1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/cms/cmsCollectorPolicy.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/compactibleFreeListSpace.hpp"
  33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  34 #include "gc/cms/concurrentMarkSweepThread.hpp"
  35 #include "gc/cms/parNewGeneration.hpp"
  36 #include "gc/cms/vmCMSOperations.hpp"
  37 #include "gc/serial/genMarkSweep.hpp"
  38 #include "gc/serial/tenuredGeneration.hpp"
  39 #include "gc/shared/adaptiveSizePolicy.hpp"
  40 #include "gc/shared/cardGeneration.inline.hpp"
  41 #include "gc/shared/cardTableRS.hpp"
  42 #include "gc/shared/collectedHeap.inline.hpp"
  43 #include "gc/shared/collectorCounters.hpp"
  44 #include "gc/shared/collectorPolicy.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/genOopClosures.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/referencePolicy.hpp"
  54 #include "gc/shared/strongRootsScope.hpp"
  55 #include "gc/shared/taskqueue.inline.hpp"
  56 #include "memory/allocation.hpp"
  57 #include "memory/iterator.inline.hpp"
  58 #include "memory/padded.hpp"
  59 #include "memory/resourceArea.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "runtime/atomic.inline.hpp"
  63 #include "runtime/globals_extension.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/orderAccess.inline.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 // statics
  73 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  74 bool CMSCollector::_full_gc_requested = false;
  75 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  76 
  77 //////////////////////////////////////////////////////////////////
  78 // In support of CMS/VM thread synchronization
  79 //////////////////////////////////////////////////////////////////
  80 // We split use of the CGC_lock into 2 "levels".
  81 // The low-level locking is of the usual CGC_lock monitor. We introduce
  82 // a higher level "token" (hereafter "CMS token") built on top of the
  83 // low level monitor (hereafter "CGC lock").
  84 // The token-passing protocol gives priority to the VM thread. The
  85 // CMS-lock doesn't provide any fairness guarantees, but clients
  86 // should ensure that it is only held for very short, bounded
  87 // durations.
  88 //
  89 // When either of the CMS thread or the VM thread is involved in
  90 // collection operations during which it does not want the other
  91 // thread to interfere, it obtains the CMS token.
  92 //
  93 // If either thread tries to get the token while the other has
  94 // it, that thread waits. However, if the VM thread and CMS thread
  95 // both want the token, then the VM thread gets priority while the
  96 // CMS thread waits. This ensures, for instance, that the "concurrent"
  97 // phases of the CMS thread's work do not block out the VM thread
  98 // for long periods of time as the CMS thread continues to hog
  99 // the token. (See bug 4616232).
 100 //
 101 // The baton-passing functions are, however, controlled by the
 102 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 103 // and here the low-level CMS lock, not the high level token,
 104 // ensures mutual exclusion.
 105 //
 106 // Two important conditions that we have to satisfy:
 107 // 1. if a thread does a low-level wait on the CMS lock, then it
 108 //    relinquishes the CMS token if it were holding that token
 109 //    when it acquired the low-level CMS lock.
 110 // 2. any low-level notifications on the low-level lock
 111 //    should only be sent when a thread has relinquished the token.
 112 //
 113 // In the absence of either property, we'd have potential deadlock.
 114 //
 115 // We protect each of the CMS (concurrent and sequential) phases
 116 // with the CMS _token_, not the CMS _lock_.
 117 //
 118 // The only code protected by CMS lock is the token acquisition code
 119 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 120 // baton-passing code.
 121 //
 122 // Unfortunately, i couldn't come up with a good abstraction to factor and
 123 // hide the naked CGC_lock manipulation in the baton-passing code
 124 // further below. That's something we should try to do. Also, the proof
 125 // of correctness of this 2-level locking scheme is far from obvious,
 126 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 127 // that there may be a theoretical possibility of delay/starvation in the
 128 // low-level lock/wait/notify scheme used for the baton-passing because of
 129 // potential interference with the priority scheme embodied in the
 130 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 131 // invocation further below and marked with "XXX 20011219YSR".
 132 // Indeed, as we note elsewhere, this may become yet more slippery
 133 // in the presence of multiple CMS and/or multiple VM threads. XXX
 134 
 135 class CMSTokenSync: public StackObj {
 136  private:
 137   bool _is_cms_thread;
 138  public:
 139   CMSTokenSync(bool is_cms_thread):
 140     _is_cms_thread(is_cms_thread) {
 141     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 142            "Incorrect argument to constructor");
 143     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 144   }
 145 
 146   ~CMSTokenSync() {
 147     assert(_is_cms_thread ?
 148              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 149              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 150           "Incorrect state");
 151     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 152   }
 153 };
 154 
 155 // Convenience class that does a CMSTokenSync, and then acquires
 156 // upto three locks.
 157 class CMSTokenSyncWithLocks: public CMSTokenSync {
 158  private:
 159   // Note: locks are acquired in textual declaration order
 160   // and released in the opposite order
 161   MutexLockerEx _locker1, _locker2, _locker3;
 162  public:
 163   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 164                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 165     CMSTokenSync(is_cms_thread),
 166     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 167     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 168     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 169   { }
 170 };
 171 
 172 
 173 //////////////////////////////////////////////////////////////////
 174 //  Concurrent Mark-Sweep Generation /////////////////////////////
 175 //////////////////////////////////////////////////////////////////
 176 
 177 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 178 
 179 // This struct contains per-thread things necessary to support parallel
 180 // young-gen collection.
 181 class CMSParGCThreadState: public CHeapObj<mtGC> {
 182  public:
 183   CFLS_LAB lab;
 184   PromotionInfo promo;
 185 
 186   // Constructor.
 187   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 188     promo.setSpace(cfls);
 189   }
 190 };
 191 
 192 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 193      ReservedSpace rs, size_t initial_byte_size,
 194      CardTableRS* ct, bool use_adaptive_freelists,
 195      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 196   CardGeneration(rs, initial_byte_size, ct),
 197   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 198   _did_compact(false)
 199 {
 200   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 201   HeapWord* end    = (HeapWord*) _virtual_space.high();
 202 
 203   _direct_allocated_words = 0;
 204   NOT_PRODUCT(
 205     _numObjectsPromoted = 0;
 206     _numWordsPromoted = 0;
 207     _numObjectsAllocated = 0;
 208     _numWordsAllocated = 0;
 209   )
 210 
 211   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 212                                            use_adaptive_freelists,
 213                                            dictionaryChoice);
 214   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 215   _cmsSpace->_old_gen = this;
 216 
 217   _gc_stats = new CMSGCStats();
 218 
 219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 220   // offsets match. The ability to tell free chunks from objects
 221   // depends on this property.
 222   debug_only(
 223     FreeChunk* junk = NULL;
 224     assert(UseCompressedClassPointers ||
 225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 226            "Offset of FreeChunk::_prev within FreeChunk must match"
 227            "  that of OopDesc::_klass within OopDesc");
 228   )
 229 
 230   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 231   for (uint i = 0; i < ParallelGCThreads; i++) {
 232     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 233   }
 234 
 235   _incremental_collection_failed = false;
 236   // The "dilatation_factor" is the expansion that can occur on
 237   // account of the fact that the minimum object size in the CMS
 238   // generation may be larger than that in, say, a contiguous young
 239   //  generation.
 240   // Ideally, in the calculation below, we'd compute the dilatation
 241   // factor as: MinChunkSize/(promoting_gen's min object size)
 242   // Since we do not have such a general query interface for the
 243   // promoting generation, we'll instead just use the minimum
 244   // object size (which today is a header's worth of space);
 245   // note that all arithmetic is in units of HeapWords.
 246   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 247   assert(_dilatation_factor >= 1.0, "from previous assert");
 248 }
 249 
 250 
 251 // The field "_initiating_occupancy" represents the occupancy percentage
 252 // at which we trigger a new collection cycle.  Unless explicitly specified
 253 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 254 // is calculated by:
 255 //
 256 //   Let "f" be MinHeapFreeRatio in
 257 //
 258 //    _initiating_occupancy = 100-f +
 259 //                           f * (CMSTriggerRatio/100)
 260 //   where CMSTriggerRatio is the argument "tr" below.
 261 //
 262 // That is, if we assume the heap is at its desired maximum occupancy at the
 263 // end of a collection, we let CMSTriggerRatio of the (purported) free
 264 // space be allocated before initiating a new collection cycle.
 265 //
 266 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 267   assert(io <= 100 && tr <= 100, "Check the arguments");
 268   if (io >= 0) {
 269     _initiating_occupancy = (double)io / 100.0;
 270   } else {
 271     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 272                              (double)(tr * MinHeapFreeRatio) / 100.0)
 273                             / 100.0;
 274   }
 275 }
 276 
 277 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 278   assert(collector() != NULL, "no collector");
 279   collector()->ref_processor_init();
 280 }
 281 
 282 void CMSCollector::ref_processor_init() {
 283   if (_ref_processor == NULL) {
 284     // Allocate and initialize a reference processor
 285     _ref_processor =
 286       new ReferenceProcessor(_span,                               // span
 287                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 288                              ParallelGCThreads,                   // mt processing degree
 289                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 290                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 291                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 292                              &_is_alive_closure);                 // closure for liveness info
 293     // Initialize the _ref_processor field of CMSGen
 294     _cmsGen->set_ref_processor(_ref_processor);
 295 
 296   }
 297 }
 298 
 299 AdaptiveSizePolicy* CMSCollector::size_policy() {
 300   GenCollectedHeap* gch = GenCollectedHeap::heap();
 301   return gch->gen_policy()->size_policy();
 302 }
 303 
 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 305 
 306   const char* gen_name = "old";
 307   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 308   // Generation Counters - generation 1, 1 subspace
 309   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 310       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 311 
 312   _space_counters = new GSpaceCounters(gen_name, 0,
 313                                        _virtual_space.reserved_size(),
 314                                        this, _gen_counters);
 315 }
 316 
 317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 318   _cms_gen(cms_gen)
 319 {
 320   assert(alpha <= 100, "bad value");
 321   _saved_alpha = alpha;
 322 
 323   // Initialize the alphas to the bootstrap value of 100.
 324   _gc0_alpha = _cms_alpha = 100;
 325 
 326   _cms_begin_time.update();
 327   _cms_end_time.update();
 328 
 329   _gc0_duration = 0.0;
 330   _gc0_period = 0.0;
 331   _gc0_promoted = 0;
 332 
 333   _cms_duration = 0.0;
 334   _cms_period = 0.0;
 335   _cms_allocated = 0;
 336 
 337   _cms_used_at_gc0_begin = 0;
 338   _cms_used_at_gc0_end = 0;
 339   _allow_duty_cycle_reduction = false;
 340   _valid_bits = 0;
 341 }
 342 
 343 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 344   // TBD: CR 6909490
 345   return 1.0;
 346 }
 347 
 348 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 349 }
 350 
 351 // If promotion failure handling is on use
 352 // the padded average size of the promotion for each
 353 // young generation collection.
 354 double CMSStats::time_until_cms_gen_full() const {
 355   size_t cms_free = _cms_gen->cmsSpace()->free();
 356   GenCollectedHeap* gch = GenCollectedHeap::heap();
 357   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 358                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 359   if (cms_free > expected_promotion) {
 360     // Start a cms collection if there isn't enough space to promote
 361     // for the next young collection.  Use the padded average as
 362     // a safety factor.
 363     cms_free -= expected_promotion;
 364 
 365     // Adjust by the safety factor.
 366     double cms_free_dbl = (double)cms_free;
 367     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 368     // Apply a further correction factor which tries to adjust
 369     // for recent occurance of concurrent mode failures.
 370     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 371     cms_free_dbl = cms_free_dbl * cms_adjustment;
 372 
 373     if (PrintGCDetails && Verbose) {
 374       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 375         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 376         cms_free, expected_promotion);
 377       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 378         cms_free_dbl, cms_consumption_rate() + 1.0);
 379     }
 380     // Add 1 in case the consumption rate goes to zero.
 381     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 382   }
 383   return 0.0;
 384 }
 385 
 386 // Compare the duration of the cms collection to the
 387 // time remaining before the cms generation is empty.
 388 // Note that the time from the start of the cms collection
 389 // to the start of the cms sweep (less than the total
 390 // duration of the cms collection) can be used.  This
 391 // has been tried and some applications experienced
 392 // promotion failures early in execution.  This was
 393 // possibly because the averages were not accurate
 394 // enough at the beginning.
 395 double CMSStats::time_until_cms_start() const {
 396   // We add "gc0_period" to the "work" calculation
 397   // below because this query is done (mostly) at the
 398   // end of a scavenge, so we need to conservatively
 399   // account for that much possible delay
 400   // in the query so as to avoid concurrent mode failures
 401   // due to starting the collection just a wee bit too
 402   // late.
 403   double work = cms_duration() + gc0_period();
 404   double deadline = time_until_cms_gen_full();
 405   // If a concurrent mode failure occurred recently, we want to be
 406   // more conservative and halve our expected time_until_cms_gen_full()
 407   if (work > deadline) {
 408     if (Verbose && PrintGCDetails) {
 409       gclog_or_tty->print(
 410         " CMSCollector: collect because of anticipated promotion "
 411         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 412         gc0_period(), time_until_cms_gen_full());
 413     }
 414     return 0.0;
 415   }
 416   return work - deadline;
 417 }
 418 
 419 #ifndef PRODUCT
 420 void CMSStats::print_on(outputStream *st) const {
 421   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 422   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 423                gc0_duration(), gc0_period(), gc0_promoted());
 424   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 425             cms_duration(), cms_period(), cms_allocated());
 426   st->print(",cms_since_beg=%g,cms_since_end=%g",
 427             cms_time_since_begin(), cms_time_since_end());
 428   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 429             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 430 
 431   if (valid()) {
 432     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 433               promotion_rate(), cms_allocation_rate());
 434     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 435               cms_consumption_rate(), time_until_cms_gen_full());
 436   }
 437   st->print(" ");
 438 }
 439 #endif // #ifndef PRODUCT
 440 
 441 CMSCollector::CollectorState CMSCollector::_collectorState =
 442                              CMSCollector::Idling;
 443 bool CMSCollector::_foregroundGCIsActive = false;
 444 bool CMSCollector::_foregroundGCShouldWait = false;
 445 
 446 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 447                            CardTableRS*                   ct,
 448                            ConcurrentMarkSweepPolicy*     cp):
 449   _cmsGen(cmsGen),
 450   _ct(ct),
 451   _ref_processor(NULL),    // will be set later
 452   _conc_workers(NULL),     // may be set later
 453   _abort_preclean(false),
 454   _start_sampling(false),
 455   _between_prologue_and_epilogue(false),
 456   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 457   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 458                  -1 /* lock-free */, "No_lock" /* dummy */),
 459   _modUnionClosurePar(&_modUnionTable),
 460   // Adjust my span to cover old (cms) gen
 461   _span(cmsGen->reserved()),
 462   // Construct the is_alive_closure with _span & markBitMap
 463   _is_alive_closure(_span, &_markBitMap),
 464   _restart_addr(NULL),
 465   _overflow_list(NULL),
 466   _stats(cmsGen),
 467   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 468                              //verify that this lock should be acquired with safepoint check.
 469                              Monitor::_safepoint_check_sometimes)),
 470   _eden_chunk_array(NULL),     // may be set in ctor body
 471   _eden_chunk_capacity(0),     // -- ditto --
 472   _eden_chunk_index(0),        // -- ditto --
 473   _survivor_plab_array(NULL),  // -- ditto --
 474   _survivor_chunk_array(NULL), // -- ditto --
 475   _survivor_chunk_capacity(0), // -- ditto --
 476   _survivor_chunk_index(0),    // -- ditto --
 477   _ser_pmc_preclean_ovflw(0),
 478   _ser_kac_preclean_ovflw(0),
 479   _ser_pmc_remark_ovflw(0),
 480   _par_pmc_remark_ovflw(0),
 481   _ser_kac_ovflw(0),
 482   _par_kac_ovflw(0),
 483 #ifndef PRODUCT
 484   _num_par_pushes(0),
 485 #endif
 486   _collection_count_start(0),
 487   _verifying(false),
 488   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 489   _completed_initialization(false),
 490   _collector_policy(cp),
 491   _should_unload_classes(CMSClassUnloadingEnabled),
 492   _concurrent_cycles_since_last_unload(0),
 493   _roots_scanning_options(GenCollectedHeap::SO_None),
 494   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 495   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 496   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 497   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 498   _cms_start_registered(false)
 499 {
 500   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 501     ExplicitGCInvokesConcurrent = true;
 502   }
 503   // Now expand the span and allocate the collection support structures
 504   // (MUT, marking bit map etc.) to cover both generations subject to
 505   // collection.
 506 
 507   // For use by dirty card to oop closures.
 508   _cmsGen->cmsSpace()->set_collector(this);
 509 
 510   // Allocate MUT and marking bit map
 511   {
 512     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 513     if (!_markBitMap.allocate(_span)) {
 514       warning("Failed to allocate CMS Bit Map");
 515       return;
 516     }
 517     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 518   }
 519   {
 520     _modUnionTable.allocate(_span);
 521     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 522   }
 523 
 524   if (!_markStack.allocate(MarkStackSize)) {
 525     warning("Failed to allocate CMS Marking Stack");
 526     return;
 527   }
 528 
 529   // Support for multi-threaded concurrent phases
 530   if (CMSConcurrentMTEnabled) {
 531     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 532       // just for now
 533       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 534     }
 535     if (ConcGCThreads > 1) {
 536       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 537                                  ConcGCThreads, true);
 538       if (_conc_workers == NULL) {
 539         warning("GC/CMS: _conc_workers allocation failure: "
 540               "forcing -CMSConcurrentMTEnabled");
 541         CMSConcurrentMTEnabled = false;
 542       } else {
 543         _conc_workers->initialize_workers();
 544       }
 545     } else {
 546       CMSConcurrentMTEnabled = false;
 547     }
 548   }
 549   if (!CMSConcurrentMTEnabled) {
 550     ConcGCThreads = 0;
 551   } else {
 552     // Turn off CMSCleanOnEnter optimization temporarily for
 553     // the MT case where it's not fixed yet; see 6178663.
 554     CMSCleanOnEnter = false;
 555   }
 556   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 557          "Inconsistency");
 558 
 559   // Parallel task queues; these are shared for the
 560   // concurrent and stop-world phases of CMS, but
 561   // are not shared with parallel scavenge (ParNew).
 562   {
 563     uint i;
 564     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 565 
 566     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 567          || ParallelRefProcEnabled)
 568         && num_queues > 0) {
 569       _task_queues = new OopTaskQueueSet(num_queues);
 570       if (_task_queues == NULL) {
 571         warning("task_queues allocation failure.");
 572         return;
 573       }
 574       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 575       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 576       for (i = 0; i < num_queues; i++) {
 577         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 578         if (q == NULL) {
 579           warning("work_queue allocation failure.");
 580           return;
 581         }
 582         _task_queues->register_queue(i, q);
 583       }
 584       for (i = 0; i < num_queues; i++) {
 585         _task_queues->queue(i)->initialize();
 586         _hash_seed[i] = 17;  // copied from ParNew
 587       }
 588     }
 589   }
 590 
 591   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 592 
 593   // Clip CMSBootstrapOccupancy between 0 and 100.
 594   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 595 
 596   // Now tell CMS generations the identity of their collector
 597   ConcurrentMarkSweepGeneration::set_collector(this);
 598 
 599   // Create & start a CMS thread for this CMS collector
 600   _cmsThread = ConcurrentMarkSweepThread::start(this);
 601   assert(cmsThread() != NULL, "CMS Thread should have been created");
 602   assert(cmsThread()->collector() == this,
 603          "CMS Thread should refer to this gen");
 604   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 605 
 606   // Support for parallelizing young gen rescan
 607   GenCollectedHeap* gch = GenCollectedHeap::heap();
 608   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 609   _young_gen = (ParNewGeneration*)gch->young_gen();
 610   if (gch->supports_inline_contig_alloc()) {
 611     _top_addr = gch->top_addr();
 612     _end_addr = gch->end_addr();
 613     assert(_young_gen != NULL, "no _young_gen");
 614     _eden_chunk_index = 0;
 615     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 616     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 617   }
 618 
 619   // Support for parallelizing survivor space rescan
 620   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 621     const size_t max_plab_samples =
 622       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 623 
 624     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 625     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 626     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 627     _survivor_chunk_capacity = max_plab_samples;
 628     for (uint i = 0; i < ParallelGCThreads; i++) {
 629       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 630       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 631       assert(cur->end() == 0, "Should be 0");
 632       assert(cur->array() == vec, "Should be vec");
 633       assert(cur->capacity() == max_plab_samples, "Error");
 634     }
 635   }
 636 
 637   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 638   _gc_counters = new CollectorCounters("CMS", 1);
 639   _completed_initialization = true;
 640   _inter_sweep_timer.start();  // start of time
 641 }
 642 
 643 const char* ConcurrentMarkSweepGeneration::name() const {
 644   return "concurrent mark-sweep generation";
 645 }
 646 void ConcurrentMarkSweepGeneration::update_counters() {
 647   if (UsePerfData) {
 648     _space_counters->update_all();
 649     _gen_counters->update_all();
 650   }
 651 }
 652 
 653 // this is an optimized version of update_counters(). it takes the
 654 // used value as a parameter rather than computing it.
 655 //
 656 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 657   if (UsePerfData) {
 658     _space_counters->update_used(used);
 659     _space_counters->update_capacity();
 660     _gen_counters->update_all();
 661   }
 662 }
 663 
 664 void ConcurrentMarkSweepGeneration::print() const {
 665   Generation::print();
 666   cmsSpace()->print();
 667 }
 668 
 669 #ifndef PRODUCT
 670 void ConcurrentMarkSweepGeneration::print_statistics() {
 671   cmsSpace()->printFLCensus(0);
 672 }
 673 #endif
 674 
 675 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 676   GenCollectedHeap* gch = GenCollectedHeap::heap();
 677   if (PrintGCDetails) {
 678     // I didn't want to change the logging when removing the level concept,
 679     // but I guess this logging could say "old" or something instead of "1".
 680     assert(gch->is_old_gen(this),
 681            "The CMS generation should be the old generation");
 682     uint level = 1;
 683     if (Verbose) {
 684       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "(" SIZE_FORMAT ")]",
 685         level, short_name(), s, used(), capacity());
 686     } else {
 687       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)]",
 688         level, short_name(), s, used() / K, capacity() / K);
 689     }
 690   }
 691   if (Verbose) {
 692     gclog_or_tty->print(" " SIZE_FORMAT "(" SIZE_FORMAT ")",
 693               gch->used(), gch->capacity());
 694   } else {
 695     gclog_or_tty->print(" " SIZE_FORMAT "K(" SIZE_FORMAT "K)",
 696               gch->used() / K, gch->capacity() / K);
 697   }
 698 }
 699 
 700 size_t
 701 ConcurrentMarkSweepGeneration::contiguous_available() const {
 702   // dld proposes an improvement in precision here. If the committed
 703   // part of the space ends in a free block we should add that to
 704   // uncommitted size in the calculation below. Will make this
 705   // change later, staying with the approximation below for the
 706   // time being. -- ysr.
 707   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 708 }
 709 
 710 size_t
 711 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 712   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 713 }
 714 
 715 size_t ConcurrentMarkSweepGeneration::max_available() const {
 716   return free() + _virtual_space.uncommitted_size();
 717 }
 718 
 719 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 720   size_t available = max_available();
 721   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 722   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 723   if (Verbose && PrintGCDetails) {
 724     gclog_or_tty->print_cr(
 725       "CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "),"
 726       "max_promo(" SIZE_FORMAT ")",
 727       res? "":" not", available, res? ">=":"<",
 728       av_promo, max_promotion_in_bytes);
 729   }
 730   return res;
 731 }
 732 
 733 // At a promotion failure dump information on block layout in heap
 734 // (cms old generation).
 735 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 736   if (CMSDumpAtPromotionFailure) {
 737     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 738   }
 739 }
 740 
 741 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 742   // Clear the promotion information.  These pointers can be adjusted
 743   // along with all the other pointers into the heap but
 744   // compaction is expected to be a rare event with
 745   // a heap using cms so don't do it without seeing the need.
 746   for (uint i = 0; i < ParallelGCThreads; i++) {
 747     _par_gc_thread_states[i]->promo.reset();
 748   }
 749 }
 750 
 751 void ConcurrentMarkSweepGeneration::compute_new_size() {
 752   assert_locked_or_safepoint(Heap_lock);
 753 
 754   // If incremental collection failed, we just want to expand
 755   // to the limit.
 756   if (incremental_collection_failed()) {
 757     clear_incremental_collection_failed();
 758     grow_to_reserved();
 759     return;
 760   }
 761 
 762   // The heap has been compacted but not reset yet.
 763   // Any metric such as free() or used() will be incorrect.
 764 
 765   CardGeneration::compute_new_size();
 766 
 767   // Reset again after a possible resizing
 768   if (did_compact()) {
 769     cmsSpace()->reset_after_compaction();
 770   }
 771 }
 772 
 773 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 774   assert_locked_or_safepoint(Heap_lock);
 775 
 776   // If incremental collection failed, we just want to expand
 777   // to the limit.
 778   if (incremental_collection_failed()) {
 779     clear_incremental_collection_failed();
 780     grow_to_reserved();
 781     return;
 782   }
 783 
 784   double free_percentage = ((double) free()) / capacity();
 785   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 786   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 787 
 788   // compute expansion delta needed for reaching desired free percentage
 789   if (free_percentage < desired_free_percentage) {
 790     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 791     assert(desired_capacity >= capacity(), "invalid expansion size");
 792     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 793     if (PrintGCDetails && Verbose) {
 794       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 795       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 796       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 797       gclog_or_tty->print_cr("  Desired free fraction %f", desired_free_percentage);
 798       gclog_or_tty->print_cr("  Maximum free fraction %f", maximum_free_percentage);
 799       gclog_or_tty->print_cr("  Capacity " SIZE_FORMAT, capacity() / 1000);
 800       gclog_or_tty->print_cr("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 801       GenCollectedHeap* gch = GenCollectedHeap::heap();
 802       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 803       size_t young_size = gch->young_gen()->capacity();
 804       gclog_or_tty->print_cr("  Young gen size " SIZE_FORMAT, young_size / 1000);
 805       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 806       gclog_or_tty->print_cr("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 807       gclog_or_tty->print_cr("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 808     }
 809     // safe if expansion fails
 810     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 811     if (PrintGCDetails && Verbose) {
 812       gclog_or_tty->print_cr("  Expanded free fraction %f", ((double) free()) / capacity());
 813     }
 814   } else {
 815     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 816     assert(desired_capacity <= capacity(), "invalid expansion size");
 817     size_t shrink_bytes = capacity() - desired_capacity;
 818     // Don't shrink unless the delta is greater than the minimum shrink we want
 819     if (shrink_bytes >= MinHeapDeltaBytes) {
 820       shrink_free_list_by(shrink_bytes);
 821     }
 822   }
 823 }
 824 
 825 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 826   return cmsSpace()->freelistLock();
 827 }
 828 
 829 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 830   CMSSynchronousYieldRequest yr;
 831   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 832   return have_lock_and_allocate(size, tlab);
 833 }
 834 
 835 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 836                                                                 bool   tlab /* ignored */) {
 837   assert_lock_strong(freelistLock());
 838   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 839   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 840   // Allocate the object live (grey) if the background collector has
 841   // started marking. This is necessary because the marker may
 842   // have passed this address and consequently this object will
 843   // not otherwise be greyed and would be incorrectly swept up.
 844   // Note that if this object contains references, the writing
 845   // of those references will dirty the card containing this object
 846   // allowing the object to be blackened (and its references scanned)
 847   // either during a preclean phase or at the final checkpoint.
 848   if (res != NULL) {
 849     // We may block here with an uninitialized object with
 850     // its mark-bit or P-bits not yet set. Such objects need
 851     // to be safely navigable by block_start().
 852     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 853     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 854     collector()->direct_allocated(res, adjustedSize);
 855     _direct_allocated_words += adjustedSize;
 856     // allocation counters
 857     NOT_PRODUCT(
 858       _numObjectsAllocated++;
 859       _numWordsAllocated += (int)adjustedSize;
 860     )
 861   }
 862   return res;
 863 }
 864 
 865 // In the case of direct allocation by mutators in a generation that
 866 // is being concurrently collected, the object must be allocated
 867 // live (grey) if the background collector has started marking.
 868 // This is necessary because the marker may
 869 // have passed this address and consequently this object will
 870 // not otherwise be greyed and would be incorrectly swept up.
 871 // Note that if this object contains references, the writing
 872 // of those references will dirty the card containing this object
 873 // allowing the object to be blackened (and its references scanned)
 874 // either during a preclean phase or at the final checkpoint.
 875 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 876   assert(_markBitMap.covers(start, size), "Out of bounds");
 877   if (_collectorState >= Marking) {
 878     MutexLockerEx y(_markBitMap.lock(),
 879                     Mutex::_no_safepoint_check_flag);
 880     // [see comments preceding SweepClosure::do_blk() below for details]
 881     //
 882     // Can the P-bits be deleted now?  JJJ
 883     //
 884     // 1. need to mark the object as live so it isn't collected
 885     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 886     // 3. need to mark the end of the object so marking, precleaning or sweeping
 887     //    can skip over uninitialized or unparsable objects. An allocated
 888     //    object is considered uninitialized for our purposes as long as
 889     //    its klass word is NULL.  All old gen objects are parsable
 890     //    as soon as they are initialized.)
 891     _markBitMap.mark(start);          // object is live
 892     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 893     _markBitMap.mark(start + size - 1);
 894                                       // mark end of object
 895   }
 896   // check that oop looks uninitialized
 897   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 898 }
 899 
 900 void CMSCollector::promoted(bool par, HeapWord* start,
 901                             bool is_obj_array, size_t obj_size) {
 902   assert(_markBitMap.covers(start), "Out of bounds");
 903   // See comment in direct_allocated() about when objects should
 904   // be allocated live.
 905   if (_collectorState >= Marking) {
 906     // we already hold the marking bit map lock, taken in
 907     // the prologue
 908     if (par) {
 909       _markBitMap.par_mark(start);
 910     } else {
 911       _markBitMap.mark(start);
 912     }
 913     // We don't need to mark the object as uninitialized (as
 914     // in direct_allocated above) because this is being done with the
 915     // world stopped and the object will be initialized by the
 916     // time the marking, precleaning or sweeping get to look at it.
 917     // But see the code for copying objects into the CMS generation,
 918     // where we need to ensure that concurrent readers of the
 919     // block offset table are able to safely navigate a block that
 920     // is in flux from being free to being allocated (and in
 921     // transition while being copied into) and subsequently
 922     // becoming a bona-fide object when the copy/promotion is complete.
 923     assert(SafepointSynchronize::is_at_safepoint(),
 924            "expect promotion only at safepoints");
 925 
 926     if (_collectorState < Sweeping) {
 927       // Mark the appropriate cards in the modUnionTable, so that
 928       // this object gets scanned before the sweep. If this is
 929       // not done, CMS generation references in the object might
 930       // not get marked.
 931       // For the case of arrays, which are otherwise precisely
 932       // marked, we need to dirty the entire array, not just its head.
 933       if (is_obj_array) {
 934         // The [par_]mark_range() method expects mr.end() below to
 935         // be aligned to the granularity of a bit's representation
 936         // in the heap. In the case of the MUT below, that's a
 937         // card size.
 938         MemRegion mr(start,
 939                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 940                         CardTableModRefBS::card_size /* bytes */));
 941         if (par) {
 942           _modUnionTable.par_mark_range(mr);
 943         } else {
 944           _modUnionTable.mark_range(mr);
 945         }
 946       } else {  // not an obj array; we can just mark the head
 947         if (par) {
 948           _modUnionTable.par_mark(start);
 949         } else {
 950           _modUnionTable.mark(start);
 951         }
 952       }
 953     }
 954   }
 955 }
 956 
 957 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 958   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 959   // allocate, copy and if necessary update promoinfo --
 960   // delegate to underlying space.
 961   assert_lock_strong(freelistLock());
 962 
 963 #ifndef PRODUCT
 964   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 965     return NULL;
 966   }
 967 #endif  // #ifndef PRODUCT
 968 
 969   oop res = _cmsSpace->promote(obj, obj_size);
 970   if (res == NULL) {
 971     // expand and retry
 972     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 973     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 974     // Since this is the old generation, we don't try to promote
 975     // into a more senior generation.
 976     res = _cmsSpace->promote(obj, obj_size);
 977   }
 978   if (res != NULL) {
 979     // See comment in allocate() about when objects should
 980     // be allocated live.
 981     assert(obj->is_oop(), "Will dereference klass pointer below");
 982     collector()->promoted(false,           // Not parallel
 983                           (HeapWord*)res, obj->is_objArray(), obj_size);
 984     // promotion counters
 985     NOT_PRODUCT(
 986       _numObjectsPromoted++;
 987       _numWordsPromoted +=
 988         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 989     )
 990   }
 991   return res;
 992 }
 993 
 994 
 995 // IMPORTANT: Notes on object size recognition in CMS.
 996 // ---------------------------------------------------
 997 // A block of storage in the CMS generation is always in
 998 // one of three states. A free block (FREE), an allocated
 999 // object (OBJECT) whose size() method reports the correct size,
1000 // and an intermediate state (TRANSIENT) in which its size cannot
1001 // be accurately determined.
1002 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1003 // -----------------------------------------------------
1004 // FREE:      klass_word & 1 == 1; mark_word holds block size
1005 //
1006 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1007 //            obj->size() computes correct size
1008 //
1009 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1010 //
1011 // STATE IDENTIFICATION: (64 bit+COOPS)
1012 // ------------------------------------
1013 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1014 //
1015 // OBJECT:    klass_word installed; klass_word != 0;
1016 //            obj->size() computes correct size
1017 //
1018 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1019 //
1020 //
1021 // STATE TRANSITION DIAGRAM
1022 //
1023 //        mut / parnew                     mut  /  parnew
1024 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1025 //  ^                                                                   |
1026 //  |------------------------ DEAD <------------------------------------|
1027 //         sweep                            mut
1028 //
1029 // While a block is in TRANSIENT state its size cannot be determined
1030 // so readers will either need to come back later or stall until
1031 // the size can be determined. Note that for the case of direct
1032 // allocation, P-bits, when available, may be used to determine the
1033 // size of an object that may not yet have been initialized.
1034 
1035 // Things to support parallel young-gen collection.
1036 oop
1037 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1038                                            oop old, markOop m,
1039                                            size_t word_sz) {
1040 #ifndef PRODUCT
1041   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1042     return NULL;
1043   }
1044 #endif  // #ifndef PRODUCT
1045 
1046   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1047   PromotionInfo* promoInfo = &ps->promo;
1048   // if we are tracking promotions, then first ensure space for
1049   // promotion (including spooling space for saving header if necessary).
1050   // then allocate and copy, then track promoted info if needed.
1051   // When tracking (see PromotionInfo::track()), the mark word may
1052   // be displaced and in this case restoration of the mark word
1053   // occurs in the (oop_since_save_marks_)iterate phase.
1054   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1055     // Out of space for allocating spooling buffers;
1056     // try expanding and allocating spooling buffers.
1057     if (!expand_and_ensure_spooling_space(promoInfo)) {
1058       return NULL;
1059     }
1060   }
1061   assert(promoInfo->has_spooling_space(), "Control point invariant");
1062   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1063   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1064   if (obj_ptr == NULL) {
1065      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1066      if (obj_ptr == NULL) {
1067        return NULL;
1068      }
1069   }
1070   oop obj = oop(obj_ptr);
1071   OrderAccess::storestore();
1072   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1073   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1074   // IMPORTANT: See note on object initialization for CMS above.
1075   // Otherwise, copy the object.  Here we must be careful to insert the
1076   // klass pointer last, since this marks the block as an allocated object.
1077   // Except with compressed oops it's the mark word.
1078   HeapWord* old_ptr = (HeapWord*)old;
1079   // Restore the mark word copied above.
1080   obj->set_mark(m);
1081   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1082   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1083   OrderAccess::storestore();
1084 
1085   if (UseCompressedClassPointers) {
1086     // Copy gap missed by (aligned) header size calculation below
1087     obj->set_klass_gap(old->klass_gap());
1088   }
1089   if (word_sz > (size_t)oopDesc::header_size()) {
1090     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1091                                  obj_ptr + oopDesc::header_size(),
1092                                  word_sz - oopDesc::header_size());
1093   }
1094 
1095   // Now we can track the promoted object, if necessary.  We take care
1096   // to delay the transition from uninitialized to full object
1097   // (i.e., insertion of klass pointer) until after, so that it
1098   // atomically becomes a promoted object.
1099   if (promoInfo->tracking()) {
1100     promoInfo->track((PromotedObject*)obj, old->klass());
1101   }
1102   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1103   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1104   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1105 
1106   // Finally, install the klass pointer (this should be volatile).
