1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/serial/defNewGeneration.inline.hpp"
  27 #include "gc/shared/cardTableRS.hpp"
  28 #include "gc/shared/collectorCounters.hpp"
  29 #include "gc/shared/gcHeapSummary.hpp"
  30 #include "gc/shared/gcLocker.inline.hpp"
  31 #include "gc/shared/gcPolicyCounters.hpp"
  32 #include "gc/shared/gcTimer.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "gc/shared/gcTraceTime.hpp"
  35 #include "gc/shared/genCollectedHeap.hpp"
  36 #include "gc/shared/genOopClosures.inline.hpp"
  37 #include "gc/shared/generationSpec.hpp"
  38 #include "gc/shared/referencePolicy.hpp"
  39 #include "gc/shared/space.inline.hpp"
  40 #include "gc/shared/spaceDecorator.hpp"
  41 #include "gc/shared/strongRootsScope.hpp"
  42 #include "memory/iterator.hpp"
  43 #include "oops/instanceRefKlass.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/prefetch.inline.hpp"
  48 #include "runtime/thread.inline.hpp"
  49 #include "utilities/copy.hpp"
  50 #include "utilities/globalDefinitions.hpp"
  51 #include "utilities/stack.inline.hpp"
  52 #if INCLUDE_ALL_GCS
  53 #include "gc/cms/parOopClosures.hpp"
  54 #endif
  55 
  56 //
  57 // DefNewGeneration functions.
  58 
  59 // Methods of protected closure types.
  60 
  61 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* young_gen) : _young_gen(young_gen) {
  62   assert(_young_gen->kind() == Generation::ParNew ||
  63          _young_gen->kind() == Generation::DefNew, "Expected the young generation here");
  64 }
  65 
  66 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  67   return (HeapWord*)p >= _young_gen->reserved().end() || p->is_forwarded();
  68 }
  69 
  70 DefNewGeneration::KeepAliveClosure::
  71 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  72   _rs = GenCollectedHeap::heap()->rem_set();
  73 }
  74 
  75 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  76 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  77 
  78 
  79 DefNewGeneration::FastKeepAliveClosure::
  80 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  81   DefNewGeneration::KeepAliveClosure(cl) {
  82   _boundary = g->reserved().end();
  83 }
  84 
  85 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  86 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  87 
  88 DefNewGeneration::EvacuateFollowersClosure::
  89 EvacuateFollowersClosure(GenCollectedHeap* gch,
  90                          ScanClosure* cur,
  91                          ScanClosure* older) :
  92   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
  93 {}
  94 
  95 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  96   do {
  97     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
  98   } while (!_gch->no_allocs_since_save_marks());
  99 }
 100 
 101 DefNewGeneration::FastEvacuateFollowersClosure::
 102 FastEvacuateFollowersClosure(GenCollectedHeap* gch,
 103                              FastScanClosure* cur,
 104                              FastScanClosure* older) :
 105   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
 106 {
 107   assert(_gch->young_gen()->kind() == Generation::DefNew, "Generation should be DefNew");
 108   _young_gen = (DefNewGeneration*)_gch->young_gen();
 109 }
 110 
 111 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 112   do {
 113     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
 114   } while (!_gch->no_allocs_since_save_marks());
 115   guarantee(_young_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 116 }
 117 
 118 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 119     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 120 {
 121   _boundary = _g->reserved().end();
 122 }
 123 
 124 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 125 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 126 
 127 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 128     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 129 {
 130   _boundary = _g->reserved().end();
 131 }
 132 
 133 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 134 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 135 
 136 void KlassScanClosure::do_klass(Klass* klass) {
 137 #ifndef PRODUCT
 138   if (TraceScavenge) {
 139     ResourceMark rm;
 140     gclog_or_tty->print_cr("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 141                            p2i(klass),
 142                            klass->external_name(),
 143                            klass->has_modified_oops() ? "true" : "false");
 144   }
 145 #endif
 146 
 147   // If the klass has not been dirtied we know that there's
 148   // no references into  the young gen and we can skip it.
 149   if (klass->has_modified_oops()) {
 150     if (_accumulate_modified_oops) {
 151       klass->accumulate_modified_oops();
 152     }
 153 
 154     // Clear this state since we're going to scavenge all the metadata.
 155     klass->clear_modified_oops();
 156 
 157     // Tell the closure which Klass is being scanned so that it can be dirtied
 158     // if oops are left pointing into the young gen.
