) {
3230     oop obj = oopDesc::load_decode_heap_oop(p);
3231     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3232               "Dead object referenced by a not dead object");
3233   }
3234 };
3235 
3236 class VerifyObjsInRegionClosure: public ObjectClosure {
3237 private:
3238   G1CollectedHeap* _g1h;
3239   size_t _live_bytes;
3240   HeapRegion *_hr;
3241   VerifyOption _vo;
3242 public:
3243   // _vo == UsePrevMarking -> use "prev" marking information,
3244   // _vo == UseNextMarking -> use "next" marking information,
3245   // _vo == UseMarkWord    -> use mark word from object header.
3246   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3247     : _live_bytes(0), _hr(hr), _vo(vo) {
3248     _g1h = G1CollectedHeap::heap();
3249   }
3250   void do_object(oop o) {
3251     VerifyLivenessOopClosure isLive(_g1h, _vo);
3252     assert(o != NULL, "Huh?");
3253     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3254       // If the object is alive according to the mark word,
3255       // then verify that the marking information agrees.
3256       // Note we can't verify the contra-positive of the
3257       // above: if the object is dead (according to the mark
3258       // word), it may not be marked, or may have been marked
3259       // but has since became dead, or may have been allocated
3260       // since the last marking.
3261       if (_vo == VerifyOption_G1UseMarkWord) {
3262         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3263       }
3264 
3265       o->oop_iterate_no_header(&isLive);
3266       if (!_hr->obj_allocated_since_prev_marking(o)) {
3267         size_t obj_size = o->size();    // Make sure we don't overflow
3268         _live_bytes += (obj_size * HeapWordSize);
3269       }
3270     }
3271   }
3272   size_t live_bytes() { return _live_bytes; }
3273 };
3274 
3275 class PrintObjsInRegionClosure : public ObjectClosure {
3276   HeapRegion *_hr;
3277   G1CollectedHeap *_g1;
3278 public:
3279   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3280     _g1 = G1CollectedHeap::heap();
3281   };
3282 
3283   void do_object(oop o) {
3284     if (o != NULL) {
3285       HeapWord *start = (HeapWord *) o;
3286       size_t word_sz = o->size();
3287       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3288                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3289                           (void*) o, word_sz,
3290                           _g1->isMarkedPrev(o),
3291                           _g1->isMarkedNext(o),
3292                           _hr->obj_allocated_since_prev_marking(o));
3293       HeapWord *end = start + word_sz;
3294       HeapWord *cur;
3295       int *val;
3296       for (cur = start; cur < end; cur++) {
3297         val = (int *) cur;
3298         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3299       }
3300     }
3301   }
3302 };
3303 
3304 class VerifyRegionClosure: public HeapRegionClosure {
3305 private:
3306   bool             _par;
3307   VerifyOption     _vo;
3308   bool             _failures;
3309 public:
3310   // _vo == UsePrevMarking -> use "prev" marking information,
3311   // _vo == UseNextMarking -> use "next" marking information,
3312   // _vo == UseMarkWord    -> use mark word from object header.
3313   VerifyRegionClosure(bool par, VerifyOption vo)
3314     : _par(par),
3315       _vo(vo),
3316       _failures(false) {}
3317 
3318   bool failures() {
3319     return _failures;
3320   }
3321 
3322   bool doHeapRegion(HeapRegion* r) {
3323     if (!r->continuesHumongous()) {
3324       bool failures = false;
3325       r->verify(_vo, &failures);
3326       if (failures) {
3327         _failures = true;
3328       } else {
3329         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3330         r->object_iterate(&not_dead_yet_cl);
3331         if (_vo != VerifyOption_G1UseNextMarking) {
3332           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3333             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3334                                    "max_live_bytes "SIZE_FORMAT" "
3335                                    "< calculated "SIZE_FORMAT,
3336                                    r->bottom(), r->end(),
3337                                    r->max_live_bytes(),
3338                                  not_dead_yet_cl.live_bytes());
3339             _failures = true;
3340           }
3341         } else {
3342           // When vo == UseNextMarking we cannot currently do a sanity
3343           // check on the live bytes as the calculation has not been
3344           // finalized yet.
3345         }
3346       }
3347     }
3348     return false; // stop the region iteration if we hit a failure
3349   }
3350 };
3351 
3352 // This is the task used for parallel verification of the heap regions
3353 
3354 class G1ParVerifyTask: public AbstractGangTask {
3355 private:
3356   G1CollectedHeap* _g1h;
3357   VerifyOption     _vo;
3358   bool             _failures;
3359 
3360 public:
3361   // _vo == UsePrevMarking -> use "prev" marking information,
3362   // _vo == UseNextMarking -> use "next" marking information,
3363   // _vo == UseMarkWord    -> use mark word from object header.
3364   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3365     AbstractGangTask("Parallel verify task"),
3366     _g1h(g1h),
3367     _vo(vo),
3368     _failures(false) { }
3369 
3370   bool failures() {
3371     return _failures;
3372   }
3373 
3374   void work(uint worker_id) {
3375     HandleMark hm;
3376     VerifyRegionClosure blk(true, _vo);
3377     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3378                                           _g1h->workers()->active_workers(),
3379                                           HeapRegion::ParVerifyClaimValue);
3380     if (blk.failures()) {
3381       _failures = true;
3382     }
3383   }
3384 };
3385 
3386 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3387   if (SafepointSynchronize::is_at_safepoint()) {
3388     assert(Thread::current()->is_VM_thread(),
3389            "Expected to be executed serially by the VM thread at this point");
3390 
3391     if (!silent) { gclog_or_tty->print("Roots "); }
3392     VerifyRootsClosure rootsCl(vo);
3393     VerifyKlassClosure klassCl(this, &rootsCl);
3394 
3395     // We apply the relevant closures to all the oops in the
3396     // system dictionary, class loader data graph and the string table.
3397     // Don't verify the code cache here, since it's verified below.
3398     const int so = SO_AllClasses | SO_Strings;
3399 
3400     // Need cleared claim bits for the strong roots processing
3401     ClassLoaderDataGraph::clear_claimed_marks();
3402 
3403     process_strong_roots(true,      // activate StrongRootsScope
3404                          ScanningOption(so),  // roots scanning options
3405                          &rootsCl,
3406                          &klassCl
3407                          );
3408 
3409     // Verify the nmethods in the code cache.
3410     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3411     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3412     CodeCache::blobs_do(&blobsCl);
3413 
3414     bool failures = rootsCl.failures() || codeRootsCl.failures();
3415 
3416     if (vo != VerifyOption_G1UseMarkWord) {
3417       // If we're verifying during a full GC then the region sets
3418       // will have been torn down at the start of the GC. Therefore
3419       // verifying the region sets will fail. So we only verify
3420       // the region sets when not in a full GC.
3421       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3422       verify_region_sets();
3423     }
3424 
3425     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3426     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3427       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3428              "sanity check");
3429 
3430       G1ParVerifyTask task(this, vo);
3431       assert(UseDynamicNumberOfGCThreads ||
3432         workers()->active_workers() == workers()->total_workers(),
3433         "If not dynamic should be using all the workers");
3434       int n_workers = workers()->active_workers();
3435       set_par_threads(n_workers);
3436       workers()->run_task(&task);
3437       set_par_threads(0);
3438       if (task.failures()) {
3439         failures = true;
3440       }
3441 
3442       // Checks that the expected amount of parallel work was done.
3443       // The implication is that n_workers is > 0.
3444       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3445              "sanity check");
3446 
3447       reset_heap_region_claim_values();
3448 
3449       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3450              "sanity check");
3451     } else {
3452       VerifyRegionClosure blk(false, vo);
3453       heap_region_iterate(&blk);
3454       if (blk.failures()) {
3455         failures = true;
3456       }
3457     }
3458     if (!silent) gclog_or_tty->print("RemSet ");
3459     rem_set()->verify();
3460 
3461     if (G1StringDedup::is_enabled()) {
3462       if (!silent) gclog_or_tty->print("StrDedup ");
3463       G1StringDedup::verify();
3464     }
3465 
3466     if (failures) {
3467       gclog_or_tty->print_cr("Heap:");
3468       // It helps to have the per-region information in the output to
3469       // help us track down what went wrong. This is why we call
3470       // print_extended_on() instead of print_on().
3471       print_extended_on(gclog_or_tty);
3472       gclog_or_tty->print_cr("");
3473 #ifndef PRODUCT
3474       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3475         concurrent_mark()->print_reachable("at-verification-failure",
3476                                            vo, false /* all */);
3477       }
3478 #endif
3479       gclog_or_tty->flush();
3480     }
3481     guarantee(!failures, "there should not have been any failures");
3482   } else {
3483     if (!silent) {
3484       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3485       if (G1StringDedup::is_enabled()) {
3486         gclog_or_tty->print(", StrDedup");
3487       }
3488       gclog_or_tty->print(") ");
3489     }
3490   }
3491 }
3492 
3493 void G1CollectedHeap::verify(bool silent) {
3494   verify(silent, VerifyOption_G1UsePrevMarking);
3495 }
3496 
3497 double G1CollectedHeap::verify(bool guard, const char* msg) {
3498   double verify_time_ms = 0.0;
3499 
3500   if (guard && total_collections() >= VerifyGCStartAt) {
3501     double verify_start = os::elapsedTime();
3502     HandleMark hm;  // Discard invalid handles created during verification
3503     prepare_for_verify();
3504     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3505     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3506   }
3507 
3508   return verify_time_ms;
3509 }
3510 
3511 void G1CollectedHeap::verify_before_gc() {
3512   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3513   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3514 }
3515 
3516 void G1CollectedHeap::verify_after_gc() {
3517   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3518   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3519 }
3520 
3521 class PrintRegionClosure: public HeapRegionClosure {
3522   outputStream* _st;
3523 public:
3524   PrintRegionClosure(outputStream* st) : _st(st) {}
3525   bool doHeapRegion(HeapRegion* r) {
3526     r->print_on(_st);
3527     return false;
3528   }
3529 };
3530 
3531 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3532                                        const HeapRegion* hr,
3533                                        const VerifyOption vo) const {
3534   switch (vo) {
3535   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3536   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3537   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3538   default:                            ShouldNotReachHere();
3539   }
3540   return false; // keep some compilers happy
3541 }
3542 
3543 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3544                                        const VerifyOption vo) const {
3545   switch (vo) {
3546   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3547   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3548   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3549   default:                            ShouldNotReachHere();
3550   }
3551   return false; // keep some compilers happy
3552 }
3553 
3554 void G1CollectedHeap::print_on(outputStream* st) const {
3555   st->print(" %-20s", "garbage-first heap");
3556   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3557             capacity()/K, used_unlocked()/K);
3558   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3559             _g1_storage.low_boundary(),
3560             _g1_storage.high(),
3561             _g1_storage.high_boundary());
3562   st->cr();
3563   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3564   uint young_regions = _young_list->length();
3565   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3566             (size_t) young_regions * HeapRegion::GrainBytes / K);
3567   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3568   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3569             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3570   st->cr();
3571   MetaspaceAux::print_on(st);
3572 }
3573 
3574 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3575   print_on(st);
3576 
3577   // Print the per-region information.
3578   st->cr();
3579   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3580                "HS=humongous(starts), HC=humongous(continues), "
3581                "CS=collection set, F=free, TS=gc time stamp, "
3582                "PTAMS=previous top-at-mark-start, "
3583                "NTAMS=next top-at-mark-start)");
3584   PrintRegionClosure blk(st);
3585   heap_region_iterate(&blk);
3586 }
3587 
3588 void G1CollectedHeap::print_on_error(outputStream* st) const {
3589   this->CollectedHeap::print_on_error(st);
3590 
3591   if (_cm != NULL) {
3592     st->cr();
3593     _cm->print_on_error(st);
3594   }
3595 }
3596 
3597 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3598   if (G1CollectedHeap::use_parallel_gc_threads()) {
3599     workers()->print_worker_threads_on(st);
3600   }
3601   _cmThread->print_on(st);
3602   st->cr();
3603   _cm->print_worker_threads_on(st);
3604   _cg1r->print_worker_threads_on(st);
3605   if (G1StringDedup::is_enabled()) {
3606     G1StringDedup::print_worker_threads_on(st);
3607   }
3608 }
3609 
3610 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3611   if (G1CollectedHeap::use_parallel_gc_threads()) {
3612     workers()->threads_do(tc);
3613   }
3614   tc->do_thread(_cmThread);
3615   _cg1r->threads_do(tc);
3616   if (G1StringDedup::is_enabled()) {
3617     G1StringDedup::threads_do(tc);
3618   }
3619 }
3620 
3621 void G1CollectedHeap::print_tracing_info() const {
3622   // We'll overload this to mean "trace GC pause statistics."
3623   if (TraceYoungGenTime || TraceOldGenTime) {
3624     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3625     // to that.
3626     g1_policy()->print_tracing_info();
3627   }
3628   if (G1SummarizeRSetStats) {
3629     g1_rem_set()->print_summary_info();
3630   }
3631   if (G1SummarizeConcMark) {
3632     concurrent_mark()->print_summary_info();
3633   }
3634   g1_policy()->print_yg_surv_rate_info();
3635   SpecializationStats::print();
3636 }
3637 
3638 #ifndef PRODUCT
3639 // Helpful for debugging RSet issues.
3640 
3641 class PrintRSetsClosure : public HeapRegionClosure {
3642 private:
3643   const char* _msg;
3644   size_t _occupied_sum;
3645 
3646 public:
3647   bool doHeapRegion(HeapRegion* r) {
3648     HeapRegionRemSet* hrrs = r->rem_set();
3649     size_t occupied = hrrs->occupied();
3650     _occupied_sum += occupied;
3651 
3652     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3653                            HR_FORMAT_PARAMS(r));
3654     if (occupied == 0) {
3655       gclog_or_tty->print_cr("  RSet is empty");
3656     } else {
3657       hrrs->print();
3658     }
3659     gclog_or_tty->print_cr("----------");
3660     return false;
3661   }
3662 
3663   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3664     gclog_or_tty->cr();
3665     gclog_or_tty->print_cr("========================================");
3666     gclog_or_tty->print_cr(msg);
3667     gclog_or_tty->cr();
3668   }
3669 
3670   ~PrintRSetsClosure() {
3671     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3672     gclog_or_tty->print_cr("========================================");
3673     gclog_or_tty->cr();
3674   }
3675 };
3676 
3677 void G1CollectedHeap::print_cset_rsets() {
3678   PrintRSetsClosure cl("Printing CSet RSets");
3679   collection_set_iterate(&cl);
3680 }
3681 
3682 void G1CollectedHeap::print_all_rsets() {
3683   PrintRSetsClosure cl("Printing All RSets");;
3684   heap_region_iterate(&cl);
3685 }
3686 #endif // PRODUCT
3687 
3688 G1CollectedHeap* G1CollectedHeap::heap() {
3689   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3690          "not a garbage-first heap");
3691   return _g1h;
3692 }
3693 
3694 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3695   // always_do_update_barrier = false;
3696   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3697   // Fill TLAB's and such
3698   accumulate_statistics_all_tlabs();
3699   ensure_parsability(true);
3700 
3701   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3702       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3703     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3704   }
3705 }
3706 
3707 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3708 
3709   if (G1SummarizeRSetStats &&
3710       (G1SummarizeRSetStatsPeriod > 0) &&
3711       // we are at the end of the GC. Total collections has already been increased.