1107   OrderAccess::storestore();
1108   obj->set_klass(old->klass());
1109   // We should now be able to calculate the right size for this object
1110   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1111 
1112   collector()->promoted(true,          // parallel
1113                         obj_ptr, old->is_objArray(), word_sz);
1114 
1115   NOT_PRODUCT(
1116     Atomic::inc_ptr(&_numObjectsPromoted);
1117     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1118   )
1119 
1120   return obj;
1121 }
1122 
1123 void
1124 ConcurrentMarkSweepGeneration::
1125 par_promote_alloc_done(int thread_num) {
1126   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1127   ps->lab.retire(thread_num);
1128 }
1129 
1130 void
1131 ConcurrentMarkSweepGeneration::
1132 par_oop_since_save_marks_iterate_done(int thread_num) {
1133   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1134   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1135   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1136 }
1137 
1138 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1139                                                    size_t size,
1140                                                    bool   tlab)
1141 {
1142   // We allow a STW collection only if a full
1143   // collection was requested.
1144   return full || should_allocate(size, tlab); // FIX ME !!!
1145   // This and promotion failure handling are connected at the
1146   // hip and should be fixed by untying them.
1147 }
1148 
1149 bool CMSCollector::shouldConcurrentCollect() {
1150   if (_full_gc_requested) {
1151     if (Verbose && PrintGCDetails) {
1152       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1153                              " gc request (or gc_locker)");
1154     }
1155     return true;
1156   }
1157 
1158   FreelistLocker x(this);
1159   // ------------------------------------------------------------------
1160   // Print out lots of information which affects the initiation of
1161   // a collection.
1162   if (PrintCMSInitiationStatistics && stats().valid()) {
1163     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1164     gclog_or_tty->stamp();
1165     gclog_or_tty->cr();
1166     stats().print_on(gclog_or_tty);
1167     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1168       stats().time_until_cms_gen_full());
1169     gclog_or_tty->print_cr("free=" SIZE_FORMAT, _cmsGen->free());
1170     gclog_or_tty->print_cr("contiguous_available=" SIZE_FORMAT,
1171                            _cmsGen->contiguous_available());
1172     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1173     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1174     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1175     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1176     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1177     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1178     gclog_or_tty->print_cr("metadata initialized %d",
1179       MetaspaceGC::should_concurrent_collect());
1180   }
1181   // ------------------------------------------------------------------
1182 
1183   // If the estimated time to complete a cms collection (cms_duration())
1184   // is less than the estimated time remaining until the cms generation
1185   // is full, start a collection.
1186   if (!UseCMSInitiatingOccupancyOnly) {
1187     if (stats().valid()) {
1188       if (stats().time_until_cms_start() == 0.0) {
1189         return true;
1190       }
1191     } else {
1192       // We want to conservatively collect somewhat early in order
1193       // to try and "bootstrap" our CMS/promotion statistics;
1194       // this branch will not fire after the first successful CMS
1195       // collection because the stats should then be valid.
1196       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1197         if (Verbose && PrintGCDetails) {
1198           gclog_or_tty->print_cr(
1199             " CMSCollector: collect for bootstrapping statistics:"
1200             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1201             _bootstrap_occupancy);
1202         }
1203         return true;
1204       }
1205     }
1206   }
1207 
1208   // Otherwise, we start a collection cycle if
1209   // old gen want a collection cycle started. Each may use
1210   // an appropriate criterion for making this decision.
1211   // XXX We need to make sure that the gen expansion
1212   // criterion dovetails well with this. XXX NEED TO FIX THIS
1213   if (_cmsGen->should_concurrent_collect()) {
1214     if (Verbose && PrintGCDetails) {
1215       gclog_or_tty->print_cr("CMS old gen initiated");
1216     }
1217     return true;
1218   }
1219 
1220   // We start a collection if we believe an incremental collection may fail;
1221   // this is not likely to be productive in practice because it's probably too
1222   // late anyway.
1223   GenCollectedHeap* gch = GenCollectedHeap::heap();
1224   assert(gch->collector_policy()->is_generation_policy(),
1225          "You may want to check the correctness of the following");
1226   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1227     if (Verbose && PrintGCDetails) {
1228       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1229     }
1230     return true;
1231   }
1232 
1233   if (MetaspaceGC::should_concurrent_collect()) {
1234     if (Verbose && PrintGCDetails) {
1235       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1236     }
1237     return true;
1238   }
1239 
1240   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1241   if (CMSTriggerInterval >= 0) {
1242     if (CMSTriggerInterval == 0) {
1243       // Trigger always
1244       return true;
1245     }
1246 
1247     // Check the CMS time since begin (we do not check the stats validity
1248     // as we want to be able to trigger the first CMS cycle as well)
1249     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1250       if (Verbose && PrintGCDetails) {
1251         if (stats().valid()) {
1252           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1253                                  stats().cms_time_since_begin());
1254         } else {
1255           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1256         }
1257       }
1258       return true;
1259     }
1260   }
1261 
1262   return false;
1263 }
1264 
1265 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1266 
1267 // Clear _expansion_cause fields of constituent generations
1268 void CMSCollector::clear_expansion_cause() {
1269   _cmsGen->clear_expansion_cause();
1270 }
1271 
1272 // We should be conservative in starting a collection cycle.  To
1273 // start too eagerly runs the risk of collecting too often in the
1274 // extreme.  To collect too rarely falls back on full collections,
1275 // which works, even if not optimum in terms of concurrent work.
1276 // As a work around for too eagerly collecting, use the flag
1277 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1278 // giving the user an easily understandable way of controlling the
1279 // collections.
1280 // We want to start a new collection cycle if any of the following
1281 // conditions hold:
1282 // . our current occupancy exceeds the configured initiating occupancy
1283 //   for this generation, or
1284 // . we recently needed to expand this space and have not, since that
1285 //   expansion, done a collection of this generation, or
1286 // . the underlying space believes that it may be a good idea to initiate
1287 //   a concurrent collection (this may be based on criteria such as the
1288 //   following: the space uses linear allocation and linear allocation is
1289 //   going to fail, or there is believed to be excessive fragmentation in
1290 //   the generation, etc... or ...
1291 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1292 //   the case of the old generation; see CR 6543076):
1293 //   we may be approaching a point at which allocation requests may fail because
1294 //   we will be out of sufficient free space given allocation rate estimates.]
1295 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1296 
1297   assert_lock_strong(freelistLock());
1298   if (occupancy() > initiating_occupancy()) {
1299     if (PrintGCDetails && Verbose) {
1300       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1301         short_name(), occupancy(), initiating_occupancy());
1302     }
1303     return true;
1304   }
1305   if (UseCMSInitiatingOccupancyOnly) {
1306     return false;
1307   }
1308   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1309     if (PrintGCDetails && Verbose) {
1310       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1311         short_name());
1312     }
1313     return true;
1314   }
1315   if (_cmsSpace->should_concurrent_collect()) {
1316     if (PrintGCDetails && Verbose) {
1317       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1318         short_name());
1319     }
1320     return true;
1321   }
1322   return false;
1323 }
1324 
1325 void ConcurrentMarkSweepGeneration::collect(bool   full,
1326                                             bool   clear_all_soft_refs,
1327                                             size_t size,
1328                                             bool   tlab)
1329 {
1330   collector()->collect(full, clear_all_soft_refs, size, tlab);
1331 }
1332 
1333 void CMSCollector::collect(bool   full,
1334                            bool   clear_all_soft_refs,
1335                            size_t size,
1336                            bool   tlab)
1337 {
1338   // The following "if" branch is present for defensive reasons.
1339   // In the current uses of this interface, it can be replaced with:
1340   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1341   // But I am not placing that assert here to allow future
1342   // generality in invoking this interface.
1343   if (GC_locker::is_active()) {
1344     // A consistency test for GC_locker
1345     assert(GC_locker::needs_gc(), "Should have been set already");
1346     // Skip this foreground collection, instead
1347     // expanding the heap if necessary.
1348     // Need the free list locks for the call to free() in compute_new_size()
1349     compute_new_size();
1350     return;
1351   }
1352   acquire_control_and_collect(full, clear_all_soft_refs);
1353 }
1354 
1355 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1356   GenCollectedHeap* gch = GenCollectedHeap::heap();
1357   unsigned int gc_count = gch->total_full_collections();
1358   if (gc_count == full_gc_count) {
1359     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1360     _full_gc_requested = true;
1361     _full_gc_cause = cause;
1362     CGC_lock->notify();   // nudge CMS thread
1363   } else {
1364     assert(gc_count > full_gc_count, "Error: causal loop");
1365   }
1366 }
1367 
1368 bool CMSCollector::is_external_interruption() {
1369   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1370   return GCCause::is_user_requested_gc(cause) ||
1371          GCCause::is_serviceability_requested_gc(cause);
1372 }
1373 
1374 void CMSCollector::report_concurrent_mode_interruption() {
1375   if (is_external_interruption()) {
1376     if (PrintGCDetails) {
1377       gclog_or_tty->print(" (concurrent mode interrupted)");
1378     }
1379   } else {
1380     if (PrintGCDetails) {
1381       gclog_or_tty->print(" (concurrent mode failure)");
1382     }
1383     _gc_tracer_cm->report_concurrent_mode_failure();
1384   }
1385 }
1386 
1387 
1388 // The foreground and background collectors need to coordinate in order
1389 // to make sure that they do not mutually interfere with CMS collections.
1390 // When a background collection is active,
1391 // the foreground collector may need to take over (preempt) and
1392 // synchronously complete an ongoing collection. Depending on the
1393 // frequency of the background collections and the heap usage
1394 // of the application, this preemption can be seldom or frequent.
1395 // There are only certain
1396 // points in the background collection that the "collection-baton"
1397 // can be passed to the foreground collector.
1398 //
1399 // The foreground collector will wait for the baton before
1400 // starting any part of the collection.  The foreground collector
1401 // will only wait at one location.
1402 //
1403 // The background collector will yield the baton before starting a new
1404 // phase of the collection (e.g., before initial marking, marking from roots,
1405 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1406 // of the loop which switches the phases. The background collector does some
1407 // of the phases (initial mark, final re-mark) with the world stopped.
1408 // Because of locking involved in stopping the world,
1409 // the foreground collector should not block waiting for the background
1410 // collector when it is doing a stop-the-world phase.  The background
1411 // collector will yield the baton at an additional point just before
1412 // it enters a stop-the-world phase.  Once the world is stopped, the
1413 // background collector checks the phase of the collection.  If the
1414 // phase has not changed, it proceeds with the collection.  If the
1415 // phase has changed, it skips that phase of the collection.  See
1416 // the comments on the use of the Heap_lock in collect_in_background().
1417 //
1418 // Variable used in baton passing.
1419 //   _foregroundGCIsActive - Set to true by the foreground collector when
1420 //      it wants the baton.  The foreground clears it when it has finished
1421 //      the collection.
1422 //   _foregroundGCShouldWait - Set to true by the background collector
1423 //        when it is running.  The foreground collector waits while
1424 //      _foregroundGCShouldWait is true.
1425 //  CGC_lock - monitor used to protect access to the above variables
1426 //      and to notify the foreground and background collectors.
1427 //  _collectorState - current state of the CMS collection.
1428 //
1429 // The foreground collector
1430 //   acquires the CGC_lock
1431 //   sets _foregroundGCIsActive
1432 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1433 //     various locks acquired in preparation for the collection
1434 //     are released so as not to block the background collector
1435 //     that is in the midst of a collection
1436 //   proceeds with the collection
1437 //   clears _foregroundGCIsActive
1438 //   returns
1439 //
1440 // The background collector in a loop iterating on the phases of the
1441 //      collection
1442 //   acquires the CGC_lock
1443 //   sets _foregroundGCShouldWait
1444 //   if _foregroundGCIsActive is set
1445 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1446 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1447 //     and exits the loop.
1448 //   otherwise
1449 //     proceed with that phase of the collection
1450 //     if the phase is a stop-the-world phase,
1451 //       yield the baton once more just before enqueueing
1452 //       the stop-world CMS operation (executed by the VM thread).
1453 //   returns after all phases of the collection are done
1454 //
1455 
1456 void CMSCollector::acquire_control_and_collect(bool full,
1457         bool clear_all_soft_refs) {
1458   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1459   assert(!Thread::current()->is_ConcurrentGC_thread(),
1460          "shouldn't try to acquire control from self!");
1461 
1462   // Start the protocol for acquiring control of the
1463   // collection from the background collector (aka CMS thread).
1464   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1465          "VM thread should have CMS token");
1466   // Remember the possibly interrupted state of an ongoing
1467   // concurrent collection
1468   CollectorState first_state = _collectorState;
1469 
1470   // Signal to a possibly ongoing concurrent collection that
1471   // we want to do a foreground collection.
1472   _foregroundGCIsActive = true;
1473 
1474   // release locks and wait for a notify from the background collector
1475   // releasing the locks in only necessary for phases which
1476   // do yields to improve the granularity of the collection.
1477   assert_lock_strong(bitMapLock());
1478   // We need to lock the Free list lock for the space that we are
1479   // currently collecting.
1480   assert(haveFreelistLocks(), "Must be holding free list locks");
1481   bitMapLock()->unlock();
1482   releaseFreelistLocks();
1483   {
1484     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1485     if (_foregroundGCShouldWait) {
1486       // We are going to be waiting for action for the CMS thread;
1487       // it had better not be gone (for instance at shutdown)!
1488       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1489              "CMS thread must be running");
1490       // Wait here until the background collector gives us the go-ahead
1491       ConcurrentMarkSweepThread::clear_CMS_flag(
1492         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1493       // Get a possibly blocked CMS thread going:
1494       //   Note that we set _foregroundGCIsActive true above,
1495       //   without protection of the CGC_lock.
1496       CGC_lock->notify();
1497       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1498              "Possible deadlock");
1499       while (_foregroundGCShouldWait) {
1500         // wait for notification
1501         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1502         // Possibility of delay/starvation here, since CMS token does
1503         // not know to give priority to VM thread? Actually, i think
1504         // there wouldn't be any delay/starvation, but the proof of
1505         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1506       }
1507       ConcurrentMarkSweepThread::set_CMS_flag(
1508         ConcurrentMarkSweepThread::CMS_vm_has_token);
1509     }
1510   }
1511   // The CMS_token is already held.  Get back the other locks.
1512   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1513          "VM thread should have CMS token");
1514   getFreelistLocks();
1515   bitMapLock()->lock_without_safepoint_check();
1516   if (TraceCMSState) {
1517     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1518       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1519     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1520   }
1521 
1522   // Inform cms gen if this was due to partial collection failing.
1523   // The CMS gen may use this fact to determine its expansion policy.
1524   GenCollectedHeap* gch = GenCollectedHeap::heap();
1525   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1526     assert(!_cmsGen->incremental_collection_failed(),
1527            "Should have been noticed, reacted to and cleared");
1528     _cmsGen->set_incremental_collection_failed();
1529   }
1530 
1531   if (first_state > Idling) {
1532     report_concurrent_mode_interruption();
1533   }
1534 
1535   set_did_compact(true);
1536 
1537   // If the collection is being acquired from the background
1538   // collector, there may be references on the discovered
1539   // references lists.  Abandon those references, since some
1540   // of them may have become unreachable after concurrent
1541   // discovery; the STW compacting collector will redo discovery
1542   // more precisely, without being subject to floating garbage.
1543   // Leaving otherwise unreachable references in the discovered
1544   // lists would require special handling.
1545   ref_processor()->disable_discovery();
1546   ref_processor()->abandon_partial_discovery();
1547   ref_processor()->verify_no_references_recorded();
1548 
1549   if (first_state > Idling) {
1550     save_heap_summary();
1551   }
1552 
1553   do_compaction_work(clear_all_soft_refs);
1554 
1555   // Has the GC time limit been exceeded?
1556   size_t max_eden_size = _young_gen->max_capacity() -
1557                          _young_gen->to()->capacity() -
1558                          _young_gen->from()->capacity();
1559   GCCause::Cause gc_cause = gch->gc_cause();
1560   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1561                                          _young_gen->eden()->used(),
1562                                          _cmsGen->max_capacity(),
1563                                          max_eden_size,
1564                                          full,
1565                                          gc_cause,
1566                                          gch->collector_policy());
1567 
1568   // Reset the expansion cause, now that we just completed
1569   // a collection cycle.
1570   clear_expansion_cause();
1571   _foregroundGCIsActive = false;
1572   return;
1573 }
1574 
1575 // Resize the tenured generation
1576 // after obtaining the free list locks for the
1577 // two generations.
1578 void CMSCollector::compute_new_size() {
1579   assert_locked_or_safepoint(Heap_lock);
1580   FreelistLocker z(this);
1581   MetaspaceGC::compute_new_size();
1582   _cmsGen->compute_new_size_free_list();
1583 }
1584 
1585 // A work method used by the foreground collector to do
1586 // a mark-sweep-compact.
1587 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1588   GenCollectedHeap* gch = GenCollectedHeap::heap();
1589 
1590   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1591   gc_timer->register_gc_start();
1592 
1593   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1594   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1595 
1596   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
1597 
1598   // Temporarily widen the span of the weak reference processing to
1599   // the entire heap.
1600   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1601   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1602   // Temporarily, clear the "is_alive_non_header" field of the
1603   // reference processor.
1604   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1605   // Temporarily make reference _processing_ single threaded (non-MT).
1606   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1607   // Temporarily make refs discovery atomic
1608   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1609   // Temporarily make reference _discovery_ single threaded (non-MT)
1610   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1611 
1612   ref_processor()->set_enqueuing_is_done(false);
1613   ref_processor()->enable_discovery();
1614   ref_processor()->setup_policy(clear_all_soft_refs);
1615   // If an asynchronous collection finishes, the _modUnionTable is
1616   // all clear.  If we are assuming the collection from an asynchronous
1617   // collection, clear the _modUnionTable.
1618   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1619     "_modUnionTable should be clear if the baton was not passed");
1620   _modUnionTable.clear_all();
1621   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1622     "mod union for klasses should be clear if the baton was passed");
1623   _ct->klass_rem_set()->clear_mod_union();
1624 
1625   // We must adjust the allocation statistics being maintained
1626   // in the free list space. We do so by reading and clearing
1627   // the sweep timer and updating the block flux rate estimates below.
1628   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1629   if (_inter_sweep_timer.is_active()) {
1630     _inter_sweep_timer.stop();
1631     // Note that we do not use this sample to update the _inter_sweep_estimate.
1632     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1633                                             _inter_sweep_estimate.padded_average(),
1634                                             _intra_sweep_estimate.padded_average());
1635   }
1636 
1637   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1638   #ifdef ASSERT
1639     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1640     size_t free_size = cms_space->free();
1641     assert(free_size ==
1642            pointer_delta(cms_space->end(), cms_space->compaction_top())
1643            * HeapWordSize,
1644       "All the free space should be compacted into one chunk at top");
1645     assert(cms_space->dictionary()->total_chunk_size(
1646                                       debug_only(cms_space->freelistLock())) == 0 ||
1647            cms_space->totalSizeInIndexedFreeLists() == 0,
1648       "All the free space should be in a single chunk");
1649     size_t num = cms_space->totalCount();
1650     assert((free_size == 0 && num == 0) ||
1651            (free_size > 0  && (num == 1 || num == 2)),
1652          "There should be at most 2 free chunks after compaction");
1653   #endif // ASSERT
1654   _collectorState = Resetting;
1655   assert(_restart_addr == NULL,
1656          "Should have been NULL'd before baton was passed");
1657   reset_stw();
1658   _cmsGen->reset_after_compaction();
1659   _concurrent_cycles_since_last_unload = 0;
1660 
1661   // Clear any data recorded in the PLAB chunk arrays.
1662   if (_survivor_plab_array != NULL) {
1663     reset_survivor_plab_arrays();
1664   }
1665 
1666   // Adjust the per-size allocation stats for the next epoch.
1667   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1668   // Restart the "inter sweep timer" for the next epoch.
1669   _inter_sweep_timer.reset();
1670   _inter_sweep_timer.start();
1671 
1672   gc_timer->register_gc_end();
1673 
1674   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1675 
1676   // For a mark-sweep-compact, compute_new_size() will be called
1677   // in the heap's do_collection() method.
1678 }
1679 
1680 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1681   ContiguousSpace* eden_space = _young_gen->eden();
1682   ContiguousSpace* from_space = _young_gen->from();
1683   ContiguousSpace* to_space   = _young_gen->to();
1684   // Eden
1685   if (_eden_chunk_array != NULL) {
1686     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1687                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1688                            p2i(eden_space->end()), eden_space->capacity());
1689     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1690                            "_eden_chunk_capacity=" SIZE_FORMAT,
1691                            _eden_chunk_index, _eden_chunk_capacity);
1692     for (size_t i = 0; i < _eden_chunk_index; i++) {
1693       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1694                              i, p2i(_eden_chunk_array[i]));
1695     }
1696   }
1697   // Survivor
1698   if (_survivor_chunk_array != NULL) {
1699     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1700                            p2i(from_space->bottom()), p2i(from_space->top()),
1701                            p2i(from_space->end()), from_space->capacity());
1702     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1703                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1704                            _survivor_chunk_index, _survivor_chunk_capacity);
1705     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1706       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1707                              i, p2i(_survivor_chunk_array[i]));
1708     }
1709   }
1710 }
1711 
1712 void CMSCollector::getFreelistLocks() const {
1713   // Get locks for all free lists in all generations that this
1714   // collector is responsible for
1715   _cmsGen->freelistLock()->lock_without_safepoint_check();
1716 }
1717 
1718 void CMSCollector::releaseFreelistLocks() const {
1719   // Release locks for all free lists in all generations that this
1720   // collector is responsible for
1721   _cmsGen->freelistLock()->unlock();
1722 }
1723 
1724 bool CMSCollector::haveFreelistLocks() const {
1725   // Check locks for all free lists in all generations that this
1726   // collector is responsible for
1727   assert_lock_strong(_cmsGen->freelistLock());
1728   PRODUCT_ONLY(ShouldNotReachHere());
1729   return true;
1730 }
1731 
1732 // A utility class that is used by the CMS collector to
1733 // temporarily "release" the foreground collector from its
1734 // usual obligation to wait for the background collector to
1735 // complete an ongoing phase before proceeding.
1736 class ReleaseForegroundGC: public StackObj {
1737  private:
1738   CMSCollector* _c;
1739  public:
1740   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1741     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1742     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1743     // allow a potentially blocked foreground collector to proceed
1744     _c->_foregroundGCShouldWait = false;
1745     if (_c->_foregroundGCIsActive) {
1746       CGC_lock->notify();
1747     }
1748     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1749            "Possible deadlock");
1750   }
1751 
1752   ~ReleaseForegroundGC() {
1753     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1754     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1755     _c->_foregroundGCShouldWait = true;
1756   }
1757 };
1758 
1759 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1760   assert(Thread::current()->is_ConcurrentGC_thread(),
1761     "A CMS asynchronous collection is only allowed on a CMS thread.");
1762 
1763   GenCollectedHeap* gch = GenCollectedHeap::heap();
1764   {
1765     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1766     MutexLockerEx hl(Heap_lock, safepoint_check);
1767     FreelistLocker fll(this);
1768     MutexLockerEx x(CGC_lock, safepoint_check);
1769     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1770       // The foreground collector is active or we're
1771       // not using asynchronous collections.  Skip this
1772       // background collection.
1773       assert(!_foregroundGCShouldWait, "Should be clear");
1774       return;
1775     } else {
1776       assert(_collectorState == Idling, "Should be idling before start.");
1777       _collectorState = InitialMarking;
1778       register_gc_start(cause);
1779       // Reset the expansion cause, now that we are about to begin
1780       // a new cycle.
1781       clear_expansion_cause();
1782 
1783       // Clear the MetaspaceGC flag since a concurrent collection
1784       // is starting but also clear it after the collection.
1785       MetaspaceGC::set_should_concurrent_collect(false);
1786     }
1787     // Decide if we want to enable class unloading as part of the
1788     // ensuing concurrent GC cycle.
1789     update_should_unload_classes();
1790     _full_gc_requested = false;           // acks all outstanding full gc requests
1791     _full_gc_cause = GCCause::_no_gc;
1792     // Signal that we are about to start a collection
1793     gch->increment_total_full_collections();  // ... starting a collection cycle
1794     _collection_count_start = gch->total_full_collections();
1795   }
1796 
1797   // Used for PrintGC
1798   size_t prev_used;
1799   if (PrintGC && Verbose) {
1800     prev_used = _cmsGen->used();
1801   }
1802 
1803   // The change of the collection state is normally done at this level;
1804   // the exceptions are phases that are executed while the world is
1805   // stopped.  For those phases the change of state is done while the
1806   // world is stopped.  For baton passing purposes this allows the
1807   // background collector to finish the phase and change state atomically.
1808   // The foreground collector cannot wait on a phase that is done
1809   // while the world is stopped because the foreground collector already
1810   // has the world stopped and would deadlock.
1811   while (_collectorState != Idling) {
1812     if (TraceCMSState) {
1813       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1814         p2i(Thread::current()), _collectorState);
1815     }
1816     // The foreground collector
1817     //   holds the Heap_lock throughout its collection.
1818     //   holds the CMS token (but not the lock)
1819     //     except while it is waiting for the background collector to yield.
1820     //
1821     // The foreground collector should be blocked (not for long)
1822     //   if the background collector is about to start a phase
1823     //   executed with world stopped.  If the background
1824     //   collector has already started such a phase, the
1825     //   foreground collector is blocked waiting for the
1826     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1827     //   are executed in the VM thread.
1828     //
1829     // The locking order is
1830     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1831     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1832     //   CMS token  (claimed in
1833     //                stop_world_and_do() -->
1834     //                  safepoint_synchronize() -->
1835     //                    CMSThread::synchronize())
1836 
1837     {
1838       // Check if the FG collector wants us to yield.
1839       CMSTokenSync x(true); // is cms thread
1840       if (waitForForegroundGC()) {
1841         // We yielded to a foreground GC, nothing more to be
1842         // done this round.
1843         assert(_foregroundGCShouldWait == false, "We set it to false in "
1844                "waitForForegroundGC()");
1845         if (TraceCMSState) {
1846           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1847             " exiting collection CMS state %d",
1848             p2i(Thread::current()), _collectorState);
1849         }
1850         return;
1851       } else {
1852         // The background collector can run but check to see if the
1853         // foreground collector has done a collection while the
1854         // background collector was waiting to get the CGC_lock
1855         // above.  If yes, break so that _foregroundGCShouldWait
1856         // is cleared before returning.
1857         if (_collectorState == Idling) {
1858           break;
1859         }
1860       }
1861     }
1862 
1863     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1864       "should be waiting");
1865 
1866     switch (_collectorState) {
1867       case InitialMarking:
1868         {
1869           ReleaseForegroundGC x(this);
1870           stats().record_cms_begin();
1871           VM_CMS_Initial_Mark initial_mark_op(this);
1872           VMThread::execute(&initial_mark_op);
1873         }
1874         // The collector state may be any legal state at this point
1875         // since the background collector may have yielded to the
1876         // foreground collector.
1877         break;
1878       case Marking:
1879         // initial marking in checkpointRootsInitialWork has been completed
1880         if (markFromRoots()) { // we were successful
1881           assert(_collectorState == Precleaning, "Collector state should "
1882             "have changed");
1883         } else {
1884           assert(_foregroundGCIsActive, "Internal state inconsistency");
1885         }
1886         break;
1887       case Precleaning:
1888         // marking from roots in markFromRoots has been completed
1889         preclean();
1890         assert(_collectorState == AbortablePreclean ||
1891                _collectorState == FinalMarking,
1892                "Collector state should have changed");
1893         break;
1894       case AbortablePreclean:
1895         abortable_preclean();
1896         assert(_collectorState == FinalMarking, "Collector state should "
1897           "have changed");
1898         break;
1899       case FinalMarking:
1900         {
1901           ReleaseForegroundGC x(this);
1902 
1903           VM_CMS_Final_Remark final_remark_op(this);
1904           VMThread::execute(&final_remark_op);
1905         }
1906         assert(_foregroundGCShouldWait, "block post-condition");
1907         break;
1908       case Sweeping:
1909         // final marking in checkpointRootsFinal has been completed
1910         sweep();
1911         assert(_collectorState == Resizing, "Collector state change "
1912           "to Resizing must be done under the free_list_lock");
1913 
1914       case Resizing: {
1915         // Sweeping has been completed...
1916         // At this point the background collection has completed.
1917         // Don't move the call to compute_new_size() down
1918         // into code that might be executed if the background
1919         // collection was preempted.
1920         {
1921           ReleaseForegroundGC x(this);   // unblock FG collection
1922           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1923           CMSTokenSync        z(true);   // not strictly needed.
1924           if (_collectorState == Resizing) {
1925             compute_new_size();
1926             save_heap_summary();
1927             _collectorState = Resetting;
1928           } else {
1929             assert(_collectorState == Idling, "The state should only change"
1930                    " because the foreground collector has finished the collection");
1931           }
1932         }
1933         break;
1934       }
1935       case Resetting:
1936         // CMS heap resizing has been completed
1937         reset_concurrent();
1938         assert(_collectorState == Idling, "Collector state should "
1939           "have changed");
1940 
1941         MetaspaceGC::set_should_concurrent_collect(false);
1942 
1943         stats().record_cms_end();
1944         // Don't move the concurrent_phases_end() and compute_new_size()
1945         // calls to here because a preempted background collection
1946         // has it's state set to "Resetting".
1947         break;
1948       case Idling:
1949       default:
1950         ShouldNotReachHere();
1951         break;
1952     }
1953     if (TraceCMSState) {
1954       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1955         p2i(Thread::current()), _collectorState);
1956     }
1957     assert(_foregroundGCShouldWait, "block post-condition");
1958   }
1959 
1960   // Should this be in gc_epilogue?
1961   collector_policy()->counters()->update_counters();
1962 
1963   {
1964     // Clear _foregroundGCShouldWait and, in the event that the
1965     // foreground collector is waiting, notify it, before
1966     // returning.
1967     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1968     _foregroundGCShouldWait = false;
1969     if (_foregroundGCIsActive) {
1970       CGC_lock->notify();
1971     }
1972     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1973            "Possible deadlock");
1974   }
1975   if (TraceCMSState) {
1976     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1977       " exiting collection CMS state %d",
1978       p2i(Thread::current()), _collectorState);
1979   }
1980   if (PrintGC && Verbose) {
1981     _cmsGen->print_heap_change(prev_used);
1982   }
1983 }
1984 
1985 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1986   _cms_start_registered = true;
1987   _gc_timer_cm->register_gc_start();
1988   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1989 }
1990 
1991 void CMSCollector::register_gc_end() {
1992   if (_cms_start_registered) {
1993     report_heap_summary(GCWhen::AfterGC);
1994 
1995     _gc_timer_cm->register_gc_end();
1996     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1997     _cms_start_registered = false;
1998   }
1999 }
2000 
2001 void CMSCollector::save_heap_summary() {
2002   GenCollectedHeap* gch = GenCollectedHeap::heap();
2003   _last_heap_summary = gch->create_heap_summary();
2004   _last_metaspace_summary = gch->create_metaspace_summary();
2005 }
2006 
2007 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2008   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2009   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2010 }
2011 
2012 bool CMSCollector::waitForForegroundGC() {
2013   bool res = false;
2014   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2015          "CMS thread should have CMS token");
2016   // Block the foreground collector until the
2017   // background collectors decides whether to
2018   // yield.
2019   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2020   _foregroundGCShouldWait = true;
2021   if (_foregroundGCIsActive) {
2022     // The background collector yields to the
2023     // foreground collector and returns a value
2024     // indicating that it has yielded.  The foreground
2025     // collector can proceed.
2026     res = true;
2027     _foregroundGCShouldWait = false;
2028     ConcurrentMarkSweepThread::clear_CMS_flag(
2029       ConcurrentMarkSweepThread::CMS_cms_has_token);
2030     ConcurrentMarkSweepThread::set_CMS_flag(
2031       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2032     // Get a possibly blocked foreground thread going
2033     CGC_lock->notify();
2034     if (TraceCMSState) {
2035       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2036         p2i(Thread::current()), _collectorState);
2037     }
2038     while (_foregroundGCIsActive) {
2039       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2040     }
2041     ConcurrentMarkSweepThread::set_CMS_flag(
2042       ConcurrentMarkSweepThread::CMS_cms_has_token);
2043     ConcurrentMarkSweepThread::clear_CMS_flag(
2044       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2045   }
2046   if (TraceCMSState) {
2047     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2048       p2i(Thread::current()), _collectorState);
2049   }
2050   return res;
2051 }
2052 
2053 // Because of the need to lock the free lists and other structures in
2054 // the collector, common to all the generations that the collector is
2055 // collecting, we need the gc_prologues of individual CMS generations
2056 // delegate to their collector. It may have been simpler had the
2057 // current infrastructure allowed one to call a prologue on a
2058 // collector. In the absence of that we have the generation's
2059 // prologue delegate to the collector, which delegates back
2060 // some "local" work to a worker method in the individual generations
2061 // that it's responsible for collecting, while itself doing any
2062 // work common to all generations it's responsible for. A similar
2063 // comment applies to the  gc_epilogue()'s.
2064 // The role of the variable _between_prologue_and_epilogue is to
2065 // enforce the invocation protocol.
2066 void CMSCollector::gc_prologue(bool full) {
2067   // Call gc_prologue_work() for the CMSGen
2068   // we are responsible for.
2069 
2070   // The following locking discipline assumes that we are only called
2071   // when the world is stopped.
2072   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2073 
2074   // The CMSCollector prologue must call the gc_prologues for the
2075   // "generations" that it's responsible
2076   // for.
2077 
2078   assert(   Thread::current()->is_VM_thread()
2079          || (   CMSScavengeBeforeRemark
2080              && Thread::current()->is_ConcurrentGC_thread()),
2081          "Incorrect thread type for prologue execution");
2082 
2083   if (_between_prologue_and_epilogue) {
2084     // We have already been invoked; this is a gc_prologue delegation
2085     // from yet another CMS generation that we are responsible for, just
2086     // ignore it since all relevant work has already been done.
2087     return;
2088   }
2089 
2090   // set a bit saying prologue has been called; cleared in epilogue
2091   _between_prologue_and_epilogue = true;
2092   // Claim locks for common data structures, then call gc_prologue_work()
2093   // for each CMSGen.
2094 
2095   getFreelistLocks();   // gets free list locks on constituent spaces
2096   bitMapLock()->lock_without_safepoint_check();
2097 
2098   // Should call gc_prologue_work() for all cms gens we are responsible for
2099   bool duringMarking =    _collectorState >= Marking
2100                          && _collectorState < Sweeping;
2101 
2102   // The young collections clear the modified oops state, which tells if
2103   // there are any modified oops in the class. The remark phase also needs
2104   // that information. Tell the young collection to save the union of all
2105   // modified klasses.
2106   if (duringMarking) {
2107     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2108   }
2109 
2110   bool registerClosure = duringMarking;
2111 
2112   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2113 
2114   if (!full) {
2115     stats().record_gc0_begin();
2116   }
2117 }
2118 
2119 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2120 
2121   _capacity_at_prologue = capacity();
2122   _used_at_prologue = used();
2123 
2124   // Delegate to CMScollector which knows how to coordinate between
2125   // this and any other CMS generations that it is responsible for
2126   // collecting.
2127   collector()->gc_prologue(full);
2128 }
2129 
2130 // This is a "private" interface for use by this generation's CMSCollector.
2131 // Not to be called directly by any other entity (for instance,
2132 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2133 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2134   bool registerClosure, ModUnionClosure* modUnionClosure) {
2135   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2136   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2137     "Should be NULL");
2138   if (registerClosure) {
2139     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2140   }
2141   cmsSpace()->gc_prologue();
2142   // Clear stat counters
2143   NOT_PRODUCT(
2144     assert(_numObjectsPromoted == 0, "check");
2145     assert(_numWordsPromoted   == 0, "check");
2146     if (Verbose && PrintGC) {
2147       gclog_or_tty->print("Allocated " SIZE_FORMAT " objects, "
2148                           SIZE_FORMAT " bytes concurrently",
2149       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2150     }
2151     _numObjectsAllocated = 0;
2152     _numWordsAllocated   = 0;
2153   )
2154 }
2155 
2156 void CMSCollector::gc_epilogue(bool full) {
2157   // The following locking discipline assumes that we are only called
2158   // when the world is stopped.
2159   assert(SafepointSynchronize::is_at_safepoint(),
2160          "world is stopped assumption");
2161 
2162   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2163   // if linear allocation blocks need to be appropriately marked to allow the
2164   // the blocks to be parsable. We also check here whether we need to nudge the
2165   // CMS collector thread to start a new cycle (if it's not already active).
2166   assert(   Thread::current()->is_VM_thread()
2167          || (   CMSScavengeBeforeRemark
2168              && Thread::current()->is_ConcurrentGC_thread()),
2169          "Incorrect thread type for epilogue execution");
2170 
2171   if (!_between_prologue_and_epilogue) {
2172     // We have already been invoked; this is a gc_epilogue delegation
2173     // from yet another CMS generation that we are responsible for, just
2174     // ignore it since all relevant work has already been done.