 159     _scavenge_closure->set_scanned_klass(klass);
 160 
 161     klass->oops_do(_scavenge_closure);
 162 
 163     _scavenge_closure->set_scanned_klass(NULL);
 164   }
 165 }
 166 
 167 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 168   _g(g)
 169 {
 170   _boundary = _g->reserved().end();
 171 }
 172 
 173 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 174 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 175 
 176 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 177 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 178 
 179 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 180                                    KlassRemSet* klass_rem_set)
 181     : _scavenge_closure(scavenge_closure),
 182       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 183 
 184 
 185 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 186                                    size_t initial_size,
 187                                    const char* policy)
 188   : Generation(rs, initial_size),
 189     _promo_failure_drain_in_progress(false),
 190     _should_allocate_from_space(false)
 191 {
 192   MemRegion cmr((HeapWord*)_virtual_space.low(),
 193                 (HeapWord*)_virtual_space.high());
 194   GenCollectedHeap* gch = GenCollectedHeap::heap();
 195 
 196   gch->barrier_set()->resize_covered_region(cmr);
 197 
 198   _eden_space = new ContiguousSpace();
 199   _from_space = new ContiguousSpace();
 200   _to_space   = new ContiguousSpace();
 201 
 202   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
 203     vm_exit_during_initialization("Could not allocate a new gen space");
 204   }
 205 
 206   // Compute the maximum eden and survivor space sizes. These sizes
 207   // are computed assuming the entire reserved space is committed.
 208   // These values are exported as performance counters.
 209   uintx alignment = gch->collector_policy()->space_alignment();
 210   uintx size = _virtual_space.reserved_size();
 211   _max_survivor_size = compute_survivor_size(size, alignment);
 212   _max_eden_size = size - (2*_max_survivor_size);
 213 
 214   // allocate the performance counters
 215   GenCollectorPolicy* gcp = gch->gen_policy();
 216 
 217   // Generation counters -- generation 0, 3 subspaces
 218   _gen_counters = new GenerationCounters("new", 0, 3,
 219       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 220   _gc_counters = new CollectorCounters(policy, 0);
 221 
 222   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 223                                       _gen_counters);
 224   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 225                                       _gen_counters);
 226   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 227                                     _gen_counters);
 228 
 229   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 230   update_counters();
 231   _old_gen = NULL;
 232   _tenuring_threshold = MaxTenuringThreshold;
 233   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 234 
 235   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 236 }
 237 
 238 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 239                                                 bool clear_space,
 240                                                 bool mangle_space) {
 241   uintx alignment =
 242     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 243 
 244   // If the spaces are being cleared (only done at heap initialization
 245   // currently), the survivor spaces need not be empty.
 246   // Otherwise, no care is taken for used areas in the survivor spaces
 247   // so check.
 248   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 249     "Initialization of the survivor spaces assumes these are empty");
 250 
 251   // Compute sizes
 252   uintx size = _virtual_space.committed_size();
 253   uintx survivor_size = compute_survivor_size(size, alignment);
 254   uintx eden_size = size - (2*survivor_size);
 255   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 256 
 257   if (eden_size < minimum_eden_size) {
 258     // May happen due to 64Kb rounding, if so adjust eden size back up
 259     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 260     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 261     uintx unaligned_survivor_size =
 262       align_size_down(maximum_survivor_size, alignment);
 263     survivor_size = MAX2(unaligned_survivor_size, alignment);
 264     eden_size = size - (2*survivor_size);
 265     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 266     assert(eden_size >= minimum_eden_size, "just checking");
 267   }
 268 
 269   char *eden_start = _virtual_space.low();
 270   char *from_start = eden_start + eden_size;
 271   char *to_start   = from_start + survivor_size;
 272   char *to_end     = to_start   + survivor_size;
 273 
 274   assert(to_end == _virtual_space.high(), "just checking");
 275   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 276   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 277   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 278 
 279   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 280   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 281   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 282 
 283   // A minimum eden size implies that there is a part of eden that
 284   // is being used and that affects the initialization of any
 285   // newly formed eden.
 286   bool live_in_eden = minimum_eden_size > 0;
 287 
 288   // If not clearing the spaces, do some checking to verify that
 289   // the space are already mangled.
 290   if (!clear_space) {
 291     // Must check mangling before the spaces are reshaped.  Otherwise,
 292     // the bottom or end of one space may have moved into another
 293     // a failure of the check may not correctly indicate which space
 294     // is not properly mangled.
