1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/cms/cmsCollectorPolicy.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/compactibleFreeListSpace.hpp"
  33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  34 #include "gc/cms/concurrentMarkSweepThread.hpp"
  35 #include "gc/cms/parNewGeneration.hpp"
  36 #include "gc/cms/vmCMSOperations.hpp"
  37 #include "gc/serial/genMarkSweep.hpp"
  38 #include "gc/serial/tenuredGeneration.hpp"
  39 #include "gc/shared/adaptiveSizePolicy.hpp"
  40 #include "gc/shared/cardGeneration.inline.hpp"
  41 #include "gc/shared/cardTableRS.hpp"
  42 #include "gc/shared/collectedHeap.inline.hpp"
  43 #include "gc/shared/collectorCounters.hpp"
  44 #include "gc/shared/collectorPolicy.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/genOopClosures.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/referencePolicy.hpp"
  54 #include "gc/shared/strongRootsScope.hpp"
  55 #include "gc/shared/taskqueue.inline.hpp"
  56 #include "memory/allocation.hpp"
  57 #include "memory/iterator.inline.hpp"
  58 #include "memory/padded.hpp"
  59 #include "memory/resourceArea.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "runtime/atomic.inline.hpp"
  63 #include "runtime/globals_extension.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/orderAccess.inline.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 // statics
  73 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  74 bool CMSCollector::_full_gc_requested = false;
  75 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  76 
  77 //////////////////////////////////////////////////////////////////
  78 // In support of CMS/VM thread synchronization
  79 //////////////////////////////////////////////////////////////////
  80 // We split use of the CGC_lock into 2 "levels".
  81 // The low-level locking is of the usual CGC_lock monitor. We introduce
  82 // a higher level "token" (hereafter "CMS token") built on top of the
  83 // low level monitor (hereafter "CGC lock").
  84 // The token-passing protocol gives priority to the VM thread. The
  85 // CMS-lock doesn't provide any fairness guarantees, but clients
  86 // should ensure that it is only held for very short, bounded
  87 // durations.
  88 //
  89 // When either of the CMS thread or the VM thread is involved in
  90 // collection operations during which it does not want the other
  91 // thread to interfere, it obtains the CMS token.
  92 //
  93 // If either thread tries to get the token while the other has
  94 // it, that thread waits. However, if the VM thread and CMS thread
  95 // both want the token, then the VM thread gets priority while the
  96 // CMS thread waits. This ensures, for instance, that the "concurrent"
  97 // phases of the CMS thread's work do not block out the VM thread
  98 // for long periods of time as the CMS thread continues to hog
  99 // the token. (See bug 4616232).
 100 //
 101 // The baton-passing functions are, however, controlled by the
 102 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 103 // and here the low-level CMS lock, not the high level token,
 104 // ensures mutual exclusion.
 105 //
 106 // Two important conditions that we have to satisfy:
 107 // 1. if a thread does a low-level wait on the CMS lock, then it
 108 //    relinquishes the CMS token if it were holding that token
 109 //    when it acquired the low-level CMS lock.
 110 // 2. any low-level notifications on the low-level lock
 111 //    should only be sent when a thread has relinquished the token.
 112 //
 113 // In the absence of either property, we'd have potential deadlock.
 114 //
 115 // We protect each of the CMS (concurrent and sequential) phases
 116 // with the CMS _token_, not the CMS _lock_.
 117 //
 118 // The only code protected by CMS lock is the token acquisition code
 119 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 120 // baton-passing code.
 121 //
 122 // Unfortunately, i couldn't come up with a good abstraction to factor and
 123 // hide the naked CGC_lock manipulation in the baton-passing code
 124 // further below. That's something we should try to do. Also, the proof
 125 // of correctness of this 2-level locking scheme is far from obvious,
 126 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 127 // that there may be a theoretical possibility of delay/starvation in the
 128 // low-level lock/wait/notify scheme used for the baton-passing because of
 129 // potential interference with the priority scheme embodied in the
 130 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 131 // invocation further below and marked with "XXX 20011219YSR".
 132 // Indeed, as we note elsewhere, this may become yet more slippery
 133 // in the presence of multiple CMS and/or multiple VM threads. XXX
 134 
 135 class CMSTokenSync: public StackObj {
 136  private:
 137   bool _is_cms_thread;
 138  public:
 139   CMSTokenSync(bool is_cms_thread):
 140     _is_cms_thread(is_cms_thread) {
 141     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 142            "Incorrect argument to constructor");
 143     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 144   }
 145 
 146   ~CMSTokenSync() {
 147     assert(_is_cms_thread ?
 148              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 149              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 150           "Incorrect state");
 151     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 152   }
 153 };
 154 
 155 // Convenience class that does a CMSTokenSync, and then acquires
 156 // upto three locks.
 157 class CMSTokenSyncWithLocks: public CMSTokenSync {
 158  private:
 159   // Note: locks are acquired in textual declaration order
 160   // and released in the opposite order
 161   MutexLockerEx _locker1, _locker2, _locker3;
 162  public:
 163   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 164                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 165     CMSTokenSync(is_cms_thread),
 166     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 167     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 168     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 169   { }
 170 };
 171 
 172 
 173 //////////////////////////////////////////////////////////////////
 174 //  Concurrent Mark-Sweep Generation /////////////////////////////
 175 //////////////////////////////////////////////////////////////////
 176 
 177 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 178 
 179 // This struct contains per-thread things necessary to support parallel
 180 // young-gen collection.
 181 class CMSParGCThreadState: public CHeapObj<mtGC> {
 182  public:
 183   CFLS_LAB lab;
 184   PromotionInfo promo;
 185 
 186   // Constructor.
 187   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 188     promo.setSpace(cfls);
 189   }
 190 };
 191 
 192 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 193      ReservedSpace rs, size_t initial_byte_size,
 194      CardTableRS* ct, bool use_adaptive_freelists,
 195      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 196   CardGeneration(rs, initial_byte_size, ct),
 197   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 198   _did_compact(false)
 199 {
 200   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 201   HeapWord* end    = (HeapWord*) _virtual_space.high();
 202 
 203   _direct_allocated_words = 0;
 204   NOT_PRODUCT(
 205     _numObjectsPromoted = 0;
 206     _numWordsPromoted = 0;
 207     _numObjectsAllocated = 0;
 208     _numWordsAllocated = 0;
 209   )
 210 
 211   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 212                                            use_adaptive_freelists,
 213                                            dictionaryChoice);
 214   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 215   _cmsSpace->_old_gen = this;
 216 
 217   _gc_stats = new CMSGCStats();
 218 
 219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 220   // offsets match. The ability to tell free chunks from objects
 221   // depends on this property.
 222   debug_only(
 223     FreeChunk* junk = NULL;
 224     assert(UseCompressedClassPointers ||
 225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 226            "Offset of FreeChunk::_prev within FreeChunk must match"
 227            "  that of OopDesc::_klass within OopDesc");
 228   )
 229 
 230   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 231   for (uint i = 0; i < ParallelGCThreads; i++) {
 232     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 233   }
 234 
 235   _incremental_collection_failed = false;
 236   // The "dilatation_factor" is the expansion that can occur on
 237   // account of the fact that the minimum object size in the CMS
 238   // generation may be larger than that in, say, a contiguous young
 239   //  generation.
 240   // Ideally, in the calculation below, we'd compute the dilatation
 241   // factor as: MinChunkSize/(promoting_gen's min object size)
 242   // Since we do not have such a general query interface for the
 243   // promoting generation, we'll instead just use the minimum
 244   // object size (which today is a header's worth of space);
 245   // note that all arithmetic is in units of HeapWords.
 246   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 247   assert(_dilatation_factor >= 1.0, "from previous assert");
 248 }
 249 
 250 
 251 // The field "_initiating_occupancy" represents the occupancy percentage
 252 // at which we trigger a new collection cycle.  Unless explicitly specified
 253 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 254 // is calculated by:
 255 //
 256 //   Let "f" be MinHeapFreeRatio in
 257 //
 258 //    _initiating_occupancy = 100-f +
 259 //                           f * (CMSTriggerRatio/100)
 260 //   where CMSTriggerRatio is the argument "tr" below.
 261 //
 262 // That is, if we assume the heap is at its desired maximum occupancy at the
 263 // end of a collection, we let CMSTriggerRatio of the (purported) free
 264 // space be allocated before initiating a new collection cycle.
 265 //
 266 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 267   assert(io <= 100 && tr <= 100, "Check the arguments");
 268   if (io >= 0) {
 269     _initiating_occupancy = (double)io / 100.0;
 270   } else {
 271     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 272                              (double)(tr * MinHeapFreeRatio) / 100.0)
 273                             / 100.0;
 274   }
 275 }
 276 
 277 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 278   assert(collector() != NULL, "no collector");
 279   collector()->ref_processor_init();
 280 }
 281 
 282 void CMSCollector::ref_processor_init() {
 283   if (_ref_processor == NULL) {
 284     // Allocate and initialize a reference processor
 285     _ref_processor =
 286       new ReferenceProcessor(_span,                               // span
 287                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 288                              ParallelGCThreads,                   // mt processing degree
 289                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 290                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 291                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 292                              &_is_alive_closure);                 // closure for liveness info
 293     // Initialize the _ref_processor field of CMSGen
 294     _cmsGen->set_ref_processor(_ref_processor);
 295 
 296   }
 297 }
 298 
 299 AdaptiveSizePolicy* CMSCollector::size_policy() {
 300   GenCollectedHeap* gch = GenCollectedHeap::heap();
 301   return gch->gen_policy()->size_policy();
 302 }
 303 
 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 305 
 306   const char* gen_name = "old";
 307   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 308   // Generation Counters - generation 1, 1 subspace
 309   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 310       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 311 
 312   _space_counters = new GSpaceCounters(gen_name, 0,
 313                                        _virtual_space.reserved_size(),
 314                                        this, _gen_counters);
 315 }
 316 
 317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 318   _cms_gen(cms_gen)
 319 {
 320   assert(alpha <= 100, "bad value");
 321   _saved_alpha = alpha;
 322 
 323   // Initialize the alphas to the bootstrap value of 100.
 324   _gc0_alpha = _cms_alpha = 100;
 325 
 326   _cms_begin_time.update();
 327   _cms_end_time.update();
 328 
 329   _gc0_duration = 0.0;
 330   _gc0_period = 0.0;
 331   _gc0_promoted = 0;
 332 
 333   _cms_duration = 0.0;
 334   _cms_period = 0.0;
 335   _cms_allocated = 0;
 336 
 337   _cms_used_at_gc0_begin = 0;
 338   _cms_used_at_gc0_end = 0;
 339   _allow_duty_cycle_reduction = false;
 340   _valid_bits = 0;
 341 }
 342 
 343 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 344   // TBD: CR 6909490
 345   return 1.0;
 346 }
 347 
 348 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 349 }
 350 
 351 // If promotion failure handling is on use
 352 // the padded average size of the promotion for each
 353 // young generation collection.
 354 double CMSStats::time_until_cms_gen_full() const {
 355   size_t cms_free = _cms_gen->cmsSpace()->free();
 356   GenCollectedHeap* gch = GenCollectedHeap::heap();
 357   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 358                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 359   if (cms_free > expected_promotion) {
 360     // Start a cms collection if there isn't enough space to promote
 361     // for the next young collection.  Use the padded average as
 362     // a safety factor.
 363     cms_free -= expected_promotion;
 364 
 365     // Adjust by the safety factor.
 366     double cms_free_dbl = (double)cms_free;
 367     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 368     // Apply a further correction factor which tries to adjust
 369     // for recent occurance of concurrent mode failures.
 370     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 371     cms_free_dbl = cms_free_dbl * cms_adjustment;
 372 
 373     if (PrintGCDetails && Verbose) {
 374       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 375         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 376         cms_free, expected_promotion);
 377       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 378         cms_free_dbl, cms_consumption_rate() + 1.0);
 379     }
 380     // Add 1 in case the consumption rate goes to zero.
 381     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 382   }
 383   return 0.0;
 384 }
 385 
 386 // Compare the duration of the cms collection to the
 387 // time remaining before the cms generation is empty.
 388 // Note that the time from the start of the cms collection
 389 // to the start of the cms sweep (less than the total
 390 // duration of the cms collection) can be used.  This
 391 // has been tried and some applications experienced
 392 // promotion failures early in execution.  This was
 393 // possibly because the averages were not accurate
 394 // enough at the beginning.
 395 double CMSStats::time_until_cms_start() const {
 396   // We add "gc0_period" to the "work" calculation
 397   // below because this query is done (mostly) at the
 398   // end of a scavenge, so we need to conservatively
 399   // account for that much possible delay
 400   // in the query so as to avoid concurrent mode failures
 401   // due to starting the collection just a wee bit too
 402   // late.
 403   double work = cms_duration() + gc0_period();
 404   double deadline = time_until_cms_gen_full();
 405   // If a concurrent mode failure occurred recently, we want to be
 406   // more conservative and halve our expected time_until_cms_gen_full()
 407   if (work > deadline) {
 408     if (Verbose && PrintGCDetails) {
 409       gclog_or_tty->print(
 410         " CMSCollector: collect because of anticipated promotion "
 411         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 412         gc0_period(), time_until_cms_gen_full());
 413     }
 414     return 0.0;
 415   }
 416   return work - deadline;
 417 }
 418 
 419 #ifndef PRODUCT
 420 void CMSStats::print_on(outputStream *st) const {
 421   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 422   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 423                gc0_duration(), gc0_period(), gc0_promoted());
 424   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 425             cms_duration(), cms_period(), cms_allocated());
 426   st->print(",cms_since_beg=%g,cms_since_end=%g",
 427             cms_time_since_begin(), cms_time_since_end());
 428   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 429             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 430 
 431   if (valid()) {
 432     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 433               promotion_rate(), cms_allocation_rate());
 434     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 435               cms_consumption_rate(), time_until_cms_gen_full());
 436   }
 437   st->print(" ");
 438 }
 439 #endif // #ifndef PRODUCT
 440 
 441 CMSCollector::CollectorState CMSCollector::_collectorState =
 442                              CMSCollector::Idling;
 443 bool CMSCollector::_foregroundGCIsActive = false;
 444 bool CMSCollector::_foregroundGCShouldWait = false;
 445 
 446 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 447                            CardTableRS*                   ct,
 448                            ConcurrentMarkSweepPolicy*     cp):
 449   _cmsGen(cmsGen),
 450   _ct(ct),
 451   _ref_processor(NULL),    // will be set later
 452   _conc_workers(NULL),     // may be set later
 453   _abort_preclean(false),
 454   _start_sampling(false),
 455   _between_prologue_and_epilogue(false),
 456   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 457   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 458                  -1 /* lock-free */, "No_lock" /* dummy */),
 459   _modUnionClosurePar(&_modUnionTable),
 460   // Adjust my span to cover old (cms) gen
 461   _span(cmsGen->reserved()),
 462   // Construct the is_alive_closure with _span & markBitMap
 463   _is_alive_closure(_span, &_markBitMap),
 464   _restart_addr(NULL),
 465   _overflow_list(NULL),
 466   _stats(cmsGen),
 467   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 468                              //verify that this lock should be acquired with safepoint check.
 469                              Monitor::_safepoint_check_sometimes)),
 470   _eden_chunk_array(NULL),     // may be set in ctor body
 471   _eden_chunk_capacity(0),     // -- ditto --
 472   _eden_chunk_index(0),        // -- ditto --
 473   _survivor_plab_array(NULL),  // -- ditto --
 474   _survivor_chunk_array(NULL), // -- ditto --
 475   _survivor_chunk_capacity(0), // -- ditto --
 476   _survivor_chunk_index(0),    // -- ditto --
 477   _ser_pmc_preclean_ovflw(0),
 478   _ser_kac_preclean_ovflw(0),
 479   _ser_pmc_remark_ovflw(0),
 480   _par_pmc_remark_ovflw(0),
 481   _ser_kac_ovflw(0),
 482   _par_kac_ovflw(0),
 483 #ifndef PRODUCT
 484   _num_par_pushes(0),
 485 #endif
 486   _collection_count_start(0),
 487   _verifying(false),
 488   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 489   _completed_initialization(false),
 490   _collector_policy(cp),
 491   _should_unload_classes(CMSClassUnloadingEnabled),
 492   _concurrent_cycles_since_last_unload(0),
 493   _roots_scanning_options(GenCollectedHeap::SO_None),
 494   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 495   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 496   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 497   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 498   _cms_start_registered(false)
 499 {
 500   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 501     ExplicitGCInvokesConcurrent = true;
 502   }
 503   // Now expand the span and allocate the collection support structures
 504   // (MUT, marking bit map etc.) to cover both generations subject to
 505   // collection.
 506 
 507   // For use by dirty card to oop closures.
 508   _cmsGen->cmsSpace()->set_collector(this);
 509 
 510   // Allocate MUT and marking bit map
 511   {
 512     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 513     if (!_markBitMap.allocate(_span)) {
 514       warning("Failed to allocate CMS Bit Map");
 515       return;
 516     }
 517     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 518   }
 519   {
 520     _modUnionTable.allocate(_span);
 521     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 522   }
 523 
 524   if (!_markStack.allocate(MarkStackSize)) {
 525     warning("Failed to allocate CMS Marking Stack");
 526     return;
 527   }
 528 
 529   // Support for multi-threaded concurrent phases
 530   if (CMSConcurrentMTEnabled) {
 531     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 532       // just for now
 533       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 534     }
 535     if (ConcGCThreads > 1) {
 536       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 537                                  ConcGCThreads, true);
 538       if (_conc_workers == NULL) {
 539         warning("GC/CMS: _conc_workers allocation failure: "
 540               "forcing -CMSConcurrentMTEnabled");
 541         CMSConcurrentMTEnabled = false;
 542       } else {
 543         _conc_workers->initialize_workers();
 544       }
 545     } else {
 546       CMSConcurrentMTEnabled = false;
 547     }
 548   }
 549   if (!CMSConcurrentMTEnabled) {
 550     ConcGCThreads = 0;
 551   } else {
 552     // Turn off CMSCleanOnEnter optimization temporarily for
 553     // the MT case where it's not fixed yet; see 6178663.
 554     CMSCleanOnEnter = false;
 555   }
 556   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 557          "Inconsistency");
 558 
 559   // Parallel task queues; these are shared for the
 560   // concurrent and stop-world phases of CMS, but
 561   // are not shared with parallel scavenge (ParNew).
 562   {
 563     uint i;
 564     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 565 
 566     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 567          || ParallelRefProcEnabled)
 568         && num_queues > 0) {
 569       _task_queues = new OopTaskQueueSet(num_queues);
 570       if (_task_queues == NULL) {
 571         warning("task_queues allocation failure.");
 572         return;
 573       }
 574       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 575       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 576       for (i = 0; i < num_queues; i++) {
 577         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 578         if (q == NULL) {
 579           warning("work_queue allocation failure.");
 580           return;
 581         }
 582         _task_queues->register_queue(i, q);
 583       }
 584       for (i = 0; i < num_queues; i++) {
 585         _task_queues->queue(i)->initialize();
 586         _hash_seed[i] = 17;  // copied from ParNew
 587       }
 588     }
 589   }
 590 
 591   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 592 
 593   // Clip CMSBootstrapOccupancy between 0 and 100.
 594   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 595 
 596   // Now tell CMS generations the identity of their collector
 597   ConcurrentMarkSweepGeneration::set_collector(this);
 598 
 599   // Create & start a CMS thread for this CMS collector
 600   _cmsThread = ConcurrentMarkSweepThread::start(this);
 601   assert(cmsThread() != NULL, "CMS Thread should have been created");
 602   assert(cmsThread()->collector() == this,
 603          "CMS Thread should refer to this gen");
 604   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 605 
 606   // Support for parallelizing young gen rescan
 607   GenCollectedHeap* gch = GenCollectedHeap::heap();
 608   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 609   _young_gen = (ParNewGeneration*)gch->young_gen();
 610   if (gch->supports_inline_contig_alloc()) {
 611     _top_addr = gch->top_addr();
 612     _end_addr = gch->end_addr();
 613     assert(_young_gen != NULL, "no _young_gen");
 614     _eden_chunk_index = 0;
 615     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 616     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 617   }
 618 
 619   // Support for parallelizing survivor space rescan
 620   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 621     const size_t max_plab_samples =
 622       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 623 
 624     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 625     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 626     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 627     _survivor_chunk_capacity = max_plab_samples;
 628     for (uint i = 0; i < ParallelGCThreads; i++) {
 629       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 630       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 631       assert(cur->end() == 0, "Should be 0");
 632       assert(cur->array() == vec, "Should be vec");
 633       assert(cur->capacity() == max_plab_samples, "Error");
 634     }
 635   }
 636 
 637   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 638   _gc_counters = new CollectorCounters("CMS", 1);
 639   _completed_initialization = true;
 640   _inter_sweep_timer.start();  // start of time
 641 }
 642 
 643 const char* ConcurrentMarkSweepGeneration::name() const {
 644   return "concurrent mark-sweep generation";
 645 }
 646 void ConcurrentMarkSweepGeneration::update_counters() {
 647   if (UsePerfData) {
 648     _space_counters->update_all();
 649     _gen_counters->update_all();
 650   }
 651 }
 652 
 653 // this is an optimized version of update_counters(). it takes the
 654 // used value as a parameter rather than computing it.
 655 //
 656 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 657   if (UsePerfData) {
 658     _space_counters->update_used(used);
 659     _space_counters->update_capacity();
 660     _gen_counters->update_all();
 661   }
 662 }
 663 
 664 void ConcurrentMarkSweepGeneration::print() const {
 665   Generation::print();
 666   cmsSpace()->print();
 667 }
 668 
 669 #ifndef PRODUCT
 670 void ConcurrentMarkSweepGeneration::print_statistics() {
 671   cmsSpace()->printFLCensus(0);
 672 }
 673 #endif
 674 
 675 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 676   GenCollectedHeap* gch = GenCollectedHeap::heap();
 677   if (PrintGCDetails) {
 678     // I didn't want to change the logging when removing the level concept,
 679     // but I guess this logging could say "old" or something instead of "1".
 680     assert(gch->is_old_gen(this),
 681            "The CMS generation should be the old generation");
 682     uint level = 1;
 683     if (Verbose) {
 684       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "(" SIZE_FORMAT ")]",
 685         level, short_name(), s, used(), capacity());
 686     } else {
 687       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)]",
 688         level, short_name(), s, used() / K, capacity() / K);
 689     }
 690   }
 691   if (Verbose) {
 692     gclog_or_tty->print(" " SIZE_FORMAT "(" SIZE_FORMAT ")",
 693               gch->used(), gch->capacity());
 694   } else {
 695     gclog_or_tty->print(" " SIZE_FORMAT "K(" SIZE_FORMAT "K)",
 696               gch->used() / K, gch->capacity() / K);
 697   }
 698 }
 699 
 700 size_t
 701 ConcurrentMarkSweepGeneration::contiguous_available() const {
 702   // dld proposes an improvement in precision here. If the committed
 703   // part of the space ends in a free block we should add that to
 704   // uncommitted size in the calculation below. Will make this
 705   // change later, staying with the approximation below for the
 706   // time being. -- ysr.
 707   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 708 }
 709 
 710 size_t
 711 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 712   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 713 }
 714 
 715 size_t ConcurrentMarkSweepGeneration::max_available() const {
 716   return free() + _virtual_space.uncommitted_size();
 717 }
 718 
 719 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 720   size_t available = max_available();
 721   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 722   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 723   if (Verbose && PrintGCDetails) {
 724     gclog_or_tty->print_cr(
 725       "CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "),"
 726       "max_promo(" SIZE_FORMAT ")",
 727       res? "":" not", available, res? ">=":"<",
 728       av_promo, max_promotion_in_bytes);
 729   }
 730   return res;
 731 }
 732 
 733 // At a promotion failure dump information on block layout in heap
 734 // (cms old generation).
 735 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 736   if (CMSDumpAtPromotionFailure) {
 737     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 738   }
 739 }
 740 
 741 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 742   // Clear the promotion information.  These pointers can be adjusted
 743   // along with all the other pointers into the heap but
 744   // compaction is expected to be a rare event with
 745   // a heap using cms so don't do it without seeing the need.
 746   for (uint i = 0; i < ParallelGCThreads; i++) {
 747     _par_gc_thread_states[i]->promo.reset();
 748   }
 749 }
 750 
 751 void ConcurrentMarkSweepGeneration::compute_new_size() {
 752   assert_locked_or_safepoint(Heap_lock);
 753 
 754   // If incremental collection failed, we just want to expand
 755   // to the limit.
 756   if (incremental_collection_failed()) {
 757     clear_incremental_collection_failed();
 758     grow_to_reserved();
 759     return;
 760   }
 761 
 762   // The heap has been compacted but not reset yet.
 763   // Any metric such as free() or used() will be incorrect.
 764 
 765   CardGeneration::compute_new_size();
 766 
 767   // Reset again after a possible resizing
 768   if (did_compact()) {
 769     cmsSpace()->reset_after_compaction();
 770   }
 771 }
 772 
 773 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 774   assert_locked_or_safepoint(Heap_lock);
 775 
 776   // If incremental collection failed, we just want to expand
 777   // to the limit.
 778   if (incremental_collection_failed()) {
 779     clear_incremental_collection_failed();
 780     grow_to_reserved();
 781     return;
 782   }
 783 
 784   double free_percentage = ((double) free()) / capacity();
 785   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 786   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 787 
 788   // compute expansion delta needed for reaching desired free percentage
 789   if (free_percentage < desired_free_percentage) {
 790     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 791     assert(desired_capacity >= capacity(), "invalid expansion size");
 792     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 793     if (PrintGCDetails && Verbose) {
 794       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 795       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 796       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 797       gclog_or_tty->print_cr("  Desired free fraction %f", desired_free_percentage);
 798       gclog_or_tty->print_cr("  Maximum free fraction %f", maximum_free_percentage);
 799       gclog_or_tty->print_cr("  Capacity " SIZE_FORMAT, capacity() / 1000);
 800       gclog_or_tty->print_cr("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 801       GenCollectedHeap* gch = GenCollectedHeap::heap();
 802       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 803       size_t young_size = gch->young_gen()->capacity();
 804       gclog_or_tty->print_cr("  Young gen size " SIZE_FORMAT, young_size / 1000);
 805       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 806       gclog_or_tty->print_cr("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 807       gclog_or_tty->print_cr("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 808     }
 809     // safe if expansion fails
 810     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 811     if (PrintGCDetails && Verbose) {
 812       gclog_or_tty->print_cr("  Expanded free fraction %f", ((double) free()) / capacity());
 813     }
 814   } else {
 815     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 816     assert(desired_capacity <= capacity(), "invalid expansion size");
 817     size_t shrink_bytes = capacity() - desired_capacity;
 818     // Don't shrink unless the delta is greater than the minimum shrink we want
 819     if (shrink_bytes >= MinHeapDeltaBytes) {
 820       shrink_free_list_by(shrink_bytes);
 821     }
 822   }
 823 }
 824 
 825 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 826   return cmsSpace()->freelistLock();
 827 }
 828 
 829 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 830   CMSSynchronousYieldRequest yr;
 831   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 832   return have_lock_and_allocate(size, tlab);
 833 }
 834 
 835 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 836                                                                 bool   tlab /* ignored */) {
 837   assert_lock_strong(freelistLock());
 838   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 839   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 840   // Allocate the object live (grey) if the background collector has
 841   // started marking. This is necessary because the marker may
 842   // have passed this address and consequently this object will
 843   // not otherwise be greyed and would be incorrectly swept up.
 844   // Note that if this object contains references, the writing
 845   // of those references will dirty the card containing this object
 846   // allowing the object to be blackened (and its references scanned)
 847   // either during a preclean phase or at the final checkpoint.
 848   if (res != NULL) {
 849     // We may block here with an uninitialized object with
 850     // its mark-bit or P-bits not yet set. Such objects need
 851     // to be safely navigable by block_start().
 852     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 853     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 854     collector()->direct_allocated(res, adjustedSize);
 855     _direct_allocated_words += adjustedSize;
 856     // allocation counters
 857     NOT_PRODUCT(
 858       _numObjectsAllocated++;
 859       _numWordsAllocated += (int)adjustedSize;
 860     )
 861   }
 862   return res;
 863 }
 864 
 865 // In the case of direct allocation by mutators in a generation that
 866 // is being concurrently collected, the object must be allocated
 867 // live (grey) if the background collector has started marking.
 868 // This is necessary because the marker may
 869 // have passed this address and consequently this object will
 870 // not otherwise be greyed and would be incorrectly swept up.
 871 // Note that if this object contains references, the writing
 872 // of those references will dirty the card containing this object
 873 // allowing the object to be blackened (and its references scanned)
 874 // either during a preclean phase or at the final checkpoint.
 875 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 876   assert(_markBitMap.covers(start, size), "Out of bounds");
 877   if (_collectorState >= Marking) {
 878     MutexLockerEx y(_markBitMap.lock(),
 879                     Mutex::_no_safepoint_check_flag);
 880     // [see comments preceding SweepClosure::do_blk() below for details]
 881     //
 882     // Can the P-bits be deleted now?  JJJ
 883     //
 884     // 1. need to mark the object as live so it isn't collected
 885     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 886     // 3. need to mark the end of the object so marking, precleaning or sweeping
 887     //    can skip over uninitialized or unparsable objects. An allocated
 888     //    object is considered uninitialized for our purposes as long as
 889     //    its klass word is NULL.  All old gen objects are parsable
 890     //    as soon as they are initialized.)
 891     _markBitMap.mark(start);          // object is live
 892     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 893     _markBitMap.mark(start + size - 1);
 894                                       // mark end of object
 895   }
 896   // check that oop looks uninitialized
 897   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 898 }
 899 
 900 void CMSCollector::promoted(bool par, HeapWord* start,
 901                             bool is_obj_array, size_t obj_size) {
 902   assert(_markBitMap.covers(start), "Out of bounds");
 903   // See comment in direct_allocated() about when objects should
 904   // be allocated live.
 905   if (_collectorState >= Marking) {
 906     // we already hold the marking bit map lock, taken in
 907     // the prologue
 908     if (par) {
 909       _markBitMap.par_mark(start);
 910     } else {
 911       _markBitMap.mark(start);
 912     }
 913     // We don't need to mark the object as uninitialized (as
 914     // in direct_allocated above) because this is being done with the
 915     // world stopped and the object will be initialized by the
 916     // time the marking, precleaning or sweeping get to look at it.
 917     // But see the code for copying objects into the CMS generation,
 918     // where we need to ensure that concurrent readers of the
 919     // block offset table are able to safely navigate a block that
 920     // is in flux from being free to being allocated (and in
 921     // transition while being copied into) and subsequently
 922     // becoming a bona-fide object when the copy/promotion is complete.
 923     assert(SafepointSynchronize::is_at_safepoint(),
 924            "expect promotion only at safepoints");
 925 
 926     if (_collectorState < Sweeping) {
 927       // Mark the appropriate cards in the modUnionTable, so that
 928       // this object gets scanned before the sweep. If this is
 929       // not done, CMS generation references in the object might
 930       // not get marked.
 931       // For the case of arrays, which are otherwise precisely
 932       // marked, we need to dirty the entire array, not just its head.
 933       if (is_obj_array) {
 934         // The [par_]mark_range() method expects mr.end() below to
 935         // be aligned to the granularity of a bit's representation
 936         // in the heap. In the case of the MUT below, that's a
 937         // card size.
 938         MemRegion mr(start,
 939                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 940                         CardTableModRefBS::card_size /* bytes */));
 941         if (par) {
 942           _modUnionTable.par_mark_range(mr);
 943         } else {
 944           _modUnionTable.mark_range(mr);
 945         }
 946       } else {  // not an obj array; we can just mark the head
 947         if (par) {
 948           _modUnionTable.par_mark(start);
 949         } else {
 950           _modUnionTable.mark(start);
 951         }
 952       }
 953     }
 954   }
 955 }
 956 
 957 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 958   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 959   // allocate, copy and if necessary update promoinfo --
 960   // delegate to underlying space.
 961   assert_lock_strong(freelistLock());
 962 
 963 #ifndef PRODUCT
 964   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 965     return NULL;
 966   }
 967 #endif  // #ifndef PRODUCT
 968 
 969   oop res = _cmsSpace->promote(obj, obj_size);
 970   if (res == NULL) {
 971     // expand and retry
 972     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 973     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 974     // Since this is the old generation, we don't try to promote
 975     // into a more senior generation.
 976     res = _cmsSpace->promote(obj, obj_size);
 977   }
 978   if (res != NULL) {
 979     // See comment in allocate() about when objects should
 980     // be allocated live.
 981     assert(obj->is_oop(), "Will dereference klass pointer below");
 982     collector()->promoted(false,           // Not parallel
 983                           (HeapWord*)res, obj->is_objArray(), obj_size);
 984     // promotion counters
 985     NOT_PRODUCT(
 986       _numObjectsPromoted++;
 987       _numWordsPromoted +=
 988         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 989     )
 990   }
 991   return res;
 992 }
 993 
 994 
 995 // IMPORTANT: Notes on object size recognition in CMS.
 996 // ---------------------------------------------------
 997 // A block of storage in the CMS generation is always in
 998 // one of three states. A free block (FREE), an allocated
 999 // object (OBJECT) whose size() method reports the correct size,
1000 // and an intermediate state (TRANSIENT) in which its size cannot
1001 // be accurately determined.
1002 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1003 // -----------------------------------------------------
1004 // FREE:      klass_word & 1 == 1; mark_word holds block size
1005 //
1006 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1007 //            obj->size() computes correct size
1008 //
1009 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1010 //
1011 // STATE IDENTIFICATION: (64 bit+COOPS)
1012 // ------------------------------------
1013 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1014 //
1015 // OBJECT:    klass_word installed; klass_word != 0;
1016 //            obj->size() computes correct size
1017 //
1018 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1019 //
1020 //
1021 // STATE TRANSITION DIAGRAM
1022 //
1023 //        mut / parnew                     mut  /  parnew
1024 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1025 //  ^                                                                   |
1026 //  |------------------------ DEAD <------------------------------------|
1027 //         sweep                            mut
1028 //
1029 // While a block is in TRANSIENT state its size cannot be determined
1030 // so readers will either need to come back later or stall until
1031 // the size can be determined. Note that for the case of direct
1032 // allocation, P-bits, when available, may be used to determine the
1033 // size of an object that may not yet have been initialized.
1034 
1035 // Things to support parallel young-gen collection.
1036 oop
1037 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1038                                            oop old, markOop m,
1039                                            size_t word_sz) {
1040 #ifndef PRODUCT
1041   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1042     return NULL;
1043   }
1044 #endif  // #ifndef PRODUCT
1045 
1046   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1047   PromotionInfo* promoInfo = &ps->promo;
1048   // if we are tracking promotions, then first ensure space for
1049   // promotion (including spooling space for saving header if necessary).
1050   // then allocate and copy, then track promoted info if needed.
1051   // When tracking (see PromotionInfo::track()), the mark word may
1052   // be displaced and in this case restoration of the mark word
1053   // occurs in the (oop_since_save_marks_)iterate phase.
1054   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1055     // Out of space for allocating spooling buffers;
1056     // try expanding and allocating spooling buffers.
1057     if (!expand_and_ensure_spooling_space(promoInfo)) {
1058       return NULL;
1059     }
1060   }
1061   assert(promoInfo->has_spooling_space(), "Control point invariant");
1062   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1063   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1064   if (obj_ptr == NULL) {
1065      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1066      if (obj_ptr == NULL) {
1067        return NULL;
1068      }
1069   }
1070   oop obj = oop(obj_ptr);
1071   OrderAccess::storestore();
1072   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1073   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1074   // IMPORTANT: See note on object initialization for CMS above.
1075   // Otherwise, copy the object.  Here we must be careful to insert the
1076   // klass pointer last, since this marks the block as an allocated object.
1077   // Except with compressed oops it's the mark word.
1078   HeapWord* old_ptr = (HeapWord*)old;
1079   // Restore the mark word copied above.
1080   obj->set_mark(m);
1081   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1082   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1083   OrderAccess::storestore();
1084 
1085   if (UseCompressedClassPointers) {
1086     // Copy gap missed by (aligned) header size calculation below
1087     obj->set_klass_gap(old->klass_gap());
1088   }
1089   if (word_sz > (size_t)oopDesc::header_size()) {
1090     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1091                                  obj_ptr + oopDesc::header_size(),
1092                                  word_sz - oopDesc::header_size());
1093   }
1094 
1095   // Now we can track the promoted object, if necessary.  We take care
1096   // to delay the transition from uninitialized to full object
1097   // (i.e., insertion of klass pointer) until after, so that it
1098   // atomically becomes a promoted object.
1099   if (promoInfo->tracking()) {
1100     promoInfo->track((PromotedObject*)obj, old->klass());
1101   }
1102   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1103   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1104   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1105 
1106   // Finally, install the klass pointer (this should be volatile).
