src/share/vm/memory/defNewGeneration.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File hotspot Sdiff src/share/vm/memory

src/share/vm/memory/defNewGeneration.cpp

Print this page
rev 7211 : [mq]: remove_ngen
rev 7212 : [mq]: remove_get_gen
rev 7213 : imported patch move_genspecs
rev 7215 : imported patch remove_levels
rev 7216 : imported patch cleanup


  39 #include "memory/iterator.hpp"
  40 #include "memory/referencePolicy.hpp"
  41 #include "memory/space.inline.hpp"
  42 #include "oops/instanceRefKlass.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/atomic.inline.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/prefetch.inline.hpp"
  47 #include "runtime/thread.inline.hpp"
  48 #include "utilities/copy.hpp"
  49 #include "utilities/globalDefinitions.hpp"
  50 #include "utilities/stack.inline.hpp"
  51 
  52 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  53 
  54 //
  55 // DefNewGeneration functions.
  56 
  57 // Methods of protected closure types.
  58 
  59 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
  60   assert(g->level() == 0, "Optimized for youngest gen.");
  61 }
  62 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  63   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
  64 }
  65 
  66 DefNewGeneration::KeepAliveClosure::
  67 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  68   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
  69   _rs = (CardTableRS*)rs;
  70 }
  71 
  72 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  73 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  74 
  75 
  76 DefNewGeneration::FastKeepAliveClosure::
  77 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  78   DefNewGeneration::KeepAliveClosure(cl) {
  79   _boundary = g->reserved().end();
  80 }
  81 
  82 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  83 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  84 
  85 DefNewGeneration::EvacuateFollowersClosure::
  86 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  87                          ScanClosure* cur, ScanClosure* older) :
  88   _gch(gch), _level(level),
  89   _scan_cur_or_nonheap(cur), _scan_older(older)
  90 {}
  91 
  92 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  93   do {
  94     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
  95                                        _scan_older);
  96   } while (!_gch->no_allocs_since_save_marks(_level));
  97 }
  98 
  99 DefNewGeneration::FastEvacuateFollowersClosure::
 100 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
 101                              DefNewGeneration* gen,
 102                              FastScanClosure* cur, FastScanClosure* older) :
 103   _gch(gch), _level(level), _gen(gen),
 104   _scan_cur_or_nonheap(cur), _scan_older(older)
 105 {}
 106 
 107 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 108   do {
 109     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
 110                                        _scan_older);
 111   } while (!_gch->no_allocs_since_save_marks(_level));
 112   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 113 }
 114 
 115 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 116     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 117 {
 118   assert(_g->level() == 0, "Optimized for youngest generation");
 119   _boundary = _g->reserved().end();
 120 }
 121 
 122 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 123 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 124 
 125 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 126     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 127 {
 128   assert(_g->level() == 0, "Optimized for youngest generation");
 129   _boundary = _g->reserved().end();
 130 }
 131 
 132 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 133 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 134 
 135 void KlassScanClosure::do_klass(Klass* klass) {
 136 #ifndef PRODUCT
 137   if (TraceScavenge) {
 138     ResourceMark rm;
 139     gclog_or_tty->print_cr("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 140                            klass,
 141                            klass->external_name(),
 142                            klass->has_modified_oops() ? "true" : "false");
 143   }
 144 #endif
 145 
 146   // If the klass has not been dirtied we know that there's
 147   // no references into  the young gen and we can skip it.
 148   if (klass->has_modified_oops()) {
 149     if (_accumulate_modified_oops) {
 150       klass->accumulate_modified_oops();
 151     }
 152 
 153     // Clear this state since we're going to scavenge all the metadata.
 154     klass->clear_modified_oops();
 155 
 156     // Tell the closure which Klass is being scanned so that it can be dirtied
 157     // if oops are left pointing into the young gen.
 158     _scavenge_closure->set_scanned_klass(klass);
 159 
 160     klass->oops_do(_scavenge_closure);
 161 
 162     _scavenge_closure->set_scanned_klass(NULL);
 163   }
 164 }
 165 
 166 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 167   _g(g)
 168 {
 169   assert(_g->level() == 0, "Optimized for youngest generation");
 170   _boundary = _g->reserved().end();
 171 }
 172 
 173 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 174 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 175 
 176 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 177 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 178 
 179 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 180                                    KlassRemSet* klass_rem_set)
 181     : _scavenge_closure(scavenge_closure),
 182       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 183 
 184 
 185 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 186                                    size_t initial_size,
 187                                    int level,
 188                                    const char* policy)
 189   : Generation(rs, initial_size, level),
 190     _promo_failure_drain_in_progress(false),
 191     _should_allocate_from_space(false)
 192 {
 193   MemRegion cmr((HeapWord*)_virtual_space.low(),
 194                 (HeapWord*)_virtual_space.high());
 195   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 196 
 197   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
 198     _eden_space = new ConcEdenSpace(this);
 199   } else {
 200     _eden_space = new EdenSpace(this);
 201   }
 202   _from_space = new ContiguousSpace();
 203   _to_space   = new ContiguousSpace();
 204 
 205   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
 206     vm_exit_during_initialization("Could not allocate a new gen space");
 207 
 208   // Compute the maximum eden and survivor space sizes. These sizes
 209   // are computed assuming the entire reserved space is committed.