 295     if (ZapUnusedHeapArea) {
 296       HeapWord* limit = (HeapWord*) _virtual_space.high();
 297       eden()->check_mangled_unused_area(limit);
 298       from()->check_mangled_unused_area(limit);
 299         to()->check_mangled_unused_area(limit);
 300     }
 301   }
 302 
 303   // Reset the spaces for their new regions.
 304   eden()->initialize(edenMR,
 305                      clear_space && !live_in_eden,
 306                      SpaceDecorator::Mangle);
 307   // If clear_space and live_in_eden, we will not have cleared any
 308   // portion of eden above its top. This can cause newly
 309   // expanded space not to be mangled if using ZapUnusedHeapArea.
 310   // We explicitly do such mangling here.
 311   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 312     eden()->mangle_unused_area();
 313   }
 314   from()->initialize(fromMR, clear_space, mangle_space);
 315   to()->initialize(toMR, clear_space, mangle_space);
 316 
 317   // Set next compaction spaces.
 318   eden()->set_next_compaction_space(from());
 319   // The to-space is normally empty before a compaction so need
 320   // not be considered.  The exception is during promotion
 321   // failure handling when to-space can contain live objects.
 322   from()->set_next_compaction_space(NULL);
 323 }
 324 
 325 void DefNewGeneration::swap_spaces() {
 326   ContiguousSpace* s = from();
 327   _from_space        = to();
 328   _to_space          = s;
 329   eden()->set_next_compaction_space(from());
 330   // The to-space is normally empty before a compaction so need
 331   // not be considered.  The exception is during promotion
 332   // failure handling when to-space can contain live objects.
 333   from()->set_next_compaction_space(NULL);
 334 
 335   if (UsePerfData) {
 336     CSpaceCounters* c = _from_counters;
 337     _from_counters = _to_counters;
 338     _to_counters = c;
 339   }
 340 }
 341 
 342 bool DefNewGeneration::expand(size_t bytes) {
 343   MutexLocker x(ExpandHeap_lock);
 344   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 345   bool success = _virtual_space.expand_by(bytes);
 346   if (success && ZapUnusedHeapArea) {
 347     // Mangle newly committed space immediately because it
 348     // can be done here more simply that after the new
 349     // spaces have been computed.
 350     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 351     MemRegion mangle_region(prev_high, new_high);
 352     SpaceMangler::mangle_region(mangle_region);
 353   }
 354 
 355   // Do not attempt an expand-to-the reserve size.  The
 356   // request should properly observe the maximum size of
 357   // the generation so an expand-to-reserve should be
 358   // unnecessary.  Also a second call to expand-to-reserve
 359   // value potentially can cause an undue expansion.
 360   // For example if the first expand fail for unknown reasons,
 361   // but the second succeeds and expands the heap to its maximum
 362   // value.
 363   if (GC_locker::is_active()) {
 364     if (PrintGC && Verbose) {
 365       gclog_or_tty->print_cr("Garbage collection disabled, "
 366         "expanded heap instead");
 367     }
 368   }
 369 
 370   return success;
 371 }
 372 
 373 void DefNewGeneration::compute_new_size() {
 374   // This is called after a GC that includes the old generation, so from-space
 375   // will normally be empty.
 376   // Note that we check both spaces, since if scavenge failed they revert roles.
 377   // If not we bail out (otherwise we would have to relocate the objects).
 378   if (!from()->is_empty() || !to()->is_empty()) {
 379     return;
 380   }
 381 
 382   GenCollectedHeap* gch = GenCollectedHeap::heap();
 383 
 384   size_t old_size = gch->old_gen()->capacity();
 385   size_t new_size_before = _virtual_space.committed_size();
 386   size_t min_new_size = initial_size();
 387   size_t max_new_size = reserved().byte_size();
 388   assert(min_new_size <= new_size_before &&
 389          new_size_before <= max_new_size,
 390          "just checking");
 391   // All space sizes must be multiples of Generation::GenGrain.
 392   size_t alignment = Generation::GenGrain;
 393 
 394   // Compute desired new generation size based on NewRatio and
 395   // NewSizeThreadIncrease
 396   size_t desired_new_size = old_size/NewRatio;
 397   int threads_count = Threads::number_of_non_daemon_threads();
 398   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 399   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 400 
 401   // Adjust new generation size
 402   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 403   assert(desired_new_size <= max_new_size, "just checking");
 404 
 405   bool changed = false;
 406   if (desired_new_size > new_size_before) {
 407     size_t change = desired_new_size - new_size_before;
 408     assert(change % alignment == 0, "just checking");
 409     if (expand(change)) {
 410        changed = true;
 411     }
 412     // If the heap failed to expand to the desired size,
 413     // "changed" will be false.  If the expansion failed
 414     // (and at this point it was expected to succeed),
 415     // ignore the failure (leaving "changed" as false).
