1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  29 #include "memory/collectorPolicy.hpp"
  30 #include "memory/generation.hpp"
  31 #include "memory/sharedHeap.hpp"
  32 
  33 class SubTasksDone;
  34 
  35 // A "GenCollectedHeap" is a SharedHeap that uses generational
  36 // collection.  It has two generations, young and old.
  37 class GenCollectedHeap : public SharedHeap {
  38   friend class GenCollectorPolicy;
  39   friend class Generation;
  40   friend class DefNewGeneration;
  41   friend class TenuredGeneration;
  42   friend class ConcurrentMarkSweepGeneration;
  43   friend class CMSCollector;
  44   friend class GenMarkSweep;
  45   friend class VM_GenCollectForAllocation;
  46   friend class VM_GenCollectFull;
  47   friend class VM_GenCollectFullConcurrent;
  48   friend class VM_GC_HeapInspection;
  49   friend class VM_HeapDumper;
  50   friend class HeapInspection;
  51   friend class GCCauseSetter;
  52   friend class VMStructs;
  53 public:
  54   enum SomeConstants {
  55     max_gens = 10
  56   };
  57 
  58   friend class VM_PopulateDumpSharedSpace;
  59 
  60  protected:
  61   // Fields:
  62   static GenCollectedHeap* _gch;
  63 
  64  private:
  65   int _n_gens;
  66 
  67   Generation* _young_gen;
  68   Generation* _old_gen;
  69 
  70   GenerationSpec** _gen_specs;
  71 
  72   // The generational collector policy.
  73   GenCollectorPolicy* _gen_policy;
  74 
  75   // Indicates that the most recent previous incremental collection failed.
  76   // The flag is cleared when an action is taken that might clear the
  77   // condition that caused that incremental collection to fail.
  78   bool _incremental_collection_failed;
  79 
  80   // In support of ExplicitGCInvokesConcurrent functionality
  81   unsigned int _full_collections_completed;
  82 
  83   // Data structure for claiming the (potentially) parallel tasks in
  84   // (gen-specific) roots processing.
  85   SubTasksDone* _gen_process_roots_tasks;
  86   SubTasksDone* gen_process_roots_tasks() { return _gen_process_roots_tasks; }
  87 
  88   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  89                           bool run_verification, bool clear_soft_refs);
  90 
  91   // In block contents verification, the number of header words to skip
  92   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  93 
  94 protected:
  95   // Helper functions for allocation
  96   HeapWord* attempt_allocation(size_t size,
  97                                bool   is_tlab,
  98                                bool   first_only);
  99 
 100   // Helper function for two callbacks below.
 101   // Considers collection of the first max_level+1 generations.
 102   void do_collection(bool   full,
 103                      bool   clear_all_soft_refs,
 104                      size_t size,
 105                      bool   is_tlab,
 106                      int    max_level);
 107 
 108   // Callback from VM_GenCollectForAllocation operation.
 109   // This function does everything necessary/possible to satisfy an
 110   // allocation request that failed in the youngest generation that should
 111   // have handled it (including collection, expansion, etc.)
 112   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 113 
 114   // Callback from VM_GenCollectFull operation.
 115   // Perform a full collection of the first max_level+1 generations.
 116   virtual void do_full_collection(bool clear_all_soft_refs);
 117   void do_full_collection(bool clear_all_soft_refs, int max_level);
 118 
 119   // Does the "cause" of GC indicate that
 120   // we absolutely __must__ clear soft refs?
 121   bool must_clear_all_soft_refs();
 122 
 123 public:
 124   GenCollectedHeap(GenCollectorPolicy *policy);
 125 
 126   GCStats* gc_stats(int level) const;
 127 
 128   // Returns JNI_OK on success
 129   virtual jint initialize();
 130 
 131   char* allocate(size_t alignment,
 132                  size_t* _total_reserved, int* _n_covered_regions,
 133                  ReservedSpace* heap_rs);
 134 
 135   // Does operations required after initialization has been done.
 136   void post_initialize();
 137 
 138   // Initialize ("weak") refs processing support
 139   virtual void ref_processing_init();
 140 
 141   virtual CollectedHeap::Name kind() const {
 142     return CollectedHeap::GenCollectedHeap;
 143   }
 144 
 145   Generation* young_gen() { return _young_gen; }
 146   Generation* old_gen()   { return _old_gen; }
 147 
 148   // The generational collector policy.
 149   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 150 
 151   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
 152 
 153   // Adaptive size policy
 154   virtual AdaptiveSizePolicy* size_policy() {
 155     return gen_policy()->size_policy();
 156   }
 157 
 158   // Return the (conservative) maximum heap alignment
 159   static size_t conservative_max_heap_alignment() {
 160     return Generation::GenGrain;
 161   }
 162 
 163   size_t capacity() const;
 164   size_t used() const;
 165 
 166   // Save the "used_region" for generations level and lower.