 213   _max_survivor_size = compute_survivor_size(size, alignment);
 214   _max_eden_size = size - (2*_max_survivor_size);
 215 
 216   // allocate the performance counters
 217   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 218 
 219   // Generation counters -- generation 0, 3 subspaces
 220   _gen_counters = new GenerationCounters("new", 0, 3,
 221       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 222   _gc_counters = new CollectorCounters(policy, 0);
 223 
 224   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 225                                       _gen_counters);
 226   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 227                                       _gen_counters);
 228   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 229                                     _gen_counters);
 230 
 231   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 232   update_counters();
 233   _next_gen = NULL;
 234   _tenuring_threshold = MaxTenuringThreshold;
 235   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 236 
 237   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 238 }
 239 
 240 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 241                                                 bool clear_space,
 242                                                 bool mangle_space) {
 243   uintx alignment =
 244     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 245 
 246   // If the spaces are being cleared (only done at heap initialization
 247   // currently), the survivor spaces need not be empty.
 248   // Otherwise, no care is taken for used areas in the survivor spaces
 249   // so check.
 250   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 251     "Initialization of the survivor spaces assumes these are empty");
 252 
 253   // Compute sizes


 365   if (GC_locker::is_active()) {
 366     if (PrintGC && Verbose) {
 367       gclog_or_tty->print_cr("Garbage collection disabled, "
 368         "expanded heap instead");
 369     }
 370   }
 371 
 372   return success;
 373 }
 374 
 375 
 376 void DefNewGeneration::compute_new_size() {
 377   // This is called after a gc that includes the following generation
 378   // (which is required to exist.)  So from-space will normally be empty.
 379   // Note that we check both spaces, since if scavenge failed they revert roles.
 380   // If not we bail out (otherwise we would have to relocate the objects)
 381   if (!from()->is_empty() || !to()->is_empty()) {
 382     return;
 383   }
 384 
 385   int next_level = level() + 1;
 386   GenCollectedHeap* gch = GenCollectedHeap::heap();
 387   assert(next_level < gch->_n_gens,
 388          "DefNewGeneration cannot be an oldest gen");
 389 
 390   Generation* next_gen = gch->_gens[next_level];
 391   size_t old_size = next_gen->capacity();
 392   size_t new_size_before = _virtual_space.committed_size();
 393   size_t min_new_size = spec()->init_size();
 394   size_t max_new_size = reserved().byte_size();
 395   assert(min_new_size <= new_size_before &&
 396          new_size_before <= max_new_size,
 397          "just checking");
 398   // All space sizes must be multiples of Generation::GenGrain.
 399   size_t alignment = Generation::GenGrain;
 400 
 401   // Compute desired new generation size based on NewRatio and
 402   // NewSizeThreadIncrease
 403   size_t desired_new_size = old_size/NewRatio;
 404   int threads_count = Threads::number_of_non_daemon_threads();
 405   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 406   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 407 
 408   // Adjust new generation size
 409   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 410   assert(desired_new_size <= max_new_size, "just checking");
 411 


 555 }
 556 
 557 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 558   // Set the desired survivor size to half the real survivor space
 559   _tenuring_threshold =
 560     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
 561 }
 562 
 563 void DefNewGeneration::collect(bool   full,
 564                                bool   clear_all_soft_refs,
 565                                size_t size,
 566                                bool   is_tlab) {
 567   assert(full || size > 0, "otherwise we don't want to collect");
 568 
 569   GenCollectedHeap* gch = GenCollectedHeap::heap();
 570 
 571   _gc_timer->register_gc_start();
 572   DefNewTracer gc_tracer;
 573   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 574 
 575   _next_gen = gch->next_gen(this);
 576 
 577   // If the next generation is too full to accommodate promotion
 578   // from this generation, pass on collection; let the next generation
 579   // do it.
 580   if (!collection_attempt_is_safe()) {
 581     if (Verbose && PrintGCDetails) {
 582       gclog_or_tty->print(" :: Collection attempt not safe :: ");
 583     }
 584     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 585     return;
 586   }
 587   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 588 
 589   init_assuming_no_promotion_failure();
 590 
 591   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
 592   // Capture heap used before collection (for printing).
 593   size_t gch_prev_used = gch->used();
 594 
 595   gch->trace_heap_before_gc(&gc_tracer);
 596 
 597   SpecializationStats::clear();
 598 
 599   // These can be shared for all code paths
 600   IsAliveClosure is_alive(this);
 601   ScanWeakRefClosure scan_weak_ref(this);
 602 
 603   age_table()->clear();
 604   to()->clear(SpaceDecorator::Mangle);
 605 
 606   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 607 
 608   assert(gch->no_allocs_since_save_marks(0),
 609          "save marks have not been newly set.");
 610 
 611   // Not very pretty.
 612   CollectorPolicy* cp = gch->collector_policy();
 613 
 614   FastScanClosure fsc_with_no_gc_barrier(this, false);
 615   FastScanClosure fsc_with_gc_barrier(this, true);
 616 
 617   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 618                                       gch->rem_set()->klass_rem_set());
 619   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 620                                            &fsc_with_no_gc_barrier,
 621                                            false);
 622 
 623   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 624   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
 625                                                   &fsc_with_no_gc_barrier,
 626                                                   &fsc_with_gc_barrier);
 627 
 628   assert(gch->no_allocs_since_save_marks(0),
 629          "save marks have not been newly set.");
 630 
 631   gch->gen_process_roots(_level,
 632                          true,  // Process younger gens, if any,
 633                                 // as strong roots.
 634                          true,  // activate StrongRootsScope
 635                          SharedHeap::SO_ScavengeCodeCache,
 636                          GenCollectedHeap::StrongAndWeakRoots,
 637                          &fsc_with_no_gc_barrier,
 638                          &fsc_with_gc_barrier,
 639                          &cld_scan_closure);
 640 
 641   // "evacuate followers".
 642   evacuate_followers.do_void();
 643 
 644   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 645   ReferenceProcessor* rp = ref_processor();
 646   rp->setup_policy(clear_all_soft_refs);
 647   const ReferenceProcessorStats& stats =
 648   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 649                                     NULL, _gc_timer, gc_tracer.gc_id());
 650   gc_tracer.report_gc_reference_stats(stats);
 651 