3712       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3713     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3714   }
3715 
3716   // FIXME: what is this about?
3717   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3718   // is set.
3719   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3720                         "derived pointer present"));
3721   // always_do_update_barrier = true;
3722 
3723   resize_all_tlabs();
3724 
3725   // We have just completed a GC. Update the soft reference
3726   // policy with the new heap occupancy
3727   Universe::update_heap_info_at_gc();
3728 }
3729 
3730 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3731                                                unsigned int gc_count_before,
3732                                                bool* succeeded,
3733                                                GCCause::Cause gc_cause) {
3734   assert_heap_not_locked_and_not_at_safepoint();
3735   g1_policy()->record_stop_world_start();
3736   VM_G1IncCollectionPause op(gc_count_before,
3737                              word_size,
3738                              false, /* should_initiate_conc_mark */
3739                              g1_policy()->max_pause_time_ms(),
3740                              gc_cause);
3741   VMThread::execute(&op);
3742 
3743   HeapWord* result = op.result();
3744   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3745   assert(result == NULL || ret_succeeded,
3746          "the result should be NULL if the VM did not succeed");
3747   *succeeded = ret_succeeded;
3748 
3749   assert_heap_not_locked();
3750   return result;
3751 }
3752 
3753 void
3754 G1CollectedHeap::doConcurrentMark() {
3755   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3756   if (!_cmThread->in_progress()) {
3757     _cmThread->set_started();
3758     CGC_lock->notify();
3759   }
3760 }
3761 
3762 size_t G1CollectedHeap::pending_card_num() {
3763   size_t extra_cards = 0;
3764   JavaThread *curr = Threads::first();
3765   while (curr != NULL) {
3766     DirtyCardQueue& dcq = curr->dirty_card_queue();
3767     extra_cards += dcq.size();
3768     curr = curr->next();
3769   }
3770   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3771   size_t buffer_size = dcqs.buffer_size();
3772   size_t buffer_num = dcqs.completed_buffers_num();
3773 
3774   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3775   // in bytes - not the number of 'entries'. We need to convert
3776   // into a number of cards.
3777   return (buffer_size * buffer_num + extra_cards) / oopSize;
3778 }
3779 
3780 size_t G1CollectedHeap::cards_scanned() {
3781   return g1_rem_set()->cardsScanned();
3782 }
3783 
3784 void
3785 G1CollectedHeap::setup_surviving_young_words() {
3786   assert(_surviving_young_words == NULL, "pre-condition");
3787   uint array_length = g1_policy()->young_cset_region_length();
3788   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3789   if (_surviving_young_words == NULL) {
3790     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3791                           "Not enough space for young surv words summary.");
3792   }
3793   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3794 #ifdef ASSERT
3795   for (uint i = 0;  i < array_length; ++i) {
3796     assert( _surviving_young_words[i] == 0, "memset above" );
3797   }
3798 #endif // !ASSERT
3799 }
3800 
3801 void
3802 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3803   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3804   uint array_length = g1_policy()->young_cset_region_length();
3805   for (uint i = 0; i < array_length; ++i) {
3806     _surviving_young_words[i] += surv_young_words[i];
3807   }
3808 }
3809 
3810 void
3811 G1CollectedHeap::cleanup_surviving_young_words() {
3812   guarantee( _surviving_young_words != NULL, "pre-condition" );
3813   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3814   _surviving_young_words = NULL;
3815 }
3816 
3817 #ifdef ASSERT
3818 class VerifyCSetClosure: public HeapRegionClosure {
3819 public:
3820   bool doHeapRegion(HeapRegion* hr) {
3821     // Here we check that the CSet region's RSet is ready for parallel
3822     // iteration. The fields that we'll verify are only manipulated
3823     // when the region is part of a CSet and is collected. Afterwards,
3824     // we reset these fields when we clear the region's RSet (when the
3825     // region is freed) so they are ready when the region is
3826     // re-allocated. The only exception to this is if there's an
3827     // evacuation failure and instead of freeing the region we leave
3828     // it in the heap. In that case, we reset these fields during
3829     // evacuation failure handling.
3830     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3831 
3832     // Here's a good place to add any other checks we'd like to
3833     // perform on CSet regions.
3834     return false;
3835   }
3836 };
3837 #endif // ASSERT
3838 
3839 #if TASKQUEUE_STATS
3840 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3841   st->print_raw_cr("GC Task Stats");
3842   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3843   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3844 }
3845 
3846 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3847   print_taskqueue_stats_hdr(st);
3848 
3849   TaskQueueStats totals;
3850   const int n = workers() != NULL ? workers()->total_workers() : 1;
3851   for (int i = 0; i < n; ++i) {
3852     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3853     totals += task_queue(i)->stats;
3854   }
3855   st->print_raw("tot "); totals.print(st); st->cr();
3856 
3857   DEBUG_ONLY(totals.verify());
3858 }
3859 
3860 void G1CollectedHeap::reset_taskqueue_stats() {
3861   const int n = workers() != NULL ? workers()->total_workers() : 1;
3862   for (int i = 0; i < n; ++i) {
3863     task_queue(i)->stats.reset();
3864   }
3865 }
3866 #endif // TASKQUEUE_STATS
3867 
3868 void G1CollectedHeap::log_gc_header() {
3869   if (!G1Log::fine()) {
3870     return;
3871   }
3872 
3873   gclog_or_tty->date_stamp(PrintGCDateStamps);
3874   gclog_or_tty->stamp(PrintGCTimeStamps);
3875 
3876   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3877     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3878     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3879 
3880   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3881 }
3882 
3883 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3884   if (!G1Log::fine()) {
3885     return;
3886   }
3887 
3888   if (G1Log::finer()) {
3889     if (evacuation_failed()) {
3890       gclog_or_tty->print(" (to-space exhausted)");
3891     }
3892     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3893     g1_policy()->phase_times()->note_gc_end();
3894     g1_policy()->phase_times()->print(pause_time_sec);
3895     g1_policy()->print_detailed_heap_transition();
3896   } else {
3897     if (evacuation_failed()) {
3898       gclog_or_tty->print("--");
3899     }
3900     g1_policy()->print_heap_transition();
3901     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3902   }
3903   gclog_or_tty->flush();
3904 }
3905 
3906 bool
3907 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3908   assert_at_safepoint(true /* should_be_vm_thread */);
3909   guarantee(!is_gc_active(), "collection is not reentrant");
3910 
3911   if (GC_locker::check_active_before_gc()) {
3912     return false;
3913   }
3914 
3915   _gc_timer_stw->register_gc_start();
3916 
3917   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3918 
3919   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3920   ResourceMark rm;
3921 
3922   print_heap_before_gc();
3923   trace_heap_before_gc(_gc_tracer_stw);
3924 
3925   verify_region_sets_optional();
3926   verify_dirty_young_regions();
3927 
3928   // This call will decide whether this pause is an initial-mark
3929   // pause. If it is, during_initial_mark_pause() will return true
3930   // for the duration of this pause.
3931   g1_policy()->decide_on_conc_mark_initiation();
3932 
3933   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3934   assert(!g1_policy()->during_initial_mark_pause() ||
3935           g1_policy()->gcs_are_young(), "sanity");
3936 
3937   // We also do not allow mixed GCs during marking.
3938   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3939 
3940   // Record whether this pause is an initial mark. When the current
3941   // thread has completed its logging output and it's safe to signal
3942   // the CM thread, the flag's value in the policy has been reset.
3943   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3944 
3945   // Inner scope for scope based logging, timers, and stats collection
3946   {
3947     EvacuationInfo evacuation_info;
3948 
3949     if (g1_policy()->during_initial_mark_pause()) {
3950       // We are about to start a marking cycle, so we increment the
3951       // full collection counter.
3952       increment_old_marking_cycles_started();
3953       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3954     }
3955 
3956     _gc_tracer_stw->report_yc_type(yc_type());
3957 
3958     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3959 
3960     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3961                                 workers()->active_workers() : 1);
3962     double pause_start_sec = os::elapsedTime();
3963     g1_policy()->phase_times()->note_gc_start(active_workers);
3964     log_gc_header();
3965 
3966     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3967     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3968 
3969     // If the secondary_free_list is not empty, append it to the
3970     // free_list. No need to wait for the cleanup operation to finish;
3971     // the region allocation code will check the secondary_free_list
3972     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3973     // set, skip this step so that the region allocation code has to
3974     // get entries from the secondary_free_list.
3975     if (!G1StressConcRegionFreeing) {
3976       append_secondary_free_list_if_not_empty_with_lock();
3977     }
3978 
3979     assert(check_young_list_well_formed(), "young list should be well formed");
3980     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3981            "sanity check");
3982 
3983     // Don't dynamically change the number of GC threads this early.  A value of
3984     // 0 is used to indicate serial work.  When parallel work is done,
3985     // it will be set.
3986 
3987     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3988       IsGCActiveMark x;
3989 
3990       gc_prologue(false);
3991       increment_total_collections(false /* full gc */);
3992       increment_gc_time_stamp();
3993 
3994       verify_before_gc();
3995       check_bitmaps("GC Start");
3996 
3997       COMPILER2_PRESENT(DerivedPointerTable::clear());
3998 
3999       // Please see comment in g1CollectedHeap.hpp and
4000       // G1CollectedHeap::ref_processing_init() to see how
4001       // reference processing currently works in G1.
4002 
4003       // Enable discovery in the STW reference processor
4004       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
4005                                             true /*verify_no_refs*/);
4006 
4007       {
4008         // We want to temporarily turn off discovery by the
4009         // CM ref processor, if necessary, and turn it back on
4010         // on again later if we do. Using a scoped
4011         // NoRefDiscovery object will do this.
4012         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4013 
4014         // Forget the current alloc region (we might even choose it to be part
4015         // of the collection set!).
4016         release_mutator_alloc_region();
4017 
4018         // We should call this after we retire the mutator alloc
4019         // region(s) so that all the ALLOC / RETIRE events are generated
4020         // before the start GC event.
4021         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4022 
4023         // This timing is only used by the ergonomics to handle our pause target.
4024         // It is unclear why this should not include the full pause. We will
4025         // investigate this in CR 7178365.
4026         //
4027         // Preserving the old comment here if that helps the investigation:
4028         //
4029         // The elapsed time induced by the start time below deliberately elides
4030         // the possible verification above.
4031         double sample_start_time_sec = os::elapsedTime();
4032 
4033 #if YOUNG_LIST_VERBOSE
4034         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4035         _young_list->print();
4036         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4037 #endif // YOUNG_LIST_VERBOSE
4038 
4039         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4040 
4041         double scan_wait_start = os::elapsedTime();
4042         // We have to wait until the CM threads finish scanning the
4043         // root regions as it's the only way to ensure that all the
4044         // objects on them have been correctly scanned before we start
4045         // moving them during the GC.
4046         bool waited = _cm->root_regions()->wait_until_scan_finished();
4047         double wait_time_ms = 0.0;
4048         if (waited) {
4049           double scan_wait_end = os::elapsedTime();
4050           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4051         }
4052         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4053 
4054 #if YOUNG_LIST_VERBOSE
4055         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4056         _young_list->print();
4057 #endif // YOUNG_LIST_VERBOSE
4058 
4059         if (g1_policy()->during_initial_mark_pause()) {
4060           concurrent_mark()->checkpointRootsInitialPre();
4061         }
4062 
4063 #if YOUNG_LIST_VERBOSE
4064         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4065         _young_list->print();
4066         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4067 #endif // YOUNG_LIST_VERBOSE
4068 
4069         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4070 
4071         _cm->note_start_of_gc();
4072         // We should not verify the per-thread SATB buffers given that
4073         // we have not filtered them yet (we'll do so during the
4074         // GC). We also call this after finalize_cset() to
4075         // ensure that the CSet has been finalized.
4076         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4077                                  true  /* verify_enqueued_buffers */,
4078                                  false /* verify_thread_buffers */,
4079                                  true  /* verify_fingers */);
4080 
4081         if (_hr_printer.is_active()) {
4082           HeapRegion* hr = g1_policy()->collection_set();
4083           while (hr != NULL) {
4084             G1HRPrinter::RegionType type;
4085             if (!hr->is_young()) {
4086               type = G1HRPrinter::Old;
4087             } else if (hr->is_survivor()) {
4088               type = G1HRPrinter::Survivor;
4089             } else {
4090               type = G1HRPrinter::Eden;
4091             }
4092             _hr_printer.cset(hr);
4093             hr = hr->next_in_collection_set();
4094           }
4095         }
4096 
4097 #ifdef ASSERT
4098         VerifyCSetClosure cl;
4099         collection_set_iterate(&cl);
4100 #endif // ASSERT
4101 
4102         setup_surviving_young_words();
4103 
4104         // Initialize the GC alloc regions.
4105         init_gc_alloc_regions(evacuation_info);
4106 
4107         // Actually do the work...
4108         evacuate_collection_set(evacuation_info);
4109 
4110         // We do this to mainly verify the per-thread SATB buffers
4111         // (which have been filtered by now) since we didn't verify
4112         // them earlier. No point in re-checking the stacks / enqueued
4113         // buffers given that the CSet has not changed since last time
4114         // we checked.
4115         _cm->verify_no_cset_oops(false /* verify_stacks */,
4116                                  false /* verify_enqueued_buffers */,
4117                                  true  /* verify_thread_buffers */,
4118                                  true  /* verify_fingers */);
4119 
4120         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4121         g1_policy()->clear_collection_set();
4122 
4123         cleanup_surviving_young_words();
4124 
4125         // Start a new incremental collection set for the next pause.
4126         g1_policy()->start_incremental_cset_building();
4127 
4128         clear_cset_fast_test();
4129 
4130         _young_list->reset_sampled_info();
4131 
4132         // Don't check the whole heap at this point as the
4133         // GC alloc regions from this pause have been tagged
4134         // as survivors and moved on to the survivor list.
4135         // Survivor regions will fail the !is_young() check.
4136         assert(check_young_list_empty(false /* check_heap */),
4137           "young list should be empty");
4138 
4139 #if YOUNG_LIST_VERBOSE
4140         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4141         _young_list->print();
4142 #endif // YOUNG_LIST_VERBOSE
4143 
4144         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4145                                              _young_list->first_survivor_region(),
4146                                              _young_list->last_survivor_region());
4147 
4148         _young_list->reset_auxilary_lists();
4149 
4150         if (evacuation_failed()) {
4151           _summary_bytes_used = recalculate_used();
4152           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4153           for (uint i = 0; i < n_queues; i++) {
4154             if (_evacuation_failed_info_array[i].has_failed()) {
4155               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4156             }
4157           }
4158         } else {
4159           // The "used" of the the collection set have already been subtracted
4160           // when they were freed.  Add in the bytes evacuated.