2175     return;
2176   }
2177   assert(haveFreelistLocks(), "must have freelist locks");
2178   assert_lock_strong(bitMapLock());
2179 
2180   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2181 
2182   _cmsGen->gc_epilogue_work(full);
2183 
2184   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2185     // in case sampling was not already enabled, enable it
2186     _start_sampling = true;
2187   }
2188   // reset _eden_chunk_array so sampling starts afresh
2189   _eden_chunk_index = 0;
2190 
2191   size_t cms_used   = _cmsGen->cmsSpace()->used();
2192 
2193   // update performance counters - this uses a special version of
2194   // update_counters() that allows the utilization to be passed as a
2195   // parameter, avoiding multiple calls to used().
2196   //
2197   _cmsGen->update_counters(cms_used);
2198 
2199   bitMapLock()->unlock();
2200   releaseFreelistLocks();
2201 
2202   if (!CleanChunkPoolAsync) {
2203     Chunk::clean_chunk_pool();
2204   }
2205 
2206   set_did_compact(false);
2207   _between_prologue_and_epilogue = false;  // ready for next cycle
2208 }
2209 
2210 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2211   collector()->gc_epilogue(full);
2212 
2213   // Also reset promotion tracking in par gc thread states.
2214   for (uint i = 0; i < ParallelGCThreads; i++) {
2215     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2216   }
2217 }
2218 
2219 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2220   assert(!incremental_collection_failed(), "Should have been cleared");
2221   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2222   cmsSpace()->gc_epilogue();
2223     // Print stat counters
2224   NOT_PRODUCT(
2225     assert(_numObjectsAllocated == 0, "check");
2226     assert(_numWordsAllocated == 0, "check");
2227     if (Verbose && PrintGC) {
2228       gclog_or_tty->print("Promoted " SIZE_FORMAT " objects, "
2229                           SIZE_FORMAT " bytes",
2230                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2231     }
2232     _numObjectsPromoted = 0;
2233     _numWordsPromoted   = 0;
2234   )
2235 
2236   if (PrintGC && Verbose) {
2237     // Call down the chain in contiguous_available needs the freelistLock
2238     // so print this out before releasing the freeListLock.
2239     gclog_or_tty->print(" Contiguous available " SIZE_FORMAT " bytes ",
2240                         contiguous_available());
2241   }
2242 }
2243 
2244 #ifndef PRODUCT
2245 bool CMSCollector::have_cms_token() {
2246   Thread* thr = Thread::current();
2247   if (thr->is_VM_thread()) {
2248     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2249   } else if (thr->is_ConcurrentGC_thread()) {
2250     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2251   } else if (thr->is_GC_task_thread()) {
2252     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2253            ParGCRareEvent_lock->owned_by_self();
2254   }
2255   return false;
2256 }
2257 #endif
2258 
2259 // Check reachability of the given heap address in CMS generation,
2260 // treating all other generations as roots.
2261 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2262   // We could "guarantee" below, rather than assert, but I'll
2263   // leave these as "asserts" so that an adventurous debugger
2264   // could try this in the product build provided some subset of
2265   // the conditions were met, provided they were interested in the
2266   // results and knew that the computation below wouldn't interfere
2267   // with other concurrent computations mutating the structures
2268   // being read or written.
2269   assert(SafepointSynchronize::is_at_safepoint(),
2270          "Else mutations in object graph will make answer suspect");
2271   assert(have_cms_token(), "Should hold cms token");
2272   assert(haveFreelistLocks(), "must hold free list locks");
2273   assert_lock_strong(bitMapLock());
2274 
2275   // Clear the marking bit map array before starting, but, just
2276   // for kicks, first report if the given address is already marked
2277   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2278                 _markBitMap.isMarked(addr) ? "" : " not");
2279 
2280   if (verify_after_remark()) {
2281     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2282     bool result = verification_mark_bm()->isMarked(addr);
2283     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2284                            result ? "IS" : "is NOT");
2285     return result;
2286   } else {
2287     gclog_or_tty->print_cr("Could not compute result");
2288     return false;
2289   }
2290 }
2291 
2292 
2293 void
2294 CMSCollector::print_on_error(outputStream* st) {
2295   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2296   if (collector != NULL) {
2297     CMSBitMap* bitmap = &collector->_markBitMap;
2298     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2299     bitmap->print_on_error(st, " Bits: ");
2300 
2301     st->cr();
2302 
2303     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2304     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2305     mut_bitmap->print_on_error(st, " Bits: ");
2306   }
2307 }
2308 
2309 ////////////////////////////////////////////////////////
2310 // CMS Verification Support
2311 ////////////////////////////////////////////////////////
2312 // Following the remark phase, the following invariant
2313 // should hold -- each object in the CMS heap which is
2314 // marked in markBitMap() should be marked in the verification_mark_bm().
2315 
2316 class VerifyMarkedClosure: public BitMapClosure {
2317   CMSBitMap* _marks;
2318   bool       _failed;
2319 
2320  public:
2321   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2322 
2323   bool do_bit(size_t offset) {
2324     HeapWord* addr = _marks->offsetToHeapWord(offset);
2325     if (!_marks->isMarked(addr)) {
2326       oop(addr)->print_on(gclog_or_tty);
2327       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2328       _failed = true;
2329     }
2330     return true;
2331   }
2332 
2333   bool failed() { return _failed; }
2334 };
2335 
2336 bool CMSCollector::verify_after_remark(bool silent) {
2337   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2338   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2339   static bool init = false;
2340 
2341   assert(SafepointSynchronize::is_at_safepoint(),
2342          "Else mutations in object graph will make answer suspect");
2343   assert(have_cms_token(),
2344          "Else there may be mutual interference in use of "
2345          " verification data structures");
2346   assert(_collectorState > Marking && _collectorState <= Sweeping,
2347          "Else marking info checked here may be obsolete");
2348   assert(haveFreelistLocks(), "must hold free list locks");
2349   assert_lock_strong(bitMapLock());
2350 
2351 
2352   // Allocate marking bit map if not already allocated
2353   if (!init) { // first time
2354     if (!verification_mark_bm()->allocate(_span)) {
2355       return false;
2356     }
2357     init = true;
2358   }
2359 
2360   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2361 
2362   // Turn off refs discovery -- so we will be tracing through refs.
2363   // This is as intended, because by this time
2364   // GC must already have cleared any refs that need to be cleared,
2365   // and traced those that need to be marked; moreover,
2366   // the marking done here is not going to interfere in any
2367   // way with the marking information used by GC.
2368   NoRefDiscovery no_discovery(ref_processor());
2369 
2370 #if defined(COMPILER2) || INCLUDE_JVMCI
2371   DerivedPointerTableDeactivate dpt_deact;
2372 #endif
2373 
2374   // Clear any marks from a previous round
2375   verification_mark_bm()->clear_all();
2376   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2377   verify_work_stacks_empty();
2378 
2379   GenCollectedHeap* gch = GenCollectedHeap::heap();
2380   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2381   // Update the saved marks which may affect the root scans.
2382   gch->save_marks();
2383 
2384   if (CMSRemarkVerifyVariant == 1) {
2385     // In this first variant of verification, we complete
2386     // all marking, then check if the new marks-vector is
2387     // a subset of the CMS marks-vector.
2388     verify_after_remark_work_1();
2389   } else if (CMSRemarkVerifyVariant == 2) {
2390     // In this second variant of verification, we flag an error
2391     // (i.e. an object reachable in the new marks-vector not reachable
2392     // in the CMS marks-vector) immediately, also indicating the
2393     // identify of an object (A) that references the unmarked object (B) --
2394     // presumably, a mutation to A failed to be picked up by preclean/remark?
2395     verify_after_remark_work_2();
2396   } else {
2397     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2398             CMSRemarkVerifyVariant);
2399   }
2400   if (!silent) gclog_or_tty->print(" done] ");
2401   return true;
2402 }
2403 
2404 void CMSCollector::verify_after_remark_work_1() {
2405   ResourceMark rm;
2406   HandleMark  hm;
2407   GenCollectedHeap* gch = GenCollectedHeap::heap();
2408 
2409   // Get a clear set of claim bits for the roots processing to work with.
2410   ClassLoaderDataGraph::clear_claimed_marks();
2411 
2412   // Mark from roots one level into CMS
2413   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2414   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2415 
2416   {
2417     StrongRootsScope srs(1);
2418 
2419     gch->gen_process_roots(&srs,
2420                            GenCollectedHeap::OldGen,
2421                            true,   // young gen as roots
2422                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2423                            should_unload_classes(),
2424                            &notOlder,
2425                            NULL,
2426                            NULL);
2427   }
2428 
2429   // Now mark from the roots
2430   MarkFromRootsClosure markFromRootsClosure(this, _span,
2431     verification_mark_bm(), verification_mark_stack(),
2432     false /* don't yield */, true /* verifying */);
2433   assert(_restart_addr == NULL, "Expected pre-condition");
2434   verification_mark_bm()->iterate(&markFromRootsClosure);
2435   while (_restart_addr != NULL) {
2436     // Deal with stack overflow: by restarting at the indicated
2437     // address.
2438     HeapWord* ra = _restart_addr;
2439     markFromRootsClosure.reset(ra);
2440     _restart_addr = NULL;
2441     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2442   }
2443   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2444   verify_work_stacks_empty();
2445 
2446   // Marking completed -- now verify that each bit marked in
2447   // verification_mark_bm() is also marked in markBitMap(); flag all
2448   // errors by printing corresponding objects.
2449   VerifyMarkedClosure vcl(markBitMap());
2450   verification_mark_bm()->iterate(&vcl);
2451   if (vcl.failed()) {
2452     gclog_or_tty->print("Verification failed");
2453     gch->print_on(gclog_or_tty);
2454     fatal("CMS: failed marking verification after remark");
2455   }
2456 }
2457 
2458 class VerifyKlassOopsKlassClosure : public KlassClosure {
2459   class VerifyKlassOopsClosure : public OopClosure {
2460     CMSBitMap* _bitmap;
2461    public:
2462     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2463     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2464     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2465   } _oop_closure;
2466  public:
2467   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2468   void do_klass(Klass* k) {
2469     k->oops_do(&_oop_closure);
2470   }
2471 };
2472 
2473 void CMSCollector::verify_after_remark_work_2() {
2474   ResourceMark rm;
2475   HandleMark  hm;
2476   GenCollectedHeap* gch = GenCollectedHeap::heap();
2477 
2478   // Get a clear set of claim bits for the roots processing to work with.
2479   ClassLoaderDataGraph::clear_claimed_marks();
2480 
2481   // Mark from roots one level into CMS
2482   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2483                                      markBitMap());
2484   CLDToOopClosure cld_closure(&notOlder, true);
2485 
2486   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2487 
2488   {
2489     StrongRootsScope srs(1);
2490 
2491     gch->gen_process_roots(&srs,
2492                            GenCollectedHeap::OldGen,
2493                            true,   // young gen as roots
2494                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2495                            should_unload_classes(),
2496                            &notOlder,
2497                            NULL,
2498                            &cld_closure);
2499   }
2500 
2501   // Now mark from the roots
2502   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2503     verification_mark_bm(), markBitMap(), verification_mark_stack());
2504   assert(_restart_addr == NULL, "Expected pre-condition");
2505   verification_mark_bm()->iterate(&markFromRootsClosure);
2506   while (_restart_addr != NULL) {
2507     // Deal with stack overflow: by restarting at the indicated
2508     // address.
2509     HeapWord* ra = _restart_addr;
2510     markFromRootsClosure.reset(ra);
2511     _restart_addr = NULL;
2512     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2513   }
2514   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2515   verify_work_stacks_empty();
2516 
2517   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2518   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2519 
2520   // Marking completed -- now verify that each bit marked in
2521   // verification_mark_bm() is also marked in markBitMap(); flag all
2522   // errors by printing corresponding objects.
2523   VerifyMarkedClosure vcl(markBitMap());
2524   verification_mark_bm()->iterate(&vcl);
2525   assert(!vcl.failed(), "Else verification above should not have succeeded");
2526 }
2527 
2528 void ConcurrentMarkSweepGeneration::save_marks() {
2529   // delegate to CMS space
2530   cmsSpace()->save_marks();
2531   for (uint i = 0; i < ParallelGCThreads; i++) {
2532     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2533   }
2534 }
2535 
2536 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2537   return cmsSpace()->no_allocs_since_save_marks();
2538 }
2539 
2540 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2541                                                                 \
2542 void ConcurrentMarkSweepGeneration::                            \
2543 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2544   cl->set_generation(this);                                     \
2545   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2546   cl->reset_generation();                                       \
2547   save_marks();                                                 \
2548 }
2549 
2550 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2551 
2552 void
2553 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2554   if (freelistLock()->owned_by_self()) {
2555     Generation::oop_iterate(cl);
2556   } else {
2557     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2558     Generation::oop_iterate(cl);
2559   }
2560 }
2561 
2562 void
2563 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2564   if (freelistLock()->owned_by_self()) {
2565     Generation::object_iterate(cl);
2566   } else {
2567     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2568     Generation::object_iterate(cl);
2569   }
2570 }
2571 
2572 void
2573 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2574   if (freelistLock()->owned_by_self()) {
2575     Generation::safe_object_iterate(cl);
2576   } else {
2577     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2578     Generation::safe_object_iterate(cl);
2579   }
2580 }
2581 
2582 void
2583 ConcurrentMarkSweepGeneration::post_compact() {
2584 }
2585 
2586 void
2587 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2588   // Fix the linear allocation blocks to look like free blocks.
2589 
2590   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2591   // are not called when the heap is verified during universe initialization and
2592   // at vm shutdown.
2593   if (freelistLock()->owned_by_self()) {
2594     cmsSpace()->prepare_for_verify();
2595   } else {
2596     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2597     cmsSpace()->prepare_for_verify();
2598   }
2599 }
2600 
2601 void
2602 ConcurrentMarkSweepGeneration::verify() {
2603   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2604   // are not called when the heap is verified during universe initialization and
2605   // at vm shutdown.
2606   if (freelistLock()->owned_by_self()) {
2607     cmsSpace()->verify();
2608   } else {
2609     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2610     cmsSpace()->verify();
2611   }
2612 }
2613 
2614 void CMSCollector::verify() {
2615   _cmsGen->verify();
2616 }
2617 
2618 #ifndef PRODUCT
2619 bool CMSCollector::overflow_list_is_empty() const {
2620   assert(_num_par_pushes >= 0, "Inconsistency");
2621   if (_overflow_list == NULL) {
2622     assert(_num_par_pushes == 0, "Inconsistency");
2623   }
2624   return _overflow_list == NULL;
2625 }
2626 
2627 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2628 // merely consolidate assertion checks that appear to occur together frequently.
2629 void CMSCollector::verify_work_stacks_empty() const {
2630   assert(_markStack.isEmpty(), "Marking stack should be empty");
2631   assert(overflow_list_is_empty(), "Overflow list should be empty");
2632 }
2633 
2634 void CMSCollector::verify_overflow_empty() const {
2635   assert(overflow_list_is_empty(), "Overflow list should be empty");
2636   assert(no_preserved_marks(), "No preserved marks");
2637 }
2638 #endif // PRODUCT
2639 
2640 // Decide if we want to enable class unloading as part of the
2641 // ensuing concurrent GC cycle. We will collect and
2642 // unload classes if it's the case that:
2643 // (1) an explicit gc request has been made and the flag
2644 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2645 // (2) (a) class unloading is enabled at the command line, and
2646 //     (b) old gen is getting really full
2647 // NOTE: Provided there is no change in the state of the heap between
2648 // calls to this method, it should have idempotent results. Moreover,
2649 // its results should be monotonically increasing (i.e. going from 0 to 1,
2650 // but not 1 to 0) between successive calls between which the heap was
2651 // not collected. For the implementation below, it must thus rely on
2652 // the property that concurrent_cycles_since_last_unload()
2653 // will not decrease unless a collection cycle happened and that
2654 // _cmsGen->is_too_full() are
2655 // themselves also monotonic in that sense. See check_monotonicity()
2656 // below.
2657 void CMSCollector::update_should_unload_classes() {
2658   _should_unload_classes = false;
2659   // Condition 1 above
2660   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2661     _should_unload_classes = true;
2662   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2663     // Disjuncts 2.b.(i,ii,iii) above
2664     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2665                               CMSClassUnloadingMaxInterval)
2666                            || _cmsGen->is_too_full();
2667   }
2668 }
2669 
2670 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2671   bool res = should_concurrent_collect();
2672   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2673   return res;
2674 }
2675 
2676 void CMSCollector::setup_cms_unloading_and_verification_state() {
2677   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2678                              || VerifyBeforeExit;
2679   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2680 
2681   // We set the proper root for this CMS cycle here.
2682   if (should_unload_classes()) {   // Should unload classes this cycle
2683     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2684     set_verifying(should_verify);    // Set verification state for this cycle
2685     return;                            // Nothing else needs to be done at this time
2686   }
2687 
2688   // Not unloading classes this cycle
2689   assert(!should_unload_classes(), "Inconsistency!");
2690 
2691   // If we are not unloading classes then add SO_AllCodeCache to root
2692   // scanning options.
2693   add_root_scanning_option(rso);
2694 
2695   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2696     set_verifying(true);
2697   } else if (verifying() && !should_verify) {
2698     // We were verifying, but some verification flags got disabled.
2699     set_verifying(false);
2700     // Exclude symbols, strings and code cache elements from root scanning to
2701     // reduce IM and RM pauses.
2702     remove_root_scanning_option(rso);
2703   }
2704 }
2705 
2706 
2707 #ifndef PRODUCT
2708 HeapWord* CMSCollector::block_start(const void* p) const {
2709   const HeapWord* addr = (HeapWord*)p;
2710   if (_span.contains(p)) {
2711     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2712       return _cmsGen->cmsSpace()->block_start(p);
2713     }
2714   }
2715   return NULL;
2716 }
2717 #endif
2718 
2719 HeapWord*
2720 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2721                                                    bool   tlab,
2722                                                    bool   parallel) {
2723   CMSSynchronousYieldRequest yr;
2724   assert(!tlab, "Can't deal with TLAB allocation");
2725   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2726   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2727   if (GCExpandToAllocateDelayMillis > 0) {
2728     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2729   }
2730   return have_lock_and_allocate(word_size, tlab);
2731 }
2732 
2733 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2734     size_t bytes,
2735     size_t expand_bytes,
2736     CMSExpansionCause::Cause cause)
2737 {
2738 
2739   bool success = expand(bytes, expand_bytes);
2740 
2741   // remember why we expanded; this information is used
2742   // by shouldConcurrentCollect() when making decisions on whether to start
2743   // a new CMS cycle.
2744   if (success) {
2745     set_expansion_cause(cause);
2746     if (PrintGCDetails && Verbose) {
2747       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2748         CMSExpansionCause::to_string(cause));
2749     }
2750   }
2751 }
2752 
2753 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2754   HeapWord* res = NULL;
2755   MutexLocker x(ParGCRareEvent_lock);
2756   while (true) {
2757     // Expansion by some other thread might make alloc OK now:
2758     res = ps->lab.alloc(word_sz);
2759     if (res != NULL) return res;
2760     // If there's not enough expansion space available, give up.
2761     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2762       return NULL;
2763     }
2764     // Otherwise, we try expansion.
2765     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2766     // Now go around the loop and try alloc again;
2767     // A competing par_promote might beat us to the expansion space,
2768     // so we may go around the loop again if promotion fails again.
2769     if (GCExpandToAllocateDelayMillis > 0) {
2770       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2771     }
2772   }
2773 }
2774 
2775 
2776 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2777   PromotionInfo* promo) {
2778   MutexLocker x(ParGCRareEvent_lock);
2779   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2780   while (true) {
2781     // Expansion by some other thread might make alloc OK now:
2782     if (promo->ensure_spooling_space()) {
2783       assert(promo->has_spooling_space(),
2784              "Post-condition of successful ensure_spooling_space()");
2785       return true;
2786     }
2787     // If there's not enough expansion space available, give up.
2788     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2789       return false;
2790     }
2791     // Otherwise, we try expansion.
2792     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2793     // Now go around the loop and try alloc again;
2794     // A competing allocation might beat us to the expansion space,
2795     // so we may go around the loop again if allocation fails again.
2796     if (GCExpandToAllocateDelayMillis > 0) {
2797       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2798     }
2799   }
2800 }
2801 
2802 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2803   // Only shrink if a compaction was done so that all the free space
2804   // in the generation is in a contiguous block at the end.
2805   if (did_compact()) {
2806     CardGeneration::shrink(bytes);
2807   }
2808 }
2809 
2810 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2811   assert_locked_or_safepoint(Heap_lock);
2812 }
2813 
2814 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2815   assert_locked_or_safepoint(Heap_lock);
2816   assert_lock_strong(freelistLock());
2817   if (PrintGCDetails && Verbose) {
2818     warning("Shrinking of CMS not yet implemented");
2819   }
2820   return;
2821 }
2822 
2823 
2824 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2825 // phases.
2826 class CMSPhaseAccounting: public StackObj {
2827  public:
2828   CMSPhaseAccounting(CMSCollector *collector,
2829                      const char *phase,
2830                      bool print_cr = true);
2831   ~CMSPhaseAccounting();
2832 
2833  private:
2834   CMSCollector *_collector;
2835   const char *_phase;
2836   elapsedTimer _wallclock;
2837   bool _print_cr;
2838 
2839  public:
2840   // Not MT-safe; so do not pass around these StackObj's
2841   // where they may be accessed by other threads.
2842   jlong wallclock_millis() {
2843     assert(_wallclock.is_active(), "Wall clock should not stop");
2844     _wallclock.stop();  // to record time
2845     jlong ret = _wallclock.milliseconds();
2846     _wallclock.start(); // restart
2847     return ret;
2848   }
2849 };
2850 
2851 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2852                                        const char *phase,
2853                                        bool print_cr) :
2854   _collector(collector), _phase(phase), _print_cr(print_cr) {
2855 
2856   if (PrintCMSStatistics != 0) {
2857     _collector->resetYields();
2858   }
2859   if (PrintGCDetails) {
2860     gclog_or_tty->gclog_stamp();
2861     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2862       _collector->cmsGen()->short_name(), _phase);
2863   }
2864   _collector->resetTimer();
2865   _wallclock.start();
2866   _collector->startTimer();
2867 }
2868 
2869 CMSPhaseAccounting::~CMSPhaseAccounting() {
2870   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2871   _collector->stopTimer();
2872   _wallclock.stop();
2873   if (PrintGCDetails) {
2874     gclog_or_tty->gclog_stamp();
2875     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2876                  _collector->cmsGen()->short_name(),
2877                  _phase, _collector->timerValue(), _wallclock.seconds());
2878     if (_print_cr) {
2879       gclog_or_tty->cr();
2880     }
2881     if (PrintCMSStatistics != 0) {
2882       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2883                     _collector->yields());
2884     }
2885   }
2886 }
2887 
2888 // CMS work
2889 
2890 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2891 class CMSParMarkTask : public AbstractGangTask {
2892  protected:
2893   CMSCollector*     _collector;
2894   uint              _n_workers;
2895   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2896       AbstractGangTask(name),
2897       _collector(collector),
2898       _n_workers(n_workers) {}
2899   // Work method in support of parallel rescan ... of young gen spaces
2900   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2901                              ContiguousSpace* space,
2902                              HeapWord** chunk_array, size_t chunk_top);
2903   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2904 };
2905 
2906 // Parallel initial mark task
2907 class CMSParInitialMarkTask: public CMSParMarkTask {
2908   StrongRootsScope* _strong_roots_scope;
2909  public:
2910   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2911       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2912       _strong_roots_scope(strong_roots_scope) {}
2913   void work(uint worker_id);
2914 };
2915 
2916 // Checkpoint the roots into this generation from outside
2917 // this generation. [Note this initial checkpoint need only
2918 // be approximate -- we'll do a catch up phase subsequently.]
2919 void CMSCollector::checkpointRootsInitial() {
2920   assert(_collectorState == InitialMarking, "Wrong collector state");
2921   check_correct_thread_executing();
2922   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2923 
2924   save_heap_summary();
2925   report_heap_summary(GCWhen::BeforeGC);
2926 
2927   ReferenceProcessor* rp = ref_processor();
2928   assert(_restart_addr == NULL, "Control point invariant");
2929   {
2930     // acquire locks for subsequent manipulations
2931     MutexLockerEx x(bitMapLock(),
2932                     Mutex::_no_safepoint_check_flag);
2933     checkpointRootsInitialWork();
2934     // enable ("weak") refs discovery
2935     rp->enable_discovery();
2936     _collectorState = Marking;
2937   }
2938 }
2939 
2940 void CMSCollector::checkpointRootsInitialWork() {
2941   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2942   assert(_collectorState == InitialMarking, "just checking");
2943 
2944   // Already have locks.
2945   assert_lock_strong(bitMapLock());
2946   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2947 
2948   // Setup the verification and class unloading state for this
2949   // CMS collection cycle.
2950   setup_cms_unloading_and_verification_state();
2951 
2952   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2953     PrintGCDetails && Verbose, true, _gc_timer_cm);)
2954 
2955   // Reset all the PLAB chunk arrays if necessary.
2956   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2957     reset_survivor_plab_arrays();
2958   }
2959 
2960   ResourceMark rm;
2961   HandleMark  hm;
2962 
2963   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2964   GenCollectedHeap* gch = GenCollectedHeap::heap();
2965 
2966   verify_work_stacks_empty();
2967   verify_overflow_empty();
2968 
2969   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2970   // Update the saved marks which may affect the root scans.
2971   gch->save_marks();
2972 
2973   // weak reference processing has not started yet.
2974   ref_processor()->set_enqueuing_is_done(false);
2975 
2976   // Need to remember all newly created CLDs,
2977   // so that we can guarantee that the remark finds them.
2978   ClassLoaderDataGraph::remember_new_clds(true);
2979 
2980   // Whenever a CLD is found, it will be claimed before proceeding to mark
2981   // the klasses. The claimed marks need to be cleared before marking starts.
2982   ClassLoaderDataGraph::clear_claimed_marks();
2983 
2984   if (CMSPrintEdenSurvivorChunks) {
2985     print_eden_and_survivor_chunk_arrays();
2986   }
2987 
2988   {
2989 #if defined(COMPILER2) || INCLUDE_JVMCI
2990     DerivedPointerTableDeactivate dpt_deact;
2991 #endif
2992     if (CMSParallelInitialMarkEnabled) {
2993       // The parallel version.
2994       WorkGang* workers = gch->workers();
2995       assert(workers != NULL, "Need parallel worker threads.");
2996       uint n_workers = workers->active_workers();
2997 
2998       StrongRootsScope srs(n_workers);
2999 
3000       CMSParInitialMarkTask tsk(this, &srs, n_workers);
3001       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3002       if (n_workers > 1) {
3003         workers->run_task(&tsk);
3004       } else {
3005         tsk.work(0);
3006       }
3007     } else {
3008       // The serial version.
3009       CLDToOopClosure cld_closure(&notOlder, true);
3010       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3011 
3012       StrongRootsScope srs(1);
3013 
3014       gch->gen_process_roots(&srs,
3015                              GenCollectedHeap::OldGen,
3016                              true,   // young gen as roots
3017                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3018                              should_unload_classes(),
3019                              &notOlder,
3020                              NULL,
3021                              &cld_closure);
3022     }
3023   }
3024 
3025   // Clear mod-union table; it will be dirtied in the prologue of
3026   // CMS generation per each young generation collection.
3027 
3028   assert(_modUnionTable.isAllClear(),
3029        "Was cleared in most recent final checkpoint phase"
3030        " or no bits are set in the gc_prologue before the start of the next "
3031        "subsequent marking phase.");
3032 
3033   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3034 
3035   // Save the end of the used_region of the constituent generations
3036   // to be used to limit the extent of sweep in each generation.
3037   save_sweep_limits();
3038   verify_overflow_empty();
3039 }
3040 
3041 bool CMSCollector::markFromRoots() {
3042   // we might be tempted to assert that:
3043   // assert(!SafepointSynchronize::is_at_safepoint(),
3044   //        "inconsistent argument?");
3045   // However that wouldn't be right, because it's possible that
3046   // a safepoint is indeed in progress as a young generation
3047   // stop-the-world GC happens even as we mark in this generation.
3048   assert(_collectorState == Marking, "inconsistent state?");
3049   check_correct_thread_executing();
3050   verify_overflow_empty();
3051 
3052   // Weak ref discovery note: We may be discovering weak
3053   // refs in this generation concurrent (but interleaved) with
3054   // weak ref discovery by the young generation collector.
3055 
3056   CMSTokenSyncWithLocks ts(true, bitMapLock());
3057   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3058   CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3059   bool res = markFromRootsWork();
3060   if (res) {
3061     _collectorState = Precleaning;
3062   } else { // We failed and a foreground collection wants to take over
3063     assert(_foregroundGCIsActive, "internal state inconsistency");
3064     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3065     if (PrintGCDetails) {
3066       gclog_or_tty->print_cr("bailing out to foreground collection");
3067     }
3068   }
3069   verify_overflow_empty();
3070   return res;
3071 }
3072 
3073 bool CMSCollector::markFromRootsWork() {
3074   // iterate over marked bits in bit map, doing a full scan and mark
3075   // from these roots using the following algorithm:
3076   // . if oop is to the right of the current scan pointer,
3077   //   mark corresponding bit (we'll process it later)
3078   // . else (oop is to left of current scan pointer)
3079   //   push oop on marking stack
3080   // . drain the marking stack
3081 
3082   // Note that when we do a marking step we need to hold the
3083   // bit map lock -- recall that direct allocation (by mutators)
3084   // and promotion (by the young generation collector) is also
3085   // marking the bit map. [the so-called allocate live policy.]
3086   // Because the implementation of bit map marking is not
3087   // robust wrt simultaneous marking of bits in the same word,
3088   // we need to make sure that there is no such interference
3089   // between concurrent such updates.
3090 
3091   // already have locks
3092   assert_lock_strong(bitMapLock());
3093 
3094   verify_work_stacks_empty();
3095   verify_overflow_empty();
3096   bool result = false;
3097   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3098     result = do_marking_mt();
3099   } else {
3100     result = do_marking_st();
3101   }
3102   return result;
3103 }
3104 
3105 // Forward decl
3106 class CMSConcMarkingTask;
3107 
3108 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3109   CMSCollector*       _collector;
3110   CMSConcMarkingTask* _task;
3111  public:
3112   virtual void yield();
3113 
3114   // "n_threads" is the number of threads to be terminated.
3115   // "queue_set" is a set of work queues of other threads.
3116   // "collector" is the CMS collector associated with this task terminator.
3117   // "yield" indicates whether we need the gang as a whole to yield.
3118   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3119     ParallelTaskTerminator(n_threads, queue_set),
3120     _collector(collector) { }
3121 
3122   void set_task(CMSConcMarkingTask* task) {
3123     _task = task;
3124   }
3125 };
3126 
3127 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3128   CMSConcMarkingTask* _task;
3129  public:
3130   bool should_exit_termination();
3131   void set_task(CMSConcMarkingTask* task) {
3132     _task = task;
3133   }
3134 };
3135 
3136 // MT Concurrent Marking Task
3137 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3138   CMSCollector* _collector;
3139   uint          _n_workers;       // requested/desired # workers
3140   bool          _result;
3141   CompactibleFreeListSpace*  _cms_space;
3142   char          _pad_front[64];   // padding to ...
3143   HeapWord*     _global_finger;   // ... avoid sharing cache line
3144   char          _pad_back[64];
3145   HeapWord*     _restart_addr;
3146 
3147   //  Exposed here for yielding support
3148   Mutex* const _bit_map_lock;
3149 
3150   // The per thread work queues, available here for stealing
3151   OopTaskQueueSet*  _task_queues;
3152 
3153   // Termination (and yielding) support
3154   CMSConcMarkingTerminator _term;
3155   CMSConcMarkingTerminatorTerminator _term_term;
3156 
3157  public:
3158   CMSConcMarkingTask(CMSCollector* collector,
3159                  CompactibleFreeListSpace* cms_space,
3160                  YieldingFlexibleWorkGang* workers,
3161                  OopTaskQueueSet* task_queues):
3162     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3163     _collector(collector),
3164     _cms_space(cms_space),
3165     _n_workers(0), _result(true),
3166     _task_queues(task_queues),
3167     _term(_n_workers, task_queues, _collector),
3168     _bit_map_lock(collector->bitMapLock())
3169   {
3170     _requested_size = _n_workers;
3171     _term.set_task(this);
3172     _term_term.set_task(this);
3173     _restart_addr = _global_finger = _cms_space->bottom();
3174   }
3175 
3176 
3177   OopTaskQueueSet* task_queues()  { return _task_queues; }
3178 
3179   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3180 
3181   HeapWord** global_finger_addr() { return &_global_finger; }
3182 
3183   CMSConcMarkingTerminator* terminator() { return &_term; }
3184 
3185   virtual void set_for_termination(uint active_workers) {
3186     terminator()->reset_for_reuse(active_workers);
3187   }
3188 
3189   void work(uint worker_id);
3190   bool should_yield() {
3191     return    ConcurrentMarkSweepThread::should_yield()
3192            && !_collector->foregroundGCIsActive();
3193   }
3194 
3195   virtual void coordinator_yield();  // stuff done by coordinator
3196   bool result() { return _result; }
3197 
3198   void reset(HeapWord* ra) {
3199     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3200     _restart_addr = _global_finger = ra;
3201     _term.reset_for_reuse();
3202   }
3203 
3204   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3205                                            OopTaskQueue* work_q);
3206 
3207  private:
3208   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3209   void do_work_steal(int i);
3210   void bump_global_finger(HeapWord* f);
3211 };
3212 
3213 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3214   assert(_task != NULL, "Error");
3215   return _task->yielding();
3216   // Note that we do not need the disjunct || _task->should_yield() above
3217   // because we want terminating threads to yield only if the task
3218   // is already in the midst of yielding, which happens only after at least one
3219   // thread has yielded.
3220 }
3221 
3222 void CMSConcMarkingTerminator::yield() {
3223   if (_task->should_yield()) {
3224     _task->yield();
3225   } else {
3226     ParallelTaskTerminator::yield();
3227   }
3228 }
3229 
3230 ////////////////////////////////////////////////////////////////
3231 // Concurrent Marking Algorithm Sketch
3232 ////////////////////////////////////////////////////////////////
3233 // Until all tasks exhausted (both spaces):
3234 // -- claim next available chunk
3235 // -- bump global finger via CAS
3236 // -- find first object that starts in this chunk
3237 //    and start scanning bitmap from that position
3238 // -- scan marked objects for oops
3239 // -- CAS-mark target, and if successful:
3240 //    . if target oop is above global finger (volatile read)
3241 //      nothing to do
3242 //    . if target oop is in chunk and above local finger
3243 //        then nothing to do
3244 //    . else push on work-queue
3245 // -- Deal with possible overflow issues:
3246 //    . local work-queue overflow causes stuff to be pushed on
3247 //      global (common) overflow queue
3248 //    . always first empty local work queue
3249 //    . then get a batch of oops from global work queue if any
3250 //    . then do work stealing
3251 // -- When all tasks claimed (both spaces)
3252 //    and local work queue empty,
3253 //    then in a loop do:
3254 //    . check global overflow stack; steal a batch of oops and trace
3255 //    . try to steal from other threads oif GOS is empty
3256 //    . if neither is available, offer termination
3257 // -- Terminate and return result
3258 //
3259 void CMSConcMarkingTask::work(uint worker_id) {
3260   elapsedTimer _timer;
3261   ResourceMark rm;
3262   HandleMark hm;
3263 
3264   DEBUG_ONLY(_collector->verify_overflow_empty();)
3265 
3266   // Before we begin work, our work queue should be empty
3267   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3268   // Scan the bitmap covering _cms_space, tracing through grey objects.
3269   _timer.start();
3270   do_scan_and_mark(worker_id, _cms_space);
3271   _timer.stop();
3272   if (PrintCMSStatistics != 0) {
3273     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3274       worker_id, _timer.seconds());
3275       // XXX: need xxx/xxx type of notation, two timers
3276   }
3277 
3278   // ... do work stealing
3279   _timer.reset();
3280   _timer.start();
3281   do_work_steal(worker_id);
3282   _timer.stop();
3283   if (PrintCMSStatistics != 0) {
3284     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3285       worker_id, _timer.seconds());
3286       // XXX: need xxx/xxx type of notation, two timers
3287   }
3288   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3289   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3290   // Note that under the current task protocol, the
3291   // following assertion is true even of the spaces
3292   // expanded since the completion of the concurrent
3293   // marking. XXX This will likely change under a strict
3294   // ABORT semantics.
3295   // After perm removal the comparison was changed to
3296   // greater than or equal to from strictly greater than.
3297   // Before perm removal the highest address sweep would
3298   // have been at the end of perm gen but now is at the
3299   // end of the tenured gen.
3300   assert(_global_finger >=  _cms_space->end(),
3301          "All tasks have been completed");
3302   DEBUG_ONLY(_collector->verify_overflow_empty();)
3303 }
3304 
3305 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3306   HeapWord* read = _global_finger;
3307   HeapWord* cur  = read;
3308   while (f > read) {
3309     cur = read;
3310     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3311     if (cur == read) {
3312       // our cas succeeded
3313       assert(_global_finger >= f, "protocol consistency");
3314       break;
3315     }
3316   }
3317 }
3318 
3319 // This is really inefficient, and should be redone by
3320 // using (not yet available) block-read and -write interfaces to the
3321 // stack and the work_queue. XXX FIX ME !!!