 675     size_policy->reset_gc_overhead_limit_count();
 676     assert(!gch->incremental_collection_failed(), "Should be clear");
 677   } else {
 678     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 679     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 680 
 681     remove_forwarding_pointers();
 682     if (PrintGCDetails) {
 683       gclog_or_tty->print(" (promotion failed) ");
 684     }
 685     // Add to-space to the list of space to compact
 686     // when a promotion failure has occurred.  In that
 687     // case there can be live objects in to-space
 688     // as a result of a partial evacuation of eden
 689     // and from-space.
 690     swap_spaces();   // For uniformity wrt ParNewGeneration.
 691     from()->set_next_compaction_space(to());
 692     gch->set_incremental_collection_failed();
 693 
 694     // Inform the next generation that a promotion failure occurred.
 695     _next_gen->promotion_failure_occurred();
 696     gc_tracer.report_promotion_failed(_promotion_failed_info);
 697 
 698     // Reset the PromotionFailureALot counters.
 699     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 700   }
 701   if (PrintGC && !PrintGCDetails) {
 702     gch->print_heap_change(gch_prev_used);
 703   }
 704   // set new iteration safe limit for the survivor spaces
 705   from()->set_concurrent_iteration_safe_limit(from()->top());
 706   to()->set_concurrent_iteration_safe_limit(to()->top());
 707   SpecializationStats::print();
 708 
 709   // We need to use a monotonically non-decreasing time in ms
 710   // or we will see time-warp warnings and os::javaTimeMillis()
 711   // does not guarantee monotonicity.
 712   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 713   update_time_of_last_gc(now);
 714 
 715   gch->trace_heap_after_gc(&gc_tracer);


 780     // prevent recursion in copy_to_survivor_space()
 781     _promo_failure_drain_in_progress = true;
 782     drain_promo_failure_scan_stack();
 783     _promo_failure_drain_in_progress = false;
 784   }
 785 }
 786 
 787 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 788   assert(is_in_reserved(old) && !old->is_forwarded(),
 789          "shouldn't be scavenging this oop");
 790   size_t s = old->size();
 791   oop obj = NULL;
 792 
 793   // Try allocating obj in to-space (unless too old)
 794   if (old->age() < tenuring_threshold()) {
 795     obj = (oop) to()->allocate_aligned(s);
 796   }
 797 
 798   // Otherwise try allocating obj tenured
 799   if (obj == NULL) {
 800     obj = _next_gen->promote(old, s);
 801     if (obj == NULL) {
 802       handle_promotion_failure(old);
 803       return old;
 804     }
 805   } else {
 806     // Prefetch beyond obj
 807     const intx interval = PrefetchCopyIntervalInBytes;
 808     Prefetch::write(obj, interval);
 809 
 810     // Copy obj
 811     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 812 
 813     // Increment age if obj still in new generation
 814     obj->incr_age();
 815     age_table()->add(obj, s);
 816   }
 817 
 818   // Done, insert forward pointer to obj in this header
 819   old->forward_to(obj);
 820 


 849 }
 850 
 851 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 852                                                                 \
 853 void DefNewGeneration::                                         \
 854 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 855   cl->set_generation(this);                                     \
 856   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 857   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 858   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 859   cl->reset_generation();                                       \
 860   save_marks();                                                 \
 861 }
 862 
 863 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 864 
 865 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 866 
 867 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 868                                          size_t max_alloc_words) {
 869   if (requestor == this || _promotion_failed) return;
 870   assert(requestor->level() > level(), "DefNewGeneration must be youngest");