4161           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4162         }
4163 
4164         if (g1_policy()->during_initial_mark_pause()) {
4165           // We have to do this before we notify the CM threads that
4166           // they can start working to make sure that all the
4167           // appropriate initialization is done on the CM object.
4168           concurrent_mark()->checkpointRootsInitialPost();
4169           set_marking_started();
4170           // Note that we don't actually trigger the CM thread at
4171           // this point. We do that later when we're sure that
4172           // the current thread has completed its logging output.
4173         }
4174 
4175         allocate_dummy_regions();
4176 
4177 #if YOUNG_LIST_VERBOSE
4178         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4179         _young_list->print();
4180         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4181 #endif // YOUNG_LIST_VERBOSE
4182 
4183         init_mutator_alloc_region();
4184 
4185         {
4186           size_t expand_bytes = g1_policy()->expansion_amount();
4187           if (expand_bytes > 0) {
4188             size_t bytes_before = capacity();
4189             // No need for an ergo verbose message here,
4190             // expansion_amount() does this when it returns a value > 0.
4191             if (!expand(expand_bytes)) {
4192               // We failed to expand the heap so let's verify that
4193               // committed/uncommitted amount match the backing store
4194               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4195               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4196             }
4197           }
4198         }
4199 
4200         // We redo the verification but now wrt to the new CSet which
4201         // has just got initialized after the previous CSet was freed.
4202         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4203                                  true  /* verify_enqueued_buffers */,
4204                                  true  /* verify_thread_buffers */,
4205                                  true  /* verify_fingers */);
4206         _cm->note_end_of_gc();
4207 
4208         // This timing is only used by the ergonomics to handle our pause target.
4209         // It is unclear why this should not include the full pause. We will
4210         // investigate this in CR 7178365.
4211         double sample_end_time_sec = os::elapsedTime();
4212         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4213         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4214 
4215         MemoryService::track_memory_usage();
4216 
4217         // In prepare_for_verify() below we'll need to scan the deferred
4218         // update buffers to bring the RSets up-to-date if
4219         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4220         // the update buffers we'll probably need to scan cards on the
4221         // regions we just allocated to (i.e., the GC alloc
4222         // regions). However, during the last GC we called
4223         // set_saved_mark() on all the GC alloc regions, so card
4224         // scanning might skip the [saved_mark_word()...top()] area of
4225         // those regions (i.e., the area we allocated objects into
4226         // during the last GC). But it shouldn't. Given that
4227         // saved_mark_word() is conditional on whether the GC time stamp
4228         // on the region is current or not, by incrementing the GC time
4229         // stamp here we invalidate all the GC time stamps on all the
4230         // regions and saved_mark_word() will simply return top() for
4231         // all the regions. This is a nicer way of ensuring this rather
4232         // than iterating over the regions and fixing them. In fact, the
4233         // GC time stamp increment here also ensures that
4234         // saved_mark_word() will return top() between pauses, i.e.,
4235         // during concurrent refinement. So we don't need the
4236         // is_gc_active() check to decided which top to use when
4237         // scanning cards (see CR 7039627).
4238         increment_gc_time_stamp();
4239 
4240         verify_after_gc();
4241         check_bitmaps("GC End");
4242 
4243         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4244         ref_processor_stw()->verify_no_references_recorded();
4245 
4246         // CM reference discovery will be re-enabled if necessary.
4247       }
4248 
4249       // We should do this after we potentially expand the heap so
4250       // that all the COMMIT events are generated before the end GC
4251       // event, and after we retire the GC alloc regions so that all
4252       // RETIRE events are generated before the end GC event.
4253       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4254 
4255       if (mark_in_progress()) {
4256         concurrent_mark()->update_g1_committed();
4257       }
4258 
4259 #ifdef TRACESPINNING
4260       ParallelTaskTerminator::print_termination_counts();
4261 #endif
4262 
4263       gc_epilogue(false);
4264     }
4265 
4266     // Print the remainder of the GC log output.
4267     log_gc_footer(os::elapsedTime() - pause_start_sec);
4268 
4269     // It is not yet to safe to tell the concurrent mark to
4270     // start as we have some optional output below. We don't want the
4271     // output from the concurrent mark thread interfering with this
4272     // logging output either.
4273 
4274     _hrs.verify_optional();
4275     verify_region_sets_optional();
4276 
4277     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4278     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4279 
4280     print_heap_after_gc();
4281     trace_heap_after_gc(_gc_tracer_stw);
4282 
4283     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4284     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4285     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4286     // before any GC notifications are raised.
4287     g1mm()->update_sizes();
4288 
4289     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4290     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4291     _gc_timer_stw->register_gc_end();
4292     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4293   }
4294   // It should now be safe to tell the concurrent mark thread to start
4295   // without its logging output interfering with the logging output
4296   // that came from the pause.
4297 
4298   if (should_start_conc_mark) {
4299     // CAUTION: after the doConcurrentMark() call below,
4300     // the concurrent marking thread(s) could be running
4301     // concurrently with us. Make sure that anything after
4302     // this point does not assume that we are the only GC thread
4303     // running. Note: of course, the actual marking work will
4304     // not start until the safepoint itself is released in
4305     // SuspendibleThreadSet::desynchronize().
4306     doConcurrentMark();
4307   }
4308 
4309   return true;
4310 }
4311 
4312 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4313 {
4314   size_t gclab_word_size;
4315   switch (purpose) {
4316     case GCAllocForSurvived:
4317       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4318       break;
4319     case GCAllocForTenured:
4320       gclab_word_size = _old_plab_stats.desired_plab_sz();
4321       break;
4322     default:
4323       assert(false, "unknown GCAllocPurpose");
4324       gclab_word_size = _old_plab_stats.desired_plab_sz();
4325       break;
4326   }
4327 
4328   // Prevent humongous PLAB sizes for two reasons:
4329   // * PLABs are allocated using a similar paths as oops, but should
4330   //   never be in a humongous region
4331   // * Allowing humongous PLABs needlessly churns the region free lists
4332   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4333 }
4334 
4335 void G1CollectedHeap::init_mutator_alloc_region() {
4336   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4337   _mutator_alloc_region.init();
4338 }
4339 
4340 void G1CollectedHeap::release_mutator_alloc_region() {
4341   _mutator_alloc_region.release();
4342   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4343 }
4344 
4345 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4346   assert_at_safepoint(true /* should_be_vm_thread */);
4347 
4348   _survivor_gc_alloc_region.init();
4349   _old_gc_alloc_region.init();
4350   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4351   _retained_old_gc_alloc_region = NULL;
4352 
4353   // We will discard the current GC alloc region if:
4354   // a) it's in the collection set (it can happen!),
4355   // b) it's already full (no point in using it),
4356   // c) it's empty (this means that it was emptied during
4357   // a cleanup and it should be on the free list now), or
4358   // d) it's humongous (this means that it was emptied
4359   // during a cleanup and was added to the free list, but
4360   // has been subsequently used to allocate a humongous
4361   // object that may be less than the region size).
4362   if (retained_region != NULL &&
4363       !retained_region->in_collection_set() &&
4364       !(retained_region->top() == retained_region->end()) &&
4365       !retained_region->is_empty() &&
4366       !retained_region->isHumongous()) {
4367     retained_region->set_saved_mark();
4368     // The retained region was added to the old region set when it was
4369     // retired. We have to remove it now, since we don't allow regions
4370     // we allocate to in the region sets. We'll re-add it later, when
4371     // it's retired again.
4372     _old_set.remove(retained_region);
4373     bool during_im = g1_policy()->during_initial_mark_pause();
4374     retained_region->note_start_of_copying(during_im);
4375     _old_gc_alloc_region.set(retained_region);
4376     _hr_printer.reuse(retained_region);
4377     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4378   }
4379 }
4380 
4381 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4382   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4383                                          _old_gc_alloc_region.count());
4384   _survivor_gc_alloc_region.release();
4385   // If we have an old GC alloc region to release, we'll save it in
4386   // _retained_old_gc_alloc_region. If we don't
4387   // _retained_old_gc_alloc_region will become NULL. This is what we
4388   // want either way so no reason to check explicitly for either
4389   // condition.
4390   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4391 
4392   if (ResizePLAB) {
4393     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4394     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4395   }
4396 }
4397 
4398 void G1CollectedHeap::abandon_gc_alloc_regions() {
4399   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4400   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4401   _retained_old_gc_alloc_region = NULL;
4402 }
4403 
4404 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4405   _drain_in_progress = false;
4406   set_evac_failure_closure(cl);
4407   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4408 }
4409 
4410 void G1CollectedHeap::finalize_for_evac_failure() {
4411   assert(_evac_failure_scan_stack != NULL &&
4412          _evac_failure_scan_stack->length() == 0,
4413          "Postcondition");
4414   assert(!_drain_in_progress, "Postcondition");
4415   delete _evac_failure_scan_stack;
4416   _evac_failure_scan_stack = NULL;
4417 }
4418 
4419 void G1CollectedHeap::remove_self_forwarding_pointers() {
4420   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4421 
4422   double remove_self_forwards_start = os::elapsedTime();
4423 
4424   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4425 
4426   if (G1CollectedHeap::use_parallel_gc_threads()) {
4427     set_par_threads();
4428     workers()->run_task(&rsfp_task);
4429     set_par_threads(0);
4430   } else {
4431     rsfp_task.work(0);
4432   }
4433 
4434   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4435 
4436   // Reset the claim values in the regions in the collection set.
4437   reset_cset_heap_region_claim_values();
4438 
4439   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4440 
4441   // Now restore saved marks, if any.
4442   assert(_objs_with_preserved_marks.size() ==
4443             _preserved_marks_of_objs.size(), "Both or none.");
4444   while (!_objs_with_preserved_marks.is_empty()) {
4445     oop obj = _objs_with_preserved_marks.pop();
4446     markOop m = _preserved_marks_of_objs.pop();
4447     obj->set_mark(m);
4448   }
4449   _objs_with_preserved_marks.clear(true);
4450   _preserved_marks_of_objs.clear(true);
4451 
4452   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4453 }
4454 
4455 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4456   _evac_failure_scan_stack->push(obj);
4457 }
4458 
4459 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4460   assert(_evac_failure_scan_stack != NULL, "precondition");
4461 
4462   while (_evac_failure_scan_stack->length() > 0) {
4463      oop obj = _evac_failure_scan_stack->pop();
4464      _evac_failure_closure->set_region(heap_region_containing(obj));
4465      obj->oop_iterate_backwards(_evac_failure_closure);
4466   }
4467 }
4468 
4469 oop
4470 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4471                                                oop old) {
4472   assert(obj_in_cs(old),
4473          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4474                  (HeapWord*) old));
4475   markOop m = old->mark();
4476   oop forward_ptr = old->forward_to_atomic(old);
4477   if (forward_ptr == NULL) {
4478     // Forward-to-self succeeded.
4479     assert(_par_scan_state != NULL, "par scan state");
4480     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4481     uint queue_num = _par_scan_state->queue_num();
4482 
4483     _evacuation_failed = true;
4484     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4485     if (_evac_failure_closure != cl) {
4486       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4487       assert(!_drain_in_progress,
4488              "Should only be true while someone holds the lock.");
4489       // Set the global evac-failure closure to the current thread's.
4490       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4491       set_evac_failure_closure(cl);
4492       // Now do the common part.
4493       handle_evacuation_failure_common(old, m);
4494       // Reset to NULL.
4495       set_evac_failure_closure(NULL);
4496     } else {
4497       // The lock is already held, and this is recursive.
4498       assert(_drain_in_progress, "This should only be the recursive case.");
4499       handle_evacuation_failure_common(old, m);
4500     }
4501     return old;
4502   } else {
4503     // Forward-to-self failed. Either someone else managed to allocate
4504     // space for this object (old != forward_ptr) or they beat us in
4505     // self-forwarding it (old == forward_ptr).
4506     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4507            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4508                    "should not be in the CSet",
4509                    (HeapWord*) old, (HeapWord*) forward_ptr));
4510     return forward_ptr;
4511   }
4512 }
4513 
4514 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4515   preserve_mark_if_necessary(old, m);
4516 
4517   HeapRegion* r = heap_region_containing(old);
4518   if (!r->evacuation_failed()) {
4519     r->set_evacuation_failed(true);
4520     _hr_printer.evac_failure(r);
4521   }
4522 
4523   push_on_evac_failure_scan_stack(old);
4524 
4525   if (!_drain_in_progress) {
4526     // prevent recursion in copy_to_survivor_space()
4527     _drain_in_progress = true;
4528     drain_evac_failure_scan_stack();
4529     _drain_in_progress = false;
4530   }
4531 }
4532 
4533 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4534   assert(evacuation_failed(), "Oversaving!");
4535   // We want to call the "for_promotion_failure" version only in the
4536   // case of a promotion failure.
4537   if (m->must_be_preserved_for_promotion_failure(obj)) {
4538     _objs_with_preserved_marks.push(obj);
4539     _preserved_marks_of_objs.push(m);
4540   }
4541 }
4542 
4543 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4544                                                   size_t word_size) {
4545   if (purpose == GCAllocForSurvived) {
4546     HeapWord* result = survivor_attempt_allocation(word_size);
4547     if (result != NULL) {
4548       return result;
4549     } else {
4550       // Let's try to allocate in the old gen in case we can fit the
4551       // object there.
4552       return old_attempt_allocation(word_size);
4553     }
4554   } else {
4555     assert(purpose ==  GCAllocForTenured, "sanity");
4556     HeapWord* result = old_attempt_allocation(word_size);
4557     if (result != NULL) {
4558       return result;
4559     } else {
4560       // Let's try to allocate in the survivors in case we can fit the
4561       // object there.
4562       return survivor_attempt_allocation(word_size);
4563     }
4564   }
4565 
4566   ShouldNotReachHere();
4567   // Trying to keep some compilers happy.