1107   OrderAccess::storestore();
1108   obj->set_klass(old->klass());
1109   // We should now be able to calculate the right size for this object
1110   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1111 
1112   collector()->promoted(true,          // parallel
1113                         obj_ptr, old->is_objArray(), word_sz);
1114 
1115   NOT_PRODUCT(
1116     Atomic::inc_ptr(&_numObjectsPromoted);
1117     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1118   )
1119 
1120   return obj;
1121 }
1122 
1123 void
1124 ConcurrentMarkSweepGeneration::
1125 par_promote_alloc_done(int thread_num) {
1126   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1127   ps->lab.retire(thread_num);
1128 }
1129 
1130 void
1131 ConcurrentMarkSweepGeneration::
1132 par_oop_since_save_marks_iterate_done(int thread_num) {
1133   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1134   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1135   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1136 }
1137 
1138 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1139                                                    size_t size,
1140                                                    bool   tlab)
1141 {
1142   // We allow a STW collection only if a full
1143   // collection was requested.
1144   return full || should_allocate(size, tlab); // FIX ME !!!
1145   // This and promotion failure handling are connected at the
1146   // hip and should be fixed by untying them.
1147 }
1148 
1149 bool CMSCollector::shouldConcurrentCollect() {
1150   if (_full_gc_requested) {
1151     if (Verbose && PrintGCDetails) {
1152       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1153                              " gc request (or gc_locker)");
1154     }
1155     return true;
1156   }
1157 
1158   FreelistLocker x(this);
1159   // ------------------------------------------------------------------
1160   // Print out lots of information which affects the initiation of
1161   // a collection.
1162   if (PrintCMSInitiationStatistics && stats().valid()) {
1163     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1164     gclog_or_tty->stamp();
1165     gclog_or_tty->cr();
1166     stats().print_on(gclog_or_tty);
1167     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1168       stats().time_until_cms_gen_full());
1169     gclog_or_tty->print_cr("free=" SIZE_FORMAT, _cmsGen->free());
1170     gclog_or_tty->print_cr("contiguous_available=" SIZE_FORMAT,
1171                            _cmsGen->contiguous_available());
1172     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1173     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1174     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1175     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1176     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1177     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1178     gclog_or_tty->print_cr("metadata initialized %d",
1179       MetaspaceGC::should_concurrent_collect());
1180   }
1181   // ------------------------------------------------------------------
1182 
1183   // If the estimated time to complete a cms collection (cms_duration())
1184   // is less than the estimated time remaining until the cms generation
1185   // is full, start a collection.
1186   if (!UseCMSInitiatingOccupancyOnly) {
1187     if (stats().valid()) {
1188       if (stats().time_until_cms_start() == 0.0) {
1189         return true;
1190       }
1191     } else {
1192       // We want to conservatively collect somewhat early in order
1193       // to try and "bootstrap" our CMS/promotion statistics;
1194       // this branch will not fire after the first successful CMS
1195       // collection because the stats should then be valid.
1196       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1197         if (Verbose && PrintGCDetails) {
1198           gclog_or_tty->print_cr(
1199             " CMSCollector: collect for bootstrapping statistics:"
1200             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1201             _bootstrap_occupancy);
1202         }
1203         return true;
1204       }
1205     }
1206   }
1207 
1208   // Otherwise, we start a collection cycle if
1209   // old gen want a collection cycle started. Each may use
1210   // an appropriate criterion for making this decision.
1211   // XXX We need to make sure that the gen expansion
1212   // criterion dovetails well with this. XXX NEED TO FIX THIS
1213   if (_cmsGen->should_concurrent_collect()) {
1214     if (Verbose && PrintGCDetails) {
1215       gclog_or_tty->print_cr("CMS old gen initiated");
1216     }
1217     return true;
1218   }
1219 
1220   // We start a collection if we believe an incremental collection may fail;
1221   // this is not likely to be productive in practice because it's probably too
1222   // late anyway.
1223   GenCollectedHeap* gch = GenCollectedHeap::heap();
1224   assert(gch->collector_policy()->is_generation_policy(),
1225          "You may want to check the correctness of the following");
1226   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1227     if (Verbose && PrintGCDetails) {
1228       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1229     }
1230     return true;
1231   }
1232 
1233   if (MetaspaceGC::should_concurrent_collect()) {
1234     if (Verbose && PrintGCDetails) {
1235       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1236     }
1237     return true;
1238   }
1239 
1240   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1241   if (CMSTriggerInterval >= 0) {
1242     if (CMSTriggerInterval == 0) {
1243       // Trigger always
1244       return true;
1245     }
1246 
1247     // Check the CMS time since begin (we do not check the stats validity
1248     // as we want to be able to trigger the first CMS cycle as well)
1249     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1250       if (Verbose && PrintGCDetails) {
1251         if (stats().valid()) {
1252           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1253                                  stats().cms_time_since_begin());
1254         } else {
1255           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1256         }
1257       }
1258       return true;
1259     }
1260   }
1261 
1262   return false;
1263 }
1264 
1265 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1266 
1267 // Clear _expansion_cause fields of constituent generations
1268 void CMSCollector::clear_expansion_cause() {
1269   _cmsGen->clear_expansion_cause();
1270 }
1271 
1272 // We should be conservative in starting a collection cycle.  To
1273 // start too eagerly runs the risk of collecting too often in the
1274 // extreme.  To collect too rarely falls back on full collections,
1275 // which works, even if not optimum in terms of concurrent work.
1276 // As a work around for too eagerly collecting, use the flag
1277 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1278 // giving the user an easily understandable way of controlling the
1279 // collections.
1280 // We want to start a new collection cycle if any of the following
1281 // conditions hold:
1282 // . our current occupancy exceeds the configured initiating occupancy
1283 //   for this generation, or
1284 // . we recently needed to expand this space and have not, since that
1285 //   expansion, done a collection of this generation, or
1286 // . the underlying space believes that it may be a good idea to initiate
1287 //   a concurrent collection (this may be based on criteria such as the
1288 //   following: the space uses linear allocation and linear allocation is
1289 //   going to fail, or there is believed to be excessive fragmentation in
1290 //   the generation, etc... or ...
1291 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1292 //   the case of the old generation; see CR 6543076):
1293 //   we may be approaching a point at which allocation requests may fail because
1294 //   we will be out of sufficient free space given allocation rate estimates.]
1295 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1296 
1297   assert_lock_strong(freelistLock());
1298   if (occupancy() > initiating_occupancy()) {
1299     if (PrintGCDetails && Verbose) {
1300       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1301         short_name(), occupancy(), initiating_occupancy());
1302     }
1303     return true;
1304   }
1305   if (UseCMSInitiatingOccupancyOnly) {
1306     return false;
1307   }
1308   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1309     if (PrintGCDetails && Verbose) {
1310       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1311         short_name());
1312     }
1313     return true;
1314   }
1315   if (_cmsSpace->should_concurrent_collect()) {
1316     if (PrintGCDetails && Verbose) {
1317       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1318         short_name());
1319     }
1320     return true;
1321   }
1322   return false;
1323 }
1324 
1325 void ConcurrentMarkSweepGeneration::collect(bool   full,
1326                                             bool   clear_all_soft_refs,
1327                                             size_t size,
1328                                             bool   tlab)
1329 {
1330   collector()->collect(full, clear_all_soft_refs, size, tlab);
1331 }
1332 
1333 void CMSCollector::collect(bool   full,
1334                            bool   clear_all_soft_refs,
1335                            size_t size,
1336                            bool   tlab)
1337 {
1338   // The following "if" branch is present for defensive reasons.
1339   // In the current uses of this interface, it can be replaced with:
1340   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1341   // But I am not placing that assert here to allow future
1342   // generality in invoking this interface.
1343   if (GC_locker::is_active()) {
1344     // A consistency test for GC_locker
1345     assert(GC_locker::needs_gc(), "Should have been set already");
1346     // Skip this foreground collection, instead
1347     // expanding the heap if necessary.
1348     // Need the free list locks for the call to free() in compute_new_size()
1349     compute_new_size();
1350     return;
1351   }
1352   acquire_control_and_collect(full, clear_all_soft_refs);
1353 }
1354 
1355 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1356   GenCollectedHeap* gch = GenCollectedHeap::heap();
1357   unsigned int gc_count = gch->total_full_collections();
1358   if (gc_count == full_gc_count) {
1359     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1360     _full_gc_requested = true;
1361     _full_gc_cause = cause;
1362     CGC_lock->notify();   // nudge CMS thread
1363   } else {
1364     assert(gc_count > full_gc_count, "Error: causal loop");
1365   }
1366 }
1367 
1368 bool CMSCollector::is_external_interruption() {
1369   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1370   return GCCause::is_user_requested_gc(cause) ||
1371          GCCause::is_serviceability_requested_gc(cause);
1372 }
1373 
1374 void CMSCollector::report_concurrent_mode_interruption() {
1375   if (is_external_interruption()) {
1376     if (PrintGCDetails) {
1377       gclog_or_tty->print(" (concurrent mode interrupted)");
1378     }
1379   } else {
1380     if (PrintGCDetails) {
1381       gclog_or_tty->print(" (concurrent mode failure)");
1382     }
1383     _gc_tracer_cm->report_concurrent_mode_failure();
1384   }
1385 }
1386 
1387 
1388 // The foreground and background collectors need to coordinate in order
1389 // to make sure that they do not mutually interfere with CMS collections.
1390 // When a background collection is active,
1391 // the foreground collector may need to take over (preempt) and
1392 // synchronously complete an ongoing collection. Depending on the
1393 // frequency of the background collections and the heap usage
1394 // of the application, this preemption can be seldom or frequent.
1395 // There are only certain
1396 // points in the background collection that the "collection-baton"
1397 // can be passed to the foreground collector.
1398 //
1399 // The foreground collector will wait for the baton before
1400 // starting any part of the collection.  The foreground collector
1401 // will only wait at one location.
1402 //
1403 // The background collector will yield the baton before starting a new
1404 // phase of the collection (e.g., before initial marking, marking from roots,
1405 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1406 // of the loop which switches the phases. The background collector does some
1407 // of the phases (initial mark, final re-mark) with the world stopped.
1408 // Because of locking involved in stopping the world,
1409 // the foreground collector should not block waiting for the background
1410 // collector when it is doing a stop-the-world phase.  The background
1411 // collector will yield the baton at an additional point just before
1412 // it enters a stop-the-world phase.  Once the world is stopped, the
1413 // background collector checks the phase of the collection.  If the
1414 // phase has not changed, it proceeds with the collection.  If the
1415 // phase has changed, it skips that phase of the collection.  See
1416 // the comments on the use of the Heap_lock in collect_in_background().
1417 //
1418 // Variable used in baton passing.
1419 //   _foregroundGCIsActive - Set to true by the foreground collector when
1420 //      it wants the baton.  The foreground clears it when it has finished
1421 //      the collection.
1422 //   _foregroundGCShouldWait - Set to true by the background collector
1423 //        when it is running.  The foreground collector waits while
1424 //      _foregroundGCShouldWait is true.
1425 //  CGC_lock - monitor used to protect access to the above variables
1426 //      and to notify the foreground and background collectors.
1427 //  _collectorState - current state of the CMS collection.
1428 //
1429 // The foreground collector
1430 //   acquires the CGC_lock
1431 //   sets _foregroundGCIsActive
1432 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1433 //     various locks acquired in preparation for the collection
1434 //     are released so as not to block the background collector
1435 //     that is in the midst of a collection
1436 //   proceeds with the collection
1437 //   clears _foregroundGCIsActive
1438 //   returns
1439 //
1440 // The background collector in a loop iterating on the phases of the
1441 //      collection
1442 //   acquires the CGC_lock
1443 //   sets _foregroundGCShouldWait
1444 //   if _foregroundGCIsActive is set
1445 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1446 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1447 //     and exits the loop.
1448 //   otherwise
1449 //     proceed with that phase of the collection
1450 //     if the phase is a stop-the-world phase,
1451 //       yield the baton once more just before enqueueing
1452 //       the stop-world CMS operation (executed by the VM thread).
1453 //   returns after all phases of the collection are done
1454 //
1455 
1456 void CMSCollector::acquire_control_and_collect(bool full,
1457         bool clear_all_soft_refs) {
1458   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1459   assert(!Thread::current()->is_ConcurrentGC_thread(),
1460          "shouldn't try to acquire control from self!");
1461 
1462   // Start the protocol for acquiring control of the
1463   // collection from the background collector (aka CMS thread).
1464   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1465          "VM thread should have CMS token");
1466   // Remember the possibly interrupted state of an ongoing
1467   // concurrent collection
1468   CollectorState first_state = _collectorState;
1469 
1470   // Signal to a possibly ongoing concurrent collection that
1471   // we want to do a foreground collection.
1472   _foregroundGCIsActive = true;
1473 
1474   // release locks and wait for a notify from the background collector
1475   // releasing the locks in only necessary for phases which
1476   // do yields to improve the granularity of the collection.
1477   assert_lock_strong(bitMapLock());
1478   // We need to lock the Free list lock for the space that we are
1479   // currently collecting.
1480   assert(haveFreelistLocks(), "Must be holding free list locks");
1481   bitMapLock()->unlock();
1482   releaseFreelistLocks();
1483   {
1484     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1485     if (_foregroundGCShouldWait) {
1486       // We are going to be waiting for action for the CMS thread;
1487       // it had better not be gone (for instance at shutdown)!
1488       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1489              "CMS thread must be running");
1490       // Wait here until the background collector gives us the go-ahead
1491       ConcurrentMarkSweepThread::clear_CMS_flag(
1492         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1493       // Get a possibly blocked CMS thread going:
1494       //   Note that we set _foregroundGCIsActive true above,
1495       //   without protection of the CGC_lock.
1496       CGC_lock->notify();
1497       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1498              "Possible deadlock");
1499       while (_foregroundGCShouldWait) {
1500         // wait for notification
1501         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1502         // Possibility of delay/starvation here, since CMS token does
1503         // not know to give priority to VM thread? Actually, i think
1504         // there wouldn't be any delay/starvation, but the proof of
1505         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1506       }
1507       ConcurrentMarkSweepThread::set_CMS_flag(
1508         ConcurrentMarkSweepThread::CMS_vm_has_token);
1509     }
1510   }
1511   // The CMS_token is already held.  Get back the other locks.
1512   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1513          "VM thread should have CMS token");
1514   getFreelistLocks();
1515   bitMapLock()->lock_without_safepoint_check();
1516   if (TraceCMSState) {
1517     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1518       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1519     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1520   }
1521 
1522   // Inform cms gen if this was due to partial collection failing.
1523   // The CMS gen may use this fact to determine its expansion policy.
1524   GenCollectedHeap* gch = GenCollectedHeap::heap();
1525   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1526     assert(!_cmsGen->incremental_collection_failed(),
1527            "Should have been noticed, reacted to and cleared");
1528     _cmsGen->set_incremental_collection_failed();
1529   }
1530 
1531   if (first_state > Idling) {
1532     report_concurrent_mode_interruption();
1533   }
1534 
1535   set_did_compact(true);
1536 
1537   // If the collection is being acquired from the background
1538   // collector, there may be references on the discovered
1539   // references lists.  Abandon those references, since some
1540   // of them may have become unreachable after concurrent
1541   // discovery; the STW compacting collector will redo discovery
1542   // more precisely, without being subject to floating garbage.
1543   // Leaving otherwise unreachable references in the discovered
1544   // lists would require special handling.
1545   ref_processor()->disable_discovery();
1546   ref_processor()->abandon_partial_discovery();
1547   ref_processor()->verify_no_references_recorded();
1548 
1549   if (first_state > Idling) {
1550     save_heap_summary();
1551   }
1552 
1553   do_compaction_work(clear_all_soft_refs);
1554 
1555   // Has the GC time limit been exceeded?
1556   size_t max_eden_size = _young_gen->max_capacity() -
1557                          _young_gen->to()->capacity() -
1558                          _young_gen->from()->capacity();
1559   GCCause::Cause gc_cause = gch->gc_cause();
1560   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1561                                          _young_gen->eden()->used(),
1562                                          _cmsGen->max_capacity(),
1563                                          max_eden_size,
1564                                          full,
1565                                          gc_cause,
1566                                          gch->collector_policy());
1567 
1568   // Reset the expansion cause, now that we just completed
1569   // a collection cycle.
1570   clear_expansion_cause();
1571   _foregroundGCIsActive = false;
1572   return;
1573 }
1574 
1575 // Resize the tenured generation
1576 // after obtaining the free list locks for the
1577 // two generations.
1578 void CMSCollector::compute_new_size() {
1579   assert_locked_or_safepoint(Heap_lock);
1580   FreelistLocker z(this);
1581   MetaspaceGC::compute_new_size();
1582   _cmsGen->compute_new_size_free_list();
1583 }
1584 
1585 // A work method used by the foreground collector to do
1586 // a mark-sweep-compact.
1587 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1588   GenCollectedHeap* gch = GenCollectedHeap::heap();
1589 
1590   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1591   gc_timer->register_gc_start();
1592 
1593   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1594   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1595 
1596   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
1597 
1598   // Temporarily widen the span of the weak reference processing to
1599   // the entire heap.
1600   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1601   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1602   // Temporarily, clear the "is_alive_non_header" field of the
1603   // reference processor.
1604   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1605   // Temporarily make reference _processing_ single threaded (non-MT).
1606   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1607   // Temporarily make refs discovery atomic
1608   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1609   // Temporarily make reference _discovery_ single threaded (non-MT)
1610   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1611 
1612   ref_processor()->set_enqueuing_is_done(false);
1613   ref_processor()->enable_discovery();
1614   ref_processor()->setup_policy(clear_all_soft_refs);
1615   // If an asynchronous collection finishes, the _modUnionTable is
1616   // all clear.  If we are assuming the collection from an asynchronous
1617   // collection, clear the _modUnionTable.
1618   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1619     "_modUnionTable should be clear if the baton was not passed");
1620   _modUnionTable.clear_all();
1621   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1622     "mod union for klasses should be clear if the baton was passed");
1623   _ct->klass_rem_set()->clear_mod_union();
1624 
1625   // We must adjust the allocation statistics being maintained
1626   // in the free list space. We do so by reading and clearing
1627   // the sweep timer and updating the block flux rate estimates below.
1628   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1629   if (_inter_sweep_timer.is_active()) {
1630     _inter_sweep_timer.stop();
1631     // Note that we do not use this sample to update the _inter_sweep_estimate.
1632     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1633                                             _inter_sweep_estimate.padded_average(),
1634                                             _intra_sweep_estimate.padded_average());
1635   }
1636 
1637   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1638   #ifdef ASSERT
1639     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1640     size_t free_size = cms_space->free();
1641     assert(free_size ==
1642            pointer_delta(cms_space->end(), cms_space->compaction_top())
1643            * HeapWordSize,
1644       "All the free space should be compacted into one chunk at top");
1645     assert(cms_space->dictionary()->total_chunk_size(
1646                                       debug_only(cms_space->freelistLock())) == 0 ||
1647            cms_space->totalSizeInIndexedFreeLists() == 0,
1648       "All the free space should be in a single chunk");
1649     size_t num = cms_space->totalCount();
1650     assert((free_size == 0 && num == 0) ||
1651            (free_size > 0  && (num == 1 || num == 2)),
1652          "There should be at most 2 free chunks after compaction");
1653   #endif // ASSERT
1654   _collectorState = Resetting;
1655   assert(_restart_addr == NULL,
1656          "Should have been NULL'd before baton was passed");
1657   reset(false /* == !concurrent */);
1658   _cmsGen->reset_after_compaction();
1659   _concurrent_cycles_since_last_unload = 0;
1660 
1661   // Clear any data recorded in the PLAB chunk arrays.
1662   if (_survivor_plab_array != NULL) {
1663     reset_survivor_plab_arrays();
1664   }
1665 
1666   // Adjust the per-size allocation stats for the next epoch.
1667   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1668   // Restart the "inter sweep timer" for the next epoch.
1669   _inter_sweep_timer.reset();
1670   _inter_sweep_timer.start();
1671 
1672   gc_timer->register_gc_end();
1673 
1674   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1675 
1676   // For a mark-sweep-compact, compute_new_size() will be called
1677   // in the heap's do_collection() method.
1678 }
1679 
1680 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1681   ContiguousSpace* eden_space = _young_gen->eden();
1682   ContiguousSpace* from_space = _young_gen->from();
1683   ContiguousSpace* to_space   = _young_gen->to();
1684   // Eden
1685   if (_eden_chunk_array != NULL) {
1686     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1687                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1688                            p2i(eden_space->end()), eden_space->capacity());
1689     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1690                            "_eden_chunk_capacity=" SIZE_FORMAT,
1691                            _eden_chunk_index, _eden_chunk_capacity);
1692     for (size_t i = 0; i < _eden_chunk_index; i++) {
1693       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1694                              i, p2i(_eden_chunk_array[i]));
1695     }
1696   }
1697   // Survivor
1698   if (_survivor_chunk_array != NULL) {
1699     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1700                            p2i(from_space->bottom()), p2i(from_space->top()),
1701                            p2i(from_space->end()), from_space->capacity());
1702     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1703                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1704                            _survivor_chunk_index, _survivor_chunk_capacity);
1705     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1706       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1707                              i, p2i(_survivor_chunk_array[i]));
1708     }
1709   }
1710 }
1711 
1712 void CMSCollector::getFreelistLocks() const {
1713   // Get locks for all free lists in all generations that this
1714   // collector is responsible for
1715   _cmsGen->freelistLock()->lock_without_safepoint_check();
1716 }
1717 
1718 void CMSCollector::releaseFreelistLocks() const {
1719   // Release locks for all free lists in all generations that this
1720   // collector is responsible for
1721   _cmsGen->freelistLock()->unlock();
1722 }
1723 
1724 bool CMSCollector::haveFreelistLocks() const {
1725   // Check locks for all free lists in all generations that this
1726   // collector is responsible for
1727   assert_lock_strong(_cmsGen->freelistLock());
1728   PRODUCT_ONLY(ShouldNotReachHere());
1729   return true;
1730 }
1731 
1732 // A utility class that is used by the CMS collector to
1733 // temporarily "release" the foreground collector from its
1734 // usual obligation to wait for the background collector to
1735 // complete an ongoing phase before proceeding.
1736 class ReleaseForegroundGC: public StackObj {
1737  private:
1738   CMSCollector* _c;
1739  public:
1740   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1741     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1742     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1743     // allow a potentially blocked foreground collector to proceed
1744     _c->_foregroundGCShouldWait = false;
1745     if (_c->_foregroundGCIsActive) {
1746       CGC_lock->notify();
1747     }
1748     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1749            "Possible deadlock");
1750   }
1751 
1752   ~ReleaseForegroundGC() {
1753     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1754     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1755     _c->_foregroundGCShouldWait = true;
1756   }
1757 };
1758 
1759 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1760   assert(Thread::current()->is_ConcurrentGC_thread(),
1761     "A CMS asynchronous collection is only allowed on a CMS thread.");
1762 
1763   GenCollectedHeap* gch = GenCollectedHeap::heap();
1764   {
1765     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1766     MutexLockerEx hl(Heap_lock, safepoint_check);
1767     FreelistLocker fll(this);
1768     MutexLockerEx x(CGC_lock, safepoint_check);
1769     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1770       // The foreground collector is active or we're
1771       // not using asynchronous collections.  Skip this
1772       // background collection.
1773       assert(!_foregroundGCShouldWait, "Should be clear");
1774       return;
1775     } else {
1776       assert(_collectorState == Idling, "Should be idling before start.");
1777       _collectorState = InitialMarking;
1778       register_gc_start(cause);
1779       // Reset the expansion cause, now that we are about to begin
1780       // a new cycle.
1781       clear_expansion_cause();
1782 
1783       // Clear the MetaspaceGC flag since a concurrent collection
1784       // is starting but also clear it after the collection.
1785       MetaspaceGC::set_should_concurrent_collect(false);
1786     }
1787     // Decide if we want to enable class unloading as part of the
1788     // ensuing concurrent GC cycle.
1789     update_should_unload_classes();
1790     _full_gc_requested = false;           // acks all outstanding full gc requests
1791     _full_gc_cause = GCCause::_no_gc;
1792     // Signal that we are about to start a collection
1793     gch->increment_total_full_collections();  // ... starting a collection cycle
1794     _collection_count_start = gch->total_full_collections();
1795   }
1796 
1797   // Used for PrintGC
1798   size_t prev_used;
1799   if (PrintGC && Verbose) {
1800     prev_used = _cmsGen->used();
1801   }
1802 
1803   // The change of the collection state is normally done at this level;
1804   // the exceptions are phases that are executed while the world is
1805   // stopped.  For those phases the change of state is done while the
1806   // world is stopped.  For baton passing purposes this allows the
1807   // background collector to finish the phase and change state atomically.
1808   // The foreground collector cannot wait on a phase that is done
1809   // while the world is stopped because the foreground collector already
1810   // has the world stopped and would deadlock.
1811   while (_collectorState != Idling) {
1812     if (TraceCMSState) {
1813       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1814         p2i(Thread::current()), _collectorState);
1815     }
1816     // The foreground collector
1817     //   holds the Heap_lock throughout its collection.
1818     //   holds the CMS token (but not the lock)
1819     //     except while it is waiting for the background collector to yield.
1820     //
1821     // The foreground collector should be blocked (not for long)
1822     //   if the background collector is about to start a phase
1823     //   executed with world stopped.  If the background
1824     //   collector has already started such a phase, the
1825     //   foreground collector is blocked waiting for the
1826     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1827     //   are executed in the VM thread.
1828     //
1829     // The locking order is
1830     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1831     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1832     //   CMS token  (claimed in
1833     //                stop_world_and_do() -->
1834     //                  safepoint_synchronize() -->
1835     //                    CMSThread::synchronize())
1836 
1837     {
1838       // Check if the FG collector wants us to yield.
1839       CMSTokenSync x(true); // is cms thread
1840       if (waitForForegroundGC()) {
1841         // We yielded to a foreground GC, nothing more to be
1842         // done this round.
1843         assert(_foregroundGCShouldWait == false, "We set it to false in "
1844                "waitForForegroundGC()");
1845         if (TraceCMSState) {
1846           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1847             " exiting collection CMS state %d",
1848             p2i(Thread::current()), _collectorState);
1849         }
1850         return;
1851       } else {
1852         // The background collector can run but check to see if the
1853         // foreground collector has done a collection while the
1854         // background collector was waiting to get the CGC_lock
1855         // above.  If yes, break so that _foregroundGCShouldWait
1856         // is cleared before returning.
1857         if (_collectorState == Idling) {
1858           break;
1859         }
1860       }
1861     }
1862 
1863     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1864       "should be waiting");
1865 
1866     switch (_collectorState) {
1867       case InitialMarking:
1868         {
1869           ReleaseForegroundGC x(this);
1870           stats().record_cms_begin();
1871           VM_CMS_Initial_Mark initial_mark_op(this);
1872           VMThread::execute(&initial_mark_op);
1873         }
1874         // The collector state may be any legal state at this point
1875         // since the background collector may have yielded to the
1876         // foreground collector.
1877         break;
1878       case Marking:
1879         // initial marking in checkpointRootsInitialWork has been completed
1880         if (markFromRoots()) { // we were successful
1881           assert(_collectorState == Precleaning, "Collector state should "
1882             "have changed");
1883         } else {
1884           assert(_foregroundGCIsActive, "Internal state inconsistency");
1885         }
1886         break;
1887       case Precleaning:
1888         // marking from roots in markFromRoots has been completed
1889         preclean();
1890         assert(_collectorState == AbortablePreclean ||
1891                _collectorState == FinalMarking,
1892                "Collector state should have changed");
1893         break;
1894       case AbortablePreclean:
1895         abortable_preclean();
1896         assert(_collectorState == FinalMarking, "Collector state should "
1897           "have changed");
1898         break;
1899       case FinalMarking:
1900         {
1901           ReleaseForegroundGC x(this);
1902 
1903           VM_CMS_Final_Remark final_remark_op(this);
1904           VMThread::execute(&final_remark_op);
1905         }
1906         assert(_foregroundGCShouldWait, "block post-condition");
1907         break;
1908       case Sweeping:
1909         // final marking in checkpointRootsFinal has been completed
1910         sweep();
1911         assert(_collectorState == Resizing, "Collector state change "
1912           "to Resizing must be done under the free_list_lock");
1913 
1914       case Resizing: {
1915         // Sweeping has been completed...
1916         // At this point the background collection has completed.
1917         // Don't move the call to compute_new_size() down
1918         // into code that might be executed if the background
1919         // collection was preempted.
1920         {
1921           ReleaseForegroundGC x(this);   // unblock FG collection
1922           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1923           CMSTokenSync        z(true);   // not strictly needed.
1924           if (_collectorState == Resizing) {
1925             compute_new_size();
1926             save_heap_summary();
1927             _collectorState = Resetting;
1928           } else {
1929             assert(_collectorState == Idling, "The state should only change"
1930                    " because the foreground collector has finished the collection");
1931           }
1932         }
1933         break;
1934       }
1935       case Resetting:
1936         // CMS heap resizing has been completed
1937         reset(true);
1938         assert(_collectorState == Idling, "Collector state should "
1939           "have changed");
1940 
1941         MetaspaceGC::set_should_concurrent_collect(false);
1942 
1943         stats().record_cms_end();
1944         // Don't move the concurrent_phases_end() and compute_new_size()
1945         // calls to here because a preempted background collection
1946         // has it's state set to "Resetting".
1947         break;
1948       case Idling:
1949       default:
1950         ShouldNotReachHere();
1951         break;
1952     }
1953     if (TraceCMSState) {
1954       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1955         p2i(Thread::current()), _collectorState);
1956     }
1957     assert(_foregroundGCShouldWait, "block post-condition");
1958   }
1959 
1960   // Should this be in gc_epilogue?
1961   collector_policy()->counters()->update_counters();
1962 
1963   {
1964     // Clear _foregroundGCShouldWait and, in the event that the
1965     // foreground collector is waiting, notify it, before
1966     // returning.
1967     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1968     _foregroundGCShouldWait = false;
1969     if (_foregroundGCIsActive) {
1970       CGC_lock->notify();
1971     }
1972     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1973            "Possible deadlock");
1974   }
1975   if (TraceCMSState) {
1976     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1977       " exiting collection CMS state %d",
1978       p2i(Thread::current()), _collectorState);
1979   }
1980   if (PrintGC && Verbose) {
1981     _cmsGen->print_heap_change(prev_used);
1982   }
1983 }
1984 
1985 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1986   _cms_start_registered = true;
1987   _gc_timer_cm->register_gc_start();
1988   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1989 }
1990 
1991 void CMSCollector::register_gc_end() {
1992   if (_cms_start_registered) {
1993     report_heap_summary(GCWhen::AfterGC);
1994 
1995     _gc_timer_cm->register_gc_end();
1996     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1997     _cms_start_registered = false;
1998   }
1999 }
2000 
2001 void CMSCollector::save_heap_summary() {
2002   GenCollectedHeap* gch = GenCollectedHeap::heap();
2003   _last_heap_summary = gch->create_heap_summary();
2004   _last_metaspace_summary = gch->create_metaspace_summary();
2005 }
2006 
2007 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2008   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2009   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2010 }
2011 
2012 bool CMSCollector::waitForForegroundGC() {
2013   bool res = false;
2014   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2015          "CMS thread should have CMS token");
2016   // Block the foreground collector until the
2017   // background collectors decides whether to
2018   // yield.
2019   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2020   _foregroundGCShouldWait = true;
2021   if (_foregroundGCIsActive) {
2022     // The background collector yields to the
2023     // foreground collector and returns a value
2024     // indicating that it has yielded.  The foreground
2025     // collector can proceed.
2026     res = true;
2027     _foregroundGCShouldWait = false;
2028     ConcurrentMarkSweepThread::clear_CMS_flag(
2029       ConcurrentMarkSweepThread::CMS_cms_has_token);
2030     ConcurrentMarkSweepThread::set_CMS_flag(
2031       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2032     // Get a possibly blocked foreground thread going
2033     CGC_lock->notify();
2034     if (TraceCMSState) {
2035       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2036         p2i(Thread::current()), _collectorState);
2037     }
2038     while (_foregroundGCIsActive) {
2039       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2040     }
2041     ConcurrentMarkSweepThread::set_CMS_flag(
2042       ConcurrentMarkSweepThread::CMS_cms_has_token);
2043     ConcurrentMarkSweepThread::clear_CMS_flag(
2044       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2045   }
2046   if (TraceCMSState) {
2047     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2048       p2i(Thread::current()), _collectorState);
2049   }
2050   return res;
2051 }
2052 
2053 // Because of the need to lock the free lists and other structures in
2054 // the collector, common to all the generations that the collector is
2055 // collecting, we need the gc_prologues of individual CMS generations
2056 // delegate to their collector. It may have been simpler had the
2057 // current infrastructure allowed one to call a prologue on a
2058 // collector. In the absence of that we have the generation's
2059 // prologue delegate to the collector, which delegates back
2060 // some "local" work to a worker method in the individual generations
2061 // that it's responsible for collecting, while itself doing any
2062 // work common to all generations it's responsible for. A similar
2063 // comment applies to the  gc_epilogue()'s.
2064 // The role of the variable _between_prologue_and_epilogue is to
2065 // enforce the invocation protocol.
2066 void CMSCollector::gc_prologue(bool full) {
2067   // Call gc_prologue_work() for the CMSGen
2068   // we are responsible for.
2069 
2070   // The following locking discipline assumes that we are only called
2071   // when the world is stopped.
2072   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2073 
2074   // The CMSCollector prologue must call the gc_prologues for the
2075   // "generations" that it's responsible
2076   // for.
2077 
2078   assert(   Thread::current()->is_VM_thread()
2079          || (   CMSScavengeBeforeRemark
2080              && Thread::current()->is_ConcurrentGC_thread()),
2081          "Incorrect thread type for prologue execution");
2082 
2083   if (_between_prologue_and_epilogue) {
2084     // We have already been invoked; this is a gc_prologue delegation
2085     // from yet another CMS generation that we are responsible for, just
2086     // ignore it since all relevant work has already been done.
2087     return;
2088   }
2089 
2090   // set a bit saying prologue has been called; cleared in epilogue
2091   _between_prologue_and_epilogue = true;
2092   // Claim locks for common data structures, then call gc_prologue_work()
2093   // for each CMSGen.
2094 
2095   getFreelistLocks();   // gets free list locks on constituent spaces
2096   bitMapLock()->lock_without_safepoint_check();
2097 
2098   // Should call gc_prologue_work() for all cms gens we are responsible for
2099   bool duringMarking =    _collectorState >= Marking
2100                          && _collectorState < Sweeping;
2101 
2102   // The young collections clear the modified oops state, which tells if
2103   // there are any modified oops in the class. The remark phase also needs
2104   // that information. Tell the young collection to save the union of all
2105   // modified klasses.
2106   if (duringMarking) {
2107     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2108   }
2109 
2110   bool registerClosure = duringMarking;
2111 
2112   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2113 
2114   if (!full) {
2115     stats().record_gc0_begin();
2116   }
2117 }
2118 
2119 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2120 
2121   _capacity_at_prologue = capacity();
2122   _used_at_prologue = used();
2123 
2124   // Delegate to CMScollector which knows how to coordinate between
2125   // this and any other CMS generations that it is responsible for
2126   // collecting.
2127   collector()->gc_prologue(full);
2128 }
2129 
2130 // This is a "private" interface for use by this generation's CMSCollector.
2131 // Not to be called directly by any other entity (for instance,
2132 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2133 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2134   bool registerClosure, ModUnionClosure* modUnionClosure) {
2135   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2136   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2137     "Should be NULL");
2138   if (registerClosure) {
2139     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2140   }
2141   cmsSpace()->gc_prologue();
2142   // Clear stat counters
2143   NOT_PRODUCT(
2144     assert(_numObjectsPromoted == 0, "check");
2145     assert(_numWordsPromoted   == 0, "check");
2146     if (Verbose && PrintGC) {
2147       gclog_or_tty->print("Allocated " SIZE_FORMAT " objects, "
2148                           SIZE_FORMAT " bytes concurrently",
2149       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2150     }
2151     _numObjectsAllocated = 0;
2152     _numWordsAllocated   = 0;
2153   )
2154 }
2155 
2156 void CMSCollector::gc_epilogue(bool full) {
2157   // The following locking discipline assumes that we are only called
2158   // when the world is stopped.
2159   assert(SafepointSynchronize::is_at_safepoint(),
2160          "world is stopped assumption");
2161 
2162   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2163   // if linear allocation blocks need to be appropriately marked to allow the
2164   // the blocks to be parsable. We also check here whether we need to nudge the
2165   // CMS collector thread to start a new cycle (if it's not already active).
2166   assert(   Thread::current()->is_VM_thread()
2167          || (   CMSScavengeBeforeRemark
2168              && Thread::current()->is_ConcurrentGC_thread()),
2169          "Incorrect thread type for epilogue execution");
2170 
2171   if (!_between_prologue_and_epilogue) {
2172     // We have already been invoked; this is a gc_epilogue delegation
2173     // from yet another CMS generation that we are responsible for, just
2174     // ignore it since all relevant work has already been done.