 416   }
 417   if (desired_new_size < new_size_before && eden()->is_empty()) {
 418     // bail out of shrinking if objects in eden
 419     size_t change = new_size_before - desired_new_size;
 420     assert(change % alignment == 0, "just checking");
 421     _virtual_space.shrink_by(change);
 422     changed = true;
 423   }
 424   if (changed) {
 425     // The spaces have already been mangled at this point but
 426     // may not have been cleared (set top = bottom) and should be.
 427     // Mangling was done when the heap was being expanded.
 428     compute_space_boundaries(eden()->used(),
 429                              SpaceDecorator::Clear,
 430                              SpaceDecorator::DontMangle);
 431     MemRegion cmr((HeapWord*)_virtual_space.low(),
 432                   (HeapWord*)_virtual_space.high());
 433     gch->barrier_set()->resize_covered_region(cmr);
 434     if (Verbose && PrintGC) {
 435       size_t new_size_after  = _virtual_space.committed_size();
 436       size_t eden_size_after = eden()->capacity();
 437       size_t survivor_size_after = from()->capacity();
 438       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
 439         SIZE_FORMAT "K [eden="
 440         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 441         new_size_before/K, new_size_after/K,
 442         eden_size_after/K, survivor_size_after/K);
 443       if (WizardMode) {
 444         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
 445           thread_increase_size/K, threads_count);
 446       }
 447       gclog_or_tty->cr();
 448     }
 449   }
 450 }
 451 
 452 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) {
 453   assert(false, "NYI -- are you sure you want to call this?");
 454 }
 455 
 456 
 457 size_t DefNewGeneration::capacity() const {
 458   return eden()->capacity()
 459        + from()->capacity();  // to() is only used during scavenge
 460 }
 461 
 462 
 463 size_t DefNewGeneration::used() const {
 464   return eden()->used()
 465        + from()->used();      // to() is only used during scavenge
 466 }
 467 
 468 
 469 size_t DefNewGeneration::free() const {
 470   return eden()->free()
 471        + from()->free();      // to() is only used during scavenge
 472 }
 473 
 474 size_t DefNewGeneration::max_capacity() const {
 475   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 476   const size_t reserved_bytes = reserved().byte_size();
 477   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 478 }
 479 
 480 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 481   return eden()->free();
 482 }
 483 
 484 size_t DefNewGeneration::capacity_before_gc() const {
 485   return eden()->capacity();
 486 }
 487 
 488 size_t DefNewGeneration::contiguous_available() const {
 489   return eden()->free();
 490 }
 491 
 492 
 493 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 494 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 495 
 496 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 497   eden()->object_iterate(blk);
 498   from()->object_iterate(blk);
 499 }
 500 
 501 
 502 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 503                                      bool usedOnly) {
 504   blk->do_space(eden());
 505   blk->do_space(from());
 506   blk->do_space(to());
 507 }
 508 
 509 // The last collection bailed out, we are running out of heap space,
 510 // so we try to allocate the from-space, too.
 511 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 512   HeapWord* result = NULL;
 513   if (Verbose && PrintGCDetails) {
 514     gclog_or_tty->print("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):"
 515                         "  will_fail: %s"
 516                         "  heap_lock: %s"
 517                         "  free: " SIZE_FORMAT,
 518                         size,
 519                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 520                           "true" : "false",
 521                         Heap_lock->is_locked() ? "locked" : "unlocked",
 522                         from()->free());
 523   }
 524   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
 525     if (Heap_lock->owned_by_self() ||
 526         (SafepointSynchronize::is_at_safepoint() &&
 527          Thread::current()->is_VM_thread())) {
 528       // If the Heap_lock is not locked by this thread, this will be called
 529       // again later with the Heap_lock held.
 530       result = from()->allocate(size);
 531     } else if (PrintGC && Verbose) {
 532       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
 533     }
 534   } else if (PrintGC && Verbose) {
 535     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
 536   }
 537   if (PrintGC && Verbose) {
 538     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
 539   }
 540   return result;
 541 }
 542 
 543 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 544                                                 bool   is_tlab,
 545                                                 bool   parallel) {
 546   // We don't attempt to expand the young generation (but perhaps we should.)