4568   return NULL;
4569 }
4570 
4571 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4572   ParGCAllocBuffer(gclab_word_size), _retired(true) { }
4573 
4574 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
4575   : _g1h(g1h),
4576     _refs(g1h->task_queue(queue_num)),
4577     _dcq(&g1h->dirty_card_queue_set()),
4578     _ct_bs(g1h->g1_barrier_set()),
4579     _g1_rem(g1h->g1_rem_set()),
4580     _hash_seed(17), _queue_num(queue_num),
4581     _term_attempts(0),
4582     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4583     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4584     _age_table(false), _scanner(g1h, this, rp),
4585     _strong_roots_time(0), _term_time(0),
4586     _alloc_buffer_waste(0), _undo_waste(0) {
4587   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4588   // we "sacrifice" entry 0 to keep track of surviving bytes for
4589   // non-young regions (where the age is -1)
4590   // We also add a few elements at the beginning and at the end in
4591   // an attempt to eliminate cache contention
4592   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4593   uint array_length = PADDING_ELEM_NUM +
4594                       real_length +
4595                       PADDING_ELEM_NUM;
4596   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4597   if (_surviving_young_words_base == NULL)
4598     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4599                           "Not enough space for young surv histo.");
4600   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4601   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4602 
4603   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4604   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4605 
4606   _start = os::elapsedTime();
4607 }
4608 
4609 void
4610 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4611 {
4612   st->print_raw_cr("GC Termination Stats");
4613   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4614                    " ------waste (KiB)------");
4615   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4616                    "  total   alloc    undo");
4617   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4618                    " ------- ------- -------");
4619 }
4620 
4621 void
4622 G1ParScanThreadState::print_termination_stats(int i,
4623                                               outputStream* const st) const
4624 {
4625   const double elapsed_ms = elapsed_time() * 1000.0;
4626   const double s_roots_ms = strong_roots_time() * 1000.0;
4627   const double term_ms    = term_time() * 1000.0;
4628   st->print_cr("%3d %9.2f %9.2f %6.2f "
4629                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4630                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4631                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4632                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4633                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4634                alloc_buffer_waste() * HeapWordSize / K,
4635                undo_waste() * HeapWordSize / K);
4636 }
4637 
4638 #ifdef ASSERT
4639 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4640   assert(ref != NULL, "invariant");
4641   assert(UseCompressedOops, "sanity");
4642   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4643   oop p = oopDesc::load_decode_heap_oop(ref);
4644   assert(_g1h->is_in_g1_reserved(p),
4645          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4646   return true;
4647 }
4648 
4649 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4650   assert(ref != NULL, "invariant");
4651   if (has_partial_array_mask(ref)) {
4652     // Must be in the collection set--it's already been copied.
4653     oop p = clear_partial_array_mask(ref);
4654     assert(_g1h->obj_in_cs(p),
4655            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4656   } else {
4657     oop p = oopDesc::load_decode_heap_oop(ref);
4658     assert(_g1h->is_in_g1_reserved(p),
4659            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4660   }
4661   return true;
4662 }
4663 
4664 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4665   if (ref.is_narrow()) {
4666     return verify_ref((narrowOop*) ref);
4667   } else {
4668     return verify_ref((oop*) ref);
4669   }
4670 }
4671 #endif // ASSERT
4672 
4673 void G1ParScanThreadState::trim_queue() {
4674   assert(_evac_failure_cl != NULL, "not set");
4675 
4676   StarTask ref;
4677   do {
4678     // Drain the overflow stack first, so other threads can steal.
4679     while (refs()->pop_overflow(ref)) {
4680       deal_with_reference(ref);
4681     }
4682 
4683     while (refs()->pop_local(ref)) {
4684       deal_with_reference(ref);
4685     }
4686   } while (!refs()->is_empty());
4687 }
4688 
4689 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4690                                      G1ParScanThreadState* par_scan_state) :
4691   _g1(g1), _par_scan_state(par_scan_state),
4692   _worker_id(par_scan_state->queue_num()) { }
4693 
4694 void G1ParCopyHelper::mark_object(oop obj) {
4695   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4696 
4697   // We know that the object is not moving so it's safe to read its size.
4698   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4699 }
4700 
4701 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4702   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4703   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4704   assert(from_obj != to_obj, "should not be self-forwarded");
4705 
4706   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4707   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4708 
4709   // The object might be in the process of being copied by another
4710   // worker so we cannot trust that its to-space image is
4711   // well-formed. So we have to read its size from its from-space
4712   // image which we know should not be changing.
4713   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4714 }
4715 
4716 oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
4717   size_t word_sz = old->size();
4718   HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
4719   // +1 to make the -1 indexes valid...
4720   int       young_index = from_region->young_index_in_cset()+1;
4721   assert( (from_region->is_young() && young_index >  0) ||
4722          (!from_region->is_young() && young_index == 0), "invariant" );
4723   G1CollectorPolicy* g1p = _g1h->g1_policy();
4724   markOop m = old->mark();
4725   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4726                                            : m->age();
4727   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4728                                                              word_sz);
4729   HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
4730 #ifndef PRODUCT
4731   // Should this evacuation fail?
4732   if (_g1h->evacuation_should_fail()) {
4733     if (obj_ptr != NULL) {
4734       undo_allocation(alloc_purpose, obj_ptr, word_sz);
4735       obj_ptr = NULL;
4736     }
4737   }
4738 #endif // !PRODUCT
4739 
4740   if (obj_ptr == NULL) {
4741     // This will either forward-to-self, or detect that someone else has
4742     // installed a forwarding pointer.
4743     return _g1h->handle_evacuation_failure_par(this, old);
4744   }
4745 
4746   oop obj = oop(obj_ptr);
4747 
4748   // We're going to allocate linearly, so might as well prefetch ahead.
4749   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4750 
4751   oop forward_ptr = old->forward_to_atomic(obj);
4752   if (forward_ptr == NULL) {
4753     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4754 
4755     // alloc_purpose is just a hint to allocate() above, recheck the type of region
4756     // we actually allocated from and update alloc_purpose accordingly
4757     HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
4758     alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
4759 
4760     if (g1p->track_object_age(alloc_purpose)) {
4761       // We could simply do obj->incr_age(). However, this causes a
4762       // performance issue. obj->incr_age() will first check whether
4763       // the object has a displaced mark by checking its mark word;
4764       // getting the mark word from the new location of the object
4765       // stalls. So, given that we already have the mark word and we
4766       // are about to install it anyway, it's better to increase the
4767       // age on the mark word, when the object does not have a
4768       // displaced mark word. We're not expecting many objects to have
4769       // a displaced marked word, so that case is not optimized
4770       // further (it could be...) and we simply call obj->incr_age().
4771 
4772       if (m->has_displaced_mark_helper()) {
4773         // in this case, we have to install the mark word first,
4774         // otherwise obj looks to be forwarded (the old mark word,
4775         // which contains the forward pointer, was copied)
4776         obj->set_mark(m);
4777         obj->incr_age();
4778       } else {
4779         m = m->incr_age();
4780         obj->set_mark(m);
4781       }
4782       age_table()->add(obj, word_sz);
4783     } else {
4784       obj->set_mark(m);
4785     }
4786 
4787     if (G1StringDedup::is_enabled()) {
4788       G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
4789                                              to_region->is_young(),
4790                                              queue_num(),
4791                                              obj);
4792     }
4793 
4794     size_t* surv_young_words = surviving_young_words();
4795     surv_young_words[young_index] += word_sz;
4796 
4797     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4798       // We keep track of the next start index in the length field of
4799       // the to-space object. The actual length can be found in the
4800       // length field of the from-space object.
4801       arrayOop(obj)->set_length(0);
4802       oop* old_p = set_partial_array_mask(old);
4803       push_on_queue(old_p);
4804     } else {
4805       // No point in using the slower heap_region_containing() method,
4806       // given that we know obj is in the heap.
4807       _scanner.set_region(_g1h->heap_region_containing_raw(obj));
4808       obj->oop_iterate_backwards(&_scanner);
4809     }
4810   } else {
4811     undo_allocation(alloc_purpose, obj_ptr, word_sz);
4812     obj = forward_ptr;
4813   }
4814   return obj;
4815 }
4816 
4817 template <class T>
4818 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4819   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4820     _scanned_klass->record_modified_oops();
4821   }
4822 }
4823 
4824 template <G1Barrier barrier, bool do_mark_object>
4825 template <class T>
4826 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4827   T heap_oop = oopDesc::load_heap_oop(p);
4828 
4829   if (oopDesc::is_null(heap_oop)) {
4830     return;
4831   }
4832 
4833   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4834 
4835   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4836 
4837   if (_g1->in_cset_fast_test(obj)) {
4838     oop forwardee;
4839     if (obj->is_forwarded()) {
4840       forwardee = obj->forwardee();
4841     } else {
4842       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4843     }
4844     assert(forwardee != NULL, "forwardee should not be NULL");
4845     oopDesc::encode_store_heap_oop(p, forwardee);
4846     if (do_mark_object && forwardee != obj) {
4847       // If the object is self-forwarded we don't need to explicitly
4848       // mark it, the evacuation failure protocol will do so.
4849       mark_forwarded_object(obj, forwardee);
4850     }
4851 
4852     if (barrier == G1BarrierKlass) {
4853       do_klass_barrier(p, forwardee);
4854     }
4855   } else {
4856     // The object is not in collection set. If we're a root scanning
4857     // closure during an initial mark pause (i.e. do_mark_object will
4858     // be true) then attempt to mark the object.
4859     if (do_mark_object) {
4860       mark_object(obj);
4861     }
4862   }
4863 
4864   if (barrier == G1BarrierEvac) {
4865     _par_scan_state->update_rs(_from, p, _worker_id);
4866   }
4867 }
4868 
4869 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
4870 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4871 
4872 class G1ParEvacuateFollowersClosure : public VoidClosure {
4873 protected:
4874   G1CollectedHeap*              _g1h;
4875   G1ParScanThreadState*         _par_scan_state;
4876   RefToScanQueueSet*            _queues;
4877   ParallelTaskTerminator*       _terminator;
4878 
4879   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4880   RefToScanQueueSet*      queues()         { return _queues; }
4881   ParallelTaskTerminator* terminator()     { return _terminator; }
4882 
4883 public:
4884   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4885                                 G1ParScanThreadState* par_scan_state,
4886                                 RefToScanQueueSet* queues,
4887                                 ParallelTaskTerminator* terminator)
4888     : _g1h(g1h), _par_scan_state(par_scan_state),
4889       _queues(queues), _terminator(terminator) {}
4890 
4891   void do_void();
4892 
4893 private:
4894   inline bool offer_termination();
4895 };
4896 
4897 bool G1ParEvacuateFollowersClosure::offer_termination() {
4898   G1ParScanThreadState* const pss = par_scan_state();
4899   pss->start_term_time();
4900   const bool res = terminator()->offer_termination();
4901   pss->end_term_time();
4902   return res;
4903 }
4904 
4905 void G1ParEvacuateFollowersClosure::do_void() {
4906   StarTask stolen_task;
4907   G1ParScanThreadState* const pss = par_scan_state();
4908   pss->trim_queue();
4909 
4910   do {
4911     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4912       assert(pss->verify_task(stolen_task), "sanity");
4913       if (stolen_task.is_narrow()) {
4914         pss->deal_with_reference((narrowOop*) stolen_task);
4915       } else {
4916         pss->deal_with_reference((oop*) stolen_task);
4917       }
4918 
4919       // We've just processed a reference and we might have made
4920       // available new entries on the queues. So we have to make sure
4921       // we drain the queues as necessary.
4922       pss->trim_queue();
4923     }
4924   } while (!offer_termination());
4925 }
4926 
4927 class G1KlassScanClosure : public KlassClosure {
4928  G1ParCopyHelper* _closure;
4929  bool             _process_only_dirty;
4930  int              _count;
4931  public:
4932   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4933       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4934   void do_klass(Klass* klass) {
4935     // If the klass has not been dirtied we know that there's
4936     // no references into  the young gen and we can skip it.
4937    if (!_process_only_dirty || klass->has_modified_oops()) {
4938       // Clean the klass since we're going to scavenge all the metadata.
4939       klass->clear_modified_oops();
4940 
4941       // Tell the closure that this klass is the Klass to scavenge
4942       // and is the one to dirty if oops are left pointing into the young gen.
4943       _closure->set_scanned_klass(klass);
4944 
4945       klass->oops_do(_closure);
4946 
4947       _closure->set_scanned_klass(NULL);
4948     }
4949     _count++;
4950   }
4951 };
4952 
4953 class G1ParTask : public AbstractGangTask {
4954 protected:
4955   G1CollectedHeap*       _g1h;
4956   RefToScanQueueSet      *_queues;
4957   ParallelTaskTerminator _terminator;
4958   uint _n_workers;
4959 
4960   Mutex _stats_lock;
4961   Mutex* stats_lock() { return &_stats_lock; }
4962 
4963   size_t getNCards() {
4964     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4965       / G1BlockOffsetSharedArray::N_bytes;
4966   }
4967 
4968 public:
4969   G1ParTask(G1CollectedHeap* g1h,
4970             RefToScanQueueSet *task_queues)
4971     : AbstractGangTask("G1 collection"),
4972       _g1h(g1h),
4973       _queues(task_queues),
4974       _terminator(0, _queues),
4975       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4976   {}
4977 
4978   RefToScanQueueSet* queues() { return _queues; }
4979 
4980   RefToScanQueue *work_queue(int i) {
4981     return queues()->queue(i);
4982   }
4983 
4984   ParallelTaskTerminator* terminator() { return &_terminator; }
4985 
4986   virtual void set_for_termination(int active_workers) {
4987     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4988     // in the young space (_par_seq_tasks) in the G1 heap
4989     // for SequentialSubTasksDone.
4990     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4991     // both of which need setting by set_n_termination().
4992     _g1h->SharedHeap::set_n_termination(active_workers);
4993     _g1h->set_n_termination(active_workers);
4994     terminator()->reset_for_reuse(active_workers);
4995     _n_workers = active_workers;
4996   }
4997 
4998   void work(uint worker_id) {
4999     if (worker_id >= _n_workers) return;  // no work needed this round
5000 
5001     double start_time_ms = os::elapsedTime() * 1000.0;
5002     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5003 
5004     {
5005       ResourceMark rm;
5006       HandleMark   hm;
5007 
5008       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5009 
5010       G1ParScanThreadState            pss(_g1h, worker_id, rp);
5011       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5012 
5013       pss.set_evac_failure_closure(&evac_failure_cl);
5014 
5015       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5016       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5017 
5018       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5019       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5020 
5021       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5022       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5023       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5024 
5025       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5026       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5027 
5028       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5029         // We also need to mark copied objects.
5030         scan_root_cl = &scan_mark_root_cl;
5031         scan_klasses_cl = &scan_mark_klasses_cl_s;
5032       }
5033 
5034       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5035 
5036       // Don't scan the scavengable methods in the code cache as part
5037       // of strong root scanning. The code roots that point into a
5038       // region in the collection set are scanned when we scan the
5039       // region's RSet.
5040       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5041 
5042       pss.start_strong_roots();
5043       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5044                                     SharedHeap::ScanningOption(so),
5045                                     scan_root_cl,
5046                                     &push_heap_rs_cl,
5047                                     scan_klasses_cl,
5048                                     worker_id);
5049       pss.end_strong_roots();
5050 
5051       {
5052         double start = os::elapsedTime();
5053         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5054         evac.do_void();
5055         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5056         double term_ms = pss.term_time()*1000.0;
5057         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5058         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5059       }
5060       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5061       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5062 
5063       if (ParallelGCVerbose) {
5064         MutexLocker x(stats_lock());
5065         pss.print_termination_stats(worker_id);
5066       }
5067 
5068       assert(pss.refs()->is_empty(), "should be empty");
5069 
5070       // Close the inner scope so that the ResourceMark and HandleMark
5071       // destructors are executed here and are included as part of the
5072       // "GC Worker Time".
5073     }
5074 
5075     double end_time_ms = os::elapsedTime() * 1000.0;
5076     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5077   }
5078 };
5079 
5080 // *** Common G1 Evacuation Stuff
5081 
5082 // This method is run in a GC worker.