 871 
 872   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 873   if (to_space->top() > to_space->bottom()) {
 874     trace("to_space not empty when contribute_scratch called");
 875   }
 876   */
 877 
 878   ContiguousSpace* to_space = to();
 879   assert(to_space->end() >= to_space->top(), "pointers out of order");
 880   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 881   if (free_words >= MinFreeScratchWords) {
 882     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 883     sb->num_words = free_words;
 884     sb->next = list;
 885     list = sb;
 886   }
 887 }
 888 
 889 void DefNewGeneration::reset_scratch() {
 890   // If contributing scratch in to_space, mangle all of
 891   // to_space if ZapUnusedHeapArea.  This is needed because
 892   // top is not maintained while using to-space as scratch.
 893   if (ZapUnusedHeapArea) {
 894     to()->mangle_unused_area_complete();
 895   }
 896 }
 897 
 898 bool DefNewGeneration::collection_attempt_is_safe() {
 899   if (!to()->is_empty()) {
 900     if (Verbose && PrintGCDetails) {
 901       gclog_or_tty->print(" :: to is not empty :: ");
 902     }
 903     return false;
 904   }
 905   if (_next_gen == NULL) {
 906     GenCollectedHeap* gch = GenCollectedHeap::heap();
 907     _next_gen = gch->next_gen(this);
 908   }
 909   return _next_gen->promotion_attempt_is_safe(used());
 910 }
 911 
 912 void DefNewGeneration::gc_epilogue(bool full) {
 913   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 914 
 915   assert(!GC_locker::is_active(), "We should not be executing here");
 916   // Check if the heap is approaching full after a collection has
 917   // been done.  Generally the young generation is empty at
 918   // a minimum at the end of a collection.  If it is not, then
 919   // the heap is approaching full.
 920   GenCollectedHeap* gch = GenCollectedHeap::heap();
 921   if (full) {
 922     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 923     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 924       if (Verbose && PrintGCDetails) {
 925         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 926                             GCCause::to_string(gch->gc_cause()));
 927       }
 928       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 929       set_should_allocate_from_space(); // we seem to be running out of space


1009 void DefNewGeneration::print_on(outputStream* st) const {
1010   Generation::print_on(st);
1011   st->print("  eden");
1012   eden()->print_on(st);
1013   st->print("  from");
1014   from()->print_on(st);
1015   st->print("  to  ");
1016   to()->print_on(st);
1017 }
1018 
1019 
1020 const char* DefNewGeneration::name() const {
1021   return "def new generation";
1022 }
1023 
1024 // Moved from inline file as they are not called inline
1025 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1026   return eden();
1027 }
1028 
1029 HeapWord* DefNewGeneration::allocate(size_t word_size,
1030                                      bool is_tlab) {
1031   // This is the slow-path allocation for the DefNewGeneration.
1032   // Most allocations are fast-path in compiled code.
1033   // We try to allocate from the eden.  If that works, we are happy.
1034   // Note that since DefNewGeneration supports lock-free allocation, we
1035   // have to use it here, as well.
1036   HeapWord* result = eden()->par_allocate(word_size);
1037   if (result != NULL) {
1038     if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1039       _next_gen->sample_eden_chunk();
1040     }
1041     return result;
1042   }
1043   do {
1044     HeapWord* old_limit = eden()->soft_end();
1045     if (old_limit < eden()->end()) {
1046       // Tell the next generation we reached a limit.
1047       HeapWord* new_limit =
1048         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
1049       if (new_limit != NULL) {
1050         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
1051       } else {
1052         assert(eden()->soft_end() == eden()->end(),
1053                "invalid state after allocation_limit_reached returned null");
1054       }
1055     } else {
1056       // The allocation failed and the soft limit is equal to the hard limit,
1057       // there are no reasons to do an attempt to allocate
1058       assert(old_limit == eden()->end(), "sanity check");
1059       break;
1060     }
1061     // Try to allocate until succeeded or the soft limit can't be adjusted
1062     result = eden()->par_allocate(word_size);
1063   } while (result == NULL);
1064 
1065   // If the eden is full and the last collection bailed out, we are running
1066   // out of heap space, and we try to allocate the from-space, too.
1067   // allocate_from_space can't be inlined because that would introduce a
1068   // circular dependency at compile time.
1069   if (result == NULL) {
1070     result = allocate_from_space(word_size);
1071   } else if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1072     _next_gen->sample_eden_chunk();
1073   }
1074   return result;
1075 }
1076 
1077 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1078                                          bool is_tlab) {
1079   HeapWord* res = eden()->par_allocate(word_size);
1080   if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1081     _next_gen->sample_eden_chunk();
1082   }
1083   return res;
1084 }
1085 
1086 void DefNewGeneration::gc_prologue(bool full) {
1087   // Ensure that _end and _soft_end are the same in eden space.
1088   eden()->set_soft_end(eden()->end());
1089 }
1090 
1091 size_t DefNewGeneration::tlab_capacity() const {
1092   return eden()->capacity();
1093 }
1094 
1095 size_t DefNewGeneration::tlab_used() const {
1096   return eden()->used();
1097 }
1098 
1099 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1100   return unsafe_max_alloc_nogc();
1101 }