2175     return;
2176   }
2177   assert(haveFreelistLocks(), "must have freelist locks");
2178   assert_lock_strong(bitMapLock());
2179 
2180   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2181 
2182   _cmsGen->gc_epilogue_work(full);
2183 
2184   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2185     // in case sampling was not already enabled, enable it
2186     _start_sampling = true;
2187   }
2188   // reset _eden_chunk_array so sampling starts afresh
2189   _eden_chunk_index = 0;
2190 
2191   size_t cms_used   = _cmsGen->cmsSpace()->used();
2192 
2193   // update performance counters - this uses a special version of
2194   // update_counters() that allows the utilization to be passed as a
2195   // parameter, avoiding multiple calls to used().
2196   //
2197   _cmsGen->update_counters(cms_used);
2198 
2199   bitMapLock()->unlock();
2200   releaseFreelistLocks();
2201 
2202   if (!CleanChunkPoolAsync) {
2203     Chunk::clean_chunk_pool();
2204   }
2205 
2206   set_did_compact(false);
2207   _between_prologue_and_epilogue = false;  // ready for next cycle
2208 }
2209 
2210 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2211   collector()->gc_epilogue(full);
2212 
2213   // Also reset promotion tracking in par gc thread states.
2214   for (uint i = 0; i < ParallelGCThreads; i++) {
2215     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2216   }
2217 }
2218 
2219 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2220   assert(!incremental_collection_failed(), "Should have been cleared");
2221   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2222   cmsSpace()->gc_epilogue();
2223     // Print stat counters
2224   NOT_PRODUCT(
2225     assert(_numObjectsAllocated == 0, "check");
2226     assert(_numWordsAllocated == 0, "check");
2227     if (Verbose && PrintGC) {
2228       gclog_or_tty->print("Promoted " SIZE_FORMAT " objects, "
2229                           SIZE_FORMAT " bytes",
2230                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2231     }
2232     _numObjectsPromoted = 0;
2233     _numWordsPromoted   = 0;
2234   )
2235 
2236   if (PrintGC && Verbose) {
2237     // Call down the chain in contiguous_available needs the freelistLock
2238     // so print this out before releasing the freeListLock.
2239     gclog_or_tty->print(" Contiguous available " SIZE_FORMAT " bytes ",
2240                         contiguous_available());
2241   }
2242 }
2243 
2244 #ifndef PRODUCT
2245 bool CMSCollector::have_cms_token() {
2246   Thread* thr = Thread::current();
2247   if (thr->is_VM_thread()) {
2248     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2249   } else if (thr->is_ConcurrentGC_thread()) {
2250     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2251   } else if (thr->is_GC_task_thread()) {
2252     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2253            ParGCRareEvent_lock->owned_by_self();
2254   }
2255   return false;
2256 }
2257 #endif
2258 
2259 // Check reachability of the given heap address in CMS generation,
2260 // treating all other generations as roots.
2261 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2262   // We could "guarantee" below, rather than assert, but I'll
2263   // leave these as "asserts" so that an adventurous debugger
2264   // could try this in the product build provided some subset of
2265   // the conditions were met, provided they were interested in the
2266   // results and knew that the computation below wouldn't interfere
2267   // with other concurrent computations mutating the structures
2268   // being read or written.
2269   assert(SafepointSynchronize::is_at_safepoint(),
2270          "Else mutations in object graph will make answer suspect");
2271   assert(have_cms_token(), "Should hold cms token");
2272   assert(haveFreelistLocks(), "must hold free list locks");
2273   assert_lock_strong(bitMapLock());
2274 
2275   // Clear the marking bit map array before starting, but, just
2276   // for kicks, first report if the given address is already marked
2277   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2278                 _markBitMap.isMarked(addr) ? "" : " not");
2279 
2280   if (verify_after_remark()) {
2281     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2282     bool result = verification_mark_bm()->isMarked(addr);
2283     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2284                            result ? "IS" : "is NOT");
2285     return result;
2286   } else {
2287     gclog_or_tty->print_cr("Could not compute result");
2288     return false;
2289   }
2290 }
2291 
2292 
2293 void
2294 CMSCollector::print_on_error(outputStream* st) {
2295   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2296   if (collector != NULL) {
2297     CMSBitMap* bitmap = &collector->_markBitMap;
2298     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2299     bitmap->print_on_error(st, " Bits: ");
2300 
2301     st->cr();
2302 
2303     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2304     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2305     mut_bitmap->print_on_error(st, " Bits: ");
2306   }
2307 }
2308 
2309 ////////////////////////////////////////////////////////
2310 // CMS Verification Support
2311 ////////////////////////////////////////////////////////
2312 // Following the remark phase, the following invariant
2313 // should hold -- each object in the CMS heap which is
2314 // marked in markBitMap() should be marked in the verification_mark_bm().
2315 
2316 class VerifyMarkedClosure: public BitMapClosure {
2317   CMSBitMap* _marks;
2318   bool       _failed;
2319 
2320  public:
2321   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2322 
2323   bool do_bit(size_t offset) {
2324     HeapWord* addr = _marks->offsetToHeapWord(offset);
2325     if (!_marks->isMarked(addr)) {
2326       oop(addr)->print_on(gclog_or_tty);
2327       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2328       _failed = true;
2329     }
2330     return true;
2331   }
2332 
2333   bool failed() { return _failed; }
2334 };
2335 
2336 bool CMSCollector::verify_after_remark(bool silent) {
2337   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2338   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2339   static bool init = false;
2340 
2341   assert(SafepointSynchronize::is_at_safepoint(),
2342          "Else mutations in object graph will make answer suspect");
2343   assert(have_cms_token(),
2344          "Else there may be mutual interference in use of "
2345          " verification data structures");
2346   assert(_collectorState > Marking && _collectorState <= Sweeping,
2347          "Else marking info checked here may be obsolete");
2348   assert(haveFreelistLocks(), "must hold free list locks");
2349   assert_lock_strong(bitMapLock());
2350 
2351 
2352   // Allocate marking bit map if not already allocated
2353   if (!init) { // first time
2354     if (!verification_mark_bm()->allocate(_span)) {
2355       return false;
2356     }
2357     init = true;
2358   }
2359 
2360   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2361 
2362   // Turn off refs discovery -- so we will be tracing through refs.
2363   // This is as intended, because by this time
2364   // GC must already have cleared any refs that need to be cleared,
2365   // and traced those that need to be marked; moreover,
2366   // the marking done here is not going to interfere in any
2367   // way with the marking information used by GC.
2368   NoRefDiscovery no_discovery(ref_processor());
2369 
2370   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2371 
2372   // Clear any marks from a previous round
2373   verification_mark_bm()->clear_all();
2374   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2375   verify_work_stacks_empty();
2376 
2377   GenCollectedHeap* gch = GenCollectedHeap::heap();
2378   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2379   // Update the saved marks which may affect the root scans.
2380   gch->save_marks();
2381 
2382   if (CMSRemarkVerifyVariant == 1) {
2383     // In this first variant of verification, we complete
2384     // all marking, then check if the new marks-vector is
2385     // a subset of the CMS marks-vector.
2386     verify_after_remark_work_1();
2387   } else if (CMSRemarkVerifyVariant == 2) {
2388     // In this second variant of verification, we flag an error
2389     // (i.e. an object reachable in the new marks-vector not reachable
2390     // in the CMS marks-vector) immediately, also indicating the
2391     // identify of an object (A) that references the unmarked object (B) --
2392     // presumably, a mutation to A failed to be picked up by preclean/remark?
2393     verify_after_remark_work_2();
2394   } else {
2395     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2396             CMSRemarkVerifyVariant);
2397   }
2398   if (!silent) gclog_or_tty->print(" done] ");
2399   return true;
2400 }
2401 
2402 void CMSCollector::verify_after_remark_work_1() {
2403   ResourceMark rm;
2404   HandleMark  hm;
2405   GenCollectedHeap* gch = GenCollectedHeap::heap();
2406 
2407   // Get a clear set of claim bits for the roots processing to work with.
2408   ClassLoaderDataGraph::clear_claimed_marks();
2409 
2410   // Mark from roots one level into CMS
2411   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2412   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2413 
2414   {
2415     StrongRootsScope srs(1);
2416 
2417     gch->old_process_roots(&srs,
2418                            true,   // young gen as roots
2419                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2420                            should_unload_classes(),
2421                            &notOlder,
2422                            NULL);
2423   }
2424 
2425   // Now mark from the roots
2426   MarkFromRootsClosure markFromRootsClosure(this, _span,
2427     verification_mark_bm(), verification_mark_stack(),
2428     false /* don't yield */, true /* verifying */);
2429   assert(_restart_addr == NULL, "Expected pre-condition");
2430   verification_mark_bm()->iterate(&markFromRootsClosure);
2431   while (_restart_addr != NULL) {
2432     // Deal with stack overflow: by restarting at the indicated
2433     // address.
2434     HeapWord* ra = _restart_addr;
2435     markFromRootsClosure.reset(ra);
2436     _restart_addr = NULL;
2437     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2438   }
2439   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2440   verify_work_stacks_empty();
2441 
2442   // Marking completed -- now verify that each bit marked in
2443   // verification_mark_bm() is also marked in markBitMap(); flag all
2444   // errors by printing corresponding objects.
2445   VerifyMarkedClosure vcl(markBitMap());
2446   verification_mark_bm()->iterate(&vcl);
2447   if (vcl.failed()) {
2448     gclog_or_tty->print("Verification failed");
2449     gch->print_on(gclog_or_tty);
2450     fatal("CMS: failed marking verification after remark");
2451   }
2452 }
2453 
2454 class VerifyKlassOopsKlassClosure : public KlassClosure {
2455   class VerifyKlassOopsClosure : public OopClosure {
2456     CMSBitMap* _bitmap;
2457    public:
2458     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2459     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2460     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2461   } _oop_closure;
2462  public:
2463   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2464   void do_klass(Klass* k) {
2465     k->oops_do(&_oop_closure);
2466   }
2467 };
2468 
2469 void CMSCollector::verify_after_remark_work_2() {
2470   ResourceMark rm;
2471   HandleMark  hm;
2472   GenCollectedHeap* gch = GenCollectedHeap::heap();
2473 
2474   // Get a clear set of claim bits for the roots processing to work with.
2475   ClassLoaderDataGraph::clear_claimed_marks();
2476 
2477   // Mark from roots one level into CMS
2478   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2479                                      markBitMap());
2480   CLDToOopClosure cld_closure(&notOlder, true);
2481 
2482   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2483 
2484   {
2485     StrongRootsScope srs(1);
2486 
2487     gch->old_process_roots(&srs,
2488                            true,   // young gen as roots
2489                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2490                            should_unload_classes(),
2491                            &notOlder,
2492                            &cld_closure);
2493   }
2494 
2495   // Now mark from the roots
2496   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2497     verification_mark_bm(), markBitMap(), verification_mark_stack());
2498   assert(_restart_addr == NULL, "Expected pre-condition");
2499   verification_mark_bm()->iterate(&markFromRootsClosure);
2500   while (_restart_addr != NULL) {
2501     // Deal with stack overflow: by restarting at the indicated
2502     // address.
2503     HeapWord* ra = _restart_addr;
2504     markFromRootsClosure.reset(ra);
2505     _restart_addr = NULL;
2506     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2507   }
2508   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2509   verify_work_stacks_empty();
2510 
2511   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2512   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2513 
2514   // Marking completed -- now verify that each bit marked in
2515   // verification_mark_bm() is also marked in markBitMap(); flag all
2516   // errors by printing corresponding objects.
2517   VerifyMarkedClosure vcl(markBitMap());
2518   verification_mark_bm()->iterate(&vcl);
2519   assert(!vcl.failed(), "Else verification above should not have succeeded");
2520 }
2521 
2522 void ConcurrentMarkSweepGeneration::save_marks() {
2523   // delegate to CMS space
2524   cmsSpace()->save_marks();
2525   for (uint i = 0; i < ParallelGCThreads; i++) {
2526     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2527   }
2528 }
2529 
2530 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2531   return cmsSpace()->no_allocs_since_save_marks();
2532 }
2533 
2534 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2535                                                                 \
2536 void ConcurrentMarkSweepGeneration::                            \
2537 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2538   cl->assert_generation(this);                                  \
2539   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2540   save_marks();                                                 \
2541 }
2542 
2543 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2544 
2545 void
2546 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2547   if (freelistLock()->owned_by_self()) {
2548     Generation::oop_iterate(cl);
2549   } else {
2550     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2551     Generation::oop_iterate(cl);
2552   }
2553 }
2554 
2555 void
2556 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2557   if (freelistLock()->owned_by_self()) {
2558     Generation::object_iterate(cl);
2559   } else {
2560     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2561     Generation::object_iterate(cl);
2562   }
2563 }
2564 
2565 void
2566 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2567   if (freelistLock()->owned_by_self()) {
2568     Generation::safe_object_iterate(cl);
2569   } else {
2570     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2571     Generation::safe_object_iterate(cl);
2572   }
2573 }
2574 
2575 void
2576 ConcurrentMarkSweepGeneration::post_compact() {
2577 }
2578 
2579 void
2580 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2581   // Fix the linear allocation blocks to look like free blocks.
2582 
2583   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2584   // are not called when the heap is verified during universe initialization and
2585   // at vm shutdown.
2586   if (freelistLock()->owned_by_self()) {
2587     cmsSpace()->prepare_for_verify();
2588   } else {
2589     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2590     cmsSpace()->prepare_for_verify();
2591   }
2592 }
2593 
2594 void
2595 ConcurrentMarkSweepGeneration::verify() {
2596   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2597   // are not called when the heap is verified during universe initialization and
2598   // at vm shutdown.
2599   if (freelistLock()->owned_by_self()) {
2600     cmsSpace()->verify();
2601   } else {
2602     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2603     cmsSpace()->verify();
2604   }
2605 }
2606 
2607 void CMSCollector::verify() {
2608   _cmsGen->verify();
2609 }
2610 
2611 #ifndef PRODUCT
2612 bool CMSCollector::overflow_list_is_empty() const {
2613   assert(_num_par_pushes >= 0, "Inconsistency");
2614   if (_overflow_list == NULL) {
2615     assert(_num_par_pushes == 0, "Inconsistency");
2616   }
2617   return _overflow_list == NULL;
2618 }
2619 
2620 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2621 // merely consolidate assertion checks that appear to occur together frequently.
2622 void CMSCollector::verify_work_stacks_empty() const {
2623   assert(_markStack.isEmpty(), "Marking stack should be empty");
2624   assert(overflow_list_is_empty(), "Overflow list should be empty");
2625 }
2626 
2627 void CMSCollector::verify_overflow_empty() const {
2628   assert(overflow_list_is_empty(), "Overflow list should be empty");
2629   assert(no_preserved_marks(), "No preserved marks");
2630 }
2631 #endif // PRODUCT
2632 
2633 // Decide if we want to enable class unloading as part of the
2634 // ensuing concurrent GC cycle. We will collect and
2635 // unload classes if it's the case that:
2636 // (1) an explicit gc request has been made and the flag
2637 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2638 // (2) (a) class unloading is enabled at the command line, and
2639 //     (b) old gen is getting really full
2640 // NOTE: Provided there is no change in the state of the heap between
2641 // calls to this method, it should have idempotent results. Moreover,
2642 // its results should be monotonically increasing (i.e. going from 0 to 1,
2643 // but not 1 to 0) between successive calls between which the heap was
2644 // not collected. For the implementation below, it must thus rely on
2645 // the property that concurrent_cycles_since_last_unload()
2646 // will not decrease unless a collection cycle happened and that
2647 // _cmsGen->is_too_full() are
2648 // themselves also monotonic in that sense. See check_monotonicity()
2649 // below.
2650 void CMSCollector::update_should_unload_classes() {
2651   _should_unload_classes = false;
2652   // Condition 1 above
2653   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2654     _should_unload_classes = true;
2655   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2656     // Disjuncts 2.b.(i,ii,iii) above
2657     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2658                               CMSClassUnloadingMaxInterval)
2659                            || _cmsGen->is_too_full();
2660   }
2661 }
2662 
2663 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2664   bool res = should_concurrent_collect();
2665   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2666   return res;
2667 }
2668 
2669 void CMSCollector::setup_cms_unloading_and_verification_state() {
2670   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2671                              || VerifyBeforeExit;
2672   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2673 
2674   // We set the proper root for this CMS cycle here.
2675   if (should_unload_classes()) {   // Should unload classes this cycle
2676     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2677     set_verifying(should_verify);    // Set verification state for this cycle
2678     return;                            // Nothing else needs to be done at this time
2679   }
2680 
2681   // Not unloading classes this cycle
2682   assert(!should_unload_classes(), "Inconsistency!");
2683 
2684   // If we are not unloading classes then add SO_AllCodeCache to root
2685   // scanning options.
2686   add_root_scanning_option(rso);
2687 
2688   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2689     set_verifying(true);
2690   } else if (verifying() && !should_verify) {
2691     // We were verifying, but some verification flags got disabled.
2692     set_verifying(false);
2693     // Exclude symbols, strings and code cache elements from root scanning to
2694     // reduce IM and RM pauses.
2695     remove_root_scanning_option(rso);
2696   }
2697 }
2698 
2699 
2700 #ifndef PRODUCT
2701 HeapWord* CMSCollector::block_start(const void* p) const {
2702   const HeapWord* addr = (HeapWord*)p;
2703   if (_span.contains(p)) {
2704     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2705       return _cmsGen->cmsSpace()->block_start(p);
2706     }
2707   }
2708   return NULL;
2709 }
2710 #endif
2711 
2712 HeapWord*
2713 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2714                                                    bool   tlab,
2715                                                    bool   parallel) {
2716   CMSSynchronousYieldRequest yr;
2717   assert(!tlab, "Can't deal with TLAB allocation");
2718   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2719   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2720   if (GCExpandToAllocateDelayMillis > 0) {
2721     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2722   }
2723   return have_lock_and_allocate(word_size, tlab);
2724 }
2725 
2726 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2727     size_t bytes,
2728     size_t expand_bytes,
2729     CMSExpansionCause::Cause cause)
2730 {
2731 
2732   bool success = expand(bytes, expand_bytes);
2733 
2734   // remember why we expanded; this information is used
2735   // by shouldConcurrentCollect() when making decisions on whether to start
2736   // a new CMS cycle.
2737   if (success) {
2738     set_expansion_cause(cause);
2739     if (PrintGCDetails && Verbose) {
2740       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2741         CMSExpansionCause::to_string(cause));
2742     }
2743   }
2744 }
2745 
2746 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2747   HeapWord* res = NULL;
2748   MutexLocker x(ParGCRareEvent_lock);
2749   while (true) {
2750     // Expansion by some other thread might make alloc OK now:
2751     res = ps->lab.alloc(word_sz);
2752     if (res != NULL) return res;
2753     // If there's not enough expansion space available, give up.
2754     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2755       return NULL;
2756     }
2757     // Otherwise, we try expansion.
2758     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2759     // Now go around the loop and try alloc again;
2760     // A competing par_promote might beat us to the expansion space,
2761     // so we may go around the loop again if promotion fails again.
2762     if (GCExpandToAllocateDelayMillis > 0) {
2763       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2764     }
2765   }
2766 }
2767 
2768 
2769 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2770   PromotionInfo* promo) {
2771   MutexLocker x(ParGCRareEvent_lock);
2772   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2773   while (true) {
2774     // Expansion by some other thread might make alloc OK now:
2775     if (promo->ensure_spooling_space()) {
2776       assert(promo->has_spooling_space(),
2777              "Post-condition of successful ensure_spooling_space()");
2778       return true;
2779     }
2780     // If there's not enough expansion space available, give up.
2781     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2782       return false;
2783     }
2784     // Otherwise, we try expansion.
2785     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2786     // Now go around the loop and try alloc again;
2787     // A competing allocation might beat us to the expansion space,
2788     // so we may go around the loop again if allocation fails again.
2789     if (GCExpandToAllocateDelayMillis > 0) {
2790       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2791     }
2792   }
2793 }
2794 
2795 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2796   // Only shrink if a compaction was done so that all the free space
2797   // in the generation is in a contiguous block at the end.
2798   if (did_compact()) {
2799     CardGeneration::shrink(bytes);
2800   }
2801 }
2802 
2803 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2804   assert_locked_or_safepoint(Heap_lock);
2805 }
2806 
2807 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2808   assert_locked_or_safepoint(Heap_lock);
2809   assert_lock_strong(freelistLock());
2810   if (PrintGCDetails && Verbose) {
2811     warning("Shrinking of CMS not yet implemented");
2812   }
2813   return;
2814 }
2815 
2816 
2817 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2818 // phases.
2819 class CMSPhaseAccounting: public StackObj {
2820  public:
2821   CMSPhaseAccounting(CMSCollector *collector,
2822                      const char *phase,
2823                      bool print_cr = true);
2824   ~CMSPhaseAccounting();
2825 
2826  private:
2827   CMSCollector *_collector;
2828   const char *_phase;
2829   elapsedTimer _wallclock;
2830   bool _print_cr;
2831 
2832  public:
2833   // Not MT-safe; so do not pass around these StackObj's
2834   // where they may be accessed by other threads.
2835   jlong wallclock_millis() {
2836     assert(_wallclock.is_active(), "Wall clock should not stop");
2837     _wallclock.stop();  // to record time
2838     jlong ret = _wallclock.milliseconds();
2839     _wallclock.start(); // restart
2840     return ret;
2841   }
2842 };
2843 
2844 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2845                                        const char *phase,
2846                                        bool print_cr) :
2847   _collector(collector), _phase(phase), _print_cr(print_cr) {
2848 
2849   if (PrintCMSStatistics != 0) {
2850     _collector->resetYields();
2851   }
2852   if (PrintGCDetails) {
2853     gclog_or_tty->gclog_stamp();
2854     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2855       _collector->cmsGen()->short_name(), _phase);
2856   }
2857   _collector->resetTimer();
2858   _wallclock.start();
2859   _collector->startTimer();
2860 }
2861 
2862 CMSPhaseAccounting::~CMSPhaseAccounting() {
2863   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2864   _collector->stopTimer();
2865   _wallclock.stop();
2866   if (PrintGCDetails) {
2867     gclog_or_tty->gclog_stamp();
2868     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2869                  _collector->cmsGen()->short_name(),
2870                  _phase, _collector->timerValue(), _wallclock.seconds());
2871     if (_print_cr) {
2872       gclog_or_tty->cr();
2873     }
2874     if (PrintCMSStatistics != 0) {
2875       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2876                     _collector->yields());
2877     }
2878   }
2879 }
2880 
2881 // CMS work
2882 
2883 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2884 class CMSParMarkTask : public AbstractGangTask {
2885  protected:
2886   CMSCollector*     _collector;
2887   uint              _n_workers;
2888   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2889       AbstractGangTask(name),
2890       _collector(collector),
2891       _n_workers(n_workers) {}
2892   // Work method in support of parallel rescan ... of young gen spaces
2893   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2894                              ContiguousSpace* space,
2895                              HeapWord** chunk_array, size_t chunk_top);
2896   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2897 };
2898 
2899 // Parallel initial mark task
2900 class CMSParInitialMarkTask: public CMSParMarkTask {
2901   StrongRootsScope* _strong_roots_scope;
2902  public:
2903   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2904       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2905       _strong_roots_scope(strong_roots_scope) {}
2906   void work(uint worker_id);
2907 };
2908 
2909 // Checkpoint the roots into this generation from outside
2910 // this generation. [Note this initial checkpoint need only
2911 // be approximate -- we'll do a catch up phase subsequently.]
2912 void CMSCollector::checkpointRootsInitial() {
2913   assert(_collectorState == InitialMarking, "Wrong collector state");
2914   check_correct_thread_executing();
2915   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2916 
2917   save_heap_summary();
2918   report_heap_summary(GCWhen::BeforeGC);
2919 
2920   ReferenceProcessor* rp = ref_processor();
2921   assert(_restart_addr == NULL, "Control point invariant");
2922   {
2923     // acquire locks for subsequent manipulations
2924     MutexLockerEx x(bitMapLock(),
2925                     Mutex::_no_safepoint_check_flag);
2926     checkpointRootsInitialWork();
2927     // enable ("weak") refs discovery
2928     rp->enable_discovery();
2929     _collectorState = Marking;
2930   }
2931 }
2932 
2933 void CMSCollector::checkpointRootsInitialWork() {
2934   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2935   assert(_collectorState == InitialMarking, "just checking");
2936 
2937   // Already have locks.
2938   assert_lock_strong(bitMapLock());
2939   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2940 
2941   // Setup the verification and class unloading state for this
2942   // CMS collection cycle.
2943   setup_cms_unloading_and_verification_state();
2944 
2945   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2946     PrintGCDetails && Verbose, true, _gc_timer_cm);)
2947 
2948   // Reset all the PLAB chunk arrays if necessary.
2949   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2950     reset_survivor_plab_arrays();
2951   }
2952 
2953   ResourceMark rm;
2954   HandleMark  hm;
2955 
2956   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2957   GenCollectedHeap* gch = GenCollectedHeap::heap();
2958 
2959   verify_work_stacks_empty();
2960   verify_overflow_empty();
2961 
2962   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2963   // Update the saved marks which may affect the root scans.
2964   gch->save_marks();
2965 
2966   // weak reference processing has not started yet.
2967   ref_processor()->set_enqueuing_is_done(false);
2968 
2969   // Need to remember all newly created CLDs,
2970   // so that we can guarantee that the remark finds them.
2971   ClassLoaderDataGraph::remember_new_clds(true);
2972 
2973   // Whenever a CLD is found, it will be claimed before proceeding to mark
2974   // the klasses. The claimed marks need to be cleared before marking starts.
2975   ClassLoaderDataGraph::clear_claimed_marks();
2976 
2977   if (CMSPrintEdenSurvivorChunks) {
2978     print_eden_and_survivor_chunk_arrays();
2979   }
2980 
2981   {
2982     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2983     if (CMSParallelInitialMarkEnabled) {
2984       // The parallel version.
2985       WorkGang* workers = gch->workers();
2986       assert(workers != NULL, "Need parallel worker threads.");
2987       uint n_workers = workers->active_workers();
2988 
2989       StrongRootsScope srs(n_workers);
2990 
2991       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2992       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2993       if (n_workers > 1) {
2994         workers->run_task(&tsk);
2995       } else {
2996         tsk.work(0);
2997       }
2998     } else {
2999       // The serial version.
3000       CLDToOopClosure cld_closure(&notOlder, true);
3001       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3002 
3003       StrongRootsScope srs(1);
3004 
3005       gch->old_process_roots(&srs,
3006                              true,   // young gen as roots
3007                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3008                              should_unload_classes(),
3009                              &notOlder,
3010                              &cld_closure);
3011     }
3012   }
3013 
3014   // Clear mod-union table; it will be dirtied in the prologue of
3015   // CMS generation per each young generation collection.
3016 
3017   assert(_modUnionTable.isAllClear(),
3018        "Was cleared in most recent final checkpoint phase"
3019        " or no bits are set in the gc_prologue before the start of the next "
3020        "subsequent marking phase.");
3021 
3022   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3023 
3024   // Save the end of the used_region of the constituent generations
3025   // to be used to limit the extent of sweep in each generation.
3026   save_sweep_limits();
3027   verify_overflow_empty();
3028 }
3029 
3030 bool CMSCollector::markFromRoots() {
3031   // we might be tempted to assert that:
3032   // assert(!SafepointSynchronize::is_at_safepoint(),
3033   //        "inconsistent argument?");
3034   // However that wouldn't be right, because it's possible that
3035   // a safepoint is indeed in progress as a young generation
3036   // stop-the-world GC happens even as we mark in this generation.
3037   assert(_collectorState == Marking, "inconsistent state?");
3038   check_correct_thread_executing();
3039   verify_overflow_empty();
3040 
3041   // Weak ref discovery note: We may be discovering weak
3042   // refs in this generation concurrent (but interleaved) with
3043   // weak ref discovery by the young generation collector.
3044 
3045   CMSTokenSyncWithLocks ts(true, bitMapLock());
3046   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3047   CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3048   bool res = markFromRootsWork();
3049   if (res) {
3050     _collectorState = Precleaning;
3051   } else { // We failed and a foreground collection wants to take over
3052     assert(_foregroundGCIsActive, "internal state inconsistency");
3053     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3054     if (PrintGCDetails) {
3055       gclog_or_tty->print_cr("bailing out to foreground collection");
3056     }
3057   }
3058   verify_overflow_empty();
3059   return res;
3060 }
3061 
3062 bool CMSCollector::markFromRootsWork() {
3063   // iterate over marked bits in bit map, doing a full scan and mark
3064   // from these roots using the following algorithm:
3065   // . if oop is to the right of the current scan pointer,
3066   //   mark corresponding bit (we'll process it later)
3067   // . else (oop is to left of current scan pointer)
3068   //   push oop on marking stack
3069   // . drain the marking stack
3070 
3071   // Note that when we do a marking step we need to hold the
3072   // bit map lock -- recall that direct allocation (by mutators)
3073   // and promotion (by the young generation collector) is also
3074   // marking the bit map. [the so-called allocate live policy.]
3075   // Because the implementation of bit map marking is not
3076   // robust wrt simultaneous marking of bits in the same word,
3077   // we need to make sure that there is no such interference
3078   // between concurrent such updates.
3079 
3080   // already have locks
3081   assert_lock_strong(bitMapLock());
3082 
3083   verify_work_stacks_empty();
3084   verify_overflow_empty();
3085   bool result = false;
3086   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3087     result = do_marking_mt();
3088   } else {
3089     result = do_marking_st();
3090   }
3091   return result;
3092 }
3093 
3094 // Forward decl
3095 class CMSConcMarkingTask;
3096 
3097 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3098   CMSCollector*       _collector;
3099   CMSConcMarkingTask* _task;
3100  public:
3101   virtual void yield();
3102 
3103   // "n_threads" is the number of threads to be terminated.
3104   // "queue_set" is a set of work queues of other threads.
3105   // "collector" is the CMS collector associated with this task terminator.
3106   // "yield" indicates whether we need the gang as a whole to yield.
3107   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3108     ParallelTaskTerminator(n_threads, queue_set),
3109     _collector(collector) { }
3110 
3111   void set_task(CMSConcMarkingTask* task) {
3112     _task = task;
3113   }
3114 };
3115 
3116 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3117   CMSConcMarkingTask* _task;
3118  public:
3119   bool should_exit_termination();
3120   void set_task(CMSConcMarkingTask* task) {
3121     _task = task;
3122   }
3123 };
3124 
3125 // MT Concurrent Marking Task
3126 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3127   CMSCollector* _collector;
3128   uint          _n_workers;       // requested/desired # workers
3129   bool          _result;
3130   CompactibleFreeListSpace*  _cms_space;
3131   char          _pad_front[64];   // padding to ...
3132   HeapWord*     _global_finger;   // ... avoid sharing cache line
3133   char          _pad_back[64];
3134   HeapWord*     _restart_addr;
3135 
3136   //  Exposed here for yielding support
3137   Mutex* const _bit_map_lock;
3138 
3139   // The per thread work queues, available here for stealing
3140   OopTaskQueueSet*  _task_queues;
3141 
3142   // Termination (and yielding) support
3143   CMSConcMarkingTerminator _term;
3144   CMSConcMarkingTerminatorTerminator _term_term;
3145 
3146  public:
3147   CMSConcMarkingTask(CMSCollector* collector,
3148                  CompactibleFreeListSpace* cms_space,
3149                  YieldingFlexibleWorkGang* workers,
3150                  OopTaskQueueSet* task_queues):
3151     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3152     _collector(collector),
3153     _cms_space(cms_space),
3154     _n_workers(0), _result(true),
3155     _task_queues(task_queues),
3156     _term(_n_workers, task_queues, _collector),
3157     _bit_map_lock(collector->bitMapLock())
3158   {
3159     _requested_size = _n_workers;
3160     _term.set_task(this);
3161     _term_term.set_task(this);
3162     _restart_addr = _global_finger = _cms_space->bottom();
3163   }
3164 
3165 
3166   OopTaskQueueSet* task_queues()  { return _task_queues; }
3167 
3168   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3169 
3170   HeapWord** global_finger_addr() { return &_global_finger; }
3171 
3172   CMSConcMarkingTerminator* terminator() { return &_term; }
3173 
3174   virtual void set_for_termination(uint active_workers) {
3175     terminator()->reset_for_reuse(active_workers);
3176   }
3177 
3178   void work(uint worker_id);
3179   bool should_yield() {
3180     return    ConcurrentMarkSweepThread::should_yield()
3181            && !_collector->foregroundGCIsActive();
3182   }
3183 
3184   virtual void coordinator_yield();  // stuff done by coordinator
3185   bool result() { return _result; }
3186 
3187   void reset(HeapWord* ra) {
3188     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3189     _restart_addr = _global_finger = ra;
3190     _term.reset_for_reuse();
3191   }
3192 
3193   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3194                                            OopTaskQueue* work_q);
3195 
3196  private:
3197   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3198   void do_work_steal(int i);
3199   void bump_global_finger(HeapWord* f);
3200 };
3201 
3202 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3203   assert(_task != NULL, "Error");
3204   return _task->yielding();
3205   // Note that we do not need the disjunct || _task->should_yield() above
3206   // because we want terminating threads to yield only if the task
3207   // is already in the midst of yielding, which happens only after at least one
3208   // thread has yielded.
3209 }
3210 
3211 void CMSConcMarkingTerminator::yield() {
3212   if (_task->should_yield()) {
3213     _task->yield();
3214   } else {
3215     ParallelTaskTerminator::yield();
3216   }
3217 }
3218 
3219 ////////////////////////////////////////////////////////////////
3220 // Concurrent Marking Algorithm Sketch
3221 ////////////////////////////////////////////////////////////////
3222 // Until all tasks exhausted (both spaces):
3223 // -- claim next available chunk
3224 // -- bump global finger via CAS
3225 // -- find first object that starts in this chunk
3226 //    and start scanning bitmap from that position
3227 // -- scan marked objects for oops
3228 // -- CAS-mark target, and if successful:
3229 //    . if target oop is above global finger (volatile read)
3230 //      nothing to do
3231 //    . if target oop is in chunk and above local finger
3232 //        then nothing to do
3233 //    . else push on work-queue
3234 // -- Deal with possible overflow issues:
3235 //    . local work-queue overflow causes stuff to be pushed on
3236 //      global (common) overflow queue
3237 //    . always first empty local work queue
3238 //    . then get a batch of oops from global work queue if any
3239 //    . then do work stealing
3240 // -- When all tasks claimed (both spaces)
3241 //    and local work queue empty,
3242 //    then in a loop do:
3243 //    . check global overflow stack; steal a batch of oops and trace
3244 //    . try to steal from other threads oif GOS is empty
3245 //    . if neither is available, offer termination
3246 // -- Terminate and return result
3247 //
3248 void CMSConcMarkingTask::work(uint worker_id) {
3249   elapsedTimer _timer;
3250   ResourceMark rm;
3251   HandleMark hm;
3252 
3253   DEBUG_ONLY(_collector->verify_overflow_empty();)
3254 
3255   // Before we begin work, our work queue should be empty
3256   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3257   // Scan the bitmap covering _cms_space, tracing through grey objects.
3258   _timer.start();
3259   do_scan_and_mark(worker_id, _cms_space);
3260   _timer.stop();
3261   if (PrintCMSStatistics != 0) {
3262     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3263       worker_id, _timer.seconds());
3264       // XXX: need xxx/xxx type of notation, two timers
3265   }
3266 
3267   // ... do work stealing
3268   _timer.reset();
3269   _timer.start();
3270   do_work_steal(worker_id);
3271   _timer.stop();
3272   if (PrintCMSStatistics != 0) {
3273     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3274       worker_id, _timer.seconds());
3275       // XXX: need xxx/xxx type of notation, two timers
3276   }
3277   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3278   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3279   // Note that under the current task protocol, the
3280   // following assertion is true even of the spaces
3281   // expanded since the completion of the concurrent
3282   // marking. XXX This will likely change under a strict
3283   // ABORT semantics.
3284   // After perm removal the comparison was changed to
3285   // greater than or equal to from strictly greater than.
3286   // Before perm removal the highest address sweep would
3287   // have been at the end of perm gen but now is at the
3288   // end of the tenured gen.
3289   assert(_global_finger >=  _cms_space->end(),
3290          "All tasks have been completed");
3291   DEBUG_ONLY(_collector->verify_overflow_empty();)
3292 }
3293 
3294 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3295   HeapWord* read = _global_finger;
3296   HeapWord* cur  = read;
3297   while (f > read) {
3298     cur = read;
3299     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3300     if (cur == read) {
3301       // our cas succeeded
3302       assert(_global_finger >= f, "protocol consistency");
3303       break;
3304     }
3305   }
3306 }
3307 
3308 // This is really inefficient, and should be redone by
3309 // using (not yet available) block-read and -write interfaces to the
3310 // stack and the work_queue. XXX FIX ME !!!