5083 
5084 void
5085 G1CollectedHeap::
5086 g1_process_strong_roots(bool is_scavenging,
5087                         ScanningOption so,
5088                         OopClosure* scan_non_heap_roots,
5089                         OopsInHeapRegionClosure* scan_rs,
5090                         G1KlassScanClosure* scan_klasses,
5091                         uint worker_i) {
5092 
5093   // First scan the strong roots
5094   double ext_roots_start = os::elapsedTime();
5095   double closure_app_time_sec = 0.0;
5096 
5097   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5098 
5099   process_strong_roots(false, // no scoping; this is parallel code
5100                        so,
5101                        &buf_scan_non_heap_roots,
5102                        scan_klasses
5103                        );
5104 
5105   // Now the CM ref_processor roots.
5106   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5107     // We need to treat the discovered reference lists of the
5108     // concurrent mark ref processor as roots and keep entries
5109     // (which are added by the marking threads) on them live
5110     // until they can be processed at the end of marking.
5111     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5112   }
5113 
5114   // Finish up any enqueued closure apps (attributed as object copy time).
5115   buf_scan_non_heap_roots.done();
5116 
5117   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5118 
5119   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5120 
5121   double ext_root_time_ms =
5122     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5123 
5124   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5125 
5126   // During conc marking we have to filter the per-thread SATB buffers
5127   // to make sure we remove any oops into the CSet (which will show up
5128   // as implicitly live).
5129   double satb_filtering_ms = 0.0;
5130   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5131     if (mark_in_progress()) {
5132       double satb_filter_start = os::elapsedTime();
5133 
5134       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5135 
5136       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5137     }
5138   }
5139   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5140 
5141   // If this is an initial mark pause, and we're not scanning
5142   // the entire code cache, we need to mark the oops in the
5143   // strong code root lists for the regions that are not in
5144   // the collection set.
5145   // Note all threads participate in this set of root tasks.
5146   double mark_strong_code_roots_ms = 0.0;
5147   if (g1_policy()->during_initial_mark_pause() && !(so & SO_AllCodeCache)) {
5148     double mark_strong_roots_start = os::elapsedTime();
5149     mark_strong_code_roots(worker_i);
5150     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
5151   }
5152   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
5153 
5154   // Now scan the complement of the collection set.
5155   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5156   g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5157 
5158   _process_strong_tasks->all_tasks_completed();
5159 }
5160 
5161 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
5162 private:
5163   BoolObjectClosure* _is_alive;
5164   int _initial_string_table_size;
5165   int _initial_symbol_table_size;
5166 
5167   bool  _process_strings;
5168   int _strings_processed;
5169   int _strings_removed;
5170 
5171   bool  _process_symbols;
5172   int _symbols_processed;
5173   int _symbols_removed;
5174 
5175   bool _do_in_parallel;
5176 public:
5177   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
5178     AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
5179     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5180     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
5181     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
5182 
5183     _initial_string_table_size = StringTable::the_table()->table_size();
5184     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
5185     if (process_strings) {
5186       StringTable::clear_parallel_claimed_index();
5187     }
5188     if (process_symbols) {
5189       SymbolTable::clear_parallel_claimed_index();
5190     }
5191   }
5192 
5193   ~G1StringSymbolTableUnlinkTask() {
5194     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5195               err_msg("claim value %d after unlink less than initial string table size %d",
5196                       StringTable::parallel_claimed_index(), _initial_string_table_size));
5197     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5198               err_msg("claim value %d after unlink less than initial symbol table size %d",
5199                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
5200   }
5201 
5202   void work(uint worker_id) {
5203     if (_do_in_parallel) {
5204       int strings_processed = 0;
5205       int strings_removed = 0;
5206       int symbols_processed = 0;
5207       int symbols_removed = 0;
5208       if (_process_strings) {
5209         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
5210         Atomic::add(strings_processed, &_strings_processed);
5211         Atomic::add(strings_removed, &_strings_removed);
5212       }
5213       if (_process_symbols) {
5214         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
5215         Atomic::add(symbols_processed, &_symbols_processed);
5216         Atomic::add(symbols_removed, &_symbols_removed);
5217       }
5218     } else {
5219       if (_process_strings) {
5220         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
5221       }
5222       if (_process_symbols) {
5223         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
5224       }
5225     }
5226   }
5227 
5228   size_t strings_processed() const { return (size_t)_strings_processed; }
5229   size_t strings_removed()   const { return (size_t)_strings_removed; }
5230 
5231   size_t symbols_processed() const { return (size_t)_symbols_processed; }
5232   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
5233 };
5234 
5235 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5236                                                      bool process_strings, bool process_symbols) {
5237   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5238                    _g1h->workers()->active_workers() : 1);
5239 
5240   G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5241   if (G1CollectedHeap::use_parallel_gc_threads()) {
5242     set_par_threads(n_workers);
5243     workers()->run_task(&g1_unlink_task);
5244     set_par_threads(0);
5245   } else {
5246     g1_unlink_task.work(0);
5247   }
5248   if (G1TraceStringSymbolTableScrubbing) {
5249     gclog_or_tty->print_cr("Cleaned string and symbol table, "
5250                            "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
5251                            "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
5252                            g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
5253                            g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
5254   }
5255 
5256   if (G1StringDedup::is_enabled()) {
5257     G1StringDedup::unlink(is_alive);
5258   }
5259 }
5260 
5261 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5262  private:
5263   DirtyCardQueueSet* _queue;
5264  public:
5265   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5266 
5267   virtual void work(uint worker_id) {
5268     double start_time = os::elapsedTime();
5269 
5270     RedirtyLoggedCardTableEntryClosure cl;
5271     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
5272       _queue->par_apply_closure_to_all_completed_buffers(&cl);
5273     } else {
5274       _queue->apply_closure_to_all_completed_buffers(&cl);
5275     }
5276 
5277     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5278     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5279     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5280   }
5281 };
5282 
5283 void G1CollectedHeap::redirty_logged_cards() {
5284   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
5285   double redirty_logged_cards_start = os::elapsedTime();
5286 
5287   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5288                    _g1h->workers()->active_workers() : 1);
5289 
5290   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5291   dirty_card_queue_set().reset_for_par_iteration();
5292   if (use_parallel_gc_threads()) {
5293     set_par_threads(n_workers);
5294     workers()->run_task(&redirty_task);
5295     set_par_threads(0);
5296   } else {
5297     redirty_task.work(0);
5298   }
5299 
5300   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5301   dcq.merge_bufferlists(&dirty_card_queue_set());
5302   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5303 
5304   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5305 }
5306 
5307 // Weak Reference Processing support
5308 
5309 // An always "is_alive" closure that is used to preserve referents.
5310 // If the object is non-null then it's alive.  Used in the preservation
5311 // of referent objects that are pointed to by reference objects
5312 // discovered by the CM ref processor.
5313 class G1AlwaysAliveClosure: public BoolObjectClosure {
5314   G1CollectedHeap* _g1;
5315 public:
5316   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5317   bool do_object_b(oop p) {
5318     if (p != NULL) {
5319       return true;
5320     }
5321     return false;
5322   }
5323 };
5324 
5325 bool G1STWIsAliveClosure::do_object_b(oop p) {
5326   // An object is reachable if it is outside the collection set,
5327   // or is inside and copied.
5328   return !_g1->obj_in_cs(p) || p->is_forwarded();
5329 }
5330 
5331 // Non Copying Keep Alive closure
5332 class G1KeepAliveClosure: public OopClosure {
5333   G1CollectedHeap* _g1;
5334 public:
5335   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5336   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5337   void do_oop(      oop* p) {
5338     oop obj = *p;
5339 
5340     if (_g1->obj_in_cs(obj)) {
5341       assert( obj->is_forwarded(), "invariant" );
5342       *p = obj->forwardee();
5343     }
5344   }
5345 };
5346 
5347 // Copying Keep Alive closure - can be called from both
5348 // serial and parallel code as long as different worker
5349 // threads utilize different G1ParScanThreadState instances
5350 // and different queues.
5351 
5352 class G1CopyingKeepAliveClosure: public OopClosure {
5353   G1CollectedHeap*         _g1h;
5354   OopClosure*              _copy_non_heap_obj_cl;
5355   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5356   G1ParScanThreadState*    _par_scan_state;
5357 
5358 public:
5359   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5360                             OopClosure* non_heap_obj_cl,
5361                             OopsInHeapRegionClosure* metadata_obj_cl,
5362                             G1ParScanThreadState* pss):
5363     _g1h(g1h),
5364     _copy_non_heap_obj_cl(non_heap_obj_cl),
5365     _copy_metadata_obj_cl(metadata_obj_cl),
5366     _par_scan_state(pss)
5367   {}
5368 
5369   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5370   virtual void do_oop(      oop* p) { do_oop_work(p); }
5371 
5372   template <class T> void do_oop_work(T* p) {
5373     oop obj = oopDesc::load_decode_heap_oop(p);
5374 
5375     if (_g1h->obj_in_cs(obj)) {
5376       // If the referent object has been forwarded (either copied
5377       // to a new location or to itself in the event of an
5378       // evacuation failure) then we need to update the reference
5379       // field and, if both reference and referent are in the G1
5380       // heap, update the RSet for the referent.
5381       //
5382       // If the referent has not been forwarded then we have to keep
5383       // it alive by policy. Therefore we have copy the referent.
5384       //
5385       // If the reference field is in the G1 heap then we can push
5386       // on the PSS queue. When the queue is drained (after each
5387       // phase of reference processing) the object and it's followers
5388       // will be copied, the reference field set to point to the
5389       // new location, and the RSet updated. Otherwise we need to
5390       // use the the non-heap or metadata closures directly to copy
5391       // the referent object and update the pointer, while avoiding
5392       // updating the RSet.
5393 
5394       if (_g1h->is_in_g1_reserved(p)) {
5395         _par_scan_state->push_on_queue(p);
5396       } else {
5397         assert(!ClassLoaderDataGraph::contains((address)p),
5398                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5399                               PTR_FORMAT, p));
5400           _copy_non_heap_obj_cl->do_oop(p);
5401         }
5402       }
5403     }
5404 };
5405 
5406 // Serial drain queue closure. Called as the 'complete_gc'
5407 // closure for each discovered list in some of the
5408 // reference processing phases.
5409 
5410 class G1STWDrainQueueClosure: public VoidClosure {
5411 protected:
5412   G1CollectedHeap* _g1h;
5413   G1ParScanThreadState* _par_scan_state;
5414 
5415   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5416 
5417 public:
5418   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5419     _g1h(g1h),
5420     _par_scan_state(pss)
5421   { }
5422 
5423   void do_void() {
5424     G1ParScanThreadState* const pss = par_scan_state();
5425     pss->trim_queue();
5426   }
5427 };
5428 
5429 // Parallel Reference Processing closures
5430 
5431 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5432 // processing during G1 evacuation pauses.
5433 
5434 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5435 private:
5436   G1CollectedHeap*   _g1h;
5437   RefToScanQueueSet* _queues;
5438   FlexibleWorkGang*  _workers;
5439   int                _active_workers;
5440 
5441 public:
5442   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5443                         FlexibleWorkGang* workers,
5444                         RefToScanQueueSet *task_queues,
5445                         int n_workers) :
5446     _g1h(g1h),
5447     _queues(task_queues),
5448     _workers(workers),
5449     _active_workers(n_workers)
5450   {
5451     assert(n_workers > 0, "shouldn't call this otherwise");
5452   }
5453 
5454   // Executes the given task using concurrent marking worker threads.
5455   virtual void execute(ProcessTask& task);
5456   virtual void execute(EnqueueTask& task);
5457 };
5458 
5459 // Gang task for possibly parallel reference processing
5460 
5461 class G1STWRefProcTaskProxy: public AbstractGangTask {
5462   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5463   ProcessTask&     _proc_task;
5464   G1CollectedHeap* _g1h;
5465   RefToScanQueueSet *_task_queues;
5466   ParallelTaskTerminator* _terminator;
5467 
5468 public:
5469   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5470                      G1CollectedHeap* g1h,
5471                      RefToScanQueueSet *task_queues,
5472                      ParallelTaskTerminator* terminator) :
5473     AbstractGangTask("Process reference objects in parallel"),
5474     _proc_task(proc_task),
5475     _g1h(g1h),
5476     _task_queues(task_queues),
5477     _terminator(terminator)
5478   {}
5479 
5480   virtual void work(uint worker_id) {
5481     // The reference processing task executed by a single worker.
5482     ResourceMark rm;
5483     HandleMark   hm;
5484 
5485     G1STWIsAliveClosure is_alive(_g1h);
5486 
5487     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5488     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5489 
5490     pss.set_evac_failure_closure(&evac_failure_cl);
5491 
5492     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5493     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5494 
5495     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5496     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5497 
5498     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5499     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5500 
5501     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5502       // We also need to mark copied objects.
5503       copy_non_heap_cl = &copy_mark_non_heap_cl;
5504       copy_metadata_cl = &copy_mark_metadata_cl;
5505     }
5506 
5507     // Keep alive closure.
5508     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5509 
5510     // Complete GC closure
5511     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5512 
5513     // Call the reference processing task's work routine.
5514     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5515 
5516     // Note we cannot assert that the refs array is empty here as not all
5517     // of the processing tasks (specifically phase2 - pp2_work) execute
5518     // the complete_gc closure (which ordinarily would drain the queue) so
5519     // the queue may not be empty.
5520   }
5521 };
5522 
5523 // Driver routine for parallel reference processing.
5524 // Creates an instance of the ref processing gang
5525 // task and has the worker threads execute it.
5526 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5527   assert(_workers != NULL, "Need parallel worker threads.");
5528 
5529   ParallelTaskTerminator terminator(_active_workers, _queues);
5530   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5531 
5532   _g1h->set_par_threads(_active_workers);
5533   _workers->run_task(&proc_task_proxy);
5534   _g1h->set_par_threads(0);
5535 }
5536 
5537 // Gang task for parallel reference enqueueing.
5538 
5539 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5540   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5541   EnqueueTask& _enq_task;
5542 
5543 public:
5544   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5545     AbstractGangTask("Enqueue reference objects in parallel"),
5546     _enq_task(enq_task)
5547   { }
5548 
5549   virtual void work(uint worker_id) {
5550     _enq_task.work(worker_id);
5551   }
5552 };
5553 
5554 // Driver routine for parallel reference enqueueing.
5555 // Creates an instance of the ref enqueueing gang
5556 // task and has the worker threads execute it.
5557 
5558 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5559   assert(_workers != NULL, "Need parallel worker threads.");
5560 
5561   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5562 
5563   _g1h->set_par_threads(_active_workers);
5564   _workers->run_task(&enq_task_proxy);
5565   _g1h->set_par_threads(0);
5566 }
5567 
5568 // End of weak reference support closures
5569 
5570 // Abstract task used to preserve (i.e. copy) any referent objects
5571 // that are in the collection set and are pointed to by reference
5572 // objects discovered by the CM ref processor.