  39 #include "memory/iterator.hpp"
  40 #include "memory/referencePolicy.hpp"
  41 #include "memory/space.inline.hpp"
  42 #include "oops/instanceRefKlass.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/atomic.inline.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/prefetch.inline.hpp"
  47 #include "runtime/thread.inline.hpp"
  48 #include "utilities/copy.hpp"
  49 #include "utilities/globalDefinitions.hpp"
  50 #include "utilities/stack.inline.hpp"
  51 
  52 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  53 
  54 //
  55 // DefNewGeneration functions.
  56 
  57 // Methods of protected closure types.
  58 
  59 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) { }


  60 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  61   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
  62 }
  63 
  64 DefNewGeneration::KeepAliveClosure::
  65 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  66   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
  67   _rs = (CardTableRS*)rs;
  68 }
  69 
  70 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  71 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  72 
  73 
  74 DefNewGeneration::FastKeepAliveClosure::
  75 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  76   DefNewGeneration::KeepAliveClosure(cl) {
  77   _boundary = g->reserved().end();
  78 }
  79 
  80 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  81 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  82 
  83 DefNewGeneration::EvacuateFollowersClosure::
  84 EvacuateFollowersClosure(GenCollectedHeap* gch,
  85                          ScanClosure* cur, ScanClosure* older) :
  86   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)

  87 {}
  88 
  89 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  90   do {
  91     _gch->oop_since_save_marks_iterate(Generation::Young, _scan_cur_or_nonheap,
  92                                        _scan_older);
  93   } while (!_gch->no_allocs_since_save_marks(Generation::Young));
  94 }
  95 
  96 DefNewGeneration::FastEvacuateFollowersClosure::
  97 FastEvacuateFollowersClosure(GenCollectedHeap* gch,
  98                              DefNewGeneration* gen,
  99                              FastScanClosure* cur, FastScanClosure* older) :
 100   _gch(gch), _gen(gen), _scan_cur_or_nonheap(cur), _scan_older(older)

 101 {}
 102 
 103 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 104   do {
 105     _gch->oop_since_save_marks_iterate(Generation::Young, _scan_cur_or_nonheap,
 106                                        _scan_older);
 107   } while (!_gch->no_allocs_since_save_marks(Generation::Young));
 108   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 109 }
 110 
 111 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 112     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 113 {

 114   _boundary = _g->reserved().end();
 115 }
 116 
 117 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 118 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 119 
 120 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 121     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 122 {

 123   _boundary = _g->reserved().end();
 124 }
 125 
 126 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 127 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 128 
 129 void KlassScanClosure::do_klass(Klass* klass) {
 130 #ifndef PRODUCT
 131   if (TraceScavenge) {
 132     ResourceMark rm;
 133     gclog_or_tty->print_cr("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 134                            klass,
 135                            klass->external_name(),
 136                            klass->has_modified_oops() ? "true" : "false");
 137   }
 138 #endif
 139 
 140   // If the klass has not been dirtied we know that there's
 141   // no references into  the young gen and we can skip it.
 142   if (klass->has_modified_oops()) {
 143     if (_accumulate_modified_oops) {
 144       klass->accumulate_modified_oops();
 145     }
 146 
 147     // Clear this state since we're going to scavenge all the metadata.
 148     klass->clear_modified_oops();
 149 
 150     // Tell the closure which Klass is being scanned so that it can be dirtied
 151     // if oops are left pointing into the young gen.
 152     _scavenge_closure->set_scanned_klass(klass);
 153 
 154     klass->oops_do(_scavenge_closure);
 155 
 156     _scavenge_closure->set_scanned_klass(NULL);
 157   }
 158 }
 159 
 160 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 161   _g(g)
 162 {

 163   _boundary = _g->reserved().end();
 164 }
 165 
 166 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 167 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 168 
 169 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 170 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 171 
 172 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 173                                    KlassRemSet* klass_rem_set)
 174     : _scavenge_closure(scavenge_closure),
 175       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 176 
 177 
 178 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 179                                    size_t initial_size,

 180                                    const char* policy)
 181   : Generation(rs, initial_size),
 182     _promo_failure_drain_in_progress(false),
 183     _should_allocate_from_space(false)
 184 {
 185   MemRegion cmr((HeapWord*)_virtual_space.low(),
 186                 (HeapWord*)_virtual_space.high());
 187   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 188 
 189   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
 190     _eden_space = new ConcEdenSpace(this);
 191   } else {
 192     _eden_space = new EdenSpace(this);
 193   }
 194   _from_space = new ContiguousSpace();
 195   _to_space   = new ContiguousSpace();
 196 
 197   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
 198     vm_exit_during_initialization("Could not allocate a new gen space");
 199 
 200   // Compute the maximum eden and survivor space sizes. These sizes
 201   // are computed assuming the entire reserved space is committed.