3311 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3312                                                       OopTaskQueue* work_q) {
3313   // Fast lock-free check
3314   if (ovflw_stk->length() == 0) {
3315     return false;
3316   }
3317   assert(work_q->size() == 0, "Shouldn't steal");
3318   MutexLockerEx ml(ovflw_stk->par_lock(),
3319                    Mutex::_no_safepoint_check_flag);
3320   // Grab up to 1/4 the size of the work queue
3321   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3322                     (size_t)ParGCDesiredObjsFromOverflowList);
3323   num = MIN2(num, ovflw_stk->length());
3324   for (int i = (int) num; i > 0; i--) {
3325     oop cur = ovflw_stk->pop();
3326     assert(cur != NULL, "Counted wrong?");
3327     work_q->push(cur);
3328   }
3329   return num > 0;
3330 }
3331 
3332 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3333   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3334   int n_tasks = pst->n_tasks();
3335   // We allow that there may be no tasks to do here because
3336   // we are restarting after a stack overflow.
3337   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3338   uint nth_task = 0;
3339 
3340   HeapWord* aligned_start = sp->bottom();
3341   if (sp->used_region().contains(_restart_addr)) {
3342     // Align down to a card boundary for the start of 0th task
3343     // for this space.
3344     aligned_start =
3345       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3346                                  CardTableModRefBS::card_size);
3347   }
3348 
3349   size_t chunk_size = sp->marking_task_size();
3350   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3351     // Having claimed the nth task in this space,
3352     // compute the chunk that it corresponds to:
3353     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3354                                aligned_start + (nth_task+1)*chunk_size);
3355     // Try and bump the global finger via a CAS;
3356     // note that we need to do the global finger bump
3357     // _before_ taking the intersection below, because
3358     // the task corresponding to that region will be
3359     // deemed done even if the used_region() expands
3360     // because of allocation -- as it almost certainly will
3361     // during start-up while the threads yield in the
3362     // closure below.
3363     HeapWord* finger = span.end();
3364     bump_global_finger(finger);   // atomically
3365     // There are null tasks here corresponding to chunks
3366     // beyond the "top" address of the space.
3367     span = span.intersection(sp->used_region());
3368     if (!span.is_empty()) {  // Non-null task
3369       HeapWord* prev_obj;
3370       assert(!span.contains(_restart_addr) || nth_task == 0,
3371              "Inconsistency");
3372       if (nth_task == 0) {
3373         // For the 0th task, we'll not need to compute a block_start.
3374         if (span.contains(_restart_addr)) {
3375           // In the case of a restart because of stack overflow,
3376           // we might additionally skip a chunk prefix.
3377           prev_obj = _restart_addr;
3378         } else {
3379           prev_obj = span.start();
3380         }
3381       } else {
3382         // We want to skip the first object because
3383         // the protocol is to scan any object in its entirety
3384         // that _starts_ in this span; a fortiori, any
3385         // object starting in an earlier span is scanned
3386         // as part of an earlier claimed task.
3387         // Below we use the "careful" version of block_start
3388         // so we do not try to navigate uninitialized objects.
3389         prev_obj = sp->block_start_careful(span.start());
3390         // Below we use a variant of block_size that uses the
3391         // Printezis bits to avoid waiting for allocated
3392         // objects to become initialized/parsable.
3393         while (prev_obj < span.start()) {
3394           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3395           if (sz > 0) {
3396             prev_obj += sz;
3397           } else {
3398             // In this case we may end up doing a bit of redundant
3399             // scanning, but that appears unavoidable, short of
3400             // locking the free list locks; see bug 6324141.
3401             break;
3402           }
3403         }
3404       }
3405       if (prev_obj < span.end()) {
3406         MemRegion my_span = MemRegion(prev_obj, span.end());
3407         // Do the marking work within a non-empty span --
3408         // the last argument to the constructor indicates whether the
3409         // iteration should be incremental with periodic yields.
3410         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3411                                     &_collector->_markBitMap,
3412                                     work_queue(i),
3413                                     &_collector->_markStack);
3414         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3415       } // else nothing to do for this task
3416     }   // else nothing to do for this task
3417   }
3418   // We'd be tempted to assert here that since there are no
3419   // more tasks left to claim in this space, the global_finger
3420   // must exceed space->top() and a fortiori space->end(). However,
3421   // that would not quite be correct because the bumping of
3422   // global_finger occurs strictly after the claiming of a task,
3423   // so by the time we reach here the global finger may not yet
3424   // have been bumped up by the thread that claimed the last
3425   // task.
3426   pst->all_tasks_completed();
3427 }
3428 
3429 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3430  private:
3431   CMSCollector* _collector;
3432   CMSConcMarkingTask* _task;
3433   MemRegion     _span;
3434   CMSBitMap*    _bit_map;
3435   CMSMarkStack* _overflow_stack;
3436   OopTaskQueue* _work_queue;
3437  protected:
3438   DO_OOP_WORK_DEFN
3439  public:
3440   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3441                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3442     MetadataAwareOopClosure(collector->ref_processor()),
3443     _collector(collector),
3444     _task(task),
3445     _span(collector->_span),
3446     _work_queue(work_queue),
3447     _bit_map(bit_map),
3448     _overflow_stack(overflow_stack)
3449   { }
3450   virtual void do_oop(oop* p);
3451   virtual void do_oop(narrowOop* p);
3452 
3453   void trim_queue(size_t max);
3454   void handle_stack_overflow(HeapWord* lost);
3455   void do_yield_check() {
3456     if (_task->should_yield()) {
3457       _task->yield();
3458     }
3459   }
3460 };
3461 
3462 // Grey object scanning during work stealing phase --
3463 // the salient assumption here is that any references
3464 // that are in these stolen objects being scanned must
3465 // already have been initialized (else they would not have
3466 // been published), so we do not need to check for
3467 // uninitialized objects before pushing here.
3468 void Par_ConcMarkingClosure::do_oop(oop obj) {
3469   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3470   HeapWord* addr = (HeapWord*)obj;
3471   // Check if oop points into the CMS generation
3472   // and is not marked
3473   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3474     // a white object ...
3475     // If we manage to "claim" the object, by being the
3476     // first thread to mark it, then we push it on our
3477     // marking stack
3478     if (_bit_map->par_mark(addr)) {     // ... now grey
3479       // push on work queue (grey set)
3480       bool simulate_overflow = false;
3481       NOT_PRODUCT(
3482         if (CMSMarkStackOverflowALot &&
3483             _collector->simulate_overflow()) {
3484           // simulate a stack overflow
3485           simulate_overflow = true;
3486         }
3487       )
3488       if (simulate_overflow ||
3489           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3490         // stack overflow
3491         if (PrintCMSStatistics != 0) {
3492           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3493                                  SIZE_FORMAT, _overflow_stack->capacity());
3494         }
3495         // We cannot assert that the overflow stack is full because
3496         // it may have been emptied since.
3497         assert(simulate_overflow ||
3498                _work_queue->size() == _work_queue->max_elems(),
3499               "Else push should have succeeded");
3500         handle_stack_overflow(addr);
3501       }
3502     } // Else, some other thread got there first
3503     do_yield_check();
3504   }
3505 }
3506 
3507 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3508 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3509 
3510 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3511   while (_work_queue->size() > max) {
3512     oop new_oop;
3513     if (_work_queue->pop_local(new_oop)) {
3514       assert(new_oop->is_oop(), "Should be an oop");
3515       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3516       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3517       new_oop->oop_iterate(this);  // do_oop() above
3518       do_yield_check();
3519     }
3520   }
3521 }
3522 
3523 // Upon stack overflow, we discard (part of) the stack,
3524 // remembering the least address amongst those discarded
3525 // in CMSCollector's _restart_address.
3526 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3527   // We need to do this under a mutex to prevent other
3528   // workers from interfering with the work done below.
3529   MutexLockerEx ml(_overflow_stack->par_lock(),
3530                    Mutex::_no_safepoint_check_flag);
3531   // Remember the least grey address discarded
3532   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3533   _collector->lower_restart_addr(ra);
3534   _overflow_stack->reset();  // discard stack contents
3535   _overflow_stack->expand(); // expand the stack if possible
3536 }
3537 
3538 
3539 void CMSConcMarkingTask::do_work_steal(int i) {
3540   OopTaskQueue* work_q = work_queue(i);
3541   oop obj_to_scan;
3542   CMSBitMap* bm = &(_collector->_markBitMap);
3543   CMSMarkStack* ovflw = &(_collector->_markStack);
3544   int* seed = _collector->hash_seed(i);
3545   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3546   while (true) {
3547     cl.trim_queue(0);
3548     assert(work_q->size() == 0, "Should have been emptied above");
3549     if (get_work_from_overflow_stack(ovflw, work_q)) {
3550       // Can't assert below because the work obtained from the
3551       // overflow stack may already have been stolen from us.
3552       // assert(work_q->size() > 0, "Work from overflow stack");
3553       continue;
3554     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3555       assert(obj_to_scan->is_oop(), "Should be an oop");
3556       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3557       obj_to_scan->oop_iterate(&cl);
3558     } else if (terminator()->offer_termination(&_term_term)) {
3559       assert(work_q->size() == 0, "Impossible!");
3560       break;
3561     } else if (yielding() || should_yield()) {
3562       yield();
3563     }
3564   }
3565 }
3566 
3567 // This is run by the CMS (coordinator) thread.
3568 void CMSConcMarkingTask::coordinator_yield() {
3569   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3570          "CMS thread should hold CMS token");
3571   // First give up the locks, then yield, then re-lock
3572   // We should probably use a constructor/destructor idiom to
3573   // do this unlock/lock or modify the MutexUnlocker class to
3574   // serve our purpose. XXX
3575   assert_lock_strong(_bit_map_lock);
3576   _bit_map_lock->unlock();
3577   ConcurrentMarkSweepThread::desynchronize(true);
3578   _collector->stopTimer();
3579   if (PrintCMSStatistics != 0) {
3580     _collector->incrementYields();
3581   }
3582 
3583   // It is possible for whichever thread initiated the yield request
3584   // not to get a chance to wake up and take the bitmap lock between
3585   // this thread releasing it and reacquiring it. So, while the
3586   // should_yield() flag is on, let's sleep for a bit to give the
3587   // other thread a chance to wake up. The limit imposed on the number
3588   // of iterations is defensive, to avoid any unforseen circumstances
3589   // putting us into an infinite loop. Since it's always been this
3590   // (coordinator_yield()) method that was observed to cause the
3591   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3592   // which is by default non-zero. For the other seven methods that
3593   // also perform the yield operation, as are using a different
3594   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3595   // can enable the sleeping for those methods too, if necessary.
3596   // See 6442774.
3597   //
3598   // We really need to reconsider the synchronization between the GC
3599   // thread and the yield-requesting threads in the future and we
3600   // should really use wait/notify, which is the recommended
3601   // way of doing this type of interaction. Additionally, we should
3602   // consolidate the eight methods that do the yield operation and they
3603   // are almost identical into one for better maintainability and
3604   // readability. See 6445193.
3605   //
3606   // Tony 2006.06.29
3607   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3608                    ConcurrentMarkSweepThread::should_yield() &&
3609                    !CMSCollector::foregroundGCIsActive(); ++i) {
3610     os::sleep(Thread::current(), 1, false);
3611   }
3612 
3613   ConcurrentMarkSweepThread::synchronize(true);
3614   _bit_map_lock->lock_without_safepoint_check();
3615   _collector->startTimer();
3616 }
3617 
3618 bool CMSCollector::do_marking_mt() {
3619   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3620   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3621                                                                   conc_workers()->active_workers(),
3622                                                                   Threads::number_of_non_daemon_threads());
3623   conc_workers()->set_active_workers(num_workers);
3624 
3625   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3626 
3627   CMSConcMarkingTask tsk(this,
3628                          cms_space,
3629                          conc_workers(),
3630                          task_queues());
3631 
3632   // Since the actual number of workers we get may be different
3633   // from the number we requested above, do we need to do anything different
3634   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3635   // class?? XXX
3636   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3637 
3638   // Refs discovery is already non-atomic.
3639   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3640   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3641   conc_workers()->start_task(&tsk);
3642   while (tsk.yielded()) {
3643     tsk.coordinator_yield();
3644     conc_workers()->continue_task(&tsk);
3645   }
3646   // If the task was aborted, _restart_addr will be non-NULL
3647   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3648   while (_restart_addr != NULL) {
3649     // XXX For now we do not make use of ABORTED state and have not
3650     // yet implemented the right abort semantics (even in the original
3651     // single-threaded CMS case). That needs some more investigation
3652     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3653     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3654     // If _restart_addr is non-NULL, a marking stack overflow
3655     // occurred; we need to do a fresh marking iteration from the
3656     // indicated restart address.
3657     if (_foregroundGCIsActive) {
3658       // We may be running into repeated stack overflows, having
3659       // reached the limit of the stack size, while making very
3660       // slow forward progress. It may be best to bail out and
3661       // let the foreground collector do its job.
3662       // Clear _restart_addr, so that foreground GC
3663       // works from scratch. This avoids the headache of
3664       // a "rescan" which would otherwise be needed because
3665       // of the dirty mod union table & card table.
3666       _restart_addr = NULL;
3667       return false;
3668     }
3669     // Adjust the task to restart from _restart_addr
3670     tsk.reset(_restart_addr);
3671     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3672                   _restart_addr);
3673     _restart_addr = NULL;
3674     // Get the workers going again
3675     conc_workers()->start_task(&tsk);
3676     while (tsk.yielded()) {
3677       tsk.coordinator_yield();
3678       conc_workers()->continue_task(&tsk);
3679     }
3680   }
3681   assert(tsk.completed(), "Inconsistency");
3682   assert(tsk.result() == true, "Inconsistency");
3683   return true;
3684 }
3685 
3686 bool CMSCollector::do_marking_st() {
3687   ResourceMark rm;
3688   HandleMark   hm;
3689 
3690   // Temporarily make refs discovery single threaded (non-MT)
3691   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3692   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3693     &_markStack, CMSYield);
3694   // the last argument to iterate indicates whether the iteration
3695   // should be incremental with periodic yields.
3696   _markBitMap.iterate(&markFromRootsClosure);
3697   // If _restart_addr is non-NULL, a marking stack overflow
3698   // occurred; we need to do a fresh iteration from the
3699   // indicated restart address.
3700   while (_restart_addr != NULL) {
3701     if (_foregroundGCIsActive) {
3702       // We may be running into repeated stack overflows, having
3703       // reached the limit of the stack size, while making very
3704       // slow forward progress. It may be best to bail out and
3705       // let the foreground collector do its job.
3706       // Clear _restart_addr, so that foreground GC
3707       // works from scratch. This avoids the headache of
3708       // a "rescan" which would otherwise be needed because
3709       // of the dirty mod union table & card table.
3710       _restart_addr = NULL;
3711       return false;  // indicating failure to complete marking
3712     }
3713     // Deal with stack overflow:
3714     // we restart marking from _restart_addr
3715     HeapWord* ra = _restart_addr;
3716     markFromRootsClosure.reset(ra);
3717     _restart_addr = NULL;
3718     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3719   }
3720   return true;
3721 }
3722 
3723 void CMSCollector::preclean() {
3724   check_correct_thread_executing();
3725   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3726   verify_work_stacks_empty();
3727   verify_overflow_empty();
3728   _abort_preclean = false;
3729   if (CMSPrecleaningEnabled) {
3730     if (!CMSEdenChunksRecordAlways) {
3731       _eden_chunk_index = 0;
3732     }
3733     size_t used = get_eden_used();
3734     size_t capacity = get_eden_capacity();
3735     // Don't start sampling unless we will get sufficiently
3736     // many samples.
3737     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3738                 * CMSScheduleRemarkEdenPenetration)) {
3739       _start_sampling = true;
3740     } else {
3741       _start_sampling = false;
3742     }
3743     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3744     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
3745     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3746   }
3747   CMSTokenSync x(true); // is cms thread
3748   if (CMSPrecleaningEnabled) {
3749     sample_eden();
3750     _collectorState = AbortablePreclean;
3751   } else {
3752     _collectorState = FinalMarking;
3753   }
3754   verify_work_stacks_empty();
3755   verify_overflow_empty();
3756 }
3757 
3758 // Try and schedule the remark such that young gen
3759 // occupancy is CMSScheduleRemarkEdenPenetration %.
3760 void CMSCollector::abortable_preclean() {
3761   check_correct_thread_executing();
3762   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3763   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3764 
3765   // If Eden's current occupancy is below this threshold,
3766   // immediately schedule the remark; else preclean
3767   // past the next scavenge in an effort to
3768   // schedule the pause as described above. By choosing
3769   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3770   // we will never do an actual abortable preclean cycle.
3771   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3772     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3773     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
3774     // We need more smarts in the abortable preclean
3775     // loop below to deal with cases where allocation
3776     // in young gen is very very slow, and our precleaning
3777     // is running a losing race against a horde of
3778     // mutators intent on flooding us with CMS updates
3779     // (dirty cards).
3780     // One, admittedly dumb, strategy is to give up
3781     // after a certain number of abortable precleaning loops
3782     // or after a certain maximum time. We want to make
3783     // this smarter in the next iteration.
3784     // XXX FIX ME!!! YSR
3785     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3786     while (!(should_abort_preclean() ||
3787              ConcurrentMarkSweepThread::should_terminate())) {
3788       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3789       cumworkdone += workdone;
3790       loops++;
3791       // Voluntarily terminate abortable preclean phase if we have
3792       // been at it for too long.
3793       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3794           loops >= CMSMaxAbortablePrecleanLoops) {
3795         if (PrintGCDetails) {
3796           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3797         }
3798         break;
3799       }
3800       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3801         if (PrintGCDetails) {
3802           gclog_or_tty->print(" CMS: abort preclean due to time ");
3803         }
3804         break;
3805       }
3806       // If we are doing little work each iteration, we should
3807       // take a short break.
3808       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3809         // Sleep for some time, waiting for work to accumulate
3810         stopTimer();
3811         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3812         startTimer();
3813         waited++;
3814       }
3815     }
3816     if (PrintCMSStatistics > 0) {
3817       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3818                           loops, waited, cumworkdone);
3819     }
3820   }
3821   CMSTokenSync x(true); // is cms thread
3822   if (_collectorState != Idling) {
3823     assert(_collectorState == AbortablePreclean,
3824            "Spontaneous state transition?");
3825     _collectorState = FinalMarking;
3826   } // Else, a foreground collection completed this CMS cycle.
3827   return;
3828 }
3829 
3830 // Respond to an Eden sampling opportunity
3831 void CMSCollector::sample_eden() {
3832   // Make sure a young gc cannot sneak in between our
3833   // reading and recording of a sample.
3834   assert(Thread::current()->is_ConcurrentGC_thread(),
3835          "Only the cms thread may collect Eden samples");
3836   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3837          "Should collect samples while holding CMS token");
3838   if (!_start_sampling) {
3839     return;
3840   }
3841   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3842   // is populated by the young generation.
3843   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3844     if (_eden_chunk_index < _eden_chunk_capacity) {
3845       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3846       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3847              "Unexpected state of Eden");
3848       // We'd like to check that what we just sampled is an oop-start address;
3849       // however, we cannot do that here since the object may not yet have been
3850       // initialized. So we'll instead do the check when we _use_ this sample
3851       // later.
3852       if (_eden_chunk_index == 0 ||
3853           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3854                          _eden_chunk_array[_eden_chunk_index-1])
3855            >= CMSSamplingGrain)) {
3856         _eden_chunk_index++;  // commit sample
3857       }
3858     }
3859   }
3860   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3861     size_t used = get_eden_used();
3862     size_t capacity = get_eden_capacity();
3863     assert(used <= capacity, "Unexpected state of Eden");
3864     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3865       _abort_preclean = true;
3866     }
3867   }
3868 }
3869 
3870 
3871 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3872   assert(_collectorState == Precleaning ||
3873          _collectorState == AbortablePreclean, "incorrect state");
3874   ResourceMark rm;
3875   HandleMark   hm;
3876 
3877   // Precleaning is currently not MT but the reference processor
3878   // may be set for MT.  Disable it temporarily here.
3879   ReferenceProcessor* rp = ref_processor();
3880   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3881 
3882   // Do one pass of scrubbing the discovered reference lists
3883   // to remove any reference objects with strongly-reachable
3884   // referents.
3885   if (clean_refs) {
3886     CMSPrecleanRefsYieldClosure yield_cl(this);
3887     assert(rp->span().equals(_span), "Spans should be equal");
3888     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3889                                    &_markStack, true /* preclean */);
3890     CMSDrainMarkingStackClosure complete_trace(this,
3891                                    _span, &_markBitMap, &_markStack,
3892                                    &keep_alive, true /* preclean */);
3893 
3894     // We don't want this step to interfere with a young
3895     // collection because we don't want to take CPU
3896     // or memory bandwidth away from the young GC threads
3897     // (which may be as many as there are CPUs).
3898     // Note that we don't need to protect ourselves from
3899     // interference with mutators because they can't
3900     // manipulate the discovered reference lists nor affect
3901     // the computed reachability of the referents, the
3902     // only properties manipulated by the precleaning
3903     // of these reference lists.
3904     stopTimer();
3905     CMSTokenSyncWithLocks x(true /* is cms thread */,
3906                             bitMapLock());
3907     startTimer();
3908     sample_eden();
3909 
3910     // The following will yield to allow foreground
3911     // collection to proceed promptly. XXX YSR:
3912     // The code in this method may need further
3913     // tweaking for better performance and some restructuring
3914     // for cleaner interfaces.
3915     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3916     rp->preclean_discovered_references(
3917           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3918           gc_timer);
3919   }
3920 
3921   if (clean_survivor) {  // preclean the active survivor space(s)
3922     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3923                              &_markBitMap, &_modUnionTable,
3924                              &_markStack, true /* precleaning phase */);
3925     stopTimer();
3926     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3927                              bitMapLock());
3928     startTimer();
3929     unsigned int before_count =
3930       GenCollectedHeap::heap()->total_collections();
3931     SurvivorSpacePrecleanClosure
3932       sss_cl(this, _span, &_markBitMap, &_markStack,
3933              &pam_cl, before_count, CMSYield);
3934     _young_gen->from()->object_iterate_careful(&sss_cl);
3935     _young_gen->to()->object_iterate_careful(&sss_cl);
3936   }
3937   MarkRefsIntoAndScanClosure
3938     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3939              &_markStack, this, CMSYield,
3940              true /* precleaning phase */);
3941   // CAUTION: The following closure has persistent state that may need to
3942   // be reset upon a decrease in the sequence of addresses it
3943   // processes.
3944   ScanMarkedObjectsAgainCarefullyClosure
3945     smoac_cl(this, _span,
3946       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3947 
3948   // Preclean dirty cards in ModUnionTable and CardTable using
3949   // appropriate convergence criterion;
3950   // repeat CMSPrecleanIter times unless we find that
3951   // we are losing.
3952   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3953   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3954          "Bad convergence multiplier");
3955   assert(CMSPrecleanThreshold >= 100,
3956          "Unreasonably low CMSPrecleanThreshold");
3957 
3958   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3959   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3960        numIter < CMSPrecleanIter;
3961        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3962     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3963     if (Verbose && PrintGCDetails) {
3964       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3965     }
3966     // Either there are very few dirty cards, so re-mark
3967     // pause will be small anyway, or our pre-cleaning isn't
3968     // that much faster than the rate at which cards are being
3969     // dirtied, so we might as well stop and re-mark since
3970     // precleaning won't improve our re-mark time by much.
3971     if (curNumCards <= CMSPrecleanThreshold ||
3972         (numIter > 0 &&
3973          (curNumCards * CMSPrecleanDenominator >
3974          lastNumCards * CMSPrecleanNumerator))) {
3975       numIter++;
3976       cumNumCards += curNumCards;
3977       break;
3978     }
3979   }
3980 
3981   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3982 
3983   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3984   cumNumCards += curNumCards;
3985   if (PrintGCDetails && PrintCMSStatistics != 0) {
3986     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3987                   curNumCards, cumNumCards, numIter);
3988   }
3989   return cumNumCards;   // as a measure of useful work done
3990 }
3991 
3992 // PRECLEANING NOTES:
3993 // Precleaning involves:
3994 // . reading the bits of the modUnionTable and clearing the set bits.
3995 // . For the cards corresponding to the set bits, we scan the
3996 //   objects on those cards. This means we need the free_list_lock
3997 //   so that we can safely iterate over the CMS space when scanning
3998 //   for oops.
3999 // . When we scan the objects, we'll be both reading and setting
4000 //   marks in the marking bit map, so we'll need the marking bit map.
4001 // . For protecting _collector_state transitions, we take the CGC_lock.
4002 //   Note that any races in the reading of of card table entries by the
4003 //   CMS thread on the one hand and the clearing of those entries by the
4004 //   VM thread or the setting of those entries by the mutator threads on the
4005 //   other are quite benign. However, for efficiency it makes sense to keep
4006 //   the VM thread from racing with the CMS thread while the latter is
4007 //   dirty card info to the modUnionTable. We therefore also use the
4008 //   CGC_lock to protect the reading of the card table and the mod union
4009 //   table by the CM thread.
4010 // . We run concurrently with mutator updates, so scanning
4011 //   needs to be done carefully  -- we should not try to scan
4012 //   potentially uninitialized objects.
4013 //
4014 // Locking strategy: While holding the CGC_lock, we scan over and
4015 // reset a maximal dirty range of the mod union / card tables, then lock
4016 // the free_list_lock and bitmap lock to do a full marking, then
4017 // release these locks; and repeat the cycle. This allows for a
4018 // certain amount of fairness in the sharing of these locks between
4019 // the CMS collector on the one hand, and the VM thread and the
4020 // mutators on the other.
4021 
4022 // NOTE: preclean_mod_union_table() and preclean_card_table()
4023 // further below are largely identical; if you need to modify
4024 // one of these methods, please check the other method too.
4025 
4026 size_t CMSCollector::preclean_mod_union_table(
4027   ConcurrentMarkSweepGeneration* old_gen,
4028   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4029   verify_work_stacks_empty();
4030   verify_overflow_empty();
4031 
4032   // strategy: starting with the first card, accumulate contiguous
4033   // ranges of dirty cards; clear these cards, then scan the region
4034   // covered by these cards.
4035 
4036   // Since all of the MUT is committed ahead, we can just use
4037   // that, in case the generations expand while we are precleaning.
4038   // It might also be fine to just use the committed part of the
4039   // generation, but we might potentially miss cards when the
4040   // generation is rapidly expanding while we are in the midst
4041   // of precleaning.
4042   HeapWord* startAddr = old_gen->reserved().start();
4043   HeapWord* endAddr   = old_gen->reserved().end();
4044 
4045   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4046 
4047   size_t numDirtyCards, cumNumDirtyCards;
4048   HeapWord *nextAddr, *lastAddr;
4049   for (cumNumDirtyCards = numDirtyCards = 0,
4050        nextAddr = lastAddr = startAddr;
4051        nextAddr < endAddr;
4052        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4053 
4054     ResourceMark rm;
4055     HandleMark   hm;
4056 
4057     MemRegion dirtyRegion;
4058     {
4059       stopTimer();
4060       // Potential yield point
4061       CMSTokenSync ts(true);
4062       startTimer();
4063       sample_eden();
4064       // Get dirty region starting at nextOffset (inclusive),
4065       // simultaneously clearing it.
4066       dirtyRegion =
4067         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4068       assert(dirtyRegion.start() >= nextAddr,
4069              "returned region inconsistent?");
4070     }
4071     // Remember where the next search should begin.
4072     // The returned region (if non-empty) is a right open interval,
4073     // so lastOffset is obtained from the right end of that
4074     // interval.
4075     lastAddr = dirtyRegion.end();
4076     // Should do something more transparent and less hacky XXX
4077     numDirtyCards =
4078       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4079 
4080     // We'll scan the cards in the dirty region (with periodic
4081     // yields for foreground GC as needed).
4082     if (!dirtyRegion.is_empty()) {
4083       assert(numDirtyCards > 0, "consistency check");
4084       HeapWord* stop_point = NULL;
4085       stopTimer();
4086       // Potential yield point
4087       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
4088                                bitMapLock());
4089       startTimer();
4090       {
4091         verify_work_stacks_empty();
4092         verify_overflow_empty();
4093         sample_eden();
4094         stop_point =
4095           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4096       }
4097       if (stop_point != NULL) {
4098         // The careful iteration stopped early either because it found an
4099         // uninitialized object, or because we were in the midst of an
4100         // "abortable preclean", which should now be aborted. Redirty
4101         // the bits corresponding to the partially-scanned or unscanned
4102         // cards. We'll either restart at the next block boundary or
4103         // abort the preclean.
4104         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4105                "Should only be AbortablePreclean.");
4106         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4107         if (should_abort_preclean()) {
4108           break; // out of preclean loop
4109         } else {
4110           // Compute the next address at which preclean should pick up;
4111           // might need bitMapLock in order to read P-bits.
4112           lastAddr = next_card_start_after_block(stop_point);
4113         }
4114       }
4115     } else {
4116       assert(lastAddr == endAddr, "consistency check");
4117       assert(numDirtyCards == 0, "consistency check");
4118       break;
4119     }
4120   }
4121   verify_work_stacks_empty();
4122   verify_overflow_empty();
4123   return cumNumDirtyCards;
4124 }
4125 
4126 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4127 // below are largely identical; if you need to modify
4128 // one of these methods, please check the other method too.
4129 
4130 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4131   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4132   // strategy: it's similar to precleamModUnionTable above, in that
4133   // we accumulate contiguous ranges of dirty cards, mark these cards
4134   // precleaned, then scan the region covered by these cards.
4135   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4136   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4137 
4138   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4139 
4140   size_t numDirtyCards, cumNumDirtyCards;
4141   HeapWord *lastAddr, *nextAddr;
4142 
4143   for (cumNumDirtyCards = numDirtyCards = 0,
4144        nextAddr = lastAddr = startAddr;
4145        nextAddr < endAddr;
4146        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4147 
4148     ResourceMark rm;
4149     HandleMark   hm;
4150 
4151     MemRegion dirtyRegion;
4152     {
4153       // See comments in "Precleaning notes" above on why we
4154       // do this locking. XXX Could the locking overheads be
4155       // too high when dirty cards are sparse? [I don't think so.]
4156       stopTimer();
4157       CMSTokenSync x(true); // is cms thread
4158       startTimer();
4159       sample_eden();
4160       // Get and clear dirty region from card table
4161       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4162                                     MemRegion(nextAddr, endAddr),
4163                                     true,
4164                                     CardTableModRefBS::precleaned_card_val());
4165 
4166       assert(dirtyRegion.start() >= nextAddr,
4167              "returned region inconsistent?");
4168     }
4169     lastAddr = dirtyRegion.end();
4170     numDirtyCards =
4171       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4172 
4173     if (!dirtyRegion.is_empty()) {
4174       stopTimer();
4175       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4176       startTimer();
4177       sample_eden();
4178       verify_work_stacks_empty();
4179       verify_overflow_empty();
4180       HeapWord* stop_point =
4181         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4182       if (stop_point != NULL) {
4183         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4184                "Should only be AbortablePreclean.");
4185         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4186         if (should_abort_preclean()) {
4187           break; // out of preclean loop
4188         } else {
4189           // Compute the next address at which preclean should pick up.
4190           lastAddr = next_card_start_after_block(stop_point);
4191         }
4192       }
4193     } else {
4194       break;
4195     }
4196   }
4197   verify_work_stacks_empty();
4198   verify_overflow_empty();
4199   return cumNumDirtyCards;
4200 }
4201 
4202 class PrecleanKlassClosure : public KlassClosure {
4203   KlassToOopClosure _cm_klass_closure;
4204  public:
4205   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4206   void do_klass(Klass* k) {
4207     if (k->has_accumulated_modified_oops()) {
4208       k->clear_accumulated_modified_oops();
4209 
4210       _cm_klass_closure.do_klass(k);
4211     }
4212   }
4213 };
4214 
4215 // The freelist lock is needed to prevent asserts, is it really needed?
4216 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4217 
4218   cl->set_freelistLock(freelistLock);
4219 
4220   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4221 
4222   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4223   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4224   PrecleanKlassClosure preclean_klass_closure(cl);
4225   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4226 
4227   verify_work_stacks_empty();
4228   verify_overflow_empty();
4229 }
4230 
4231 void CMSCollector::checkpointRootsFinal() {
4232   assert(_collectorState == FinalMarking, "incorrect state transition?");
4233   check_correct_thread_executing();
4234   // world is stopped at this checkpoint
4235   assert(SafepointSynchronize::is_at_safepoint(),
4236          "world should be stopped");
4237   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4238 
4239   verify_work_stacks_empty();
4240   verify_overflow_empty();
4241 
4242   if (PrintGCDetails) {
4243     gclog_or_tty->print("[YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)]",
4244                         _young_gen->used() / K,
4245                         _young_gen->capacity() / K);
4246   }
4247   {
4248     if (CMSScavengeBeforeRemark) {
4249       GenCollectedHeap* gch = GenCollectedHeap::heap();
4250       // Temporarily set flag to false, GCH->do_collection will
4251       // expect it to be false and set to true
4252       FlagSetting fl(gch->_is_gc_active, false);
4253       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4254         PrintGCDetails && Verbose, true, _gc_timer_cm);)
4255       gch->do_collection(true,                      // full (i.e. force, see below)
4256                          false,                     // !clear_all_soft_refs
4257                          0,                         // size
4258                          false,                     // is_tlab
4259                          GenCollectedHeap::YoungGen // type
4260         );
4261     }
4262     FreelistLocker x(this);
4263     MutexLockerEx y(bitMapLock(),
4264                     Mutex::_no_safepoint_check_flag);
4265     checkpointRootsFinalWork();
4266   }
4267   verify_work_stacks_empty();
4268   verify_overflow_empty();
4269 }
4270 
4271 void CMSCollector::checkpointRootsFinalWork() {
4272   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
4273 
4274   assert(haveFreelistLocks(), "must have free list locks");
4275   assert_lock_strong(bitMapLock());
4276 
4277   ResourceMark rm;
4278   HandleMark   hm;
4279 
4280   GenCollectedHeap* gch = GenCollectedHeap::heap();
4281 
4282   if (should_unload_classes()) {
4283     CodeCache::gc_prologue();
4284   }
4285   assert(haveFreelistLocks(), "must have free list locks");
4286   assert_lock_strong(bitMapLock());
4287 
4288   // We might assume that we need not fill TLAB's when
4289   // CMSScavengeBeforeRemark is set, because we may have just done
4290   // a scavenge which would have filled all TLAB's -- and besides
4291   // Eden would be empty. This however may not always be the case --
4292   // for instance although we asked for a scavenge, it may not have
4293   // happened because of a JNI critical section. We probably need
4294   // a policy for deciding whether we can in that case wait until
4295   // the critical section releases and then do the remark following
4296   // the scavenge, and skip it here. In the absence of that policy,
4297   // or of an indication of whether the scavenge did indeed occur,
4298   // we cannot rely on TLAB's having been filled and must do
4299   // so here just in case a scavenge did not happen.
4300   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4301   // Update the saved marks which may affect the root scans.
4302   gch->save_marks();
4303 
4304   if (CMSPrintEdenSurvivorChunks) {
4305     print_eden_and_survivor_chunk_arrays();
4306   }
4307 
4308   {
4309     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4310 
4311     // Note on the role of the mod union table:
4312     // Since the marker in "markFromRoots" marks concurrently with
4313     // mutators, it is possible for some reachable objects not to have been
4314     // scanned. For instance, an only reference to an object A was
4315     // placed in object B after the marker scanned B. Unless B is rescanned,
4316     // A would be collected. Such updates to references in marked objects
4317     // are detected via the mod union table which is the set of all cards
4318     // dirtied since the first checkpoint in this GC cycle and prior to
4319     // the most recent young generation GC, minus those cleaned up by the
4320     // concurrent precleaning.
4321     if (CMSParallelRemarkEnabled) {
4322       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
4323       do_remark_parallel();
4324     } else {
4325       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false, _gc_timer_cm);
4326       do_remark_non_parallel();
4327     }
4328   }
4329   verify_work_stacks_empty();
4330   verify_overflow_empty();
4331 
4332   {
4333     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
4334     refProcessingWork();
4335   }
4336   verify_work_stacks_empty();
4337   verify_overflow_empty();
4338 
4339   if (should_unload_classes()) {
4340     CodeCache::gc_epilogue();
4341   }
4342   JvmtiExport::gc_epilogue();
4343 
4344   // If we encountered any (marking stack / work queue) overflow
4345   // events during the current CMS cycle, take appropriate
4346   // remedial measures, where possible, so as to try and avoid
4347   // recurrence of that condition.