5573 
5574 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5575 protected:
5576   G1CollectedHeap* _g1h;
5577   RefToScanQueueSet      *_queues;
5578   ParallelTaskTerminator _terminator;
5579   uint _n_workers;
5580 
5581 public:
5582   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5583     AbstractGangTask("ParPreserveCMReferents"),
5584     _g1h(g1h),
5585     _queues(task_queues),
5586     _terminator(workers, _queues),
5587     _n_workers(workers)
5588   { }
5589 
5590   void work(uint worker_id) {
5591     ResourceMark rm;
5592     HandleMark   hm;
5593 
5594     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5595     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5596 
5597     pss.set_evac_failure_closure(&evac_failure_cl);
5598 
5599     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5600 
5601 
5602     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5603     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5604 
5605     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5606     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5607 
5608     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5609     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5610 
5611     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5612       // We also need to mark copied objects.
5613       copy_non_heap_cl = &copy_mark_non_heap_cl;
5614       copy_metadata_cl = &copy_mark_metadata_cl;
5615     }
5616 
5617     // Is alive closure
5618     G1AlwaysAliveClosure always_alive(_g1h);
5619 
5620     // Copying keep alive closure. Applied to referent objects that need
5621     // to be copied.
5622     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5623 
5624     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5625 
5626     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5627     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5628 
5629     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5630     // So this must be true - but assert just in case someone decides to
5631     // change the worker ids.
5632     assert(0 <= worker_id && worker_id < limit, "sanity");
5633     assert(!rp->discovery_is_atomic(), "check this code");
5634 
5635     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5636     for (uint idx = worker_id; idx < limit; idx += stride) {
5637       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5638 
5639       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5640       while (iter.has_next()) {
5641         // Since discovery is not atomic for the CM ref processor, we
5642         // can see some null referent objects.
5643         iter.load_ptrs(DEBUG_ONLY(true));
5644         oop ref = iter.obj();
5645 
5646         // This will filter nulls.
5647         if (iter.is_referent_alive()) {
5648           iter.make_referent_alive();
5649         }
5650         iter.move_to_next();
5651       }
5652     }
5653 
5654     // Drain the queue - which may cause stealing
5655     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5656     drain_queue.do_void();
5657     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5658     assert(pss.refs()->is_empty(), "should be");
5659   }
5660 };
5661 
5662 // Weak Reference processing during an evacuation pause (part 1).
5663 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5664   double ref_proc_start = os::elapsedTime();
5665 
5666   ReferenceProcessor* rp = _ref_processor_stw;
5667   assert(rp->discovery_enabled(), "should have been enabled");
5668 
5669   // Any reference objects, in the collection set, that were 'discovered'
5670   // by the CM ref processor should have already been copied (either by
5671   // applying the external root copy closure to the discovered lists, or
5672   // by following an RSet entry).
5673   //
5674   // But some of the referents, that are in the collection set, that these
5675   // reference objects point to may not have been copied: the STW ref
5676   // processor would have seen that the reference object had already
5677   // been 'discovered' and would have skipped discovering the reference,
5678   // but would not have treated the reference object as a regular oop.
5679   // As a result the copy closure would not have been applied to the
5680   // referent object.
5681   //
5682   // We need to explicitly copy these referent objects - the references
5683   // will be processed at the end of remarking.
5684   //
5685   // We also need to do this copying before we process the reference
5686   // objects discovered by the STW ref processor in case one of these
5687   // referents points to another object which is also referenced by an
5688   // object discovered by the STW ref processor.
5689 
5690   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5691            no_of_gc_workers == workers()->active_workers(),
5692            "Need to reset active GC workers");
5693 
5694   set_par_threads(no_of_gc_workers);
5695   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5696                                                  no_of_gc_workers,
5697                                                  _task_queues);
5698 
5699   if (G1CollectedHeap::use_parallel_gc_threads()) {
5700     workers()->run_task(&keep_cm_referents);
5701   } else {
5702     keep_cm_referents.work(0);
5703   }
5704 
5705   set_par_threads(0);
5706 
5707   // Closure to test whether a referent is alive.
5708   G1STWIsAliveClosure is_alive(this);
5709 
5710   // Even when parallel reference processing is enabled, the processing
5711   // of JNI refs is serial and performed serially by the current thread
5712   // rather than by a worker. The following PSS will be used for processing
5713   // JNI refs.
5714 
5715   // Use only a single queue for this PSS.
5716   G1ParScanThreadState            pss(this, 0, NULL);
5717 
5718   // We do not embed a reference processor in the copying/scanning
5719   // closures while we're actually processing the discovered
5720   // reference objects.
5721   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5722 
5723   pss.set_evac_failure_closure(&evac_failure_cl);
5724 
5725   assert(pss.refs()->is_empty(), "pre-condition");
5726 
5727   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5728   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5729 
5730   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5731   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5732 
5733   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5734   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5735 
5736   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5737     // We also need to mark copied objects.
5738     copy_non_heap_cl = &copy_mark_non_heap_cl;
5739     copy_metadata_cl = &copy_mark_metadata_cl;
5740   }
5741 
5742   // Keep alive closure.
5743   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5744 
5745   // Serial Complete GC closure
5746   G1STWDrainQueueClosure drain_queue(this, &pss);
5747 
5748   // Setup the soft refs policy...
5749   rp->setup_policy(false);
5750 
5751   ReferenceProcessorStats stats;
5752   if (!rp->processing_is_mt()) {
5753     // Serial reference processing...
5754     stats = rp->process_discovered_references(&is_alive,
5755                                               &keep_alive,
5756                                               &drain_queue,
5757                                               NULL,
5758                                               _gc_timer_stw);
5759   } else {
5760     // Parallel reference processing
5761     assert(rp->num_q() == no_of_gc_workers, "sanity");
5762     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5763 
5764     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5765     stats = rp->process_discovered_references(&is_alive,
5766                                               &keep_alive,
5767                                               &drain_queue,
5768                                               &par_task_executor,
5769                                               _gc_timer_stw);
5770   }
5771 
5772   _gc_tracer_stw->report_gc_reference_stats(stats);
5773 
5774   // We have completed copying any necessary live referent objects.
5775   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5776 
5777   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5778   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5779 }
5780 
5781 // Weak Reference processing during an evacuation pause (part 2).
5782 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5783   double ref_enq_start = os::elapsedTime();
5784 
5785   ReferenceProcessor* rp = _ref_processor_stw;
5786   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5787 
5788   // Now enqueue any remaining on the discovered lists on to
5789   // the pending list.
5790   if (!rp->processing_is_mt()) {
5791     // Serial reference processing...
5792     rp->enqueue_discovered_references();
5793   } else {
5794     // Parallel reference enqueueing
5795 
5796     assert(no_of_gc_workers == workers()->active_workers(),
5797            "Need to reset active workers");
5798     assert(rp->num_q() == no_of_gc_workers, "sanity");
5799     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5800 
5801     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5802     rp->enqueue_discovered_references(&par_task_executor);
5803   }
5804 
5805   rp->verify_no_references_recorded();
5806   assert(!rp->discovery_enabled(), "should have been disabled");
5807 
5808   // FIXME
5809   // CM's reference processing also cleans up the string and symbol tables.
5810   // Should we do that here also? We could, but it is a serial operation
5811   // and could significantly increase the pause time.
5812 
5813   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5814   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5815 }
5816 
5817 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5818   _expand_heap_after_alloc_failure = true;
5819   _evacuation_failed = false;
5820 
5821   // Should G1EvacuationFailureALot be in effect for this GC?
5822   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5823 
5824   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5825 
5826   // Disable the hot card cache.
5827   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5828   hot_card_cache->reset_hot_cache_claimed_index();
5829   hot_card_cache->set_use_cache(false);
5830 
5831   uint n_workers;
5832   if (G1CollectedHeap::use_parallel_gc_threads()) {
5833     n_workers =
5834       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5835                                      workers()->active_workers(),
5836                                      Threads::number_of_non_daemon_threads());
5837     assert(UseDynamicNumberOfGCThreads ||
5838            n_workers == workers()->total_workers(),
5839            "If not dynamic should be using all the  workers");
5840     workers()->set_active_workers(n_workers);
5841     set_par_threads(n_workers);
5842   } else {
5843     assert(n_par_threads() == 0,
5844            "Should be the original non-parallel value");
5845     n_workers = 1;
5846   }
5847 
5848   G1ParTask g1_par_task(this, _task_queues);
5849 
5850   init_for_evac_failure(NULL);
5851 
5852   rem_set()->prepare_for_younger_refs_iterate(true);
5853 
5854   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5855   double start_par_time_sec = os::elapsedTime();
5856   double end_par_time_sec;
5857 
5858   {
5859     StrongRootsScope srs(this);
5860 
5861     if (G1CollectedHeap::use_parallel_gc_threads()) {
5862       // The individual threads will set their evac-failure closures.
5863       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5864       // These tasks use ShareHeap::_process_strong_tasks
5865       assert(UseDynamicNumberOfGCThreads ||
5866              workers()->active_workers() == workers()->total_workers(),
5867              "If not dynamic should be using all the  workers");
5868       workers()->run_task(&g1_par_task);
5869     } else {
5870       g1_par_task.set_for_termination(n_workers);
5871       g1_par_task.work(0);
5872     }
5873     end_par_time_sec = os::elapsedTime();
5874 
5875     // Closing the inner scope will execute the destructor
5876     // for the StrongRootsScope object. We record the current
5877     // elapsed time before closing the scope so that time
5878     // taken for the SRS destructor is NOT included in the
5879     // reported parallel time.
5880   }
5881 
5882   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5883   g1_policy()->phase_times()->record_par_time(par_time_ms);
5884 
5885   double code_root_fixup_time_ms =
5886         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5887   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5888 
5889   set_par_threads(0);
5890 
5891   // Process any discovered reference objects - we have
5892   // to do this _before_ we retire the GC alloc regions
5893   // as we may have to copy some 'reachable' referent
5894   // objects (and their reachable sub-graphs) that were
5895   // not copied during the pause.
5896   process_discovered_references(n_workers);
5897 
5898   // Weak root processing.
5899   {
5900     G1STWIsAliveClosure is_alive(this);
5901     G1KeepAliveClosure keep_alive(this);
5902     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5903     if (G1StringDedup::is_enabled()) {
5904       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5905     }
5906   }
5907 
5908   release_gc_alloc_regions(n_workers, evacuation_info);
5909   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5910 
5911   // Reset and re-enable the hot card cache.
5912   // Note the counts for the cards in the regions in the
5913   // collection set are reset when the collection set is freed.
5914   hot_card_cache->reset_hot_cache();
5915   hot_card_cache->set_use_cache(true);
5916 
5917   // Migrate the strong code roots attached to each region in
5918   // the collection set. Ideally we would like to do this
5919   // after we have finished the scanning/evacuation of the
5920   // strong code roots for a particular heap region.
5921   migrate_strong_code_roots();
5922 
5923   purge_code_root_memory();
5924 
5925   if (g1_policy()->during_initial_mark_pause()) {
5926     // Reset the claim values set during marking the strong code roots
5927     reset_heap_region_claim_values();
5928   }
5929 
5930   finalize_for_evac_failure();
5931 
5932   if (evacuation_failed()) {
5933     remove_self_forwarding_pointers();
5934 
5935     // Reset the G1EvacuationFailureALot counters and flags
5936     // Note: the values are reset only when an actual
5937     // evacuation failure occurs.
5938     NOT_PRODUCT(reset_evacuation_should_fail();)
5939   }
5940 
5941   // Enqueue any remaining references remaining on the STW
5942   // reference processor's discovered lists. We need to do
5943   // this after the card table is cleaned (and verified) as
5944   // the act of enqueueing entries on to the pending list
5945   // will log these updates (and dirty their associated
5946   // cards). We need these updates logged to update any
5947   // RSets.
5948   enqueue_discovered_references(n_workers);
5949 
5950   if (G1DeferredRSUpdate) {
5951     redirty_logged_cards();
5952   }
5953   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5954 }
5955 
5956 void G1CollectedHeap::free_region(HeapRegion* hr,
5957                                   FreeRegionList* free_list,
5958                                   bool par,
5959                                   bool locked) {
5960   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5961   assert(!hr->is_empty(), "the region should not be empty");
5962   assert(free_list != NULL, "pre-condition");
5963 
5964   if (G1VerifyBitmaps) {
5965     MemRegion mr(hr->bottom(), hr->end());
5966     concurrent_mark()->clearRangePrevBitmap(mr);
5967   }
5968 
5969   // Clear the card counts for this region.
5970   // Note: we only need to do this if the region is not young
5971   // (since we don't refine cards in young regions).
5972   if (!hr->is_young()) {
5973     _cg1r->hot_card_cache()->reset_card_counts(hr);
5974   }
5975   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5976   free_list->add_ordered(hr);
5977 }
5978 
5979 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5980                                      FreeRegionList* free_list,
5981                                      bool par) {
5982   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5983   assert(free_list != NULL, "pre-condition");
5984 
5985   size_t hr_capacity = hr->capacity();
5986   // We need to read this before we make the region non-humongous,
5987   // otherwise the information will be gone.
5988   uint last_index = hr->last_hc_index();
5989   hr->set_notHumongous();
5990   free_region(hr, free_list, par);
5991 
5992   uint i = hr->hrs_index() + 1;
5993   while (i < last_index) {
5994     HeapRegion* curr_hr = region_at(i);
5995     assert(curr_hr->continuesHumongous(), "invariant");
5996     curr_hr->set_notHumongous();
5997     free_region(curr_hr, free_list, par);
5998     i += 1;
5999   }
6000 }
6001 
6002 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
6003                                        const HeapRegionSetCount& humongous_regions_removed) {
6004   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
6005     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6006     _old_set.bulk_remove(old_regions_removed);
6007     _humongous_set.bulk_remove(humongous_regions_removed);
6008   }
6009 
6010 }
6011 
6012 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
6013   assert(list != NULL, "list can't be null");
6014   if (!list->is_empty()) {
6015     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6016     _free_list.add_ordered(list);
6017   }
6018 }
6019 
6020 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6021   assert(_summary_bytes_used >= bytes,
6022          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
6023                   _summary_bytes_used, bytes));
6024   _summary_bytes_used -= bytes;
6025 }
6026 
6027 class G1ParCleanupCTTask : public AbstractGangTask {
6028   G1SATBCardTableModRefBS* _ct_bs;
6029   G1CollectedHeap* _g1h;
6030   HeapRegion* volatile _su_head;
6031 public:
6032   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6033                      G1CollectedHeap* g1h) :
6034     AbstractGangTask("G1 Par Cleanup CT Task"),
6035     _ct_bs(ct_bs), _g1h(g1h) { }
6036 
6037   void work(uint worker_id) {
6038     HeapRegion* r;
6039     while (r = _g1h->pop_dirty_cards_region()) {
6040       clear_cards(r);
6041     }
6042   }
6043 
6044   void clear_cards(HeapRegion* r) {
6045     // Cards of the survivors should have already been dirtied.