 205   _max_survivor_size = compute_survivor_size(size, alignment);
 206   _max_eden_size = size - (2*_max_survivor_size);
 207 
 208   // allocate the performance counters
 209   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 210 
 211   // Generation counters -- generation 0, 3 subspaces
 212   _gen_counters = new GenerationCounters("new", 0, 3,
 213       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 214   _gc_counters = new CollectorCounters(policy, 0);
 215 
 216   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 217                                       _gen_counters);
 218   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 219                                       _gen_counters);
 220   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 221                                     _gen_counters);
 222 
 223   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 224   update_counters();
 225   _old_gen = NULL;
 226   _tenuring_threshold = MaxTenuringThreshold;
 227   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 228 
 229   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 230 }
 231 
 232 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 233                                                 bool clear_space,
 234                                                 bool mangle_space) {
 235   uintx alignment =
 236     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 237 
 238   // If the spaces are being cleared (only done at heap initialization
 239   // currently), the survivor spaces need not be empty.
 240   // Otherwise, no care is taken for used areas in the survivor spaces
 241   // so check.
 242   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 243     "Initialization of the survivor spaces assumes these are empty");
 244 
 245   // Compute sizes


 357   if (GC_locker::is_active()) {
 358     if (PrintGC && Verbose) {
 359       gclog_or_tty->print_cr("Garbage collection disabled, "
 360         "expanded heap instead");
 361     }
 362   }
 363 
 364   return success;
 365 }
 366 
 367 
 368 void DefNewGeneration::compute_new_size() {
 369   // This is called after a gc that includes the following generation
 370   // (which is required to exist.)  So from-space will normally be empty.
 371   // Note that we check both spaces, since if scavenge failed they revert roles.
 372   // If not we bail out (otherwise we would have to relocate the objects)
 373   if (!from()->is_empty() || !to()->is_empty()) {
 374     return;
 375   }
 376 

 377   GenCollectedHeap* gch = GenCollectedHeap::heap();


 378 
 379   size_t old_size = gch->old_gen()->capacity();

 380   size_t new_size_before = _virtual_space.committed_size();
 381   size_t min_new_size = spec()->init_size();
 382   size_t max_new_size = reserved().byte_size();
 383   assert(min_new_size <= new_size_before &&
 384          new_size_before <= max_new_size,
 385          "just checking");
 386   // All space sizes must be multiples of Generation::GenGrain.
 387   size_t alignment = Generation::GenGrain;
 388 
 389   // Compute desired new generation size based on NewRatio and
 390   // NewSizeThreadIncrease
 391   size_t desired_new_size = old_size/NewRatio;
 392   int threads_count = Threads::number_of_non_daemon_threads();
 393   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 394   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 395 
 396   // Adjust new generation size
 397   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 398   assert(desired_new_size <= max_new_size, "just checking");
 399 


 543 }
 544 
 545 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 546   // Set the desired survivor size to half the real survivor space
 547   _tenuring_threshold =
 548     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
 549 }
 550 
 551 void DefNewGeneration::collect(bool   full,
 552                                bool   clear_all_soft_refs,
 553                                size_t size,
 554                                bool   is_tlab) {
 555   assert(full || size > 0, "otherwise we don't want to collect");
 556 
 557   GenCollectedHeap* gch = GenCollectedHeap::heap();
 558 
 559   _gc_timer->register_gc_start();
 560   DefNewTracer gc_tracer;
 561   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 562 
 563   _old_gen = gch->old_gen();
 564 
 565   // If the next generation is too full to accommodate promotion
 566   // from this generation, pass on collection; let the next generation
 567   // do it.
 568   if (!collection_attempt_is_safe()) {
 569     if (Verbose && PrintGCDetails) {
 570       gclog_or_tty->print(" :: Collection attempt not safe :: ");
 571     }
 572     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 573     return;
 574   }
 575   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 576 
 577   init_assuming_no_promotion_failure();
 578 
 579   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
 580   // Capture heap used before collection (for printing).
 581   size_t gch_prev_used = gch->used();
 582 
 583   gch->trace_heap_before_gc(&gc_tracer);
 584 
 585   SpecializationStats::clear();
 586 
 587   // These can be shared for all code paths
 588   IsAliveClosure is_alive(this);
 589   ScanWeakRefClosure scan_weak_ref(this);
 590 
 591   age_table()->clear();
 592   to()->clear(SpaceDecorator::Mangle);
 593 
 594   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 595 
 596   assert(gch->no_allocs_since_save_marks(Generation::Young),
 597          "save marks have not been newly set.");
 598 
 599   // Not very pretty.
 600   CollectorPolicy* cp = gch->collector_policy();
 601 
 602   FastScanClosure fsc_with_no_gc_barrier(this, false);
 603   FastScanClosure fsc_with_gc_barrier(this, true);
 604 
 605   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 606                                       gch->rem_set()->klass_rem_set());
 607   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 608                                            &fsc_with_no_gc_barrier,
 609                                            false);
 610 
 611   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 612   FastEvacuateFollowersClosure evacuate_followers(gch, this,
 613                                                   &fsc_with_no_gc_barrier,
 614                                                   &fsc_with_gc_barrier);
 615 
 616   assert(gch->no_allocs_since_save_marks(Generation::Young),
 617          "save marks have not been newly set.");
 618 
 619   gch->gen_process_roots(Generation::Young,
 620                          true,  // Process younger gens, if any,
 621                                 // as strong roots.
 622                          true,  // activate StrongRootsScope
 623                          SharedHeap::SO_ScavengeCodeCache,
 624                          GenCollectedHeap::StrongAndWeakRoots,
 625                          &fsc_with_no_gc_barrier,
 626                          &fsc_with_gc_barrier,
 627                          &cld_scan_closure);
 628 
 629   // "evacuate followers".
 630   evacuate_followers.do_void();
 631 
 632   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 633   ReferenceProcessor* rp = ref_processor();
 634   rp->setup_policy(clear_all_soft_refs);
 635   const ReferenceProcessorStats& stats =
 636   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 637                                     NULL, _gc_timer, gc_tracer.gc_id());
 638   gc_tracer.report_gc_reference_stats(stats);
 639 