4348   assert(_markStack.isEmpty(), "No grey objects");
4349   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4350                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4351   if (ser_ovflw > 0) {
4352     if (PrintCMSStatistics != 0) {
4353       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4354         "(pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT
4355         ", kac_preclean=" SIZE_FORMAT ")",
4356         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4357         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4358     }
4359     _markStack.expand();
4360     _ser_pmc_remark_ovflw = 0;
4361     _ser_pmc_preclean_ovflw = 0;
4362     _ser_kac_preclean_ovflw = 0;
4363     _ser_kac_ovflw = 0;
4364   }
4365   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4366     if (PrintCMSStatistics != 0) {
4367       gclog_or_tty->print_cr("Work queue overflow (benign) "
4368         "(pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4369         _par_pmc_remark_ovflw, _par_kac_ovflw);
4370     }
4371     _par_pmc_remark_ovflw = 0;
4372     _par_kac_ovflw = 0;
4373   }
4374   if (PrintCMSStatistics != 0) {
4375      if (_markStack._hit_limit > 0) {
4376        gclog_or_tty->print_cr(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4377                               _markStack._hit_limit);
4378      }
4379      if (_markStack._failed_double > 0) {
4380        gclog_or_tty->print_cr(" (benign) Failed stack doubling (" SIZE_FORMAT "),"
4381                               " current capacity " SIZE_FORMAT,
4382                               _markStack._failed_double,
4383                               _markStack.capacity());
4384      }
4385   }
4386   _markStack._hit_limit = 0;
4387   _markStack._failed_double = 0;
4388 
4389   if ((VerifyAfterGC || VerifyDuringGC) &&
4390       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4391     verify_after_remark();
4392   }
4393 
4394   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4395 
4396   // Change under the freelistLocks.
4397   _collectorState = Sweeping;
4398   // Call isAllClear() under bitMapLock
4399   assert(_modUnionTable.isAllClear(),
4400       "Should be clear by end of the final marking");
4401   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4402       "Should be clear by end of the final marking");
4403 }
4404 
4405 void CMSParInitialMarkTask::work(uint worker_id) {
4406   elapsedTimer _timer;
4407   ResourceMark rm;
4408   HandleMark   hm;
4409 
4410   // ---------- scan from roots --------------
4411   _timer.start();
4412   GenCollectedHeap* gch = GenCollectedHeap::heap();
4413   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4414 
4415   // ---------- young gen roots --------------
4416   {
4417     work_on_young_gen_roots(worker_id, &par_mri_cl);
4418     _timer.stop();
4419     if (PrintCMSStatistics != 0) {
4420       gclog_or_tty->print_cr(
4421         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4422         worker_id, _timer.seconds());
4423     }
4424   }
4425 
4426   // ---------- remaining roots --------------
4427   _timer.reset();
4428   _timer.start();
4429 
4430   CLDToOopClosure cld_closure(&par_mri_cl, true);
4431 
4432   gch->old_process_roots(_strong_roots_scope,
4433                          false,     // yg was scanned above
4434                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4435                          _collector->should_unload_classes(),
4436                          &par_mri_cl,
4437                          &cld_closure);
4438   assert(_collector->should_unload_classes()
4439          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4440          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4441   _timer.stop();
4442   if (PrintCMSStatistics != 0) {
4443     gclog_or_tty->print_cr(
4444       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4445       worker_id, _timer.seconds());
4446   }
4447 }
4448 
4449 // Parallel remark task
4450 class CMSParRemarkTask: public CMSParMarkTask {
4451   CompactibleFreeListSpace* _cms_space;
4452 
4453   // The per-thread work queues, available here for stealing.
4454   OopTaskQueueSet*       _task_queues;
4455   ParallelTaskTerminator _term;
4456   StrongRootsScope*      _strong_roots_scope;
4457 
4458  public:
4459   // A value of 0 passed to n_workers will cause the number of
4460   // workers to be taken from the active workers in the work gang.
4461   CMSParRemarkTask(CMSCollector* collector,
4462                    CompactibleFreeListSpace* cms_space,
4463                    uint n_workers, WorkGang* workers,
4464                    OopTaskQueueSet* task_queues,
4465                    StrongRootsScope* strong_roots_scope):
4466     CMSParMarkTask("Rescan roots and grey objects in parallel",
4467                    collector, n_workers),
4468     _cms_space(cms_space),
4469     _task_queues(task_queues),
4470     _term(n_workers, task_queues),
4471     _strong_roots_scope(strong_roots_scope) { }
4472 
4473   OopTaskQueueSet* task_queues() { return _task_queues; }
4474 
4475   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4476 
4477   ParallelTaskTerminator* terminator() { return &_term; }
4478   uint n_workers() { return _n_workers; }
4479 
4480   void work(uint worker_id);
4481 
4482  private:
4483   // ... of  dirty cards in old space
4484   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4485                                   Par_MarkRefsIntoAndScanClosure* cl);
4486 
4487   // ... work stealing for the above
4488   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4489 };
4490 
4491 class RemarkKlassClosure : public KlassClosure {
4492   KlassToOopClosure _cm_klass_closure;
4493  public:
4494   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4495   void do_klass(Klass* k) {
4496     // Check if we have modified any oops in the Klass during the concurrent marking.
4497     if (k->has_accumulated_modified_oops()) {
4498       k->clear_accumulated_modified_oops();
4499 
4500       // We could have transfered the current modified marks to the accumulated marks,
4501       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4502     } else if (k->has_modified_oops()) {
4503       // Don't clear anything, this info is needed by the next young collection.
4504     } else {
4505       // No modified oops in the Klass.
4506       return;
4507     }
4508 
4509     // The klass has modified fields, need to scan the klass.
4510     _cm_klass_closure.do_klass(k);
4511   }
4512 };
4513 
4514 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4515   ParNewGeneration* young_gen = _collector->_young_gen;
4516   ContiguousSpace* eden_space = young_gen->eden();
4517   ContiguousSpace* from_space = young_gen->from();
4518   ContiguousSpace* to_space   = young_gen->to();
4519 
4520   HeapWord** eca = _collector->_eden_chunk_array;
4521   size_t     ect = _collector->_eden_chunk_index;
4522   HeapWord** sca = _collector->_survivor_chunk_array;
4523   size_t     sct = _collector->_survivor_chunk_index;
4524 
4525   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4526   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4527 
4528   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4529   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4530   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4531 }
4532 
4533 // work_queue(i) is passed to the closure
4534 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4535 // also is passed to do_dirty_card_rescan_tasks() and to
4536 // do_work_steal() to select the i-th task_queue.
4537 
4538 void CMSParRemarkTask::work(uint worker_id) {
4539   elapsedTimer _timer;
4540   ResourceMark rm;
4541   HandleMark   hm;
4542 
4543   // ---------- rescan from roots --------------
4544   _timer.start();
4545   GenCollectedHeap* gch = GenCollectedHeap::heap();
4546   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4547     _collector->_span, _collector->ref_processor(),
4548     &(_collector->_markBitMap),
4549     work_queue(worker_id));
4550 
4551   // Rescan young gen roots first since these are likely
4552   // coarsely partitioned and may, on that account, constitute
4553   // the critical path; thus, it's best to start off that
4554   // work first.
4555   // ---------- young gen roots --------------
4556   {
4557     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4558     _timer.stop();
4559     if (PrintCMSStatistics != 0) {
4560       gclog_or_tty->print_cr(
4561         "Finished young gen rescan work in %dth thread: %3.3f sec",
4562         worker_id, _timer.seconds());
4563     }
4564   }
4565 
4566   // ---------- remaining roots --------------
4567   _timer.reset();
4568   _timer.start();
4569   gch->old_process_roots(_strong_roots_scope,
4570                          false,     // yg was scanned above
4571                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4572                          _collector->should_unload_classes(),
4573                          &par_mrias_cl,
4574                          NULL);     // The dirty klasses will be handled below
4575 
4576   assert(_collector->should_unload_classes()
4577          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4578          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4579   _timer.stop();
4580   if (PrintCMSStatistics != 0) {
4581     gclog_or_tty->print_cr(
4582       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4583       worker_id, _timer.seconds());
4584   }
4585 
4586   // ---------- unhandled CLD scanning ----------
4587   if (worker_id == 0) { // Single threaded at the moment.
4588     _timer.reset();
4589     _timer.start();
4590 
4591     // Scan all new class loader data objects and new dependencies that were
4592     // introduced during concurrent marking.
4593     ResourceMark rm;
4594     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4595     for (int i = 0; i < array->length(); i++) {
4596       par_mrias_cl.do_cld_nv(array->at(i));
4597     }
4598 
4599     // We don't need to keep track of new CLDs anymore.
4600     ClassLoaderDataGraph::remember_new_clds(false);
4601 
4602     _timer.stop();
4603     if (PrintCMSStatistics != 0) {
4604       gclog_or_tty->print_cr(
4605           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4606           worker_id, _timer.seconds());
4607     }
4608   }
4609 
4610   // ---------- dirty klass scanning ----------
4611   if (worker_id == 0) { // Single threaded at the moment.
4612     _timer.reset();
4613     _timer.start();
4614 
4615     // Scan all classes that was dirtied during the concurrent marking phase.
4616     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4617     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4618 
4619     _timer.stop();
4620     if (PrintCMSStatistics != 0) {
4621       gclog_or_tty->print_cr(
4622           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4623           worker_id, _timer.seconds());
4624     }
4625   }
4626 
4627   // We might have added oops to ClassLoaderData::_handles during the
4628   // concurrent marking phase. These oops point to newly allocated objects
4629   // that are guaranteed to be kept alive. Either by the direct allocation
4630   // code, or when the young collector processes the roots. Hence,
4631   // we don't have to revisit the _handles block during the remark phase.
4632 
4633   // ---------- rescan dirty cards ------------
4634   _timer.reset();
4635   _timer.start();
4636 
4637   // Do the rescan tasks for each of the two spaces
4638   // (cms_space) in turn.
4639   // "worker_id" is passed to select the task_queue for "worker_id"
4640   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4641   _timer.stop();
4642   if (PrintCMSStatistics != 0) {
4643     gclog_or_tty->print_cr(
4644       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4645       worker_id, _timer.seconds());
4646   }
4647 
4648   // ---------- steal work from other threads ...
4649   // ---------- ... and drain overflow list.
4650   _timer.reset();
4651   _timer.start();
4652   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4653   _timer.stop();
4654   if (PrintCMSStatistics != 0) {
4655     gclog_or_tty->print_cr(
4656       "Finished work stealing in %dth thread: %3.3f sec",
4657       worker_id, _timer.seconds());
4658   }
4659 }
4660 
4661 // Note that parameter "i" is not used.
4662 void
4663 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4664   OopsInGenClosure* cl, ContiguousSpace* space,
4665   HeapWord** chunk_array, size_t chunk_top) {
4666   // Until all tasks completed:
4667   // . claim an unclaimed task
4668   // . compute region boundaries corresponding to task claimed
4669   //   using chunk_array
4670   // . par_oop_iterate(cl) over that region
4671 
4672   ResourceMark rm;
4673   HandleMark   hm;
4674 
4675   SequentialSubTasksDone* pst = space->par_seq_tasks();
4676 
4677   uint nth_task = 0;
4678   uint n_tasks  = pst->n_tasks();
4679 
4680   if (n_tasks > 0) {
4681     assert(pst->valid(), "Uninitialized use?");
4682     HeapWord *start, *end;
4683     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4684       // We claimed task # nth_task; compute its boundaries.
4685       if (chunk_top == 0) {  // no samples were taken
4686         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4687         start = space->bottom();
4688         end   = space->top();
4689       } else if (nth_task == 0) {
4690         start = space->bottom();
4691         end   = chunk_array[nth_task];
4692       } else if (nth_task < (uint)chunk_top) {
4693         assert(nth_task >= 1, "Control point invariant");
4694         start = chunk_array[nth_task - 1];
4695         end   = chunk_array[nth_task];
4696       } else {
4697         assert(nth_task == (uint)chunk_top, "Control point invariant");
4698         start = chunk_array[chunk_top - 1];
4699         end   = space->top();
4700       }
4701       MemRegion mr(start, end);
4702       // Verify that mr is in space
4703       assert(mr.is_empty() || space->used_region().contains(mr),
4704              "Should be in space");
4705       // Verify that "start" is an object boundary
4706       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4707              "Should be an oop");
4708       space->par_oop_iterate(mr, cl);
4709     }
4710     pst->all_tasks_completed();
4711   }
4712 }
4713 
4714 void
4715 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4716   CompactibleFreeListSpace* sp, int i,
4717   Par_MarkRefsIntoAndScanClosure* cl) {
4718   // Until all tasks completed:
4719   // . claim an unclaimed task
4720   // . compute region boundaries corresponding to task claimed
4721   // . transfer dirty bits ct->mut for that region
4722   // . apply rescanclosure to dirty mut bits for that region
4723 
4724   ResourceMark rm;
4725   HandleMark   hm;
4726 
4727   OopTaskQueue* work_q = work_queue(i);
4728   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4729   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4730   // CAUTION: This closure has state that persists across calls to
4731   // the work method dirty_range_iterate_clear() in that it has
4732   // embedded in it a (subtype of) UpwardsObjectClosure. The
4733   // use of that state in the embedded UpwardsObjectClosure instance
4734   // assumes that the cards are always iterated (even if in parallel
4735   // by several threads) in monotonically increasing order per each
4736   // thread. This is true of the implementation below which picks
4737   // card ranges (chunks) in monotonically increasing order globally
4738   // and, a-fortiori, in monotonically increasing order per thread
4739   // (the latter order being a subsequence of the former).
4740   // If the work code below is ever reorganized into a more chaotic
4741   // work-partitioning form than the current "sequential tasks"
4742   // paradigm, the use of that persistent state will have to be
4743   // revisited and modified appropriately. See also related
4744   // bug 4756801 work on which should examine this code to make
4745   // sure that the changes there do not run counter to the
4746   // assumptions made here and necessary for correctness and
4747   // efficiency. Note also that this code might yield inefficient
4748   // behavior in the case of very large objects that span one or
4749   // more work chunks. Such objects would potentially be scanned
4750   // several times redundantly. Work on 4756801 should try and
4751   // address that performance anomaly if at all possible. XXX
4752   MemRegion  full_span  = _collector->_span;
4753   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4754   MarkFromDirtyCardsClosure
4755     greyRescanClosure(_collector, full_span, // entire span of interest
4756                       sp, bm, work_q, cl);
4757 
4758   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4759   assert(pst->valid(), "Uninitialized use?");
4760   uint nth_task = 0;
4761   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4762   MemRegion span = sp->used_region();
4763   HeapWord* start_addr = span.start();
4764   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4765                                            alignment);
4766   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4767   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4768          start_addr, "Check alignment");
4769   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4770          chunk_size, "Check alignment");
4771 
4772   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4773     // Having claimed the nth_task, compute corresponding mem-region,
4774     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4775     // The alignment restriction ensures that we do not need any
4776     // synchronization with other gang-workers while setting or
4777     // clearing bits in thus chunk of the MUT.
4778     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4779                                     start_addr + (nth_task+1)*chunk_size);
4780     // The last chunk's end might be way beyond end of the
4781     // used region. In that case pull back appropriately.
4782     if (this_span.end() > end_addr) {
4783       this_span.set_end(end_addr);
4784       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4785     }
4786     // Iterate over the dirty cards covering this chunk, marking them
4787     // precleaned, and setting the corresponding bits in the mod union
4788     // table. Since we have been careful to partition at Card and MUT-word
4789     // boundaries no synchronization is needed between parallel threads.
4790     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4791                                                  &modUnionClosure);
4792 
4793     // Having transferred these marks into the modUnionTable,
4794     // rescan the marked objects on the dirty cards in the modUnionTable.
4795     // Even if this is at a synchronous collection, the initial marking
4796     // may have been done during an asynchronous collection so there
4797     // may be dirty bits in the mod-union table.
4798     _collector->_modUnionTable.dirty_range_iterate_clear(
4799                   this_span, &greyRescanClosure);
4800     _collector->_modUnionTable.verifyNoOneBitsInRange(
4801                                  this_span.start(),
4802                                  this_span.end());
4803   }
4804   pst->all_tasks_completed();  // declare that i am done
4805 }
4806 
4807 // . see if we can share work_queues with ParNew? XXX
4808 void
4809 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4810                                 int* seed) {
4811   OopTaskQueue* work_q = work_queue(i);
4812   NOT_PRODUCT(int num_steals = 0;)
4813   oop obj_to_scan;
4814   CMSBitMap* bm = &(_collector->_markBitMap);
4815 
4816   while (true) {
4817     // Completely finish any left over work from (an) earlier round(s)
4818     cl->trim_queue(0);
4819     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4820                                          (size_t)ParGCDesiredObjsFromOverflowList);
4821     // Now check if there's any work in the overflow list
4822     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4823     // only affects the number of attempts made to get work from the
4824     // overflow list and does not affect the number of workers.  Just
4825     // pass ParallelGCThreads so this behavior is unchanged.
4826     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4827                                                 work_q,
4828                                                 ParallelGCThreads)) {
4829       // found something in global overflow list;
4830       // not yet ready to go stealing work from others.
4831       // We'd like to assert(work_q->size() != 0, ...)
4832       // because we just took work from the overflow list,
4833       // but of course we can't since all of that could have
4834       // been already stolen from us.
4835       // "He giveth and He taketh away."
4836       continue;
4837     }
4838     // Verify that we have no work before we resort to stealing
4839     assert(work_q->size() == 0, "Have work, shouldn't steal");
4840     // Try to steal from other queues that have work
4841     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4842       NOT_PRODUCT(num_steals++;)
4843       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4844       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4845       // Do scanning work
4846       obj_to_scan->oop_iterate(cl);
4847       // Loop around, finish this work, and try to steal some more
4848     } else if (terminator()->offer_termination()) {
4849         break;  // nirvana from the infinite cycle
4850     }
4851   }
4852   NOT_PRODUCT(
4853     if (PrintCMSStatistics != 0) {
4854       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4855     }
4856   )
4857   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4858          "Else our work is not yet done");
4859 }
4860 
4861 // Record object boundaries in _eden_chunk_array by sampling the eden
4862 // top in the slow-path eden object allocation code path and record
4863 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4864 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4865 // sampling in sample_eden() that activates during the part of the
4866 // preclean phase.
4867 void CMSCollector::sample_eden_chunk() {
4868   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4869     if (_eden_chunk_lock->try_lock()) {
4870       // Record a sample. This is the critical section. The contents
4871       // of the _eden_chunk_array have to be non-decreasing in the
4872       // address order.
4873       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4874       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4875              "Unexpected state of Eden");
4876       if (_eden_chunk_index == 0 ||
4877           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4878            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4879                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4880         _eden_chunk_index++;  // commit sample
4881       }
4882       _eden_chunk_lock->unlock();
4883     }
4884   }
4885 }
4886 
4887 // Return a thread-local PLAB recording array, as appropriate.
4888 void* CMSCollector::get_data_recorder(int thr_num) {
4889   if (_survivor_plab_array != NULL &&
4890       (CMSPLABRecordAlways ||
4891        (_collectorState > Marking && _collectorState < FinalMarking))) {
4892     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4893     ChunkArray* ca = &_survivor_plab_array[thr_num];
4894     ca->reset();   // clear it so that fresh data is recorded
4895     return (void*) ca;
4896   } else {
4897     return NULL;
4898   }
4899 }
4900 
4901 // Reset all the thread-local PLAB recording arrays
4902 void CMSCollector::reset_survivor_plab_arrays() {
4903   for (uint i = 0; i < ParallelGCThreads; i++) {
4904     _survivor_plab_array[i].reset();
4905   }
4906 }
4907 
4908 // Merge the per-thread plab arrays into the global survivor chunk
4909 // array which will provide the partitioning of the survivor space
4910 // for CMS initial scan and rescan.
4911 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4912                                               int no_of_gc_threads) {
4913   assert(_survivor_plab_array  != NULL, "Error");
4914   assert(_survivor_chunk_array != NULL, "Error");
4915   assert(_collectorState == FinalMarking ||
4916          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4917   for (int j = 0; j < no_of_gc_threads; j++) {
4918     _cursor[j] = 0;
4919   }
4920   HeapWord* top = surv->top();
4921   size_t i;
4922   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4923     HeapWord* min_val = top;          // Higher than any PLAB address
4924     uint      min_tid = 0;            // position of min_val this round
4925     for (int j = 0; j < no_of_gc_threads; j++) {
4926       ChunkArray* cur_sca = &_survivor_plab_array[j];
4927       if (_cursor[j] == cur_sca->end()) {
4928         continue;
4929       }
4930       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4931       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4932       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4933       if (cur_val < min_val) {
4934         min_tid = j;
4935         min_val = cur_val;
4936       } else {
4937         assert(cur_val < top, "All recorded addresses should be less");
4938       }
4939     }
4940     // At this point min_val and min_tid are respectively
4941     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4942     // and the thread (j) that witnesses that address.
4943     // We record this address in the _survivor_chunk_array[i]
4944     // and increment _cursor[min_tid] prior to the next round i.
4945     if (min_val == top) {
4946       break;
4947     }
4948     _survivor_chunk_array[i] = min_val;
4949     _cursor[min_tid]++;
4950   }
4951   // We are all done; record the size of the _survivor_chunk_array
4952   _survivor_chunk_index = i; // exclusive: [0, i)
4953   if (PrintCMSStatistics > 0) {
4954     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4955   }
4956   // Verify that we used up all the recorded entries
4957   #ifdef ASSERT
4958     size_t total = 0;
4959     for (int j = 0; j < no_of_gc_threads; j++) {
4960       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4961       total += _cursor[j];
4962     }
4963     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4964     // Check that the merged array is in sorted order
4965     if (total > 0) {
4966       for (size_t i = 0; i < total - 1; i++) {
4967         if (PrintCMSStatistics > 0) {
4968           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4969                               i, p2i(_survivor_chunk_array[i]));
4970         }
4971         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4972                "Not sorted");
4973       }
4974     }
4975   #endif // ASSERT
4976 }
4977 
4978 // Set up the space's par_seq_tasks structure for work claiming
4979 // for parallel initial scan and rescan of young gen.
4980 // See ParRescanTask where this is currently used.
4981 void
4982 CMSCollector::
4983 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4984   assert(n_threads > 0, "Unexpected n_threads argument");
4985 
4986   // Eden space
4987   if (!_young_gen->eden()->is_empty()) {
4988     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4989     assert(!pst->valid(), "Clobbering existing data?");
4990     // Each valid entry in [0, _eden_chunk_index) represents a task.
4991     size_t n_tasks = _eden_chunk_index + 1;
4992     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4993     // Sets the condition for completion of the subtask (how many threads
4994     // need to finish in order to be done).
4995     pst->set_n_threads(n_threads);
4996     pst->set_n_tasks((int)n_tasks);
4997   }
4998 
4999   // Merge the survivor plab arrays into _survivor_chunk_array
5000   if (_survivor_plab_array != NULL) {
5001     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5002   } else {
5003     assert(_survivor_chunk_index == 0, "Error");
5004   }
5005 
5006   // To space
5007   {
5008     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5009     assert(!pst->valid(), "Clobbering existing data?");
5010     // Sets the condition for completion of the subtask (how many threads
5011     // need to finish in order to be done).
5012     pst->set_n_threads(n_threads);
5013     pst->set_n_tasks(1);
5014     assert(pst->valid(), "Error");
5015   }
5016 
5017   // From space
5018   {
5019     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5020     assert(!pst->valid(), "Clobbering existing data?");
5021     size_t n_tasks = _survivor_chunk_index + 1;
5022     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5023     // Sets the condition for completion of the subtask (how many threads
5024     // need to finish in order to be done).
5025     pst->set_n_threads(n_threads);
5026     pst->set_n_tasks((int)n_tasks);
5027     assert(pst->valid(), "Error");
5028   }
5029 }
5030 
5031 // Parallel version of remark
5032 void CMSCollector::do_remark_parallel() {
5033   GenCollectedHeap* gch = GenCollectedHeap::heap();
5034   WorkGang* workers = gch->workers();
5035   assert(workers != NULL, "Need parallel worker threads.");
5036   // Choose to use the number of GC workers most recently set
5037   // into "active_workers".
5038   uint n_workers = workers->active_workers();
5039 
5040   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5041 
5042   StrongRootsScope srs(n_workers);
5043 
5044   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
5045 
5046   // We won't be iterating over the cards in the card table updating
5047   // the younger_gen cards, so we shouldn't call the following else
5048   // the verification code as well as subsequent younger_refs_iterate
5049   // code would get confused. XXX
5050   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5051 
5052   // The young gen rescan work will not be done as part of
5053   // process_roots (which currently doesn't know how to
5054   // parallelize such a scan), but rather will be broken up into
5055   // a set of parallel tasks (via the sampling that the [abortable]
5056   // preclean phase did of eden, plus the [two] tasks of
5057   // scanning the [two] survivor spaces. Further fine-grain
5058   // parallelization of the scanning of the survivor spaces
5059   // themselves, and of precleaning of the young gen itself
5060   // is deferred to the future.
5061   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5062 
5063   // The dirty card rescan work is broken up into a "sequence"
5064   // of parallel tasks (per constituent space) that are dynamically
5065   // claimed by the parallel threads.
5066   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5067 
5068   // It turns out that even when we're using 1 thread, doing the work in a
5069   // separate thread causes wide variance in run times.  We can't help this
5070   // in the multi-threaded case, but we special-case n=1 here to get
5071   // repeatable measurements of the 1-thread overhead of the parallel code.
5072   if (n_workers > 1) {
5073     // Make refs discovery MT-safe, if it isn't already: it may not
5074     // necessarily be so, since it's possible that we are doing
5075     // ST marking.
5076     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5077     workers->run_task(&tsk);
5078   } else {
5079     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5080     tsk.work(0);
5081   }
5082 
5083   // restore, single-threaded for now, any preserved marks
5084   // as a result of work_q overflow
5085   restore_preserved_marks_if_any();
5086 }
5087 
5088 // Non-parallel version of remark
5089 void CMSCollector::do_remark_non_parallel() {
5090   ResourceMark rm;
5091   HandleMark   hm;
5092   GenCollectedHeap* gch = GenCollectedHeap::heap();
5093   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5094 
5095   MarkRefsIntoAndScanClosure
5096     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5097              &_markStack, this,
5098              false /* should_yield */, false /* not precleaning */);
5099   MarkFromDirtyCardsClosure
5100     markFromDirtyCardsClosure(this, _span,
5101                               NULL,  // space is set further below
5102                               &_markBitMap, &_markStack, &mrias_cl);
5103   {
5104     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5105     // Iterate over the dirty cards, setting the corresponding bits in the
5106     // mod union table.
5107     {
5108       ModUnionClosure modUnionClosure(&_modUnionTable);
5109       _ct->ct_bs()->dirty_card_iterate(
5110                       _cmsGen->used_region(),
5111                       &modUnionClosure);
5112     }
5113     // Having transferred these marks into the modUnionTable, we just need
5114     // to rescan the marked objects on the dirty cards in the modUnionTable.
5115     // The initial marking may have been done during an asynchronous
5116     // collection so there may be dirty bits in the mod-union table.
5117     const int alignment =
5118       CardTableModRefBS::card_size * BitsPerWord;
5119     {
5120       // ... First handle dirty cards in CMS gen
5121       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5122       MemRegion ur = _cmsGen->used_region();
5123       HeapWord* lb = ur.start();
5124       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5125       MemRegion cms_span(lb, ub);
5126       _modUnionTable.dirty_range_iterate_clear(cms_span,
5127                                                &markFromDirtyCardsClosure);
5128       verify_work_stacks_empty();
5129       if (PrintCMSStatistics != 0) {
5130         gclog_or_tty->print(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ",
5131           markFromDirtyCardsClosure.num_dirty_cards());
5132       }
5133     }
5134   }
5135   if (VerifyDuringGC &&
5136       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5137     HandleMark hm;  // Discard invalid handles created during verification
5138     Universe::verify();
5139   }
5140   {
5141     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5142 
5143     verify_work_stacks_empty();
5144 
5145     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5146     StrongRootsScope srs(1);
5147 
5148     gch->old_process_roots(&srs,
5149                            true,  // young gen as roots
5150                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5151                            should_unload_classes(),
5152                            &mrias_cl,
5153                            NULL); // The dirty klasses will be handled below
5154 
5155     assert(should_unload_classes()
5156            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5157            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5158   }
5159 
5160   {
5161     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5162 
5163     verify_work_stacks_empty();
5164 
5165     // Scan all class loader data objects that might have been introduced
5166     // during concurrent marking.
5167     ResourceMark rm;
5168     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5169     for (int i = 0; i < array->length(); i++) {
5170       mrias_cl.do_cld_nv(array->at(i));
5171     }
5172 
5173     // We don't need to keep track of new CLDs anymore.
5174     ClassLoaderDataGraph::remember_new_clds(false);
5175 
5176     verify_work_stacks_empty();
5177   }
5178 
5179   {
5180     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
5181 
5182     verify_work_stacks_empty();
5183 
5184     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5185     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5186 
5187     verify_work_stacks_empty();
5188   }
5189 
5190   // We might have added oops to ClassLoaderData::_handles during the
5191   // concurrent marking phase. These oops point to newly allocated objects
5192   // that are guaranteed to be kept alive. Either by the direct allocation
5193   // code, or when the young collector processes the roots. Hence,
5194   // we don't have to revisit the _handles block during the remark phase.
5195 
5196   verify_work_stacks_empty();
5197   // Restore evacuated mark words, if any, used for overflow list links
5198   if (!CMSOverflowEarlyRestoration) {
5199     restore_preserved_marks_if_any();
5200   }
5201   verify_overflow_empty();
5202 }
5203 
5204 ////////////////////////////////////////////////////////
5205 // Parallel Reference Processing Task Proxy Class
5206 ////////////////////////////////////////////////////////
5207 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5208   OopTaskQueueSet*       _queues;
5209   ParallelTaskTerminator _terminator;
5210  public:
5211   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5212     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5213   ParallelTaskTerminator* terminator() { return &_terminator; }
5214   OopTaskQueueSet* queues() { return _queues; }
5215 };
5216 
5217 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5218   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5219   CMSCollector*          _collector;
5220   CMSBitMap*             _mark_bit_map;
5221   const MemRegion        _span;
5222   ProcessTask&           _task;
5223 
5224 public:
5225   CMSRefProcTaskProxy(ProcessTask&     task,
5226                       CMSCollector*    collector,
5227                       const MemRegion& span,
5228                       CMSBitMap*       mark_bit_map,
5229                       AbstractWorkGang* workers,
5230                       OopTaskQueueSet* task_queues):
5231     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5232       task_queues,
5233       workers->active_workers()),
5234     _task(task),
5235     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5236   {
5237     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5238            "Inconsistency in _span");
5239   }
5240 
5241   OopTaskQueueSet* task_queues() { return queues(); }
5242 
5243   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5244 
5245   void do_work_steal(int i,
5246                      CMSParDrainMarkingStackClosure* drain,
5247                      CMSParKeepAliveClosure* keep_alive,
5248                      int* seed);
5249 
5250   virtual void work(uint worker_id);
5251 };
5252 
5253 void CMSRefProcTaskProxy::work(uint worker_id) {
5254   ResourceMark rm;
5255   HandleMark hm;
5256   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5257   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5258                                         _mark_bit_map,
5259                                         work_queue(worker_id));
5260   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5261                                                  _mark_bit_map,
5262                                                  work_queue(worker_id));
5263   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5264   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5265   if (_task.marks_oops_alive()) {
5266     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5267                   _collector->hash_seed(worker_id));
5268   }
5269   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5270   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5271 }
5272 
5273 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5274   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5275   EnqueueTask& _task;
5276 
5277 public:
5278   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5279     : AbstractGangTask("Enqueue reference objects in parallel"),
5280       _task(task)
5281   { }
5282 
5283   virtual void work(uint worker_id)
5284   {
5285     _task.work(worker_id);
5286   }
5287 };
5288 
5289 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5290   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5291    _span(span),
5292    _bit_map(bit_map),
5293    _work_queue(work_queue),
5294    _mark_and_push(collector, span, bit_map, work_queue),
5295    _low_water_mark(MIN2((work_queue->max_elems()/4),
5296                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5297 { }
5298 
5299 // . see if we can share work_queues with ParNew? XXX
5300 void CMSRefProcTaskProxy::do_work_steal(int i,
5301   CMSParDrainMarkingStackClosure* drain,
5302   CMSParKeepAliveClosure* keep_alive,
5303   int* seed) {
5304   OopTaskQueue* work_q = work_queue(i);
5305   NOT_PRODUCT(int num_steals = 0;)
5306   oop obj_to_scan;
5307 
5308   while (true) {
5309     // Completely finish any left over work from (an) earlier round(s)
5310     drain->trim_queue(0);
5311     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5312                                          (size_t)ParGCDesiredObjsFromOverflowList);
5313     // Now check if there's any work in the overflow list
5314     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5315     // only affects the number of attempts made to get work from the
5316     // overflow list and does not affect the number of workers.  Just
5317     // pass ParallelGCThreads so this behavior is unchanged.
5318     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5319                                                 work_q,
5320                                                 ParallelGCThreads)) {
5321       // Found something in global overflow list;
5322       // not yet ready to go stealing work from others.
5323       // We'd like to assert(work_q->size() != 0, ...)
5324       // because we just took work from the overflow list,
5325       // but of course we can't, since all of that might have
5326       // been already stolen from us.
5327       continue;
5328     }
5329     // Verify that we have no work before we resort to stealing
5330     assert(work_q->size() == 0, "Have work, shouldn't steal");
5331     // Try to steal from other queues that have work
5332     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5333       NOT_PRODUCT(num_steals++;)
5334       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5335       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5336       // Do scanning work
5337       obj_to_scan->oop_iterate(keep_alive);
5338       // Loop around, finish this work, and try to steal some more
5339     } else if (terminator()->offer_termination()) {
5340       break;  // nirvana from the infinite cycle
5341     }
5342   }
5343   NOT_PRODUCT(
5344     if (PrintCMSStatistics != 0) {
5345       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5346     }
5347   )
5348 }
5349 
5350 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5351 {
5352   GenCollectedHeap* gch = GenCollectedHeap::heap();
5353   WorkGang* workers = gch->workers();
5354   assert(workers != NULL, "Need parallel worker threads.");
5355   CMSRefProcTaskProxy rp_task(task, &_collector,
5356                               _collector.ref_processor()->span(),
5357                               _collector.markBitMap(),
5358                               workers, _collector.task_queues());
5359   workers->run_task(&rp_task);
5360 }
5361 
5362 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5363 {
5364 
5365   GenCollectedHeap* gch = GenCollectedHeap::heap();
5366   WorkGang* workers = gch->workers();
5367   assert(workers != NULL, "Need parallel worker threads.");
5368   CMSRefEnqueueTaskProxy enq_task(task);
5369   workers->run_task(&enq_task);
5370 }
5371 
5372 void CMSCollector::refProcessingWork() {
5373   ResourceMark rm;
5374   HandleMark   hm;
5375 
5376   ReferenceProcessor* rp = ref_processor();
5377   assert(rp->span().equals(_span), "Spans should be equal");
5378   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5379   // Process weak references.
5380   rp->setup_policy(false);
5381   verify_work_stacks_empty();
5382 
5383   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5384                                           &_markStack, false /* !preclean */);
5385   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5386                                 _span, &_markBitMap, &_markStack,
5387                                 &cmsKeepAliveClosure, false /* !preclean */);
5388   {
5389     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
5390 
5391     ReferenceProcessorStats stats;
5392     if (rp->processing_is_mt()) {
5393       // Set the degree of MT here.  If the discovery is done MT, there
5394       // may have been a different number of threads doing the discovery
5395       // and a different number of discovered lists may have Ref objects.
5396       // That is OK as long as the Reference lists are balanced (see
5397       // balance_all_queues() and balance_queues()).
5398       GenCollectedHeap* gch = GenCollectedHeap::heap();
5399       uint active_workers = ParallelGCThreads;
5400       WorkGang* workers = gch->workers();
5401       if (workers != NULL) {
5402         active_workers = workers->active_workers();
5403         // The expectation is that active_workers will have already
5404         // been set to a reasonable value.  If it has not been set,
5405         // investigate.
5406         assert(active_workers > 0, "Should have been set during scavenge");
5407       }
5408       rp->set_active_mt_degree(active_workers);
5409       CMSRefProcTaskExecutor task_executor(*this);
5410       stats = rp->process_discovered_references(&_is_alive_closure,
5411                                         &cmsKeepAliveClosure,
5412                                         &cmsDrainMarkingStackClosure,
5413                                         &task_executor,
5414                                         _gc_timer_cm);
5415     } else {
5416       stats = rp->process_discovered_references(&_is_alive_closure,
5417                                         &cmsKeepAliveClosure,
5418                                         &cmsDrainMarkingStackClosure,
5419                                         NULL,
5420                                         _gc_timer_cm);
5421     }
5422     _gc_tracer_cm->report_gc_reference_stats(stats);
5423 
5424   }
5425 
5426   // This is the point where the entire marking should have completed.