 547   return allocate(size, is_tlab);
 548 }
 549 
 550 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 551   // Set the desired survivor size to half the real survivor space
 552   GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->collector_policy()->counters();
 553   _tenuring_threshold =
 554     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize, gc_counters);
 555 }
 556 
 557 void DefNewGeneration::collect(bool   full,
 558                                bool   clear_all_soft_refs,
 559                                size_t size,
 560                                bool   is_tlab) {
 561   assert(full || size > 0, "otherwise we don't want to collect");
 562 
 563   GenCollectedHeap* gch = GenCollectedHeap::heap();
 564 
 565   _gc_timer->register_gc_start();
 566   DefNewTracer gc_tracer;
 567   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 568 
 569   _old_gen = gch->old_gen();
 570 
 571   // If the next generation is too full to accommodate promotion
 572   // from this generation, pass on collection; let the next generation
 573   // do it.
 574   if (!collection_attempt_is_safe()) {
 575     if (Verbose && PrintGCDetails) {
 576       gclog_or_tty->print(" :: Collection attempt not safe :: ");
 577     }
 578     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 579     return;
 580   }
 581   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 582 
 583   init_assuming_no_promotion_failure();
 584 
 585   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL);
 586   // Capture heap used before collection (for printing).
 587   size_t gch_prev_used = gch->used();
 588 
 589   gch->trace_heap_before_gc(&gc_tracer);
 590 
 591   // These can be shared for all code paths
 592   IsAliveClosure is_alive(this);
 593   ScanWeakRefClosure scan_weak_ref(this);
 594 
 595   age_table()->clear();
 596   to()->clear(SpaceDecorator::Mangle);
 597 
 598   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 599 
 600   assert(gch->no_allocs_since_save_marks(),
 601          "save marks have not been newly set.");
 602 
 603   // Not very pretty.
 604   CollectorPolicy* cp = gch->collector_policy();
 605 
 606   FastScanClosure fsc_with_no_gc_barrier(this, false);
 607   FastScanClosure fsc_with_gc_barrier(this, true);
 608 
 609   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 610                                       gch->rem_set()->klass_rem_set());
 611   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 612                                            &fsc_with_no_gc_barrier,
 613                                            false);
 614 
 615   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 616   FastEvacuateFollowersClosure evacuate_followers(gch,
 617                                                   &fsc_with_no_gc_barrier,
 618                                                   &fsc_with_gc_barrier);
 619 
 620   assert(gch->no_allocs_since_save_marks(),
 621          "save marks have not been newly set.");
 622 
 623   {
 624     // DefNew needs to run with n_threads == 0, to make sure the serial
 625     // version of the card table scanning code is used.
 626     // See: CardTableModRefBSForCTRS::non_clean_card_iterate_possibly_parallel.
 627     StrongRootsScope srs(0);
 628 
 629     gch->young_process_roots(&srs,
 630                              &fsc_with_no_gc_barrier,
 631                              &fsc_with_gc_barrier,
 632                              &cld_scan_closure);
 633   }
 634 
 635   // "evacuate followers".
 636   evacuate_followers.do_void();
 637 
 638   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 639   ReferenceProcessor* rp = ref_processor();
 640   rp->setup_policy(clear_all_soft_refs);
 641   const ReferenceProcessorStats& stats =
 642   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 643                                     NULL, _gc_timer);
 644   gc_tracer.report_gc_reference_stats(stats);
 645   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 646 
 647   if (!_promotion_failed) {
 648     // Swap the survivor spaces.
 649     eden()->clear(SpaceDecorator::Mangle);
 650     from()->clear(SpaceDecorator::Mangle);
 651     if (ZapUnusedHeapArea) {
 652       // This is now done here because of the piece-meal mangling which
 653       // can check for valid mangling at intermediate points in the
 654       // collection(s).  When a young collection fails to collect
 655       // sufficient space resizing of the young generation can occur
 656       // an redistribute the spaces in the young generation.  Mangle
 657       // here so that unzapped regions don't get distributed to
 658       // other spaces.
 659       to()->mangle_unused_area();
 660     }
 661     swap_spaces();
 662 
 663     assert(to()->is_empty(), "to space should be empty now");
 664 
 665     adjust_desired_tenuring_threshold();
 666 
 667     // A successful scavenge should restart the GC time limit count which is
 668     // for full GC's.