 663     size_policy->reset_gc_overhead_limit_count();
 664     assert(!gch->incremental_collection_failed(), "Should be clear");
 665   } else {
 666     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 667     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 668 
 669     remove_forwarding_pointers();
 670     if (PrintGCDetails) {
 671       gclog_or_tty->print(" (promotion failed) ");
 672     }
 673     // Add to-space to the list of space to compact
 674     // when a promotion failure has occurred.  In that
 675     // case there can be live objects in to-space
 676     // as a result of a partial evacuation of eden
 677     // and from-space.
 678     swap_spaces();   // For uniformity wrt ParNewGeneration.
 679     from()->set_next_compaction_space(to());
 680     gch->set_incremental_collection_failed();
 681 
 682     // Inform the next generation that a promotion failure occurred.
 683     _old_gen->promotion_failure_occurred();
 684     gc_tracer.report_promotion_failed(_promotion_failed_info);
 685 
 686     // Reset the PromotionFailureALot counters.
 687     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 688   }
 689   if (PrintGC && !PrintGCDetails) {
 690     gch->print_heap_change(gch_prev_used);
 691   }
 692   // set new iteration safe limit for the survivor spaces
 693   from()->set_concurrent_iteration_safe_limit(from()->top());
 694   to()->set_concurrent_iteration_safe_limit(to()->top());
 695   SpecializationStats::print();
 696 
 697   // We need to use a monotonically non-decreasing time in ms
 698   // or we will see time-warp warnings and os::javaTimeMillis()
 699   // does not guarantee monotonicity.
 700   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 701   update_time_of_last_gc(now);
 702 
 703   gch->trace_heap_after_gc(&gc_tracer);


 768     // prevent recursion in copy_to_survivor_space()
 769     _promo_failure_drain_in_progress = true;
 770     drain_promo_failure_scan_stack();
 771     _promo_failure_drain_in_progress = false;
 772   }
 773 }
 774 
 775 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 776   assert(is_in_reserved(old) && !old->is_forwarded(),
 777          "shouldn't be scavenging this oop");
 778   size_t s = old->size();
 779   oop obj = NULL;
 780 
 781   // Try allocating obj in to-space (unless too old)
 782   if (old->age() < tenuring_threshold()) {
 783     obj = (oop) to()->allocate_aligned(s);
 784   }
 785 
 786   // Otherwise try allocating obj tenured
 787   if (obj == NULL) {
 788     obj = _old_gen->promote(old, s);
 789     if (obj == NULL) {
 790       handle_promotion_failure(old);
 791       return old;
 792     }
 793   } else {
 794     // Prefetch beyond obj
 795     const intx interval = PrefetchCopyIntervalInBytes;
 796     Prefetch::write(obj, interval);
 797 
 798     // Copy obj
 799     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 800 
 801     // Increment age if obj still in new generation
 802     obj->incr_age();
 803     age_table()->add(obj, s);
 804   }
 805 
 806   // Done, insert forward pointer to obj in this header
 807   old->forward_to(obj);
 808 