3322 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3323                                                       OopTaskQueue* work_q) {
3324   // Fast lock-free check
3325   if (ovflw_stk->length() == 0) {
3326     return false;
3327   }
3328   assert(work_q->size() == 0, "Shouldn't steal");
3329   MutexLockerEx ml(ovflw_stk->par_lock(),
3330                    Mutex::_no_safepoint_check_flag);
3331   // Grab up to 1/4 the size of the work queue
3332   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3333                     (size_t)ParGCDesiredObjsFromOverflowList);
3334   num = MIN2(num, ovflw_stk->length());
3335   for (int i = (int) num; i > 0; i--) {
3336     oop cur = ovflw_stk->pop();
3337     assert(cur != NULL, "Counted wrong?");
3338     work_q->push(cur);
3339   }
3340   return num > 0;
3341 }
3342 
3343 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3344   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3345   int n_tasks = pst->n_tasks();
3346   // We allow that there may be no tasks to do here because
3347   // we are restarting after a stack overflow.
3348   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3349   uint nth_task = 0;
3350 
3351   HeapWord* aligned_start = sp->bottom();
3352   if (sp->used_region().contains(_restart_addr)) {
3353     // Align down to a card boundary for the start of 0th task
3354     // for this space.
3355     aligned_start =
3356       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3357                                  CardTableModRefBS::card_size);
3358   }
3359 
3360   size_t chunk_size = sp->marking_task_size();
3361   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3362     // Having claimed the nth task in this space,
3363     // compute the chunk that it corresponds to:
3364     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3365                                aligned_start + (nth_task+1)*chunk_size);
3366     // Try and bump the global finger via a CAS;
3367     // note that we need to do the global finger bump
3368     // _before_ taking the intersection below, because
3369     // the task corresponding to that region will be
3370     // deemed done even if the used_region() expands
3371     // because of allocation -- as it almost certainly will
3372     // during start-up while the threads yield in the
3373     // closure below.
3374     HeapWord* finger = span.end();
3375     bump_global_finger(finger);   // atomically
3376     // There are null tasks here corresponding to chunks
3377     // beyond the "top" address of the space.
3378     span = span.intersection(sp->used_region());
3379     if (!span.is_empty()) {  // Non-null task
3380       HeapWord* prev_obj;
3381       assert(!span.contains(_restart_addr) || nth_task == 0,
3382              "Inconsistency");
3383       if (nth_task == 0) {
3384         // For the 0th task, we'll not need to compute a block_start.
3385         if (span.contains(_restart_addr)) {
3386           // In the case of a restart because of stack overflow,
3387           // we might additionally skip a chunk prefix.
3388           prev_obj = _restart_addr;
3389         } else {
3390           prev_obj = span.start();
3391         }
3392       } else {
3393         // We want to skip the first object because
3394         // the protocol is to scan any object in its entirety
3395         // that _starts_ in this span; a fortiori, any
3396         // object starting in an earlier span is scanned
3397         // as part of an earlier claimed task.
3398         // Below we use the "careful" version of block_start
3399         // so we do not try to navigate uninitialized objects.
3400         prev_obj = sp->block_start_careful(span.start());
3401         // Below we use a variant of block_size that uses the
3402         // Printezis bits to avoid waiting for allocated
3403         // objects to become initialized/parsable.
3404         while (prev_obj < span.start()) {
3405           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3406           if (sz > 0) {
3407             prev_obj += sz;
3408           } else {
3409             // In this case we may end up doing a bit of redundant
3410             // scanning, but that appears unavoidable, short of
3411             // locking the free list locks; see bug 6324141.
3412             break;
3413           }
3414         }
3415       }
3416       if (prev_obj < span.end()) {
3417         MemRegion my_span = MemRegion(prev_obj, span.end());
3418         // Do the marking work within a non-empty span --
3419         // the last argument to the constructor indicates whether the
3420         // iteration should be incremental with periodic yields.
3421         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3422                                     &_collector->_markBitMap,
3423                                     work_queue(i),
3424                                     &_collector->_markStack);
3425         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3426       } // else nothing to do for this task
3427     }   // else nothing to do for this task
3428   }
3429   // We'd be tempted to assert here that since there are no
3430   // more tasks left to claim in this space, the global_finger
3431   // must exceed space->top() and a fortiori space->end(). However,
3432   // that would not quite be correct because the bumping of
3433   // global_finger occurs strictly after the claiming of a task,
3434   // so by the time we reach here the global finger may not yet
3435   // have been bumped up by the thread that claimed the last
3436   // task.
3437   pst->all_tasks_completed();
3438 }
3439 
3440 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3441  private:
3442   CMSCollector* _collector;
3443   CMSConcMarkingTask* _task;
3444   MemRegion     _span;
3445   CMSBitMap*    _bit_map;
3446   CMSMarkStack* _overflow_stack;
3447   OopTaskQueue* _work_queue;
3448  protected:
3449   DO_OOP_WORK_DEFN
3450  public:
3451   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3452                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3453     MetadataAwareOopClosure(collector->ref_processor()),
3454     _collector(collector),
3455     _task(task),
3456     _span(collector->_span),
3457     _work_queue(work_queue),
3458     _bit_map(bit_map),
3459     _overflow_stack(overflow_stack)
3460   { }
3461   virtual void do_oop(oop* p);
3462   virtual void do_oop(narrowOop* p);
3463 
3464   void trim_queue(size_t max);
3465   void handle_stack_overflow(HeapWord* lost);
3466   void do_yield_check() {
3467     if (_task->should_yield()) {
3468       _task->yield();
3469     }
3470   }
3471 };
3472 
3473 // Grey object scanning during work stealing phase --
3474 // the salient assumption here is that any references
3475 // that are in these stolen objects being scanned must
3476 // already have been initialized (else they would not have
3477 // been published), so we do not need to check for
3478 // uninitialized objects before pushing here.
3479 void Par_ConcMarkingClosure::do_oop(oop obj) {
3480   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3481   HeapWord* addr = (HeapWord*)obj;
3482   // Check if oop points into the CMS generation
3483   // and is not marked
3484   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3485     // a white object ...
3486     // If we manage to "claim" the object, by being the
3487     // first thread to mark it, then we push it on our
3488     // marking stack
3489     if (_bit_map->par_mark(addr)) {     // ... now grey
3490       // push on work queue (grey set)
3491       bool simulate_overflow = false;
3492       NOT_PRODUCT(
3493         if (CMSMarkStackOverflowALot &&
3494             _collector->simulate_overflow()) {
3495           // simulate a stack overflow
3496           simulate_overflow = true;
3497         }
3498       )
3499       if (simulate_overflow ||
3500           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3501         // stack overflow
3502         if (PrintCMSStatistics != 0) {
3503           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3504                                  SIZE_FORMAT, _overflow_stack->capacity());
3505         }
3506         // We cannot assert that the overflow stack is full because
3507         // it may have been emptied since.
3508         assert(simulate_overflow ||
3509                _work_queue->size() == _work_queue->max_elems(),
3510               "Else push should have succeeded");
3511         handle_stack_overflow(addr);
3512       }
3513     } // Else, some other thread got there first
3514     do_yield_check();
3515   }
3516 }
3517 
3518 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3519 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3520 
3521 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3522   while (_work_queue->size() > max) {
3523     oop new_oop;
3524     if (_work_queue->pop_local(new_oop)) {
3525       assert(new_oop->is_oop(), "Should be an oop");
3526       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3527       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3528       new_oop->oop_iterate(this);  // do_oop() above
3529       do_yield_check();
3530     }
3531   }
3532 }
3533 
3534 // Upon stack overflow, we discard (part of) the stack,
3535 // remembering the least address amongst those discarded
3536 // in CMSCollector's _restart_address.
3537 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3538   // We need to do this under a mutex to prevent other
3539   // workers from interfering with the work done below.
3540   MutexLockerEx ml(_overflow_stack->par_lock(),
3541                    Mutex::_no_safepoint_check_flag);
3542   // Remember the least grey address discarded
3543   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3544   _collector->lower_restart_addr(ra);
3545   _overflow_stack->reset();  // discard stack contents
3546   _overflow_stack->expand(); // expand the stack if possible
3547 }
3548 
3549 
3550 void CMSConcMarkingTask::do_work_steal(int i) {
3551   OopTaskQueue* work_q = work_queue(i);
3552   oop obj_to_scan;
3553   CMSBitMap* bm = &(_collector->_markBitMap);
3554   CMSMarkStack* ovflw = &(_collector->_markStack);
3555   int* seed = _collector->hash_seed(i);
3556   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3557   while (true) {
3558     cl.trim_queue(0);
3559     assert(work_q->size() == 0, "Should have been emptied above");
3560     if (get_work_from_overflow_stack(ovflw, work_q)) {
3561       // Can't assert below because the work obtained from the
3562       // overflow stack may already have been stolen from us.
3563       // assert(work_q->size() > 0, "Work from overflow stack");
3564       continue;
3565     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3566       assert(obj_to_scan->is_oop(), "Should be an oop");
3567       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3568       obj_to_scan->oop_iterate(&cl);
3569     } else if (terminator()->offer_termination(&_term_term)) {
3570       assert(work_q->size() == 0, "Impossible!");
3571       break;
3572     } else if (yielding() || should_yield()) {
3573       yield();
3574     }
3575   }
3576 }
3577 
3578 // This is run by the CMS (coordinator) thread.
3579 void CMSConcMarkingTask::coordinator_yield() {
3580   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3581          "CMS thread should hold CMS token");
3582   // First give up the locks, then yield, then re-lock
3583   // We should probably use a constructor/destructor idiom to
3584   // do this unlock/lock or modify the MutexUnlocker class to
3585   // serve our purpose. XXX
3586   assert_lock_strong(_bit_map_lock);
3587   _bit_map_lock->unlock();
3588   ConcurrentMarkSweepThread::desynchronize(true);
3589   _collector->stopTimer();
3590   if (PrintCMSStatistics != 0) {
3591     _collector->incrementYields();
3592   }
3593 
3594   // It is possible for whichever thread initiated the yield request
3595   // not to get a chance to wake up and take the bitmap lock between
3596   // this thread releasing it and reacquiring it. So, while the
3597   // should_yield() flag is on, let's sleep for a bit to give the
3598   // other thread a chance to wake up. The limit imposed on the number
3599   // of iterations is defensive, to avoid any unforseen circumstances
3600   // putting us into an infinite loop. Since it's always been this
3601   // (coordinator_yield()) method that was observed to cause the
3602   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3603   // which is by default non-zero. For the other seven methods that
3604   // also perform the yield operation, as are using a different
3605   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3606   // can enable the sleeping for those methods too, if necessary.
3607   // See 6442774.
3608   //
3609   // We really need to reconsider the synchronization between the GC
3610   // thread and the yield-requesting threads in the future and we
3611   // should really use wait/notify, which is the recommended
3612   // way of doing this type of interaction. Additionally, we should
3613   // consolidate the eight methods that do the yield operation and they
3614   // are almost identical into one for better maintainability and
3615   // readability. See 6445193.
3616   //
3617   // Tony 2006.06.29
3618   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3619                    ConcurrentMarkSweepThread::should_yield() &&
3620                    !CMSCollector::foregroundGCIsActive(); ++i) {
3621     os::sleep(Thread::current(), 1, false);
3622   }
3623 
3624   ConcurrentMarkSweepThread::synchronize(true);
3625   _bit_map_lock->lock_without_safepoint_check();
3626   _collector->startTimer();
3627 }
3628 
3629 bool CMSCollector::do_marking_mt() {
3630   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3631   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3632                                                                   conc_workers()->active_workers(),
3633                                                                   Threads::number_of_non_daemon_threads());
3634   conc_workers()->set_active_workers(num_workers);
3635 
3636   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3637 
3638   CMSConcMarkingTask tsk(this,
3639                          cms_space,
3640                          conc_workers(),
3641                          task_queues());
3642 
3643   // Since the actual number of workers we get may be different
3644   // from the number we requested above, do we need to do anything different
3645   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3646   // class?? XXX
3647   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3648 
3649   // Refs discovery is already non-atomic.
3650   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3651   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3652   conc_workers()->start_task(&tsk);
3653   while (tsk.yielded()) {
3654     tsk.coordinator_yield();
3655     conc_workers()->continue_task(&tsk);
3656   }
3657   // If the task was aborted, _restart_addr will be non-NULL
3658   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3659   while (_restart_addr != NULL) {
3660     // XXX For now we do not make use of ABORTED state and have not
3661     // yet implemented the right abort semantics (even in the original
3662     // single-threaded CMS case). That needs some more investigation
3663     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3664     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3665     // If _restart_addr is non-NULL, a marking stack overflow
3666     // occurred; we need to do a fresh marking iteration from the
3667     // indicated restart address.
3668     if (_foregroundGCIsActive) {
3669       // We may be running into repeated stack overflows, having
3670       // reached the limit of the stack size, while making very
3671       // slow forward progress. It may be best to bail out and
3672       // let the foreground collector do its job.
3673       // Clear _restart_addr, so that foreground GC
3674       // works from scratch. This avoids the headache of
3675       // a "rescan" which would otherwise be needed because
3676       // of the dirty mod union table & card table.
3677       _restart_addr = NULL;
3678       return false;
3679     }
3680     // Adjust the task to restart from _restart_addr
3681     tsk.reset(_restart_addr);
3682     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3683                   _restart_addr);
3684     _restart_addr = NULL;
3685     // Get the workers going again
3686     conc_workers()->start_task(&tsk);
3687     while (tsk.yielded()) {
3688       tsk.coordinator_yield();
3689       conc_workers()->continue_task(&tsk);
3690     }
3691   }
3692   assert(tsk.completed(), "Inconsistency");
3693   assert(tsk.result() == true, "Inconsistency");
3694   return true;
3695 }
3696 
3697 bool CMSCollector::do_marking_st() {
3698   ResourceMark rm;
3699   HandleMark   hm;
3700 
3701   // Temporarily make refs discovery single threaded (non-MT)
3702   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3703   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3704     &_markStack, CMSYield);
3705   // the last argument to iterate indicates whether the iteration
3706   // should be incremental with periodic yields.
3707   _markBitMap.iterate(&markFromRootsClosure);
3708   // If _restart_addr is non-NULL, a marking stack overflow
3709   // occurred; we need to do a fresh iteration from the
3710   // indicated restart address.
3711   while (_restart_addr != NULL) {
3712     if (_foregroundGCIsActive) {
3713       // We may be running into repeated stack overflows, having
3714       // reached the limit of the stack size, while making very
3715       // slow forward progress. It may be best to bail out and
3716       // let the foreground collector do its job.
3717       // Clear _restart_addr, so that foreground GC
3718       // works from scratch. This avoids the headache of
3719       // a "rescan" which would otherwise be needed because
3720       // of the dirty mod union table & card table.
3721       _restart_addr = NULL;
3722       return false;  // indicating failure to complete marking
3723     }
3724     // Deal with stack overflow:
3725     // we restart marking from _restart_addr
3726     HeapWord* ra = _restart_addr;
3727     markFromRootsClosure.reset(ra);
3728     _restart_addr = NULL;
3729     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3730   }
3731   return true;
3732 }
3733 
3734 void CMSCollector::preclean() {
3735   check_correct_thread_executing();
3736   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3737   verify_work_stacks_empty();
3738   verify_overflow_empty();
3739   _abort_preclean = false;
3740   if (CMSPrecleaningEnabled) {
3741     if (!CMSEdenChunksRecordAlways) {
3742       _eden_chunk_index = 0;
3743     }
3744     size_t used = get_eden_used();
3745     size_t capacity = get_eden_capacity();
3746     // Don't start sampling unless we will get sufficiently
3747     // many samples.
3748     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3749                 * CMSScheduleRemarkEdenPenetration)) {
3750       _start_sampling = true;
3751     } else {
3752       _start_sampling = false;
3753     }
3754     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3755     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
3756     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3757   }
3758   CMSTokenSync x(true); // is cms thread
3759   if (CMSPrecleaningEnabled) {
3760     sample_eden();
3761     _collectorState = AbortablePreclean;
3762   } else {
3763     _collectorState = FinalMarking;
3764   }
3765   verify_work_stacks_empty();
3766   verify_overflow_empty();
3767 }
3768 
3769 // Try and schedule the remark such that young gen
3770 // occupancy is CMSScheduleRemarkEdenPenetration %.
3771 void CMSCollector::abortable_preclean() {
3772   check_correct_thread_executing();
3773   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3774   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3775 
3776   // If Eden's current occupancy is below this threshold,
3777   // immediately schedule the remark; else preclean
3778   // past the next scavenge in an effort to
3779   // schedule the pause as described above. By choosing
3780   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3781   // we will never do an actual abortable preclean cycle.
3782   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3783     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3784     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
3785     // We need more smarts in the abortable preclean
3786     // loop below to deal with cases where allocation
3787     // in young gen is very very slow, and our precleaning
3788     // is running a losing race against a horde of
3789     // mutators intent on flooding us with CMS updates
3790     // (dirty cards).
3791     // One, admittedly dumb, strategy is to give up
3792     // after a certain number of abortable precleaning loops
3793     // or after a certain maximum time. We want to make
3794     // this smarter in the next iteration.
3795     // XXX FIX ME!!! YSR
3796     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3797     while (!(should_abort_preclean() ||
3798              ConcurrentMarkSweepThread::should_terminate())) {
3799       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3800       cumworkdone += workdone;
3801       loops++;
3802       // Voluntarily terminate abortable preclean phase if we have
3803       // been at it for too long.
3804       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3805           loops >= CMSMaxAbortablePrecleanLoops) {
3806         if (PrintGCDetails) {
3807           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3808         }
3809         break;
3810       }
3811       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3812         if (PrintGCDetails) {
3813           gclog_or_tty->print(" CMS: abort preclean due to time ");
3814         }
3815         break;
3816       }
3817       // If we are doing little work each iteration, we should
3818       // take a short break.
3819       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3820         // Sleep for some time, waiting for work to accumulate
3821         stopTimer();
3822         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3823         startTimer();
3824         waited++;
3825       }
3826     }
3827     if (PrintCMSStatistics > 0) {
3828       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3829                           loops, waited, cumworkdone);
3830     }
3831   }
3832   CMSTokenSync x(true); // is cms thread
3833   if (_collectorState != Idling) {
3834     assert(_collectorState == AbortablePreclean,
3835            "Spontaneous state transition?");
3836     _collectorState = FinalMarking;
3837   } // Else, a foreground collection completed this CMS cycle.
3838   return;
3839 }
3840 
3841 // Respond to an Eden sampling opportunity
3842 void CMSCollector::sample_eden() {
3843   // Make sure a young gc cannot sneak in between our
3844   // reading and recording of a sample.
3845   assert(Thread::current()->is_ConcurrentGC_thread(),
3846          "Only the cms thread may collect Eden samples");
3847   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3848          "Should collect samples while holding CMS token");
3849   if (!_start_sampling) {
3850     return;
3851   }
3852   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3853   // is populated by the young generation.
3854   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3855     if (_eden_chunk_index < _eden_chunk_capacity) {
3856       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3857       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3858              "Unexpected state of Eden");
3859       // We'd like to check that what we just sampled is an oop-start address;
3860       // however, we cannot do that here since the object may not yet have been
3861       // initialized. So we'll instead do the check when we _use_ this sample
3862       // later.
3863       if (_eden_chunk_index == 0 ||
3864           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3865                          _eden_chunk_array[_eden_chunk_index-1])
3866            >= CMSSamplingGrain)) {
3867         _eden_chunk_index++;  // commit sample
3868       }
3869     }
3870   }
3871   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3872     size_t used = get_eden_used();
3873     size_t capacity = get_eden_capacity();
3874     assert(used <= capacity, "Unexpected state of Eden");
3875     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3876       _abort_preclean = true;
3877     }
3878   }
3879 }
3880 
3881 
3882 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3883   assert(_collectorState == Precleaning ||
3884          _collectorState == AbortablePreclean, "incorrect state");
3885   ResourceMark rm;
3886   HandleMark   hm;
3887 
3888   // Precleaning is currently not MT but the reference processor
3889   // may be set for MT.  Disable it temporarily here.
3890   ReferenceProcessor* rp = ref_processor();
3891   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3892 
3893   // Do one pass of scrubbing the discovered reference lists
3894   // to remove any reference objects with strongly-reachable
3895   // referents.
3896   if (clean_refs) {
3897     CMSPrecleanRefsYieldClosure yield_cl(this);
3898     assert(rp->span().equals(_span), "Spans should be equal");
3899     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3900                                    &_markStack, true /* preclean */);
3901     CMSDrainMarkingStackClosure complete_trace(this,
3902                                    _span, &_markBitMap, &_markStack,
3903                                    &keep_alive, true /* preclean */);
3904 
3905     // We don't want this step to interfere with a young
3906     // collection because we don't want to take CPU
3907     // or memory bandwidth away from the young GC threads
3908     // (which may be as many as there are CPUs).
3909     // Note that we don't need to protect ourselves from
3910     // interference with mutators because they can't
3911     // manipulate the discovered reference lists nor affect
3912     // the computed reachability of the referents, the
3913     // only properties manipulated by the precleaning
3914     // of these reference lists.
3915     stopTimer();
3916     CMSTokenSyncWithLocks x(true /* is cms thread */,
3917                             bitMapLock());
3918     startTimer();
3919     sample_eden();
3920 
3921     // The following will yield to allow foreground
3922     // collection to proceed promptly. XXX YSR:
3923     // The code in this method may need further
3924     // tweaking for better performance and some restructuring
3925     // for cleaner interfaces.
3926     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3927     rp->preclean_discovered_references(
3928           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3929           gc_timer);
3930   }
3931 
3932   if (clean_survivor) {  // preclean the active survivor space(s)
3933     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3934                              &_markBitMap, &_modUnionTable,
3935                              &_markStack, true /* precleaning phase */);
3936     stopTimer();
3937     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3938                              bitMapLock());
3939     startTimer();
3940     unsigned int before_count =
3941       GenCollectedHeap::heap()->total_collections();
3942     SurvivorSpacePrecleanClosure
3943       sss_cl(this, _span, &_markBitMap, &_markStack,
3944              &pam_cl, before_count, CMSYield);
3945     _young_gen->from()->object_iterate_careful(&sss_cl);
3946     _young_gen->to()->object_iterate_careful(&sss_cl);
3947   }
3948   MarkRefsIntoAndScanClosure
3949     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3950              &_markStack, this, CMSYield,
3951              true /* precleaning phase */);
3952   // CAUTION: The following closure has persistent state that may need to
3953   // be reset upon a decrease in the sequence of addresses it
3954   // processes.
3955   ScanMarkedObjectsAgainCarefullyClosure
3956     smoac_cl(this, _span,
3957       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3958 
3959   // Preclean dirty cards in ModUnionTable and CardTable using
3960   // appropriate convergence criterion;
3961   // repeat CMSPrecleanIter times unless we find that
3962   // we are losing.
3963   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3964   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3965          "Bad convergence multiplier");
3966   assert(CMSPrecleanThreshold >= 100,
3967          "Unreasonably low CMSPrecleanThreshold");
3968 
3969   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3970   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3971        numIter < CMSPrecleanIter;
3972        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3973     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3974     if (Verbose && PrintGCDetails) {
3975       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3976     }
3977     // Either there are very few dirty cards, so re-mark
3978     // pause will be small anyway, or our pre-cleaning isn't
3979     // that much faster than the rate at which cards are being
3980     // dirtied, so we might as well stop and re-mark since
3981     // precleaning won't improve our re-mark time by much.
3982     if (curNumCards <= CMSPrecleanThreshold ||
3983         (numIter > 0 &&
3984          (curNumCards * CMSPrecleanDenominator >
3985          lastNumCards * CMSPrecleanNumerator))) {
3986       numIter++;
3987       cumNumCards += curNumCards;
3988       break;
3989     }
3990   }
3991 
3992   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3993 
3994   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3995   cumNumCards += curNumCards;
3996   if (PrintGCDetails && PrintCMSStatistics != 0) {
3997     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3998                   curNumCards, cumNumCards, numIter);
3999   }
4000   return cumNumCards;   // as a measure of useful work done
4001 }
4002 
4003 // PRECLEANING NOTES:
4004 // Precleaning involves:
4005 // . reading the bits of the modUnionTable and clearing the set bits.
4006 // . For the cards corresponding to the set bits, we scan the
4007 //   objects on those cards. This means we need the free_list_lock
4008 //   so that we can safely iterate over the CMS space when scanning
4009 //   for oops.
4010 // . When we scan the objects, we'll be both reading and setting
4011 //   marks in the marking bit map, so we'll need the marking bit map.
4012 // . For protecting _collector_state transitions, we take the CGC_lock.
4013 //   Note that any races in the reading of of card table entries by the
4014 //   CMS thread on the one hand and the clearing of those entries by the
4015 //   VM thread or the setting of those entries by the mutator threads on the
4016 //   other are quite benign. However, for efficiency it makes sense to keep
4017 //   the VM thread from racing with the CMS thread while the latter is
4018 //   dirty card info to the modUnionTable. We therefore also use the
4019 //   CGC_lock to protect the reading of the card table and the mod union
4020 //   table by the CM thread.
4021 // . We run concurrently with mutator updates, so scanning
4022 //   needs to be done carefully  -- we should not try to scan
4023 //   potentially uninitialized objects.
4024 //
4025 // Locking strategy: While holding the CGC_lock, we scan over and
4026 // reset a maximal dirty range of the mod union / card tables, then lock
4027 // the free_list_lock and bitmap lock to do a full marking, then
4028 // release these locks; and repeat the cycle. This allows for a
4029 // certain amount of fairness in the sharing of these locks between
4030 // the CMS collector on the one hand, and the VM thread and the
4031 // mutators on the other.
4032 
4033 // NOTE: preclean_mod_union_table() and preclean_card_table()
4034 // further below are largely identical; if you need to modify
4035 // one of these methods, please check the other method too.
4036 
4037 size_t CMSCollector::preclean_mod_union_table(
4038   ConcurrentMarkSweepGeneration* old_gen,
4039   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4040   verify_work_stacks_empty();
4041   verify_overflow_empty();
4042 
4043   // strategy: starting with the first card, accumulate contiguous
4044   // ranges of dirty cards; clear these cards, then scan the region
4045   // covered by these cards.
4046 
4047   // Since all of the MUT is committed ahead, we can just use
4048   // that, in case the generations expand while we are precleaning.
4049   // It might also be fine to just use the committed part of the
4050   // generation, but we might potentially miss cards when the
4051   // generation is rapidly expanding while we are in the midst
4052   // of precleaning.
4053   HeapWord* startAddr = old_gen->reserved().start();
4054   HeapWord* endAddr   = old_gen->reserved().end();
4055 
4056   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4057 
4058   size_t numDirtyCards, cumNumDirtyCards;
4059   HeapWord *nextAddr, *lastAddr;
4060   for (cumNumDirtyCards = numDirtyCards = 0,
4061        nextAddr = lastAddr = startAddr;
4062        nextAddr < endAddr;
4063        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4064 
4065     ResourceMark rm;
4066     HandleMark   hm;
4067 
4068     MemRegion dirtyRegion;
4069     {
4070       stopTimer();
4071       // Potential yield point
4072       CMSTokenSync ts(true);
4073       startTimer();
4074       sample_eden();
4075       // Get dirty region starting at nextOffset (inclusive),
4076       // simultaneously clearing it.
4077       dirtyRegion =
4078         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4079       assert(dirtyRegion.start() >= nextAddr,
4080              "returned region inconsistent?");
4081     }
4082     // Remember where the next search should begin.
4083     // The returned region (if non-empty) is a right open interval,
4084     // so lastOffset is obtained from the right end of that
4085     // interval.
4086     lastAddr = dirtyRegion.end();
4087     // Should do something more transparent and less hacky XXX
4088     numDirtyCards =
4089       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4090 
4091     // We'll scan the cards in the dirty region (with periodic
4092     // yields for foreground GC as needed).
4093     if (!dirtyRegion.is_empty()) {
4094       assert(numDirtyCards > 0, "consistency check");
4095       HeapWord* stop_point = NULL;
4096       stopTimer();
4097       // Potential yield point
4098       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
4099                                bitMapLock());
4100       startTimer();
4101       {
4102         verify_work_stacks_empty();
4103         verify_overflow_empty();
4104         sample_eden();
4105         stop_point =
4106           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4107       }
4108       if (stop_point != NULL) {
4109         // The careful iteration stopped early either because it found an
4110         // uninitialized object, or because we were in the midst of an
4111         // "abortable preclean", which should now be aborted. Redirty
4112         // the bits corresponding to the partially-scanned or unscanned
4113         // cards. We'll either restart at the next block boundary or
4114         // abort the preclean.
4115         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4116                "Should only be AbortablePreclean.");
4117         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4118         if (should_abort_preclean()) {
4119           break; // out of preclean loop
4120         } else {
4121           // Compute the next address at which preclean should pick up;
4122           // might need bitMapLock in order to read P-bits.
4123           lastAddr = next_card_start_after_block(stop_point);
4124         }
4125       }
4126     } else {
4127       assert(lastAddr == endAddr, "consistency check");
4128       assert(numDirtyCards == 0, "consistency check");
4129       break;
4130     }
4131   }
4132   verify_work_stacks_empty();
4133   verify_overflow_empty();
4134   return cumNumDirtyCards;
4135 }
4136 
4137 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4138 // below are largely identical; if you need to modify
4139 // one of these methods, please check the other method too.
4140 
4141 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4142   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4143   // strategy: it's similar to precleamModUnionTable above, in that
4144   // we accumulate contiguous ranges of dirty cards, mark these cards
4145   // precleaned, then scan the region covered by these cards.
4146   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4147   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4148 
4149   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4150 
4151   size_t numDirtyCards, cumNumDirtyCards;
4152   HeapWord *lastAddr, *nextAddr;
4153 
4154   for (cumNumDirtyCards = numDirtyCards = 0,
4155        nextAddr = lastAddr = startAddr;
4156        nextAddr < endAddr;
4157        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4158 
4159     ResourceMark rm;
4160     HandleMark   hm;
4161 
4162     MemRegion dirtyRegion;
4163     {
4164       // See comments in "Precleaning notes" above on why we
4165       // do this locking. XXX Could the locking overheads be
4166       // too high when dirty cards are sparse? [I don't think so.]
4167       stopTimer();
4168       CMSTokenSync x(true); // is cms thread
4169       startTimer();
4170       sample_eden();
4171       // Get and clear dirty region from card table
4172       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4173                                     MemRegion(nextAddr, endAddr),
4174                                     true,
4175                                     CardTableModRefBS::precleaned_card_val());
4176 
4177       assert(dirtyRegion.start() >= nextAddr,
4178              "returned region inconsistent?");
4179     }
4180     lastAddr = dirtyRegion.end();
4181     numDirtyCards =
4182       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4183 
4184     if (!dirtyRegion.is_empty()) {
4185       stopTimer();
4186       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4187       startTimer();
4188       sample_eden();
4189       verify_work_stacks_empty();
4190       verify_overflow_empty();
4191       HeapWord* stop_point =
4192         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4193       if (stop_point != NULL) {
4194         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4195                "Should only be AbortablePreclean.");
4196         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4197         if (should_abort_preclean()) {
4198           break; // out of preclean loop
4199         } else {
4200           // Compute the next address at which preclean should pick up.
4201           lastAddr = next_card_start_after_block(stop_point);
4202         }
4203       }
4204     } else {
4205       break;
4206     }
4207   }
4208   verify_work_stacks_empty();
4209   verify_overflow_empty();
4210   return cumNumDirtyCards;
4211 }
4212 
4213 class PrecleanKlassClosure : public KlassClosure {
4214   KlassToOopClosure _cm_klass_closure;
4215  public:
4216   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4217   void do_klass(Klass* k) {
4218     if (k->has_accumulated_modified_oops()) {
4219       k->clear_accumulated_modified_oops();
4220 
4221       _cm_klass_closure.do_klass(k);
4222     }
4223   }
4224 };
4225 
4226 // The freelist lock is needed to prevent asserts, is it really needed?
4227 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4228 
4229   cl->set_freelistLock(freelistLock);
4230 
4231   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4232 
4233   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4234   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4235   PrecleanKlassClosure preclean_klass_closure(cl);
4236   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4237 
4238   verify_work_stacks_empty();
4239   verify_overflow_empty();
4240 }
4241 
4242 void CMSCollector::checkpointRootsFinal() {
4243   assert(_collectorState == FinalMarking, "incorrect state transition?");
4244   check_correct_thread_executing();
4245   // world is stopped at this checkpoint
4246   assert(SafepointSynchronize::is_at_safepoint(),
4247          "world should be stopped");
4248   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4249 
4250   verify_work_stacks_empty();
4251   verify_overflow_empty();
4252 
4253   if (PrintGCDetails) {
4254     gclog_or_tty->print("[YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)]",
4255                         _young_gen->used() / K,
4256                         _young_gen->capacity() / K);
4257   }
4258   {
4259     if (CMSScavengeBeforeRemark) {
4260       GenCollectedHeap* gch = GenCollectedHeap::heap();
4261       // Temporarily set flag to false, GCH->do_collection will
4262       // expect it to be false and set to true
4263       FlagSetting fl(gch->_is_gc_active, false);
4264       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4265         PrintGCDetails && Verbose, true, _gc_timer_cm);)
4266       gch->do_collection(true,                      // full (i.e. force, see below)
4267                          false,                     // !clear_all_soft_refs
4268                          0,                         // size
4269                          false,                     // is_tlab
4270                          GenCollectedHeap::YoungGen // type
4271         );
4272     }
4273     FreelistLocker x(this);
4274     MutexLockerEx y(bitMapLock(),
4275                     Mutex::_no_safepoint_check_flag);
4276     checkpointRootsFinalWork();
4277   }
4278   verify_work_stacks_empty();
4279   verify_overflow_empty();
4280 }
4281 
4282 void CMSCollector::checkpointRootsFinalWork() {
4283   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
4284 
4285   assert(haveFreelistLocks(), "must have free list locks");
4286   assert_lock_strong(bitMapLock());
4287 
4288   ResourceMark rm;
4289   HandleMark   hm;
4290 
4291   GenCollectedHeap* gch = GenCollectedHeap::heap();
4292 
4293   if (should_unload_classes()) {
4294     CodeCache::gc_prologue();
4295   }
4296   assert(haveFreelistLocks(), "must have free list locks");
4297   assert_lock_strong(bitMapLock());
4298 
4299   // We might assume that we need not fill TLAB's when
4300   // CMSScavengeBeforeRemark is set, because we may have just done
4301   // a scavenge which would have filled all TLAB's -- and besides
4302   // Eden would be empty. This however may not always be the case --
4303   // for instance although we asked for a scavenge, it may not have
4304   // happened because of a JNI critical section. We probably need
4305   // a policy for deciding whether we can in that case wait until
4306   // the critical section releases and then do the remark following
4307   // the scavenge, and skip it here. In the absence of that policy,
4308   // or of an indication of whether the scavenge did indeed occur,
4309   // we cannot rely on TLAB's having been filled and must do
4310   // so here just in case a scavenge did not happen.
4311   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4312   // Update the saved marks which may affect the root scans.
4313   gch->save_marks();
4314 
4315   if (CMSPrintEdenSurvivorChunks) {
4316     print_eden_and_survivor_chunk_arrays();
4317   }
4318 
4319   {
4320 #if defined(COMPILER2) || INCLUDE_JVMCI
4321     DerivedPointerTableDeactivate dpt_deact;
4322 #endif
4323 
4324     // Note on the role of the mod union table:
4325     // Since the marker in "markFromRoots" marks concurrently with
4326     // mutators, it is possible for some reachable objects not to have been
4327     // scanned. For instance, an only reference to an object A was
4328     // placed in object B after the marker scanned B. Unless B is rescanned,
4329     // A would be collected. Such updates to references in marked objects
4330     // are detected via the mod union table which is the set of all cards
4331     // dirtied since the first checkpoint in this GC cycle and prior to
4332     // the most recent young generation GC, minus those cleaned up by the
4333     // concurrent precleaning.
4334     if (CMSParallelRemarkEnabled) {
4335       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
4336       do_remark_parallel();
4337     } else {
4338       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false, _gc_timer_cm);
4339       do_remark_non_parallel();
4340     }
4341   }
4342   verify_work_stacks_empty();
4343   verify_overflow_empty();
4344 
4345   {
4346     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
4347     refProcessingWork();
4348   }
4349   verify_work_stacks_empty();
4350   verify_overflow_empty();
4351 
4352   if (should_unload_classes()) {
4353     CodeCache::gc_epilogue();
4354   }
4355   JvmtiExport::gc_epilogue();
4356 
4357   // If we encountered any (marking stack / work queue) overflow
4358   // events during the current CMS cycle, take appropriate
4359   // remedial measures, where possible, so as to try and avoid
4360   // recurrence of that condition.