 669     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 670     size_policy->reset_gc_overhead_limit_count();
 671     assert(!gch->incremental_collection_failed(), "Should be clear");
 672   } else {
 673     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 674     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 675 
 676     remove_forwarding_pointers();
 677     if (PrintGCDetails) {
 678       gclog_or_tty->print(" (promotion failed) ");
 679     }
 680     // Add to-space to the list of space to compact
 681     // when a promotion failure has occurred.  In that
 682     // case there can be live objects in to-space
 683     // as a result of a partial evacuation of eden
 684     // and from-space.
 685     swap_spaces();   // For uniformity wrt ParNewGeneration.
 686     from()->set_next_compaction_space(to());
 687     gch->set_incremental_collection_failed();
 688 
 689     // Inform the next generation that a promotion failure occurred.
 690     _old_gen->promotion_failure_occurred();
 691     gc_tracer.report_promotion_failed(_promotion_failed_info);
 692 
 693     // Reset the PromotionFailureALot counters.
 694     NOT_PRODUCT(gch->reset_promotion_should_fail();)
 695   }
 696   if (PrintGC && !PrintGCDetails) {
 697     gch->print_heap_change(gch_prev_used);
 698   }
 699   // set new iteration safe limit for the survivor spaces
 700   from()->set_concurrent_iteration_safe_limit(from()->top());
 701   to()->set_concurrent_iteration_safe_limit(to()->top());
 702 
 703   // We need to use a monotonically non-decreasing time in ms
 704   // or we will see time-warp warnings and os::javaTimeMillis()
 705   // does not guarantee monotonicity.
 706   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 707   update_time_of_last_gc(now);
 708 
 709   gch->trace_heap_after_gc(&gc_tracer);
 710 
 711   _gc_timer->register_gc_end();
 712 
 713   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 714 }
 715 
 716 class RemoveForwardPointerClosure: public ObjectClosure {
 717 public:
 718   void do_object(oop obj) {
 719     obj->init_mark();
 720   }
 721 };
 722 
 723 void DefNewGeneration::init_assuming_no_promotion_failure() {
 724   _promotion_failed = false;
 725   _promotion_failed_info.reset();
 726   from()->set_next_compaction_space(NULL);
 727 }
 728 
 729 void DefNewGeneration::remove_forwarding_pointers() {
 730   RemoveForwardPointerClosure rspc;
 731   eden()->object_iterate(&rspc);
 732   from()->object_iterate(&rspc);
 733 
 734   // Now restore saved marks, if any.
 735   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 736          "should be the same");
 737   while (!_objs_with_preserved_marks.is_empty()) {
 738     oop obj   = _objs_with_preserved_marks.pop();
 739     markOop m = _preserved_marks_of_objs.pop();
 740     obj->set_mark(m);
 741   }
 742   _objs_with_preserved_marks.clear(true);
 743   _preserved_marks_of_objs.clear(true);
 744 }
 745 
 746 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 747   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
 748          "Oversaving!");
 749   _objs_with_preserved_marks.push(obj);
 750   _preserved_marks_of_objs.push(m);
 751 }
 752 
 753 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 754   if (m->must_be_preserved_for_promotion_failure(obj)) {
 755     preserve_mark(obj, m);
 756   }
 757 }
 758 
 759 void DefNewGeneration::handle_promotion_failure(oop old) {
 760   if (PrintPromotionFailure && !_promotion_failed) {
 761     gclog_or_tty->print(" (promotion failure size = %d) ",
 762                         old->size());
 763   }
 764   _promotion_failed = true;
 765   _promotion_failed_info.register_copy_failure(old->size());
 766   preserve_mark_if_necessary(old, old->mark());
 767   // forward to self
 768   old->forward_to(old);
 769 
 770   _promo_failure_scan_stack.push(old);
 771 
 772   if (!_promo_failure_drain_in_progress) {
 773     // prevent recursion in copy_to_survivor_space()
 774     _promo_failure_drain_in_progress = true;
 775     drain_promo_failure_scan_stack();
 776     _promo_failure_drain_in_progress = false;
 777   }
 778 }
 779 
 780 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 781   assert(is_in_reserved(old) && !old->is_forwarded(),
 782          "shouldn't be scavenging this oop");
 783   size_t s = old->size();
 784   oop obj = NULL;
 785 
 786   // Try allocating obj in to-space (unless too old)
 787   if (old->age() < tenuring_threshold()) {