6046     if (!r->is_survivor()) {
6047       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6048     }
6049   }
6050 };
6051 
6052 #ifndef PRODUCT
6053 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6054   G1CollectedHeap* _g1h;
6055   G1SATBCardTableModRefBS* _ct_bs;
6056 public:
6057   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6058     : _g1h(g1h), _ct_bs(ct_bs) { }
6059   virtual bool doHeapRegion(HeapRegion* r) {
6060     if (r->is_survivor()) {
6061       _g1h->verify_dirty_region(r);
6062     } else {
6063       _g1h->verify_not_dirty_region(r);
6064     }
6065     return false;
6066   }
6067 };
6068 
6069 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6070   // All of the region should be clean.
6071   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6072   MemRegion mr(hr->bottom(), hr->end());
6073   ct_bs->verify_not_dirty_region(mr);
6074 }
6075 
6076 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6077   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6078   // dirty allocated blocks as they allocate them. The thread that
6079   // retires each region and replaces it with a new one will do a
6080   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6081   // not dirty that area (one less thing to have to do while holding
6082   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6083   // is dirty.
6084   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6085   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6086   if (hr->is_young()) {
6087     ct_bs->verify_g1_young_region(mr);
6088   } else {
6089     ct_bs->verify_dirty_region(mr);
6090   }
6091 }
6092 
6093 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6094   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6095   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6096     verify_dirty_region(hr);
6097   }
6098 }
6099 
6100 void G1CollectedHeap::verify_dirty_young_regions() {
6101   verify_dirty_young_list(_young_list->first_region());
6102 }
6103 
6104 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
6105                                                HeapWord* tams, HeapWord* end) {
6106   guarantee(tams <= end,
6107             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
6108   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
6109   if (result < end) {
6110     gclog_or_tty->cr();
6111     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
6112                            bitmap_name, result);
6113     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
6114                            bitmap_name, tams, end);
6115     return false;
6116   }
6117   return true;
6118 }
6119 
6120 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
6121   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
6122   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
6123 
6124   HeapWord* bottom = hr->bottom();
6125   HeapWord* ptams  = hr->prev_top_at_mark_start();
6126   HeapWord* ntams  = hr->next_top_at_mark_start();
6127   HeapWord* end    = hr->end();
6128 
6129   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
6130 
6131   bool res_n = true;
6132   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
6133   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
6134   // if we happen to be in that state.
6135   if (mark_in_progress() || !_cmThread->in_progress()) {
6136     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
6137   }
6138   if (!res_p || !res_n) {
6139     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
6140                            HR_FORMAT_PARAMS(hr));
6141     gclog_or_tty->print_cr("#### Caller: %s", caller);
6142     return false;
6143   }
6144   return true;
6145 }
6146 
6147 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
6148   if (!G1VerifyBitmaps) return;
6149 
6150   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
6151 }
6152 
6153 class G1VerifyBitmapClosure : public HeapRegionClosure {
6154 private:
6155   const char* _caller;
6156   G1CollectedHeap* _g1h;
6157   bool _failures;
6158 
6159 public:
6160   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
6161     _caller(caller), _g1h(g1h), _failures(false) { }
6162 
6163   bool failures() { return _failures; }
6164 
6165   virtual bool doHeapRegion(HeapRegion* hr) {
6166     if (hr->continuesHumongous()) return false;
6167 
6168     bool result = _g1h->verify_bitmaps(_caller, hr);
6169     if (!result) {
6170       _failures = true;
6171     }
6172     return false;
6173   }
6174 };
6175 
6176 void G1CollectedHeap::check_bitmaps(const char* caller) {
6177   if (!G1VerifyBitmaps) return;
6178 
6179   G1VerifyBitmapClosure cl(caller, this);
6180   heap_region_iterate(&cl);
6181   guarantee(!cl.failures(), "bitmap verification");
6182 }
6183 #endif // PRODUCT
6184 
6185 void G1CollectedHeap::cleanUpCardTable() {
6186   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6187   double start = os::elapsedTime();
6188 
6189   {
6190     // Iterate over the dirty cards region list.
6191     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6192 
6193     if (G1CollectedHeap::use_parallel_gc_threads()) {
6194       set_par_threads();
6195       workers()->run_task(&cleanup_task);
6196       set_par_threads(0);
6197     } else {
6198       while (_dirty_cards_region_list) {
6199         HeapRegion* r = _dirty_cards_region_list;
6200         cleanup_task.clear_cards(r);
6201         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6202         if (_dirty_cards_region_list == r) {
6203           // The last region.
6204           _dirty_cards_region_list = NULL;
6205         }
6206         r->set_next_dirty_cards_region(NULL);
6207       }
6208     }
6209 #ifndef PRODUCT
6210     if (G1VerifyCTCleanup || VerifyAfterGC) {
6211       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6212       heap_region_iterate(&cleanup_verifier);
6213     }
6214 #endif
6215   }
6216 
6217   double elapsed = os::elapsedTime() - start;
6218   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6219 }
6220 
6221 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6222   size_t pre_used = 0;
6223   FreeRegionList local_free_list("Local List for CSet Freeing");
6224 
6225   double young_time_ms     = 0.0;
6226   double non_young_time_ms = 0.0;
6227 
6228   // Since the collection set is a superset of the the young list,
6229   // all we need to do to clear the young list is clear its
6230   // head and length, and unlink any young regions in the code below
6231   _young_list->clear();
6232 
6233   G1CollectorPolicy* policy = g1_policy();
6234 
6235   double start_sec = os::elapsedTime();
6236   bool non_young = true;
6237 
6238   HeapRegion* cur = cs_head;
6239   int age_bound = -1;
6240   size_t rs_lengths = 0;
6241 
6242   while (cur != NULL) {
6243     assert(!is_on_master_free_list(cur), "sanity");
6244     if (non_young) {
6245       if (cur->is_young()) {
6246         double end_sec = os::elapsedTime();
6247         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6248         non_young_time_ms += elapsed_ms;
6249 
6250         start_sec = os::elapsedTime();
6251         non_young = false;
6252       }
6253     } else {
6254       if (!cur->is_young()) {
6255         double end_sec = os::elapsedTime();
6256         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6257         young_time_ms += elapsed_ms;
6258 
6259         start_sec = os::elapsedTime();
6260         non_young = true;
6261       }
6262     }
6263 
6264     rs_lengths += cur->rem_set()->occupied_locked();
6265 
6266     HeapRegion* next = cur->next_in_collection_set();
6267     assert(cur->in_collection_set(), "bad CS");
6268     cur->set_next_in_collection_set(NULL);
6269     cur->set_in_collection_set(false);
6270 
6271     if (cur->is_young()) {
6272       int index = cur->young_index_in_cset();
6273       assert(index != -1, "invariant");
6274       assert((uint) index < policy->young_cset_region_length(), "invariant");
6275       size_t words_survived = _surviving_young_words[index];
6276       cur->record_surv_words_in_group(words_survived);
6277 
6278       // At this point the we have 'popped' cur from the collection set
6279       // (linked via next_in_collection_set()) but it is still in the
6280       // young list (linked via next_young_region()). Clear the
6281       // _next_young_region field.
6282       cur->set_next_young_region(NULL);
6283     } else {
6284       int index = cur->young_index_in_cset();
6285       assert(index == -1, "invariant");
6286     }
6287 
6288     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6289             (!cur->is_young() && cur->young_index_in_cset() == -1),
6290             "invariant" );
6291 
6292     if (!cur->evacuation_failed()) {
6293       MemRegion used_mr = cur->used_region();
6294 
6295       // And the region is empty.
6296       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6297       pre_used += cur->used();
6298       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6299     } else {
6300       cur->uninstall_surv_rate_group();
6301       if (cur->is_young()) {
6302         cur->set_young_index_in_cset(-1);
6303       }
6304       cur->set_not_young();
6305       cur->set_evacuation_failed(false);
6306       // The region is now considered to be old.
6307       _old_set.add(cur);
6308       evacuation_info.increment_collectionset_used_after(cur->used());
6309     }
6310     cur = next;
6311   }
6312 
6313   evacuation_info.set_regions_freed(local_free_list.length());
6314   policy->record_max_rs_lengths(rs_lengths);
6315   policy->cset_regions_freed();
6316 
6317   double end_sec = os::elapsedTime();
6318   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6319 
6320   if (non_young) {
6321     non_young_time_ms += elapsed_ms;
6322   } else {
6323     young_time_ms += elapsed_ms;
6324   }
6325 
6326   prepend_to_freelist(&local_free_list);
6327   decrement_summary_bytes(pre_used);
6328   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6329   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6330 }
6331 
6332 // This routine is similar to the above but does not record
6333 // any policy statistics or update free lists; we are abandoning
6334 // the current incremental collection set in preparation of a
6335 // full collection. After the full GC we will start to build up
6336 // the incremental collection set again.
6337 // This is only called when we're doing a full collection
6338 // and is immediately followed by the tearing down of the young list.
6339 
6340 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6341   HeapRegion* cur = cs_head;
6342 
6343   while (cur != NULL) {
6344     HeapRegion* next = cur->next_in_collection_set();
6345     assert(cur->in_collection_set(), "bad CS");
6346     cur->set_next_in_collection_set(NULL);
6347     cur->set_in_collection_set(false);
6348     cur->set_young_index_in_cset(-1);
6349     cur = next;
6350   }
6351 }
6352 
6353 void G1CollectedHeap::set_free_regions_coming() {
6354   if (G1ConcRegionFreeingVerbose) {
6355     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6356                            "setting free regions coming");
6357   }
6358 
6359   assert(!free_regions_coming(), "pre-condition");
6360   _free_regions_coming = true;
6361 }
6362 
6363 void G1CollectedHeap::reset_free_regions_coming() {
6364   assert(free_regions_coming(), "pre-condition");
6365 
6366   {
6367     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6368     _free_regions_coming = false;
6369     SecondaryFreeList_lock->notify_all();
6370   }
6371 
6372   if (G1ConcRegionFreeingVerbose) {
6373     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6374                            "reset free regions coming");
6375   }
6376 }
6377 
6378 void G1CollectedHeap::wait_while_free_regions_coming() {
6379   // Most of the time we won't have to wait, so let's do a quick test
6380   // first before we take the lock.
6381   if (!free_regions_coming()) {
6382     return;
6383   }
6384 
6385   if (G1ConcRegionFreeingVerbose) {
6386     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6387                            "waiting for free regions");
6388   }
6389 
6390   {
6391     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6392     while (free_regions_coming()) {
6393       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6394     }
6395   }
6396 
6397   if (G1ConcRegionFreeingVerbose) {
6398     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6399                            "done waiting for free regions");
6400   }
6401 }
6402 
6403 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6404   assert(heap_lock_held_for_gc(),
6405               "the heap lock should already be held by or for this thread");
6406   _young_list->push_region(hr);
6407 }
6408 
6409 class NoYoungRegionsClosure: public HeapRegionClosure {
6410 private:
6411   bool _success;
6412 public:
6413   NoYoungRegionsClosure() : _success(true) { }
6414   bool doHeapRegion(HeapRegion* r) {
6415     if (r->is_young()) {
6416       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6417                              r->bottom(), r->end());
6418       _success = false;
6419     }
6420     return false;
6421   }
6422   bool success() { return _success; }
6423 };
6424 
6425 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6426   bool ret = _young_list->check_list_empty(check_sample);
6427 
6428   if (check_heap) {
6429     NoYoungRegionsClosure closure;
6430     heap_region_iterate(&closure);
6431     ret = ret && closure.success();
6432   }
6433 
6434   return ret;
6435 }
6436 
6437 class TearDownRegionSetsClosure : public HeapRegionClosure {
6438 private:
6439   HeapRegionSet *_old_set;
6440 
6441 public:
6442   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6443 
6444   bool doHeapRegion(HeapRegion* r) {
6445     if (r->is_empty()) {
6446       // We ignore empty regions, we'll empty the free list afterwards
6447     } else if (r->is_young()) {
6448       // We ignore young regions, we'll empty the young list afterwards
6449     } else if (r->isHumongous()) {
6450       // We ignore humongous regions, we're not tearing down the
6451       // humongous region set
6452     } else {
6453       // The rest should be old
6454       _old_set->remove(r);
6455     }
6456     return false;
6457   }
6458 
6459   ~TearDownRegionSetsClosure() {
6460     assert(_old_set->is_empty(), "post-condition");
6461   }
6462 };
6463 
6464 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6465   assert_at_safepoint(true /* should_be_vm_thread */);
6466 
6467   if (!free_list_only) {
6468     TearDownRegionSetsClosure cl(&_old_set);
6469     heap_region_iterate(&cl);
6470 
6471     // Note that emptying the _young_list is postponed and instead done as
6472     // the first step when rebuilding the regions sets again. The reason for
6473     // this is that during a full GC string deduplication needs to know if
6474     // a collected region was young or old when the full GC was initiated.
6475   }
6476   _free_list.remove_all();
6477 }
6478 
6479 class RebuildRegionSetsClosure : public HeapRegionClosure {
6480 private:
6481   bool            _free_list_only;
6482   HeapRegionSet*   _old_set;
6483   FreeRegionList* _free_list;
6484   size_t          _total_used;
6485 
6486 public:
6487   RebuildRegionSetsClosure(bool free_list_only,
6488                            HeapRegionSet* old_set, FreeRegionList* free_list) :
6489     _free_list_only(free_list_only),
6490     _old_set(old_set), _free_list(free_list), _total_used(0) {
6491     assert(_free_list->is_empty(), "pre-condition");
6492     if (!free_list_only) {
6493       assert(_old_set->is_empty(), "pre-condition");
6494     }
6495   }
6496 
6497   bool doHeapRegion(HeapRegion* r) {
6498     if (r->continuesHumongous()) {
6499       return false;
6500     }
6501 
6502     if (r->is_empty()) {
6503       // Add free regions to the free list
6504       _free_list->add_as_tail(r);
6505     } else if (!_free_list_only) {
6506       assert(!r->is_young(), "we should not come across young regions");
6507 
6508       if (r->isHumongous()) {
6509         // We ignore humongous regions, we left the humongous set unchanged
6510       } else {
6511         // The rest should be old, add them to the old set
6512         _old_set->add(r);
6513       }
6514       _total_used += r->used();
6515     }
6516 
6517     return false;
6518   }
6519 
6520   size_t total_used() {
6521     return _total_used;
6522   }
6523 };
6524 
6525 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6526   assert_at_safepoint(true /* should_be_vm_thread */);
6527 
6528   if (!free_list_only) {
6529     _young_list->empty_list();
6530   }
6531 
6532   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6533   heap_region_iterate(&cl);
6534 
6535   if (!free_list_only) {
6536     _summary_bytes_used = cl.total_used();
6537   }
6538   assert(_summary_bytes_used == recalculate_used(),
6539          err_msg("inconsistent _summary_bytes_used, "
6540                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6541                  _summary_bytes_used, recalculate_used()));
6542 }
6543 
6544 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6545   _refine_cte_cl->set_concurrent(concurrent);
6546 }
6547 
6548 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6549   HeapRegion* hr = heap_region_containing(p);
6550   return hr->is_in(p);
6551 }
6552 
6553 // Methods for the mutator alloc region
6554 
6555 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6556                                                       bool force) {
6557   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6558   assert(!force || g1_policy()->can_expand_young_list(),
6559          "if force is true we should be able to expand the young list");
6560   bool young_list_full = g1_policy()->is_young_list_full();
6561   if (force || !young_list_full) {
6562     HeapRegion* new_alloc_region = new_region(word_size,
6563                                               false /* is_old */,
6564                                               false /* do_expand */);
6565     if (new_alloc_region != NULL) {
6566       set_region_short_lived_locked(new_alloc_region);
6567       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6568       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6569       return new_alloc_region;
6570     }
6571   }
6572   return NULL;
6573 }
6574 
6575 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6576                                                   size_t allocated_bytes) {
6577   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6578   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6579 
6580   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6581   _summary_bytes_used += allocated_bytes;
6582   _hr_printer.retire(alloc_region);
6583   // We update the eden sizes here, when the region is retired,
6584   // instead of when it's allocated, since this is the point that its
6585   // used space has been recored in _summary_bytes_used.