4361   assert(_markStack.isEmpty(), "No grey objects");
4362   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4363                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4364   if (ser_ovflw > 0) {
4365     if (PrintCMSStatistics != 0) {
4366       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4367         "(pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT
4368         ", kac_preclean=" SIZE_FORMAT ")",
4369         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4370         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4371     }
4372     _markStack.expand();
4373     _ser_pmc_remark_ovflw = 0;
4374     _ser_pmc_preclean_ovflw = 0;
4375     _ser_kac_preclean_ovflw = 0;
4376     _ser_kac_ovflw = 0;
4377   }
4378   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4379     if (PrintCMSStatistics != 0) {
4380       gclog_or_tty->print_cr("Work queue overflow (benign) "
4381         "(pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4382         _par_pmc_remark_ovflw, _par_kac_ovflw);
4383     }
4384     _par_pmc_remark_ovflw = 0;
4385     _par_kac_ovflw = 0;
4386   }
4387   if (PrintCMSStatistics != 0) {
4388      if (_markStack._hit_limit > 0) {
4389        gclog_or_tty->print_cr(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4390                               _markStack._hit_limit);
4391      }
4392      if (_markStack._failed_double > 0) {
4393        gclog_or_tty->print_cr(" (benign) Failed stack doubling (" SIZE_FORMAT "),"
4394                               " current capacity " SIZE_FORMAT,
4395                               _markStack._failed_double,
4396                               _markStack.capacity());
4397      }
4398   }
4399   _markStack._hit_limit = 0;
4400   _markStack._failed_double = 0;
4401 
4402   if ((VerifyAfterGC || VerifyDuringGC) &&
4403       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4404     verify_after_remark();
4405   }
4406 
4407   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4408 
4409   // Change under the freelistLocks.
4410   _collectorState = Sweeping;
4411   // Call isAllClear() under bitMapLock
4412   assert(_modUnionTable.isAllClear(),
4413       "Should be clear by end of the final marking");
4414   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4415       "Should be clear by end of the final marking");
4416 }
4417 
4418 void CMSParInitialMarkTask::work(uint worker_id) {
4419   elapsedTimer _timer;
4420   ResourceMark rm;
4421   HandleMark   hm;
4422 
4423   // ---------- scan from roots --------------
4424   _timer.start();
4425   GenCollectedHeap* gch = GenCollectedHeap::heap();
4426   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4427 
4428   // ---------- young gen roots --------------
4429   {
4430     work_on_young_gen_roots(worker_id, &par_mri_cl);
4431     _timer.stop();
4432     if (PrintCMSStatistics != 0) {
4433       gclog_or_tty->print_cr(
4434         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4435         worker_id, _timer.seconds());
4436     }
4437   }
4438 
4439   // ---------- remaining roots --------------
4440   _timer.reset();
4441   _timer.start();
4442 
4443   CLDToOopClosure cld_closure(&par_mri_cl, true);
4444 
4445   gch->gen_process_roots(_strong_roots_scope,
4446                          GenCollectedHeap::OldGen,
4447                          false,     // yg was scanned above
4448                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4449                          _collector->should_unload_classes(),
4450                          &par_mri_cl,
4451                          NULL,
4452                          &cld_closure);
4453   assert(_collector->should_unload_classes()
4454          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4455          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4456   _timer.stop();
4457   if (PrintCMSStatistics != 0) {
4458     gclog_or_tty->print_cr(
4459       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4460       worker_id, _timer.seconds());
4461   }
4462 }
4463 
4464 // Parallel remark task
4465 class CMSParRemarkTask: public CMSParMarkTask {
4466   CompactibleFreeListSpace* _cms_space;
4467 
4468   // The per-thread work queues, available here for stealing.
4469   OopTaskQueueSet*       _task_queues;
4470   ParallelTaskTerminator _term;
4471   StrongRootsScope*      _strong_roots_scope;
4472 
4473  public:
4474   // A value of 0 passed to n_workers will cause the number of
4475   // workers to be taken from the active workers in the work gang.
4476   CMSParRemarkTask(CMSCollector* collector,
4477                    CompactibleFreeListSpace* cms_space,
4478                    uint n_workers, WorkGang* workers,
4479                    OopTaskQueueSet* task_queues,
4480                    StrongRootsScope* strong_roots_scope):
4481     CMSParMarkTask("Rescan roots and grey objects in parallel",
4482                    collector, n_workers),
4483     _cms_space(cms_space),
4484     _task_queues(task_queues),
4485     _term(n_workers, task_queues),
4486     _strong_roots_scope(strong_roots_scope) { }
4487 
4488   OopTaskQueueSet* task_queues() { return _task_queues; }
4489 
4490   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4491 
4492   ParallelTaskTerminator* terminator() { return &_term; }
4493   uint n_workers() { return _n_workers; }
4494 
4495   void work(uint worker_id);
4496 
4497  private:
4498   // ... of  dirty cards in old space
4499   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4500                                   Par_MarkRefsIntoAndScanClosure* cl);
4501 
4502   // ... work stealing for the above
4503   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4504 };
4505 
4506 class RemarkKlassClosure : public KlassClosure {
4507   KlassToOopClosure _cm_klass_closure;
4508  public:
4509   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4510   void do_klass(Klass* k) {
4511     // Check if we have modified any oops in the Klass during the concurrent marking.
4512     if (k->has_accumulated_modified_oops()) {
4513       k->clear_accumulated_modified_oops();
4514 
4515       // We could have transfered the current modified marks to the accumulated marks,
4516       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4517     } else if (k->has_modified_oops()) {
4518       // Don't clear anything, this info is needed by the next young collection.
4519     } else {
4520       // No modified oops in the Klass.
4521       return;
4522     }
4523 
4524     // The klass has modified fields, need to scan the klass.
4525     _cm_klass_closure.do_klass(k);
4526   }
4527 };
4528 
4529 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4530   ParNewGeneration* young_gen = _collector->_young_gen;
4531   ContiguousSpace* eden_space = young_gen->eden();
4532   ContiguousSpace* from_space = young_gen->from();
4533   ContiguousSpace* to_space   = young_gen->to();
4534 
4535   HeapWord** eca = _collector->_eden_chunk_array;
4536   size_t     ect = _collector->_eden_chunk_index;
4537   HeapWord** sca = _collector->_survivor_chunk_array;
4538   size_t     sct = _collector->_survivor_chunk_index;
4539 
4540   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4541   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4542 
4543   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4544   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4545   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4546 }
4547 
4548 // work_queue(i) is passed to the closure
4549 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4550 // also is passed to do_dirty_card_rescan_tasks() and to
4551 // do_work_steal() to select the i-th task_queue.
4552 
4553 void CMSParRemarkTask::work(uint worker_id) {
4554   elapsedTimer _timer;
4555   ResourceMark rm;
4556   HandleMark   hm;
4557 
4558   // ---------- rescan from roots --------------
4559   _timer.start();
4560   GenCollectedHeap* gch = GenCollectedHeap::heap();
4561   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4562     _collector->_span, _collector->ref_processor(),
4563     &(_collector->_markBitMap),
4564     work_queue(worker_id));
4565 
4566   // Rescan young gen roots first since these are likely
4567   // coarsely partitioned and may, on that account, constitute
4568   // the critical path; thus, it's best to start off that
4569   // work first.
4570   // ---------- young gen roots --------------
4571   {
4572     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4573     _timer.stop();
4574     if (PrintCMSStatistics != 0) {
4575       gclog_or_tty->print_cr(
4576         "Finished young gen rescan work in %dth thread: %3.3f sec",
4577         worker_id, _timer.seconds());
4578     }
4579   }
4580 
4581   // ---------- remaining roots --------------
4582   _timer.reset();
4583   _timer.start();
4584   gch->gen_process_roots(_strong_roots_scope,
4585                          GenCollectedHeap::OldGen,
4586                          false,     // yg was scanned above
4587                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4588                          _collector->should_unload_classes(),
4589                          &par_mrias_cl,
4590                          NULL,
4591                          NULL);     // The dirty klasses will be handled below
4592 
4593   assert(_collector->should_unload_classes()
4594          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4595          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4596   _timer.stop();
4597   if (PrintCMSStatistics != 0) {
4598     gclog_or_tty->print_cr(
4599       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4600       worker_id, _timer.seconds());
4601   }
4602 
4603   // ---------- unhandled CLD scanning ----------
4604   if (worker_id == 0) { // Single threaded at the moment.
4605     _timer.reset();
4606     _timer.start();
4607 
4608     // Scan all new class loader data objects and new dependencies that were
4609     // introduced during concurrent marking.
4610     ResourceMark rm;
4611     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4612     for (int i = 0; i < array->length(); i++) {
4613       par_mrias_cl.do_cld_nv(array->at(i));
4614     }
4615 
4616     // We don't need to keep track of new CLDs anymore.
4617     ClassLoaderDataGraph::remember_new_clds(false);
4618 
4619     _timer.stop();
4620     if (PrintCMSStatistics != 0) {
4621       gclog_or_tty->print_cr(
4622           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4623           worker_id, _timer.seconds());
4624     }
4625   }
4626 
4627   // ---------- dirty klass scanning ----------
4628   if (worker_id == 0) { // Single threaded at the moment.
4629     _timer.reset();
4630     _timer.start();
4631 
4632     // Scan all classes that was dirtied during the concurrent marking phase.
4633     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4634     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4635 
4636     _timer.stop();
4637     if (PrintCMSStatistics != 0) {
4638       gclog_or_tty->print_cr(
4639           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4640           worker_id, _timer.seconds());
4641     }
4642   }
4643 
4644   // We might have added oops to ClassLoaderData::_handles during the
4645   // concurrent marking phase. These oops point to newly allocated objects
4646   // that are guaranteed to be kept alive. Either by the direct allocation
4647   // code, or when the young collector processes the roots. Hence,
4648   // we don't have to revisit the _handles block during the remark phase.
4649 
4650   // ---------- rescan dirty cards ------------
4651   _timer.reset();
4652   _timer.start();
4653 
4654   // Do the rescan tasks for each of the two spaces
4655   // (cms_space) in turn.
4656   // "worker_id" is passed to select the task_queue for "worker_id"
4657   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4658   _timer.stop();
4659   if (PrintCMSStatistics != 0) {
4660     gclog_or_tty->print_cr(
4661       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4662       worker_id, _timer.seconds());
4663   }
4664 
4665   // ---------- steal work from other threads ...
4666   // ---------- ... and drain overflow list.
4667   _timer.reset();
4668   _timer.start();
4669   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4670   _timer.stop();
4671   if (PrintCMSStatistics != 0) {
4672     gclog_or_tty->print_cr(
4673       "Finished work stealing in %dth thread: %3.3f sec",
4674       worker_id, _timer.seconds());
4675   }
4676 }
4677 
4678 // Note that parameter "i" is not used.
4679 void
4680 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4681   OopsInGenClosure* cl, ContiguousSpace* space,
4682   HeapWord** chunk_array, size_t chunk_top) {
4683   // Until all tasks completed:
4684   // . claim an unclaimed task
4685   // . compute region boundaries corresponding to task claimed
4686   //   using chunk_array
4687   // . par_oop_iterate(cl) over that region
4688 
4689   ResourceMark rm;
4690   HandleMark   hm;
4691 
4692   SequentialSubTasksDone* pst = space->par_seq_tasks();
4693 
4694   uint nth_task = 0;
4695   uint n_tasks  = pst->n_tasks();
4696 
4697   if (n_tasks > 0) {
4698     assert(pst->valid(), "Uninitialized use?");
4699     HeapWord *start, *end;
4700     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4701       // We claimed task # nth_task; compute its boundaries.
4702       if (chunk_top == 0) {  // no samples were taken
4703         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4704         start = space->bottom();
4705         end   = space->top();
4706       } else if (nth_task == 0) {
4707         start = space->bottom();
4708         end   = chunk_array[nth_task];
4709       } else if (nth_task < (uint)chunk_top) {
4710         assert(nth_task >= 1, "Control point invariant");
4711         start = chunk_array[nth_task - 1];
4712         end   = chunk_array[nth_task];
4713       } else {
4714         assert(nth_task == (uint)chunk_top, "Control point invariant");
4715         start = chunk_array[chunk_top - 1];
4716         end   = space->top();
4717       }
4718       MemRegion mr(start, end);
4719       // Verify that mr is in space
4720       assert(mr.is_empty() || space->used_region().contains(mr),
4721              "Should be in space");
4722       // Verify that "start" is an object boundary
4723       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4724              "Should be an oop");
4725       space->par_oop_iterate(mr, cl);
4726     }
4727     pst->all_tasks_completed();
4728   }
4729 }
4730 
4731 void
4732 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4733   CompactibleFreeListSpace* sp, int i,
4734   Par_MarkRefsIntoAndScanClosure* cl) {
4735   // Until all tasks completed:
4736   // . claim an unclaimed task
4737   // . compute region boundaries corresponding to task claimed
4738   // . transfer dirty bits ct->mut for that region
4739   // . apply rescanclosure to dirty mut bits for that region
4740 
4741   ResourceMark rm;
4742   HandleMark   hm;
4743 
4744   OopTaskQueue* work_q = work_queue(i);
4745   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4746   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4747   // CAUTION: This closure has state that persists across calls to
4748   // the work method dirty_range_iterate_clear() in that it has
4749   // embedded in it a (subtype of) UpwardsObjectClosure. The
4750   // use of that state in the embedded UpwardsObjectClosure instance
4751   // assumes that the cards are always iterated (even if in parallel
4752   // by several threads) in monotonically increasing order per each
4753   // thread. This is true of the implementation below which picks
4754   // card ranges (chunks) in monotonically increasing order globally
4755   // and, a-fortiori, in monotonically increasing order per thread
4756   // (the latter order being a subsequence of the former).
4757   // If the work code below is ever reorganized into a more chaotic
4758   // work-partitioning form than the current "sequential tasks"
4759   // paradigm, the use of that persistent state will have to be
4760   // revisited and modified appropriately. See also related
4761   // bug 4756801 work on which should examine this code to make
4762   // sure that the changes there do not run counter to the
4763   // assumptions made here and necessary for correctness and
4764   // efficiency. Note also that this code might yield inefficient
4765   // behavior in the case of very large objects that span one or
4766   // more work chunks. Such objects would potentially be scanned
4767   // several times redundantly. Work on 4756801 should try and
4768   // address that performance anomaly if at all possible. XXX
4769   MemRegion  full_span  = _collector->_span;
4770   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4771   MarkFromDirtyCardsClosure
4772     greyRescanClosure(_collector, full_span, // entire span of interest
4773                       sp, bm, work_q, cl);
4774 
4775   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4776   assert(pst->valid(), "Uninitialized use?");
4777   uint nth_task = 0;
4778   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4779   MemRegion span = sp->used_region();
4780   HeapWord* start_addr = span.start();
4781   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4782                                            alignment);
4783   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4784   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4785          start_addr, "Check alignment");
4786   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4787          chunk_size, "Check alignment");
4788 
4789   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4790     // Having claimed the nth_task, compute corresponding mem-region,
4791     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4792     // The alignment restriction ensures that we do not need any
4793     // synchronization with other gang-workers while setting or
4794     // clearing bits in thus chunk of the MUT.
4795     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4796                                     start_addr + (nth_task+1)*chunk_size);
4797     // The last chunk's end might be way beyond end of the
4798     // used region. In that case pull back appropriately.
4799     if (this_span.end() > end_addr) {
4800       this_span.set_end(end_addr);
4801       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4802     }
4803     // Iterate over the dirty cards covering this chunk, marking them
4804     // precleaned, and setting the corresponding bits in the mod union
4805     // table. Since we have been careful to partition at Card and MUT-word
4806     // boundaries no synchronization is needed between parallel threads.
4807     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4808                                                  &modUnionClosure);
4809 
4810     // Having transferred these marks into the modUnionTable,
4811     // rescan the marked objects on the dirty cards in the modUnionTable.
4812     // Even if this is at a synchronous collection, the initial marking
4813     // may have been done during an asynchronous collection so there
4814     // may be dirty bits in the mod-union table.
4815     _collector->_modUnionTable.dirty_range_iterate_clear(
4816                   this_span, &greyRescanClosure);
4817     _collector->_modUnionTable.verifyNoOneBitsInRange(
4818                                  this_span.start(),
4819                                  this_span.end());
4820   }
4821   pst->all_tasks_completed();  // declare that i am done
4822 }
4823 
4824 // . see if we can share work_queues with ParNew? XXX
4825 void
4826 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4827                                 int* seed) {
4828   OopTaskQueue* work_q = work_queue(i);
4829   NOT_PRODUCT(int num_steals = 0;)
4830   oop obj_to_scan;
4831   CMSBitMap* bm = &(_collector->_markBitMap);
4832 
4833   while (true) {
4834     // Completely finish any left over work from (an) earlier round(s)
4835     cl->trim_queue(0);
4836     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4837                                          (size_t)ParGCDesiredObjsFromOverflowList);
4838     // Now check if there's any work in the overflow list
4839     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4840     // only affects the number of attempts made to get work from the
4841     // overflow list and does not affect the number of workers.  Just
4842     // pass ParallelGCThreads so this behavior is unchanged.
4843     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4844                                                 work_q,
4845                                                 ParallelGCThreads)) {
4846       // found something in global overflow list;
4847       // not yet ready to go stealing work from others.
4848       // We'd like to assert(work_q->size() != 0, ...)
4849       // because we just took work from the overflow list,
4850       // but of course we can't since all of that could have
4851       // been already stolen from us.
4852       // "He giveth and He taketh away."
4853       continue;
4854     }
4855     // Verify that we have no work before we resort to stealing
4856     assert(work_q->size() == 0, "Have work, shouldn't steal");
4857     // Try to steal from other queues that have work
4858     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4859       NOT_PRODUCT(num_steals++;)
4860       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4861       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4862       // Do scanning work
4863       obj_to_scan->oop_iterate(cl);
4864       // Loop around, finish this work, and try to steal some more
4865     } else if (terminator()->offer_termination()) {
4866         break;  // nirvana from the infinite cycle
4867     }
4868   }
4869   NOT_PRODUCT(
4870     if (PrintCMSStatistics != 0) {
4871       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4872     }
4873   )
4874   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4875          "Else our work is not yet done");
4876 }
4877 
4878 // Record object boundaries in _eden_chunk_array by sampling the eden
4879 // top in the slow-path eden object allocation code path and record
4880 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4881 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4882 // sampling in sample_eden() that activates during the part of the
4883 // preclean phase.
4884 void CMSCollector::sample_eden_chunk() {
4885   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4886     if (_eden_chunk_lock->try_lock()) {
4887       // Record a sample. This is the critical section. The contents
4888       // of the _eden_chunk_array have to be non-decreasing in the
4889       // address order.
4890       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4891       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4892              "Unexpected state of Eden");
4893       if (_eden_chunk_index == 0 ||
4894           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4895            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4896                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4897         _eden_chunk_index++;  // commit sample
4898       }
4899       _eden_chunk_lock->unlock();
4900     }
4901   }
4902 }
4903 
4904 // Return a thread-local PLAB recording array, as appropriate.
4905 void* CMSCollector::get_data_recorder(int thr_num) {
4906   if (_survivor_plab_array != NULL &&
4907       (CMSPLABRecordAlways ||
4908        (_collectorState > Marking && _collectorState < FinalMarking))) {
4909     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4910     ChunkArray* ca = &_survivor_plab_array[thr_num];
4911     ca->reset();   // clear it so that fresh data is recorded
4912     return (void*) ca;
4913   } else {
4914     return NULL;
4915   }
4916 }
4917 
4918 // Reset all the thread-local PLAB recording arrays
4919 void CMSCollector::reset_survivor_plab_arrays() {
4920   for (uint i = 0; i < ParallelGCThreads; i++) {
4921     _survivor_plab_array[i].reset();
4922   }
4923 }
4924 
4925 // Merge the per-thread plab arrays into the global survivor chunk
4926 // array which will provide the partitioning of the survivor space
4927 // for CMS initial scan and rescan.
4928 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4929                                               int no_of_gc_threads) {
4930   assert(_survivor_plab_array  != NULL, "Error");
4931   assert(_survivor_chunk_array != NULL, "Error");
4932   assert(_collectorState == FinalMarking ||
4933          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4934   for (int j = 0; j < no_of_gc_threads; j++) {
4935     _cursor[j] = 0;
4936   }
4937   HeapWord* top = surv->top();
4938   size_t i;
4939   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4940     HeapWord* min_val = top;          // Higher than any PLAB address
4941     uint      min_tid = 0;            // position of min_val this round
4942     for (int j = 0; j < no_of_gc_threads; j++) {
4943       ChunkArray* cur_sca = &_survivor_plab_array[j];
4944       if (_cursor[j] == cur_sca->end()) {
4945         continue;
4946       }
4947       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4948       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4949       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4950       if (cur_val < min_val) {
4951         min_tid = j;
4952         min_val = cur_val;
4953       } else {
4954         assert(cur_val < top, "All recorded addresses should be less");
4955       }
4956     }
4957     // At this point min_val and min_tid are respectively
4958     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4959     // and the thread (j) that witnesses that address.
4960     // We record this address in the _survivor_chunk_array[i]
4961     // and increment _cursor[min_tid] prior to the next round i.
4962     if (min_val == top) {
4963       break;
4964     }
4965     _survivor_chunk_array[i] = min_val;
4966     _cursor[min_tid]++;
4967   }
4968   // We are all done; record the size of the _survivor_chunk_array
4969   _survivor_chunk_index = i; // exclusive: [0, i)
4970   if (PrintCMSStatistics > 0) {
4971     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4972   }
4973   // Verify that we used up all the recorded entries
4974   #ifdef ASSERT
4975     size_t total = 0;
4976     for (int j = 0; j < no_of_gc_threads; j++) {
4977       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4978       total += _cursor[j];
4979     }
4980     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4981     // Check that the merged array is in sorted order
4982     if (total > 0) {
4983       for (size_t i = 0; i < total - 1; i++) {
4984         if (PrintCMSStatistics > 0) {
4985           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4986                               i, p2i(_survivor_chunk_array[i]));
4987         }
4988         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4989                "Not sorted");
4990       }
4991     }
4992   #endif // ASSERT
4993 }
4994 
4995 // Set up the space's par_seq_tasks structure for work claiming
4996 // for parallel initial scan and rescan of young gen.
4997 // See ParRescanTask where this is currently used.
4998 void
4999 CMSCollector::
5000 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5001   assert(n_threads > 0, "Unexpected n_threads argument");
5002 
5003   // Eden space
5004   if (!_young_gen->eden()->is_empty()) {
5005     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5006     assert(!pst->valid(), "Clobbering existing data?");
5007     // Each valid entry in [0, _eden_chunk_index) represents a task.
5008     size_t n_tasks = _eden_chunk_index + 1;
5009     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5010     // Sets the condition for completion of the subtask (how many threads
5011     // need to finish in order to be done).
5012     pst->set_n_threads(n_threads);
5013     pst->set_n_tasks((int)n_tasks);
5014   }
5015 
5016   // Merge the survivor plab arrays into _survivor_chunk_array
5017   if (_survivor_plab_array != NULL) {
5018     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5019   } else {
5020     assert(_survivor_chunk_index == 0, "Error");
5021   }
5022 
5023   // To space
5024   {
5025     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5026     assert(!pst->valid(), "Clobbering existing data?");
5027     // Sets the condition for completion of the subtask (how many threads
5028     // need to finish in order to be done).
5029     pst->set_n_threads(n_threads);
5030     pst->set_n_tasks(1);
5031     assert(pst->valid(), "Error");
5032   }
5033 
5034   // From space
5035   {
5036     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5037     assert(!pst->valid(), "Clobbering existing data?");
5038     size_t n_tasks = _survivor_chunk_index + 1;
5039     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5040     // Sets the condition for completion of the subtask (how many threads
5041     // need to finish in order to be done).
5042     pst->set_n_threads(n_threads);
5043     pst->set_n_tasks((int)n_tasks);
5044     assert(pst->valid(), "Error");
5045   }
5046 }
5047 
5048 // Parallel version of remark
5049 void CMSCollector::do_remark_parallel() {
5050   GenCollectedHeap* gch = GenCollectedHeap::heap();
5051   WorkGang* workers = gch->workers();
5052   assert(workers != NULL, "Need parallel worker threads.");
5053   // Choose to use the number of GC workers most recently set
5054   // into "active_workers".
5055   uint n_workers = workers->active_workers();
5056 
5057   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5058 
5059   StrongRootsScope srs(n_workers);
5060 
5061   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
5062 
5063   // We won't be iterating over the cards in the card table updating
5064   // the younger_gen cards, so we shouldn't call the following else
5065   // the verification code as well as subsequent younger_refs_iterate
5066   // code would get confused. XXX
5067   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5068 
5069   // The young gen rescan work will not be done as part of
5070   // process_roots (which currently doesn't know how to
5071   // parallelize such a scan), but rather will be broken up into
5072   // a set of parallel tasks (via the sampling that the [abortable]
5073   // preclean phase did of eden, plus the [two] tasks of
5074   // scanning the [two] survivor spaces. Further fine-grain
5075   // parallelization of the scanning of the survivor spaces
5076   // themselves, and of precleaning of the young gen itself
5077   // is deferred to the future.
5078   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5079 
5080   // The dirty card rescan work is broken up into a "sequence"
5081   // of parallel tasks (per constituent space) that are dynamically
5082   // claimed by the parallel threads.
5083   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5084 
5085   // It turns out that even when we're using 1 thread, doing the work in a
5086   // separate thread causes wide variance in run times.  We can't help this
5087   // in the multi-threaded case, but we special-case n=1 here to get
5088   // repeatable measurements of the 1-thread overhead of the parallel code.
5089   if (n_workers > 1) {
5090     // Make refs discovery MT-safe, if it isn't already: it may not
5091     // necessarily be so, since it's possible that we are doing
5092     // ST marking.
5093     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5094     workers->run_task(&tsk);
5095   } else {
5096     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5097     tsk.work(0);
5098   }
5099 
5100   // restore, single-threaded for now, any preserved marks
5101   // as a result of work_q overflow
5102   restore_preserved_marks_if_any();
5103 }
5104 
5105 // Non-parallel version of remark
5106 void CMSCollector::do_remark_non_parallel() {
5107   ResourceMark rm;
5108   HandleMark   hm;
5109   GenCollectedHeap* gch = GenCollectedHeap::heap();
5110   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5111 
5112   MarkRefsIntoAndScanClosure
5113     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5114              &_markStack, this,
5115              false /* should_yield */, false /* not precleaning */);
5116   MarkFromDirtyCardsClosure
5117     markFromDirtyCardsClosure(this, _span,
5118                               NULL,  // space is set further below
5119                               &_markBitMap, &_markStack, &mrias_cl);
5120   {
5121     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5122     // Iterate over the dirty cards, setting the corresponding bits in the
5123     // mod union table.
5124     {
5125       ModUnionClosure modUnionClosure(&_modUnionTable);
5126       _ct->ct_bs()->dirty_card_iterate(
5127                       _cmsGen->used_region(),
5128                       &modUnionClosure);
5129     }
5130     // Having transferred these marks into the modUnionTable, we just need
5131     // to rescan the marked objects on the dirty cards in the modUnionTable.
5132     // The initial marking may have been done during an asynchronous
5133     // collection so there may be dirty bits in the mod-union table.
5134     const int alignment =
5135       CardTableModRefBS::card_size * BitsPerWord;
5136     {
5137       // ... First handle dirty cards in CMS gen
5138       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5139       MemRegion ur = _cmsGen->used_region();
5140       HeapWord* lb = ur.start();
5141       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5142       MemRegion cms_span(lb, ub);
5143       _modUnionTable.dirty_range_iterate_clear(cms_span,
5144                                                &markFromDirtyCardsClosure);
5145       verify_work_stacks_empty();
5146       if (PrintCMSStatistics != 0) {
5147         gclog_or_tty->print(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ",
5148           markFromDirtyCardsClosure.num_dirty_cards());
5149       }
5150     }
5151   }
5152   if (VerifyDuringGC &&
5153       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5154     HandleMark hm;  // Discard invalid handles created during verification
5155     Universe::verify();
5156   }
5157   {
5158     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5159 
5160     verify_work_stacks_empty();
5161 
5162     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5163     StrongRootsScope srs(1);
5164 
5165     gch->gen_process_roots(&srs,
5166                            GenCollectedHeap::OldGen,
5167                            true,  // young gen as roots
5168                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5169                            should_unload_classes(),
5170                            &mrias_cl,
5171                            NULL,
5172                            NULL); // The dirty klasses will be handled below
5173 
5174     assert(should_unload_classes()
5175            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5176            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5177   }
5178 
5179   {
5180     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5181 
5182     verify_work_stacks_empty();
5183 
5184     // Scan all class loader data objects that might have been introduced
5185     // during concurrent marking.
5186     ResourceMark rm;
5187     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5188     for (int i = 0; i < array->length(); i++) {
5189       mrias_cl.do_cld_nv(array->at(i));
5190     }
5191 
5192     // We don't need to keep track of new CLDs anymore.
5193     ClassLoaderDataGraph::remember_new_clds(false);
5194 
5195     verify_work_stacks_empty();
5196   }
5197 
5198   {
5199     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
5200 
5201     verify_work_stacks_empty();
5202 
5203     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5204     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5205 
5206     verify_work_stacks_empty();
5207   }
5208 
5209   // We might have added oops to ClassLoaderData::_handles during the
5210   // concurrent marking phase. These oops point to newly allocated objects
5211   // that are guaranteed to be kept alive. Either by the direct allocation
5212   // code, or when the young collector processes the roots. Hence,
5213   // we don't have to revisit the _handles block during the remark phase.
5214 
5215   verify_work_stacks_empty();
5216   // Restore evacuated mark words, if any, used for overflow list links
5217   if (!CMSOverflowEarlyRestoration) {
5218     restore_preserved_marks_if_any();
5219   }
5220   verify_overflow_empty();
5221 }
5222 
5223 ////////////////////////////////////////////////////////
5224 // Parallel Reference Processing Task Proxy Class
5225 ////////////////////////////////////////////////////////
5226 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5227   OopTaskQueueSet*       _queues;
5228   ParallelTaskTerminator _terminator;
5229  public:
5230   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5231     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5232   ParallelTaskTerminator* terminator() { return &_terminator; }
5233   OopTaskQueueSet* queues() { return _queues; }
5234 };
5235 
5236 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5237   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5238   CMSCollector*          _collector;
5239   CMSBitMap*             _mark_bit_map;
5240   const MemRegion        _span;
5241   ProcessTask&           _task;
5242 
5243 public:
5244   CMSRefProcTaskProxy(ProcessTask&     task,
5245                       CMSCollector*    collector,
5246                       const MemRegion& span,
5247                       CMSBitMap*       mark_bit_map,
5248                       AbstractWorkGang* workers,
5249                       OopTaskQueueSet* task_queues):
5250     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5251       task_queues,
5252       workers->active_workers()),
5253     _task(task),
5254     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5255   {
5256     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5257            "Inconsistency in _span");
5258   }
5259 
5260   OopTaskQueueSet* task_queues() { return queues(); }
5261 
5262   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5263 
5264   void do_work_steal(int i,
5265                      CMSParDrainMarkingStackClosure* drain,
5266                      CMSParKeepAliveClosure* keep_alive,
5267                      int* seed);
5268 
5269   virtual void work(uint worker_id);
5270 };
5271 
5272 void CMSRefProcTaskProxy::work(uint worker_id) {
5273   ResourceMark rm;
5274   HandleMark hm;
5275   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5276   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5277                                         _mark_bit_map,
5278                                         work_queue(worker_id));
5279   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5280                                                  _mark_bit_map,
5281                                                  work_queue(worker_id));
5282   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5283   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5284   if (_task.marks_oops_alive()) {
5285     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5286                   _collector->hash_seed(worker_id));
5287   }
5288   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5289   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5290 }
5291 
5292 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5293   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5294   EnqueueTask& _task;
5295 
5296 public:
5297   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5298     : AbstractGangTask("Enqueue reference objects in parallel"),
5299       _task(task)
5300   { }
5301 
5302   virtual void work(uint worker_id)
5303   {
5304     _task.work(worker_id);
5305   }
5306 };
5307 
5308 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5309   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5310    _span(span),
5311    _bit_map(bit_map),
5312    _work_queue(work_queue),
5313    _mark_and_push(collector, span, bit_map, work_queue),
5314    _low_water_mark(MIN2((work_queue->max_elems()/4),
5315                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5316 { }
5317 
5318 // . see if we can share work_queues with ParNew? XXX
5319 void CMSRefProcTaskProxy::do_work_steal(int i,
5320   CMSParDrainMarkingStackClosure* drain,
5321   CMSParKeepAliveClosure* keep_alive,
5322   int* seed) {
5323   OopTaskQueue* work_q = work_queue(i);
5324   NOT_PRODUCT(int num_steals = 0;)
5325   oop obj_to_scan;
5326 
5327   while (true) {
5328     // Completely finish any left over work from (an) earlier round(s)
5329     drain->trim_queue(0);
5330     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5331                                          (size_t)ParGCDesiredObjsFromOverflowList);
5332     // Now check if there's any work in the overflow list
5333     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5334     // only affects the number of attempts made to get work from the
5335     // overflow list and does not affect the number of workers.  Just
5336     // pass ParallelGCThreads so this behavior is unchanged.
5337     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5338                                                 work_q,
5339                                                 ParallelGCThreads)) {
5340       // Found something in global overflow list;
5341       // not yet ready to go stealing work from others.
5342       // We'd like to assert(work_q->size() != 0, ...)
5343       // because we just took work from the overflow list,
5344       // but of course we can't, since all of that might have
5345       // been already stolen from us.
5346       continue;
5347     }
5348     // Verify that we have no work before we resort to stealing
5349     assert(work_q->size() == 0, "Have work, shouldn't steal");
5350     // Try to steal from other queues that have work
5351     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5352       NOT_PRODUCT(num_steals++;)
5353       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5354       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5355       // Do scanning work
5356       obj_to_scan->oop_iterate(keep_alive);
5357       // Loop around, finish this work, and try to steal some more
5358     } else if (terminator()->offer_termination()) {
5359       break;  // nirvana from the infinite cycle
5360     }
5361   }
5362   NOT_PRODUCT(
5363     if (PrintCMSStatistics != 0) {
5364       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5365     }
5366   )
5367 }
5368 
5369 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5370 {
5371   GenCollectedHeap* gch = GenCollectedHeap::heap();
5372   WorkGang* workers = gch->workers();
5373   assert(workers != NULL, "Need parallel worker threads.");
5374   CMSRefProcTaskProxy rp_task(task, &_collector,
5375                               _collector.ref_processor()->span(),
5376                               _collector.markBitMap(),
5377                               workers, _collector.task_queues());
5378   workers->run_task(&rp_task);
5379 }
5380 
5381 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5382 {
5383 
5384   GenCollectedHeap* gch = GenCollectedHeap::heap();
5385   WorkGang* workers = gch->workers();
5386   assert(workers != NULL, "Need parallel worker threads.");
5387   CMSRefEnqueueTaskProxy enq_task(task);
5388   workers->run_task(&enq_task);
5389 }
5390 
5391 void CMSCollector::refProcessingWork() {
5392   ResourceMark rm;
5393   HandleMark   hm;
5394 
5395   ReferenceProcessor* rp = ref_processor();
5396   assert(rp->span().equals(_span), "Spans should be equal");
5397   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5398   // Process weak references.
5399   rp->setup_policy(false);
5400   verify_work_stacks_empty();
5401 
5402   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5403                                           &_markStack, false /* !preclean */);
5404   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5405                                 _span, &_markBitMap, &_markStack,
5406                                 &cmsKeepAliveClosure, false /* !preclean */);
5407   {
5408     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
5409 
5410     ReferenceProcessorStats stats;
5411     if (rp->processing_is_mt()) {
5412       // Set the degree of MT here.  If the discovery is done MT, there
5413       // may have been a different number of threads doing the discovery
5414       // and a different number of discovered lists may have Ref objects.
5415       // That is OK as long as the Reference lists are balanced (see
5416       // balance_all_queues() and balance_queues()).
5417       GenCollectedHeap* gch = GenCollectedHeap::heap();
5418       uint active_workers = ParallelGCThreads;
5419       WorkGang* workers = gch->workers();
5420       if (workers != NULL) {
5421         active_workers = workers->active_workers();
5422         // The expectation is that active_workers will have already
5423         // been set to a reasonable value.  If it has not been set,
5424         // investigate.
5425         assert(active_workers > 0, "Should have been set during scavenge");
5426       }
5427       rp->set_active_mt_degree(active_workers);
5428       CMSRefProcTaskExecutor task_executor(*this);
5429       stats = rp->process_discovered_references(&_is_alive_closure,
5430                                         &cmsKeepAliveClosure,
5431                                         &cmsDrainMarkingStackClosure,
5432                                         &task_executor,
5433                                         _gc_timer_cm);
5434     } else {
5435       stats = rp->process_discovered_references(&_is_alive_closure,
5436                                         &cmsKeepAliveClosure,
5437                                         &cmsDrainMarkingStackClosure,
5438                                         NULL,
5439                                         _gc_timer_cm);
5440     }
5441     _gc_tracer_cm->report_gc_reference_stats(stats);
5442 
5443   }
5444 
5445   // This is the point where the entire marking should have completed.