 788     obj = (oop) to()->allocate_aligned(s);
 789   }
 790 
 791   // Otherwise try allocating obj tenured
 792   if (obj == NULL) {
 793     obj = _old_gen->promote(old, s);
 794     if (obj == NULL) {
 795       handle_promotion_failure(old);
 796       return old;
 797     }
 798   } else {
 799     // Prefetch beyond obj
 800     const intx interval = PrefetchCopyIntervalInBytes;
 801     Prefetch::write(obj, interval);
 802 
 803     // Copy obj
 804     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 805 
 806     // Increment age if obj still in new generation
 807     obj->incr_age();
 808     age_table()->add(obj, s);
 809   }
 810 
 811   // Done, insert forward pointer to obj in this header
 812   old->forward_to(obj);
 813 
 814   return obj;
 815 }
 816 
 817 void DefNewGeneration::drain_promo_failure_scan_stack() {
 818   while (!_promo_failure_scan_stack.is_empty()) {
 819      oop obj = _promo_failure_scan_stack.pop();
 820      obj->oop_iterate(_promo_failure_scan_stack_closure);
 821   }
 822 }
 823 
 824 void DefNewGeneration::save_marks() {
 825   eden()->set_saved_mark();
 826   to()->set_saved_mark();
 827   from()->set_saved_mark();
 828 }
 829 
 830 
 831 void DefNewGeneration::reset_saved_marks() {
 832   eden()->reset_saved_mark();
 833   to()->reset_saved_mark();
 834   from()->reset_saved_mark();
 835 }
 836 
 837 
 838 bool DefNewGeneration::no_allocs_since_save_marks() {
 839   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 840   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 841   return to()->saved_mark_at_top();
 842 }
 843 
 844 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 845                                                                 \
 846 void DefNewGeneration::                                         \
 847 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 848   cl->assert_generation(this);                                  \
 849   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 850   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 851   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 852   save_marks();                                                 \
 853 }
 854 
 855 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 856 
 857 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 858 
 859 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 860                                          size_t max_alloc_words) {
 861   if (requestor == this || _promotion_failed) {
 862     return;
 863   }
 864   assert(GenCollectedHeap::heap()->is_old_gen(requestor), "We should not call our own generation");
 865 
 866   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 867   if (to_space->top() > to_space->bottom()) {
 868     trace("to_space not empty when contribute_scratch called");
 869   }
 870   */
 871 
 872   ContiguousSpace* to_space = to();
 873   assert(to_space->end() >= to_space->top(), "pointers out of order");
 874   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 875   if (free_words >= MinFreeScratchWords) {
 876     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 877     sb->num_words = free_words;
 878     sb->next = list;
 879     list = sb;
 880   }
 881 }
 882 
 883 void DefNewGeneration::reset_scratch() {
 884   // If contributing scratch in to_space, mangle all of
 885   // to_space if ZapUnusedHeapArea.  This is needed because
 886   // top is not maintained while using to-space as scratch.
 887   if (ZapUnusedHeapArea) {
 888     to()->mangle_unused_area_complete();
 889   }
 890 }
 891 
 892 bool DefNewGeneration::collection_attempt_is_safe() {
 893   if (!to()->is_empty()) {
 894     if (Verbose && PrintGCDetails) {
 895       gclog_or_tty->print(" :: to is not empty :: ");
 896     }
 897     return false;
 898   }
 899   if (_old_gen == NULL) {
 900     GenCollectedHeap* gch = GenCollectedHeap::heap();
 901     _old_gen = gch->old_gen();
 902   }
 903   return _old_gen->promotion_attempt_is_safe(used());
 904 }
 905 
 906 void DefNewGeneration::gc_epilogue(bool full) {
 907   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 908 
 909   assert(!GC_locker::is_active(), "We should not be executing here");
 910   // Check if the heap is approaching full after a collection has
 911   // been done.  Generally the young generation is empty at
 912   // a minimum at the end of a collection.  If it is not, then
 913   // the heap is approaching full.