 167   void save_used_regions(int level);
 168 
 169   size_t max_capacity() const;
 170 
 171   HeapWord* mem_allocate(size_t size,
 172                          bool*  gc_overhead_limit_was_exceeded);
 173 
 174   // We may support a shared contiguous allocation area, if the youngest
 175   // generation does.
 176   bool supports_inline_contig_alloc() const;
 177   HeapWord** top_addr() const;
 178   HeapWord** end_addr() const;
 179 
 180   // Does this heap support heap inspection? (+PrintClassHistogram)
 181   virtual bool supports_heap_inspection() const { return true; }
 182 
 183   // Perform a full collection of the heap; intended for use in implementing
 184   // "System.gc". This implies as full a collection as the CollectedHeap
 185   // supports. Caller does not hold the Heap_lock on entry.
 186   void collect(GCCause::Cause cause);
 187 
 188   // The same as above but assume that the caller holds the Heap_lock.
 189   void collect_locked(GCCause::Cause cause);
 190 
 191   // Perform a full collection of the first max_level+1 generations.
 192   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 193   void collect(GCCause::Cause cause, int max_level);
 194 
 195   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 196   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 197   // be expensive to compute in general, so, to prevent
 198   // their inadvertent use in product jvm's, we restrict their use to
 199   // assertion checking or verification only.
 200   bool is_in(const void* p) const;
 201 
 202   // override
 203   bool is_in_closed_subset(const void* p) const {
 204     if (UseConcMarkSweepGC) {
 205       return is_in_reserved(p);
 206     } else {
 207       return is_in(p);
 208     }
 209   }
 210 
 211   // Returns true if the reference is to an object in the reserved space
 212   // for the young generation.
 213   // Assumes the the young gen address range is less than that of the old gen.
 214   bool is_in_young(oop p);
 215 
 216 #ifdef ASSERT
 217   virtual bool is_in_partial_collection(const void* p);
 218 #endif
 219 
 220   virtual bool is_scavengable(const void* addr) {
 221     return is_in_young((oop)addr);
 222   }
 223 
 224   // Iteration functions.
 225   void oop_iterate(ExtendedOopClosure* cl);
 226   void object_iterate(ObjectClosure* cl);
 227   void safe_object_iterate(ObjectClosure* cl);
 228   Space* space_containing(const void* addr) const;
 229 
 230   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 231   // each address in the (reserved) heap is a member of exactly
 232   // one block.  The defining characteristic of a block is that it is
 233   // possible to find its size, and thus to progress forward to the next
 234   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 235   // represent Java objects, or they might be free blocks in a
 236   // free-list-based heap (or subheap), as long as the two kinds are
 237   // distinguishable and the size of each is determinable.
 238 
 239   // Returns the address of the start of the "block" that contains the
 240   // address "addr".  We say "blocks" instead of "object" since some heaps
 241   // may not pack objects densely; a chunk may either be an object or a
 242   // non-object.
 243   virtual HeapWord* block_start(const void* addr) const;
 244 
 245   // Requires "addr" to be the start of a chunk, and returns its size.
 246   // "addr + size" is required to be the start of a new chunk, or the end
 247   // of the active area of the heap. Assumes (and verifies in non-product
 248   // builds) that addr is in the allocated part of the heap and is
 249   // the start of a chunk.
 250   virtual size_t block_size(const HeapWord* addr) const;
 251 
 252   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 253   // the block is an object. Assumes (and verifies in non-product
 254   // builds) that addr is in the allocated part of the heap and is
 255   // the start of a chunk.
 256   virtual bool block_is_obj(const HeapWord* addr) const;
 257 
 258   // Section on TLAB's.
 259   virtual bool supports_tlab_allocation() const;
 260   virtual size_t tlab_capacity(Thread* thr) const;
 261   virtual size_t tlab_used(Thread* thr) const;
 262   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 263   virtual HeapWord* allocate_new_tlab(size_t size);
 264 
 265   // Can a compiler initialize a new object without store barriers?
 266   // This permission only extends from the creation of a new object
 267   // via a TLAB up to the first subsequent safepoint.
 268   virtual bool can_elide_tlab_store_barriers() const {
 269     return true;
 270   }
 271 
 272   virtual bool card_mark_must_follow_store() const {
 273     return UseConcMarkSweepGC;
 274   }
 275 
 276   // We don't need barriers for stores to objects in the
 277   // young gen and, a fortiori, for initializing stores to
 278   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
 279   // only and may need to be re-examined in case other
 280   // kinds of collectors are implemented in the future.
 281   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 282     // We wanted to assert that:-
 283     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
 284     //       "Check can_elide_initializing_store_barrier() for this collector");
 285     // but unfortunately the flag UseSerialGC need not necessarily always
 286     // be set when DefNew+Tenured are being used.