5427   verify_work_stacks_empty();
5428 
5429   if (should_unload_classes()) {
5430     {
5431       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
5432 
5433       // Unload classes and purge the SystemDictionary.
5434       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5435 
5436       // Unload nmethods.
5437       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5438 
5439       // Prune dead klasses from subklass/sibling/implementor lists.
5440       Klass::clean_weak_klass_links(&_is_alive_closure);
5441     }
5442 
5443     {
5444       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
5445       // Clean up unreferenced symbols in symbol table.
5446       SymbolTable::unlink();
5447     }
5448 
5449     {
5450       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
5451       // Delete entries for dead interned strings.
5452       StringTable::unlink(&_is_alive_closure);
5453     }
5454   }
5455 
5456 
5457   // Restore any preserved marks as a result of mark stack or
5458   // work queue overflow
5459   restore_preserved_marks_if_any();  // done single-threaded for now
5460 
5461   rp->set_enqueuing_is_done(true);
5462   if (rp->processing_is_mt()) {
5463     rp->balance_all_queues();
5464     CMSRefProcTaskExecutor task_executor(*this);
5465     rp->enqueue_discovered_references(&task_executor);
5466   } else {
5467     rp->enqueue_discovered_references(NULL);
5468   }
5469   rp->verify_no_references_recorded();
5470   assert(!rp->discovery_enabled(), "should have been disabled");
5471 }
5472 
5473 #ifndef PRODUCT
5474 void CMSCollector::check_correct_thread_executing() {
5475   Thread* t = Thread::current();
5476   // Only the VM thread or the CMS thread should be here.
5477   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5478          "Unexpected thread type");
5479   // If this is the vm thread, the foreground process
5480   // should not be waiting.  Note that _foregroundGCIsActive is
5481   // true while the foreground collector is waiting.
5482   if (_foregroundGCShouldWait) {
5483     // We cannot be the VM thread
5484     assert(t->is_ConcurrentGC_thread(),
5485            "Should be CMS thread");
5486   } else {
5487     // We can be the CMS thread only if we are in a stop-world
5488     // phase of CMS collection.
5489     if (t->is_ConcurrentGC_thread()) {
5490       assert(_collectorState == InitialMarking ||
5491              _collectorState == FinalMarking,
5492              "Should be a stop-world phase");
5493       // The CMS thread should be holding the CMS_token.
5494       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5495              "Potential interference with concurrently "
5496              "executing VM thread");
5497     }
5498   }
5499 }
5500 #endif
5501 
5502 void CMSCollector::sweep() {
5503   assert(_collectorState == Sweeping, "just checking");
5504   check_correct_thread_executing();
5505   verify_work_stacks_empty();
5506   verify_overflow_empty();
5507   increment_sweep_count();
5508   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5509 
5510   _inter_sweep_timer.stop();
5511   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5512 
5513   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5514   _intra_sweep_timer.reset();
5515   _intra_sweep_timer.start();
5516   {
5517     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5518     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
5519     // First sweep the old gen
5520     {
5521       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5522                                bitMapLock());
5523       sweepWork(_cmsGen);
5524     }
5525 
5526     // Update Universe::_heap_*_at_gc figures.
5527     // We need all the free list locks to make the abstract state
5528     // transition from Sweeping to Resetting. See detailed note
5529     // further below.
5530     {
5531       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5532       // Update heap occupancy information which is used as
5533       // input to soft ref clearing policy at the next gc.
5534       Universe::update_heap_info_at_gc();
5535       _collectorState = Resizing;
5536     }
5537   }
5538   verify_work_stacks_empty();
5539   verify_overflow_empty();
5540 
5541   if (should_unload_classes()) {
5542     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5543     // requires that the virtual spaces are stable and not deleted.
5544     ClassLoaderDataGraph::set_should_purge(true);
5545   }
5546 
5547   _intra_sweep_timer.stop();
5548   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5549 
5550   _inter_sweep_timer.reset();
5551   _inter_sweep_timer.start();
5552 
5553   // We need to use a monotonically non-decreasing time in ms
5554   // or we will see time-warp warnings and os::javaTimeMillis()
5555   // does not guarantee monotonicity.
5556   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5557   update_time_of_last_gc(now);
5558 
5559   // NOTE on abstract state transitions:
5560   // Mutators allocate-live and/or mark the mod-union table dirty
5561   // based on the state of the collection.  The former is done in
5562   // the interval [Marking, Sweeping] and the latter in the interval
5563   // [Marking, Sweeping).  Thus the transitions into the Marking state
5564   // and out of the Sweeping state must be synchronously visible
5565   // globally to the mutators.
5566   // The transition into the Marking state happens with the world
5567   // stopped so the mutators will globally see it.  Sweeping is
5568   // done asynchronously by the background collector so the transition
5569   // from the Sweeping state to the Resizing state must be done
5570   // under the freelistLock (as is the check for whether to
5571   // allocate-live and whether to dirty the mod-union table).
5572   assert(_collectorState == Resizing, "Change of collector state to"
5573     " Resizing must be done under the freelistLocks (plural)");
5574 
5575   // Now that sweeping has been completed, we clear
5576   // the incremental_collection_failed flag,
5577   // thus inviting a younger gen collection to promote into
5578   // this generation. If such a promotion may still fail,
5579   // the flag will be set again when a young collection is
5580   // attempted.
5581   GenCollectedHeap* gch = GenCollectedHeap::heap();
5582   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5583   gch->update_full_collections_completed(_collection_count_start);
5584 }
5585 
5586 // FIX ME!!! Looks like this belongs in CFLSpace, with
5587 // CMSGen merely delegating to it.
5588 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5589   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5590   HeapWord*  minAddr        = _cmsSpace->bottom();
5591   HeapWord*  largestAddr    =
5592     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5593   if (largestAddr == NULL) {
5594     // The dictionary appears to be empty.  In this case
5595     // try to coalesce at the end of the heap.
5596     largestAddr = _cmsSpace->end();
5597   }
5598   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5599   size_t nearLargestOffset =
5600     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5601   if (PrintFLSStatistics != 0) {
5602     gclog_or_tty->print_cr(
5603       "CMS: Large Block: " PTR_FORMAT ";"
5604       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5605       p2i(largestAddr),
5606       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5607   }
5608   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5609 }
5610 
5611 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5612   return addr >= _cmsSpace->nearLargestChunk();
5613 }
5614 
5615 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5616   return _cmsSpace->find_chunk_at_end();
5617 }
5618 
5619 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5620                                                     bool full) {
5621   // If the young generation has been collected, gather any statistics
5622   // that are of interest at this point.
5623   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5624   if (!full && current_is_young) {
5625     // Gather statistics on the young generation collection.
5626     collector()->stats().record_gc0_end(used());
5627   }
5628 }
5629 
5630 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5631   // We iterate over the space(s) underlying this generation,
5632   // checking the mark bit map to see if the bits corresponding
5633   // to specific blocks are marked or not. Blocks that are
5634   // marked are live and are not swept up. All remaining blocks
5635   // are swept up, with coalescing on-the-fly as we sweep up
5636   // contiguous free and/or garbage blocks:
5637   // We need to ensure that the sweeper synchronizes with allocators
5638   // and stop-the-world collectors. In particular, the following
5639   // locks are used:
5640   // . CMS token: if this is held, a stop the world collection cannot occur
5641   // . freelistLock: if this is held no allocation can occur from this
5642   //                 generation by another thread
5643   // . bitMapLock: if this is held, no other thread can access or update
5644   //
5645 
5646   // Note that we need to hold the freelistLock if we use
5647   // block iterate below; else the iterator might go awry if
5648   // a mutator (or promotion) causes block contents to change
5649   // (for instance if the allocator divvies up a block).
5650   // If we hold the free list lock, for all practical purposes
5651   // young generation GC's can't occur (they'll usually need to
5652   // promote), so we might as well prevent all young generation
5653   // GC's while we do a sweeping step. For the same reason, we might
5654   // as well take the bit map lock for the entire duration
5655 
5656   // check that we hold the requisite locks
5657   assert(have_cms_token(), "Should hold cms token");
5658   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5659   assert_lock_strong(old_gen->freelistLock());
5660   assert_lock_strong(bitMapLock());
5661 
5662   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5663   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5664   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5665                                           _inter_sweep_estimate.padded_average(),
5666                                           _intra_sweep_estimate.padded_average());
5667   old_gen->setNearLargestChunk();
5668 
5669   {
5670     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5671     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5672     // We need to free-up/coalesce garbage/blocks from a
5673     // co-terminal free run. This is done in the SweepClosure
5674     // destructor; so, do not remove this scope, else the
5675     // end-of-sweep-census below will be off by a little bit.
5676   }
5677   old_gen->cmsSpace()->sweep_completed();
5678   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5679   if (should_unload_classes()) {                // unloaded classes this cycle,
5680     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5681   } else {                                      // did not unload classes,
5682     _concurrent_cycles_since_last_unload++;     // ... increment count
5683   }
5684 }
5685 
5686 // Reset CMS data structures (for now just the marking bit map)
5687 // preparatory for the next cycle.
5688 void CMSCollector::reset(bool concurrent) {
5689   if (concurrent) {
5690     CMSTokenSyncWithLocks ts(true, bitMapLock());
5691 
5692     // If the state is not "Resetting", the foreground  thread
5693     // has done a collection and the resetting.
5694     if (_collectorState != Resetting) {
5695       assert(_collectorState == Idling, "The state should only change"
5696         " because the foreground collector has finished the collection");
5697       return;
5698     }
5699 
5700     // Clear the mark bitmap (no grey objects to start with)
5701     // for the next cycle.
5702     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5703     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
5704 
5705     HeapWord* curAddr = _markBitMap.startWord();
5706     while (curAddr < _markBitMap.endWord()) {
5707       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5708       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5709       _markBitMap.clear_large_range(chunk);
5710       if (ConcurrentMarkSweepThread::should_yield() &&
5711           !foregroundGCIsActive() &&
5712           CMSYield) {
5713         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5714                "CMS thread should hold CMS token");
5715         assert_lock_strong(bitMapLock());
5716         bitMapLock()->unlock();
5717         ConcurrentMarkSweepThread::desynchronize(true);
5718         stopTimer();
5719         if (PrintCMSStatistics != 0) {
5720           incrementYields();
5721         }
5722 
5723         // See the comment in coordinator_yield()
5724         for (unsigned i = 0; i < CMSYieldSleepCount &&
5725                          ConcurrentMarkSweepThread::should_yield() &&
5726                          !CMSCollector::foregroundGCIsActive(); ++i) {
5727           os::sleep(Thread::current(), 1, false);
5728         }
5729 
5730         ConcurrentMarkSweepThread::synchronize(true);
5731         bitMapLock()->lock_without_safepoint_check();
5732         startTimer();
5733       }
5734       curAddr = chunk.end();
5735     }
5736     // A successful mostly concurrent collection has been done.
5737     // Because only the full (i.e., concurrent mode failure) collections
5738     // are being measured for gc overhead limits, clean the "near" flag
5739     // and count.
5740     size_policy()->reset_gc_overhead_limit_count();
5741     _collectorState = Idling;
5742   } else {
5743     // already have the lock
5744     assert(_collectorState == Resetting, "just checking");
5745     assert_lock_strong(bitMapLock());
5746     _markBitMap.clear_all();
5747     _collectorState = Idling;
5748   }
5749 
5750   register_gc_end();
5751 }
5752 
5753 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5754   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5755   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
5756   TraceCollectorStats tcs(counters());
5757 
5758   switch (op) {
5759     case CMS_op_checkpointRootsInitial: {
5760       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5761       checkpointRootsInitial();
5762       if (PrintGC) {
5763         _cmsGen->printOccupancy("initial-mark");
5764       }
5765       break;
5766     }
5767     case CMS_op_checkpointRootsFinal: {
5768       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5769       checkpointRootsFinal();
5770       if (PrintGC) {
5771         _cmsGen->printOccupancy("remark");
5772       }
5773       break;
5774     }
5775     default:
5776       fatal("No such CMS_op");
5777   }
5778 }
5779 
5780 #ifndef PRODUCT
5781 size_t const CMSCollector::skip_header_HeapWords() {
5782   return FreeChunk::header_size();
5783 }
5784 
5785 // Try and collect here conditions that should hold when
5786 // CMS thread is exiting. The idea is that the foreground GC
5787 // thread should not be blocked if it wants to terminate
5788 // the CMS thread and yet continue to run the VM for a while
5789 // after that.
5790 void CMSCollector::verify_ok_to_terminate() const {
5791   assert(Thread::current()->is_ConcurrentGC_thread(),
5792          "should be called by CMS thread");
5793   assert(!_foregroundGCShouldWait, "should be false");
5794   // We could check here that all the various low-level locks
5795   // are not held by the CMS thread, but that is overkill; see
5796   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5797   // is checked.
5798 }
5799 #endif
5800 
5801 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5802    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5803           "missing Printezis mark?");
5804   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5805   size_t size = pointer_delta(nextOneAddr + 1, addr);
5806   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5807          "alignment problem");
5808   assert(size >= 3, "Necessary for Printezis marks to work");
5809   return size;
5810 }
5811 
5812 // A variant of the above (block_size_using_printezis_bits()) except
5813 // that we return 0 if the P-bits are not yet set.
5814 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5815   if (_markBitMap.isMarked(addr + 1)) {
5816     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5817     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5818     size_t size = pointer_delta(nextOneAddr + 1, addr);
5819     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5820            "alignment problem");
5821     assert(size >= 3, "Necessary for Printezis marks to work");
5822     return size;
5823   }
5824   return 0;
5825 }
5826 
5827 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5828   size_t sz = 0;
5829   oop p = (oop)addr;
5830   if (p->klass_or_null() != NULL) {
5831     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5832   } else {
5833     sz = block_size_using_printezis_bits(addr);
5834   }
5835   assert(sz > 0, "size must be nonzero");
5836   HeapWord* next_block = addr + sz;
5837   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5838                                              CardTableModRefBS::card_size);
5839   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5840          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5841          "must be different cards");
5842   return next_card;
5843 }
5844 
5845 
5846 // CMS Bit Map Wrapper /////////////////////////////////////////
5847 
5848 // Construct a CMS bit map infrastructure, but don't create the
5849 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5850 // further below.
5851 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5852   _bm(),
5853   _shifter(shifter),
5854   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5855                                     Monitor::_safepoint_check_sometimes) : NULL)
5856 {
5857   _bmStartWord = 0;
5858   _bmWordSize  = 0;
5859 }
5860 
5861 bool CMSBitMap::allocate(MemRegion mr) {
5862   _bmStartWord = mr.start();
5863   _bmWordSize  = mr.word_size();
5864   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5865                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5866   if (!brs.is_reserved()) {
5867     warning("CMS bit map allocation failure");
5868     return false;
5869   }
5870   // For now we'll just commit all of the bit map up front.
5871   // Later on we'll try to be more parsimonious with swap.
5872   if (!_virtual_space.initialize(brs, brs.size())) {
5873     warning("CMS bit map backing store failure");
5874     return false;
5875   }
5876   assert(_virtual_space.committed_size() == brs.size(),
5877          "didn't reserve backing store for all of CMS bit map?");
5878   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5879   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5880          _bmWordSize, "inconsistency in bit map sizing");
5881   _bm.set_size(_bmWordSize >> _shifter);
5882 
5883   // bm.clear(); // can we rely on getting zero'd memory? verify below
5884   assert(isAllClear(),
5885          "Expected zero'd memory from ReservedSpace constructor");
5886   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5887          "consistency check");
5888   return true;
5889 }
5890 
5891 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5892   HeapWord *next_addr, *end_addr, *last_addr;
5893   assert_locked();
5894   assert(covers(mr), "out-of-range error");
5895   // XXX assert that start and end are appropriately aligned
5896   for (next_addr = mr.start(), end_addr = mr.end();
5897        next_addr < end_addr; next_addr = last_addr) {
5898     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5899     last_addr = dirty_region.end();
5900     if (!dirty_region.is_empty()) {
5901       cl->do_MemRegion(dirty_region);
5902     } else {
5903       assert(last_addr == end_addr, "program logic");
5904       return;
5905     }
5906   }
5907 }
5908 
5909 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5910   _bm.print_on_error(st, prefix);
5911 }
5912 
5913 #ifndef PRODUCT
5914 void CMSBitMap::assert_locked() const {
5915   CMSLockVerifier::assert_locked(lock());
5916 }
5917 
5918 bool CMSBitMap::covers(MemRegion mr) const {
5919   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5920   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5921          "size inconsistency");
5922   return (mr.start() >= _bmStartWord) &&
5923          (mr.end()   <= endWord());
5924 }
5925 
5926 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5927     return (start >= _bmStartWord && (start + size) <= endWord());
5928 }
5929 
5930 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5931   // verify that there are no 1 bits in the interval [left, right)
5932   FalseBitMapClosure falseBitMapClosure;
5933   iterate(&falseBitMapClosure, left, right);
5934 }
5935 
5936 void CMSBitMap::region_invariant(MemRegion mr)
5937 {
5938   assert_locked();
5939   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5940   assert(!mr.is_empty(), "unexpected empty region");
5941   assert(covers(mr), "mr should be covered by bit map");
5942   // convert address range into offset range
5943   size_t start_ofs = heapWordToOffset(mr.start());
5944   // Make sure that end() is appropriately aligned
5945   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5946                         (1 << (_shifter+LogHeapWordSize))),
5947          "Misaligned mr.end()");
5948   size_t end_ofs   = heapWordToOffset(mr.end());
5949   assert(end_ofs > start_ofs, "Should mark at least one bit");
5950 }
5951 
5952 #endif
5953 
5954 bool CMSMarkStack::allocate(size_t size) {
5955   // allocate a stack of the requisite depth
5956   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5957                    size * sizeof(oop)));
5958   if (!rs.is_reserved()) {
5959     warning("CMSMarkStack allocation failure");
5960     return false;
5961   }
5962   if (!_virtual_space.initialize(rs, rs.size())) {
5963     warning("CMSMarkStack backing store failure");
5964     return false;
5965   }
5966   assert(_virtual_space.committed_size() == rs.size(),
5967          "didn't reserve backing store for all of CMS stack?");
5968   _base = (oop*)(_virtual_space.low());
5969   _index = 0;
5970   _capacity = size;
5971   NOT_PRODUCT(_max_depth = 0);
5972   return true;
5973 }
5974 
5975 // XXX FIX ME !!! In the MT case we come in here holding a
5976 // leaf lock. For printing we need to take a further lock
5977 // which has lower rank. We need to recalibrate the two
5978 // lock-ranks involved in order to be able to print the
5979 // messages below. (Or defer the printing to the caller.
5980 // For now we take the expedient path of just disabling the
5981 // messages for the problematic case.)
5982 void CMSMarkStack::expand() {
5983   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5984   if (_capacity == MarkStackSizeMax) {
5985     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
5986       // We print a warning message only once per CMS cycle.
5987       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
5988     }
5989     return;
5990   }
5991   // Double capacity if possible
5992   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5993   // Do not give up existing stack until we have managed to
5994   // get the double capacity that we desired.
5995   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5996                    new_capacity * sizeof(oop)));
5997   if (rs.is_reserved()) {
5998     // Release the backing store associated with old stack
5999     _virtual_space.release();
6000     // Reinitialize virtual space for new stack
6001     if (!_virtual_space.initialize(rs, rs.size())) {
6002       fatal("Not enough swap for expanded marking stack");
6003     }
6004     _base = (oop*)(_virtual_space.low());
6005     _index = 0;
6006     _capacity = new_capacity;
6007   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6008     // Failed to double capacity, continue;
6009     // we print a detail message only once per CMS cycle.
6010     gclog_or_tty->print(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to "
6011             SIZE_FORMAT "K",
6012             _capacity / K, new_capacity / K);
6013   }
6014 }
6015 
6016 
6017 // Closures
6018 // XXX: there seems to be a lot of code  duplication here;
6019 // should refactor and consolidate common code.
6020 
6021 // This closure is used to mark refs into the CMS generation in
6022 // the CMS bit map. Called at the first checkpoint. This closure
6023 // assumes that we do not need to re-mark dirty cards; if the CMS
6024 // generation on which this is used is not an oldest
6025 // generation then this will lose younger_gen cards!
6026 
6027 MarkRefsIntoClosure::MarkRefsIntoClosure(
6028   MemRegion span, CMSBitMap* bitMap):
6029     _span(span),
6030     _bitMap(bitMap)
6031 {
6032     assert(_ref_processor == NULL, "deliberately left NULL");
6033     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6034 }
6035 
6036 void MarkRefsIntoClosure::do_oop(oop obj) {
6037   // if p points into _span, then mark corresponding bit in _markBitMap
6038   assert(obj->is_oop(), "expected an oop");
6039   HeapWord* addr = (HeapWord*)obj;
6040   if (_span.contains(addr)) {
6041     // this should be made more efficient
6042     _bitMap->mark(addr);
6043   }
6044 }
6045 
6046 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6047 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6048 
6049 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6050   MemRegion span, CMSBitMap* bitMap):
6051     _span(span),
6052     _bitMap(bitMap)
6053 {
6054     assert(_ref_processor == NULL, "deliberately left NULL");
6055     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6056 }
6057 
6058 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6059   // if p points into _span, then mark corresponding bit in _markBitMap
6060   assert(obj->is_oop(), "expected an oop");
6061   HeapWord* addr = (HeapWord*)obj;
6062   if (_span.contains(addr)) {
6063     // this should be made more efficient
6064     _bitMap->par_mark(addr);
6065   }
6066 }
6067 
6068 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6069 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6070 
6071 // A variant of the above, used for CMS marking verification.
6072 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6073   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6074     _span(span),
6075     _verification_bm(verification_bm),
6076     _cms_bm(cms_bm)
6077 {
6078     assert(_ref_processor == NULL, "deliberately left NULL");
6079     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6080 }
6081 
6082 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6083   // if p points into _span, then mark corresponding bit in _markBitMap
6084   assert(obj->is_oop(), "expected an oop");
6085   HeapWord* addr = (HeapWord*)obj;
6086   if (_span.contains(addr)) {
6087     _verification_bm->mark(addr);
6088     if (!_cms_bm->isMarked(addr)) {
6089       oop(addr)->print();
6090       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6091       fatal("... aborting");
6092     }
6093   }
6094 }
6095 
6096 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6097 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6098 
6099 //////////////////////////////////////////////////
6100 // MarkRefsIntoAndScanClosure
6101 //////////////////////////////////////////////////
6102 
6103 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6104                                                        ReferenceProcessor* rp,
6105                                                        CMSBitMap* bit_map,
6106                                                        CMSBitMap* mod_union_table,
6107                                                        CMSMarkStack*  mark_stack,
6108                                                        CMSCollector* collector,
6109                                                        bool should_yield,
6110                                                        bool concurrent_precleaning):
6111   _collector(collector),
6112   _span(span),
6113   _bit_map(bit_map),
6114   _mark_stack(mark_stack),
6115   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6116                       mark_stack, concurrent_precleaning),
6117   _yield(should_yield),
6118   _concurrent_precleaning(concurrent_precleaning),
6119   _freelistLock(NULL)
6120 {
6121   _ref_processor = rp;
6122   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6123 }
6124 
6125 // This closure is used to mark refs into the CMS generation at the
6126 // second (final) checkpoint, and to scan and transitively follow
6127 // the unmarked oops. It is also used during the concurrent precleaning
6128 // phase while scanning objects on dirty cards in the CMS generation.
6129 // The marks are made in the marking bit map and the marking stack is
6130 // used for keeping the (newly) grey objects during the scan.
6131 // The parallel version (Par_...) appears further below.
6132 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6133   if (obj != NULL) {
6134     assert(obj->is_oop(), "expected an oop");
6135     HeapWord* addr = (HeapWord*)obj;
6136     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6137     assert(_collector->overflow_list_is_empty(),
6138            "overflow list should be empty");
6139     if (_span.contains(addr) &&
6140         !_bit_map->isMarked(addr)) {
6141       // mark bit map (object is now grey)
6142       _bit_map->mark(addr);
6143       // push on marking stack (stack should be empty), and drain the
6144       // stack by applying this closure to the oops in the oops popped
6145       // from the stack (i.e. blacken the grey objects)
6146       bool res = _mark_stack->push(obj);
6147       assert(res, "Should have space to push on empty stack");
6148       do {
6149         oop new_oop = _mark_stack->pop();
6150         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6151         assert(_bit_map->isMarked((HeapWord*)new_oop),
6152                "only grey objects on this stack");
6153         // iterate over the oops in this oop, marking and pushing
6154         // the ones in CMS heap (i.e. in _span).
6155         new_oop->oop_iterate(&_pushAndMarkClosure);
6156         // check if it's time to yield
6157         do_yield_check();
6158       } while (!_mark_stack->isEmpty() ||
6159                (!_concurrent_precleaning && take_from_overflow_list()));
6160         // if marking stack is empty, and we are not doing this
6161         // during precleaning, then check the overflow list
6162     }
6163     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6164     assert(_collector->overflow_list_is_empty(),
6165            "overflow list was drained above");
6166     // We could restore evacuated mark words, if any, used for
6167     // overflow list links here because the overflow list is
6168     // provably empty here. That would reduce the maximum
6169     // size requirements for preserved_{oop,mark}_stack.
6170     // But we'll just postpone it until we are all done
6171     // so we can just stream through.
6172     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6173       _collector->restore_preserved_marks_if_any();
6174       assert(_collector->no_preserved_marks(), "No preserved marks");
6175     }
6176     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6177            "All preserved marks should have been restored above");
6178   }
6179 }
6180 
6181 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6182 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6183 
6184 void MarkRefsIntoAndScanClosure::do_yield_work() {
6185   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6186          "CMS thread should hold CMS token");
6187   assert_lock_strong(_freelistLock);
6188   assert_lock_strong(_bit_map->lock());
6189   // relinquish the free_list_lock and bitMaplock()
6190   _bit_map->lock()->unlock();
6191   _freelistLock->unlock();
6192   ConcurrentMarkSweepThread::desynchronize(true);
6193   _collector->stopTimer();
6194   if (PrintCMSStatistics != 0) {
6195     _collector->incrementYields();
6196   }
6197 
6198   // See the comment in coordinator_yield()
6199   for (unsigned i = 0;
6200        i < CMSYieldSleepCount &&
6201        ConcurrentMarkSweepThread::should_yield() &&
6202        !CMSCollector::foregroundGCIsActive();
6203        ++i) {
6204     os::sleep(Thread::current(), 1, false);
6205   }
6206 
6207   ConcurrentMarkSweepThread::synchronize(true);
6208   _freelistLock->lock_without_safepoint_check();
6209   _bit_map->lock()->lock_without_safepoint_check();
6210   _collector->startTimer();
6211 }
6212 
6213 ///////////////////////////////////////////////////////////
6214 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6215 //                                 MarkRefsIntoAndScanClosure
6216 ///////////////////////////////////////////////////////////
6217 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6218   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6219   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6220   _span(span),
6221   _bit_map(bit_map),
6222   _work_queue(work_queue),
6223   _low_water_mark(MIN2((work_queue->max_elems()/4),
6224                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6225   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6226 {
6227   _ref_processor = rp;
6228   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6229 }
6230 
6231 // This closure is used to mark refs into the CMS generation at the
6232 // second (final) checkpoint, and to scan and transitively follow
6233 // the unmarked oops. The marks are made in the marking bit map and
6234 // the work_queue is used for keeping the (newly) grey objects during
6235 // the scan phase whence they are also available for stealing by parallel
6236 // threads. Since the marking bit map is shared, updates are
6237 // synchronized (via CAS).
6238 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6239   if (obj != NULL) {
6240     // Ignore mark word because this could be an already marked oop
6241     // that may be chained at the end of the overflow list.
6242     assert(obj->is_oop(true), "expected an oop");
6243     HeapWord* addr = (HeapWord*)obj;
6244     if (_span.contains(addr) &&
6245         !_bit_map->isMarked(addr)) {
6246       // mark bit map (object will become grey):
6247       // It is possible for several threads to be
6248       // trying to "claim" this object concurrently;
6249       // the unique thread that succeeds in marking the
6250       // object first will do the subsequent push on
6251       // to the work queue (or overflow list).
6252       if (_bit_map->par_mark(addr)) {
6253         // push on work_queue (which may not be empty), and trim the
6254         // queue to an appropriate length by applying this closure to
6255         // the oops in the oops popped from the stack (i.e. blacken the
6256         // grey objects)
6257         bool res = _work_queue->push(obj);
6258         assert(res, "Low water mark should be less than capacity?");
6259         trim_queue(_low_water_mark);
6260       } // Else, another thread claimed the object
6261     }
6262   }
6263 }
6264 
6265 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6266 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6267 
6268 // This closure is used to rescan the marked objects on the dirty cards
6269 // in the mod union table and the card table proper.
6270 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6271   oop p, MemRegion mr) {
6272 
6273   size_t size = 0;
6274   HeapWord* addr = (HeapWord*)p;
6275   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6276   assert(_span.contains(addr), "we are scanning the CMS generation");
6277   // check if it's time to yield
6278   if (do_yield_check()) {
6279     // We yielded for some foreground stop-world work,
6280     // and we have been asked to abort this ongoing preclean cycle.
6281     return 0;
6282   }
6283   if (_bitMap->isMarked(addr)) {
6284     // it's marked; is it potentially uninitialized?
6285     if (p->klass_or_null() != NULL) {
6286         // an initialized object; ignore mark word in verification below
6287         // since we are running concurrent with mutators
6288         assert(p->is_oop(true), "should be an oop");
6289         if (p->is_objArray()) {
6290           // objArrays are precisely marked; restrict scanning
6291           // to dirty cards only.
6292           size = CompactibleFreeListSpace::adjustObjectSize(
6293                    p->oop_iterate_size(_scanningClosure, mr));
6294         } else {
6295           // A non-array may have been imprecisely marked; we need
6296           // to scan object in its entirety.
6297           size = CompactibleFreeListSpace::adjustObjectSize(
6298                    p->oop_iterate_size(_scanningClosure));
6299         }
6300         #ifdef ASSERT
6301           size_t direct_size =
6302             CompactibleFreeListSpace::adjustObjectSize(p->size());
6303           assert(size == direct_size, "Inconsistency in size");
6304           assert(size >= 3, "Necessary for Printezis marks to work");
6305           if (!_bitMap->isMarked(addr+1)) {
6306             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6307           } else {
6308             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6309             assert(_bitMap->isMarked(addr+size-1),
6310                    "inconsistent Printezis mark");
6311           }
6312         #endif // ASSERT
6313     } else {
6314       // An uninitialized object.
6315       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6316       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6317       size = pointer_delta(nextOneAddr + 1, addr);
6318       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6319              "alignment problem");
6320       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6321       // will dirty the card when the klass pointer is installed in the
6322       // object (signaling the completion of initialization).
6323     }
6324   } else {
6325     // Either a not yet marked object or an uninitialized object
6326     if (p->klass_or_null() == NULL) {
6327       // An uninitialized object, skip to the next card, since
6328       // we may not be able to read its P-bits yet.
6329       assert(size == 0, "Initial value");
6330     } else {
6331       // An object not (yet) reached by marking: we merely need to
6332       // compute its size so as to go look at the next block.
6333       assert(p->is_oop(true), "should be an oop");
6334       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6335     }
6336   }
6337   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6338   return size;
6339 }
6340 
6341 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6342   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6343          "CMS thread should hold CMS token");
6344   assert_lock_strong(_freelistLock);
6345   assert_lock_strong(_bitMap->lock());
6346   // relinquish the free_list_lock and bitMaplock()
6347   _bitMap->lock()->unlock();
6348   _freelistLock->unlock();
6349   ConcurrentMarkSweepThread::desynchronize(true);
6350   _collector->stopTimer();
6351   if (PrintCMSStatistics != 0) {
6352     _collector->incrementYields();
6353   }
6354 
6355   // See the comment in coordinator_yield()
6356   for (unsigned i = 0; i < CMSYieldSleepCount &&
6357                    ConcurrentMarkSweepThread::should_yield() &&
6358                    !CMSCollector::foregroundGCIsActive(); ++i) {
6359     os::sleep(Thread::current(), 1, false);
6360   }
6361 
6362   ConcurrentMarkSweepThread::synchronize(true);
6363   _freelistLock->lock_without_safepoint_check();
6364   _bitMap->lock()->lock_without_safepoint_check();
6365   _collector->startTimer();
6366 }
6367 
6368 
6369 //////////////////////////////////////////////////////////////////
6370 // SurvivorSpacePrecleanClosure
6371 //////////////////////////////////////////////////////////////////
6372 // This (single-threaded) closure is used to preclean the oops in
6373 // the survivor spaces.
6374 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6375 
6376   HeapWord* addr = (HeapWord*)p;
6377   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6378   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6379   assert(p->klass_or_null() != NULL, "object should be initialized");
6380   // an initialized object; ignore mark word in verification below
6381   // since we are running concurrent with mutators
6382   assert(p->is_oop(true), "should be an oop");
6383   // Note that we do not yield while we iterate over
6384   // the interior oops of p, pushing the relevant ones
6385   // on our marking stack.
6386   size_t size = p->oop_iterate_size(_scanning_closure);
6387   do_yield_check();
6388   // Observe that below, we do not abandon the preclean
6389   // phase as soon as we should; rather we empty the
6390   // marking stack before returning. This is to satisfy
6391   // some existing assertions. In general, it may be a
6392   // good idea to abort immediately and complete the marking
6393   // from the grey objects at a later time.
6394   while (!_mark_stack->isEmpty()) {
6395     oop new_oop = _mark_stack->pop();
6396     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6397     assert(_bit_map->isMarked((HeapWord*)new_oop),
6398            "only grey objects on this stack");
6399     // iterate over the oops in this oop, marking and pushing
6400     // the ones in CMS heap (i.e. in _span).
6401     new_oop->oop_iterate(_scanning_closure);
6402     // check if it's time to yield
6403     do_yield_check();
6404   }
6405   unsigned int after_count =
6406     GenCollectedHeap::heap()->total_collections();
6407   bool abort = (_before_count != after_count) ||
6408                _collector->should_abort_preclean();
6409   return abort ? 0 : size;
6410 }
6411 
6412 void SurvivorSpacePrecleanClosure::do_yield_work() {
6413   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6414          "CMS thread should hold CMS token");
6415   assert_lock_strong(_bit_map->lock());
6416   // Relinquish the bit map lock
6417   _bit_map->lock()->unlock();
6418   ConcurrentMarkSweepThread::desynchronize(true);
6419   _collector->stopTimer();
6420   if (PrintCMSStatistics != 0) {
6421     _collector->incrementYields();
6422   }
6423 
6424   // See the comment in coordinator_yield()
6425   for (unsigned i = 0; i < CMSYieldSleepCount &&
6426                        ConcurrentMarkSweepThread::should_yield() &&
6427                        !CMSCollector::foregroundGCIsActive(); ++i) {
6428     os::sleep(Thread::current(), 1, false);
6429   }
6430 
6431   ConcurrentMarkSweepThread::synchronize(true);
6432   _bit_map->lock()->lock_without_safepoint_check();
6433   _collector->startTimer();
6434 }
6435 
6436 // This closure is used to rescan the marked objects on the dirty cards
6437 // in the mod union table and the card table proper. In the parallel
6438 // case, although the bitMap is shared, we do a single read so the
6439 // isMarked() query is "safe".
6440 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6441   // Ignore mark word because we are running concurrent with mutators
6442   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6443   HeapWord* addr = (HeapWord*)p;
6444   assert(_span.contains(addr), "we are scanning the CMS generation");
6445   bool is_obj_array = false;
6446   #ifdef ASSERT
6447     if (!_parallel) {
6448       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6449       assert(_collector->overflow_list_is_empty(),
6450              "overflow list should be empty");
6451 
6452     }
6453   #endif // ASSERT
6454   if (_bit_map->isMarked(addr)) {
6455     // Obj arrays are precisely marked, non-arrays are not;
6456     // so we scan objArrays precisely and non-arrays in their
6457     // entirety.
6458     if (p->is_objArray()) {
6459       is_obj_array = true;
6460       if (_parallel) {
6461         p->oop_iterate(_par_scan_closure, mr);
6462       } else {
6463         p->oop_iterate(_scan_closure, mr);
6464       }
6465     } else {
6466       if (_parallel) {
6467         p->oop_iterate(_par_scan_closure);
6468       } else {
6469         p->oop_iterate(_scan_closure);
6470       }
6471     }
6472   }
6473   #ifdef ASSERT
6474     if (!_parallel) {
6475       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6476       assert(_collector->overflow_list_is_empty(),
6477              "overflow list should be empty");
6478 
6479     }
6480   #endif // ASSERT
6481   return is_obj_array;
6482 }
6483 
6484 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6485                         MemRegion span,
6486                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6487                         bool should_yield, bool verifying):
6488   _collector(collector),
6489   _span(span),
6490   _bitMap(bitMap),
6491   _mut(&collector->_modUnionTable),
6492   _markStack(markStack),
6493   _yield(should_yield),
6494   _skipBits(0)
6495 {
6496   assert(_markStack->isEmpty(), "stack should be empty");
6497   _finger = _bitMap->startWord();
6498   _threshold = _finger;
6499   assert(_collector->_restart_addr == NULL, "Sanity check");
6500   assert(_span.contains(_finger), "Out of bounds _finger?");
6501   DEBUG_ONLY(_verifying = verifying;)
6502 }
6503 
6504 void MarkFromRootsClosure::reset(HeapWord* addr) {
6505   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6506   assert(_span.contains(addr), "Out of bounds _finger?");
6507   _finger = addr;
6508   _threshold = (HeapWord*)round_to(
6509                  (intptr_t)_finger, CardTableModRefBS::card_size);
6510 }
6511 
6512 // Should revisit to see if this should be restructured for
6513 // greater efficiency.