5446   verify_work_stacks_empty();
5447 
5448   if (should_unload_classes()) {
5449     {
5450       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
5451 
5452       // Unload classes and purge the SystemDictionary.
5453       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5454 
5455       // Unload nmethods.
5456       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5457 
5458       // Prune dead klasses from subklass/sibling/implementor lists.
5459       Klass::clean_weak_klass_links(&_is_alive_closure);
5460     }
5461 
5462     {
5463       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
5464       // Clean up unreferenced symbols in symbol table.
5465       SymbolTable::unlink();
5466     }
5467 
5468     {
5469       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
5470       // Delete entries for dead interned strings.
5471       StringTable::unlink(&_is_alive_closure);
5472     }
5473   }
5474 
5475 
5476   // Restore any preserved marks as a result of mark stack or
5477   // work queue overflow
5478   restore_preserved_marks_if_any();  // done single-threaded for now
5479 
5480   rp->set_enqueuing_is_done(true);
5481   if (rp->processing_is_mt()) {
5482     rp->balance_all_queues();
5483     CMSRefProcTaskExecutor task_executor(*this);
5484     rp->enqueue_discovered_references(&task_executor);
5485   } else {
5486     rp->enqueue_discovered_references(NULL);
5487   }
5488   rp->verify_no_references_recorded();
5489   assert(!rp->discovery_enabled(), "should have been disabled");
5490 }
5491 
5492 #ifndef PRODUCT
5493 void CMSCollector::check_correct_thread_executing() {
5494   Thread* t = Thread::current();
5495   // Only the VM thread or the CMS thread should be here.
5496   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5497          "Unexpected thread type");
5498   // If this is the vm thread, the foreground process
5499   // should not be waiting.  Note that _foregroundGCIsActive is
5500   // true while the foreground collector is waiting.
5501   if (_foregroundGCShouldWait) {
5502     // We cannot be the VM thread
5503     assert(t->is_ConcurrentGC_thread(),
5504            "Should be CMS thread");
5505   } else {
5506     // We can be the CMS thread only if we are in a stop-world
5507     // phase of CMS collection.
5508     if (t->is_ConcurrentGC_thread()) {
5509       assert(_collectorState == InitialMarking ||
5510              _collectorState == FinalMarking,
5511              "Should be a stop-world phase");
5512       // The CMS thread should be holding the CMS_token.
5513       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5514              "Potential interference with concurrently "
5515              "executing VM thread");
5516     }
5517   }
5518 }
5519 #endif
5520 
5521 void CMSCollector::sweep() {
5522   assert(_collectorState == Sweeping, "just checking");
5523   check_correct_thread_executing();
5524   verify_work_stacks_empty();
5525   verify_overflow_empty();
5526   increment_sweep_count();
5527   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5528 
5529   _inter_sweep_timer.stop();
5530   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5531 
5532   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5533   _intra_sweep_timer.reset();
5534   _intra_sweep_timer.start();
5535   {
5536     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5537     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
5538     // First sweep the old gen
5539     {
5540       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5541                                bitMapLock());
5542       sweepWork(_cmsGen);
5543     }
5544 
5545     // Update Universe::_heap_*_at_gc figures.
5546     // We need all the free list locks to make the abstract state
5547     // transition from Sweeping to Resetting. See detailed note
5548     // further below.
5549     {
5550       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5551       // Update heap occupancy information which is used as
5552       // input to soft ref clearing policy at the next gc.
5553       Universe::update_heap_info_at_gc();
5554       _collectorState = Resizing;
5555     }
5556   }
5557   verify_work_stacks_empty();
5558   verify_overflow_empty();
5559 
5560   if (should_unload_classes()) {
5561     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5562     // requires that the virtual spaces are stable and not deleted.
5563     ClassLoaderDataGraph::set_should_purge(true);
5564   }
5565 
5566   _intra_sweep_timer.stop();
5567   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5568 
5569   _inter_sweep_timer.reset();
5570   _inter_sweep_timer.start();
5571 
5572   // We need to use a monotonically non-decreasing time in ms
5573   // or we will see time-warp warnings and os::javaTimeMillis()
5574   // does not guarantee monotonicity.
5575   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5576   update_time_of_last_gc(now);
5577 
5578   // NOTE on abstract state transitions:
5579   // Mutators allocate-live and/or mark the mod-union table dirty
5580   // based on the state of the collection.  The former is done in
5581   // the interval [Marking, Sweeping] and the latter in the interval
5582   // [Marking, Sweeping).  Thus the transitions into the Marking state
5583   // and out of the Sweeping state must be synchronously visible
5584   // globally to the mutators.
5585   // The transition into the Marking state happens with the world
5586   // stopped so the mutators will globally see it.  Sweeping is
5587   // done asynchronously by the background collector so the transition
5588   // from the Sweeping state to the Resizing state must be done
5589   // under the freelistLock (as is the check for whether to
5590   // allocate-live and whether to dirty the mod-union table).
5591   assert(_collectorState == Resizing, "Change of collector state to"
5592     " Resizing must be done under the freelistLocks (plural)");
5593 
5594   // Now that sweeping has been completed, we clear
5595   // the incremental_collection_failed flag,
5596   // thus inviting a younger gen collection to promote into
5597   // this generation. If such a promotion may still fail,
5598   // the flag will be set again when a young collection is
5599   // attempted.
5600   GenCollectedHeap* gch = GenCollectedHeap::heap();
5601   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5602   gch->update_full_collections_completed(_collection_count_start);
5603 }
5604 
5605 // FIX ME!!! Looks like this belongs in CFLSpace, with
5606 // CMSGen merely delegating to it.
5607 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5608   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5609   HeapWord*  minAddr        = _cmsSpace->bottom();
5610   HeapWord*  largestAddr    =
5611     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5612   if (largestAddr == NULL) {
5613     // The dictionary appears to be empty.  In this case
5614     // try to coalesce at the end of the heap.
5615     largestAddr = _cmsSpace->end();
5616   }
5617   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5618   size_t nearLargestOffset =
5619     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5620   if (PrintFLSStatistics != 0) {
5621     gclog_or_tty->print_cr(
5622       "CMS: Large Block: " PTR_FORMAT ";"
5623       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5624       p2i(largestAddr),
5625       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5626   }
5627   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5628 }
5629 
5630 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5631   return addr >= _cmsSpace->nearLargestChunk();
5632 }
5633 
5634 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5635   return _cmsSpace->find_chunk_at_end();
5636 }
5637 
5638 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5639                                                     bool full) {
5640   // If the young generation has been collected, gather any statistics
5641   // that are of interest at this point.
5642   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5643   if (!full && current_is_young) {
5644     // Gather statistics on the young generation collection.
5645     collector()->stats().record_gc0_end(used());
5646   }
5647 }
5648 
5649 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5650   // We iterate over the space(s) underlying this generation,
5651   // checking the mark bit map to see if the bits corresponding
5652   // to specific blocks are marked or not. Blocks that are
5653   // marked are live and are not swept up. All remaining blocks
5654   // are swept up, with coalescing on-the-fly as we sweep up
5655   // contiguous free and/or garbage blocks:
5656   // We need to ensure that the sweeper synchronizes with allocators
5657   // and stop-the-world collectors. In particular, the following
5658   // locks are used:
5659   // . CMS token: if this is held, a stop the world collection cannot occur
5660   // . freelistLock: if this is held no allocation can occur from this
5661   //                 generation by another thread
5662   // . bitMapLock: if this is held, no other thread can access or update
5663   //
5664 
5665   // Note that we need to hold the freelistLock if we use
5666   // block iterate below; else the iterator might go awry if
5667   // a mutator (or promotion) causes block contents to change
5668   // (for instance if the allocator divvies up a block).
5669   // If we hold the free list lock, for all practical purposes
5670   // young generation GC's can't occur (they'll usually need to
5671   // promote), so we might as well prevent all young generation
5672   // GC's while we do a sweeping step. For the same reason, we might
5673   // as well take the bit map lock for the entire duration
5674 
5675   // check that we hold the requisite locks
5676   assert(have_cms_token(), "Should hold cms token");
5677   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5678   assert_lock_strong(old_gen->freelistLock());
5679   assert_lock_strong(bitMapLock());
5680 
5681   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5682   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5683   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5684                                           _inter_sweep_estimate.padded_average(),
5685                                           _intra_sweep_estimate.padded_average());
5686   old_gen->setNearLargestChunk();
5687 
5688   {
5689     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5690     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5691     // We need to free-up/coalesce garbage/blocks from a
5692     // co-terminal free run. This is done in the SweepClosure
5693     // destructor; so, do not remove this scope, else the
5694     // end-of-sweep-census below will be off by a little bit.
5695   }
5696   old_gen->cmsSpace()->sweep_completed();
5697   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5698   if (should_unload_classes()) {                // unloaded classes this cycle,
5699     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5700   } else {                                      // did not unload classes,
5701     _concurrent_cycles_since_last_unload++;     // ... increment count
5702   }
5703 }
5704 
5705 // Reset CMS data structures (for now just the marking bit map)
5706 // preparatory for the next cycle.
5707 void CMSCollector::reset_concurrent() {
5708   CMSTokenSyncWithLocks ts(true, bitMapLock());
5709 
5710   // If the state is not "Resetting", the foreground  thread
5711   // has done a collection and the resetting.
5712   if (_collectorState != Resetting) {
5713     assert(_collectorState == Idling, "The state should only change"
5714       " because the foreground collector has finished the collection");
5715     return;
5716   }
5717 
5718   // Clear the mark bitmap (no grey objects to start with)
5719   // for the next cycle.
5720   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5721   CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
5722 
5723   HeapWord* curAddr = _markBitMap.startWord();
5724   while (curAddr < _markBitMap.endWord()) {
5725     size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5726     MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5727     _markBitMap.clear_large_range(chunk);
5728     if (ConcurrentMarkSweepThread::should_yield() &&
5729         !foregroundGCIsActive() &&
5730         CMSYield) {
5731       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5732              "CMS thread should hold CMS token");
5733       assert_lock_strong(bitMapLock());
5734       bitMapLock()->unlock();
5735       ConcurrentMarkSweepThread::desynchronize(true);
5736       stopTimer();
5737       if (PrintCMSStatistics != 0) {
5738         incrementYields();
5739       }
5740 
5741       // See the comment in coordinator_yield()
5742       for (unsigned i = 0; i < CMSYieldSleepCount &&
5743                        ConcurrentMarkSweepThread::should_yield() &&
5744                        !CMSCollector::foregroundGCIsActive(); ++i) {
5745         os::sleep(Thread::current(), 1, false);
5746       }
5747 
5748       ConcurrentMarkSweepThread::synchronize(true);
5749       bitMapLock()->lock_without_safepoint_check();
5750       startTimer();
5751     }
5752     curAddr = chunk.end();
5753   }
5754   // A successful mostly concurrent collection has been done.
5755   // Because only the full (i.e., concurrent mode failure) collections
5756   // are being measured for gc overhead limits, clean the "near" flag
5757   // and count.
5758   size_policy()->reset_gc_overhead_limit_count();
5759   _collectorState = Idling;
5760 
5761   register_gc_end();
5762 }
5763 
5764 // Same as above but for STW paths
5765 void CMSCollector::reset_stw() {
5766   // already have the lock
5767   assert(_collectorState == Resetting, "just checking");
5768   assert_lock_strong(bitMapLock());
5769   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5770   _markBitMap.clear_all();
5771   _collectorState = Idling;
5772   register_gc_end();
5773 }
5774 
5775 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5776   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5777   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
5778   TraceCollectorStats tcs(counters());
5779 
5780   switch (op) {
5781     case CMS_op_checkpointRootsInitial: {
5782       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5783       checkpointRootsInitial();
5784       if (PrintGC) {
5785         _cmsGen->printOccupancy("initial-mark");
5786       }
5787       break;
5788     }
5789     case CMS_op_checkpointRootsFinal: {
5790       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5791       checkpointRootsFinal();
5792       if (PrintGC) {
5793         _cmsGen->printOccupancy("remark");
5794       }
5795       break;
5796     }
5797     default:
5798       fatal("No such CMS_op");
5799   }
5800 }
5801 
5802 #ifndef PRODUCT
5803 size_t const CMSCollector::skip_header_HeapWords() {
5804   return FreeChunk::header_size();
5805 }
5806 
5807 // Try and collect here conditions that should hold when
5808 // CMS thread is exiting. The idea is that the foreground GC
5809 // thread should not be blocked if it wants to terminate
5810 // the CMS thread and yet continue to run the VM for a while
5811 // after that.
5812 void CMSCollector::verify_ok_to_terminate() const {
5813   assert(Thread::current()->is_ConcurrentGC_thread(),
5814          "should be called by CMS thread");
5815   assert(!_foregroundGCShouldWait, "should be false");
5816   // We could check here that all the various low-level locks
5817   // are not held by the CMS thread, but that is overkill; see
5818   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5819   // is checked.
5820 }
5821 #endif
5822 
5823 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5824    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5825           "missing Printezis mark?");
5826   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5827   size_t size = pointer_delta(nextOneAddr + 1, addr);
5828   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5829          "alignment problem");
5830   assert(size >= 3, "Necessary for Printezis marks to work");
5831   return size;
5832 }
5833 
5834 // A variant of the above (block_size_using_printezis_bits()) except
5835 // that we return 0 if the P-bits are not yet set.
5836 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5837   if (_markBitMap.isMarked(addr + 1)) {
5838     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5839     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5840     size_t size = pointer_delta(nextOneAddr + 1, addr);
5841     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5842            "alignment problem");
5843     assert(size >= 3, "Necessary for Printezis marks to work");
5844     return size;
5845   }
5846   return 0;
5847 }
5848 
5849 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5850   size_t sz = 0;
5851   oop p = (oop)addr;
5852   if (p->klass_or_null() != NULL) {
5853     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5854   } else {
5855     sz = block_size_using_printezis_bits(addr);
5856   }
5857   assert(sz > 0, "size must be nonzero");
5858   HeapWord* next_block = addr + sz;
5859   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5860                                              CardTableModRefBS::card_size);
5861   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5862          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5863          "must be different cards");
5864   return next_card;
5865 }
5866 
5867 
5868 // CMS Bit Map Wrapper /////////////////////////////////////////
5869 
5870 // Construct a CMS bit map infrastructure, but don't create the
5871 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5872 // further below.
5873 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5874   _bm(),
5875   _shifter(shifter),
5876   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5877                                     Monitor::_safepoint_check_sometimes) : NULL)
5878 {
5879   _bmStartWord = 0;
5880   _bmWordSize  = 0;
5881 }
5882 
5883 bool CMSBitMap::allocate(MemRegion mr) {
5884   _bmStartWord = mr.start();
5885   _bmWordSize  = mr.word_size();
5886   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5887                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5888   if (!brs.is_reserved()) {
5889     warning("CMS bit map allocation failure");
5890     return false;
5891   }
5892   // For now we'll just commit all of the bit map up front.
5893   // Later on we'll try to be more parsimonious with swap.
5894   if (!_virtual_space.initialize(brs, brs.size())) {
5895     warning("CMS bit map backing store failure");
5896     return false;
5897   }
5898   assert(_virtual_space.committed_size() == brs.size(),
5899          "didn't reserve backing store for all of CMS bit map?");
5900   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5901   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5902          _bmWordSize, "inconsistency in bit map sizing");
5903   _bm.set_size(_bmWordSize >> _shifter);
5904 
5905   // bm.clear(); // can we rely on getting zero'd memory? verify below
5906   assert(isAllClear(),
5907          "Expected zero'd memory from ReservedSpace constructor");
5908   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5909          "consistency check");
5910   return true;
5911 }
5912 
5913 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5914   HeapWord *next_addr, *end_addr, *last_addr;
5915   assert_locked();
5916   assert(covers(mr), "out-of-range error");
5917   // XXX assert that start and end are appropriately aligned
5918   for (next_addr = mr.start(), end_addr = mr.end();
5919        next_addr < end_addr; next_addr = last_addr) {
5920     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5921     last_addr = dirty_region.end();
5922     if (!dirty_region.is_empty()) {
5923       cl->do_MemRegion(dirty_region);
5924     } else {
5925       assert(last_addr == end_addr, "program logic");
5926       return;
5927     }
5928   }
5929 }
5930 
5931 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5932   _bm.print_on_error(st, prefix);
5933 }
5934 
5935 #ifndef PRODUCT
5936 void CMSBitMap::assert_locked() const {
5937   CMSLockVerifier::assert_locked(lock());
5938 }
5939 
5940 bool CMSBitMap::covers(MemRegion mr) const {
5941   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5942   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5943          "size inconsistency");
5944   return (mr.start() >= _bmStartWord) &&
5945          (mr.end()   <= endWord());
5946 }
5947 
5948 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5949     return (start >= _bmStartWord && (start + size) <= endWord());
5950 }
5951 
5952 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5953   // verify that there are no 1 bits in the interval [left, right)
5954   FalseBitMapClosure falseBitMapClosure;
5955   iterate(&falseBitMapClosure, left, right);
5956 }
5957 
5958 void CMSBitMap::region_invariant(MemRegion mr)
5959 {
5960   assert_locked();
5961   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5962   assert(!mr.is_empty(), "unexpected empty region");
5963   assert(covers(mr), "mr should be covered by bit map");
5964   // convert address range into offset range
5965   size_t start_ofs = heapWordToOffset(mr.start());
5966   // Make sure that end() is appropriately aligned
5967   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5968                         (1 << (_shifter+LogHeapWordSize))),
5969          "Misaligned mr.end()");
5970   size_t end_ofs   = heapWordToOffset(mr.end());
5971   assert(end_ofs > start_ofs, "Should mark at least one bit");
5972 }
5973 
5974 #endif
5975 
5976 bool CMSMarkStack::allocate(size_t size) {
5977   // allocate a stack of the requisite depth
5978   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5979                    size * sizeof(oop)));
5980   if (!rs.is_reserved()) {
5981     warning("CMSMarkStack allocation failure");
5982     return false;
5983   }
5984   if (!_virtual_space.initialize(rs, rs.size())) {
5985     warning("CMSMarkStack backing store failure");
5986     return false;
5987   }
5988   assert(_virtual_space.committed_size() == rs.size(),
5989          "didn't reserve backing store for all of CMS stack?");
5990   _base = (oop*)(_virtual_space.low());
5991   _index = 0;
5992   _capacity = size;
5993   NOT_PRODUCT(_max_depth = 0);
5994   return true;
5995 }
5996 
5997 // XXX FIX ME !!! In the MT case we come in here holding a
5998 // leaf lock. For printing we need to take a further lock
5999 // which has lower rank. We need to recalibrate the two
6000 // lock-ranks involved in order to be able to print the
6001 // messages below. (Or defer the printing to the caller.
6002 // For now we take the expedient path of just disabling the
6003 // messages for the problematic case.)
6004 void CMSMarkStack::expand() {
6005   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6006   if (_capacity == MarkStackSizeMax) {
6007     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6008       // We print a warning message only once per CMS cycle.
6009       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6010     }
6011     return;
6012   }
6013   // Double capacity if possible
6014   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6015   // Do not give up existing stack until we have managed to
6016   // get the double capacity that we desired.
6017   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6018                    new_capacity * sizeof(oop)));
6019   if (rs.is_reserved()) {
6020     // Release the backing store associated with old stack
6021     _virtual_space.release();
6022     // Reinitialize virtual space for new stack
6023     if (!_virtual_space.initialize(rs, rs.size())) {
6024       fatal("Not enough swap for expanded marking stack");
6025     }
6026     _base = (oop*)(_virtual_space.low());
6027     _index = 0;
6028     _capacity = new_capacity;
6029   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6030     // Failed to double capacity, continue;
6031     // we print a detail message only once per CMS cycle.
6032     gclog_or_tty->print(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to "
6033             SIZE_FORMAT "K",
6034             _capacity / K, new_capacity / K);
6035   }
6036 }
6037 
6038 
6039 // Closures
6040 // XXX: there seems to be a lot of code  duplication here;
6041 // should refactor and consolidate common code.
6042 
6043 // This closure is used to mark refs into the CMS generation in
6044 // the CMS bit map. Called at the first checkpoint. This closure
6045 // assumes that we do not need to re-mark dirty cards; if the CMS
6046 // generation on which this is used is not an oldest
6047 // generation then this will lose younger_gen cards!
6048 
6049 MarkRefsIntoClosure::MarkRefsIntoClosure(
6050   MemRegion span, CMSBitMap* bitMap):
6051     _span(span),
6052     _bitMap(bitMap)
6053 {
6054   assert(ref_processor() == NULL, "deliberately left NULL");
6055   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6056 }
6057 
6058 void MarkRefsIntoClosure::do_oop(oop obj) {
6059   // if p points into _span, then mark corresponding bit in _markBitMap
6060   assert(obj->is_oop(), "expected an oop");
6061   HeapWord* addr = (HeapWord*)obj;
6062   if (_span.contains(addr)) {
6063     // this should be made more efficient
6064     _bitMap->mark(addr);
6065   }
6066 }
6067 
6068 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6069 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6070 
6071 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6072   MemRegion span, CMSBitMap* bitMap):
6073     _span(span),
6074     _bitMap(bitMap)
6075 {
6076   assert(ref_processor() == NULL, "deliberately left NULL");
6077   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6078 }
6079 
6080 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6081   // if p points into _span, then mark corresponding bit in _markBitMap
6082   assert(obj->is_oop(), "expected an oop");
6083   HeapWord* addr = (HeapWord*)obj;
6084   if (_span.contains(addr)) {
6085     // this should be made more efficient
6086     _bitMap->par_mark(addr);
6087   }
6088 }
6089 
6090 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6091 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6092 
6093 // A variant of the above, used for CMS marking verification.
6094 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6095   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6096     _span(span),
6097     _verification_bm(verification_bm),
6098     _cms_bm(cms_bm)
6099 {
6100   assert(ref_processor() == NULL, "deliberately left NULL");
6101   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6102 }
6103 
6104 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6105   // if p points into _span, then mark corresponding bit in _markBitMap
6106   assert(obj->is_oop(), "expected an oop");
6107   HeapWord* addr = (HeapWord*)obj;
6108   if (_span.contains(addr)) {
6109     _verification_bm->mark(addr);
6110     if (!_cms_bm->isMarked(addr)) {
6111       oop(addr)->print();
6112       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6113       fatal("... aborting");
6114     }
6115   }
6116 }
6117 
6118 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6119 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6120 
6121 //////////////////////////////////////////////////
6122 // MarkRefsIntoAndScanClosure
6123 //////////////////////////////////////////////////
6124 
6125 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6126                                                        ReferenceProcessor* rp,
6127                                                        CMSBitMap* bit_map,
6128                                                        CMSBitMap* mod_union_table,
6129                                                        CMSMarkStack*  mark_stack,
6130                                                        CMSCollector* collector,
6131                                                        bool should_yield,
6132                                                        bool concurrent_precleaning):
6133   _collector(collector),
6134   _span(span),
6135   _bit_map(bit_map),
6136   _mark_stack(mark_stack),
6137   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6138                       mark_stack, concurrent_precleaning),
6139   _yield(should_yield),
6140   _concurrent_precleaning(concurrent_precleaning),
6141   _freelistLock(NULL)
6142 {
6143   // FIXME: Should initialize in base class constructor.
6144   assert(rp != NULL, "ref_processor shouldn't be NULL");
6145   set_ref_processor_internal(rp);
6146 }
6147 
6148 // This closure is used to mark refs into the CMS generation at the
6149 // second (final) checkpoint, and to scan and transitively follow
6150 // the unmarked oops. It is also used during the concurrent precleaning
6151 // phase while scanning objects on dirty cards in the CMS generation.
6152 // The marks are made in the marking bit map and the marking stack is
6153 // used for keeping the (newly) grey objects during the scan.
6154 // The parallel version (Par_...) appears further below.
6155 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6156   if (obj != NULL) {
6157     assert(obj->is_oop(), "expected an oop");
6158     HeapWord* addr = (HeapWord*)obj;
6159     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6160     assert(_collector->overflow_list_is_empty(),
6161            "overflow list should be empty");
6162     if (_span.contains(addr) &&
6163         !_bit_map->isMarked(addr)) {
6164       // mark bit map (object is now grey)
6165       _bit_map->mark(addr);
6166       // push on marking stack (stack should be empty), and drain the
6167       // stack by applying this closure to the oops in the oops popped
6168       // from the stack (i.e. blacken the grey objects)
6169       bool res = _mark_stack->push(obj);
6170       assert(res, "Should have space to push on empty stack");
6171       do {
6172         oop new_oop = _mark_stack->pop();
6173         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6174         assert(_bit_map->isMarked((HeapWord*)new_oop),
6175                "only grey objects on this stack");
6176         // iterate over the oops in this oop, marking and pushing
6177         // the ones in CMS heap (i.e. in _span).
6178         new_oop->oop_iterate(&_pushAndMarkClosure);
6179         // check if it's time to yield
6180         do_yield_check();
6181       } while (!_mark_stack->isEmpty() ||
6182                (!_concurrent_precleaning && take_from_overflow_list()));
6183         // if marking stack is empty, and we are not doing this
6184         // during precleaning, then check the overflow list
6185     }
6186     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6187     assert(_collector->overflow_list_is_empty(),
6188            "overflow list was drained above");
6189     // We could restore evacuated mark words, if any, used for
6190     // overflow list links here because the overflow list is
6191     // provably empty here. That would reduce the maximum
6192     // size requirements for preserved_{oop,mark}_stack.
6193     // But we'll just postpone it until we are all done
6194     // so we can just stream through.
6195     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6196       _collector->restore_preserved_marks_if_any();
6197       assert(_collector->no_preserved_marks(), "No preserved marks");
6198     }
6199     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6200            "All preserved marks should have been restored above");
6201   }
6202 }
6203 
6204 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6205 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6206 
6207 void MarkRefsIntoAndScanClosure::do_yield_work() {
6208   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6209          "CMS thread should hold CMS token");
6210   assert_lock_strong(_freelistLock);
6211   assert_lock_strong(_bit_map->lock());
6212   // relinquish the free_list_lock and bitMaplock()
6213   _bit_map->lock()->unlock();
6214   _freelistLock->unlock();
6215   ConcurrentMarkSweepThread::desynchronize(true);
6216   _collector->stopTimer();
6217   if (PrintCMSStatistics != 0) {
6218     _collector->incrementYields();
6219   }
6220 
6221   // See the comment in coordinator_yield()
6222   for (unsigned i = 0;
6223        i < CMSYieldSleepCount &&
6224        ConcurrentMarkSweepThread::should_yield() &&
6225        !CMSCollector::foregroundGCIsActive();
6226        ++i) {
6227     os::sleep(Thread::current(), 1, false);
6228   }
6229 
6230   ConcurrentMarkSweepThread::synchronize(true);
6231   _freelistLock->lock_without_safepoint_check();
6232   _bit_map->lock()->lock_without_safepoint_check();
6233   _collector->startTimer();
6234 }
6235 
6236 ///////////////////////////////////////////////////////////
6237 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6238 //                                 MarkRefsIntoAndScanClosure
6239 ///////////////////////////////////////////////////////////
6240 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6241   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6242   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6243   _span(span),
6244   _bit_map(bit_map),
6245   _work_queue(work_queue),
6246   _low_water_mark(MIN2((work_queue->max_elems()/4),
6247                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6248   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6249 {
6250   // FIXME: Should initialize in base class constructor.
6251   assert(rp != NULL, "ref_processor shouldn't be NULL");
6252   set_ref_processor_internal(rp);
6253 }
6254 
6255 // This closure is used to mark refs into the CMS generation at the
6256 // second (final) checkpoint, and to scan and transitively follow
6257 // the unmarked oops. The marks are made in the marking bit map and
6258 // the work_queue is used for keeping the (newly) grey objects during
6259 // the scan phase whence they are also available for stealing by parallel
6260 // threads. Since the marking bit map is shared, updates are
6261 // synchronized (via CAS).
6262 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6263   if (obj != NULL) {
6264     // Ignore mark word because this could be an already marked oop
6265     // that may be chained at the end of the overflow list.
6266     assert(obj->is_oop(true), "expected an oop");
6267     HeapWord* addr = (HeapWord*)obj;
6268     if (_span.contains(addr) &&
6269         !_bit_map->isMarked(addr)) {
6270       // mark bit map (object will become grey):
6271       // It is possible for several threads to be
6272       // trying to "claim" this object concurrently;
6273       // the unique thread that succeeds in marking the
6274       // object first will do the subsequent push on
6275       // to the work queue (or overflow list).
6276       if (_bit_map->par_mark(addr)) {
6277         // push on work_queue (which may not be empty), and trim the
6278         // queue to an appropriate length by applying this closure to
6279         // the oops in the oops popped from the stack (i.e. blacken the
6280         // grey objects)
6281         bool res = _work_queue->push(obj);
6282         assert(res, "Low water mark should be less than capacity?");
6283         trim_queue(_low_water_mark);
6284       } // Else, another thread claimed the object
6285     }
6286   }
6287 }
6288 
6289 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6290 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6291 
6292 // This closure is used to rescan the marked objects on the dirty cards
6293 // in the mod union table and the card table proper.
6294 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6295   oop p, MemRegion mr) {
6296 
6297   size_t size = 0;
6298   HeapWord* addr = (HeapWord*)p;
6299   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6300   assert(_span.contains(addr), "we are scanning the CMS generation");
6301   // check if it's time to yield
6302   if (do_yield_check()) {
6303     // We yielded for some foreground stop-world work,
6304     // and we have been asked to abort this ongoing preclean cycle.
6305     return 0;
6306   }
6307   if (_bitMap->isMarked(addr)) {
6308     // it's marked; is it potentially uninitialized?
6309     if (p->klass_or_null() != NULL) {
6310         // an initialized object; ignore mark word in verification below
6311         // since we are running concurrent with mutators
6312         assert(p->is_oop(true), "should be an oop");
6313         if (p->is_objArray()) {
6314           // objArrays are precisely marked; restrict scanning
6315           // to dirty cards only.
6316           size = CompactibleFreeListSpace::adjustObjectSize(
6317                    p->oop_iterate_size(_scanningClosure, mr));
6318         } else {
6319           // A non-array may have been imprecisely marked; we need
6320           // to scan object in its entirety.
6321           size = CompactibleFreeListSpace::adjustObjectSize(
6322                    p->oop_iterate_size(_scanningClosure));
6323         }
6324         #ifdef ASSERT
6325           size_t direct_size =
6326             CompactibleFreeListSpace::adjustObjectSize(p->size());
6327           assert(size == direct_size, "Inconsistency in size");
6328           assert(size >= 3, "Necessary for Printezis marks to work");
6329           if (!_bitMap->isMarked(addr+1)) {
6330             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6331           } else {
6332             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6333             assert(_bitMap->isMarked(addr+size-1),
6334                    "inconsistent Printezis mark");
6335           }
6336         #endif // ASSERT
6337     } else {
6338       // An uninitialized object.
6339       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6340       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6341       size = pointer_delta(nextOneAddr + 1, addr);
6342       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6343              "alignment problem");
6344       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6345       // will dirty the card when the klass pointer is installed in the
6346       // object (signaling the completion of initialization).
6347     }
6348   } else {
6349     // Either a not yet marked object or an uninitialized object
6350     if (p->klass_or_null() == NULL) {
6351       // An uninitialized object, skip to the next card, since
6352       // we may not be able to read its P-bits yet.
6353       assert(size == 0, "Initial value");
6354     } else {
6355       // An object not (yet) reached by marking: we merely need to
6356       // compute its size so as to go look at the next block.
6357       assert(p->is_oop(true), "should be an oop");
6358       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6359     }
6360   }
6361   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6362   return size;
6363 }
6364 
6365 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6366   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6367          "CMS thread should hold CMS token");
6368   assert_lock_strong(_freelistLock);
6369   assert_lock_strong(_bitMap->lock());
6370   // relinquish the free_list_lock and bitMaplock()
6371   _bitMap->lock()->unlock();
6372   _freelistLock->unlock();
6373   ConcurrentMarkSweepThread::desynchronize(true);
6374   _collector->stopTimer();
6375   if (PrintCMSStatistics != 0) {
6376     _collector->incrementYields();
6377   }
6378 
6379   // See the comment in coordinator_yield()
6380   for (unsigned i = 0; i < CMSYieldSleepCount &&
6381                    ConcurrentMarkSweepThread::should_yield() &&
6382                    !CMSCollector::foregroundGCIsActive(); ++i) {
6383     os::sleep(Thread::current(), 1, false);
6384   }
6385 
6386   ConcurrentMarkSweepThread::synchronize(true);
6387   _freelistLock->lock_without_safepoint_check();
6388   _bitMap->lock()->lock_without_safepoint_check();
6389   _collector->startTimer();
6390 }
6391 
6392 
6393 //////////////////////////////////////////////////////////////////
6394 // SurvivorSpacePrecleanClosure
6395 //////////////////////////////////////////////////////////////////
6396 // This (single-threaded) closure is used to preclean the oops in
6397 // the survivor spaces.
6398 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6399 
6400   HeapWord* addr = (HeapWord*)p;
6401   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6402   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6403   assert(p->klass_or_null() != NULL, "object should be initialized");
6404   // an initialized object; ignore mark word in verification below
6405   // since we are running concurrent with mutators
6406   assert(p->is_oop(true), "should be an oop");
6407   // Note that we do not yield while we iterate over
6408   // the interior oops of p, pushing the relevant ones
6409   // on our marking stack.
6410   size_t size = p->oop_iterate_size(_scanning_closure);
6411   do_yield_check();
6412   // Observe that below, we do not abandon the preclean
6413   // phase as soon as we should; rather we empty the
6414   // marking stack before returning. This is to satisfy
6415   // some existing assertions. In general, it may be a
6416   // good idea to abort immediately and complete the marking
6417   // from the grey objects at a later time.
6418   while (!_mark_stack->isEmpty()) {
6419     oop new_oop = _mark_stack->pop();
6420     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6421     assert(_bit_map->isMarked((HeapWord*)new_oop),
6422            "only grey objects on this stack");
6423     // iterate over the oops in this oop, marking and pushing
6424     // the ones in CMS heap (i.e. in _span).
6425     new_oop->oop_iterate(_scanning_closure);
6426     // check if it's time to yield
6427     do_yield_check();
6428   }
6429   unsigned int after_count =
6430     GenCollectedHeap::heap()->total_collections();
6431   bool abort = (_before_count != after_count) ||
6432                _collector->should_abort_preclean();
6433   return abort ? 0 : size;
6434 }
6435 
6436 void SurvivorSpacePrecleanClosure::do_yield_work() {
6437   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6438          "CMS thread should hold CMS token");
6439   assert_lock_strong(_bit_map->lock());
6440   // Relinquish the bit map lock
6441   _bit_map->lock()->unlock();
6442   ConcurrentMarkSweepThread::desynchronize(true);
6443   _collector->stopTimer();
6444   if (PrintCMSStatistics != 0) {
6445     _collector->incrementYields();
6446   }
6447 
6448   // See the comment in coordinator_yield()
6449   for (unsigned i = 0; i < CMSYieldSleepCount &&
6450                        ConcurrentMarkSweepThread::should_yield() &&
6451                        !CMSCollector::foregroundGCIsActive(); ++i) {
6452     os::sleep(Thread::current(), 1, false);
6453   }
6454 
6455   ConcurrentMarkSweepThread::synchronize(true);
6456   _bit_map->lock()->lock_without_safepoint_check();
6457   _collector->startTimer();
6458 }
6459 
6460 // This closure is used to rescan the marked objects on the dirty cards
6461 // in the mod union table and the card table proper. In the parallel
6462 // case, although the bitMap is shared, we do a single read so the
6463 // isMarked() query is "safe".
6464 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6465   // Ignore mark word because we are running concurrent with mutators
6466   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6467   HeapWord* addr = (HeapWord*)p;
6468   assert(_span.contains(addr), "we are scanning the CMS generation");
6469   bool is_obj_array = false;
6470   #ifdef ASSERT
6471     if (!_parallel) {
6472       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6473       assert(_collector->overflow_list_is_empty(),
6474              "overflow list should be empty");
6475 
6476     }
6477   #endif // ASSERT
6478   if (_bit_map->isMarked(addr)) {
6479     // Obj arrays are precisely marked, non-arrays are not;
6480     // so we scan objArrays precisely and non-arrays in their
6481     // entirety.