 287     return is_in_young(new_obj);
 288   }
 289 
 290   // The "requestor" generation is performing some garbage collection
 291   // action for which it would be useful to have scratch space.  The
 292   // requestor promises to allocate no more than "max_alloc_words" in any
 293   // older generation (via promotion say.)   Any blocks of space that can
 294   // be provided are returned as a list of ScratchBlocks, sorted by
 295   // decreasing size.
 296   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 297   // Allow each generation to reset any scratch space that it has
 298   // contributed as it needs.
 299   void release_scratch();
 300 
 301   // Ensure parsability: override
 302   virtual void ensure_parsability(bool retire_tlabs);
 303 
 304   // Time in ms since the longest time a collector ran in
 305   // in any generation.
 306   virtual jlong millis_since_last_gc();
 307 
 308   // Total number of full collections completed.
 309   unsigned int total_full_collections_completed() {
 310     assert(_full_collections_completed <= _total_full_collections,
 311            "Can't complete more collections than were started");
 312     return _full_collections_completed;
 313   }
 314 
 315   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 316   unsigned int update_full_collections_completed();
 317   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 318   unsigned int update_full_collections_completed(unsigned int count);
 319 
 320   // Update "time of last gc" for all generations to "now".
 321   void update_time_of_last_gc(jlong now) {
 322     _young_gen->update_time_of_last_gc(now);
 323     _old_gen->update_time_of_last_gc(now);
 324   }
 325 
 326   // Update the gc statistics for each generation.
 327   // "level" is the level of the latest collection.
 328   void update_gc_stats(int current_level, bool full) {
 329     _young_gen->update_gc_stats(current_level, full);
 330     _old_gen->update_gc_stats(current_level, full);
 331   }
 332 
 333   // Override.
 334   bool no_gc_in_progress() { return !is_gc_active(); }
 335 
 336   // Override.
 337   void prepare_for_verify();
 338 
 339   // Override.
 340   void verify(bool silent, VerifyOption option);
 341 
 342   // Override.
 343   virtual void print_on(outputStream* st) const;
 344   virtual void print_gc_threads_on(outputStream* st) const;
 345   virtual void gc_threads_do(ThreadClosure* tc) const;
 346   virtual void print_tracing_info() const;
 347   virtual void print_on_error(outputStream* st) const;
 348 
 349   // PrintGC, PrintGCDetails support
 350   void print_heap_change(size_t prev_used) const;
 351 
 352   // The functions below are helper functions that a subclass of
 353   // "CollectedHeap" can use in the implementation of its virtual
 354   // functions.
 355 
 356   class GenClosure : public StackObj {
 357    public:
 358     virtual void do_generation(Generation* gen) = 0;
 359   };
 360 
 361   // Apply "cl.do_generation" to all generations in the heap
 362   // If "old_to_young" determines the order.
 363   void generation_iterate(GenClosure* cl, bool old_to_young);
 364 
 365   void space_iterate(SpaceClosure* cl);
 366 
 367   // Return "true" if all generations have reached the
 368   // maximal committed limit that they can reach, without a garbage
 369   // collection.
 370   virtual bool is_maximal_no_gc() const;
 371 
 372   // Return the generation before "gen".
 373   Generation* prev_gen(Generation* gen) const {
 374     int l = gen->level();
 375     guarantee(l == 1, "Out of bounds");
 376     return _young_gen;
 377   }
 378 
 379   // Return the generation after "gen".
 380   Generation* next_gen(Generation* gen) const {
 381     int l = gen->level() + 1;
 382     guarantee(l == 1, "Out of bounds");
 383     return _old_gen;
 384   }
 385 
 386   Generation* get_gen(int i) const {
 387     guarantee(i >= 0 && i < _n_gens, "Out of bounds");
 388     if (i == 0) return _young_gen;
 389     else return _old_gen;
 390   }
 391 
 392   int n_gens() const {
 393     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
 394     return _n_gens;
 395   }
 396 
 397   // Convenience function to be used in situations where the heap type can be
 398   // asserted to be this type.
 399   static GenCollectedHeap* heap();
 400 
 401   void set_par_threads(uint t);
 402 
 403   // Invoke the "do_oop" method of one of the closures "not_older_gens"
 404   // or "older_gens" on root locations for the generation at
 405   // "level".  (The "older_gens" closure is used for scanning references
 406   // from older generations; "not_older_gens" is used everywhere else.)
 407   // If "younger_gens_as_roots" is false, younger generations are
 408   // not scanned as roots; in this case, the caller must be arranging to
 409   // scan the younger generations itself.  (For example, a generation might
 410   // explicitly mark reachable objects in younger generations, to avoid
 411   // excess storage retention.)