6514 bool MarkFromRootsClosure::do_bit(size_t offset) {
6515   if (_skipBits > 0) {
6516     _skipBits--;
6517     return true;
6518   }
6519   // convert offset into a HeapWord*
6520   HeapWord* addr = _bitMap->startWord() + offset;
6521   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6522          "address out of range");
6523   assert(_bitMap->isMarked(addr), "tautology");
6524   if (_bitMap->isMarked(addr+1)) {
6525     // this is an allocated but not yet initialized object
6526     assert(_skipBits == 0, "tautology");
6527     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6528     oop p = oop(addr);
6529     if (p->klass_or_null() == NULL) {
6530       DEBUG_ONLY(if (!_verifying) {)
6531         // We re-dirty the cards on which this object lies and increase
6532         // the _threshold so that we'll come back to scan this object
6533         // during the preclean or remark phase. (CMSCleanOnEnter)
6534         if (CMSCleanOnEnter) {
6535           size_t sz = _collector->block_size_using_printezis_bits(addr);
6536           HeapWord* end_card_addr   = (HeapWord*)round_to(
6537                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6538           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6539           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6540           // Bump _threshold to end_card_addr; note that
6541           // _threshold cannot possibly exceed end_card_addr, anyhow.
6542           // This prevents future clearing of the card as the scan proceeds
6543           // to the right.
6544           assert(_threshold <= end_card_addr,
6545                  "Because we are just scanning into this object");
6546           if (_threshold < end_card_addr) {
6547             _threshold = end_card_addr;
6548           }
6549           if (p->klass_or_null() != NULL) {
6550             // Redirty the range of cards...
6551             _mut->mark_range(redirty_range);
6552           } // ...else the setting of klass will dirty the card anyway.
6553         }
6554       DEBUG_ONLY(})
6555       return true;
6556     }
6557   }
6558   scanOopsInOop(addr);
6559   return true;
6560 }
6561 
6562 // We take a break if we've been at this for a while,
6563 // so as to avoid monopolizing the locks involved.
6564 void MarkFromRootsClosure::do_yield_work() {
6565   // First give up the locks, then yield, then re-lock
6566   // We should probably use a constructor/destructor idiom to
6567   // do this unlock/lock or modify the MutexUnlocker class to
6568   // serve our purpose. XXX
6569   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6570          "CMS thread should hold CMS token");
6571   assert_lock_strong(_bitMap->lock());
6572   _bitMap->lock()->unlock();
6573   ConcurrentMarkSweepThread::desynchronize(true);
6574   _collector->stopTimer();
6575   if (PrintCMSStatistics != 0) {
6576     _collector->incrementYields();
6577   }
6578 
6579   // See the comment in coordinator_yield()
6580   for (unsigned i = 0; i < CMSYieldSleepCount &&
6581                        ConcurrentMarkSweepThread::should_yield() &&
6582                        !CMSCollector::foregroundGCIsActive(); ++i) {
6583     os::sleep(Thread::current(), 1, false);
6584   }
6585 
6586   ConcurrentMarkSweepThread::synchronize(true);
6587   _bitMap->lock()->lock_without_safepoint_check();
6588   _collector->startTimer();
6589 }
6590 
6591 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6592   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6593   assert(_markStack->isEmpty(),
6594          "should drain stack to limit stack usage");
6595   // convert ptr to an oop preparatory to scanning
6596   oop obj = oop(ptr);
6597   // Ignore mark word in verification below, since we
6598   // may be running concurrent with mutators.
6599   assert(obj->is_oop(true), "should be an oop");
6600   assert(_finger <= ptr, "_finger runneth ahead");
6601   // advance the finger to right end of this object
6602   _finger = ptr + obj->size();
6603   assert(_finger > ptr, "we just incremented it above");
6604   // On large heaps, it may take us some time to get through
6605   // the marking phase. During
6606   // this time it's possible that a lot of mutations have
6607   // accumulated in the card table and the mod union table --
6608   // these mutation records are redundant until we have
6609   // actually traced into the corresponding card.
6610   // Here, we check whether advancing the finger would make
6611   // us cross into a new card, and if so clear corresponding
6612   // cards in the MUT (preclean them in the card-table in the
6613   // future).
6614 
6615   DEBUG_ONLY(if (!_verifying) {)
6616     // The clean-on-enter optimization is disabled by default,
6617     // until we fix 6178663.
6618     if (CMSCleanOnEnter && (_finger > _threshold)) {
6619       // [_threshold, _finger) represents the interval
6620       // of cards to be cleared  in MUT (or precleaned in card table).
6621       // The set of cards to be cleared is all those that overlap
6622       // with the interval [_threshold, _finger); note that
6623       // _threshold is always kept card-aligned but _finger isn't
6624       // always card-aligned.
6625       HeapWord* old_threshold = _threshold;
6626       assert(old_threshold == (HeapWord*)round_to(
6627               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6628              "_threshold should always be card-aligned");
6629       _threshold = (HeapWord*)round_to(
6630                      (intptr_t)_finger, CardTableModRefBS::card_size);
6631       MemRegion mr(old_threshold, _threshold);
6632       assert(!mr.is_empty(), "Control point invariant");
6633       assert(_span.contains(mr), "Should clear within span");
6634       _mut->clear_range(mr);
6635     }
6636   DEBUG_ONLY(})
6637   // Note: the finger doesn't advance while we drain
6638   // the stack below.
6639   PushOrMarkClosure pushOrMarkClosure(_collector,
6640                                       _span, _bitMap, _markStack,
6641                                       _finger, this);
6642   bool res = _markStack->push(obj);
6643   assert(res, "Empty non-zero size stack should have space for single push");
6644   while (!_markStack->isEmpty()) {
6645     oop new_oop = _markStack->pop();
6646     // Skip verifying header mark word below because we are
6647     // running concurrent with mutators.
6648     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6649     // now scan this oop's oops
6650     new_oop->oop_iterate(&pushOrMarkClosure);
6651     do_yield_check();
6652   }
6653   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6654 }
6655 
6656 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6657                        CMSCollector* collector, MemRegion span,
6658                        CMSBitMap* bit_map,
6659                        OopTaskQueue* work_queue,
6660                        CMSMarkStack*  overflow_stack):
6661   _collector(collector),
6662   _whole_span(collector->_span),
6663   _span(span),
6664   _bit_map(bit_map),
6665   _mut(&collector->_modUnionTable),
6666   _work_queue(work_queue),
6667   _overflow_stack(overflow_stack),
6668   _skip_bits(0),
6669   _task(task)
6670 {
6671   assert(_work_queue->size() == 0, "work_queue should be empty");
6672   _finger = span.start();
6673   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6674   assert(_span.contains(_finger), "Out of bounds _finger?");
6675 }
6676 
6677 // Should revisit to see if this should be restructured for
6678 // greater efficiency.
6679 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6680   if (_skip_bits > 0) {
6681     _skip_bits--;
6682     return true;
6683   }
6684   // convert offset into a HeapWord*
6685   HeapWord* addr = _bit_map->startWord() + offset;
6686   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6687          "address out of range");
6688   assert(_bit_map->isMarked(addr), "tautology");
6689   if (_bit_map->isMarked(addr+1)) {
6690     // this is an allocated object that might not yet be initialized
6691     assert(_skip_bits == 0, "tautology");
6692     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6693     oop p = oop(addr);
6694     if (p->klass_or_null() == NULL) {
6695       // in the case of Clean-on-Enter optimization, redirty card
6696       // and avoid clearing card by increasing  the threshold.
6697       return true;
6698     }
6699   }
6700   scan_oops_in_oop(addr);
6701   return true;
6702 }
6703 
6704 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6705   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6706   // Should we assert that our work queue is empty or
6707   // below some drain limit?
6708   assert(_work_queue->size() == 0,
6709          "should drain stack to limit stack usage");
6710   // convert ptr to an oop preparatory to scanning
6711   oop obj = oop(ptr);
6712   // Ignore mark word in verification below, since we
6713   // may be running concurrent with mutators.
6714   assert(obj->is_oop(true), "should be an oop");
6715   assert(_finger <= ptr, "_finger runneth ahead");
6716   // advance the finger to right end of this object
6717   _finger = ptr + obj->size();
6718   assert(_finger > ptr, "we just incremented it above");
6719   // On large heaps, it may take us some time to get through
6720   // the marking phase. During
6721   // this time it's possible that a lot of mutations have
6722   // accumulated in the card table and the mod union table --
6723   // these mutation records are redundant until we have
6724   // actually traced into the corresponding card.
6725   // Here, we check whether advancing the finger would make
6726   // us cross into a new card, and if so clear corresponding
6727   // cards in the MUT (preclean them in the card-table in the
6728   // future).
6729 
6730   // The clean-on-enter optimization is disabled by default,
6731   // until we fix 6178663.
6732   if (CMSCleanOnEnter && (_finger > _threshold)) {
6733     // [_threshold, _finger) represents the interval
6734     // of cards to be cleared  in MUT (or precleaned in card table).
6735     // The set of cards to be cleared is all those that overlap
6736     // with the interval [_threshold, _finger); note that
6737     // _threshold is always kept card-aligned but _finger isn't
6738     // always card-aligned.
6739     HeapWord* old_threshold = _threshold;
6740     assert(old_threshold == (HeapWord*)round_to(
6741             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6742            "_threshold should always be card-aligned");
6743     _threshold = (HeapWord*)round_to(
6744                    (intptr_t)_finger, CardTableModRefBS::card_size);
6745     MemRegion mr(old_threshold, _threshold);
6746     assert(!mr.is_empty(), "Control point invariant");
6747     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6748     _mut->clear_range(mr);
6749   }
6750 
6751   // Note: the local finger doesn't advance while we drain
6752   // the stack below, but the global finger sure can and will.
6753   HeapWord** gfa = _task->global_finger_addr();
6754   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6755                                       _span, _bit_map,
6756                                       _work_queue,
6757                                       _overflow_stack,
6758                                       _finger,
6759                                       gfa, this);
6760   bool res = _work_queue->push(obj);   // overflow could occur here
6761   assert(res, "Will hold once we use workqueues");
6762   while (true) {
6763     oop new_oop;
6764     if (!_work_queue->pop_local(new_oop)) {
6765       // We emptied our work_queue; check if there's stuff that can
6766       // be gotten from the overflow stack.
6767       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6768             _overflow_stack, _work_queue)) {
6769         do_yield_check();
6770         continue;
6771       } else {  // done
6772         break;
6773       }
6774     }
6775     // Skip verifying header mark word below because we are
6776     // running concurrent with mutators.
6777     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6778     // now scan this oop's oops
6779     new_oop->oop_iterate(&pushOrMarkClosure);
6780     do_yield_check();
6781   }
6782   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6783 }
6784 
6785 // Yield in response to a request from VM Thread or
6786 // from mutators.
6787 void Par_MarkFromRootsClosure::do_yield_work() {
6788   assert(_task != NULL, "sanity");
6789   _task->yield();
6790 }
6791 
6792 // A variant of the above used for verifying CMS marking work.
6793 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6794                         MemRegion span,
6795                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6796                         CMSMarkStack*  mark_stack):
6797   _collector(collector),
6798   _span(span),
6799   _verification_bm(verification_bm),
6800   _cms_bm(cms_bm),
6801   _mark_stack(mark_stack),
6802   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6803                       mark_stack)
6804 {
6805   assert(_mark_stack->isEmpty(), "stack should be empty");
6806   _finger = _verification_bm->startWord();
6807   assert(_collector->_restart_addr == NULL, "Sanity check");
6808   assert(_span.contains(_finger), "Out of bounds _finger?");
6809 }
6810 
6811 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6812   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6813   assert(_span.contains(addr), "Out of bounds _finger?");
6814   _finger = addr;
6815 }
6816 
6817 // Should revisit to see if this should be restructured for
6818 // greater efficiency.
6819 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6820   // convert offset into a HeapWord*
6821   HeapWord* addr = _verification_bm->startWord() + offset;
6822   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6823          "address out of range");
6824   assert(_verification_bm->isMarked(addr), "tautology");
6825   assert(_cms_bm->isMarked(addr), "tautology");
6826 
6827   assert(_mark_stack->isEmpty(),
6828          "should drain stack to limit stack usage");
6829   // convert addr to an oop preparatory to scanning
6830   oop obj = oop(addr);
6831   assert(obj->is_oop(), "should be an oop");
6832   assert(_finger <= addr, "_finger runneth ahead");
6833   // advance the finger to right end of this object
6834   _finger = addr + obj->size();
6835   assert(_finger > addr, "we just incremented it above");
6836   // Note: the finger doesn't advance while we drain
6837   // the stack below.
6838   bool res = _mark_stack->push(obj);
6839   assert(res, "Empty non-zero size stack should have space for single push");
6840   while (!_mark_stack->isEmpty()) {
6841     oop new_oop = _mark_stack->pop();
6842     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6843     // now scan this oop's oops
6844     new_oop->oop_iterate(&_pam_verify_closure);
6845   }
6846   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6847   return true;
6848 }
6849 
6850 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6851   CMSCollector* collector, MemRegion span,
6852   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6853   CMSMarkStack*  mark_stack):
6854   MetadataAwareOopClosure(collector->ref_processor()),
6855   _collector(collector),
6856   _span(span),
6857   _verification_bm(verification_bm),
6858   _cms_bm(cms_bm),
6859   _mark_stack(mark_stack)
6860 { }
6861 
6862 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6863 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6864 
6865 // Upon stack overflow, we discard (part of) the stack,
6866 // remembering the least address amongst those discarded
6867 // in CMSCollector's _restart_address.
6868 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6869   // Remember the least grey address discarded
6870   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6871   _collector->lower_restart_addr(ra);
6872   _mark_stack->reset();  // discard stack contents
6873   _mark_stack->expand(); // expand the stack if possible
6874 }
6875 
6876 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6877   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6878   HeapWord* addr = (HeapWord*)obj;
6879   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6880     // Oop lies in _span and isn't yet grey or black
6881     _verification_bm->mark(addr);            // now grey
6882     if (!_cms_bm->isMarked(addr)) {
6883       oop(addr)->print();
6884       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6885                              p2i(addr));
6886       fatal("... aborting");
6887     }
6888 
6889     if (!_mark_stack->push(obj)) { // stack overflow
6890       if (PrintCMSStatistics != 0) {
6891         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6892                                SIZE_FORMAT, _mark_stack->capacity());
6893       }
6894       assert(_mark_stack->isFull(), "Else push should have succeeded");
6895       handle_stack_overflow(addr);
6896     }
6897     // anything including and to the right of _finger
6898     // will be scanned as we iterate over the remainder of the
6899     // bit map
6900   }
6901 }
6902 
6903 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6904                      MemRegion span,
6905                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6906                      HeapWord* finger, MarkFromRootsClosure* parent) :
6907   MetadataAwareOopClosure(collector->ref_processor()),
6908   _collector(collector),
6909   _span(span),
6910   _bitMap(bitMap),
6911   _markStack(markStack),
6912   _finger(finger),
6913   _parent(parent)
6914 { }
6915 
6916 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6917                      MemRegion span,
6918                      CMSBitMap* bit_map,
6919                      OopTaskQueue* work_queue,
6920                      CMSMarkStack*  overflow_stack,
6921                      HeapWord* finger,
6922                      HeapWord** global_finger_addr,
6923                      Par_MarkFromRootsClosure* parent) :
6924   MetadataAwareOopClosure(collector->ref_processor()),
6925   _collector(collector),
6926   _whole_span(collector->_span),
6927   _span(span),
6928   _bit_map(bit_map),
6929   _work_queue(work_queue),
6930   _overflow_stack(overflow_stack),
6931   _finger(finger),
6932   _global_finger_addr(global_finger_addr),
6933   _parent(parent)
6934 { }
6935 
6936 // Assumes thread-safe access by callers, who are
6937 // responsible for mutual exclusion.
6938 void CMSCollector::lower_restart_addr(HeapWord* low) {
6939   assert(_span.contains(low), "Out of bounds addr");
6940   if (_restart_addr == NULL) {
6941     _restart_addr = low;
6942   } else {
6943     _restart_addr = MIN2(_restart_addr, low);
6944   }
6945 }
6946 
6947 // Upon stack overflow, we discard (part of) the stack,
6948 // remembering the least address amongst those discarded
6949 // in CMSCollector's _restart_address.
6950 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6951   // Remember the least grey address discarded
6952   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6953   _collector->lower_restart_addr(ra);
6954   _markStack->reset();  // discard stack contents
6955   _markStack->expand(); // expand the stack if possible
6956 }
6957 
6958 // Upon stack overflow, we discard (part of) the stack,
6959 // remembering the least address amongst those discarded
6960 // in CMSCollector's _restart_address.
6961 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6962   // We need to do this under a mutex to prevent other
6963   // workers from interfering with the work done below.
6964   MutexLockerEx ml(_overflow_stack->par_lock(),
6965                    Mutex::_no_safepoint_check_flag);
6966   // Remember the least grey address discarded
6967   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6968   _collector->lower_restart_addr(ra);
6969   _overflow_stack->reset();  // discard stack contents
6970   _overflow_stack->expand(); // expand the stack if possible
6971 }
6972 
6973 void PushOrMarkClosure::do_oop(oop obj) {
6974   // Ignore mark word because we are running concurrent with mutators.
6975   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6976   HeapWord* addr = (HeapWord*)obj;
6977   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6978     // Oop lies in _span and isn't yet grey or black
6979     _bitMap->mark(addr);            // now grey
6980     if (addr < _finger) {
6981       // the bit map iteration has already either passed, or
6982       // sampled, this bit in the bit map; we'll need to
6983       // use the marking stack to scan this oop's oops.
6984       bool simulate_overflow = false;
6985       NOT_PRODUCT(
6986         if (CMSMarkStackOverflowALot &&
6987             _collector->simulate_overflow()) {
6988           // simulate a stack overflow
6989           simulate_overflow = true;
6990         }
6991       )
6992       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6993         if (PrintCMSStatistics != 0) {
6994           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6995                                  SIZE_FORMAT, _markStack->capacity());
6996         }
6997         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6998         handle_stack_overflow(addr);
6999       }
7000     }
7001     // anything including and to the right of _finger
7002     // will be scanned as we iterate over the remainder of the
7003     // bit map
7004     do_yield_check();
7005   }
7006 }
7007 
7008 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7009 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7010 
7011 void Par_PushOrMarkClosure::do_oop(oop obj) {
7012   // Ignore mark word because we are running concurrent with mutators.
7013   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7014   HeapWord* addr = (HeapWord*)obj;
7015   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7016     // Oop lies in _span and isn't yet grey or black
7017     // We read the global_finger (volatile read) strictly after marking oop
7018     bool res = _bit_map->par_mark(addr);    // now grey
7019     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7020     // Should we push this marked oop on our stack?
7021     // -- if someone else marked it, nothing to do
7022     // -- if target oop is above global finger nothing to do
7023     // -- if target oop is in chunk and above local finger
7024     //      then nothing to do
7025     // -- else push on work queue
7026     if (   !res       // someone else marked it, they will deal with it
7027         || (addr >= *gfa)  // will be scanned in a later task
7028         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7029       return;
7030     }
7031     // the bit map iteration has already either passed, or
7032     // sampled, this bit in the bit map; we'll need to
7033     // use the marking stack to scan this oop's oops.
7034     bool simulate_overflow = false;
7035     NOT_PRODUCT(
7036       if (CMSMarkStackOverflowALot &&
7037           _collector->simulate_overflow()) {
7038         // simulate a stack overflow
7039         simulate_overflow = true;
7040       }
7041     )
7042     if (simulate_overflow ||
7043         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7044       // stack overflow
7045       if (PrintCMSStatistics != 0) {
7046         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7047                                SIZE_FORMAT, _overflow_stack->capacity());
7048       }
7049       // We cannot assert that the overflow stack is full because
7050       // it may have been emptied since.
7051       assert(simulate_overflow ||
7052              _work_queue->size() == _work_queue->max_elems(),
7053             "Else push should have succeeded");
7054       handle_stack_overflow(addr);
7055     }
7056     do_yield_check();
7057   }
7058 }
7059 
7060 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7061 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7062 
7063 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7064                                        MemRegion span,
7065                                        ReferenceProcessor* rp,
7066                                        CMSBitMap* bit_map,
7067                                        CMSBitMap* mod_union_table,
7068                                        CMSMarkStack*  mark_stack,
7069                                        bool           concurrent_precleaning):
7070   MetadataAwareOopClosure(rp),
7071   _collector(collector),
7072   _span(span),
7073   _bit_map(bit_map),
7074   _mod_union_table(mod_union_table),
7075   _mark_stack(mark_stack),
7076   _concurrent_precleaning(concurrent_precleaning)
7077 {
7078   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7079 }
7080 
7081 // Grey object rescan during pre-cleaning and second checkpoint phases --
7082 // the non-parallel version (the parallel version appears further below.)
7083 void PushAndMarkClosure::do_oop(oop obj) {
7084   // Ignore mark word verification. If during concurrent precleaning,
7085   // the object monitor may be locked. If during the checkpoint
7086   // phases, the object may already have been reached by a  different
7087   // path and may be at the end of the global overflow list (so
7088   // the mark word may be NULL).
7089   assert(obj->is_oop_or_null(true /* ignore mark word */),
7090          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7091   HeapWord* addr = (HeapWord*)obj;
7092   // Check if oop points into the CMS generation
7093   // and is not marked
7094   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7095     // a white object ...
7096     _bit_map->mark(addr);         // ... now grey
7097     // push on the marking stack (grey set)
7098     bool simulate_overflow = false;
7099     NOT_PRODUCT(
7100       if (CMSMarkStackOverflowALot &&
7101           _collector->simulate_overflow()) {
7102         // simulate a stack overflow
7103         simulate_overflow = true;
7104       }
7105     )
7106     if (simulate_overflow || !_mark_stack->push(obj)) {
7107       if (_concurrent_precleaning) {
7108          // During precleaning we can just dirty the appropriate card(s)
7109          // in the mod union table, thus ensuring that the object remains
7110          // in the grey set  and continue. In the case of object arrays
7111          // we need to dirty all of the cards that the object spans,
7112          // since the rescan of object arrays will be limited to the
7113          // dirty cards.
7114          // Note that no one can be interfering with us in this action
7115          // of dirtying the mod union table, so no locking or atomics
7116          // are required.
7117          if (obj->is_objArray()) {
7118            size_t sz = obj->size();
7119            HeapWord* end_card_addr = (HeapWord*)round_to(
7120                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7121            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7122            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7123            _mod_union_table->mark_range(redirty_range);
7124          } else {
7125            _mod_union_table->mark(addr);
7126          }
7127          _collector->_ser_pmc_preclean_ovflw++;
7128       } else {
7129          // During the remark phase, we need to remember this oop
7130          // in the overflow list.
7131          _collector->push_on_overflow_list(obj);
7132          _collector->_ser_pmc_remark_ovflw++;
7133       }
7134     }
7135   }
7136 }
7137 
7138 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7139                                                MemRegion span,
7140                                                ReferenceProcessor* rp,
7141                                                CMSBitMap* bit_map,
7142                                                OopTaskQueue* work_queue):
7143   MetadataAwareOopClosure(rp),
7144   _collector(collector),
7145   _span(span),
7146   _bit_map(bit_map),
7147   _work_queue(work_queue)
7148 {
7149   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7150 }
7151 
7152 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7153 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7154 
7155 // Grey object rescan during second checkpoint phase --
7156 // the parallel version.
7157 void Par_PushAndMarkClosure::do_oop(oop obj) {
7158   // In the assert below, we ignore the mark word because
7159   // this oop may point to an already visited object that is
7160   // on the overflow stack (in which case the mark word has
7161   // been hijacked for chaining into the overflow stack --
7162   // if this is the last object in the overflow stack then
7163   // its mark word will be NULL). Because this object may
7164   // have been subsequently popped off the global overflow
7165   // stack, and the mark word possibly restored to the prototypical
7166   // value, by the time we get to examined this failing assert in
7167   // the debugger, is_oop_or_null(false) may subsequently start
7168   // to hold.
7169   assert(obj->is_oop_or_null(true),
7170          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7171   HeapWord* addr = (HeapWord*)obj;
7172   // Check if oop points into the CMS generation
7173   // and is not marked
7174   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7175     // a white object ...
7176     // If we manage to "claim" the object, by being the
7177     // first thread to mark it, then we push it on our
7178     // marking stack
7179     if (_bit_map->par_mark(addr)) {     // ... now grey
7180       // push on work queue (grey set)
7181       bool simulate_overflow = false;
7182       NOT_PRODUCT(
7183         if (CMSMarkStackOverflowALot &&
7184             _collector->par_simulate_overflow()) {
7185           // simulate a stack overflow
7186           simulate_overflow = true;
7187         }
7188       )
7189       if (simulate_overflow || !_work_queue->push(obj)) {
7190         _collector->par_push_on_overflow_list(obj);
7191         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7192       }
7193     } // Else, some other thread got there first
7194   }
7195 }
7196 
7197 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7198 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7199 
7200 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7201   Mutex* bml = _collector->bitMapLock();
7202   assert_lock_strong(bml);
7203   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7204          "CMS thread should hold CMS token");
7205 
7206   bml->unlock();
7207   ConcurrentMarkSweepThread::desynchronize(true);
7208 
7209   _collector->stopTimer();
7210   if (PrintCMSStatistics != 0) {
7211     _collector->incrementYields();
7212   }
7213 
7214   // See the comment in coordinator_yield()
7215   for (unsigned i = 0; i < CMSYieldSleepCount &&
7216                        ConcurrentMarkSweepThread::should_yield() &&
7217                        !CMSCollector::foregroundGCIsActive(); ++i) {
7218     os::sleep(Thread::current(), 1, false);
7219   }
7220 
7221   ConcurrentMarkSweepThread::synchronize(true);
7222   bml->lock();
7223 
7224   _collector->startTimer();
7225 }
7226 
7227 bool CMSPrecleanRefsYieldClosure::should_return() {
7228   if (ConcurrentMarkSweepThread::should_yield()) {
7229     do_yield_work();
7230   }
7231   return _collector->foregroundGCIsActive();
7232 }
7233 
7234 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7235   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7236          "mr should be aligned to start at a card boundary");
7237   // We'd like to assert:
7238   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7239   //        "mr should be a range of cards");
7240   // However, that would be too strong in one case -- the last
7241   // partition ends at _unallocated_block which, in general, can be
7242   // an arbitrary boundary, not necessarily card aligned.
7243   if (PrintCMSStatistics != 0) {
7244     _num_dirty_cards +=
7245          mr.word_size()/CardTableModRefBS::card_size_in_words;
7246   }
7247   _space->object_iterate_mem(mr, &_scan_cl);
7248 }
7249 
7250 SweepClosure::SweepClosure(CMSCollector* collector,
7251                            ConcurrentMarkSweepGeneration* g,
7252                            CMSBitMap* bitMap, bool should_yield) :
7253   _collector(collector),
7254   _g(g),
7255   _sp(g->cmsSpace()),
7256   _limit(_sp->sweep_limit()),
7257   _freelistLock(_sp->freelistLock()),
7258   _bitMap(bitMap),
7259   _yield(should_yield),
7260   _inFreeRange(false),           // No free range at beginning of sweep
7261   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7262   _lastFreeRangeCoalesced(false),
7263   _freeFinger(g->used_region().start())
7264 {
7265   NOT_PRODUCT(
7266     _numObjectsFreed = 0;
7267     _numWordsFreed   = 0;
7268     _numObjectsLive = 0;
7269     _numWordsLive = 0;
7270     _numObjectsAlreadyFree = 0;
7271     _numWordsAlreadyFree = 0;
7272     _last_fc = NULL;
7273 
7274     _sp->initializeIndexedFreeListArrayReturnedBytes();
7275     _sp->dictionary()->initialize_dict_returned_bytes();
7276   )
7277   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7278          "sweep _limit out of bounds");
7279   if (CMSTraceSweeper) {
7280     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7281                         p2i(_limit));
7282   }
7283 }
7284 
7285 void SweepClosure::print_on(outputStream* st) const {
7286   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7287                 p2i(_sp->bottom()), p2i(_sp->end()));
7288   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7289   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7290   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7291   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7292                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7293 }
7294 
7295 #ifndef PRODUCT
7296 // Assertion checking only:  no useful work in product mode --
7297 // however, if any of the flags below become product flags,
7298 // you may need to review this code to see if it needs to be
7299 // enabled in product mode.
7300 SweepClosure::~SweepClosure() {
7301   assert_lock_strong(_freelistLock);
7302   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7303          "sweep _limit out of bounds");
7304   if (inFreeRange()) {
7305     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7306     print();
7307     ShouldNotReachHere();
7308   }
7309   if (Verbose && PrintGC) {
7310     gclog_or_tty->print("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7311                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7312     gclog_or_tty->print_cr("\nLive " SIZE_FORMAT " objects,  "
7313                            SIZE_FORMAT " bytes  "
7314       "Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7315       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7316       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7317     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7318                         * sizeof(HeapWord);
7319     gclog_or_tty->print_cr("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7320 
7321     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7322       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7323       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7324       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7325       gclog_or_tty->print("Returned " SIZE_FORMAT " bytes", returned_bytes);
7326       gclog_or_tty->print("   Indexed List Returned " SIZE_FORMAT " bytes",
7327         indexListReturnedBytes);
7328       gclog_or_tty->print_cr("        Dictionary Returned " SIZE_FORMAT " bytes",
7329         dict_returned_bytes);
7330     }
7331   }
7332   if (CMSTraceSweeper) {
7333     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7334                            p2i(_limit));
7335   }
7336 }
7337 #endif  // PRODUCT
7338 
7339 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7340     bool freeRangeInFreeLists) {
7341   if (CMSTraceSweeper) {
7342     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7343                p2i(freeFinger), freeRangeInFreeLists);
7344   }
7345   assert(!inFreeRange(), "Trampling existing free range");
7346   set_inFreeRange(true);
7347   set_lastFreeRangeCoalesced(false);
7348 
7349   set_freeFinger(freeFinger);
7350   set_freeRangeInFreeLists(freeRangeInFreeLists);
7351   if (CMSTestInFreeList) {
7352     if (freeRangeInFreeLists) {
7353       FreeChunk* fc = (FreeChunk*) freeFinger;
7354       assert(fc->is_free(), "A chunk on the free list should be free.");
7355       assert(fc->size() > 0, "Free range should have a size");
7356       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7357     }
7358   }
7359 }
7360 
7361 // Note that the sweeper runs concurrently with mutators. Thus,
7362 // it is possible for direct allocation in this generation to happen
7363 // in the middle of the sweep. Note that the sweeper also coalesces
7364 // contiguous free blocks. Thus, unless the sweeper and the allocator
7365 // synchronize appropriately freshly allocated blocks may get swept up.
7366 // This is accomplished by the sweeper locking the free lists while
7367 // it is sweeping. Thus blocks that are determined to be free are
7368 // indeed free. There is however one additional complication:
7369 // blocks that have been allocated since the final checkpoint and
7370 // mark, will not have been marked and so would be treated as
7371 // unreachable and swept up. To prevent this, the allocator marks
7372 // the bit map when allocating during the sweep phase. This leads,
7373 // however, to a further complication -- objects may have been allocated
7374 // but not yet initialized -- in the sense that the header isn't yet
7375 // installed. The sweeper can not then determine the size of the block
7376 // in order to skip over it. To deal with this case, we use a technique
7377 // (due to Printezis) to encode such uninitialized block sizes in the
7378 // bit map. Since the bit map uses a bit per every HeapWord, but the
7379 // CMS generation has a minimum object size of 3 HeapWords, it follows
7380 // that "normal marks" won't be adjacent in the bit map (there will
7381 // always be at least two 0 bits between successive 1 bits). We make use
7382 // of these "unused" bits to represent uninitialized blocks -- the bit
7383 // corresponding to the start of the uninitialized object and the next
7384 // bit are both set. Finally, a 1 bit marks the end of the object that
7385 // started with the two consecutive 1 bits to indicate its potentially
7386 // uninitialized state.
7387 
7388 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7389   FreeChunk* fc = (FreeChunk*)addr;
7390   size_t res;
7391 
7392   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7393   // than "addr == _limit" because although _limit was a block boundary when
7394   // we started the sweep, it may no longer be one because heap expansion
7395   // may have caused us to coalesce the block ending at the address _limit
7396   // with a newly expanded chunk (this happens when _limit was set to the
7397   // previous _end of the space), so we may have stepped past _limit:
7398   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7399   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7400     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7401            "sweep _limit out of bounds");
7402     assert(addr < _sp->end(), "addr out of bounds");
7403     // Flush any free range we might be holding as a single
7404     // coalesced chunk to the appropriate free list.
7405     if (inFreeRange()) {
7406       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7407              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7408       flush_cur_free_chunk(freeFinger(),
7409                            pointer_delta(addr, freeFinger()));
7410       if (CMSTraceSweeper) {
7411         gclog_or_tty->print("Sweep: last chunk: ");
7412         gclog_or_tty->print("put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") "
7413                    "[coalesced:%d]\n",
7414                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7415                    lastFreeRangeCoalesced() ? 1 : 0);
7416       }
7417     }
7418 
7419     // help the iterator loop finish
7420     return pointer_delta(_sp->end(), addr);
7421   }
7422 
7423   assert(addr < _limit, "sweep invariant");
7424   // check if we should yield
7425   do_yield_check(addr);
7426   if (fc->is_free()) {
7427     // Chunk that is already free
7428     res = fc->size();
7429     do_already_free_chunk(fc);
7430     debug_only(_sp->verifyFreeLists());
7431     // If we flush the chunk at hand in lookahead_and_flush()
7432     // and it's coalesced with a preceding chunk, then the
7433     // process of "mangling" the payload of the coalesced block
7434     // will cause erasure of the size information from the
7435     // (erstwhile) header of all the coalesced blocks but the
7436     // first, so the first disjunct in the assert will not hold
7437     // in that specific case (in which case the second disjunct
7438     // will hold).
7439     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7440            "Otherwise the size info doesn't change at this step");
7441     NOT_PRODUCT(
7442       _numObjectsAlreadyFree++;
7443       _numWordsAlreadyFree += res;
7444     )
7445     NOT_PRODUCT(_last_fc = fc;)
7446   } else if (!_bitMap->isMarked(addr)) {
7447     // Chunk is fresh garbage
7448     res = do_garbage_chunk(fc);
7449     debug_only(_sp->verifyFreeLists());
7450     NOT_PRODUCT(
7451       _numObjectsFreed++;
7452       _numWordsFreed += res;
7453     )
7454   } else {
7455     // Chunk that is alive.
7456     res = do_live_chunk(fc);
7457     debug_only(_sp->verifyFreeLists());
7458     NOT_PRODUCT(
7459         _numObjectsLive++;
7460         _numWordsLive += res;
7461     )
7462   }
7463   return res;
7464 }
7465 
7466 // For the smart allocation, record following
7467 //  split deaths - a free chunk is removed from its free list because
7468 //      it is being split into two or more chunks.
7469 //  split birth - a free chunk is being added to its free list because
7470 //      a larger free chunk has been split and resulted in this free chunk.
7471 //  coal death - a free chunk is being removed from its free list because
7472 //      it is being coalesced into a large free chunk.
7473 //  coal birth - a free chunk is being added to its free list because
7474 //      it was created when two or more free chunks where coalesced into
7475 //      this free chunk.
7476 //
7477 // These statistics are used to determine the desired number of free
7478 // chunks of a given size.  The desired number is chosen to be relative
7479 // to the end of a CMS sweep.  The desired number at the end of a sweep
7480 // is the
7481 //      count-at-end-of-previous-sweep (an amount that was enough)
7482 //              - count-at-beginning-of-current-sweep  (the excess)
7483 //              + split-births  (gains in this size during interval)
7484 //              - split-deaths  (demands on this size during interval)
7485 // where the interval is from the end of one sweep to the end of the
7486 // next.
7487 //
7488 // When sweeping the sweeper maintains an accumulated chunk which is
7489 // the chunk that is made up of chunks that have been coalesced.  That
7490 // will be termed the left-hand chunk.  A new chunk of garbage that
7491 // is being considered for coalescing will be referred to as the
7492 // right-hand chunk.