 837 }
 838 
 839 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 840                                                                 \
 841 void DefNewGeneration::                                         \
 842 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 843   cl->set_generation(this);                                     \
 844   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 845   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 846   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 847   cl->reset_generation();                                       \
 848   save_marks();                                                 \
 849 }
 850 
 851 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 852 
 853 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 854 
 855 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 856                                          size_t max_alloc_words) {
 857   if (requestor == this || _promotion_failed) {
 858     return;
 859   }
 860   assert(requestor == GenCollectedHeap::heap()->old_gen(), "We should not call our own generation");
 861 
 862   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 863   if (to_space->top() > to_space->bottom()) {
 864     trace("to_space not empty when contribute_scratch called");
 865   }
 866   */
 867 
 868   ContiguousSpace* to_space = to();
 869   assert(to_space->end() >= to_space->top(), "pointers out of order");
 870   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 871   if (free_words >= MinFreeScratchWords) {
 872     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 873     sb->num_words = free_words;
 874     sb->next = list;
 875     list = sb;
 876   }
 877 }
 878 
 879 void DefNewGeneration::reset_scratch() {
 880   // If contributing scratch in to_space, mangle all of
 881   // to_space if ZapUnusedHeapArea.  This is needed because
 882   // top is not maintained while using to-space as scratch.
 883   if (ZapUnusedHeapArea) {
 884     to()->mangle_unused_area_complete();
 885   }
 886 }
 887 
 888 bool DefNewGeneration::collection_attempt_is_safe() {
 889   if (!to()->is_empty()) {
 890     if (Verbose && PrintGCDetails) {
 891       gclog_or_tty->print(" :: to is not empty :: ");
 892     }
 893     return false;
 894   }
 895   if (_old_gen == NULL) {
 896     GenCollectedHeap* gch = GenCollectedHeap::heap();
 897     _old_gen = gch->old_gen();
 898   }
 899   return _old_gen->promotion_attempt_is_safe(used());
 900 }
 901 
 902 void DefNewGeneration::gc_epilogue(bool full) {
 903   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 904 
 905   assert(!GC_locker::is_active(), "We should not be executing here");
 906   // Check if the heap is approaching full after a collection has
 907   // been done.  Generally the young generation is empty at
 908   // a minimum at the end of a collection.  If it is not, then
 909   // the heap is approaching full.
 910   GenCollectedHeap* gch = GenCollectedHeap::heap();
 911   if (full) {
 912     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 913     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 914       if (Verbose && PrintGCDetails) {
 915         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 916                             GCCause::to_string(gch->gc_cause()));
 917       }
 918       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 919       set_should_allocate_from_space(); // we seem to be running out of space


 999 void DefNewGeneration::print_on(outputStream* st) const {
1000   Generation::print_on(st);
1001   st->print("  eden");
1002   eden()->print_on(st);
1003   st->print("  from");
1004   from()->print_on(st);
1005   st->print("  to  ");
1006   to()->print_on(st);
1007 }
1008 
1009 
1010 const char* DefNewGeneration::name() const {
1011   return "def new generation";
1012 }
1013 
1014 // Moved from inline file as they are not called inline
1015 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1016   return eden();
1017 }
1018 
1019 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {

1020   // This is the slow-path allocation for the DefNewGeneration.
1021   // Most allocations are fast-path in compiled code.
1022   // We try to allocate from the eden.  If that works, we are happy.
1023   // Note that since DefNewGeneration supports lock-free allocation, we
1024   // have to use it here, as well.
1025   HeapWord* result = eden()->par_allocate(word_size);
1026   if (result != NULL) {
1027     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1028       _old_gen->sample_eden_chunk();
1029     }
1030     return result;
1031   }
1032   do {
1033     HeapWord* old_limit = eden()->soft_end();
1034     if (old_limit < eden()->end()) {
1035       // Tell the old generation we reached a limit.
1036       HeapWord* new_limit =
1037         _old_gen->allocation_limit_reached(eden(), eden()->top(), word_size);
1038       if (new_limit != NULL) {
1039         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
1040       } else {
1041         assert(eden()->soft_end() == eden()->end(),
1042                "invalid state after allocation_limit_reached returned null");
1043       }
1044     } else {
1045       // The allocation failed and the soft limit is equal to the hard limit,
1046       // there are no reasons to do an attempt to allocate
1047       assert(old_limit == eden()->end(), "sanity check");
1048       break;
1049     }
1050     // Try to allocate until succeeded or the soft limit can't be adjusted
1051     result = eden()->par_allocate(word_size);
1052   } while (result == NULL);
1053 
1054   // If the eden is full and the last collection bailed out, we are running
1055   // out of heap space, and we try to allocate the from-space, too.
1056   // allocate_from_space can't be inlined because that would introduce a
1057   // circular dependency at compile time.
1058   if (result == NULL) {
1059     result = allocate_from_space(word_size);
1060   } else if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1061     _old_gen->sample_eden_chunk();
1062   }
1063   return result;
1064 }
1065 
1066 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1067                                          bool is_tlab) {
1068   HeapWord* res = eden()->par_allocate(word_size);
1069   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1070     _old_gen->sample_eden_chunk();
1071   }
1072   return res;
1073 }
1074 
1075 void DefNewGeneration::gc_prologue(bool full) {
1076   // Ensure that _end and _soft_end are the same in eden space.
1077   eden()->set_soft_end(eden()->end());
1078 }
1079 
1080 size_t DefNewGeneration::tlab_capacity() const {
1081   return eden()->capacity();
1082 }
1083 
1084 size_t DefNewGeneration::tlab_used() const {
1085   return eden()->used();
1086 }
1087 
1088 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1089   return unsafe_max_alloc_nogc();
1090 }
src/share/vm/memory/defNewGeneration.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File