6482     if (p->is_objArray()) {
6483       is_obj_array = true;
6484       if (_parallel) {
6485         p->oop_iterate(_par_scan_closure, mr);
6486       } else {
6487         p->oop_iterate(_scan_closure, mr);
6488       }
6489     } else {
6490       if (_parallel) {
6491         p->oop_iterate(_par_scan_closure);
6492       } else {
6493         p->oop_iterate(_scan_closure);
6494       }
6495     }
6496   }
6497   #ifdef ASSERT
6498     if (!_parallel) {
6499       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6500       assert(_collector->overflow_list_is_empty(),
6501              "overflow list should be empty");
6502 
6503     }
6504   #endif // ASSERT
6505   return is_obj_array;
6506 }
6507 
6508 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6509                         MemRegion span,
6510                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6511                         bool should_yield, bool verifying):
6512   _collector(collector),
6513   _span(span),
6514   _bitMap(bitMap),
6515   _mut(&collector->_modUnionTable),
6516   _markStack(markStack),
6517   _yield(should_yield),
6518   _skipBits(0)
6519 {
6520   assert(_markStack->isEmpty(), "stack should be empty");
6521   _finger = _bitMap->startWord();
6522   _threshold = _finger;
6523   assert(_collector->_restart_addr == NULL, "Sanity check");
6524   assert(_span.contains(_finger), "Out of bounds _finger?");
6525   DEBUG_ONLY(_verifying = verifying;)
6526 }
6527 
6528 void MarkFromRootsClosure::reset(HeapWord* addr) {
6529   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6530   assert(_span.contains(addr), "Out of bounds _finger?");
6531   _finger = addr;
6532   _threshold = (HeapWord*)round_to(
6533                  (intptr_t)_finger, CardTableModRefBS::card_size);
6534 }
6535 
6536 // Should revisit to see if this should be restructured for
6537 // greater efficiency.
6538 bool MarkFromRootsClosure::do_bit(size_t offset) {
6539   if (_skipBits > 0) {
6540     _skipBits--;
6541     return true;
6542   }
6543   // convert offset into a HeapWord*
6544   HeapWord* addr = _bitMap->startWord() + offset;
6545   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6546          "address out of range");
6547   assert(_bitMap->isMarked(addr), "tautology");
6548   if (_bitMap->isMarked(addr+1)) {
6549     // this is an allocated but not yet initialized object
6550     assert(_skipBits == 0, "tautology");
6551     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6552     oop p = oop(addr);
6553     if (p->klass_or_null() == NULL) {
6554       DEBUG_ONLY(if (!_verifying) {)
6555         // We re-dirty the cards on which this object lies and increase
6556         // the _threshold so that we'll come back to scan this object
6557         // during the preclean or remark phase. (CMSCleanOnEnter)
6558         if (CMSCleanOnEnter) {
6559           size_t sz = _collector->block_size_using_printezis_bits(addr);
6560           HeapWord* end_card_addr   = (HeapWord*)round_to(
6561                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6562           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6563           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6564           // Bump _threshold to end_card_addr; note that
6565           // _threshold cannot possibly exceed end_card_addr, anyhow.
6566           // This prevents future clearing of the card as the scan proceeds
6567           // to the right.
6568           assert(_threshold <= end_card_addr,
6569                  "Because we are just scanning into this object");
6570           if (_threshold < end_card_addr) {
6571             _threshold = end_card_addr;
6572           }
6573           if (p->klass_or_null() != NULL) {
6574             // Redirty the range of cards...
6575             _mut->mark_range(redirty_range);
6576           } // ...else the setting of klass will dirty the card anyway.
6577         }
6578       DEBUG_ONLY(})
6579       return true;
6580     }
6581   }
6582   scanOopsInOop(addr);
6583   return true;
6584 }
6585 
6586 // We take a break if we've been at this for a while,
6587 // so as to avoid monopolizing the locks involved.
6588 void MarkFromRootsClosure::do_yield_work() {
6589   // First give up the locks, then yield, then re-lock
6590   // We should probably use a constructor/destructor idiom to
6591   // do this unlock/lock or modify the MutexUnlocker class to
6592   // serve our purpose. XXX
6593   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6594          "CMS thread should hold CMS token");
6595   assert_lock_strong(_bitMap->lock());
6596   _bitMap->lock()->unlock();
6597   ConcurrentMarkSweepThread::desynchronize(true);
6598   _collector->stopTimer();
6599   if (PrintCMSStatistics != 0) {
6600     _collector->incrementYields();
6601   }
6602 
6603   // See the comment in coordinator_yield()
6604   for (unsigned i = 0; i < CMSYieldSleepCount &&
6605                        ConcurrentMarkSweepThread::should_yield() &&
6606                        !CMSCollector::foregroundGCIsActive(); ++i) {
6607     os::sleep(Thread::current(), 1, false);
6608   }
6609 
6610   ConcurrentMarkSweepThread::synchronize(true);
6611   _bitMap->lock()->lock_without_safepoint_check();
6612   _collector->startTimer();
6613 }
6614 
6615 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6616   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6617   assert(_markStack->isEmpty(),
6618          "should drain stack to limit stack usage");
6619   // convert ptr to an oop preparatory to scanning
6620   oop obj = oop(ptr);
6621   // Ignore mark word in verification below, since we
6622   // may be running concurrent with mutators.
6623   assert(obj->is_oop(true), "should be an oop");
6624   assert(_finger <= ptr, "_finger runneth ahead");
6625   // advance the finger to right end of this object
6626   _finger = ptr + obj->size();
6627   assert(_finger > ptr, "we just incremented it above");
6628   // On large heaps, it may take us some time to get through
6629   // the marking phase. During
6630   // this time it's possible that a lot of mutations have
6631   // accumulated in the card table and the mod union table --
6632   // these mutation records are redundant until we have
6633   // actually traced into the corresponding card.
6634   // Here, we check whether advancing the finger would make
6635   // us cross into a new card, and if so clear corresponding
6636   // cards in the MUT (preclean them in the card-table in the
6637   // future).
6638 
6639   DEBUG_ONLY(if (!_verifying) {)
6640     // The clean-on-enter optimization is disabled by default,
6641     // until we fix 6178663.
6642     if (CMSCleanOnEnter && (_finger > _threshold)) {
6643       // [_threshold, _finger) represents the interval
6644       // of cards to be cleared  in MUT (or precleaned in card table).
6645       // The set of cards to be cleared is all those that overlap
6646       // with the interval [_threshold, _finger); note that
6647       // _threshold is always kept card-aligned but _finger isn't
6648       // always card-aligned.
6649       HeapWord* old_threshold = _threshold;
6650       assert(old_threshold == (HeapWord*)round_to(
6651               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6652              "_threshold should always be card-aligned");
6653       _threshold = (HeapWord*)round_to(
6654                      (intptr_t)_finger, CardTableModRefBS::card_size);
6655       MemRegion mr(old_threshold, _threshold);
6656       assert(!mr.is_empty(), "Control point invariant");
6657       assert(_span.contains(mr), "Should clear within span");
6658       _mut->clear_range(mr);
6659     }
6660   DEBUG_ONLY(})
6661   // Note: the finger doesn't advance while we drain
6662   // the stack below.
6663   PushOrMarkClosure pushOrMarkClosure(_collector,
6664                                       _span, _bitMap, _markStack,
6665                                       _finger, this);
6666   bool res = _markStack->push(obj);
6667   assert(res, "Empty non-zero size stack should have space for single push");
6668   while (!_markStack->isEmpty()) {
6669     oop new_oop = _markStack->pop();
6670     // Skip verifying header mark word below because we are
6671     // running concurrent with mutators.
6672     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6673     // now scan this oop's oops
6674     new_oop->oop_iterate(&pushOrMarkClosure);
6675     do_yield_check();
6676   }
6677   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6678 }
6679 
6680 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6681                        CMSCollector* collector, MemRegion span,
6682                        CMSBitMap* bit_map,
6683                        OopTaskQueue* work_queue,
6684                        CMSMarkStack*  overflow_stack):
6685   _collector(collector),
6686   _whole_span(collector->_span),
6687   _span(span),
6688   _bit_map(bit_map),
6689   _mut(&collector->_modUnionTable),
6690   _work_queue(work_queue),
6691   _overflow_stack(overflow_stack),
6692   _skip_bits(0),
6693   _task(task)
6694 {
6695   assert(_work_queue->size() == 0, "work_queue should be empty");
6696   _finger = span.start();
6697   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6698   assert(_span.contains(_finger), "Out of bounds _finger?");
6699 }
6700 
6701 // Should revisit to see if this should be restructured for
6702 // greater efficiency.
6703 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6704   if (_skip_bits > 0) {
6705     _skip_bits--;
6706     return true;
6707   }
6708   // convert offset into a HeapWord*
6709   HeapWord* addr = _bit_map->startWord() + offset;
6710   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6711          "address out of range");
6712   assert(_bit_map->isMarked(addr), "tautology");
6713   if (_bit_map->isMarked(addr+1)) {
6714     // this is an allocated object that might not yet be initialized
6715     assert(_skip_bits == 0, "tautology");
6716     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6717     oop p = oop(addr);
6718     if (p->klass_or_null() == NULL) {
6719       // in the case of Clean-on-Enter optimization, redirty card
6720       // and avoid clearing card by increasing  the threshold.
6721       return true;
6722     }
6723   }
6724   scan_oops_in_oop(addr);
6725   return true;
6726 }
6727 
6728 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6729   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6730   // Should we assert that our work queue is empty or
6731   // below some drain limit?
6732   assert(_work_queue->size() == 0,
6733          "should drain stack to limit stack usage");
6734   // convert ptr to an oop preparatory to scanning
6735   oop obj = oop(ptr);
6736   // Ignore mark word in verification below, since we
6737   // may be running concurrent with mutators.
6738   assert(obj->is_oop(true), "should be an oop");
6739   assert(_finger <= ptr, "_finger runneth ahead");
6740   // advance the finger to right end of this object
6741   _finger = ptr + obj->size();
6742   assert(_finger > ptr, "we just incremented it above");
6743   // On large heaps, it may take us some time to get through
6744   // the marking phase. During
6745   // this time it's possible that a lot of mutations have
6746   // accumulated in the card table and the mod union table --
6747   // these mutation records are redundant until we have
6748   // actually traced into the corresponding card.
6749   // Here, we check whether advancing the finger would make
6750   // us cross into a new card, and if so clear corresponding
6751   // cards in the MUT (preclean them in the card-table in the
6752   // future).
6753 
6754   // The clean-on-enter optimization is disabled by default,
6755   // until we fix 6178663.
6756   if (CMSCleanOnEnter && (_finger > _threshold)) {
6757     // [_threshold, _finger) represents the interval
6758     // of cards to be cleared  in MUT (or precleaned in card table).
6759     // The set of cards to be cleared is all those that overlap
6760     // with the interval [_threshold, _finger); note that
6761     // _threshold is always kept card-aligned but _finger isn't
6762     // always card-aligned.
6763     HeapWord* old_threshold = _threshold;
6764     assert(old_threshold == (HeapWord*)round_to(
6765             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6766            "_threshold should always be card-aligned");
6767     _threshold = (HeapWord*)round_to(
6768                    (intptr_t)_finger, CardTableModRefBS::card_size);
6769     MemRegion mr(old_threshold, _threshold);
6770     assert(!mr.is_empty(), "Control point invariant");
6771     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6772     _mut->clear_range(mr);
6773   }
6774 
6775   // Note: the local finger doesn't advance while we drain
6776   // the stack below, but the global finger sure can and will.
6777   HeapWord** gfa = _task->global_finger_addr();
6778   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6779                                       _span, _bit_map,
6780                                       _work_queue,
6781                                       _overflow_stack,
6782                                       _finger,
6783                                       gfa, this);
6784   bool res = _work_queue->push(obj);   // overflow could occur here
6785   assert(res, "Will hold once we use workqueues");
6786   while (true) {
6787     oop new_oop;
6788     if (!_work_queue->pop_local(new_oop)) {
6789       // We emptied our work_queue; check if there's stuff that can
6790       // be gotten from the overflow stack.
6791       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6792             _overflow_stack, _work_queue)) {
6793         do_yield_check();
6794         continue;
6795       } else {  // done
6796         break;
6797       }
6798     }
6799     // Skip verifying header mark word below because we are
6800     // running concurrent with mutators.
6801     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6802     // now scan this oop's oops
6803     new_oop->oop_iterate(&pushOrMarkClosure);
6804     do_yield_check();
6805   }
6806   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6807 }
6808 
6809 // Yield in response to a request from VM Thread or
6810 // from mutators.
6811 void Par_MarkFromRootsClosure::do_yield_work() {
6812   assert(_task != NULL, "sanity");
6813   _task->yield();
6814 }
6815 
6816 // A variant of the above used for verifying CMS marking work.
6817 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6818                         MemRegion span,
6819                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6820                         CMSMarkStack*  mark_stack):
6821   _collector(collector),
6822   _span(span),
6823   _verification_bm(verification_bm),
6824   _cms_bm(cms_bm),
6825   _mark_stack(mark_stack),
6826   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6827                       mark_stack)
6828 {
6829   assert(_mark_stack->isEmpty(), "stack should be empty");
6830   _finger = _verification_bm->startWord();
6831   assert(_collector->_restart_addr == NULL, "Sanity check");
6832   assert(_span.contains(_finger), "Out of bounds _finger?");
6833 }
6834 
6835 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6836   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6837   assert(_span.contains(addr), "Out of bounds _finger?");
6838   _finger = addr;
6839 }
6840 
6841 // Should revisit to see if this should be restructured for
6842 // greater efficiency.
6843 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6844   // convert offset into a HeapWord*
6845   HeapWord* addr = _verification_bm->startWord() + offset;
6846   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6847          "address out of range");
6848   assert(_verification_bm->isMarked(addr), "tautology");
6849   assert(_cms_bm->isMarked(addr), "tautology");
6850 
6851   assert(_mark_stack->isEmpty(),
6852          "should drain stack to limit stack usage");
6853   // convert addr to an oop preparatory to scanning
6854   oop obj = oop(addr);
6855   assert(obj->is_oop(), "should be an oop");
6856   assert(_finger <= addr, "_finger runneth ahead");
6857   // advance the finger to right end of this object
6858   _finger = addr + obj->size();
6859   assert(_finger > addr, "we just incremented it above");
6860   // Note: the finger doesn't advance while we drain
6861   // the stack below.
6862   bool res = _mark_stack->push(obj);
6863   assert(res, "Empty non-zero size stack should have space for single push");
6864   while (!_mark_stack->isEmpty()) {
6865     oop new_oop = _mark_stack->pop();
6866     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6867     // now scan this oop's oops
6868     new_oop->oop_iterate(&_pam_verify_closure);
6869   }
6870   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6871   return true;
6872 }
6873 
6874 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6875   CMSCollector* collector, MemRegion span,
6876   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6877   CMSMarkStack*  mark_stack):
6878   MetadataAwareOopClosure(collector->ref_processor()),
6879   _collector(collector),
6880   _span(span),
6881   _verification_bm(verification_bm),
6882   _cms_bm(cms_bm),
6883   _mark_stack(mark_stack)
6884 { }
6885 
6886 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6887 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6888 
6889 // Upon stack overflow, we discard (part of) the stack,
6890 // remembering the least address amongst those discarded
6891 // in CMSCollector's _restart_address.
6892 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6893   // Remember the least grey address discarded
6894   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6895   _collector->lower_restart_addr(ra);
6896   _mark_stack->reset();  // discard stack contents
6897   _mark_stack->expand(); // expand the stack if possible
6898 }
6899 
6900 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6901   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6902   HeapWord* addr = (HeapWord*)obj;
6903   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6904     // Oop lies in _span and isn't yet grey or black
6905     _verification_bm->mark(addr);            // now grey
6906     if (!_cms_bm->isMarked(addr)) {
6907       oop(addr)->print();
6908       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6909                              p2i(addr));
6910       fatal("... aborting");
6911     }
6912 
6913     if (!_mark_stack->push(obj)) { // stack overflow
6914       if (PrintCMSStatistics != 0) {
6915         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6916                                SIZE_FORMAT, _mark_stack->capacity());
6917       }
6918       assert(_mark_stack->isFull(), "Else push should have succeeded");
6919       handle_stack_overflow(addr);
6920     }
6921     // anything including and to the right of _finger
6922     // will be scanned as we iterate over the remainder of the
6923     // bit map
6924   }
6925 }
6926 
6927 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6928                      MemRegion span,
6929                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6930                      HeapWord* finger, MarkFromRootsClosure* parent) :
6931   MetadataAwareOopClosure(collector->ref_processor()),
6932   _collector(collector),
6933   _span(span),
6934   _bitMap(bitMap),
6935   _markStack(markStack),
6936   _finger(finger),
6937   _parent(parent)
6938 { }
6939 
6940 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6941                      MemRegion span,
6942                      CMSBitMap* bit_map,
6943                      OopTaskQueue* work_queue,
6944                      CMSMarkStack*  overflow_stack,
6945                      HeapWord* finger,
6946                      HeapWord** global_finger_addr,
6947                      Par_MarkFromRootsClosure* parent) :
6948   MetadataAwareOopClosure(collector->ref_processor()),
6949   _collector(collector),
6950   _whole_span(collector->_span),
6951   _span(span),
6952   _bit_map(bit_map),
6953   _work_queue(work_queue),
6954   _overflow_stack(overflow_stack),
6955   _finger(finger),
6956   _global_finger_addr(global_finger_addr),
6957   _parent(parent)
6958 { }
6959 
6960 // Assumes thread-safe access by callers, who are
6961 // responsible for mutual exclusion.
6962 void CMSCollector::lower_restart_addr(HeapWord* low) {
6963   assert(_span.contains(low), "Out of bounds addr");
6964   if (_restart_addr == NULL) {
6965     _restart_addr = low;
6966   } else {
6967     _restart_addr = MIN2(_restart_addr, low);
6968   }
6969 }
6970 
6971 // Upon stack overflow, we discard (part of) the stack,
6972 // remembering the least address amongst those discarded
6973 // in CMSCollector's _restart_address.
6974 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6975   // Remember the least grey address discarded
6976   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6977   _collector->lower_restart_addr(ra);
6978   _markStack->reset();  // discard stack contents
6979   _markStack->expand(); // expand the stack if possible
6980 }
6981 
6982 // Upon stack overflow, we discard (part of) the stack,
6983 // remembering the least address amongst those discarded
6984 // in CMSCollector's _restart_address.
6985 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6986   // We need to do this under a mutex to prevent other
6987   // workers from interfering with the work done below.
6988   MutexLockerEx ml(_overflow_stack->par_lock(),
6989                    Mutex::_no_safepoint_check_flag);
6990   // Remember the least grey address discarded
6991   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6992   _collector->lower_restart_addr(ra);
6993   _overflow_stack->reset();  // discard stack contents
6994   _overflow_stack->expand(); // expand the stack if possible
6995 }
6996 
6997 void PushOrMarkClosure::do_oop(oop obj) {
6998   // Ignore mark word because we are running concurrent with mutators.
6999   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7000   HeapWord* addr = (HeapWord*)obj;
7001   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7002     // Oop lies in _span and isn't yet grey or black
7003     _bitMap->mark(addr);            // now grey
7004     if (addr < _finger) {
7005       // the bit map iteration has already either passed, or
7006       // sampled, this bit in the bit map; we'll need to
7007       // use the marking stack to scan this oop's oops.
7008       bool simulate_overflow = false;
7009       NOT_PRODUCT(
7010         if (CMSMarkStackOverflowALot &&
7011             _collector->simulate_overflow()) {
7012           // simulate a stack overflow
7013           simulate_overflow = true;
7014         }
7015       )
7016       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7017         if (PrintCMSStatistics != 0) {
7018           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7019                                  SIZE_FORMAT, _markStack->capacity());
7020         }
7021         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7022         handle_stack_overflow(addr);
7023       }
7024     }
7025     // anything including and to the right of _finger
7026     // will be scanned as we iterate over the remainder of the
7027     // bit map
7028     do_yield_check();
7029   }
7030 }
7031 
7032 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7033 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7034 
7035 void Par_PushOrMarkClosure::do_oop(oop obj) {
7036   // Ignore mark word because we are running concurrent with mutators.
7037   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7038   HeapWord* addr = (HeapWord*)obj;
7039   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7040     // Oop lies in _span and isn't yet grey or black
7041     // We read the global_finger (volatile read) strictly after marking oop
7042     bool res = _bit_map->par_mark(addr);    // now grey
7043     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7044     // Should we push this marked oop on our stack?
7045     // -- if someone else marked it, nothing to do
7046     // -- if target oop is above global finger nothing to do
7047     // -- if target oop is in chunk and above local finger
7048     //      then nothing to do
7049     // -- else push on work queue
7050     if (   !res       // someone else marked it, they will deal with it
7051         || (addr >= *gfa)  // will be scanned in a later task
7052         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7053       return;
7054     }
7055     // the bit map iteration has already either passed, or
7056     // sampled, this bit in the bit map; we'll need to
7057     // use the marking stack to scan this oop's oops.
7058     bool simulate_overflow = false;
7059     NOT_PRODUCT(
7060       if (CMSMarkStackOverflowALot &&
7061           _collector->simulate_overflow()) {
7062         // simulate a stack overflow
7063         simulate_overflow = true;
7064       }
7065     )
7066     if (simulate_overflow ||
7067         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7068       // stack overflow
7069       if (PrintCMSStatistics != 0) {
7070         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7071                                SIZE_FORMAT, _overflow_stack->capacity());
7072       }
7073       // We cannot assert that the overflow stack is full because
7074       // it may have been emptied since.
7075       assert(simulate_overflow ||
7076              _work_queue->size() == _work_queue->max_elems(),
7077             "Else push should have succeeded");
7078       handle_stack_overflow(addr);
7079     }
7080     do_yield_check();
7081   }
7082 }
7083 
7084 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7085 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7086 
7087 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7088                                        MemRegion span,
7089                                        ReferenceProcessor* rp,
7090                                        CMSBitMap* bit_map,
7091                                        CMSBitMap* mod_union_table,
7092                                        CMSMarkStack*  mark_stack,
7093                                        bool           concurrent_precleaning):
7094   MetadataAwareOopClosure(rp),
7095   _collector(collector),
7096   _span(span),
7097   _bit_map(bit_map),
7098   _mod_union_table(mod_union_table),
7099   _mark_stack(mark_stack),
7100   _concurrent_precleaning(concurrent_precleaning)
7101 {
7102   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
7103 }
7104 
7105 // Grey object rescan during pre-cleaning and second checkpoint phases --
7106 // the non-parallel version (the parallel version appears further below.)
7107 void PushAndMarkClosure::do_oop(oop obj) {
7108   // Ignore mark word verification. If during concurrent precleaning,
7109   // the object monitor may be locked. If during the checkpoint
7110   // phases, the object may already have been reached by a  different
7111   // path and may be at the end of the global overflow list (so
7112   // the mark word may be NULL).
7113   assert(obj->is_oop_or_null(true /* ignore mark word */),
7114          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7115   HeapWord* addr = (HeapWord*)obj;
7116   // Check if oop points into the CMS generation
7117   // and is not marked
7118   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7119     // a white object ...
7120     _bit_map->mark(addr);         // ... now grey
7121     // push on the marking stack (grey set)
7122     bool simulate_overflow = false;
7123     NOT_PRODUCT(
7124       if (CMSMarkStackOverflowALot &&
7125           _collector->simulate_overflow()) {
7126         // simulate a stack overflow
7127         simulate_overflow = true;
7128       }
7129     )
7130     if (simulate_overflow || !_mark_stack->push(obj)) {
7131       if (_concurrent_precleaning) {
7132          // During precleaning we can just dirty the appropriate card(s)
7133          // in the mod union table, thus ensuring that the object remains
7134          // in the grey set  and continue. In the case of object arrays
7135          // we need to dirty all of the cards that the object spans,
7136          // since the rescan of object arrays will be limited to the
7137          // dirty cards.
7138          // Note that no one can be interfering with us in this action
7139          // of dirtying the mod union table, so no locking or atomics
7140          // are required.
7141          if (obj->is_objArray()) {
7142            size_t sz = obj->size();
7143            HeapWord* end_card_addr = (HeapWord*)round_to(
7144                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7145            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7146            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7147            _mod_union_table->mark_range(redirty_range);
7148          } else {
7149            _mod_union_table->mark(addr);
7150          }
7151          _collector->_ser_pmc_preclean_ovflw++;
7152       } else {
7153          // During the remark phase, we need to remember this oop
7154          // in the overflow list.
7155          _collector->push_on_overflow_list(obj);
7156          _collector->_ser_pmc_remark_ovflw++;
7157       }
7158     }
7159   }
7160 }
7161 
7162 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7163                                                MemRegion span,
7164                                                ReferenceProcessor* rp,
7165                                                CMSBitMap* bit_map,
7166                                                OopTaskQueue* work_queue):
7167   MetadataAwareOopClosure(rp),
7168   _collector(collector),
7169   _span(span),
7170   _bit_map(bit_map),
7171   _work_queue(work_queue)
7172 {
7173   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
7174 }
7175 
7176 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7177 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7178 
7179 // Grey object rescan during second checkpoint phase --
7180 // the parallel version.
7181 void Par_PushAndMarkClosure::do_oop(oop obj) {
7182   // In the assert below, we ignore the mark word because
7183   // this oop may point to an already visited object that is
7184   // on the overflow stack (in which case the mark word has
7185   // been hijacked for chaining into the overflow stack --
7186   // if this is the last object in the overflow stack then
7187   // its mark word will be NULL). Because this object may
7188   // have been subsequently popped off the global overflow
7189   // stack, and the mark word possibly restored to the prototypical
7190   // value, by the time we get to examined this failing assert in
7191   // the debugger, is_oop_or_null(false) may subsequently start
7192   // to hold.
7193   assert(obj->is_oop_or_null(true),
7194          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7195   HeapWord* addr = (HeapWord*)obj;
7196   // Check if oop points into the CMS generation
7197   // and is not marked
7198   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7199     // a white object ...
7200     // If we manage to "claim" the object, by being the
7201     // first thread to mark it, then we push it on our
7202     // marking stack
7203     if (_bit_map->par_mark(addr)) {     // ... now grey
7204       // push on work queue (grey set)
7205       bool simulate_overflow = false;
7206       NOT_PRODUCT(
7207         if (CMSMarkStackOverflowALot &&
7208             _collector->par_simulate_overflow()) {
7209           // simulate a stack overflow
7210           simulate_overflow = true;
7211         }
7212       )
7213       if (simulate_overflow || !_work_queue->push(obj)) {
7214         _collector->par_push_on_overflow_list(obj);
7215         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7216       }
7217     } // Else, some other thread got there first
7218   }
7219 }
7220 
7221 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7222 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7223 
7224 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7225   Mutex* bml = _collector->bitMapLock();
7226   assert_lock_strong(bml);
7227   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7228          "CMS thread should hold CMS token");
7229 
7230   bml->unlock();
7231   ConcurrentMarkSweepThread::desynchronize(true);
7232 
7233   _collector->stopTimer();
7234   if (PrintCMSStatistics != 0) {
7235     _collector->incrementYields();
7236   }
7237 
7238   // See the comment in coordinator_yield()
7239   for (unsigned i = 0; i < CMSYieldSleepCount &&
7240                        ConcurrentMarkSweepThread::should_yield() &&
7241                        !CMSCollector::foregroundGCIsActive(); ++i) {
7242     os::sleep(Thread::current(), 1, false);
7243   }
7244 
7245   ConcurrentMarkSweepThread::synchronize(true);
7246   bml->lock();
7247 
7248   _collector->startTimer();
7249 }
7250 
7251 bool CMSPrecleanRefsYieldClosure::should_return() {
7252   if (ConcurrentMarkSweepThread::should_yield()) {
7253     do_yield_work();
7254   }
7255   return _collector->foregroundGCIsActive();
7256 }
7257 
7258 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7259   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7260          "mr should be aligned to start at a card boundary");
7261   // We'd like to assert:
7262   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7263   //        "mr should be a range of cards");
7264   // However, that would be too strong in one case -- the last
7265   // partition ends at _unallocated_block which, in general, can be
7266   // an arbitrary boundary, not necessarily card aligned.
7267   if (PrintCMSStatistics != 0) {
7268     _num_dirty_cards +=
7269          mr.word_size()/CardTableModRefBS::card_size_in_words;
7270   }
7271   _space->object_iterate_mem(mr, &_scan_cl);
7272 }
7273 
7274 SweepClosure::SweepClosure(CMSCollector* collector,
7275                            ConcurrentMarkSweepGeneration* g,
7276                            CMSBitMap* bitMap, bool should_yield) :
7277   _collector(collector),
7278   _g(g),
7279   _sp(g->cmsSpace()),
7280   _limit(_sp->sweep_limit()),
7281   _freelistLock(_sp->freelistLock()),
7282   _bitMap(bitMap),
7283   _yield(should_yield),
7284   _inFreeRange(false),           // No free range at beginning of sweep
7285   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7286   _lastFreeRangeCoalesced(false),
7287   _freeFinger(g->used_region().start())
7288 {
7289   NOT_PRODUCT(
7290     _numObjectsFreed = 0;
7291     _numWordsFreed   = 0;
7292     _numObjectsLive = 0;
7293     _numWordsLive = 0;
7294     _numObjectsAlreadyFree = 0;
7295     _numWordsAlreadyFree = 0;
7296     _last_fc = NULL;
7297 
7298     _sp->initializeIndexedFreeListArrayReturnedBytes();
7299     _sp->dictionary()->initialize_dict_returned_bytes();
7300   )
7301   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7302          "sweep _limit out of bounds");
7303   if (CMSTraceSweeper) {
7304     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7305                         p2i(_limit));
7306   }
7307 }
7308 
7309 void SweepClosure::print_on(outputStream* st) const {
7310   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7311                 p2i(_sp->bottom()), p2i(_sp->end()));
7312   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7313   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7314   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7315   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7316                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7317 }
7318 
7319 #ifndef PRODUCT
7320 // Assertion checking only:  no useful work in product mode --
7321 // however, if any of the flags below become product flags,
7322 // you may need to review this code to see if it needs to be
7323 // enabled in product mode.
7324 SweepClosure::~SweepClosure() {
7325   assert_lock_strong(_freelistLock);
7326   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7327          "sweep _limit out of bounds");
7328   if (inFreeRange()) {
7329     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7330     print();
7331     ShouldNotReachHere();
7332   }
7333   if (Verbose && PrintGC) {
7334     gclog_or_tty->print("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7335                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7336     gclog_or_tty->print_cr("\nLive " SIZE_FORMAT " objects,  "
7337                            SIZE_FORMAT " bytes  "
7338       "Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7339       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7340       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7341     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7342                         * sizeof(HeapWord);
7343     gclog_or_tty->print_cr("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7344 
7345     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7346       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7347       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7348       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7349       gclog_or_tty->print("Returned " SIZE_FORMAT " bytes", returned_bytes);
7350       gclog_or_tty->print("   Indexed List Returned " SIZE_FORMAT " bytes",
7351         indexListReturnedBytes);
7352       gclog_or_tty->print_cr("        Dictionary Returned " SIZE_FORMAT " bytes",
7353         dict_returned_bytes);
7354     }
7355   }
7356   if (CMSTraceSweeper) {
7357     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7358                            p2i(_limit));
7359   }
7360 }
7361 #endif  // PRODUCT
7362 
7363 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7364     bool freeRangeInFreeLists) {
7365   if (CMSTraceSweeper) {
7366     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7367                p2i(freeFinger), freeRangeInFreeLists);
7368   }
7369   assert(!inFreeRange(), "Trampling existing free range");
7370   set_inFreeRange(true);
7371   set_lastFreeRangeCoalesced(false);
7372 
7373   set_freeFinger(freeFinger);
7374   set_freeRangeInFreeLists(freeRangeInFreeLists);
7375   if (CMSTestInFreeList) {
7376     if (freeRangeInFreeLists) {
7377       FreeChunk* fc = (FreeChunk*) freeFinger;
7378       assert(fc->is_free(), "A chunk on the free list should be free.");
7379       assert(fc->size() > 0, "Free range should have a size");
7380       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7381     }
7382   }
7383 }
7384 
7385 // Note that the sweeper runs concurrently with mutators. Thus,
7386 // it is possible for direct allocation in this generation to happen
7387 // in the middle of the sweep. Note that the sweeper also coalesces
7388 // contiguous free blocks. Thus, unless the sweeper and the allocator
7389 // synchronize appropriately freshly allocated blocks may get swept up.
7390 // This is accomplished by the sweeper locking the free lists while
7391 // it is sweeping. Thus blocks that are determined to be free are
7392 // indeed free. There is however one additional complication:
7393 // blocks that have been allocated since the final checkpoint and
7394 // mark, will not have been marked and so would be treated as
7395 // unreachable and swept up. To prevent this, the allocator marks
7396 // the bit map when allocating during the sweep phase. This leads,
7397 // however, to a further complication -- objects may have been allocated
7398 // but not yet initialized -- in the sense that the header isn't yet
7399 // installed. The sweeper can not then determine the size of the block
7400 // in order to skip over it. To deal with this case, we use a technique
7401 // (due to Printezis) to encode such uninitialized block sizes in the
7402 // bit map. Since the bit map uses a bit per every HeapWord, but the
7403 // CMS generation has a minimum object size of 3 HeapWords, it follows
7404 // that "normal marks" won't be adjacent in the bit map (there will
7405 // always be at least two 0 bits between successive 1 bits). We make use
7406 // of these "unused" bits to represent uninitialized blocks -- the bit
7407 // corresponding to the start of the uninitialized object and the next
7408 // bit are both set. Finally, a 1 bit marks the end of the object that
7409 // started with the two consecutive 1 bits to indicate its potentially
7410 // uninitialized state.
7411 
7412 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7413   FreeChunk* fc = (FreeChunk*)addr;
7414   size_t res;
7415 
7416   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7417   // than "addr == _limit" because although _limit was a block boundary when
7418   // we started the sweep, it may no longer be one because heap expansion
7419   // may have caused us to coalesce the block ending at the address _limit
7420   // with a newly expanded chunk (this happens when _limit was set to the
7421   // previous _end of the space), so we may have stepped past _limit:
7422   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7423   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7424     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7425            "sweep _limit out of bounds");
7426     assert(addr < _sp->end(), "addr out of bounds");
7427     // Flush any free range we might be holding as a single
7428     // coalesced chunk to the appropriate free list.
7429     if (inFreeRange()) {
7430       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7431              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7432       flush_cur_free_chunk(freeFinger(),
7433                            pointer_delta(addr, freeFinger()));
7434       if (CMSTraceSweeper) {
7435         gclog_or_tty->print("Sweep: last chunk: ");
7436         gclog_or_tty->print("put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") "
7437                    "[coalesced:%d]\n",
7438                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7439                    lastFreeRangeCoalesced() ? 1 : 0);
7440       }
7441     }
7442 
7443     // help the iterator loop finish
7444     return pointer_delta(_sp->end(), addr);
7445   }
7446 
7447   assert(addr < _limit, "sweep invariant");
7448   // check if we should yield
7449   do_yield_check(addr);
7450   if (fc->is_free()) {
7451     // Chunk that is already free
7452     res = fc->size();
7453     do_already_free_chunk(fc);
7454     debug_only(_sp->verifyFreeLists());
7455     // If we flush the chunk at hand in lookahead_and_flush()
7456     // and it's coalesced with a preceding chunk, then the
7457     // process of "mangling" the payload of the coalesced block
7458     // will cause erasure of the size information from the
7459     // (erstwhile) header of all the coalesced blocks but the
7460     // first, so the first disjunct in the assert will not hold
7461     // in that specific case (in which case the second disjunct
7462     // will hold).
7463     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7464            "Otherwise the size info doesn't change at this step");
7465     NOT_PRODUCT(
7466       _numObjectsAlreadyFree++;
7467       _numWordsAlreadyFree += res;
7468     )
7469     NOT_PRODUCT(_last_fc = fc;)
7470   } else if (!_bitMap->isMarked(addr)) {
7471     // Chunk is fresh garbage
7472     res = do_garbage_chunk(fc);
7473     debug_only(_sp->verifyFreeLists());
7474     NOT_PRODUCT(
7475       _numObjectsFreed++;
7476       _numWordsFreed += res;
7477     )
7478   } else {
7479     // Chunk that is alive.
7480     res = do_live_chunk(fc);
7481     debug_only(_sp->verifyFreeLists());
7482     NOT_PRODUCT(
7483         _numObjectsLive++;
7484         _numWordsLive += res;
7485     )
7486   }
7487   return res;
7488 }
7489 
7490 // For the smart allocation, record following
7491 //  split deaths - a free chunk is removed from its free list because
7492 //      it is being split into two or more chunks.
7493 //  split birth - a free chunk is being added to its free list because
7494 //      a larger free chunk has been split and resulted in this free chunk.
7495 //  coal death - a free chunk is being removed from its free list because
7496 //      it is being coalesced into a large free chunk.
7497 //  coal birth - a free chunk is being added to its free list because
7498 //      it was created when two or more free chunks where coalesced into
7499 //      this free chunk.
7500 //
7501 // These statistics are used to determine the desired number of free
7502 // chunks of a given size.  The desired number is chosen to be relative
7503 // to the end of a CMS sweep.  The desired number at the end of a sweep
7504 // is the
7505 //      count-at-end-of-previous-sweep (an amount that was enough)
7506 //              - count-at-beginning-of-current-sweep  (the excess)
7507 //              + split-births  (gains in this size during interval)
7508 //              - split-deaths  (demands on this size during interval)
7509 // where the interval is from the end of one sweep to the end of the
7510 // next.