 914   GenCollectedHeap* gch = GenCollectedHeap::heap();
 915   if (full) {
 916     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 917     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 918       if (Verbose && PrintGCDetails) {
 919         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 920                             GCCause::to_string(gch->gc_cause()));
 921       }
 922       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 923       set_should_allocate_from_space(); // we seem to be running out of space
 924     } else {
 925       if (Verbose && PrintGCDetails) {
 926         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 927                             GCCause::to_string(gch->gc_cause()));
 928       }
 929       gch->clear_incremental_collection_failed(); // We just did a full collection
 930       clear_should_allocate_from_space(); // if set
 931     }
 932   } else {
 933 #ifdef ASSERT
 934     // It is possible that incremental_collection_failed() == true
 935     // here, because an attempted scavenge did not succeed. The policy
 936     // is normally expected to cause a full collection which should
 937     // clear that condition, so we should not be here twice in a row
 938     // with incremental_collection_failed() == true without having done
 939     // a full collection in between.
 940     if (!seen_incremental_collection_failed &&
 941         gch->incremental_collection_failed()) {
 942       if (Verbose && PrintGCDetails) {
 943         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 944                             GCCause::to_string(gch->gc_cause()));
 945       }
 946       seen_incremental_collection_failed = true;
 947     } else if (seen_incremental_collection_failed) {
 948       if (Verbose && PrintGCDetails) {
 949         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 950                             GCCause::to_string(gch->gc_cause()));
 951       }
 952       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 953              (GCCause::is_user_requested_gc(gch->gc_cause()) && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 954              !gch->incremental_collection_failed(),
 955              "Twice in a row");
 956       seen_incremental_collection_failed = false;
 957     }
 958 #endif // ASSERT
 959   }
 960 
 961   if (ZapUnusedHeapArea) {
 962     eden()->check_mangled_unused_area_complete();
 963     from()->check_mangled_unused_area_complete();
 964     to()->check_mangled_unused_area_complete();
 965   }
 966 
 967   if (!CleanChunkPoolAsync) {
 968     Chunk::clean_chunk_pool();
 969   }
 970 
 971   // update the generation and space performance counters
 972   update_counters();
 973   gch->collector_policy()->counters()->update_counters();
 974 }
 975 
 976 void DefNewGeneration::record_spaces_top() {
 977   assert(ZapUnusedHeapArea, "Not mangling unused space");
 978   eden()->set_top_for_allocations();
 979   to()->set_top_for_allocations();
 980   from()->set_top_for_allocations();
 981 }
 982 
 983 void DefNewGeneration::ref_processor_init() {
 984   Generation::ref_processor_init();
 985 }
 986 
 987 
 988 void DefNewGeneration::update_counters() {
 989   if (UsePerfData) {
 990     _eden_counters->update_all();
 991     _from_counters->update_all();
 992     _to_counters->update_all();
 993     _gen_counters->update_all();
 994   }
 995 }
 996 
 997 void DefNewGeneration::verify() {
 998   eden()->verify();
 999   from()->verify();
1000     to()->verify();
1001 }
1002 
1003 void DefNewGeneration::print_on(outputStream* st) const {
1004   Generation::print_on(st);
1005   st->print("  eden");
1006   eden()->print_on(st);
1007   st->print("  from");
1008   from()->print_on(st);
1009   st->print("  to  ");
1010   to()->print_on(st);
1011 }
1012 
1013 
1014 const char* DefNewGeneration::name() const {
1015   return "def new generation";
1016 }
1017 
1018 // Moved from inline file as they are not called inline
1019 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1020   return eden();
1021 }
1022 
1023 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
1024   // This is the slow-path allocation for the DefNewGeneration.
1025   // Most allocations are fast-path in compiled code.
1026   // We try to allocate from the eden.  If that works, we are happy.
1027   // Note that since DefNewGeneration supports lock-free allocation, we
1028   // have to use it here, as well.
1029   HeapWord* result = eden()->par_allocate(word_size);
1030   if (result != NULL) {
1031     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1032       _old_gen->sample_eden_chunk();
1033     }
1034   } else {
1035     // If the eden is full and the last collection bailed out, we are running
1036     // out of heap space, and we try to allocate the from-space, too.
1037     // allocate_from_space can't be inlined because that would introduce a
1038     // circular dependency at compile time.
1039     result = allocate_from_space(word_size);
1040   }
1041   return result;
1042 }
1043 
1044 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1045                                          bool is_tlab) {
1046   HeapWord* res = eden()->par_allocate(word_size);
1047   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1048     _old_gen->sample_eden_chunk();
1049   }
1050   return res;
1051 }
1052 
1053 size_t DefNewGeneration::tlab_capacity() const {
1054   return eden()->capacity();
1055 }
1056 
1057 size_t DefNewGeneration::tlab_used() const {
1058   return eden()->used();
1059 }
1060 
1061 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1062   return unsafe_max_alloc_nogc();
1063 }