6586   g1mm()->update_eden_size();
6587 }
6588 
6589 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6590                                                     bool force) {
6591   return _g1h->new_mutator_alloc_region(word_size, force);
6592 }
6593 
6594 void G1CollectedHeap::set_par_threads() {
6595   // Don't change the number of workers.  Use the value previously set
6596   // in the workgroup.
6597   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6598   uint n_workers = workers()->active_workers();
6599   assert(UseDynamicNumberOfGCThreads ||
6600            n_workers == workers()->total_workers(),
6601       "Otherwise should be using the total number of workers");
6602   if (n_workers == 0) {
6603     assert(false, "Should have been set in prior evacuation pause.");
6604     n_workers = ParallelGCThreads;
6605     workers()->set_active_workers(n_workers);
6606   }
6607   set_par_threads(n_workers);
6608 }
6609 
6610 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6611                                        size_t allocated_bytes) {
6612   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6613 }
6614 
6615 // Methods for the GC alloc regions
6616 
6617 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6618                                                  uint count,
6619                                                  GCAllocPurpose ap) {
6620   assert(FreeList_lock->owned_by_self(), "pre-condition");
6621 
6622   if (count < g1_policy()->max_regions(ap)) {
6623     bool survivor = (ap == GCAllocForSurvived);
6624     HeapRegion* new_alloc_region = new_region(word_size,
6625                                               !survivor,
6626                                               true /* do_expand */);
6627     if (new_alloc_region != NULL) {
6628       // We really only need to do this for old regions given that we
6629       // should never scan survivors. But it doesn't hurt to do it
6630       // for survivors too.
6631       new_alloc_region->set_saved_mark();
6632       if (survivor) {
6633         new_alloc_region->set_survivor();
6634         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6635         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6636       } else {
6637         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6638         check_bitmaps("Old Region Allocation", new_alloc_region);
6639       }
6640       bool during_im = g1_policy()->during_initial_mark_pause();
6641       new_alloc_region->note_start_of_copying(during_im);
6642       return new_alloc_region;
6643     } else {
6644       g1_policy()->note_alloc_region_limit_reached(ap);
6645     }
6646   }
6647   return NULL;
6648 }
6649 
6650 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6651                                              size_t allocated_bytes,
6652                                              GCAllocPurpose ap) {
6653   bool during_im = g1_policy()->during_initial_mark_pause();
6654   alloc_region->note_end_of_copying(during_im);
6655   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6656   if (ap == GCAllocForSurvived) {
6657     young_list()->add_survivor_region(alloc_region);
6658   } else {
6659     _old_set.add(alloc_region);
6660   }
6661   _hr_printer.retire(alloc_region);
6662 }
6663 
6664 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6665                                                        bool force) {
6666   assert(!force, "not supported for GC alloc regions");
6667   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6668 }
6669 
6670 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6671                                           size_t allocated_bytes) {
6672   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6673                                GCAllocForSurvived);
6674 }
6675 
6676 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6677                                                   bool force) {
6678   assert(!force, "not supported for GC alloc regions");
6679   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6680 }
6681 
6682 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6683                                      size_t allocated_bytes) {
6684   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6685                                GCAllocForTenured);
6686 }
6687 // Heap region set verification
6688 
6689 class VerifyRegionListsClosure : public HeapRegionClosure {
6690 private:
6691   HeapRegionSet*   _old_set;
6692   HeapRegionSet*   _humongous_set;
6693   FreeRegionList*  _free_list;
6694 
6695 public:
6696   HeapRegionSetCount _old_count;
6697   HeapRegionSetCount _humongous_count;
6698   HeapRegionSetCount _free_count;
6699 
6700   VerifyRegionListsClosure(HeapRegionSet* old_set,
6701                            HeapRegionSet* humongous_set,
6702                            FreeRegionList* free_list) :
6703     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
6704     _old_count(), _humongous_count(), _free_count(){ }
6705 
6706   bool doHeapRegion(HeapRegion* hr) {
6707     if (hr->continuesHumongous()) {
6708       return false;
6709     }
6710 
6711     if (hr->is_young()) {
6712       // TODO
6713     } else if (hr->startsHumongous()) {
6714       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrs_index()));
6715       _humongous_count.increment(1u, hr->capacity());
6716     } else if (hr->is_empty()) {
6717       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->hrs_index()));
6718       _free_count.increment(1u, hr->capacity());
6719     } else {
6720       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrs_index()));
6721       _old_count.increment(1u, hr->capacity());
6722     }
6723     return false;
6724   }
6725 
6726   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
6727     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6728     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6729         old_set->total_capacity_bytes(), _old_count.capacity()));
6730 
6731     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6732     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6733         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6734 
6735     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
6736     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6737         free_list->total_capacity_bytes(), _free_count.capacity()));
6738   }
6739 };
6740 
6741 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6742                                              HeapWord* bottom) {
6743   HeapWord* end = bottom + HeapRegion::GrainWords;
6744   MemRegion mr(bottom, end);
6745   assert(_g1_reserved.contains(mr), "invariant");
6746   // This might return NULL if the allocation fails
6747   return new HeapRegion(hrs_index, _bot_shared, mr);
6748 }
6749 
6750 void G1CollectedHeap::verify_region_sets() {
6751   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6752 
6753   // First, check the explicit lists.
6754   _free_list.verify_list();
6755   {
6756     // Given that a concurrent operation might be adding regions to
6757     // the secondary free list we have to take the lock before
6758     // verifying it.
6759     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6760     _secondary_free_list.verify_list();
6761   }
6762 
6763   // If a concurrent region freeing operation is in progress it will
6764   // be difficult to correctly attributed any free regions we come
6765   // across to the correct free list given that they might belong to
6766   // one of several (free_list, secondary_free_list, any local lists,
6767   // etc.). So, if that's the case we will skip the rest of the
6768   // verification operation. Alternatively, waiting for the concurrent
6769   // operation to complete will have a non-trivial effect on the GC's
6770   // operation (no concurrent operation will last longer than the
6771   // interval between two calls to verification) and it might hide
6772   // any issues that we would like to catch during testing.
6773   if (free_regions_coming()) {
6774     return;
6775   }
6776 
6777   // Make sure we append the secondary_free_list on the free_list so
6778   // that all free regions we will come across can be safely
6779   // attributed to the free_list.
6780   append_secondary_free_list_if_not_empty_with_lock();
6781 
6782   // Finally, make sure that the region accounting in the lists is
6783   // consistent with what we see in the heap.
6784 
6785   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6786   heap_region_iterate(&cl);
6787   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6788 }
6789 
6790 // Optimized nmethod scanning
6791 
6792 class RegisterNMethodOopClosure: public OopClosure {
6793   G1CollectedHeap* _g1h;
6794   nmethod* _nm;
6795 
6796   template <class T> void do_oop_work(T* p) {
6797     T heap_oop = oopDesc::load_heap_oop(p);
6798     if (!oopDesc::is_null(heap_oop)) {
6799       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6800       HeapRegion* hr = _g1h->heap_region_containing(obj);
6801       assert(!hr->continuesHumongous(),
6802              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6803                      " starting at "HR_FORMAT,
6804                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6805 
6806       // HeapRegion::add_strong_code_root() avoids adding duplicate
6807       // entries but having duplicates is  OK since we "mark" nmethods
6808       // as visited when we scan the strong code root lists during the GC.
6809       hr->add_strong_code_root(_nm);
6810       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
6811              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
6812                      _nm, HR_FORMAT_PARAMS(hr)));
6813     }
6814   }
6815 
6816 public:
6817   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6818     _g1h(g1h), _nm(nm) {}
6819 
6820   void do_oop(oop* p)       { do_oop_work(p); }
6821   void do_oop(narrowOop* p) { do_oop_work(p); }
6822 };
6823 
6824 class UnregisterNMethodOopClosure: public OopClosure {
6825   G1CollectedHeap* _g1h;
6826   nmethod* _nm;
6827 
6828   template <class T> void do_oop_work(T* p) {
6829     T heap_oop = oopDesc::load_heap_oop(p);
6830     if (!oopDesc::is_null(heap_oop)) {
6831       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6832       HeapRegion* hr = _g1h->heap_region_containing(obj);
6833       assert(!hr->continuesHumongous(),
6834              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6835                      " starting at "HR_FORMAT,
6836                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6837 
6838       hr->remove_strong_code_root(_nm);
6839       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
6840              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
6841                      _nm, HR_FORMAT_PARAMS(hr)));
6842     }
6843   }
6844 
6845 public:
6846   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6847     _g1h(g1h), _nm(nm) {}
6848 
6849   void do_oop(oop* p)       { do_oop_work(p); }
6850   void do_oop(narrowOop* p) { do_oop_work(p); }
6851 };
6852 
6853 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6854   CollectedHeap::register_nmethod(nm);
6855 
6856   guarantee(nm != NULL, "sanity");
6857   RegisterNMethodOopClosure reg_cl(this, nm);
6858   nm->oops_do(&reg_cl);
6859 }
6860 
6861 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6862   CollectedHeap::unregister_nmethod(nm);
6863 
6864   guarantee(nm != NULL, "sanity");
6865   UnregisterNMethodOopClosure reg_cl(this, nm);
6866   nm->oops_do(&reg_cl, true);
6867 }
6868 
6869 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6870 public:
6871   bool doHeapRegion(HeapRegion *hr) {
6872     assert(!hr->isHumongous(),
6873            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
6874                    HR_FORMAT_PARAMS(hr)));
6875     hr->migrate_strong_code_roots();
6876     return false;
6877   }
6878 };
6879 
6880 void G1CollectedHeap::migrate_strong_code_roots() {
6881   MigrateCodeRootsHeapRegionClosure cl;
6882   double migrate_start = os::elapsedTime();
6883   collection_set_iterate(&cl);
6884   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6885   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6886 }
6887 
6888 void G1CollectedHeap::purge_code_root_memory() {
6889   double purge_start = os::elapsedTime();
6890   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
6891   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6892   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6893 }
6894 
6895 // Mark all the code roots that point into regions *not* in the
6896 // collection set.
6897 //
6898 // Note we do not want to use a "marking" CodeBlobToOopClosure while
6899 // walking the the code roots lists of regions not in the collection
6900 // set. Suppose we have an nmethod (M) that points to objects in two
6901 // separate regions - one in the collection set (R1) and one not (R2).
6902 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
6903 // nmethod M when walking the code roots for R1. When we come to scan
6904 // the code roots for R2, we would see that M is already marked and it
6905 // would be skipped and the objects in R2 that are referenced from M
6906 // would not be evacuated.
6907 
6908 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
6909 
6910   class MarkStrongCodeRootOopClosure: public OopClosure {
6911     ConcurrentMark* _cm;
6912     HeapRegion* _hr;
6913     uint _worker_id;
6914 
6915     template <class T> void do_oop_work(T* p) {
6916       T heap_oop = oopDesc::load_heap_oop(p);
6917       if (!oopDesc::is_null(heap_oop)) {
6918         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6919         // Only mark objects in the region (which is assumed
6920         // to be not in the collection set).
6921         if (_hr->is_in(obj)) {
6922           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
6923         }
6924       }
6925     }
6926 
6927   public:
6928     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
6929       _cm(cm), _hr(hr), _worker_id(worker_id) {
6930       assert(!_hr->in_collection_set(), "sanity");
6931     }
6932 
6933     void do_oop(narrowOop* p) { do_oop_work(p); }
6934     void do_oop(oop* p)       { do_oop_work(p); }
6935   };
6936 
6937   MarkStrongCodeRootOopClosure _oop_cl;
6938 
6939 public:
6940   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
6941     _oop_cl(cm, hr, worker_id) {}
6942 
6943   void do_code_blob(CodeBlob* cb) {
6944     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
6945     if (nm != NULL) {
6946       nm->oops_do(&_oop_cl);
6947     }
6948   }
6949 };
6950 
6951 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
6952   G1CollectedHeap* _g1h;
6953   uint _worker_id;
6954 
6955 public:
6956   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
6957     _g1h(g1h), _worker_id(worker_id) {}
6958 
6959   bool doHeapRegion(HeapRegion *hr) {
6960     HeapRegionRemSet* hrrs = hr->rem_set();
6961     if (hr->continuesHumongous()) {
6962       // Code roots should never be attached to a continuation of a humongous region
6963       assert(hrrs->strong_code_roots_list_length() == 0,
6964              err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6965                      " starting at "HR_FORMAT", but has "SIZE_FORMAT,
6966                      HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
6967                      hrrs->strong_code_roots_list_length()));
6968       return false;
6969     }
6970 
6971     if (hr->in_collection_set()) {
6972       // Don't mark code roots into regions in the collection set here.
6973       // They will be marked when we scan them.
6974       return false;
6975     }
6976 
6977     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
6978     hr->strong_code_roots_do(&cb_cl);
6979     return false;
6980   }
6981 };
6982 
6983 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
6984   MarkStrongCodeRootsHRClosure cl(this, worker_id);
6985   if (G1CollectedHeap::use_parallel_gc_threads()) {
6986     heap_region_par_iterate_chunked(&cl,
6987                                     worker_id,
6988                                     workers()->active_workers(),
6989                                     HeapRegion::ParMarkRootClaimValue);
6990   } else {
6991     heap_region_iterate(&cl);
6992   }
6993 }
6994 
6995 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6996   G1CollectedHeap* _g1h;
6997 
6998 public:
6999   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
7000     _g1h(g1h) {}
7001 
7002   void do_code_blob(CodeBlob* cb) {
7003     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
7004     if (nm == NULL) {
7005       return;
7006     }
7007 
7008     if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
7009       _g1h->register_nmethod(nm);
7010     }
7011   }
7012 };
7013 
7014 void G1CollectedHeap::rebuild_strong_code_roots() {
7015   RebuildStrongCodeRootClosure blob_cl(this);
7016   CodeCache::blobs_do(&blob_cl);
7017 }