7511 //
7512 // When sweeping the sweeper maintains an accumulated chunk which is
7513 // the chunk that is made up of chunks that have been coalesced.  That
7514 // will be termed the left-hand chunk.  A new chunk of garbage that
7515 // is being considered for coalescing will be referred to as the
7516 // right-hand chunk.
7517 //
7518 // When making a decision on whether to coalesce a right-hand chunk with
7519 // the current left-hand chunk, the current count vs. the desired count
7520 // of the left-hand chunk is considered.  Also if the right-hand chunk
7521 // is near the large chunk at the end of the heap (see
7522 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7523 // left-hand chunk is coalesced.
7524 //
7525 // When making a decision about whether to split a chunk, the desired count
7526 // vs. the current count of the candidate to be split is also considered.
7527 // If the candidate is underpopulated (currently fewer chunks than desired)
7528 // a chunk of an overpopulated (currently more chunks than desired) size may
7529 // be chosen.  The "hint" associated with a free list, if non-null, points
7530 // to a free list which may be overpopulated.
7531 //
7532 
7533 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7534   const size_t size = fc->size();
7535   // Chunks that cannot be coalesced are not in the
7536   // free lists.
7537   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7538     assert(_sp->verify_chunk_in_free_list(fc),
7539       "free chunk should be in free lists");
7540   }
7541   // a chunk that is already free, should not have been
7542   // marked in the bit map
7543   HeapWord* const addr = (HeapWord*) fc;
7544   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7545   // Verify that the bit map has no bits marked between
7546   // addr and purported end of this block.
7547   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7548 
7549   // Some chunks cannot be coalesced under any circumstances.
7550   // See the definition of cantCoalesce().
7551   if (!fc->cantCoalesce()) {
7552     // This chunk can potentially be coalesced.
7553     if (_sp->adaptive_freelists()) {
7554       // All the work is done in
7555       do_post_free_or_garbage_chunk(fc, size);
7556     } else {  // Not adaptive free lists
7557       // this is a free chunk that can potentially be coalesced by the sweeper;
7558       if (!inFreeRange()) {
7559         // if the next chunk is a free block that can't be coalesced
7560         // it doesn't make sense to remove this chunk from the free lists
7561         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7562         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7563         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7564             nextChunk->is_free()               &&     // ... which is free...
7565             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7566           // nothing to do
7567         } else {
7568           // Potentially the start of a new free range:
7569           // Don't eagerly remove it from the free lists.
7570           // No need to remove it if it will just be put
7571           // back again.  (Also from a pragmatic point of view
7572           // if it is a free block in a region that is beyond
7573           // any allocated blocks, an assertion will fail)
7574           // Remember the start of a free run.
7575           initialize_free_range(addr, true);
7576           // end - can coalesce with next chunk
7577         }
7578       } else {
7579         // the midst of a free range, we are coalescing
7580         print_free_block_coalesced(fc);
7581         if (CMSTraceSweeper) {
7582           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7583         }
7584         // remove it from the free lists
7585         _sp->removeFreeChunkFromFreeLists(fc);
7586         set_lastFreeRangeCoalesced(true);
7587         // If the chunk is being coalesced and the current free range is
7588         // in the free lists, remove the current free range so that it
7589         // will be returned to the free lists in its entirety - all
7590         // the coalesced pieces included.
7591         if (freeRangeInFreeLists()) {
7592           FreeChunk* ffc = (FreeChunk*) freeFinger();
7593           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7594             "Size of free range is inconsistent with chunk size.");
7595           if (CMSTestInFreeList) {
7596             assert(_sp->verify_chunk_in_free_list(ffc),
7597               "free range is not in free lists");
7598           }
7599           _sp->removeFreeChunkFromFreeLists(ffc);
7600           set_freeRangeInFreeLists(false);
7601         }
7602       }
7603     }
7604     // Note that if the chunk is not coalescable (the else arm
7605     // below), we unconditionally flush, without needing to do
7606     // a "lookahead," as we do below.
7607     if (inFreeRange()) lookahead_and_flush(fc, size);
7608   } else {
7609     // Code path common to both original and adaptive free lists.
7610 
7611     // cant coalesce with previous block; this should be treated
7612     // as the end of a free run if any
7613     if (inFreeRange()) {
7614       // we kicked some butt; time to pick up the garbage
7615       assert(freeFinger() < addr, "freeFinger points too high");
7616       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7617     }
7618     // else, nothing to do, just continue
7619   }
7620 }
7621 
7622 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7623   // This is a chunk of garbage.  It is not in any free list.
7624   // Add it to a free list or let it possibly be coalesced into
7625   // a larger chunk.
7626   HeapWord* const addr = (HeapWord*) fc;
7627   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7628 
7629   if (_sp->adaptive_freelists()) {
7630     // Verify that the bit map has no bits marked between
7631     // addr and purported end of just dead object.
7632     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7633 
7634     do_post_free_or_garbage_chunk(fc, size);
7635   } else {
7636     if (!inFreeRange()) {
7637       // start of a new free range
7638       assert(size > 0, "A free range should have a size");
7639       initialize_free_range(addr, false);
7640     } else {
7641       // this will be swept up when we hit the end of the
7642       // free range
7643       if (CMSTraceSweeper) {
7644         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7645       }
7646       // If the chunk is being coalesced and the current free range is
7647       // in the free lists, remove the current free range so that it
7648       // will be returned to the free lists in its entirety - all
7649       // the coalesced pieces included.
7650       if (freeRangeInFreeLists()) {
7651         FreeChunk* ffc = (FreeChunk*)freeFinger();
7652         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7653           "Size of free range is inconsistent with chunk size.");
7654         if (CMSTestInFreeList) {
7655           assert(_sp->verify_chunk_in_free_list(ffc),
7656             "free range is not in free lists");
7657         }
7658         _sp->removeFreeChunkFromFreeLists(ffc);
7659         set_freeRangeInFreeLists(false);
7660       }
7661       set_lastFreeRangeCoalesced(true);
7662     }
7663     // this will be swept up when we hit the end of the free range
7664 
7665     // Verify that the bit map has no bits marked between
7666     // addr and purported end of just dead object.
7667     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7668   }
7669   assert(_limit >= addr + size,
7670          "A freshly garbage chunk can't possibly straddle over _limit");
7671   if (inFreeRange()) lookahead_and_flush(fc, size);
7672   return size;
7673 }
7674 
7675 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7676   HeapWord* addr = (HeapWord*) fc;
7677   // The sweeper has just found a live object. Return any accumulated
7678   // left hand chunk to the free lists.
7679   if (inFreeRange()) {
7680     assert(freeFinger() < addr, "freeFinger points too high");
7681     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7682   }
7683 
7684   // This object is live: we'd normally expect this to be
7685   // an oop, and like to assert the following:
7686   // assert(oop(addr)->is_oop(), "live block should be an oop");
7687   // However, as we commented above, this may be an object whose
7688   // header hasn't yet been initialized.
7689   size_t size;
7690   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7691   if (_bitMap->isMarked(addr + 1)) {
7692     // Determine the size from the bit map, rather than trying to
7693     // compute it from the object header.
7694     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7695     size = pointer_delta(nextOneAddr + 1, addr);
7696     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7697            "alignment problem");
7698 
7699 #ifdef ASSERT
7700       if (oop(addr)->klass_or_null() != NULL) {
7701         // Ignore mark word because we are running concurrent with mutators
7702         assert(oop(addr)->is_oop(true), "live block should be an oop");
7703         assert(size ==
7704                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7705                "P-mark and computed size do not agree");
7706       }
7707 #endif
7708 
7709   } else {
7710     // This should be an initialized object that's alive.
7711     assert(oop(addr)->klass_or_null() != NULL,
7712            "Should be an initialized object");
7713     // Ignore mark word because we are running concurrent with mutators
7714     assert(oop(addr)->is_oop(true), "live block should be an oop");
7715     // Verify that the bit map has no bits marked between
7716     // addr and purported end of this block.
7717     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7718     assert(size >= 3, "Necessary for Printezis marks to work");
7719     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7720     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7721   }
7722   return size;
7723 }
7724 
7725 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7726                                                  size_t chunkSize) {
7727   // do_post_free_or_garbage_chunk() should only be called in the case
7728   // of the adaptive free list allocator.
7729   const bool fcInFreeLists = fc->is_free();
7730   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7731   assert((HeapWord*)fc <= _limit, "sweep invariant");
7732   if (CMSTestInFreeList && fcInFreeLists) {
7733     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7734   }
7735 
7736   if (CMSTraceSweeper) {
7737     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7738   }
7739 
7740   HeapWord* const fc_addr = (HeapWord*) fc;
7741 
7742   bool coalesce;
7743   const size_t left  = pointer_delta(fc_addr, freeFinger());
7744   const size_t right = chunkSize;
7745   switch (FLSCoalescePolicy) {
7746     // numeric value forms a coalition aggressiveness metric
7747     case 0:  { // never coalesce
7748       coalesce = false;
7749       break;
7750     }
7751     case 1: { // coalesce if left & right chunks on overpopulated lists
7752       coalesce = _sp->coalOverPopulated(left) &&
7753                  _sp->coalOverPopulated(right);
7754       break;
7755     }
7756     case 2: { // coalesce if left chunk on overpopulated list (default)
7757       coalesce = _sp->coalOverPopulated(left);
7758       break;
7759     }
7760     case 3: { // coalesce if left OR right chunk on overpopulated list
7761       coalesce = _sp->coalOverPopulated(left) ||
7762                  _sp->coalOverPopulated(right);
7763       break;
7764     }
7765     case 4: { // always coalesce
7766       coalesce = true;
7767       break;
7768     }
7769     default:
7770      ShouldNotReachHere();
7771   }
7772 
7773   // Should the current free range be coalesced?
7774   // If the chunk is in a free range and either we decided to coalesce above
7775   // or the chunk is near the large block at the end of the heap
7776   // (isNearLargestChunk() returns true), then coalesce this chunk.
7777   const bool doCoalesce = inFreeRange()
7778                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7779   if (doCoalesce) {
7780     // Coalesce the current free range on the left with the new
7781     // chunk on the right.  If either is on a free list,
7782     // it must be removed from the list and stashed in the closure.
7783     if (freeRangeInFreeLists()) {
7784       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7785       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7786         "Size of free range is inconsistent with chunk size.");
7787       if (CMSTestInFreeList) {
7788         assert(_sp->verify_chunk_in_free_list(ffc),
7789           "Chunk is not in free lists");
7790       }
7791       _sp->coalDeath(ffc->size());
7792       _sp->removeFreeChunkFromFreeLists(ffc);
7793       set_freeRangeInFreeLists(false);
7794     }
7795     if (fcInFreeLists) {
7796       _sp->coalDeath(chunkSize);
7797       assert(fc->size() == chunkSize,
7798         "The chunk has the wrong size or is not in the free lists");
7799       _sp->removeFreeChunkFromFreeLists(fc);
7800     }
7801     set_lastFreeRangeCoalesced(true);
7802     print_free_block_coalesced(fc);
7803   } else {  // not in a free range and/or should not coalesce
7804     // Return the current free range and start a new one.
7805     if (inFreeRange()) {
7806       // In a free range but cannot coalesce with the right hand chunk.
7807       // Put the current free range into the free lists.
7808       flush_cur_free_chunk(freeFinger(),
7809                            pointer_delta(fc_addr, freeFinger()));
7810     }
7811     // Set up for new free range.  Pass along whether the right hand
7812     // chunk is in the free lists.
7813     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7814   }
7815 }
7816 
7817 // Lookahead flush:
7818 // If we are tracking a free range, and this is the last chunk that
7819 // we'll look at because its end crosses past _limit, we'll preemptively
7820 // flush it along with any free range we may be holding on to. Note that
7821 // this can be the case only for an already free or freshly garbage
7822 // chunk. If this block is an object, it can never straddle
7823 // over _limit. The "straddling" occurs when _limit is set at
7824 // the previous end of the space when this cycle started, and
7825 // a subsequent heap expansion caused the previously co-terminal
7826 // free block to be coalesced with the newly expanded portion,
7827 // thus rendering _limit a non-block-boundary making it dangerous
7828 // for the sweeper to step over and examine.
7829 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7830   assert(inFreeRange(), "Should only be called if currently in a free range.");
7831   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7832   assert(_sp->used_region().contains(eob - 1),
7833          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7834          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7835          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7836          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7837   if (eob >= _limit) {
7838     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7839     if (CMSTraceSweeper) {
7840       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7841                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7842                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7843                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7844     }
7845     // Return the storage we are tracking back into the free lists.
7846     if (CMSTraceSweeper) {
7847       gclog_or_tty->print_cr("Flushing ... ");
7848     }
7849     assert(freeFinger() < eob, "Error");
7850     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7851   }
7852 }
7853 
7854 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7855   assert(inFreeRange(), "Should only be called if currently in a free range.");
7856   assert(size > 0,
7857     "A zero sized chunk cannot be added to the free lists.");
7858   if (!freeRangeInFreeLists()) {
7859     if (CMSTestInFreeList) {
7860       FreeChunk* fc = (FreeChunk*) chunk;
7861       fc->set_size(size);
7862       assert(!_sp->verify_chunk_in_free_list(fc),
7863         "chunk should not be in free lists yet");
7864     }
7865     if (CMSTraceSweeper) {
7866       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7867                     p2i(chunk), size);
7868     }
7869     // A new free range is going to be starting.  The current
7870     // free range has not been added to the free lists yet or
7871     // was removed so add it back.
7872     // If the current free range was coalesced, then the death
7873     // of the free range was recorded.  Record a birth now.
7874     if (lastFreeRangeCoalesced()) {
7875       _sp->coalBirth(size);
7876     }
7877     _sp->addChunkAndRepairOffsetTable(chunk, size,
7878             lastFreeRangeCoalesced());
7879   } else if (CMSTraceSweeper) {
7880     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7881   }
7882   set_inFreeRange(false);
7883   set_freeRangeInFreeLists(false);
7884 }
7885 
7886 // We take a break if we've been at this for a while,
7887 // so as to avoid monopolizing the locks involved.
7888 void SweepClosure::do_yield_work(HeapWord* addr) {
7889   // Return current free chunk being used for coalescing (if any)
7890   // to the appropriate freelist.  After yielding, the next
7891   // free block encountered will start a coalescing range of
7892   // free blocks.  If the next free block is adjacent to the
7893   // chunk just flushed, they will need to wait for the next
7894   // sweep to be coalesced.
7895   if (inFreeRange()) {
7896     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7897   }
7898 
7899   // First give up the locks, then yield, then re-lock.
7900   // We should probably use a constructor/destructor idiom to
7901   // do this unlock/lock or modify the MutexUnlocker class to
7902   // serve our purpose. XXX
7903   assert_lock_strong(_bitMap->lock());
7904   assert_lock_strong(_freelistLock);
7905   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7906          "CMS thread should hold CMS token");
7907   _bitMap->lock()->unlock();
7908   _freelistLock->unlock();
7909   ConcurrentMarkSweepThread::desynchronize(true);
7910   _collector->stopTimer();
7911   if (PrintCMSStatistics != 0) {
7912     _collector->incrementYields();
7913   }
7914 
7915   // See the comment in coordinator_yield()
7916   for (unsigned i = 0; i < CMSYieldSleepCount &&
7917                        ConcurrentMarkSweepThread::should_yield() &&
7918                        !CMSCollector::foregroundGCIsActive(); ++i) {
7919     os::sleep(Thread::current(), 1, false);
7920   }
7921 
7922   ConcurrentMarkSweepThread::synchronize(true);
7923   _freelistLock->lock();
7924   _bitMap->lock()->lock_without_safepoint_check();
7925   _collector->startTimer();
7926 }
7927 
7928 #ifndef PRODUCT
7929 // This is actually very useful in a product build if it can
7930 // be called from the debugger.  Compile it into the product
7931 // as needed.
7932 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7933   return debug_cms_space->verify_chunk_in_free_list(fc);
7934 }
7935 #endif
7936 
7937 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7938   if (CMSTraceSweeper) {
7939     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7940                            p2i(fc), fc->size());
7941   }
7942 }
7943 
7944 // CMSIsAliveClosure
7945 bool CMSIsAliveClosure::do_object_b(oop obj) {
7946   HeapWord* addr = (HeapWord*)obj;
7947   return addr != NULL &&
7948          (!_span.contains(addr) || _bit_map->isMarked(addr));
7949 }
7950 
7951 
7952 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7953                       MemRegion span,
7954                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7955                       bool cpc):
7956   _collector(collector),
7957   _span(span),
7958   _bit_map(bit_map),
7959   _mark_stack(mark_stack),
7960   _concurrent_precleaning(cpc) {
7961   assert(!_span.is_empty(), "Empty span could spell trouble");
7962 }
7963 
7964 
7965 // CMSKeepAliveClosure: the serial version
7966 void CMSKeepAliveClosure::do_oop(oop obj) {
7967   HeapWord* addr = (HeapWord*)obj;
7968   if (_span.contains(addr) &&
7969       !_bit_map->isMarked(addr)) {
7970     _bit_map->mark(addr);
7971     bool simulate_overflow = false;
7972     NOT_PRODUCT(
7973       if (CMSMarkStackOverflowALot &&
7974           _collector->simulate_overflow()) {
7975         // simulate a stack overflow
7976         simulate_overflow = true;
7977       }
7978     )
7979     if (simulate_overflow || !_mark_stack->push(obj)) {
7980       if (_concurrent_precleaning) {
7981         // We dirty the overflown object and let the remark
7982         // phase deal with it.
7983         assert(_collector->overflow_list_is_empty(), "Error");
7984         // In the case of object arrays, we need to dirty all of
7985         // the cards that the object spans. No locking or atomics
7986         // are needed since no one else can be mutating the mod union
7987         // table.
7988         if (obj->is_objArray()) {
7989           size_t sz = obj->size();
7990           HeapWord* end_card_addr =
7991             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7992           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7993           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7994           _collector->_modUnionTable.mark_range(redirty_range);
7995         } else {
7996           _collector->_modUnionTable.mark(addr);
7997         }
7998         _collector->_ser_kac_preclean_ovflw++;
7999       } else {
8000         _collector->push_on_overflow_list(obj);
8001         _collector->_ser_kac_ovflw++;
8002       }
8003     }
8004   }
8005 }
8006 
8007 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8008 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8009 
8010 // CMSParKeepAliveClosure: a parallel version of the above.
8011 // The work queues are private to each closure (thread),
8012 // but (may be) available for stealing by other threads.
8013 void CMSParKeepAliveClosure::do_oop(oop obj) {
8014   HeapWord* addr = (HeapWord*)obj;
8015   if (_span.contains(addr) &&
8016       !_bit_map->isMarked(addr)) {
8017     // In general, during recursive tracing, several threads
8018     // may be concurrently getting here; the first one to
8019     // "tag" it, claims it.
8020     if (_bit_map->par_mark(addr)) {
8021       bool res = _work_queue->push(obj);
8022       assert(res, "Low water mark should be much less than capacity");
8023       // Do a recursive trim in the hope that this will keep
8024       // stack usage lower, but leave some oops for potential stealers
8025       trim_queue(_low_water_mark);
8026     } // Else, another thread got there first
8027   }
8028 }
8029 
8030 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8031 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8032 
8033 void CMSParKeepAliveClosure::trim_queue(uint max) {
8034   while (_work_queue->size() > max) {
8035     oop new_oop;
8036     if (_work_queue->pop_local(new_oop)) {
8037       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8038       assert(_bit_map->isMarked((HeapWord*)new_oop),
8039              "no white objects on this stack!");
8040       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8041       // iterate over the oops in this oop, marking and pushing
8042       // the ones in CMS heap (i.e. in _span).
8043       new_oop->oop_iterate(&_mark_and_push);
8044     }
8045   }
8046 }
8047 
8048 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8049                                 CMSCollector* collector,
8050                                 MemRegion span, CMSBitMap* bit_map,
8051                                 OopTaskQueue* work_queue):
8052   _collector(collector),
8053   _span(span),
8054   _bit_map(bit_map),
8055   _work_queue(work_queue) { }
8056 
8057 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8058   HeapWord* addr = (HeapWord*)obj;
8059   if (_span.contains(addr) &&
8060       !_bit_map->isMarked(addr)) {
8061     if (_bit_map->par_mark(addr)) {
8062       bool simulate_overflow = false;
8063       NOT_PRODUCT(
8064         if (CMSMarkStackOverflowALot &&
8065             _collector->par_simulate_overflow()) {
8066           // simulate a stack overflow
8067           simulate_overflow = true;
8068         }
8069       )
8070       if (simulate_overflow || !_work_queue->push(obj)) {
8071         _collector->par_push_on_overflow_list(obj);
8072         _collector->_par_kac_ovflw++;
8073       }
8074     } // Else another thread got there already
8075   }
8076 }
8077 
8078 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8079 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8080 
8081 //////////////////////////////////////////////////////////////////
8082 //  CMSExpansionCause                /////////////////////////////
8083 //////////////////////////////////////////////////////////////////
8084 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8085   switch (cause) {
8086     case _no_expansion:
8087       return "No expansion";
8088     case _satisfy_free_ratio:
8089       return "Free ratio";
8090     case _satisfy_promotion:
8091       return "Satisfy promotion";
8092     case _satisfy_allocation:
8093       return "allocation";
8094     case _allocate_par_lab:
8095       return "Par LAB";
8096     case _allocate_par_spooling_space:
8097       return "Par Spooling Space";
8098     case _adaptive_size_policy:
8099       return "Ergonomics";
8100     default:
8101       return "unknown";
8102   }
8103 }
8104 
8105 void CMSDrainMarkingStackClosure::do_void() {
8106   // the max number to take from overflow list at a time
8107   const size_t num = _mark_stack->capacity()/4;
8108   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8109          "Overflow list should be NULL during concurrent phases");
8110   while (!_mark_stack->isEmpty() ||
8111          // if stack is empty, check the overflow list
8112          _collector->take_from_overflow_list(num, _mark_stack)) {
8113     oop obj = _mark_stack->pop();
8114     HeapWord* addr = (HeapWord*)obj;
8115     assert(_span.contains(addr), "Should be within span");
8116     assert(_bit_map->isMarked(addr), "Should be marked");
8117     assert(obj->is_oop(), "Should be an oop");
8118     obj->oop_iterate(_keep_alive);
8119   }
8120 }
8121 
8122 void CMSParDrainMarkingStackClosure::do_void() {
8123   // drain queue
8124   trim_queue(0);
8125 }
8126 
8127 // Trim our work_queue so its length is below max at return
8128 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8129   while (_work_queue->size() > max) {
8130     oop new_oop;
8131     if (_work_queue->pop_local(new_oop)) {
8132       assert(new_oop->is_oop(), "Expected an oop");
8133       assert(_bit_map->isMarked((HeapWord*)new_oop),
8134              "no white objects on this stack!");
8135       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8136       // iterate over the oops in this oop, marking and pushing
8137       // the ones in CMS heap (i.e. in _span).
8138       new_oop->oop_iterate(&_mark_and_push);
8139     }
8140   }
8141 }
8142 
8143 ////////////////////////////////////////////////////////////////////
8144 // Support for Marking Stack Overflow list handling and related code
8145 ////////////////////////////////////////////////////////////////////
8146 // Much of the following code is similar in shape and spirit to the
8147 // code used in ParNewGC. We should try and share that code
8148 // as much as possible in the future.
8149 
8150 #ifndef PRODUCT
8151 // Debugging support for CMSStackOverflowALot
8152 
8153 // It's OK to call this multi-threaded;  the worst thing
8154 // that can happen is that we'll get a bunch of closely
8155 // spaced simulated overflows, but that's OK, in fact
8156 // probably good as it would exercise the overflow code
8157 // under contention.
8158 bool CMSCollector::simulate_overflow() {
8159   if (_overflow_counter-- <= 0) { // just being defensive
8160     _overflow_counter = CMSMarkStackOverflowInterval;
8161     return true;
8162   } else {
8163     return false;
8164   }
8165 }
8166 
8167 bool CMSCollector::par_simulate_overflow() {
8168   return simulate_overflow();
8169 }
8170 #endif
8171 
8172 // Single-threaded
8173 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8174   assert(stack->isEmpty(), "Expected precondition");
8175   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8176   size_t i = num;
8177   oop  cur = _overflow_list;
8178   const markOop proto = markOopDesc::prototype();
8179   NOT_PRODUCT(ssize_t n = 0;)
8180   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8181     next = oop(cur->mark());
8182     cur->set_mark(proto);   // until proven otherwise
8183     assert(cur->is_oop(), "Should be an oop");
8184     bool res = stack->push(cur);
8185     assert(res, "Bit off more than can chew?");
8186     NOT_PRODUCT(n++;)
8187   }
8188   _overflow_list = cur;
8189 #ifndef PRODUCT
8190   assert(_num_par_pushes >= n, "Too many pops?");
8191   _num_par_pushes -=n;
8192 #endif
8193   return !stack->isEmpty();
8194 }
8195 
8196 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8197 // (MT-safe) Get a prefix of at most "num" from the list.
8198 // The overflow list is chained through the mark word of
8199 // each object in the list. We fetch the entire list,
8200 // break off a prefix of the right size and return the
8201 // remainder. If other threads try to take objects from
8202 // the overflow list at that time, they will wait for
8203 // some time to see if data becomes available. If (and
8204 // only if) another thread places one or more object(s)
8205 // on the global list before we have returned the suffix
8206 // to the global list, we will walk down our local list
8207 // to find its end and append the global list to
8208 // our suffix before returning it. This suffix walk can
8209 // prove to be expensive (quadratic in the amount of traffic)
8210 // when there are many objects in the overflow list and
8211 // there is much producer-consumer contention on the list.
8212 // *NOTE*: The overflow list manipulation code here and
8213 // in ParNewGeneration:: are very similar in shape,
8214 // except that in the ParNew case we use the old (from/eden)
8215 // copy of the object to thread the list via its klass word.
8216 // Because of the common code, if you make any changes in
8217 // the code below, please check the ParNew version to see if
8218 // similar changes might be needed.
8219 // CR 6797058 has been filed to consolidate the common code.
8220 bool CMSCollector::par_take_from_overflow_list(size_t num,
8221                                                OopTaskQueue* work_q,
8222                                                int no_of_gc_threads) {
8223   assert(work_q->size() == 0, "First empty local work queue");
8224   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8225   if (_overflow_list == NULL) {
8226     return false;
8227   }
8228   // Grab the entire list; we'll put back a suffix
8229   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8230   Thread* tid = Thread::current();
8231   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8232   // set to ParallelGCThreads.
8233   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8234   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8235   // If the list is busy, we spin for a short while,
8236   // sleeping between attempts to get the list.
8237   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8238     os::sleep(tid, sleep_time_millis, false);
8239     if (_overflow_list == NULL) {
8240       // Nothing left to take
8241       return false;
8242     } else if (_overflow_list != BUSY) {
8243       // Try and grab the prefix
8244       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8245     }
8246   }
8247   // If the list was found to be empty, or we spun long
8248   // enough, we give up and return empty-handed. If we leave
8249   // the list in the BUSY state below, it must be the case that
8250   // some other thread holds the overflow list and will set it
8251   // to a non-BUSY state in the future.
8252   if (prefix == NULL || prefix == BUSY) {
8253      // Nothing to take or waited long enough
8254      if (prefix == NULL) {
8255        // Write back the NULL in case we overwrote it with BUSY above
8256        // and it is still the same value.
8257        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8258      }
8259      return false;
8260   }
8261   assert(prefix != NULL && prefix != BUSY, "Error");
8262   size_t i = num;
8263   oop cur = prefix;
8264   // Walk down the first "num" objects, unless we reach the end.
8265   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8266   if (cur->mark() == NULL) {
8267     // We have "num" or fewer elements in the list, so there
8268     // is nothing to return to the global list.
8269     // Write back the NULL in lieu of the BUSY we wrote
8270     // above, if it is still the same value.
8271     if (_overflow_list == BUSY) {
8272       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8273     }
8274   } else {
8275     // Chop off the suffix and return it to the global list.
8276     assert(cur->mark() != BUSY, "Error");
8277     oop suffix_head = cur->mark(); // suffix will be put back on global list
8278     cur->set_mark(NULL);           // break off suffix
8279     // It's possible that the list is still in the empty(busy) state
8280     // we left it in a short while ago; in that case we may be
8281     // able to place back the suffix without incurring the cost
8282     // of a walk down the list.
8283     oop observed_overflow_list = _overflow_list;
8284     oop cur_overflow_list = observed_overflow_list;
8285     bool attached = false;
8286     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8287       observed_overflow_list =
8288         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8289       if (cur_overflow_list == observed_overflow_list) {
8290         attached = true;
8291         break;
8292       } else cur_overflow_list = observed_overflow_list;
8293     }
8294     if (!attached) {
8295       // Too bad, someone else sneaked in (at least) an element; we'll need
8296       // to do a splice. Find tail of suffix so we can prepend suffix to global
8297       // list.
8298       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8299       oop suffix_tail = cur;
8300       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8301              "Tautology");
8302       observed_overflow_list = _overflow_list;
8303       do {
8304         cur_overflow_list = observed_overflow_list;
8305         if (cur_overflow_list != BUSY) {
8306           // Do the splice ...
8307           suffix_tail->set_mark(markOop(cur_overflow_list));
8308         } else { // cur_overflow_list == BUSY
8309           suffix_tail->set_mark(NULL);
8310         }
8311         // ... and try to place spliced list back on overflow_list ...
8312         observed_overflow_list =
8313           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8314       } while (cur_overflow_list != observed_overflow_list);
8315       // ... until we have succeeded in doing so.
8316     }
8317   }
8318 
8319   // Push the prefix elements on work_q
8320   assert(prefix != NULL, "control point invariant");
8321   const markOop proto = markOopDesc::prototype();
8322   oop next;
8323   NOT_PRODUCT(ssize_t n = 0;)
8324   for (cur = prefix; cur != NULL; cur = next) {
8325     next = oop(cur->mark());
8326     cur->set_mark(proto);   // until proven otherwise
8327     assert(cur->is_oop(), "Should be an oop");
8328     bool res = work_q->push(cur);
8329     assert(res, "Bit off more than we can chew?");
8330     NOT_PRODUCT(n++;)
8331   }
8332 #ifndef PRODUCT
8333   assert(_num_par_pushes >= n, "Too many pops?");
8334   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8335 #endif
8336   return true;
8337 }
8338 
8339 // Single-threaded
8340 void CMSCollector::push_on_overflow_list(oop p) {
8341   NOT_PRODUCT(_num_par_pushes++;)
8342   assert(p->is_oop(), "Not an oop");
8343   preserve_mark_if_necessary(p);
8344   p->set_mark((markOop)_overflow_list);
8345   _overflow_list = p;
8346 }
8347 
8348 // Multi-threaded; use CAS to prepend to overflow list
8349 void CMSCollector::par_push_on_overflow_list(oop p) {
8350   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8351   assert(p->is_oop(), "Not an oop");
8352   par_preserve_mark_if_necessary(p);
8353   oop observed_overflow_list = _overflow_list;
8354   oop cur_overflow_list;
8355   do {
8356     cur_overflow_list = observed_overflow_list;
8357     if (cur_overflow_list != BUSY) {
8358       p->set_mark(markOop(cur_overflow_list));
8359     } else {
8360       p->set_mark(NULL);
8361     }
8362     observed_overflow_list =
8363       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8364   } while (cur_overflow_list != observed_overflow_list);
8365 }
8366 #undef BUSY
8367 
8368 // Single threaded
8369 // General Note on GrowableArray: pushes may silently fail
8370 // because we are (temporarily) out of C-heap for expanding
8371 // the stack. The problem is quite ubiquitous and affects
8372 // a lot of code in the JVM. The prudent thing for GrowableArray
8373 // to do (for now) is to exit with an error. However, that may
8374 // be too draconian in some cases because the caller may be
8375 // able to recover without much harm. For such cases, we
8376 // should probably introduce a "soft_push" method which returns
8377 // an indication of success or failure with the assumption that
8378 // the caller may be able to recover from a failure; code in
8379 // the VM can then be changed, incrementally, to deal with such
8380 // failures where possible, thus, incrementally hardening the VM
8381 // in such low resource situations.
8382 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8383   _preserved_oop_stack.push(p);
8384   _preserved_mark_stack.push(m);
8385   assert(m == p->mark(), "Mark word changed");
8386   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8387          "bijection");
8388 }
8389 
8390 // Single threaded
8391 void CMSCollector::preserve_mark_if_necessary(oop p) {
8392   markOop m = p->mark();
8393   if (m->must_be_preserved(p)) {
8394     preserve_mark_work(p, m);
8395   }
8396 }
8397 
8398 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8399   markOop m = p->mark();
8400   if (m->must_be_preserved(p)) {
8401     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8402     // Even though we read the mark word without holding
8403     // the lock, we are assured that it will not change
8404     // because we "own" this oop, so no other thread can
8405     // be trying to push it on the overflow list; see
8406     // the assertion in preserve_mark_work() that checks
8407     // that m == p->mark().
8408     preserve_mark_work(p, m);
8409   }
8410 }
8411 
8412 // We should be able to do this multi-threaded,
8413 // a chunk of stack being a task (this is
8414 // correct because each oop only ever appears
8415 // once in the overflow list. However, it's
8416 // not very easy to completely overlap this with
8417 // other operations, so will generally not be done
8418 // until all work's been completed. Because we
8419 // expect the preserved oop stack (set) to be small,
8420 // it's probably fine to do this single-threaded.
8421 // We can explore cleverer concurrent/overlapped/parallel
8422 // processing of preserved marks if we feel the
8423 // need for this in the future. Stack overflow should
8424 // be so rare in practice and, when it happens, its
8425 // effect on performance so great that this will
8426 // likely just be in the noise anyway.
8427 void CMSCollector::restore_preserved_marks_if_any() {
8428   assert(SafepointSynchronize::is_at_safepoint(),
8429          "world should be stopped");
8430   assert(Thread::current()->is_ConcurrentGC_thread() ||
8431          Thread::current()->is_VM_thread(),
8432          "should be single-threaded");
8433   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8434          "bijection");
8435 
8436   while (!_preserved_oop_stack.is_empty()) {
8437     oop p = _preserved_oop_stack.pop();
8438     assert(p->is_oop(), "Should be an oop");
8439     assert(_span.contains(p), "oop should be in _span");
8440     assert(p->mark() == markOopDesc::prototype(),
8441            "Set when taken from overflow list");
8442     markOop m = _preserved_mark_stack.pop();
8443     p->set_mark(m);
8444   }
8445   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8446          "stacks were cleared above");
8447 }
8448 
8449 #ifndef PRODUCT
8450 bool CMSCollector::no_preserved_marks() const {
8451   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8452 }
8453 #endif
8454 
8455 // Transfer some number of overflown objects to usual marking
8456 // stack. Return true if some objects were transferred.
8457 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8458   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8459                     (size_t)ParGCDesiredObjsFromOverflowList);
8460 
8461   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8462   assert(_collector->overflow_list_is_empty() || res,
8463          "If list is not empty, we should have taken something");
8464   assert(!res || !_mark_stack->isEmpty(),
8465          "If we took something, it should now be on our stack");
8466   return res;
8467 }
8468 
8469 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8470   size_t res = _sp->block_size_no_stall(addr, _collector);
8471   if (_sp->block_is_obj(addr)) {
8472     if (_live_bit_map->isMarked(addr)) {
8473       // It can't have been dead in a previous cycle
8474       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8475     } else {
8476       _dead_bit_map->mark(addr);      // mark the dead object
8477     }
8478   }
8479   // Could be 0, if the block size could not be computed without stalling.
8480   return res;
8481 }
8482 
8483 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8484 
8485   switch (phase) {
8486     case CMSCollector::InitialMarking:
8487       initialize(true  /* fullGC */ ,
8488                  cause /* cause of the GC */,
8489                  true  /* recordGCBeginTime */,
8490                  true  /* recordPreGCUsage */,
8491                  false /* recordPeakUsage */,
8492                  false /* recordPostGCusage */,
8493                  true  /* recordAccumulatedGCTime */,
8494                  false /* recordGCEndTime */,
8495                  false /* countCollection */  );
8496       break;
8497 
8498     case CMSCollector::FinalMarking:
8499       initialize(true  /* fullGC */ ,
8500                  cause /* cause of the GC */,
8501                  false /* recordGCBeginTime */,
8502                  false /* recordPreGCUsage */,
8503                  false /* recordPeakUsage */,
8504                  false /* recordPostGCusage */,
8505                  true  /* recordAccumulatedGCTime */,
8506                  false /* recordGCEndTime */,
8507                  false /* countCollection */  );
8508       break;
8509 
8510     case CMSCollector::Sweeping:
8511       initialize(true  /* fullGC */ ,
8512                  cause /* cause of the GC */,
8513                  false /* recordGCBeginTime */,
8514                  false /* recordPreGCUsage */,
8515                  true  /* recordPeakUsage */,
8516                  true  /* recordPostGCusage */,
8517                  false /* recordAccumulatedGCTime */,
8518                  true  /* recordGCEndTime */,
8519                  true  /* countCollection */  );
8520       break;
8521 
8522     default:
8523       ShouldNotReachHere();
8524   }
8525 }