7493 //
7494 // When making a decision on whether to coalesce a right-hand chunk with
7495 // the current left-hand chunk, the current count vs. the desired count
7496 // of the left-hand chunk is considered.  Also if the right-hand chunk
7497 // is near the large chunk at the end of the heap (see
7498 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7499 // left-hand chunk is coalesced.
7500 //
7501 // When making a decision about whether to split a chunk, the desired count
7502 // vs. the current count of the candidate to be split is also considered.
7503 // If the candidate is underpopulated (currently fewer chunks than desired)
7504 // a chunk of an overpopulated (currently more chunks than desired) size may
7505 // be chosen.  The "hint" associated with a free list, if non-null, points
7506 // to a free list which may be overpopulated.
7507 //
7508 
7509 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7510   const size_t size = fc->size();
7511   // Chunks that cannot be coalesced are not in the
7512   // free lists.
7513   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7514     assert(_sp->verify_chunk_in_free_list(fc),
7515       "free chunk should be in free lists");
7516   }
7517   // a chunk that is already free, should not have been
7518   // marked in the bit map
7519   HeapWord* const addr = (HeapWord*) fc;
7520   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7521   // Verify that the bit map has no bits marked between
7522   // addr and purported end of this block.
7523   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7524 
7525   // Some chunks cannot be coalesced under any circumstances.
7526   // See the definition of cantCoalesce().
7527   if (!fc->cantCoalesce()) {
7528     // This chunk can potentially be coalesced.
7529     if (_sp->adaptive_freelists()) {
7530       // All the work is done in
7531       do_post_free_or_garbage_chunk(fc, size);
7532     } else {  // Not adaptive free lists
7533       // this is a free chunk that can potentially be coalesced by the sweeper;
7534       if (!inFreeRange()) {
7535         // if the next chunk is a free block that can't be coalesced
7536         // it doesn't make sense to remove this chunk from the free lists
7537         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7538         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7539         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7540             nextChunk->is_free()               &&     // ... which is free...
7541             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7542           // nothing to do
7543         } else {
7544           // Potentially the start of a new free range:
7545           // Don't eagerly remove it from the free lists.
7546           // No need to remove it if it will just be put
7547           // back again.  (Also from a pragmatic point of view
7548           // if it is a free block in a region that is beyond
7549           // any allocated blocks, an assertion will fail)
7550           // Remember the start of a free run.
7551           initialize_free_range(addr, true);
7552           // end - can coalesce with next chunk
7553         }
7554       } else {
7555         // the midst of a free range, we are coalescing
7556         print_free_block_coalesced(fc);
7557         if (CMSTraceSweeper) {
7558           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7559         }
7560         // remove it from the free lists
7561         _sp->removeFreeChunkFromFreeLists(fc);
7562         set_lastFreeRangeCoalesced(true);
7563         // If the chunk is being coalesced and the current free range is
7564         // in the free lists, remove the current free range so that it
7565         // will be returned to the free lists in its entirety - all
7566         // the coalesced pieces included.
7567         if (freeRangeInFreeLists()) {
7568           FreeChunk* ffc = (FreeChunk*) freeFinger();
7569           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7570             "Size of free range is inconsistent with chunk size.");
7571           if (CMSTestInFreeList) {
7572             assert(_sp->verify_chunk_in_free_list(ffc),
7573               "free range is not in free lists");
7574           }
7575           _sp->removeFreeChunkFromFreeLists(ffc);
7576           set_freeRangeInFreeLists(false);
7577         }
7578       }
7579     }
7580     // Note that if the chunk is not coalescable (the else arm
7581     // below), we unconditionally flush, without needing to do
7582     // a "lookahead," as we do below.
7583     if (inFreeRange()) lookahead_and_flush(fc, size);
7584   } else {
7585     // Code path common to both original and adaptive free lists.
7586 
7587     // cant coalesce with previous block; this should be treated
7588     // as the end of a free run if any
7589     if (inFreeRange()) {
7590       // we kicked some butt; time to pick up the garbage
7591       assert(freeFinger() < addr, "freeFinger points too high");
7592       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7593     }
7594     // else, nothing to do, just continue
7595   }
7596 }
7597 
7598 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7599   // This is a chunk of garbage.  It is not in any free list.
7600   // Add it to a free list or let it possibly be coalesced into
7601   // a larger chunk.
7602   HeapWord* const addr = (HeapWord*) fc;
7603   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7604 
7605   if (_sp->adaptive_freelists()) {
7606     // Verify that the bit map has no bits marked between
7607     // addr and purported end of just dead object.
7608     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7609 
7610     do_post_free_or_garbage_chunk(fc, size);
7611   } else {
7612     if (!inFreeRange()) {
7613       // start of a new free range
7614       assert(size > 0, "A free range should have a size");
7615       initialize_free_range(addr, false);
7616     } else {
7617       // this will be swept up when we hit the end of the
7618       // free range
7619       if (CMSTraceSweeper) {
7620         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7621       }
7622       // If the chunk is being coalesced and the current free range is
7623       // in the free lists, remove the current free range so that it
7624       // will be returned to the free lists in its entirety - all
7625       // the coalesced pieces included.
7626       if (freeRangeInFreeLists()) {
7627         FreeChunk* ffc = (FreeChunk*)freeFinger();
7628         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7629           "Size of free range is inconsistent with chunk size.");
7630         if (CMSTestInFreeList) {
7631           assert(_sp->verify_chunk_in_free_list(ffc),
7632             "free range is not in free lists");
7633         }
7634         _sp->removeFreeChunkFromFreeLists(ffc);
7635         set_freeRangeInFreeLists(false);
7636       }
7637       set_lastFreeRangeCoalesced(true);
7638     }
7639     // this will be swept up when we hit the end of the free range
7640 
7641     // Verify that the bit map has no bits marked between
7642     // addr and purported end of just dead object.
7643     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7644   }
7645   assert(_limit >= addr + size,
7646          "A freshly garbage chunk can't possibly straddle over _limit");
7647   if (inFreeRange()) lookahead_and_flush(fc, size);
7648   return size;
7649 }
7650 
7651 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7652   HeapWord* addr = (HeapWord*) fc;
7653   // The sweeper has just found a live object. Return any accumulated
7654   // left hand chunk to the free lists.
7655   if (inFreeRange()) {
7656     assert(freeFinger() < addr, "freeFinger points too high");
7657     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7658   }
7659 
7660   // This object is live: we'd normally expect this to be
7661   // an oop, and like to assert the following:
7662   // assert(oop(addr)->is_oop(), "live block should be an oop");
7663   // However, as we commented above, this may be an object whose
7664   // header hasn't yet been initialized.
7665   size_t size;
7666   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7667   if (_bitMap->isMarked(addr + 1)) {
7668     // Determine the size from the bit map, rather than trying to
7669     // compute it from the object header.
7670     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7671     size = pointer_delta(nextOneAddr + 1, addr);
7672     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7673            "alignment problem");
7674 
7675 #ifdef ASSERT
7676       if (oop(addr)->klass_or_null() != NULL) {
7677         // Ignore mark word because we are running concurrent with mutators
7678         assert(oop(addr)->is_oop(true), "live block should be an oop");
7679         assert(size ==
7680                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7681                "P-mark and computed size do not agree");
7682       }
7683 #endif
7684 
7685   } else {
7686     // This should be an initialized object that's alive.
7687     assert(oop(addr)->klass_or_null() != NULL,
7688            "Should be an initialized object");
7689     // Ignore mark word because we are running concurrent with mutators
7690     assert(oop(addr)->is_oop(true), "live block should be an oop");
7691     // Verify that the bit map has no bits marked between
7692     // addr and purported end of this block.
7693     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7694     assert(size >= 3, "Necessary for Printezis marks to work");
7695     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7696     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7697   }
7698   return size;
7699 }
7700 
7701 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7702                                                  size_t chunkSize) {
7703   // do_post_free_or_garbage_chunk() should only be called in the case
7704   // of the adaptive free list allocator.
7705   const bool fcInFreeLists = fc->is_free();
7706   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7707   assert((HeapWord*)fc <= _limit, "sweep invariant");
7708   if (CMSTestInFreeList && fcInFreeLists) {
7709     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7710   }
7711 
7712   if (CMSTraceSweeper) {
7713     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7714   }
7715 
7716   HeapWord* const fc_addr = (HeapWord*) fc;
7717 
7718   bool coalesce;
7719   const size_t left  = pointer_delta(fc_addr, freeFinger());
7720   const size_t right = chunkSize;
7721   switch (FLSCoalescePolicy) {
7722     // numeric value forms a coalition aggressiveness metric
7723     case 0:  { // never coalesce
7724       coalesce = false;
7725       break;
7726     }
7727     case 1: { // coalesce if left & right chunks on overpopulated lists
7728       coalesce = _sp->coalOverPopulated(left) &&
7729                  _sp->coalOverPopulated(right);
7730       break;
7731     }
7732     case 2: { // coalesce if left chunk on overpopulated list (default)
7733       coalesce = _sp->coalOverPopulated(left);
7734       break;
7735     }
7736     case 3: { // coalesce if left OR right chunk on overpopulated list
7737       coalesce = _sp->coalOverPopulated(left) ||
7738                  _sp->coalOverPopulated(right);
7739       break;
7740     }
7741     case 4: { // always coalesce
7742       coalesce = true;
7743       break;
7744     }
7745     default:
7746      ShouldNotReachHere();
7747   }
7748 
7749   // Should the current free range be coalesced?
7750   // If the chunk is in a free range and either we decided to coalesce above
7751   // or the chunk is near the large block at the end of the heap
7752   // (isNearLargestChunk() returns true), then coalesce this chunk.
7753   const bool doCoalesce = inFreeRange()
7754                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7755   if (doCoalesce) {
7756     // Coalesce the current free range on the left with the new
7757     // chunk on the right.  If either is on a free list,
7758     // it must be removed from the list and stashed in the closure.
7759     if (freeRangeInFreeLists()) {
7760       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7761       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7762         "Size of free range is inconsistent with chunk size.");
7763       if (CMSTestInFreeList) {
7764         assert(_sp->verify_chunk_in_free_list(ffc),
7765           "Chunk is not in free lists");
7766       }
7767       _sp->coalDeath(ffc->size());
7768       _sp->removeFreeChunkFromFreeLists(ffc);
7769       set_freeRangeInFreeLists(false);
7770     }
7771     if (fcInFreeLists) {
7772       _sp->coalDeath(chunkSize);
7773       assert(fc->size() == chunkSize,
7774         "The chunk has the wrong size or is not in the free lists");
7775       _sp->removeFreeChunkFromFreeLists(fc);
7776     }
7777     set_lastFreeRangeCoalesced(true);
7778     print_free_block_coalesced(fc);
7779   } else {  // not in a free range and/or should not coalesce
7780     // Return the current free range and start a new one.
7781     if (inFreeRange()) {
7782       // In a free range but cannot coalesce with the right hand chunk.
7783       // Put the current free range into the free lists.
7784       flush_cur_free_chunk(freeFinger(),
7785                            pointer_delta(fc_addr, freeFinger()));
7786     }
7787     // Set up for new free range.  Pass along whether the right hand
7788     // chunk is in the free lists.
7789     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7790   }
7791 }
7792 
7793 // Lookahead flush:
7794 // If we are tracking a free range, and this is the last chunk that
7795 // we'll look at because its end crosses past _limit, we'll preemptively
7796 // flush it along with any free range we may be holding on to. Note that
7797 // this can be the case only for an already free or freshly garbage
7798 // chunk. If this block is an object, it can never straddle
7799 // over _limit. The "straddling" occurs when _limit is set at
7800 // the previous end of the space when this cycle started, and
7801 // a subsequent heap expansion caused the previously co-terminal
7802 // free block to be coalesced with the newly expanded portion,
7803 // thus rendering _limit a non-block-boundary making it dangerous
7804 // for the sweeper to step over and examine.
7805 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7806   assert(inFreeRange(), "Should only be called if currently in a free range.");
7807   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7808   assert(_sp->used_region().contains(eob - 1),
7809          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7810          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7811          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7812          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7813   if (eob >= _limit) {
7814     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7815     if (CMSTraceSweeper) {
7816       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7817                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7818                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7819                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7820     }
7821     // Return the storage we are tracking back into the free lists.
7822     if (CMSTraceSweeper) {
7823       gclog_or_tty->print_cr("Flushing ... ");
7824     }
7825     assert(freeFinger() < eob, "Error");
7826     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7827   }
7828 }
7829 
7830 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7831   assert(inFreeRange(), "Should only be called if currently in a free range.");
7832   assert(size > 0,
7833     "A zero sized chunk cannot be added to the free lists.");
7834   if (!freeRangeInFreeLists()) {
7835     if (CMSTestInFreeList) {
7836       FreeChunk* fc = (FreeChunk*) chunk;
7837       fc->set_size(size);
7838       assert(!_sp->verify_chunk_in_free_list(fc),
7839         "chunk should not be in free lists yet");
7840     }
7841     if (CMSTraceSweeper) {
7842       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7843                     p2i(chunk), size);
7844     }
7845     // A new free range is going to be starting.  The current
7846     // free range has not been added to the free lists yet or
7847     // was removed so add it back.
7848     // If the current free range was coalesced, then the death
7849     // of the free range was recorded.  Record a birth now.
7850     if (lastFreeRangeCoalesced()) {
7851       _sp->coalBirth(size);
7852     }
7853     _sp->addChunkAndRepairOffsetTable(chunk, size,
7854             lastFreeRangeCoalesced());
7855   } else if (CMSTraceSweeper) {
7856     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7857   }
7858   set_inFreeRange(false);
7859   set_freeRangeInFreeLists(false);
7860 }
7861 
7862 // We take a break if we've been at this for a while,
7863 // so as to avoid monopolizing the locks involved.
7864 void SweepClosure::do_yield_work(HeapWord* addr) {
7865   // Return current free chunk being used for coalescing (if any)
7866   // to the appropriate freelist.  After yielding, the next
7867   // free block encountered will start a coalescing range of
7868   // free blocks.  If the next free block is adjacent to the
7869   // chunk just flushed, they will need to wait for the next
7870   // sweep to be coalesced.
7871   if (inFreeRange()) {
7872     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7873   }
7874 
7875   // First give up the locks, then yield, then re-lock.
7876   // We should probably use a constructor/destructor idiom to
7877   // do this unlock/lock or modify the MutexUnlocker class to
7878   // serve our purpose. XXX
7879   assert_lock_strong(_bitMap->lock());
7880   assert_lock_strong(_freelistLock);
7881   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7882          "CMS thread should hold CMS token");
7883   _bitMap->lock()->unlock();
7884   _freelistLock->unlock();
7885   ConcurrentMarkSweepThread::desynchronize(true);
7886   _collector->stopTimer();
7887   if (PrintCMSStatistics != 0) {
7888     _collector->incrementYields();
7889   }
7890 
7891   // See the comment in coordinator_yield()
7892   for (unsigned i = 0; i < CMSYieldSleepCount &&
7893                        ConcurrentMarkSweepThread::should_yield() &&
7894                        !CMSCollector::foregroundGCIsActive(); ++i) {
7895     os::sleep(Thread::current(), 1, false);
7896   }
7897 
7898   ConcurrentMarkSweepThread::synchronize(true);
7899   _freelistLock->lock();
7900   _bitMap->lock()->lock_without_safepoint_check();
7901   _collector->startTimer();
7902 }
7903 
7904 #ifndef PRODUCT
7905 // This is actually very useful in a product build if it can
7906 // be called from the debugger.  Compile it into the product
7907 // as needed.
7908 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7909   return debug_cms_space->verify_chunk_in_free_list(fc);
7910 }
7911 #endif
7912 
7913 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7914   if (CMSTraceSweeper) {
7915     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7916                            p2i(fc), fc->size());
7917   }
7918 }
7919 
7920 // CMSIsAliveClosure
7921 bool CMSIsAliveClosure::do_object_b(oop obj) {
7922   HeapWord* addr = (HeapWord*)obj;
7923   return addr != NULL &&
7924          (!_span.contains(addr) || _bit_map->isMarked(addr));
7925 }
7926 
7927 
7928 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7929                       MemRegion span,
7930                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7931                       bool cpc):
7932   _collector(collector),
7933   _span(span),
7934   _bit_map(bit_map),
7935   _mark_stack(mark_stack),
7936   _concurrent_precleaning(cpc) {
7937   assert(!_span.is_empty(), "Empty span could spell trouble");
7938 }
7939 
7940 
7941 // CMSKeepAliveClosure: the serial version
7942 void CMSKeepAliveClosure::do_oop(oop obj) {
7943   HeapWord* addr = (HeapWord*)obj;
7944   if (_span.contains(addr) &&
7945       !_bit_map->isMarked(addr)) {
7946     _bit_map->mark(addr);
7947     bool simulate_overflow = false;
7948     NOT_PRODUCT(
7949       if (CMSMarkStackOverflowALot &&
7950           _collector->simulate_overflow()) {
7951         // simulate a stack overflow
7952         simulate_overflow = true;
7953       }
7954     )
7955     if (simulate_overflow || !_mark_stack->push(obj)) {
7956       if (_concurrent_precleaning) {
7957         // We dirty the overflown object and let the remark
7958         // phase deal with it.
7959         assert(_collector->overflow_list_is_empty(), "Error");
7960         // In the case of object arrays, we need to dirty all of
7961         // the cards that the object spans. No locking or atomics
7962         // are needed since no one else can be mutating the mod union
7963         // table.
7964         if (obj->is_objArray()) {
7965           size_t sz = obj->size();
7966           HeapWord* end_card_addr =
7967             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7968           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7969           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7970           _collector->_modUnionTable.mark_range(redirty_range);
7971         } else {
7972           _collector->_modUnionTable.mark(addr);
7973         }
7974         _collector->_ser_kac_preclean_ovflw++;
7975       } else {
7976         _collector->push_on_overflow_list(obj);
7977         _collector->_ser_kac_ovflw++;
7978       }
7979     }
7980   }
7981 }
7982 
7983 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7984 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7985 
7986 // CMSParKeepAliveClosure: a parallel version of the above.
7987 // The work queues are private to each closure (thread),
7988 // but (may be) available for stealing by other threads.
7989 void CMSParKeepAliveClosure::do_oop(oop obj) {
7990   HeapWord* addr = (HeapWord*)obj;
7991   if (_span.contains(addr) &&
7992       !_bit_map->isMarked(addr)) {
7993     // In general, during recursive tracing, several threads
7994     // may be concurrently getting here; the first one to
7995     // "tag" it, claims it.
7996     if (_bit_map->par_mark(addr)) {
7997       bool res = _work_queue->push(obj);
7998       assert(res, "Low water mark should be much less than capacity");
7999       // Do a recursive trim in the hope that this will keep
8000       // stack usage lower, but leave some oops for potential stealers
8001       trim_queue(_low_water_mark);
8002     } // Else, another thread got there first
8003   }
8004 }
8005 
8006 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8007 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8008 
8009 void CMSParKeepAliveClosure::trim_queue(uint max) {
8010   while (_work_queue->size() > max) {
8011     oop new_oop;
8012     if (_work_queue->pop_local(new_oop)) {
8013       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8014       assert(_bit_map->isMarked((HeapWord*)new_oop),
8015              "no white objects on this stack!");
8016       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8017       // iterate over the oops in this oop, marking and pushing
8018       // the ones in CMS heap (i.e. in _span).
8019       new_oop->oop_iterate(&_mark_and_push);
8020     }
8021   }
8022 }
8023 
8024 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8025                                 CMSCollector* collector,
8026                                 MemRegion span, CMSBitMap* bit_map,
8027                                 OopTaskQueue* work_queue):
8028   _collector(collector),
8029   _span(span),
8030   _bit_map(bit_map),
8031   _work_queue(work_queue) { }
8032 
8033 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8034   HeapWord* addr = (HeapWord*)obj;
8035   if (_span.contains(addr) &&
8036       !_bit_map->isMarked(addr)) {
8037     if (_bit_map->par_mark(addr)) {
8038       bool simulate_overflow = false;
8039       NOT_PRODUCT(
8040         if (CMSMarkStackOverflowALot &&
8041             _collector->par_simulate_overflow()) {
8042           // simulate a stack overflow
8043           simulate_overflow = true;
8044         }
8045       )
8046       if (simulate_overflow || !_work_queue->push(obj)) {
8047         _collector->par_push_on_overflow_list(obj);
8048         _collector->_par_kac_ovflw++;
8049       }
8050     } // Else another thread got there already
8051   }
8052 }
8053 
8054 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8055 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8056 
8057 //////////////////////////////////////////////////////////////////
8058 //  CMSExpansionCause                /////////////////////////////
8059 //////////////////////////////////////////////////////////////////
8060 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8061   switch (cause) {
8062     case _no_expansion:
8063       return "No expansion";
8064     case _satisfy_free_ratio:
8065       return "Free ratio";
8066     case _satisfy_promotion:
8067       return "Satisfy promotion";
8068     case _satisfy_allocation:
8069       return "allocation";
8070     case _allocate_par_lab:
8071       return "Par LAB";
8072     case _allocate_par_spooling_space:
8073       return "Par Spooling Space";
8074     case _adaptive_size_policy:
8075       return "Ergonomics";
8076     default:
8077       return "unknown";
8078   }
8079 }
8080 
8081 void CMSDrainMarkingStackClosure::do_void() {
8082   // the max number to take from overflow list at a time
8083   const size_t num = _mark_stack->capacity()/4;
8084   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8085          "Overflow list should be NULL during concurrent phases");
8086   while (!_mark_stack->isEmpty() ||
8087          // if stack is empty, check the overflow list
8088          _collector->take_from_overflow_list(num, _mark_stack)) {
8089     oop obj = _mark_stack->pop();
8090     HeapWord* addr = (HeapWord*)obj;
8091     assert(_span.contains(addr), "Should be within span");
8092     assert(_bit_map->isMarked(addr), "Should be marked");
8093     assert(obj->is_oop(), "Should be an oop");
8094     obj->oop_iterate(_keep_alive);
8095   }
8096 }
8097 
8098 void CMSParDrainMarkingStackClosure::do_void() {
8099   // drain queue
8100   trim_queue(0);
8101 }
8102 
8103 // Trim our work_queue so its length is below max at return
8104 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8105   while (_work_queue->size() > max) {
8106     oop new_oop;
8107     if (_work_queue->pop_local(new_oop)) {
8108       assert(new_oop->is_oop(), "Expected an oop");
8109       assert(_bit_map->isMarked((HeapWord*)new_oop),
8110              "no white objects on this stack!");
8111       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8112       // iterate over the oops in this oop, marking and pushing
8113       // the ones in CMS heap (i.e. in _span).
8114       new_oop->oop_iterate(&_mark_and_push);
8115     }
8116   }
8117 }
8118 
8119 ////////////////////////////////////////////////////////////////////
8120 // Support for Marking Stack Overflow list handling and related code
8121 ////////////////////////////////////////////////////////////////////
8122 // Much of the following code is similar in shape and spirit to the
8123 // code used in ParNewGC. We should try and share that code
8124 // as much as possible in the future.
8125 
8126 #ifndef PRODUCT
8127 // Debugging support for CMSStackOverflowALot
8128 
8129 // It's OK to call this multi-threaded;  the worst thing
8130 // that can happen is that we'll get a bunch of closely
8131 // spaced simulated overflows, but that's OK, in fact
8132 // probably good as it would exercise the overflow code
8133 // under contention.
8134 bool CMSCollector::simulate_overflow() {
8135   if (_overflow_counter-- <= 0) { // just being defensive
8136     _overflow_counter = CMSMarkStackOverflowInterval;
8137     return true;
8138   } else {
8139     return false;
8140   }
8141 }
8142 
8143 bool CMSCollector::par_simulate_overflow() {
8144   return simulate_overflow();
8145 }
8146 #endif
8147 
8148 // Single-threaded
8149 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8150   assert(stack->isEmpty(), "Expected precondition");
8151   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8152   size_t i = num;
8153   oop  cur = _overflow_list;
8154   const markOop proto = markOopDesc::prototype();
8155   NOT_PRODUCT(ssize_t n = 0;)
8156   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8157     next = oop(cur->mark());
8158     cur->set_mark(proto);   // until proven otherwise
8159     assert(cur->is_oop(), "Should be an oop");
8160     bool res = stack->push(cur);
8161     assert(res, "Bit off more than can chew?");
8162     NOT_PRODUCT(n++;)
8163   }
8164   _overflow_list = cur;
8165 #ifndef PRODUCT
8166   assert(_num_par_pushes >= n, "Too many pops?");
8167   _num_par_pushes -=n;
8168 #endif
8169   return !stack->isEmpty();
8170 }
8171 
8172 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8173 // (MT-safe) Get a prefix of at most "num" from the list.
8174 // The overflow list is chained through the mark word of
8175 // each object in the list. We fetch the entire list,
8176 // break off a prefix of the right size and return the
8177 // remainder. If other threads try to take objects from
8178 // the overflow list at that time, they will wait for
8179 // some time to see if data becomes available. If (and
8180 // only if) another thread places one or more object(s)
8181 // on the global list before we have returned the suffix
8182 // to the global list, we will walk down our local list
8183 // to find its end and append the global list to
8184 // our suffix before returning it. This suffix walk can
8185 // prove to be expensive (quadratic in the amount of traffic)
8186 // when there are many objects in the overflow list and
8187 // there is much producer-consumer contention on the list.
8188 // *NOTE*: The overflow list manipulation code here and
8189 // in ParNewGeneration:: are very similar in shape,
8190 // except that in the ParNew case we use the old (from/eden)
8191 // copy of the object to thread the list via its klass word.
8192 // Because of the common code, if you make any changes in
8193 // the code below, please check the ParNew version to see if
8194 // similar changes might be needed.
8195 // CR 6797058 has been filed to consolidate the common code.
8196 bool CMSCollector::par_take_from_overflow_list(size_t num,
8197                                                OopTaskQueue* work_q,
8198                                                int no_of_gc_threads) {
8199   assert(work_q->size() == 0, "First empty local work queue");
8200   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8201   if (_overflow_list == NULL) {
8202     return false;
8203   }
8204   // Grab the entire list; we'll put back a suffix
8205   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8206   Thread* tid = Thread::current();
8207   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8208   // set to ParallelGCThreads.
8209   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8210   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8211   // If the list is busy, we spin for a short while,
8212   // sleeping between attempts to get the list.
8213   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8214     os::sleep(tid, sleep_time_millis, false);
8215     if (_overflow_list == NULL) {
8216       // Nothing left to take
8217       return false;
8218     } else if (_overflow_list != BUSY) {
8219       // Try and grab the prefix
8220       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8221     }
8222   }
8223   // If the list was found to be empty, or we spun long
8224   // enough, we give up and return empty-handed. If we leave
8225   // the list in the BUSY state below, it must be the case that
8226   // some other thread holds the overflow list and will set it
8227   // to a non-BUSY state in the future.
8228   if (prefix == NULL || prefix == BUSY) {
8229      // Nothing to take or waited long enough
8230      if (prefix == NULL) {
8231        // Write back the NULL in case we overwrote it with BUSY above
8232        // and it is still the same value.
8233        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8234      }
8235      return false;
8236   }
8237   assert(prefix != NULL && prefix != BUSY, "Error");
8238   size_t i = num;
8239   oop cur = prefix;
8240   // Walk down the first "num" objects, unless we reach the end.
8241   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8242   if (cur->mark() == NULL) {
8243     // We have "num" or fewer elements in the list, so there
8244     // is nothing to return to the global list.
8245     // Write back the NULL in lieu of the BUSY we wrote
8246     // above, if it is still the same value.
8247     if (_overflow_list == BUSY) {
8248       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8249     }
8250   } else {
8251     // Chop off the suffix and return it to the global list.
8252     assert(cur->mark() != BUSY, "Error");
8253     oop suffix_head = cur->mark(); // suffix will be put back on global list
8254     cur->set_mark(NULL);           // break off suffix
8255     // It's possible that the list is still in the empty(busy) state
8256     // we left it in a short while ago; in that case we may be
8257     // able to place back the suffix without incurring the cost
8258     // of a walk down the list.
8259     oop observed_overflow_list = _overflow_list;
8260     oop cur_overflow_list = observed_overflow_list;
8261     bool attached = false;
8262     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8263       observed_overflow_list =
8264         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8265       if (cur_overflow_list == observed_overflow_list) {
8266         attached = true;
8267         break;
8268       } else cur_overflow_list = observed_overflow_list;
8269     }
8270     if (!attached) {
8271       // Too bad, someone else sneaked in (at least) an element; we'll need
8272       // to do a splice. Find tail of suffix so we can prepend suffix to global
8273       // list.
8274       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8275       oop suffix_tail = cur;
8276       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8277              "Tautology");
8278       observed_overflow_list = _overflow_list;
8279       do {
8280         cur_overflow_list = observed_overflow_list;
8281         if (cur_overflow_list != BUSY) {
8282           // Do the splice ...
8283           suffix_tail->set_mark(markOop(cur_overflow_list));
8284         } else { // cur_overflow_list == BUSY
8285           suffix_tail->set_mark(NULL);
8286         }
8287         // ... and try to place spliced list back on overflow_list ...
8288         observed_overflow_list =
8289           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8290       } while (cur_overflow_list != observed_overflow_list);
8291       // ... until we have succeeded in doing so.
8292     }
8293   }
8294 
8295   // Push the prefix elements on work_q
8296   assert(prefix != NULL, "control point invariant");
8297   const markOop proto = markOopDesc::prototype();
8298   oop next;
8299   NOT_PRODUCT(ssize_t n = 0;)
8300   for (cur = prefix; cur != NULL; cur = next) {
8301     next = oop(cur->mark());
8302     cur->set_mark(proto);   // until proven otherwise
8303     assert(cur->is_oop(), "Should be an oop");
8304     bool res = work_q->push(cur);
8305     assert(res, "Bit off more than we can chew?");
8306     NOT_PRODUCT(n++;)
8307   }
8308 #ifndef PRODUCT
8309   assert(_num_par_pushes >= n, "Too many pops?");
8310   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8311 #endif
8312   return true;
8313 }
8314 
8315 // Single-threaded
8316 void CMSCollector::push_on_overflow_list(oop p) {
8317   NOT_PRODUCT(_num_par_pushes++;)
8318   assert(p->is_oop(), "Not an oop");
8319   preserve_mark_if_necessary(p);
8320   p->set_mark((markOop)_overflow_list);
8321   _overflow_list = p;
8322 }
8323 
8324 // Multi-threaded; use CAS to prepend to overflow list
8325 void CMSCollector::par_push_on_overflow_list(oop p) {
8326   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8327   assert(p->is_oop(), "Not an oop");
8328   par_preserve_mark_if_necessary(p);
8329   oop observed_overflow_list = _overflow_list;
8330   oop cur_overflow_list;
8331   do {
8332     cur_overflow_list = observed_overflow_list;
8333     if (cur_overflow_list != BUSY) {
8334       p->set_mark(markOop(cur_overflow_list));
8335     } else {
8336       p->set_mark(NULL);
8337     }
8338     observed_overflow_list =
8339       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8340   } while (cur_overflow_list != observed_overflow_list);
8341 }
8342 #undef BUSY
8343 
8344 // Single threaded
8345 // General Note on GrowableArray: pushes may silently fail
8346 // because we are (temporarily) out of C-heap for expanding
8347 // the stack. The problem is quite ubiquitous and affects
8348 // a lot of code in the JVM. The prudent thing for GrowableArray
8349 // to do (for now) is to exit with an error. However, that may
8350 // be too draconian in some cases because the caller may be
8351 // able to recover without much harm. For such cases, we
8352 // should probably introduce a "soft_push" method which returns
8353 // an indication of success or failure with the assumption that
8354 // the caller may be able to recover from a failure; code in
8355 // the VM can then be changed, incrementally, to deal with such
8356 // failures where possible, thus, incrementally hardening the VM
8357 // in such low resource situations.
8358 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8359   _preserved_oop_stack.push(p);
8360   _preserved_mark_stack.push(m);
8361   assert(m == p->mark(), "Mark word changed");
8362   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8363          "bijection");
8364 }
8365 
8366 // Single threaded
8367 void CMSCollector::preserve_mark_if_necessary(oop p) {
8368   markOop m = p->mark();
8369   if (m->must_be_preserved(p)) {
8370     preserve_mark_work(p, m);
8371   }
8372 }
8373 
8374 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8375   markOop m = p->mark();
8376   if (m->must_be_preserved(p)) {
8377     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8378     // Even though we read the mark word without holding
8379     // the lock, we are assured that it will not change
8380     // because we "own" this oop, so no other thread can
8381     // be trying to push it on the overflow list; see
8382     // the assertion in preserve_mark_work() that checks
8383     // that m == p->mark().
8384     preserve_mark_work(p, m);
8385   }
8386 }
8387 
8388 // We should be able to do this multi-threaded,
8389 // a chunk of stack being a task (this is
8390 // correct because each oop only ever appears
8391 // once in the overflow list. However, it's
8392 // not very easy to completely overlap this with
8393 // other operations, so will generally not be done
8394 // until all work's been completed. Because we
8395 // expect the preserved oop stack (set) to be small,
8396 // it's probably fine to do this single-threaded.
8397 // We can explore cleverer concurrent/overlapped/parallel
8398 // processing of preserved marks if we feel the
8399 // need for this in the future. Stack overflow should
8400 // be so rare in practice and, when it happens, its
8401 // effect on performance so great that this will
8402 // likely just be in the noise anyway.
8403 void CMSCollector::restore_preserved_marks_if_any() {
8404   assert(SafepointSynchronize::is_at_safepoint(),
8405          "world should be stopped");
8406   assert(Thread::current()->is_ConcurrentGC_thread() ||
8407          Thread::current()->is_VM_thread(),
8408          "should be single-threaded");
8409   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8410          "bijection");
8411 
8412   while (!_preserved_oop_stack.is_empty()) {
8413     oop p = _preserved_oop_stack.pop();
8414     assert(p->is_oop(), "Should be an oop");
8415     assert(_span.contains(p), "oop should be in _span");
8416     assert(p->mark() == markOopDesc::prototype(),
8417            "Set when taken from overflow list");
8418     markOop m = _preserved_mark_stack.pop();
8419     p->set_mark(m);
8420   }
8421   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8422          "stacks were cleared above");
8423 }
8424 
8425 #ifndef PRODUCT
8426 bool CMSCollector::no_preserved_marks() const {
8427   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8428 }
8429 #endif
8430 
8431 // Transfer some number of overflown objects to usual marking
8432 // stack. Return true if some objects were transferred.
8433 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8434   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8435                     (size_t)ParGCDesiredObjsFromOverflowList);
8436 
8437   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8438   assert(_collector->overflow_list_is_empty() || res,
8439          "If list is not empty, we should have taken something");
8440   assert(!res || !_mark_stack->isEmpty(),
8441          "If we took something, it should now be on our stack");
8442   return res;
8443 }
8444 
8445 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8446   size_t res = _sp->block_size_no_stall(addr, _collector);
8447   if (_sp->block_is_obj(addr)) {
8448     if (_live_bit_map->isMarked(addr)) {
8449       // It can't have been dead in a previous cycle
8450       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8451     } else {
8452       _dead_bit_map->mark(addr);      // mark the dead object
8453     }
8454   }
8455   // Could be 0, if the block size could not be computed without stalling.
8456   return res;
8457 }
8458 
8459 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8460 
8461   switch (phase) {
8462     case CMSCollector::InitialMarking:
8463       initialize(true  /* fullGC */ ,
8464                  cause /* cause of the GC */,
8465                  true  /* recordGCBeginTime */,
8466                  true  /* recordPreGCUsage */,
8467                  false /* recordPeakUsage */,
8468                  false /* recordPostGCusage */,
8469                  true  /* recordAccumulatedGCTime */,
8470                  false /* recordGCEndTime */,
8471                  false /* countCollection */  );
8472       break;
8473 
8474     case CMSCollector::FinalMarking:
8475       initialize(true  /* fullGC */ ,
8476                  cause /* cause of the GC */,
8477                  false /* recordGCBeginTime */,
8478                  false /* recordPreGCUsage */,
8479                  false /* recordPeakUsage */,
8480                  false /* recordPostGCusage */,
8481                  true  /* recordAccumulatedGCTime */,
8482                  false /* recordGCEndTime */,
8483                  false /* countCollection */  );
8484       break;
8485 
8486     case CMSCollector::Sweeping:
8487       initialize(true  /* fullGC */ ,
8488                  cause /* cause of the GC */,
8489                  false /* recordGCBeginTime */,
8490                  false /* recordPreGCUsage */,
8491                  true  /* recordPeakUsage */,
8492                  true  /* recordPostGCusage */,
8493                  false /* recordAccumulatedGCTime */,
8494                  true  /* recordGCEndTime */,
8495                  true  /* countCollection */  );
8496       break;
8497 
8498     default:
8499       ShouldNotReachHere();
8500   }
8501 }