 412   // The "so" argument determines which of the roots
 413   // the closure is applied to:
 414   // "SO_None" does none;
 415  private:
 416   void gen_process_roots(int level,
 417                          bool younger_gens_as_roots,
 418                          bool activate_scope,
 419                          SharedHeap::ScanningOption so,
 420                          OopsInGenClosure* not_older_gens,
 421                          OopsInGenClosure* weak_roots,
 422                          OopsInGenClosure* older_gens,
 423                          CLDClosure* cld_closure,
 424                          CLDClosure* weak_cld_closure,
 425                          CodeBlobClosure* code_closure);
 426 
 427  public:
 428   static const bool StrongAndWeakRoots = false;
 429   static const bool StrongRootsOnly    = true;
 430 
 431   void gen_process_roots(int level,
 432                          bool younger_gens_as_roots,
 433                          bool activate_scope,
 434                          SharedHeap::ScanningOption so,
 435                          bool only_strong_roots,
 436                          OopsInGenClosure* not_older_gens,
 437                          OopsInGenClosure* older_gens,
 438                          CLDClosure* cld_closure);
 439 
 440   // Apply "root_closure" to all the weak roots of the system.
 441   // These include JNI weak roots, string table,
 442   // and referents of reachable weak refs.
 443   void gen_process_weak_roots(OopClosure* root_closure);
 444 
 445   // Set the saved marks of generations, if that makes sense.
 446   // In particular, if any generation might iterate over the oops
 447   // in other generations, it should call this method.
 448   void save_marks();
 449 
 450   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 451   // allocated since the last call to save_marks in generations at or above
 452   // "level".  The "cur" closure is
 453   // applied to references in the generation at "level", and the "older"
 454   // closure to older generations.
 455 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 456   void oop_since_save_marks_iterate(int level,                          \
 457                                     OopClosureType* cur,                \
 458                                     OopClosureType* older);
 459 
 460   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 461 
 462 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 463 
 464   // Returns "true" iff no allocations have occurred in any generation at
 465   // "level" or above since the last
 466   // call to "save_marks".
 467   bool no_allocs_since_save_marks(int level);
 468 
 469   // Returns true if an incremental collection is likely to fail.
 470   // We optionally consult the young gen, if asked to do so;
 471   // otherwise we base our answer on whether the previous incremental
 472   // collection attempt failed with no corrective action as of yet.
 473   bool incremental_collection_will_fail(bool consult_young) {
 474     // Assumes a 2-generation system; the first disjunct remembers if an
 475     // incremental collection failed, even when we thought (second disjunct)
 476     // that it would not.
 477     assert(heap()->collector_policy()->is_generation_policy(),
 478            "the following definition may not be suitable for an n(>2)-generation system");
 479     return incremental_collection_failed() ||
 480            (consult_young && !get_gen(0)->collection_attempt_is_safe());
 481   }
 482 
 483   // If a generation bails out of an incremental collection,
 484   // it sets this flag.
 485   bool incremental_collection_failed() const {
 486     return _incremental_collection_failed;
 487   }
 488   void set_incremental_collection_failed() {
 489     _incremental_collection_failed = true;
 490   }
 491   void clear_incremental_collection_failed() {
 492     _incremental_collection_failed = false;
 493   }
 494 
 495   // Promotion of obj into gen failed.  Try to promote obj to higher
 496   // gens in ascending order; return the new location of obj if successful.
 497   // Otherwise, try expand-and-allocate for obj in both the young and old
 498   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 499   oop handle_failed_promotion(Generation* old_gen,
 500                               oop obj,
 501                               size_t obj_size);
 502 
 503 private:
 504   // Accessor for memory state verification support
 505   NOT_PRODUCT(
 506     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 507   )
 508 
 509   // Override
 510   void check_for_non_bad_heap_word_value(HeapWord* addr,
 511     size_t size) PRODUCT_RETURN;
 512 
 513   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 514   // in an essential way: compaction is performed across generations, by
 515   // iterating over spaces.
 516   void prepare_for_compaction();
 517 
 518   // Perform a full collection of the first max_level+1 generations.
 519   // This is the low level interface used by the public versions of
 520   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 521   void collect_locked(GCCause::Cause cause, int max_level);
 522 
 523   // Returns success or failure.
 524   bool create_cms_collector();
 525 
 526   // In support of ExplicitGCInvokesConcurrent functionality
 527   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 528   void collect_mostly_concurrent(GCCause::Cause cause);
 529 
 530   // Save the tops of the spaces in all generations
 531   void record_gen_tops_before_GC() PRODUCT_RETURN;
 532 
 533 protected:
 534   virtual void gc_prologue(bool full);
 535   virtual void gc_epilogue(bool full);
 536 };
 537 
 538 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP