1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsOopClosures.inline.hpp"
  33 #include "gc/cms/compactibleFreeListSpace.hpp"
  34 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc/cms/concurrentMarkSweepThread.hpp"
  36 #include "gc/cms/parNewGeneration.hpp"
  37 #include "gc/cms/vmCMSOperations.hpp"
  38 #include "gc/serial/genMarkSweep.hpp"
  39 #include "gc/serial/tenuredGeneration.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/cardGeneration.inline.hpp"
  42 #include "gc/shared/cardTableRS.hpp"
  43 #include "gc/shared/collectedHeap.inline.hpp"
  44 #include "gc/shared/collectorCounters.hpp"
  45 #include "gc/shared/collectorPolicy.hpp"
  46 #include "gc/shared/gcLocker.inline.hpp"
  47 #include "gc/shared/gcPolicyCounters.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/genCollectedHeap.hpp"
  52 #include "gc/shared/genOopClosures.inline.hpp"
  53 #include "gc/shared/isGCActiveMark.hpp"
  54 #include "gc/shared/referencePolicy.hpp"
  55 #include "gc/shared/strongRootsScope.hpp"
  56 #include "gc/shared/taskqueue.inline.hpp"
  57 #include "logging/log.hpp"
  58 #include "memory/allocation.hpp"
  59 #include "memory/iterator.inline.hpp"
  60 #include "memory/padded.hpp"
  61 #include "memory/resourceArea.hpp"
  62 #include "oops/oop.inline.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "runtime/atomic.inline.hpp"
  65 #include "runtime/globals_extension.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "services/memoryService.hpp"
  72 #include "services/runtimeService.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 // statics
  76 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  77 bool CMSCollector::_full_gc_requested = false;
  78 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  79 
  80 //////////////////////////////////////////////////////////////////
  81 // In support of CMS/VM thread synchronization
  82 //////////////////////////////////////////////////////////////////
  83 // We split use of the CGC_lock into 2 "levels".
  84 // The low-level locking is of the usual CGC_lock monitor. We introduce
  85 // a higher level "token" (hereafter "CMS token") built on top of the
  86 // low level monitor (hereafter "CGC lock").
  87 // The token-passing protocol gives priority to the VM thread. The
  88 // CMS-lock doesn't provide any fairness guarantees, but clients
  89 // should ensure that it is only held for very short, bounded
  90 // durations.
  91 //
  92 // When either of the CMS thread or the VM thread is involved in
  93 // collection operations during which it does not want the other
  94 // thread to interfere, it obtains the CMS token.
  95 //
  96 // If either thread tries to get the token while the other has
  97 // it, that thread waits. However, if the VM thread and CMS thread
  98 // both want the token, then the VM thread gets priority while the
  99 // CMS thread waits. This ensures, for instance, that the "concurrent"
 100 // phases of the CMS thread's work do not block out the VM thread
 101 // for long periods of time as the CMS thread continues to hog
 102 // the token. (See bug 4616232).
 103 //
 104 // The baton-passing functions are, however, controlled by the
 105 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 106 // and here the low-level CMS lock, not the high level token,
 107 // ensures mutual exclusion.
 108 //
 109 // Two important conditions that we have to satisfy:
 110 // 1. if a thread does a low-level wait on the CMS lock, then it
 111 //    relinquishes the CMS token if it were holding that token
 112 //    when it acquired the low-level CMS lock.
 113 // 2. any low-level notifications on the low-level lock
 114 //    should only be sent when a thread has relinquished the token.
 115 //
 116 // In the absence of either property, we'd have potential deadlock.
 117 //
 118 // We protect each of the CMS (concurrent and sequential) phases
 119 // with the CMS _token_, not the CMS _lock_.
 120 //
 121 // The only code protected by CMS lock is the token acquisition code
 122 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 123 // baton-passing code.
 124 //
 125 // Unfortunately, i couldn't come up with a good abstraction to factor and
 126 // hide the naked CGC_lock manipulation in the baton-passing code
 127 // further below. That's something we should try to do. Also, the proof
 128 // of correctness of this 2-level locking scheme is far from obvious,
 129 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 130 // that there may be a theoretical possibility of delay/starvation in the
 131 // low-level lock/wait/notify scheme used for the baton-passing because of
 132 // potential interference with the priority scheme embodied in the
 133 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 134 // invocation further below and marked with "XXX 20011219YSR".
 135 // Indeed, as we note elsewhere, this may become yet more slippery
 136 // in the presence of multiple CMS and/or multiple VM threads. XXX
 137 
 138 class CMSTokenSync: public StackObj {
 139  private:
 140   bool _is_cms_thread;
 141  public:
 142   CMSTokenSync(bool is_cms_thread):
 143     _is_cms_thread(is_cms_thread) {
 144     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 145            "Incorrect argument to constructor");
 146     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 147   }
 148 
 149   ~CMSTokenSync() {
 150     assert(_is_cms_thread ?
 151              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 152              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 153           "Incorrect state");
 154     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 155   }
 156 };
 157 
 158 // Convenience class that does a CMSTokenSync, and then acquires
 159 // upto three locks.
 160 class CMSTokenSyncWithLocks: public CMSTokenSync {
 161  private:
 162   // Note: locks are acquired in textual declaration order
 163   // and released in the opposite order
 164   MutexLockerEx _locker1, _locker2, _locker3;
 165  public:
 166   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 167                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 168     CMSTokenSync(is_cms_thread),
 169     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 170     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 171     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 172   { }
 173 };
 174 
 175 
 176 //////////////////////////////////////////////////////////////////
 177 //  Concurrent Mark-Sweep Generation /////////////////////////////
 178 //////////////////////////////////////////////////////////////////
 179 
 180 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 181 
 182 // This struct contains per-thread things necessary to support parallel
 183 // young-gen collection.
 184 class CMSParGCThreadState: public CHeapObj<mtGC> {
 185  public:
 186   CompactibleFreeListSpaceLAB lab;
 187   PromotionInfo promo;
 188 
 189   // Constructor.
 190   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 191     promo.setSpace(cfls);
 192   }
 193 };
 194 
 195 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 196      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 197   CardGeneration(rs, initial_byte_size, ct),
 198   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 199   _did_compact(false)
 200 {
 201   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 202   HeapWord* end    = (HeapWord*) _virtual_space.high();
 203 
 204   _direct_allocated_words = 0;
 205   NOT_PRODUCT(
 206     _numObjectsPromoted = 0;
 207     _numWordsPromoted = 0;
 208     _numObjectsAllocated = 0;
 209     _numWordsAllocated = 0;
 210   )
 211 
 212   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 213   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 214   _cmsSpace->_old_gen = this;
 215 
 216   _gc_stats = new CMSGCStats();
 217 
 218   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 219   // offsets match. The ability to tell free chunks from objects
 220   // depends on this property.
 221   debug_only(
 222     FreeChunk* junk = NULL;
 223     assert(UseCompressedClassPointers ||
 224            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 225            "Offset of FreeChunk::_prev within FreeChunk must match"
 226            "  that of OopDesc::_klass within OopDesc");
 227   )
 228 
 229   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 230   for (uint i = 0; i < ParallelGCThreads; i++) {
 231     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 232   }
 233 
 234   _incremental_collection_failed = false;
 235   // The "dilatation_factor" is the expansion that can occur on
 236   // account of the fact that the minimum object size in the CMS
 237   // generation may be larger than that in, say, a contiguous young
 238   //  generation.
 239   // Ideally, in the calculation below, we'd compute the dilatation
 240   // factor as: MinChunkSize/(promoting_gen's min object size)
 241   // Since we do not have such a general query interface for the
 242   // promoting generation, we'll instead just use the minimum
 243   // object size (which today is a header's worth of space);
 244   // note that all arithmetic is in units of HeapWords.
 245   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 246   assert(_dilatation_factor >= 1.0, "from previous assert");
 247 }
 248 
 249 
 250 // The field "_initiating_occupancy" represents the occupancy percentage
 251 // at which we trigger a new collection cycle.  Unless explicitly specified
 252 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 253 // is calculated by:
 254 //
 255 //   Let "f" be MinHeapFreeRatio in
 256 //
 257 //    _initiating_occupancy = 100-f +
 258 //                           f * (CMSTriggerRatio/100)
 259 //   where CMSTriggerRatio is the argument "tr" below.
 260 //
 261 // That is, if we assume the heap is at its desired maximum occupancy at the
 262 // end of a collection, we let CMSTriggerRatio of the (purported) free
 263 // space be allocated before initiating a new collection cycle.
 264 //
 265 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 266   assert(io <= 100 && tr <= 100, "Check the arguments");
 267   if (io >= 0) {
 268     _initiating_occupancy = (double)io / 100.0;
 269   } else {
 270     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 271                              (double)(tr * MinHeapFreeRatio) / 100.0)
 272                             / 100.0;
 273   }
 274 }
 275 
 276 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 277   assert(collector() != NULL, "no collector");
 278   collector()->ref_processor_init();
 279 }
 280 
 281 void CMSCollector::ref_processor_init() {
 282   if (_ref_processor == NULL) {
 283     // Allocate and initialize a reference processor
 284     _ref_processor =
 285       new ReferenceProcessor(_span,                               // span
 286                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 287                              ParallelGCThreads,                   // mt processing degree
 288                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 289                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 290                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 291                              &_is_alive_closure);                 // closure for liveness info
 292     // Initialize the _ref_processor field of CMSGen
 293     _cmsGen->set_ref_processor(_ref_processor);
 294 
 295   }
 296 }
 297 
 298 AdaptiveSizePolicy* CMSCollector::size_policy() {
 299   GenCollectedHeap* gch = GenCollectedHeap::heap();
 300   return gch->gen_policy()->size_policy();
 301 }
 302 
 303 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 304 
 305   const char* gen_name = "old";
 306   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 307   // Generation Counters - generation 1, 1 subspace
 308   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 309       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 310 
 311   _space_counters = new GSpaceCounters(gen_name, 0,
 312                                        _virtual_space.reserved_size(),
 313                                        this, _gen_counters);
 314 }
 315 
 316 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 317   _cms_gen(cms_gen)
 318 {
 319   assert(alpha <= 100, "bad value");
 320   _saved_alpha = alpha;
 321 
 322   // Initialize the alphas to the bootstrap value of 100.
 323   _gc0_alpha = _cms_alpha = 100;
 324 
 325   _cms_begin_time.update();
 326   _cms_end_time.update();
 327 
 328   _gc0_duration = 0.0;
 329   _gc0_period = 0.0;
 330   _gc0_promoted = 0;
 331 
 332   _cms_duration = 0.0;
 333   _cms_period = 0.0;
 334   _cms_allocated = 0;
 335 
 336   _cms_used_at_gc0_begin = 0;
 337   _cms_used_at_gc0_end = 0;
 338   _allow_duty_cycle_reduction = false;
 339   _valid_bits = 0;
 340 }
 341 
 342 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 343   // TBD: CR 6909490
 344   return 1.0;
 345 }
 346 
 347 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 348 }
 349 
 350 // If promotion failure handling is on use
 351 // the padded average size of the promotion for each
 352 // young generation collection.
 353 double CMSStats::time_until_cms_gen_full() const {
 354   size_t cms_free = _cms_gen->cmsSpace()->free();
 355   GenCollectedHeap* gch = GenCollectedHeap::heap();
 356   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 357                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 358   if (cms_free > expected_promotion) {
 359     // Start a cms collection if there isn't enough space to promote
 360     // for the next young collection.  Use the padded average as
 361     // a safety factor.
 362     cms_free -= expected_promotion;
 363 
 364     // Adjust by the safety factor.
 365     double cms_free_dbl = (double)cms_free;
 366     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 367     // Apply a further correction factor which tries to adjust
 368     // for recent occurance of concurrent mode failures.
 369     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 370     cms_free_dbl = cms_free_dbl * cms_adjustment;
 371 
 372     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 373                   cms_free, expected_promotion);
 374     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 375     // Add 1 in case the consumption rate goes to zero.
 376     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 377   }
 378   return 0.0;
 379 }
 380 
 381 // Compare the duration of the cms collection to the
 382 // time remaining before the cms generation is empty.
 383 // Note that the time from the start of the cms collection
 384 // to the start of the cms sweep (less than the total
 385 // duration of the cms collection) can be used.  This
 386 // has been tried and some applications experienced
 387 // promotion failures early in execution.  This was
 388 // possibly because the averages were not accurate
 389 // enough at the beginning.
 390 double CMSStats::time_until_cms_start() const {
 391   // We add "gc0_period" to the "work" calculation
 392   // below because this query is done (mostly) at the
 393   // end of a scavenge, so we need to conservatively
 394   // account for that much possible delay
 395   // in the query so as to avoid concurrent mode failures
 396   // due to starting the collection just a wee bit too
 397   // late.
 398   double work = cms_duration() + gc0_period();
 399   double deadline = time_until_cms_gen_full();
 400   // If a concurrent mode failure occurred recently, we want to be
 401   // more conservative and halve our expected time_until_cms_gen_full()
 402   if (work > deadline) {
 403     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 404                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 405     return 0.0;
 406   }
 407   return work - deadline;
 408 }
 409 
 410 #ifndef PRODUCT
 411 void CMSStats::print_on(outputStream *st) const {
 412   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 413   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 414                gc0_duration(), gc0_period(), gc0_promoted());
 415   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 416             cms_duration(), cms_period(), cms_allocated());
 417   st->print(",cms_since_beg=%g,cms_since_end=%g",
 418             cms_time_since_begin(), cms_time_since_end());
 419   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 420             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 421 
 422   if (valid()) {
 423     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 424               promotion_rate(), cms_allocation_rate());
 425     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 426               cms_consumption_rate(), time_until_cms_gen_full());
 427   }
 428   st->cr();
 429 }
 430 #endif // #ifndef PRODUCT
 431 
 432 CMSCollector::CollectorState CMSCollector::_collectorState =
 433                              CMSCollector::Idling;
 434 bool CMSCollector::_foregroundGCIsActive = false;
 435 bool CMSCollector::_foregroundGCShouldWait = false;
 436 
 437 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 438                            CardTableRS*                   ct,
 439                            ConcurrentMarkSweepPolicy*     cp):
 440   _cmsGen(cmsGen),
 441   _ct(ct),
 442   _ref_processor(NULL),    // will be set later
 443   _conc_workers(NULL),     // may be set later
 444   _abort_preclean(false),
 445   _start_sampling(false),
 446   _between_prologue_and_epilogue(false),
 447   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 448   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 449                  -1 /* lock-free */, "No_lock" /* dummy */),
 450   _modUnionClosurePar(&_modUnionTable),
 451   // Adjust my span to cover old (cms) gen
 452   _span(cmsGen->reserved()),
 453   // Construct the is_alive_closure with _span & markBitMap
 454   _is_alive_closure(_span, &_markBitMap),
 455   _restart_addr(NULL),
 456   _overflow_list(NULL),
 457   _stats(cmsGen),
 458   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 459                              //verify that this lock should be acquired with safepoint check.
 460                              Monitor::_safepoint_check_sometimes)),
 461   _eden_chunk_array(NULL),     // may be set in ctor body
 462   _eden_chunk_capacity(0),     // -- ditto --
 463   _eden_chunk_index(0),        // -- ditto --
 464   _survivor_plab_array(NULL),  // -- ditto --
 465   _survivor_chunk_array(NULL), // -- ditto --
 466   _survivor_chunk_capacity(0), // -- ditto --
 467   _survivor_chunk_index(0),    // -- ditto --
 468   _ser_pmc_preclean_ovflw(0),
 469   _ser_kac_preclean_ovflw(0),
 470   _ser_pmc_remark_ovflw(0),
 471   _par_pmc_remark_ovflw(0),
 472   _ser_kac_ovflw(0),
 473   _par_kac_ovflw(0),
 474 #ifndef PRODUCT
 475   _num_par_pushes(0),
 476 #endif
 477   _collection_count_start(0),
 478   _verifying(false),
 479   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 480   _completed_initialization(false),
 481   _collector_policy(cp),
 482   _should_unload_classes(CMSClassUnloadingEnabled),
 483   _concurrent_cycles_since_last_unload(0),
 484   _roots_scanning_options(GenCollectedHeap::SO_None),
 485   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 486   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 487   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 488   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 489   _cms_start_registered(false)
 490 {
 491   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 492     ExplicitGCInvokesConcurrent = true;
 493   }
 494   // Now expand the span and allocate the collection support structures
 495   // (MUT, marking bit map etc.) to cover both generations subject to
 496   // collection.
 497 
 498   // For use by dirty card to oop closures.
 499   _cmsGen->cmsSpace()->set_collector(this);
 500 
 501   // Allocate MUT and marking bit map
 502   {
 503     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 504     if (!_markBitMap.allocate(_span)) {
 505       log_warning(gc)("Failed to allocate CMS Bit Map");
 506       return;
 507     }
 508     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 509   }
 510   {
 511     _modUnionTable.allocate(_span);
 512     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 513   }
 514 
 515   if (!_markStack.allocate(MarkStackSize)) {
 516     log_warning(gc)("Failed to allocate CMS Marking Stack");
 517     return;
 518   }
 519 
 520   // Support for multi-threaded concurrent phases
 521   if (CMSConcurrentMTEnabled) {
 522     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 523       // just for now
 524       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 525     }
 526     if (ConcGCThreads > 1) {
 527       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 528                                  ConcGCThreads, true);
 529       if (_conc_workers == NULL) {
 530         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 531         CMSConcurrentMTEnabled = false;
 532       } else {
 533         _conc_workers->initialize_workers();
 534       }
 535     } else {
 536       CMSConcurrentMTEnabled = false;
 537     }
 538   }
 539   if (!CMSConcurrentMTEnabled) {
 540     ConcGCThreads = 0;
 541   } else {
 542     // Turn off CMSCleanOnEnter optimization temporarily for
 543     // the MT case where it's not fixed yet; see 6178663.
 544     CMSCleanOnEnter = false;
 545   }
 546   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 547          "Inconsistency");
 548 
 549   // Parallel task queues; these are shared for the
 550   // concurrent and stop-world phases of CMS, but
 551   // are not shared with parallel scavenge (ParNew).
 552   {
 553     uint i;
 554     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 555 
 556     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 557          || ParallelRefProcEnabled)
 558         && num_queues > 0) {
 559       _task_queues = new OopTaskQueueSet(num_queues);
 560       if (_task_queues == NULL) {
 561         log_warning(gc)("task_queues allocation failure.");
 562         return;
 563       }
 564       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 565       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 566       for (i = 0; i < num_queues; i++) {
 567         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 568         if (q == NULL) {
 569           log_warning(gc)("work_queue allocation failure.");
 570           return;
 571         }
 572         _task_queues->register_queue(i, q);
 573       }
 574       for (i = 0; i < num_queues; i++) {
 575         _task_queues->queue(i)->initialize();
 576         _hash_seed[i] = 17;  // copied from ParNew
 577       }
 578     }
 579   }
 580 
 581   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 582 
 583   // Clip CMSBootstrapOccupancy between 0 and 100.
 584   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 585 
 586   // Now tell CMS generations the identity of their collector
 587   ConcurrentMarkSweepGeneration::set_collector(this);
 588 
 589   // Create & start a CMS thread for this CMS collector
 590   _cmsThread = ConcurrentMarkSweepThread::start(this);
 591   assert(cmsThread() != NULL, "CMS Thread should have been created");
 592   assert(cmsThread()->collector() == this,
 593          "CMS Thread should refer to this gen");
 594   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 595 
 596   // Support for parallelizing young gen rescan
 597   GenCollectedHeap* gch = GenCollectedHeap::heap();
 598   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 599   _young_gen = (ParNewGeneration*)gch->young_gen();
 600   if (gch->supports_inline_contig_alloc()) {
 601     _top_addr = gch->top_addr();
 602     _end_addr = gch->end_addr();
 603     assert(_young_gen != NULL, "no _young_gen");
 604     _eden_chunk_index = 0;
 605     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 606     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 607   }
 608 
 609   // Support for parallelizing survivor space rescan
 610   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 611     const size_t max_plab_samples =
 612       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 613 
 614     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 615     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 616     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 617     _survivor_chunk_capacity = max_plab_samples;
 618     for (uint i = 0; i < ParallelGCThreads; i++) {
 619       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 620       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 621       assert(cur->end() == 0, "Should be 0");
 622       assert(cur->array() == vec, "Should be vec");
 623       assert(cur->capacity() == max_plab_samples, "Error");
 624     }
 625   }
 626 
 627   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 628   _gc_counters = new CollectorCounters("CMS", 1);
 629   _completed_initialization = true;
 630   _inter_sweep_timer.start();  // start of time
 631 }
 632 
 633 const char* ConcurrentMarkSweepGeneration::name() const {
 634   return "concurrent mark-sweep generation";
 635 }
 636 void ConcurrentMarkSweepGeneration::update_counters() {
 637   if (UsePerfData) {
 638     _space_counters->update_all();
 639     _gen_counters->update_all();
 640   }
 641 }
 642 
 643 // this is an optimized version of update_counters(). it takes the
 644 // used value as a parameter rather than computing it.
 645 //
 646 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 647   if (UsePerfData) {
 648     _space_counters->update_used(used);
 649     _space_counters->update_capacity();
 650     _gen_counters->update_all();
 651   }
 652 }
 653 
 654 void ConcurrentMarkSweepGeneration::print() const {
 655   Generation::print();
 656   cmsSpace()->print();
 657 }
 658 
 659 #ifndef PRODUCT
 660 void ConcurrentMarkSweepGeneration::print_statistics() {
 661   cmsSpace()->printFLCensus(0);
 662 }
 663 #endif
 664 
 665 size_t
 666 ConcurrentMarkSweepGeneration::contiguous_available() const {
 667   // dld proposes an improvement in precision here. If the committed
 668   // part of the space ends in a free block we should add that to
 669   // uncommitted size in the calculation below. Will make this
 670   // change later, staying with the approximation below for the
 671   // time being. -- ysr.
 672   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 673 }
 674 
 675 size_t
 676 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 677   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 678 }
 679 
 680 size_t ConcurrentMarkSweepGeneration::max_available() const {
 681   return free() + _virtual_space.uncommitted_size();
 682 }
 683 
 684 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 685   size_t available = max_available();
 686   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 687   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 688   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 689                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 690   return res;
 691 }
 692 
 693 // At a promotion failure dump information on block layout in heap
 694 // (cms old generation).
 695 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 696   Log(gc, promotion) log;
 697   if (log.is_trace()) {
 698     ResourceMark rm;
 699     cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
 700   }
 701 }
 702 
 703 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 704   // Clear the promotion information.  These pointers can be adjusted
 705   // along with all the other pointers into the heap but
 706   // compaction is expected to be a rare event with
 707   // a heap using cms so don't do it without seeing the need.
 708   for (uint i = 0; i < ParallelGCThreads; i++) {
 709     _par_gc_thread_states[i]->promo.reset();
 710   }
 711 }
 712 
 713 void ConcurrentMarkSweepGeneration::compute_new_size() {
 714   assert_locked_or_safepoint(Heap_lock);
 715 
 716   // If incremental collection failed, we just want to expand
 717   // to the limit.
 718   if (incremental_collection_failed()) {
 719     clear_incremental_collection_failed();
 720     grow_to_reserved();
 721     return;
 722   }
 723 
 724   // The heap has been compacted but not reset yet.
 725   // Any metric such as free() or used() will be incorrect.
 726 
 727   CardGeneration::compute_new_size();
 728 
 729   // Reset again after a possible resizing
 730   if (did_compact()) {
 731     cmsSpace()->reset_after_compaction();
 732   }
 733 }
 734 
 735 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 736   assert_locked_or_safepoint(Heap_lock);
 737 
 738   // If incremental collection failed, we just want to expand
 739   // to the limit.
 740   if (incremental_collection_failed()) {
 741     clear_incremental_collection_failed();
 742     grow_to_reserved();
 743     return;
 744   }
 745 
 746   double free_percentage = ((double) free()) / capacity();
 747   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 748   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 749 
 750   // compute expansion delta needed for reaching desired free percentage
 751   if (free_percentage < desired_free_percentage) {
 752     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 753     assert(desired_capacity >= capacity(), "invalid expansion size");
 754     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 755     Log(gc) log;
 756     if (log.is_trace()) {
 757       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 758       log.trace("From compute_new_size: ");
 759       log.trace("  Free fraction %f", free_percentage);
 760       log.trace("  Desired free fraction %f", desired_free_percentage);
 761       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 762       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 763       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 764       GenCollectedHeap* gch = GenCollectedHeap::heap();
 765       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 766       size_t young_size = gch->young_gen()->capacity();
 767       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 768       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 769       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 770       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 771     }
 772     // safe if expansion fails
 773     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 774     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 775   } else {
 776     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 777     assert(desired_capacity <= capacity(), "invalid expansion size");
 778     size_t shrink_bytes = capacity() - desired_capacity;
 779     // Don't shrink unless the delta is greater than the minimum shrink we want
 780     if (shrink_bytes >= MinHeapDeltaBytes) {
 781       shrink_free_list_by(shrink_bytes);
 782     }
 783   }
 784 }
 785 
 786 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 787   return cmsSpace()->freelistLock();
 788 }
 789 
 790 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 791   CMSSynchronousYieldRequest yr;
 792   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 793   return have_lock_and_allocate(size, tlab);
 794 }
 795 
 796 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 797                                                                 bool   tlab /* ignored */) {
 798   assert_lock_strong(freelistLock());
 799   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 800   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 801   // Allocate the object live (grey) if the background collector has
 802   // started marking. This is necessary because the marker may
 803   // have passed this address and consequently this object will
 804   // not otherwise be greyed and would be incorrectly swept up.
 805   // Note that if this object contains references, the writing
 806   // of those references will dirty the card containing this object
 807   // allowing the object to be blackened (and its references scanned)
 808   // either during a preclean phase or at the final checkpoint.
 809   if (res != NULL) {
 810     // We may block here with an uninitialized object with
 811     // its mark-bit or P-bits not yet set. Such objects need
 812     // to be safely navigable by block_start().
 813     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 814     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 815     collector()->direct_allocated(res, adjustedSize);
 816     _direct_allocated_words += adjustedSize;
 817     // allocation counters
 818     NOT_PRODUCT(
 819       _numObjectsAllocated++;
 820       _numWordsAllocated += (int)adjustedSize;
 821     )
 822   }
 823   return res;
 824 }
 825 
 826 // In the case of direct allocation by mutators in a generation that
 827 // is being concurrently collected, the object must be allocated
 828 // live (grey) if the background collector has started marking.
 829 // This is necessary because the marker may
 830 // have passed this address and consequently this object will
 831 // not otherwise be greyed and would be incorrectly swept up.
 832 // Note that if this object contains references, the writing
 833 // of those references will dirty the card containing this object
 834 // allowing the object to be blackened (and its references scanned)
 835 // either during a preclean phase or at the final checkpoint.
 836 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 837   assert(_markBitMap.covers(start, size), "Out of bounds");
 838   if (_collectorState >= Marking) {
 839     MutexLockerEx y(_markBitMap.lock(),
 840                     Mutex::_no_safepoint_check_flag);
 841     // [see comments preceding SweepClosure::do_blk() below for details]
 842     //
 843     // Can the P-bits be deleted now?  JJJ
 844     //
 845     // 1. need to mark the object as live so it isn't collected
 846     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 847     // 3. need to mark the end of the object so marking, precleaning or sweeping
 848     //    can skip over uninitialized or unparsable objects. An allocated
 849     //    object is considered uninitialized for our purposes as long as
 850     //    its klass word is NULL.  All old gen objects are parsable
 851     //    as soon as they are initialized.)
 852     _markBitMap.mark(start);          // object is live
 853     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 854     _markBitMap.mark(start + size - 1);
 855                                       // mark end of object
 856   }
 857   // check that oop looks uninitialized
 858   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 859 }
 860 
 861 void CMSCollector::promoted(bool par, HeapWord* start,
 862                             bool is_obj_array, size_t obj_size) {
 863   assert(_markBitMap.covers(start), "Out of bounds");
 864   // See comment in direct_allocated() about when objects should
 865   // be allocated live.
 866   if (_collectorState >= Marking) {
 867     // we already hold the marking bit map lock, taken in
 868     // the prologue
 869     if (par) {
 870       _markBitMap.par_mark(start);
 871     } else {
 872       _markBitMap.mark(start);
 873     }
 874     // We don't need to mark the object as uninitialized (as
 875     // in direct_allocated above) because this is being done with the
 876     // world stopped and the object will be initialized by the
 877     // time the marking, precleaning or sweeping get to look at it.
 878     // But see the code for copying objects into the CMS generation,
 879     // where we need to ensure that concurrent readers of the
 880     // block offset table are able to safely navigate a block that
 881     // is in flux from being free to being allocated (and in
 882     // transition while being copied into) and subsequently
 883     // becoming a bona-fide object when the copy/promotion is complete.
 884     assert(SafepointSynchronize::is_at_safepoint(),
 885            "expect promotion only at safepoints");
 886 
 887     if (_collectorState < Sweeping) {
 888       // Mark the appropriate cards in the modUnionTable, so that
 889       // this object gets scanned before the sweep. If this is
 890       // not done, CMS generation references in the object might
 891       // not get marked.
 892       // For the case of arrays, which are otherwise precisely
 893       // marked, we need to dirty the entire array, not just its head.
 894       if (is_obj_array) {
 895         // The [par_]mark_range() method expects mr.end() below to
 896         // be aligned to the granularity of a bit's representation
 897         // in the heap. In the case of the MUT below, that's a
 898         // card size.
 899         MemRegion mr(start,
 900                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 901                         CardTableModRefBS::card_size /* bytes */));
 902         if (par) {
 903           _modUnionTable.par_mark_range(mr);
 904         } else {
 905           _modUnionTable.mark_range(mr);
 906         }
 907       } else {  // not an obj array; we can just mark the head
 908         if (par) {
 909           _modUnionTable.par_mark(start);
 910         } else {
 911           _modUnionTable.mark(start);
 912         }
 913       }
 914     }
 915   }
 916 }
 917 
 918 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 919   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 920   // allocate, copy and if necessary update promoinfo --
 921   // delegate to underlying space.
 922   assert_lock_strong(freelistLock());
 923 
 924 #ifndef PRODUCT
 925   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 926     return NULL;
 927   }
 928 #endif  // #ifndef PRODUCT
 929 
 930   oop res = _cmsSpace->promote(obj, obj_size);
 931   if (res == NULL) {
 932     // expand and retry
 933     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 934     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 935     // Since this is the old generation, we don't try to promote
 936     // into a more senior generation.
 937     res = _cmsSpace->promote(obj, obj_size);
 938   }
 939   if (res != NULL) {
 940     // See comment in allocate() about when objects should
 941     // be allocated live.
 942     assert(obj->is_oop(), "Will dereference klass pointer below");
 943     collector()->promoted(false,           // Not parallel
 944                           (HeapWord*)res, obj->is_objArray(), obj_size);
 945     // promotion counters
 946     NOT_PRODUCT(
 947       _numObjectsPromoted++;
 948       _numWordsPromoted +=
 949         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 950     )
 951   }
 952   return res;
 953 }
 954 
 955 
 956 // IMPORTANT: Notes on object size recognition in CMS.
 957 // ---------------------------------------------------
 958 // A block of storage in the CMS generation is always in
 959 // one of three states. A free block (FREE), an allocated
 960 // object (OBJECT) whose size() method reports the correct size,
 961 // and an intermediate state (TRANSIENT) in which its size cannot
 962 // be accurately determined.
 963 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 964 // -----------------------------------------------------
 965 // FREE:      klass_word & 1 == 1; mark_word holds block size
 966 //
 967 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 968 //            obj->size() computes correct size
 969 //
 970 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 971 //
 972 // STATE IDENTIFICATION: (64 bit+COOPS)
 973 // ------------------------------------
 974 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 975 //
 976 // OBJECT:    klass_word installed; klass_word != 0;
 977 //            obj->size() computes correct size
 978 //
 979 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 980 //
 981 //
 982 // STATE TRANSITION DIAGRAM
 983 //
 984 //        mut / parnew                     mut  /  parnew
 985 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 986 //  ^                                                                   |
 987 //  |------------------------ DEAD <------------------------------------|
 988 //         sweep                            mut
 989 //
 990 // While a block is in TRANSIENT state its size cannot be determined
 991 // so readers will either need to come back later or stall until
 992 // the size can be determined. Note that for the case of direct
 993 // allocation, P-bits, when available, may be used to determine the
 994 // size of an object that may not yet have been initialized.
 995 
 996 // Things to support parallel young-gen collection.
 997 oop
 998 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
 999                                            oop old, markOop m,
1000                                            size_t word_sz) {
1001 #ifndef PRODUCT
1002   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1003     return NULL;
1004   }
1005 #endif  // #ifndef PRODUCT
1006 
1007   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1008   PromotionInfo* promoInfo = &ps->promo;
1009   // if we are tracking promotions, then first ensure space for
1010   // promotion (including spooling space for saving header if necessary).
1011   // then allocate and copy, then track promoted info if needed.
1012   // When tracking (see PromotionInfo::track()), the mark word may
1013   // be displaced and in this case restoration of the mark word
1014   // occurs in the (oop_since_save_marks_)iterate phase.
1015   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1016     // Out of space for allocating spooling buffers;
1017     // try expanding and allocating spooling buffers.
1018     if (!expand_and_ensure_spooling_space(promoInfo)) {
1019       return NULL;
1020     }
1021   }
1022   assert(promoInfo->has_spooling_space(), "Control point invariant");
1023   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1024   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1025   if (obj_ptr == NULL) {
1026      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1027      if (obj_ptr == NULL) {
1028        return NULL;
1029      }
1030   }
1031   oop obj = oop(obj_ptr);
1032   OrderAccess::storestore();
1033   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1034   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1035   // IMPORTANT: See note on object initialization for CMS above.
1036   // Otherwise, copy the object.  Here we must be careful to insert the
1037   // klass pointer last, since this marks the block as an allocated object.
1038   // Except with compressed oops it's the mark word.
1039   HeapWord* old_ptr = (HeapWord*)old;
1040   // Restore the mark word copied above.
1041   obj->set_mark(m);
1042   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1043   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1044   OrderAccess::storestore();
1045 
1046   if (UseCompressedClassPointers) {
1047     // Copy gap missed by (aligned) header size calculation below
1048     obj->set_klass_gap(old->klass_gap());
1049   }
1050   if (word_sz > (size_t)oopDesc::header_size()) {
1051     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1052                                  obj_ptr + oopDesc::header_size(),
1053                                  word_sz - oopDesc::header_size());
1054   }
1055 
1056   // Now we can track the promoted object, if necessary.  We take care
1057   // to delay the transition from uninitialized to full object
1058   // (i.e., insertion of klass pointer) until after, so that it
1059   // atomically becomes a promoted object.
1060   if (promoInfo->tracking()) {
1061     promoInfo->track((PromotedObject*)obj, old->klass());
1062   }
1063   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1064   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1065   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1066 
1067   // Finally, install the klass pointer (this should be volatile).
1068   OrderAccess::storestore();
1069   obj->set_klass(old->klass());
1070   // We should now be able to calculate the right size for this object
1071   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1072 
1073   collector()->promoted(true,          // parallel
1074                         obj_ptr, old->is_objArray(), word_sz);
1075 
1076   NOT_PRODUCT(
1077     Atomic::inc_ptr(&_numObjectsPromoted);
1078     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1079   )
1080 
1081   return obj;
1082 }
1083 
1084 void
1085 ConcurrentMarkSweepGeneration::
1086 par_promote_alloc_done(int thread_num) {
1087   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1088   ps->lab.retire(thread_num);
1089 }
1090 
1091 void
1092 ConcurrentMarkSweepGeneration::
1093 par_oop_since_save_marks_iterate_done(int thread_num) {
1094   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1095   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1096   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1097 }
1098 
1099 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1100                                                    size_t size,
1101                                                    bool   tlab)
1102 {
1103   // We allow a STW collection only if a full
1104   // collection was requested.
1105   return full || should_allocate(size, tlab); // FIX ME !!!
1106   // This and promotion failure handling are connected at the
1107   // hip and should be fixed by untying them.
1108 }
1109 
1110 bool CMSCollector::shouldConcurrentCollect() {
1111   LogTarget(Trace, gc) log;
1112 
1113   if (_full_gc_requested) {
1114     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1115     return true;
1116   }
1117 
1118   FreelistLocker x(this);
1119   // ------------------------------------------------------------------
1120   // Print out lots of information which affects the initiation of
1121   // a collection.
1122   if (log.is_enabled() && stats().valid()) {
1123     log.print("CMSCollector shouldConcurrentCollect: ");
1124 
1125     LogStream out(log);
1126     stats().print_on(&out);
1127 
1128     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1129     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1130     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1131     log.print("promotion_rate=%g", stats().promotion_rate());
1132     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1133     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1134     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1135     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1136     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1137     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1138   }
1139   // ------------------------------------------------------------------
1140 
1141   // If the estimated time to complete a cms collection (cms_duration())
1142   // is less than the estimated time remaining until the cms generation
1143   // is full, start a collection.
1144   if (!UseCMSInitiatingOccupancyOnly) {
1145     if (stats().valid()) {
1146       if (stats().time_until_cms_start() == 0.0) {
1147         return true;
1148       }
1149     } else {
1150       // We want to conservatively collect somewhat early in order
1151       // to try and "bootstrap" our CMS/promotion statistics;
1152       // this branch will not fire after the first successful CMS
1153       // collection because the stats should then be valid.
1154       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1155         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1156                   _cmsGen->occupancy(), _bootstrap_occupancy);
1157         return true;
1158       }
1159     }
1160   }
1161 
1162   // Otherwise, we start a collection cycle if
1163   // old gen want a collection cycle started. Each may use
1164   // an appropriate criterion for making this decision.
1165   // XXX We need to make sure that the gen expansion
1166   // criterion dovetails well with this. XXX NEED TO FIX THIS
1167   if (_cmsGen->should_concurrent_collect()) {
1168     log.print("CMS old gen initiated");
1169     return true;
1170   }
1171 
1172   // We start a collection if we believe an incremental collection may fail;
1173   // this is not likely to be productive in practice because it's probably too
1174   // late anyway.
1175   GenCollectedHeap* gch = GenCollectedHeap::heap();
1176   assert(gch->collector_policy()->is_generation_policy(),
1177          "You may want to check the correctness of the following");
1178   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1179     log.print("CMSCollector: collect because incremental collection will fail ");
1180     return true;
1181   }
1182 
1183   if (MetaspaceGC::should_concurrent_collect()) {
1184     log.print("CMSCollector: collect for metadata allocation ");
1185     return true;
1186   }
1187 
1188   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1189   if (CMSTriggerInterval >= 0) {
1190     if (CMSTriggerInterval == 0) {
1191       // Trigger always
1192       return true;
1193     }
1194 
1195     // Check the CMS time since begin (we do not check the stats validity
1196     // as we want to be able to trigger the first CMS cycle as well)
1197     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1198       if (stats().valid()) {
1199         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1200                   stats().cms_time_since_begin());
1201       } else {
1202         log.print("CMSCollector: collect because of trigger interval (first collection)");
1203       }
1204       return true;
1205     }
1206   }
1207 
1208   return false;
1209 }
1210 
1211 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1212 
1213 // Clear _expansion_cause fields of constituent generations
1214 void CMSCollector::clear_expansion_cause() {
1215   _cmsGen->clear_expansion_cause();
1216 }
1217 
1218 // We should be conservative in starting a collection cycle.  To
1219 // start too eagerly runs the risk of collecting too often in the
1220 // extreme.  To collect too rarely falls back on full collections,
1221 // which works, even if not optimum in terms of concurrent work.
1222 // As a work around for too eagerly collecting, use the flag
1223 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1224 // giving the user an easily understandable way of controlling the
1225 // collections.
1226 // We want to start a new collection cycle if any of the following
1227 // conditions hold:
1228 // . our current occupancy exceeds the configured initiating occupancy
1229 //   for this generation, or
1230 // . we recently needed to expand this space and have not, since that
1231 //   expansion, done a collection of this generation, or
1232 // . the underlying space believes that it may be a good idea to initiate
1233 //   a concurrent collection (this may be based on criteria such as the
1234 //   following: the space uses linear allocation and linear allocation is
1235 //   going to fail, or there is believed to be excessive fragmentation in
1236 //   the generation, etc... or ...
1237 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1238 //   the case of the old generation; see CR 6543076):
1239 //   we may be approaching a point at which allocation requests may fail because
1240 //   we will be out of sufficient free space given allocation rate estimates.]
1241 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1242 
1243   assert_lock_strong(freelistLock());
1244   if (occupancy() > initiating_occupancy()) {
1245     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1246                   short_name(), occupancy(), initiating_occupancy());
1247     return true;
1248   }
1249   if (UseCMSInitiatingOccupancyOnly) {
1250     return false;
1251   }
1252   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1253     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1254     return true;
1255   }
1256   return false;
1257 }
1258 
1259 void ConcurrentMarkSweepGeneration::collect(bool   full,
1260                                             bool   clear_all_soft_refs,
1261                                             size_t size,
1262                                             bool   tlab)
1263 {
1264   collector()->collect(full, clear_all_soft_refs, size, tlab);
1265 }
1266 
1267 void CMSCollector::collect(bool   full,
1268                            bool   clear_all_soft_refs,
1269                            size_t size,
1270                            bool   tlab)
1271 {
1272   // The following "if" branch is present for defensive reasons.
1273   // In the current uses of this interface, it can be replaced with:
1274   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1275   // But I am not placing that assert here to allow future
1276   // generality in invoking this interface.
1277   if (GCLocker::is_active()) {
1278     // A consistency test for GCLocker
1279     assert(GCLocker::needs_gc(), "Should have been set already");
1280     // Skip this foreground collection, instead
1281     // expanding the heap if necessary.
1282     // Need the free list locks for the call to free() in compute_new_size()
1283     compute_new_size();
1284     return;
1285   }
1286   acquire_control_and_collect(full, clear_all_soft_refs);
1287 }
1288 
1289 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1290   GenCollectedHeap* gch = GenCollectedHeap::heap();
1291   unsigned int gc_count = gch->total_full_collections();
1292   if (gc_count == full_gc_count) {
1293     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1294     _full_gc_requested = true;
1295     _full_gc_cause = cause;
1296     CGC_lock->notify();   // nudge CMS thread
1297   } else {
1298     assert(gc_count > full_gc_count, "Error: causal loop");
1299   }
1300 }
1301 
1302 bool CMSCollector::is_external_interruption() {
1303   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1304   return GCCause::is_user_requested_gc(cause) ||
1305          GCCause::is_serviceability_requested_gc(cause);
1306 }
1307 
1308 void CMSCollector::report_concurrent_mode_interruption() {
1309   if (is_external_interruption()) {
1310     log_debug(gc)("Concurrent mode interrupted");
1311   } else {
1312     log_debug(gc)("Concurrent mode failure");
1313     _gc_tracer_cm->report_concurrent_mode_failure();
1314   }
1315 }
1316 
1317 
1318 // The foreground and background collectors need to coordinate in order
1319 // to make sure that they do not mutually interfere with CMS collections.
1320 // When a background collection is active,
1321 // the foreground collector may need to take over (preempt) and
1322 // synchronously complete an ongoing collection. Depending on the
1323 // frequency of the background collections and the heap usage
1324 // of the application, this preemption can be seldom or frequent.
1325 // There are only certain
1326 // points in the background collection that the "collection-baton"
1327 // can be passed to the foreground collector.
1328 //
1329 // The foreground collector will wait for the baton before
1330 // starting any part of the collection.  The foreground collector
1331 // will only wait at one location.
1332 //
1333 // The background collector will yield the baton before starting a new
1334 // phase of the collection (e.g., before initial marking, marking from roots,
1335 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1336 // of the loop which switches the phases. The background collector does some
1337 // of the phases (initial mark, final re-mark) with the world stopped.
1338 // Because of locking involved in stopping the world,
1339 // the foreground collector should not block waiting for the background
1340 // collector when it is doing a stop-the-world phase.  The background
1341 // collector will yield the baton at an additional point just before
1342 // it enters a stop-the-world phase.  Once the world is stopped, the
1343 // background collector checks the phase of the collection.  If the
1344 // phase has not changed, it proceeds with the collection.  If the
1345 // phase has changed, it skips that phase of the collection.  See
1346 // the comments on the use of the Heap_lock in collect_in_background().
1347 //
1348 // Variable used in baton passing.
1349 //   _foregroundGCIsActive - Set to true by the foreground collector when
1350 //      it wants the baton.  The foreground clears it when it has finished
1351 //      the collection.
1352 //   _foregroundGCShouldWait - Set to true by the background collector
1353 //        when it is running.  The foreground collector waits while
1354 //      _foregroundGCShouldWait is true.
1355 //  CGC_lock - monitor used to protect access to the above variables
1356 //      and to notify the foreground and background collectors.
1357 //  _collectorState - current state of the CMS collection.
1358 //
1359 // The foreground collector
1360 //   acquires the CGC_lock
1361 //   sets _foregroundGCIsActive
1362 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1363 //     various locks acquired in preparation for the collection
1364 //     are released so as not to block the background collector
1365 //     that is in the midst of a collection
1366 //   proceeds with the collection
1367 //   clears _foregroundGCIsActive
1368 //   returns
1369 //
1370 // The background collector in a loop iterating on the phases of the
1371 //      collection
1372 //   acquires the CGC_lock
1373 //   sets _foregroundGCShouldWait
1374 //   if _foregroundGCIsActive is set
1375 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1376 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1377 //     and exits the loop.
1378 //   otherwise
1379 //     proceed with that phase of the collection
1380 //     if the phase is a stop-the-world phase,
1381 //       yield the baton once more just before enqueueing
1382 //       the stop-world CMS operation (executed by the VM thread).
1383 //   returns after all phases of the collection are done
1384 //
1385 
1386 void CMSCollector::acquire_control_and_collect(bool full,
1387         bool clear_all_soft_refs) {
1388   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1389   assert(!Thread::current()->is_ConcurrentGC_thread(),
1390          "shouldn't try to acquire control from self!");
1391 
1392   // Start the protocol for acquiring control of the
1393   // collection from the background collector (aka CMS thread).
1394   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1395          "VM thread should have CMS token");
1396   // Remember the possibly interrupted state of an ongoing
1397   // concurrent collection
1398   CollectorState first_state = _collectorState;
1399 
1400   // Signal to a possibly ongoing concurrent collection that
1401   // we want to do a foreground collection.
1402   _foregroundGCIsActive = true;
1403 
1404   // release locks and wait for a notify from the background collector
1405   // releasing the locks in only necessary for phases which
1406   // do yields to improve the granularity of the collection.
1407   assert_lock_strong(bitMapLock());
1408   // We need to lock the Free list lock for the space that we are
1409   // currently collecting.
1410   assert(haveFreelistLocks(), "Must be holding free list locks");
1411   bitMapLock()->unlock();
1412   releaseFreelistLocks();
1413   {
1414     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1415     if (_foregroundGCShouldWait) {
1416       // We are going to be waiting for action for the CMS thread;
1417       // it had better not be gone (for instance at shutdown)!
1418       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1419              "CMS thread must be running");
1420       // Wait here until the background collector gives us the go-ahead
1421       ConcurrentMarkSweepThread::clear_CMS_flag(
1422         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1423       // Get a possibly blocked CMS thread going:
1424       //   Note that we set _foregroundGCIsActive true above,
1425       //   without protection of the CGC_lock.
1426       CGC_lock->notify();
1427       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1428              "Possible deadlock");
1429       while (_foregroundGCShouldWait) {
1430         // wait for notification
1431         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1432         // Possibility of delay/starvation here, since CMS token does
1433         // not know to give priority to VM thread? Actually, i think
1434         // there wouldn't be any delay/starvation, but the proof of
1435         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1436       }
1437       ConcurrentMarkSweepThread::set_CMS_flag(
1438         ConcurrentMarkSweepThread::CMS_vm_has_token);
1439     }
1440   }
1441   // The CMS_token is already held.  Get back the other locks.
1442   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1443          "VM thread should have CMS token");
1444   getFreelistLocks();
1445   bitMapLock()->lock_without_safepoint_check();
1446   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1447                        p2i(Thread::current()), first_state);
1448   log_debug(gc, state)("    gets control with state %d", _collectorState);
1449 
1450   // Inform cms gen if this was due to partial collection failing.
1451   // The CMS gen may use this fact to determine its expansion policy.
1452   GenCollectedHeap* gch = GenCollectedHeap::heap();
1453   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1454     assert(!_cmsGen->incremental_collection_failed(),
1455            "Should have been noticed, reacted to and cleared");
1456     _cmsGen->set_incremental_collection_failed();
1457   }
1458 
1459   if (first_state > Idling) {
1460     report_concurrent_mode_interruption();
1461   }
1462 
1463   set_did_compact(true);
1464 
1465   // If the collection is being acquired from the background
1466   // collector, there may be references on the discovered
1467   // references lists.  Abandon those references, since some
1468   // of them may have become unreachable after concurrent
1469   // discovery; the STW compacting collector will redo discovery
1470   // more precisely, without being subject to floating garbage.
1471   // Leaving otherwise unreachable references in the discovered
1472   // lists would require special handling.
1473   ref_processor()->disable_discovery();
1474   ref_processor()->abandon_partial_discovery();
1475   ref_processor()->verify_no_references_recorded();
1476 
1477   if (first_state > Idling) {
1478     save_heap_summary();
1479   }
1480 
1481   do_compaction_work(clear_all_soft_refs);
1482 
1483   // Has the GC time limit been exceeded?
1484   size_t max_eden_size = _young_gen->max_eden_size();
1485   GCCause::Cause gc_cause = gch->gc_cause();
1486   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1487                                          _young_gen->eden()->used(),
1488                                          _cmsGen->max_capacity(),
1489                                          max_eden_size,
1490                                          full,
1491                                          gc_cause,
1492                                          gch->collector_policy());
1493 
1494   // Reset the expansion cause, now that we just completed
1495   // a collection cycle.
1496   clear_expansion_cause();
1497   _foregroundGCIsActive = false;
1498   return;
1499 }
1500 
1501 // Resize the tenured generation
1502 // after obtaining the free list locks for the
1503 // two generations.
1504 void CMSCollector::compute_new_size() {
1505   assert_locked_or_safepoint(Heap_lock);
1506   FreelistLocker z(this);
1507   MetaspaceGC::compute_new_size();
1508   _cmsGen->compute_new_size_free_list();
1509 }
1510 
1511 // A work method used by the foreground collector to do
1512 // a mark-sweep-compact.
1513 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1514   GenCollectedHeap* gch = GenCollectedHeap::heap();
1515 
1516   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1517   gc_timer->register_gc_start();
1518 
1519   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1520   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1521 
1522   gch->pre_full_gc_dump(gc_timer);
1523 
1524   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1525 
1526   // Temporarily widen the span of the weak reference processing to
1527   // the entire heap.
1528   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1529   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1530   // Temporarily, clear the "is_alive_non_header" field of the
1531   // reference processor.
1532   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1533   // Temporarily make reference _processing_ single threaded (non-MT).
1534   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1535   // Temporarily make refs discovery atomic
1536   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1537   // Temporarily make reference _discovery_ single threaded (non-MT)
1538   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1539 
1540   ref_processor()->set_enqueuing_is_done(false);
1541   ref_processor()->enable_discovery();
1542   ref_processor()->setup_policy(clear_all_soft_refs);
1543   // If an asynchronous collection finishes, the _modUnionTable is
1544   // all clear.  If we are assuming the collection from an asynchronous
1545   // collection, clear the _modUnionTable.
1546   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1547     "_modUnionTable should be clear if the baton was not passed");
1548   _modUnionTable.clear_all();
1549   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1550     "mod union for klasses should be clear if the baton was passed");
1551   _ct->klass_rem_set()->clear_mod_union();
1552 
1553   // We must adjust the allocation statistics being maintained
1554   // in the free list space. We do so by reading and clearing
1555   // the sweep timer and updating the block flux rate estimates below.
1556   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1557   if (_inter_sweep_timer.is_active()) {
1558     _inter_sweep_timer.stop();
1559     // Note that we do not use this sample to update the _inter_sweep_estimate.
1560     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1561                                             _inter_sweep_estimate.padded_average(),
1562                                             _intra_sweep_estimate.padded_average());
1563   }
1564 
1565   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1566   #ifdef ASSERT
1567     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1568     size_t free_size = cms_space->free();
1569     assert(free_size ==
1570            pointer_delta(cms_space->end(), cms_space->compaction_top())
1571            * HeapWordSize,
1572       "All the free space should be compacted into one chunk at top");
1573     assert(cms_space->dictionary()->total_chunk_size(
1574                                       debug_only(cms_space->freelistLock())) == 0 ||
1575            cms_space->totalSizeInIndexedFreeLists() == 0,
1576       "All the free space should be in a single chunk");
1577     size_t num = cms_space->totalCount();
1578     assert((free_size == 0 && num == 0) ||
1579            (free_size > 0  && (num == 1 || num == 2)),
1580          "There should be at most 2 free chunks after compaction");
1581   #endif // ASSERT
1582   _collectorState = Resetting;
1583   assert(_restart_addr == NULL,
1584          "Should have been NULL'd before baton was passed");
1585   reset_stw();
1586   _cmsGen->reset_after_compaction();
1587   _concurrent_cycles_since_last_unload = 0;
1588 
1589   // Clear any data recorded in the PLAB chunk arrays.
1590   if (_survivor_plab_array != NULL) {
1591     reset_survivor_plab_arrays();
1592   }
1593 
1594   // Adjust the per-size allocation stats for the next epoch.
1595   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1596   // Restart the "inter sweep timer" for the next epoch.
1597   _inter_sweep_timer.reset();
1598   _inter_sweep_timer.start();
1599 
1600   gch->post_full_gc_dump(gc_timer);
1601 
1602   gc_timer->register_gc_end();
1603 
1604   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1605 
1606   // For a mark-sweep-compact, compute_new_size() will be called
1607   // in the heap's do_collection() method.
1608 }
1609 
1610 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1611   Log(gc, heap) log;
1612   if (!log.is_trace()) {
1613     return;
1614   }
1615 
1616   ContiguousSpace* eden_space = _young_gen->eden();
1617   ContiguousSpace* from_space = _young_gen->from();
1618   ContiguousSpace* to_space   = _young_gen->to();
1619   // Eden
1620   if (_eden_chunk_array != NULL) {
1621     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1622               p2i(eden_space->bottom()), p2i(eden_space->top()),
1623               p2i(eden_space->end()), eden_space->capacity());
1624     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1625               _eden_chunk_index, _eden_chunk_capacity);
1626     for (size_t i = 0; i < _eden_chunk_index; i++) {
1627       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1628     }
1629   }
1630   // Survivor
1631   if (_survivor_chunk_array != NULL) {
1632     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1633               p2i(from_space->bottom()), p2i(from_space->top()),
1634               p2i(from_space->end()), from_space->capacity());
1635     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1636               _survivor_chunk_index, _survivor_chunk_capacity);
1637     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1638       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1639     }
1640   }
1641 }
1642 
1643 void CMSCollector::getFreelistLocks() const {
1644   // Get locks for all free lists in all generations that this
1645   // collector is responsible for
1646   _cmsGen->freelistLock()->lock_without_safepoint_check();
1647 }
1648 
1649 void CMSCollector::releaseFreelistLocks() const {
1650   // Release locks for all free lists in all generations that this
1651   // collector is responsible for
1652   _cmsGen->freelistLock()->unlock();
1653 }
1654 
1655 bool CMSCollector::haveFreelistLocks() const {
1656   // Check locks for all free lists in all generations that this
1657   // collector is responsible for
1658   assert_lock_strong(_cmsGen->freelistLock());
1659   PRODUCT_ONLY(ShouldNotReachHere());
1660   return true;
1661 }
1662 
1663 // A utility class that is used by the CMS collector to
1664 // temporarily "release" the foreground collector from its
1665 // usual obligation to wait for the background collector to
1666 // complete an ongoing phase before proceeding.
1667 class ReleaseForegroundGC: public StackObj {
1668  private:
1669   CMSCollector* _c;
1670  public:
1671   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1672     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1673     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1674     // allow a potentially blocked foreground collector to proceed
1675     _c->_foregroundGCShouldWait = false;
1676     if (_c->_foregroundGCIsActive) {
1677       CGC_lock->notify();
1678     }
1679     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1680            "Possible deadlock");
1681   }
1682 
1683   ~ReleaseForegroundGC() {
1684     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1685     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1686     _c->_foregroundGCShouldWait = true;
1687   }
1688 };
1689 
1690 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1691   assert(Thread::current()->is_ConcurrentGC_thread(),
1692     "A CMS asynchronous collection is only allowed on a CMS thread.");
1693 
1694   GenCollectedHeap* gch = GenCollectedHeap::heap();
1695   {
1696     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1697     MutexLockerEx hl(Heap_lock, safepoint_check);
1698     FreelistLocker fll(this);
1699     MutexLockerEx x(CGC_lock, safepoint_check);
1700     if (_foregroundGCIsActive) {
1701       // The foreground collector is. Skip this
1702       // background collection.
1703       assert(!_foregroundGCShouldWait, "Should be clear");
1704       return;
1705     } else {
1706       assert(_collectorState == Idling, "Should be idling before start.");
1707       _collectorState = InitialMarking;
1708       register_gc_start(cause);
1709       // Reset the expansion cause, now that we are about to begin
1710       // a new cycle.
1711       clear_expansion_cause();
1712 
1713       // Clear the MetaspaceGC flag since a concurrent collection
1714       // is starting but also clear it after the collection.
1715       MetaspaceGC::set_should_concurrent_collect(false);
1716     }
1717     // Decide if we want to enable class unloading as part of the
1718     // ensuing concurrent GC cycle.
1719     update_should_unload_classes();
1720     _full_gc_requested = false;           // acks all outstanding full gc requests
1721     _full_gc_cause = GCCause::_no_gc;
1722     // Signal that we are about to start a collection
1723     gch->increment_total_full_collections();  // ... starting a collection cycle
1724     _collection_count_start = gch->total_full_collections();
1725   }
1726 
1727   size_t prev_used = _cmsGen->used();
1728 
1729   // The change of the collection state is normally done at this level;
1730   // the exceptions are phases that are executed while the world is
1731   // stopped.  For those phases the change of state is done while the
1732   // world is stopped.  For baton passing purposes this allows the
1733   // background collector to finish the phase and change state atomically.
1734   // The foreground collector cannot wait on a phase that is done
1735   // while the world is stopped because the foreground collector already
1736   // has the world stopped and would deadlock.
1737   while (_collectorState != Idling) {
1738     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1739                          p2i(Thread::current()), _collectorState);
1740     // The foreground collector
1741     //   holds the Heap_lock throughout its collection.
1742     //   holds the CMS token (but not the lock)
1743     //     except while it is waiting for the background collector to yield.
1744     //
1745     // The foreground collector should be blocked (not for long)
1746     //   if the background collector is about to start a phase
1747     //   executed with world stopped.  If the background
1748     //   collector has already started such a phase, the
1749     //   foreground collector is blocked waiting for the
1750     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1751     //   are executed in the VM thread.
1752     //
1753     // The locking order is
1754     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1755     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1756     //   CMS token  (claimed in
1757     //                stop_world_and_do() -->
1758     //                  safepoint_synchronize() -->
1759     //                    CMSThread::synchronize())
1760 
1761     {
1762       // Check if the FG collector wants us to yield.
1763       CMSTokenSync x(true); // is cms thread
1764       if (waitForForegroundGC()) {
1765         // We yielded to a foreground GC, nothing more to be
1766         // done this round.
1767         assert(_foregroundGCShouldWait == false, "We set it to false in "
1768                "waitForForegroundGC()");
1769         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1770                              p2i(Thread::current()), _collectorState);
1771         return;
1772       } else {
1773         // The background collector can run but check to see if the
1774         // foreground collector has done a collection while the
1775         // background collector was waiting to get the CGC_lock
1776         // above.  If yes, break so that _foregroundGCShouldWait
1777         // is cleared before returning.
1778         if (_collectorState == Idling) {
1779           break;
1780         }
1781       }
1782     }
1783 
1784     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1785       "should be waiting");
1786 
1787     switch (_collectorState) {
1788       case InitialMarking:
1789         {
1790           ReleaseForegroundGC x(this);
1791           stats().record_cms_begin();
1792           VM_CMS_Initial_Mark initial_mark_op(this);
1793           VMThread::execute(&initial_mark_op);
1794         }
1795         // The collector state may be any legal state at this point
1796         // since the background collector may have yielded to the
1797         // foreground collector.
1798         break;
1799       case Marking:
1800         // initial marking in checkpointRootsInitialWork has been completed
1801         if (markFromRoots()) { // we were successful
1802           assert(_collectorState == Precleaning, "Collector state should "
1803             "have changed");
1804         } else {
1805           assert(_foregroundGCIsActive, "Internal state inconsistency");
1806         }
1807         break;
1808       case Precleaning:
1809         // marking from roots in markFromRoots has been completed
1810         preclean();
1811         assert(_collectorState == AbortablePreclean ||
1812                _collectorState == FinalMarking,
1813                "Collector state should have changed");
1814         break;
1815       case AbortablePreclean:
1816         abortable_preclean();
1817         assert(_collectorState == FinalMarking, "Collector state should "
1818           "have changed");
1819         break;
1820       case FinalMarking:
1821         {
1822           ReleaseForegroundGC x(this);
1823 
1824           VM_CMS_Final_Remark final_remark_op(this);
1825           VMThread::execute(&final_remark_op);
1826         }
1827         assert(_foregroundGCShouldWait, "block post-condition");
1828         break;
1829       case Sweeping:
1830         // final marking in checkpointRootsFinal has been completed
1831         sweep();
1832         assert(_collectorState == Resizing, "Collector state change "
1833           "to Resizing must be done under the free_list_lock");
1834 
1835       case Resizing: {
1836         // Sweeping has been completed...
1837         // At this point the background collection has completed.
1838         // Don't move the call to compute_new_size() down
1839         // into code that might be executed if the background
1840         // collection was preempted.
1841         {
1842           ReleaseForegroundGC x(this);   // unblock FG collection
1843           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1844           CMSTokenSync        z(true);   // not strictly needed.
1845           if (_collectorState == Resizing) {
1846             compute_new_size();
1847             save_heap_summary();
1848             _collectorState = Resetting;
1849           } else {
1850             assert(_collectorState == Idling, "The state should only change"
1851                    " because the foreground collector has finished the collection");
1852           }
1853         }
1854         break;
1855       }
1856       case Resetting:
1857         // CMS heap resizing has been completed
1858         reset_concurrent();
1859         assert(_collectorState == Idling, "Collector state should "
1860           "have changed");
1861 
1862         MetaspaceGC::set_should_concurrent_collect(false);
1863 
1864         stats().record_cms_end();
1865         // Don't move the concurrent_phases_end() and compute_new_size()
1866         // calls to here because a preempted background collection
1867         // has it's state set to "Resetting".
1868         break;
1869       case Idling:
1870       default:
1871         ShouldNotReachHere();
1872         break;
1873     }
1874     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1875                          p2i(Thread::current()), _collectorState);
1876     assert(_foregroundGCShouldWait, "block post-condition");
1877   }
1878 
1879   // Should this be in gc_epilogue?
1880   collector_policy()->counters()->update_counters();
1881 
1882   {
1883     // Clear _foregroundGCShouldWait and, in the event that the
1884     // foreground collector is waiting, notify it, before
1885     // returning.
1886     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1887     _foregroundGCShouldWait = false;
1888     if (_foregroundGCIsActive) {
1889       CGC_lock->notify();
1890     }
1891     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1892            "Possible deadlock");
1893   }
1894   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1895                        p2i(Thread::current()), _collectorState);
1896   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1897                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1898 }
1899 
1900 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1901   _cms_start_registered = true;
1902   _gc_timer_cm->register_gc_start();
1903   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1904 }
1905 
1906 void CMSCollector::register_gc_end() {
1907   if (_cms_start_registered) {
1908     report_heap_summary(GCWhen::AfterGC);
1909 
1910     _gc_timer_cm->register_gc_end();
1911     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1912     _cms_start_registered = false;
1913   }
1914 }
1915 
1916 void CMSCollector::save_heap_summary() {
1917   GenCollectedHeap* gch = GenCollectedHeap::heap();
1918   _last_heap_summary = gch->create_heap_summary();
1919   _last_metaspace_summary = gch->create_metaspace_summary();
1920 }
1921 
1922 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1923   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1924   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1925 }
1926 
1927 bool CMSCollector::waitForForegroundGC() {
1928   bool res = false;
1929   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1930          "CMS thread should have CMS token");
1931   // Block the foreground collector until the
1932   // background collectors decides whether to
1933   // yield.
1934   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1935   _foregroundGCShouldWait = true;
1936   if (_foregroundGCIsActive) {
1937     // The background collector yields to the
1938     // foreground collector and returns a value
1939     // indicating that it has yielded.  The foreground
1940     // collector can proceed.
1941     res = true;
1942     _foregroundGCShouldWait = false;
1943     ConcurrentMarkSweepThread::clear_CMS_flag(
1944       ConcurrentMarkSweepThread::CMS_cms_has_token);
1945     ConcurrentMarkSweepThread::set_CMS_flag(
1946       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1947     // Get a possibly blocked foreground thread going
1948     CGC_lock->notify();
1949     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1950                          p2i(Thread::current()), _collectorState);
1951     while (_foregroundGCIsActive) {
1952       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1953     }
1954     ConcurrentMarkSweepThread::set_CMS_flag(
1955       ConcurrentMarkSweepThread::CMS_cms_has_token);
1956     ConcurrentMarkSweepThread::clear_CMS_flag(
1957       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1958   }
1959   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1960                        p2i(Thread::current()), _collectorState);
1961   return res;
1962 }
1963 
1964 // Because of the need to lock the free lists and other structures in
1965 // the collector, common to all the generations that the collector is
1966 // collecting, we need the gc_prologues of individual CMS generations
1967 // delegate to their collector. It may have been simpler had the
1968 // current infrastructure allowed one to call a prologue on a
1969 // collector. In the absence of that we have the generation's
1970 // prologue delegate to the collector, which delegates back
1971 // some "local" work to a worker method in the individual generations
1972 // that it's responsible for collecting, while itself doing any
1973 // work common to all generations it's responsible for. A similar
1974 // comment applies to the  gc_epilogue()'s.
1975 // The role of the variable _between_prologue_and_epilogue is to
1976 // enforce the invocation protocol.
1977 void CMSCollector::gc_prologue(bool full) {
1978   // Call gc_prologue_work() for the CMSGen
1979   // we are responsible for.
1980 
1981   // The following locking discipline assumes that we are only called
1982   // when the world is stopped.
1983   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1984 
1985   // The CMSCollector prologue must call the gc_prologues for the
1986   // "generations" that it's responsible
1987   // for.
1988 
1989   assert(   Thread::current()->is_VM_thread()
1990          || (   CMSScavengeBeforeRemark
1991              && Thread::current()->is_ConcurrentGC_thread()),
1992          "Incorrect thread type for prologue execution");
1993 
1994   if (_between_prologue_and_epilogue) {
1995     // We have already been invoked; this is a gc_prologue delegation
1996     // from yet another CMS generation that we are responsible for, just
1997     // ignore it since all relevant work has already been done.
1998     return;
1999   }
2000 
2001   // set a bit saying prologue has been called; cleared in epilogue
2002   _between_prologue_and_epilogue = true;
2003   // Claim locks for common data structures, then call gc_prologue_work()
2004   // for each CMSGen.
2005 
2006   getFreelistLocks();   // gets free list locks on constituent spaces
2007   bitMapLock()->lock_without_safepoint_check();
2008 
2009   // Should call gc_prologue_work() for all cms gens we are responsible for
2010   bool duringMarking =    _collectorState >= Marking
2011                          && _collectorState < Sweeping;
2012 
2013   // The young collections clear the modified oops state, which tells if
2014   // there are any modified oops in the class. The remark phase also needs
2015   // that information. Tell the young collection to save the union of all
2016   // modified klasses.
2017   if (duringMarking) {
2018     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2019   }
2020 
2021   bool registerClosure = duringMarking;
2022 
2023   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2024 
2025   if (!full) {
2026     stats().record_gc0_begin();
2027   }
2028 }
2029 
2030 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2031 
2032   _capacity_at_prologue = capacity();
2033   _used_at_prologue = used();
2034 
2035   // Delegate to CMScollector which knows how to coordinate between
2036   // this and any other CMS generations that it is responsible for
2037   // collecting.
2038   collector()->gc_prologue(full);
2039 }
2040 
2041 // This is a "private" interface for use by this generation's CMSCollector.
2042 // Not to be called directly by any other entity (for instance,
2043 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2044 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2045   bool registerClosure, ModUnionClosure* modUnionClosure) {
2046   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2047   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2048     "Should be NULL");
2049   if (registerClosure) {
2050     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2051   }
2052   cmsSpace()->gc_prologue();
2053   // Clear stat counters
2054   NOT_PRODUCT(
2055     assert(_numObjectsPromoted == 0, "check");
2056     assert(_numWordsPromoted   == 0, "check");
2057     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2058                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2059     _numObjectsAllocated = 0;
2060     _numWordsAllocated   = 0;
2061   )
2062 }
2063 
2064 void CMSCollector::gc_epilogue(bool full) {
2065   // The following locking discipline assumes that we are only called
2066   // when the world is stopped.
2067   assert(SafepointSynchronize::is_at_safepoint(),
2068          "world is stopped assumption");
2069 
2070   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2071   // if linear allocation blocks need to be appropriately marked to allow the
2072   // the blocks to be parsable. We also check here whether we need to nudge the
2073   // CMS collector thread to start a new cycle (if it's not already active).
2074   assert(   Thread::current()->is_VM_thread()
2075          || (   CMSScavengeBeforeRemark
2076              && Thread::current()->is_ConcurrentGC_thread()),
2077          "Incorrect thread type for epilogue execution");
2078 
2079   if (!_between_prologue_and_epilogue) {
2080     // We have already been invoked; this is a gc_epilogue delegation
2081     // from yet another CMS generation that we are responsible for, just
2082     // ignore it since all relevant work has already been done.
2083     return;
2084   }
2085   assert(haveFreelistLocks(), "must have freelist locks");
2086   assert_lock_strong(bitMapLock());
2087 
2088   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2089 
2090   _cmsGen->gc_epilogue_work(full);
2091 
2092   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2093     // in case sampling was not already enabled, enable it
2094     _start_sampling = true;
2095   }
2096   // reset _eden_chunk_array so sampling starts afresh
2097   _eden_chunk_index = 0;
2098 
2099   size_t cms_used   = _cmsGen->cmsSpace()->used();
2100 
2101   // update performance counters - this uses a special version of
2102   // update_counters() that allows the utilization to be passed as a
2103   // parameter, avoiding multiple calls to used().
2104   //
2105   _cmsGen->update_counters(cms_used);
2106 
2107   bitMapLock()->unlock();
2108   releaseFreelistLocks();
2109 
2110   if (!CleanChunkPoolAsync) {
2111     Chunk::clean_chunk_pool();
2112   }
2113 
2114   set_did_compact(false);
2115   _between_prologue_and_epilogue = false;  // ready for next cycle
2116 }
2117 
2118 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2119   collector()->gc_epilogue(full);
2120 
2121   // Also reset promotion tracking in par gc thread states.
2122   for (uint i = 0; i < ParallelGCThreads; i++) {
2123     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2124   }
2125 }
2126 
2127 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2128   assert(!incremental_collection_failed(), "Should have been cleared");
2129   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2130   cmsSpace()->gc_epilogue();
2131     // Print stat counters
2132   NOT_PRODUCT(
2133     assert(_numObjectsAllocated == 0, "check");
2134     assert(_numWordsAllocated == 0, "check");
2135     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2136                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2137     _numObjectsPromoted = 0;
2138     _numWordsPromoted   = 0;
2139   )
2140 
2141   // Call down the chain in contiguous_available needs the freelistLock
2142   // so print this out before releasing the freeListLock.
2143   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2144 }
2145 
2146 #ifndef PRODUCT
2147 bool CMSCollector::have_cms_token() {
2148   Thread* thr = Thread::current();
2149   if (thr->is_VM_thread()) {
2150     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2151   } else if (thr->is_ConcurrentGC_thread()) {
2152     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2153   } else if (thr->is_GC_task_thread()) {
2154     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2155            ParGCRareEvent_lock->owned_by_self();
2156   }
2157   return false;
2158 }
2159 
2160 // Check reachability of the given heap address in CMS generation,
2161 // treating all other generations as roots.
2162 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2163   // We could "guarantee" below, rather than assert, but I'll
2164   // leave these as "asserts" so that an adventurous debugger
2165   // could try this in the product build provided some subset of
2166   // the conditions were met, provided they were interested in the
2167   // results and knew that the computation below wouldn't interfere
2168   // with other concurrent computations mutating the structures
2169   // being read or written.
2170   assert(SafepointSynchronize::is_at_safepoint(),
2171          "Else mutations in object graph will make answer suspect");
2172   assert(have_cms_token(), "Should hold cms token");
2173   assert(haveFreelistLocks(), "must hold free list locks");
2174   assert_lock_strong(bitMapLock());
2175 
2176   // Clear the marking bit map array before starting, but, just
2177   // for kicks, first report if the given address is already marked
2178   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2179                 _markBitMap.isMarked(addr) ? "" : " not");
2180 
2181   if (verify_after_remark()) {
2182     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2183     bool result = verification_mark_bm()->isMarked(addr);
2184     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2185                   result ? "IS" : "is NOT");
2186     return result;
2187   } else {
2188     tty->print_cr("Could not compute result");
2189     return false;
2190   }
2191 }
2192 #endif
2193 
2194 void
2195 CMSCollector::print_on_error(outputStream* st) {
2196   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2197   if (collector != NULL) {
2198     CMSBitMap* bitmap = &collector->_markBitMap;
2199     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2200     bitmap->print_on_error(st, " Bits: ");
2201 
2202     st->cr();
2203 
2204     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2205     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2206     mut_bitmap->print_on_error(st, " Bits: ");
2207   }
2208 }
2209 
2210 ////////////////////////////////////////////////////////
2211 // CMS Verification Support
2212 ////////////////////////////////////////////////////////
2213 // Following the remark phase, the following invariant
2214 // should hold -- each object in the CMS heap which is
2215 // marked in markBitMap() should be marked in the verification_mark_bm().
2216 
2217 class VerifyMarkedClosure: public BitMapClosure {
2218   CMSBitMap* _marks;
2219   bool       _failed;
2220 
2221  public:
2222   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2223 
2224   bool do_bit(size_t offset) {
2225     HeapWord* addr = _marks->offsetToHeapWord(offset);
2226     if (!_marks->isMarked(addr)) {
2227       Log(gc, verify) log;
2228       ResourceMark rm;
2229       oop(addr)->print_on(log.error_stream());
2230       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2231       _failed = true;
2232     }
2233     return true;
2234   }
2235 
2236   bool failed() { return _failed; }
2237 };
2238 
2239 bool CMSCollector::verify_after_remark() {
2240   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2241   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2242   static bool init = false;
2243 
2244   assert(SafepointSynchronize::is_at_safepoint(),
2245          "Else mutations in object graph will make answer suspect");
2246   assert(have_cms_token(),
2247          "Else there may be mutual interference in use of "
2248          " verification data structures");
2249   assert(_collectorState > Marking && _collectorState <= Sweeping,
2250          "Else marking info checked here may be obsolete");
2251   assert(haveFreelistLocks(), "must hold free list locks");
2252   assert_lock_strong(bitMapLock());
2253 
2254 
2255   // Allocate marking bit map if not already allocated
2256   if (!init) { // first time
2257     if (!verification_mark_bm()->allocate(_span)) {
2258       return false;
2259     }
2260     init = true;
2261   }
2262 
2263   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2264 
2265   // Turn off refs discovery -- so we will be tracing through refs.
2266   // This is as intended, because by this time
2267   // GC must already have cleared any refs that need to be cleared,
2268   // and traced those that need to be marked; moreover,
2269   // the marking done here is not going to interfere in any
2270   // way with the marking information used by GC.
2271   NoRefDiscovery no_discovery(ref_processor());
2272 
2273 #if defined(COMPILER2) || INCLUDE_JVMCI
2274   DerivedPointerTableDeactivate dpt_deact;
2275 #endif
2276 
2277   // Clear any marks from a previous round
2278   verification_mark_bm()->clear_all();
2279   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2280   verify_work_stacks_empty();
2281 
2282   GenCollectedHeap* gch = GenCollectedHeap::heap();
2283   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2284   // Update the saved marks which may affect the root scans.
2285   gch->save_marks();
2286 
2287   if (CMSRemarkVerifyVariant == 1) {
2288     // In this first variant of verification, we complete
2289     // all marking, then check if the new marks-vector is
2290     // a subset of the CMS marks-vector.
2291     verify_after_remark_work_1();
2292   } else {
2293     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2294     // In this second variant of verification, we flag an error
2295     // (i.e. an object reachable in the new marks-vector not reachable
2296     // in the CMS marks-vector) immediately, also indicating the
2297     // identify of an object (A) that references the unmarked object (B) --
2298     // presumably, a mutation to A failed to be picked up by preclean/remark?
2299     verify_after_remark_work_2();
2300   }
2301 
2302   return true;
2303 }
2304 
2305 void CMSCollector::verify_after_remark_work_1() {
2306   ResourceMark rm;
2307   HandleMark  hm;
2308   GenCollectedHeap* gch = GenCollectedHeap::heap();
2309 
2310   // Get a clear set of claim bits for the roots processing to work with.
2311   ClassLoaderDataGraph::clear_claimed_marks();
2312 
2313   // Mark from roots one level into CMS
2314   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2315   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2316 
2317   {
2318     StrongRootsScope srs(1);
2319 
2320     gch->gen_process_roots(&srs,
2321                            GenCollectedHeap::OldGen,
2322                            true,   // young gen as roots
2323                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2324                            should_unload_classes(),
2325                            &notOlder,
2326                            NULL,
2327                            NULL);
2328   }
2329 
2330   // Now mark from the roots
2331   MarkFromRootsClosure markFromRootsClosure(this, _span,
2332     verification_mark_bm(), verification_mark_stack(),
2333     false /* don't yield */, true /* verifying */);
2334   assert(_restart_addr == NULL, "Expected pre-condition");
2335   verification_mark_bm()->iterate(&markFromRootsClosure);
2336   while (_restart_addr != NULL) {
2337     // Deal with stack overflow: by restarting at the indicated
2338     // address.
2339     HeapWord* ra = _restart_addr;
2340     markFromRootsClosure.reset(ra);
2341     _restart_addr = NULL;
2342     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2343   }
2344   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2345   verify_work_stacks_empty();
2346 
2347   // Marking completed -- now verify that each bit marked in
2348   // verification_mark_bm() is also marked in markBitMap(); flag all
2349   // errors by printing corresponding objects.
2350   VerifyMarkedClosure vcl(markBitMap());
2351   verification_mark_bm()->iterate(&vcl);
2352   if (vcl.failed()) {
2353     Log(gc, verify) log;
2354     log.error("Failed marking verification after remark");
2355     ResourceMark rm;
2356     gch->print_on(log.error_stream());
2357     fatal("CMS: failed marking verification after remark");
2358   }
2359 }
2360 
2361 class VerifyKlassOopsKlassClosure : public KlassClosure {
2362   class VerifyKlassOopsClosure : public OopClosure {
2363     CMSBitMap* _bitmap;
2364    public:
2365     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2366     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2367     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2368   } _oop_closure;
2369  public:
2370   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2371   void do_klass(Klass* k) {
2372     k->oops_do(&_oop_closure);
2373   }
2374 };
2375 
2376 void CMSCollector::verify_after_remark_work_2() {
2377   ResourceMark rm;
2378   HandleMark  hm;
2379   GenCollectedHeap* gch = GenCollectedHeap::heap();
2380 
2381   // Get a clear set of claim bits for the roots processing to work with.
2382   ClassLoaderDataGraph::clear_claimed_marks();
2383 
2384   // Mark from roots one level into CMS
2385   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2386                                      markBitMap());
2387   CLDToOopClosure cld_closure(&notOlder, true);
2388 
2389   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2390 
2391   {
2392     StrongRootsScope srs(1);
2393 
2394     gch->gen_process_roots(&srs,
2395                            GenCollectedHeap::OldGen,
2396                            true,   // young gen as roots
2397                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2398                            should_unload_classes(),
2399                            &notOlder,
2400                            NULL,
2401                            &cld_closure);
2402   }
2403 
2404   // Now mark from the roots
2405   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2406     verification_mark_bm(), markBitMap(), verification_mark_stack());
2407   assert(_restart_addr == NULL, "Expected pre-condition");
2408   verification_mark_bm()->iterate(&markFromRootsClosure);
2409   while (_restart_addr != NULL) {
2410     // Deal with stack overflow: by restarting at the indicated
2411     // address.
2412     HeapWord* ra = _restart_addr;
2413     markFromRootsClosure.reset(ra);
2414     _restart_addr = NULL;
2415     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2416   }
2417   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2418   verify_work_stacks_empty();
2419 
2420   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2421   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2422 
2423   // Marking completed -- now verify that each bit marked in
2424   // verification_mark_bm() is also marked in markBitMap(); flag all
2425   // errors by printing corresponding objects.
2426   VerifyMarkedClosure vcl(markBitMap());
2427   verification_mark_bm()->iterate(&vcl);
2428   assert(!vcl.failed(), "Else verification above should not have succeeded");
2429 }
2430 
2431 void ConcurrentMarkSweepGeneration::save_marks() {
2432   // delegate to CMS space
2433   cmsSpace()->save_marks();
2434   for (uint i = 0; i < ParallelGCThreads; i++) {
2435     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2436   }
2437 }
2438 
2439 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2440   return cmsSpace()->no_allocs_since_save_marks();
2441 }
2442 
2443 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2444                                                                 \
2445 void ConcurrentMarkSweepGeneration::                            \
2446 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2447   cl->set_generation(this);                                     \
2448   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2449   cl->reset_generation();                                       \
2450   save_marks();                                                 \
2451 }
2452 
2453 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2454 
2455 void
2456 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2457   if (freelistLock()->owned_by_self()) {
2458     Generation::oop_iterate(cl);
2459   } else {
2460     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2461     Generation::oop_iterate(cl);
2462   }
2463 }
2464 
2465 void
2466 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2467   if (freelistLock()->owned_by_self()) {
2468     Generation::object_iterate(cl);
2469   } else {
2470     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2471     Generation::object_iterate(cl);
2472   }
2473 }
2474 
2475 void
2476 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2477   if (freelistLock()->owned_by_self()) {
2478     Generation::safe_object_iterate(cl);
2479   } else {
2480     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2481     Generation::safe_object_iterate(cl);
2482   }
2483 }
2484 
2485 void
2486 ConcurrentMarkSweepGeneration::post_compact() {
2487 }
2488 
2489 void
2490 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2491   // Fix the linear allocation blocks to look like free blocks.
2492 
2493   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2494   // are not called when the heap is verified during universe initialization and
2495   // at vm shutdown.
2496   if (freelistLock()->owned_by_self()) {
2497     cmsSpace()->prepare_for_verify();
2498   } else {
2499     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2500     cmsSpace()->prepare_for_verify();
2501   }
2502 }
2503 
2504 void
2505 ConcurrentMarkSweepGeneration::verify() {
2506   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2507   // are not called when the heap is verified during universe initialization and
2508   // at vm shutdown.
2509   if (freelistLock()->owned_by_self()) {
2510     cmsSpace()->verify();
2511   } else {
2512     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2513     cmsSpace()->verify();
2514   }
2515 }
2516 
2517 void CMSCollector::verify() {
2518   _cmsGen->verify();
2519 }
2520 
2521 #ifndef PRODUCT
2522 bool CMSCollector::overflow_list_is_empty() const {
2523   assert(_num_par_pushes >= 0, "Inconsistency");
2524   if (_overflow_list == NULL) {
2525     assert(_num_par_pushes == 0, "Inconsistency");
2526   }
2527   return _overflow_list == NULL;
2528 }
2529 
2530 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2531 // merely consolidate assertion checks that appear to occur together frequently.
2532 void CMSCollector::verify_work_stacks_empty() const {
2533   assert(_markStack.isEmpty(), "Marking stack should be empty");
2534   assert(overflow_list_is_empty(), "Overflow list should be empty");
2535 }
2536 
2537 void CMSCollector::verify_overflow_empty() const {
2538   assert(overflow_list_is_empty(), "Overflow list should be empty");
2539   assert(no_preserved_marks(), "No preserved marks");
2540 }
2541 #endif // PRODUCT
2542 
2543 // Decide if we want to enable class unloading as part of the
2544 // ensuing concurrent GC cycle. We will collect and
2545 // unload classes if it's the case that:
2546 // (1) an explicit gc request has been made and the flag
2547 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2548 // (2) (a) class unloading is enabled at the command line, and
2549 //     (b) old gen is getting really full
2550 // NOTE: Provided there is no change in the state of the heap between
2551 // calls to this method, it should have idempotent results. Moreover,
2552 // its results should be monotonically increasing (i.e. going from 0 to 1,
2553 // but not 1 to 0) between successive calls between which the heap was
2554 // not collected. For the implementation below, it must thus rely on
2555 // the property that concurrent_cycles_since_last_unload()
2556 // will not decrease unless a collection cycle happened and that
2557 // _cmsGen->is_too_full() are
2558 // themselves also monotonic in that sense. See check_monotonicity()
2559 // below.
2560 void CMSCollector::update_should_unload_classes() {
2561   _should_unload_classes = false;
2562   // Condition 1 above
2563   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2564     _should_unload_classes = true;
2565   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2566     // Disjuncts 2.b.(i,ii,iii) above
2567     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2568                               CMSClassUnloadingMaxInterval)
2569                            || _cmsGen->is_too_full();
2570   }
2571 }
2572 
2573 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2574   bool res = should_concurrent_collect();
2575   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2576   return res;
2577 }
2578 
2579 void CMSCollector::setup_cms_unloading_and_verification_state() {
2580   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2581                              || VerifyBeforeExit;
2582   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2583 
2584   // We set the proper root for this CMS cycle here.
2585   if (should_unload_classes()) {   // Should unload classes this cycle
2586     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2587     set_verifying(should_verify);    // Set verification state for this cycle
2588     return;                            // Nothing else needs to be done at this time
2589   }
2590 
2591   // Not unloading classes this cycle
2592   assert(!should_unload_classes(), "Inconsistency!");
2593 
2594   // If we are not unloading classes then add SO_AllCodeCache to root
2595   // scanning options.
2596   add_root_scanning_option(rso);
2597 
2598   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2599     set_verifying(true);
2600   } else if (verifying() && !should_verify) {
2601     // We were verifying, but some verification flags got disabled.
2602     set_verifying(false);
2603     // Exclude symbols, strings and code cache elements from root scanning to
2604     // reduce IM and RM pauses.
2605     remove_root_scanning_option(rso);
2606   }
2607 }
2608 
2609 
2610 #ifndef PRODUCT
2611 HeapWord* CMSCollector::block_start(const void* p) const {
2612   const HeapWord* addr = (HeapWord*)p;
2613   if (_span.contains(p)) {
2614     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2615       return _cmsGen->cmsSpace()->block_start(p);
2616     }
2617   }
2618   return NULL;
2619 }
2620 #endif
2621 
2622 HeapWord*
2623 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2624                                                    bool   tlab,
2625                                                    bool   parallel) {
2626   CMSSynchronousYieldRequest yr;
2627   assert(!tlab, "Can't deal with TLAB allocation");
2628   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2629   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2630   if (GCExpandToAllocateDelayMillis > 0) {
2631     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2632   }
2633   return have_lock_and_allocate(word_size, tlab);
2634 }
2635 
2636 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2637     size_t bytes,
2638     size_t expand_bytes,
2639     CMSExpansionCause::Cause cause)
2640 {
2641 
2642   bool success = expand(bytes, expand_bytes);
2643 
2644   // remember why we expanded; this information is used
2645   // by shouldConcurrentCollect() when making decisions on whether to start
2646   // a new CMS cycle.
2647   if (success) {
2648     set_expansion_cause(cause);
2649     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2650   }
2651 }
2652 
2653 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2654   HeapWord* res = NULL;
2655   MutexLocker x(ParGCRareEvent_lock);
2656   while (true) {
2657     // Expansion by some other thread might make alloc OK now:
2658     res = ps->lab.alloc(word_sz);
2659     if (res != NULL) return res;
2660     // If there's not enough expansion space available, give up.
2661     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2662       return NULL;
2663     }
2664     // Otherwise, we try expansion.
2665     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2666     // Now go around the loop and try alloc again;
2667     // A competing par_promote might beat us to the expansion space,
2668     // so we may go around the loop again if promotion fails again.
2669     if (GCExpandToAllocateDelayMillis > 0) {
2670       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2671     }
2672   }
2673 }
2674 
2675 
2676 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2677   PromotionInfo* promo) {
2678   MutexLocker x(ParGCRareEvent_lock);
2679   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2680   while (true) {
2681     // Expansion by some other thread might make alloc OK now:
2682     if (promo->ensure_spooling_space()) {
2683       assert(promo->has_spooling_space(),
2684              "Post-condition of successful ensure_spooling_space()");
2685       return true;
2686     }
2687     // If there's not enough expansion space available, give up.
2688     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2689       return false;
2690     }
2691     // Otherwise, we try expansion.
2692     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2693     // Now go around the loop and try alloc again;
2694     // A competing allocation might beat us to the expansion space,
2695     // so we may go around the loop again if allocation fails again.
2696     if (GCExpandToAllocateDelayMillis > 0) {
2697       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2698     }
2699   }
2700 }
2701 
2702 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2703   // Only shrink if a compaction was done so that all the free space
2704   // in the generation is in a contiguous block at the end.
2705   if (did_compact()) {
2706     CardGeneration::shrink(bytes);
2707   }
2708 }
2709 
2710 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2711   assert_locked_or_safepoint(Heap_lock);
2712 }
2713 
2714 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2715   assert_locked_or_safepoint(Heap_lock);
2716   assert_lock_strong(freelistLock());
2717   log_trace(gc)("Shrinking of CMS not yet implemented");
2718   return;
2719 }
2720 
2721 
2722 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2723 // phases.
2724 class CMSPhaseAccounting: public StackObj {
2725  public:
2726   CMSPhaseAccounting(CMSCollector *collector,
2727                      const char *title);
2728   ~CMSPhaseAccounting();
2729 
2730  private:
2731   CMSCollector *_collector;
2732   const char *_title;
2733   GCTraceConcTime(Info, gc) _trace_time;
2734 
2735  public:
2736   // Not MT-safe; so do not pass around these StackObj's
2737   // where they may be accessed by other threads.
2738   double wallclock_millis() {
2739     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2740   }
2741 };
2742 
2743 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2744                                        const char *title) :
2745   _collector(collector), _title(title), _trace_time(title) {
2746 
2747   _collector->resetYields();
2748   _collector->resetTimer();
2749   _collector->startTimer();
2750   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2751 }
2752 
2753 CMSPhaseAccounting::~CMSPhaseAccounting() {
2754   _collector->gc_timer_cm()->register_gc_concurrent_end();
2755   _collector->stopTimer();
2756   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2757   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2758 }
2759 
2760 // CMS work
2761 
2762 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2763 class CMSParMarkTask : public AbstractGangTask {
2764  protected:
2765   CMSCollector*     _collector;
2766   uint              _n_workers;
2767   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2768       AbstractGangTask(name),
2769       _collector(collector),
2770       _n_workers(n_workers) {}
2771   // Work method in support of parallel rescan ... of young gen spaces
2772   void do_young_space_rescan(OopsInGenClosure* cl,
2773                              ContiguousSpace* space,
2774                              HeapWord** chunk_array, size_t chunk_top);
2775   void work_on_young_gen_roots(OopsInGenClosure* cl);
2776 };
2777 
2778 // Parallel initial mark task
2779 class CMSParInitialMarkTask: public CMSParMarkTask {
2780   StrongRootsScope* _strong_roots_scope;
2781  public:
2782   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2783       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2784       _strong_roots_scope(strong_roots_scope) {}
2785   void work(uint worker_id);
2786 };
2787 
2788 // Checkpoint the roots into this generation from outside
2789 // this generation. [Note this initial checkpoint need only
2790 // be approximate -- we'll do a catch up phase subsequently.]
2791 void CMSCollector::checkpointRootsInitial() {
2792   assert(_collectorState == InitialMarking, "Wrong collector state");
2793   check_correct_thread_executing();
2794   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2795 
2796   save_heap_summary();
2797   report_heap_summary(GCWhen::BeforeGC);
2798 
2799   ReferenceProcessor* rp = ref_processor();
2800   assert(_restart_addr == NULL, "Control point invariant");
2801   {
2802     // acquire locks for subsequent manipulations
2803     MutexLockerEx x(bitMapLock(),
2804                     Mutex::_no_safepoint_check_flag);
2805     checkpointRootsInitialWork();
2806     // enable ("weak") refs discovery
2807     rp->enable_discovery();
2808     _collectorState = Marking;
2809   }
2810 }
2811 
2812 void CMSCollector::checkpointRootsInitialWork() {
2813   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2814   assert(_collectorState == InitialMarking, "just checking");
2815 
2816   // Already have locks.
2817   assert_lock_strong(bitMapLock());
2818   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2819 
2820   // Setup the verification and class unloading state for this
2821   // CMS collection cycle.
2822   setup_cms_unloading_and_verification_state();
2823 
2824   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2825 
2826   // Reset all the PLAB chunk arrays if necessary.
2827   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2828     reset_survivor_plab_arrays();
2829   }
2830 
2831   ResourceMark rm;
2832   HandleMark  hm;
2833 
2834   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2835   GenCollectedHeap* gch = GenCollectedHeap::heap();
2836 
2837   verify_work_stacks_empty();
2838   verify_overflow_empty();
2839 
2840   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2841   // Update the saved marks which may affect the root scans.
2842   gch->save_marks();
2843 
2844   // weak reference processing has not started yet.
2845   ref_processor()->set_enqueuing_is_done(false);
2846 
2847   // Need to remember all newly created CLDs,
2848   // so that we can guarantee that the remark finds them.
2849   ClassLoaderDataGraph::remember_new_clds(true);
2850 
2851   // Whenever a CLD is found, it will be claimed before proceeding to mark
2852   // the klasses. The claimed marks need to be cleared before marking starts.
2853   ClassLoaderDataGraph::clear_claimed_marks();
2854 
2855   print_eden_and_survivor_chunk_arrays();
2856 
2857   {
2858 #if defined(COMPILER2) || INCLUDE_JVMCI
2859     DerivedPointerTableDeactivate dpt_deact;
2860 #endif
2861     if (CMSParallelInitialMarkEnabled) {
2862       // The parallel version.
2863       WorkGang* workers = gch->workers();
2864       assert(workers != NULL, "Need parallel worker threads.");
2865       uint n_workers = workers->active_workers();
2866 
2867       StrongRootsScope srs(n_workers);
2868 
2869       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2870       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2871       if (n_workers > 1) {
2872         workers->run_task(&tsk);
2873       } else {
2874         tsk.work(0);
2875       }
2876     } else {
2877       // The serial version.
2878       CLDToOopClosure cld_closure(&notOlder, true);
2879       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2880 
2881       StrongRootsScope srs(1);
2882 
2883       gch->gen_process_roots(&srs,
2884                              GenCollectedHeap::OldGen,
2885                              true,   // young gen as roots
2886                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2887                              should_unload_classes(),
2888                              &notOlder,
2889                              NULL,
2890                              &cld_closure);
2891     }
2892   }
2893 
2894   // Clear mod-union table; it will be dirtied in the prologue of
2895   // CMS generation per each young generation collection.
2896 
2897   assert(_modUnionTable.isAllClear(),
2898        "Was cleared in most recent final checkpoint phase"
2899        " or no bits are set in the gc_prologue before the start of the next "
2900        "subsequent marking phase.");
2901 
2902   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2903 
2904   // Save the end of the used_region of the constituent generations
2905   // to be used to limit the extent of sweep in each generation.
2906   save_sweep_limits();
2907   verify_overflow_empty();
2908 }
2909 
2910 bool CMSCollector::markFromRoots() {
2911   // we might be tempted to assert that:
2912   // assert(!SafepointSynchronize::is_at_safepoint(),
2913   //        "inconsistent argument?");
2914   // However that wouldn't be right, because it's possible that
2915   // a safepoint is indeed in progress as a young generation
2916   // stop-the-world GC happens even as we mark in this generation.
2917   assert(_collectorState == Marking, "inconsistent state?");
2918   check_correct_thread_executing();
2919   verify_overflow_empty();
2920 
2921   // Weak ref discovery note: We may be discovering weak
2922   // refs in this generation concurrent (but interleaved) with
2923   // weak ref discovery by the young generation collector.
2924 
2925   CMSTokenSyncWithLocks ts(true, bitMapLock());
2926   GCTraceCPUTime tcpu;
2927   CMSPhaseAccounting pa(this, "Concurrent Mark");
2928   bool res = markFromRootsWork();
2929   if (res) {
2930     _collectorState = Precleaning;
2931   } else { // We failed and a foreground collection wants to take over
2932     assert(_foregroundGCIsActive, "internal state inconsistency");
2933     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2934     log_debug(gc)("bailing out to foreground collection");
2935   }
2936   verify_overflow_empty();
2937   return res;
2938 }
2939 
2940 bool CMSCollector::markFromRootsWork() {
2941   // iterate over marked bits in bit map, doing a full scan and mark
2942   // from these roots using the following algorithm:
2943   // . if oop is to the right of the current scan pointer,
2944   //   mark corresponding bit (we'll process it later)
2945   // . else (oop is to left of current scan pointer)
2946   //   push oop on marking stack
2947   // . drain the marking stack
2948 
2949   // Note that when we do a marking step we need to hold the
2950   // bit map lock -- recall that direct allocation (by mutators)
2951   // and promotion (by the young generation collector) is also
2952   // marking the bit map. [the so-called allocate live policy.]
2953   // Because the implementation of bit map marking is not
2954   // robust wrt simultaneous marking of bits in the same word,
2955   // we need to make sure that there is no such interference
2956   // between concurrent such updates.
2957 
2958   // already have locks
2959   assert_lock_strong(bitMapLock());
2960 
2961   verify_work_stacks_empty();
2962   verify_overflow_empty();
2963   bool result = false;
2964   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2965     result = do_marking_mt();
2966   } else {
2967     result = do_marking_st();
2968   }
2969   return result;
2970 }
2971 
2972 // Forward decl
2973 class CMSConcMarkingTask;
2974 
2975 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2976   CMSCollector*       _collector;
2977   CMSConcMarkingTask* _task;
2978  public:
2979   virtual void yield();
2980 
2981   // "n_threads" is the number of threads to be terminated.
2982   // "queue_set" is a set of work queues of other threads.
2983   // "collector" is the CMS collector associated with this task terminator.
2984   // "yield" indicates whether we need the gang as a whole to yield.
2985   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
2986     ParallelTaskTerminator(n_threads, queue_set),
2987     _collector(collector) { }
2988 
2989   void set_task(CMSConcMarkingTask* task) {
2990     _task = task;
2991   }
2992 };
2993 
2994 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
2995   CMSConcMarkingTask* _task;
2996  public:
2997   bool should_exit_termination();
2998   void set_task(CMSConcMarkingTask* task) {
2999     _task = task;
3000   }
3001 };
3002 
3003 // MT Concurrent Marking Task
3004 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3005   CMSCollector* _collector;
3006   uint          _n_workers;       // requested/desired # workers
3007   bool          _result;
3008   CompactibleFreeListSpace*  _cms_space;
3009   char          _pad_front[64];   // padding to ...
3010   HeapWord*     _global_finger;   // ... avoid sharing cache line
3011   char          _pad_back[64];
3012   HeapWord*     _restart_addr;
3013 
3014   //  Exposed here for yielding support
3015   Mutex* const _bit_map_lock;
3016 
3017   // The per thread work queues, available here for stealing
3018   OopTaskQueueSet*  _task_queues;
3019 
3020   // Termination (and yielding) support
3021   CMSConcMarkingTerminator _term;
3022   CMSConcMarkingTerminatorTerminator _term_term;
3023 
3024  public:
3025   CMSConcMarkingTask(CMSCollector* collector,
3026                  CompactibleFreeListSpace* cms_space,
3027                  YieldingFlexibleWorkGang* workers,
3028                  OopTaskQueueSet* task_queues):
3029     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3030     _collector(collector),
3031     _cms_space(cms_space),
3032     _n_workers(0), _result(true),
3033     _task_queues(task_queues),
3034     _term(_n_workers, task_queues, _collector),
3035     _bit_map_lock(collector->bitMapLock())
3036   {
3037     _requested_size = _n_workers;
3038     _term.set_task(this);
3039     _term_term.set_task(this);
3040     _restart_addr = _global_finger = _cms_space->bottom();
3041   }
3042 
3043 
3044   OopTaskQueueSet* task_queues()  { return _task_queues; }
3045 
3046   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3047 
3048   HeapWord** global_finger_addr() { return &_global_finger; }
3049 
3050   CMSConcMarkingTerminator* terminator() { return &_term; }
3051 
3052   virtual void set_for_termination(uint active_workers) {
3053     terminator()->reset_for_reuse(active_workers);
3054   }
3055 
3056   void work(uint worker_id);
3057   bool should_yield() {
3058     return    ConcurrentMarkSweepThread::should_yield()
3059            && !_collector->foregroundGCIsActive();
3060   }
3061 
3062   virtual void coordinator_yield();  // stuff done by coordinator
3063   bool result() { return _result; }
3064 
3065   void reset(HeapWord* ra) {
3066     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3067     _restart_addr = _global_finger = ra;
3068     _term.reset_for_reuse();
3069   }
3070 
3071   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3072                                            OopTaskQueue* work_q);
3073 
3074  private:
3075   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3076   void do_work_steal(int i);
3077   void bump_global_finger(HeapWord* f);
3078 };
3079 
3080 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3081   assert(_task != NULL, "Error");
3082   return _task->yielding();
3083   // Note that we do not need the disjunct || _task->should_yield() above
3084   // because we want terminating threads to yield only if the task
3085   // is already in the midst of yielding, which happens only after at least one
3086   // thread has yielded.
3087 }
3088 
3089 void CMSConcMarkingTerminator::yield() {
3090   if (_task->should_yield()) {
3091     _task->yield();
3092   } else {
3093     ParallelTaskTerminator::yield();
3094   }
3095 }
3096 
3097 ////////////////////////////////////////////////////////////////
3098 // Concurrent Marking Algorithm Sketch
3099 ////////////////////////////////////////////////////////////////
3100 // Until all tasks exhausted (both spaces):
3101 // -- claim next available chunk
3102 // -- bump global finger via CAS
3103 // -- find first object that starts in this chunk
3104 //    and start scanning bitmap from that position
3105 // -- scan marked objects for oops
3106 // -- CAS-mark target, and if successful:
3107 //    . if target oop is above global finger (volatile read)
3108 //      nothing to do
3109 //    . if target oop is in chunk and above local finger
3110 //        then nothing to do
3111 //    . else push on work-queue
3112 // -- Deal with possible overflow issues:
3113 //    . local work-queue overflow causes stuff to be pushed on
3114 //      global (common) overflow queue
3115 //    . always first empty local work queue
3116 //    . then get a batch of oops from global work queue if any
3117 //    . then do work stealing
3118 // -- When all tasks claimed (both spaces)
3119 //    and local work queue empty,
3120 //    then in a loop do:
3121 //    . check global overflow stack; steal a batch of oops and trace
3122 //    . try to steal from other threads oif GOS is empty
3123 //    . if neither is available, offer termination
3124 // -- Terminate and return result
3125 //
3126 void CMSConcMarkingTask::work(uint worker_id) {
3127   elapsedTimer _timer;
3128   ResourceMark rm;
3129   HandleMark hm;
3130 
3131   DEBUG_ONLY(_collector->verify_overflow_empty();)
3132 
3133   // Before we begin work, our work queue should be empty
3134   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3135   // Scan the bitmap covering _cms_space, tracing through grey objects.
3136   _timer.start();
3137   do_scan_and_mark(worker_id, _cms_space);
3138   _timer.stop();
3139   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3140 
3141   // ... do work stealing
3142   _timer.reset();
3143   _timer.start();
3144   do_work_steal(worker_id);
3145   _timer.stop();
3146   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3147   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3148   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3149   // Note that under the current task protocol, the
3150   // following assertion is true even of the spaces
3151   // expanded since the completion of the concurrent
3152   // marking. XXX This will likely change under a strict
3153   // ABORT semantics.
3154   // After perm removal the comparison was changed to
3155   // greater than or equal to from strictly greater than.
3156   // Before perm removal the highest address sweep would
3157   // have been at the end of perm gen but now is at the
3158   // end of the tenured gen.
3159   assert(_global_finger >=  _cms_space->end(),
3160          "All tasks have been completed");
3161   DEBUG_ONLY(_collector->verify_overflow_empty();)
3162 }
3163 
3164 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3165   HeapWord* read = _global_finger;
3166   HeapWord* cur  = read;
3167   while (f > read) {
3168     cur = read;
3169     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3170     if (cur == read) {
3171       // our cas succeeded
3172       assert(_global_finger >= f, "protocol consistency");
3173       break;
3174     }
3175   }
3176 }
3177 
3178 // This is really inefficient, and should be redone by
3179 // using (not yet available) block-read and -write interfaces to the
3180 // stack and the work_queue. XXX FIX ME !!!
3181 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3182                                                       OopTaskQueue* work_q) {
3183   // Fast lock-free check
3184   if (ovflw_stk->length() == 0) {
3185     return false;
3186   }
3187   assert(work_q->size() == 0, "Shouldn't steal");
3188   MutexLockerEx ml(ovflw_stk->par_lock(),
3189                    Mutex::_no_safepoint_check_flag);
3190   // Grab up to 1/4 the size of the work queue
3191   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3192                     (size_t)ParGCDesiredObjsFromOverflowList);
3193   num = MIN2(num, ovflw_stk->length());
3194   for (int i = (int) num; i > 0; i--) {
3195     oop cur = ovflw_stk->pop();
3196     assert(cur != NULL, "Counted wrong?");
3197     work_q->push(cur);
3198   }
3199   return num > 0;
3200 }
3201 
3202 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3203   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3204   int n_tasks = pst->n_tasks();
3205   // We allow that there may be no tasks to do here because
3206   // we are restarting after a stack overflow.
3207   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3208   uint nth_task = 0;
3209 
3210   HeapWord* aligned_start = sp->bottom();
3211   if (sp->used_region().contains(_restart_addr)) {
3212     // Align down to a card boundary for the start of 0th task
3213     // for this space.
3214     aligned_start =
3215       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3216                                  CardTableModRefBS::card_size);
3217   }
3218 
3219   size_t chunk_size = sp->marking_task_size();
3220   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3221     // Having claimed the nth task in this space,
3222     // compute the chunk that it corresponds to:
3223     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3224                                aligned_start + (nth_task+1)*chunk_size);
3225     // Try and bump the global finger via a CAS;
3226     // note that we need to do the global finger bump
3227     // _before_ taking the intersection below, because
3228     // the task corresponding to that region will be
3229     // deemed done even if the used_region() expands
3230     // because of allocation -- as it almost certainly will
3231     // during start-up while the threads yield in the
3232     // closure below.
3233     HeapWord* finger = span.end();
3234     bump_global_finger(finger);   // atomically
3235     // There are null tasks here corresponding to chunks
3236     // beyond the "top" address of the space.
3237     span = span.intersection(sp->used_region());
3238     if (!span.is_empty()) {  // Non-null task
3239       HeapWord* prev_obj;
3240       assert(!span.contains(_restart_addr) || nth_task == 0,
3241              "Inconsistency");
3242       if (nth_task == 0) {
3243         // For the 0th task, we'll not need to compute a block_start.
3244         if (span.contains(_restart_addr)) {
3245           // In the case of a restart because of stack overflow,
3246           // we might additionally skip a chunk prefix.
3247           prev_obj = _restart_addr;
3248         } else {
3249           prev_obj = span.start();
3250         }
3251       } else {
3252         // We want to skip the first object because
3253         // the protocol is to scan any object in its entirety
3254         // that _starts_ in this span; a fortiori, any
3255         // object starting in an earlier span is scanned
3256         // as part of an earlier claimed task.
3257         // Below we use the "careful" version of block_start
3258         // so we do not try to navigate uninitialized objects.
3259         prev_obj = sp->block_start_careful(span.start());
3260         // Below we use a variant of block_size that uses the
3261         // Printezis bits to avoid waiting for allocated
3262         // objects to become initialized/parsable.
3263         while (prev_obj < span.start()) {
3264           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3265           if (sz > 0) {
3266             prev_obj += sz;
3267           } else {
3268             // In this case we may end up doing a bit of redundant
3269             // scanning, but that appears unavoidable, short of
3270             // locking the free list locks; see bug 6324141.
3271             break;
3272           }
3273         }
3274       }
3275       if (prev_obj < span.end()) {
3276         MemRegion my_span = MemRegion(prev_obj, span.end());
3277         // Do the marking work within a non-empty span --
3278         // the last argument to the constructor indicates whether the
3279         // iteration should be incremental with periodic yields.
3280         ParMarkFromRootsClosure cl(this, _collector, my_span,
3281                                    &_collector->_markBitMap,
3282                                    work_queue(i),
3283                                    &_collector->_markStack);
3284         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3285       } // else nothing to do for this task
3286     }   // else nothing to do for this task
3287   }
3288   // We'd be tempted to assert here that since there are no
3289   // more tasks left to claim in this space, the global_finger
3290   // must exceed space->top() and a fortiori space->end(). However,
3291   // that would not quite be correct because the bumping of
3292   // global_finger occurs strictly after the claiming of a task,
3293   // so by the time we reach here the global finger may not yet
3294   // have been bumped up by the thread that claimed the last
3295   // task.
3296   pst->all_tasks_completed();
3297 }
3298 
3299 class ParConcMarkingClosure: public MetadataAwareOopClosure {
3300  private:
3301   CMSCollector* _collector;
3302   CMSConcMarkingTask* _task;
3303   MemRegion     _span;
3304   CMSBitMap*    _bit_map;
3305   CMSMarkStack* _overflow_stack;
3306   OopTaskQueue* _work_queue;
3307  protected:
3308   DO_OOP_WORK_DEFN
3309  public:
3310   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3311                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3312     MetadataAwareOopClosure(collector->ref_processor()),
3313     _collector(collector),
3314     _task(task),
3315     _span(collector->_span),
3316     _work_queue(work_queue),
3317     _bit_map(bit_map),
3318     _overflow_stack(overflow_stack)
3319   { }
3320   virtual void do_oop(oop* p);
3321   virtual void do_oop(narrowOop* p);
3322 
3323   void trim_queue(size_t max);
3324   void handle_stack_overflow(HeapWord* lost);
3325   void do_yield_check() {
3326     if (_task->should_yield()) {
3327       _task->yield();
3328     }
3329   }
3330 };
3331 
3332 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3333 
3334 // Grey object scanning during work stealing phase --
3335 // the salient assumption here is that any references
3336 // that are in these stolen objects being scanned must
3337 // already have been initialized (else they would not have
3338 // been published), so we do not need to check for
3339 // uninitialized objects before pushing here.
3340 void ParConcMarkingClosure::do_oop(oop obj) {
3341   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3342   HeapWord* addr = (HeapWord*)obj;
3343   // Check if oop points into the CMS generation
3344   // and is not marked
3345   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3346     // a white object ...
3347     // If we manage to "claim" the object, by being the
3348     // first thread to mark it, then we push it on our
3349     // marking stack
3350     if (_bit_map->par_mark(addr)) {     // ... now grey
3351       // push on work queue (grey set)
3352       bool simulate_overflow = false;
3353       NOT_PRODUCT(
3354         if (CMSMarkStackOverflowALot &&
3355             _collector->simulate_overflow()) {
3356           // simulate a stack overflow
3357           simulate_overflow = true;
3358         }
3359       )
3360       if (simulate_overflow ||
3361           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3362         // stack overflow
3363         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3364         // We cannot assert that the overflow stack is full because
3365         // it may have been emptied since.
3366         assert(simulate_overflow ||
3367                _work_queue->size() == _work_queue->max_elems(),
3368               "Else push should have succeeded");
3369         handle_stack_overflow(addr);
3370       }
3371     } // Else, some other thread got there first
3372     do_yield_check();
3373   }
3374 }
3375 
3376 void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3377 void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3378 
3379 void ParConcMarkingClosure::trim_queue(size_t max) {
3380   while (_work_queue->size() > max) {
3381     oop new_oop;
3382     if (_work_queue->pop_local(new_oop)) {
3383       assert(new_oop->is_oop(), "Should be an oop");
3384       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3385       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3386       new_oop->oop_iterate(this);  // do_oop() above
3387       do_yield_check();
3388     }
3389   }
3390 }
3391 
3392 // Upon stack overflow, we discard (part of) the stack,
3393 // remembering the least address amongst those discarded
3394 // in CMSCollector's _restart_address.
3395 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3396   // We need to do this under a mutex to prevent other
3397   // workers from interfering with the work done below.
3398   MutexLockerEx ml(_overflow_stack->par_lock(),
3399                    Mutex::_no_safepoint_check_flag);
3400   // Remember the least grey address discarded
3401   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3402   _collector->lower_restart_addr(ra);
3403   _overflow_stack->reset();  // discard stack contents
3404   _overflow_stack->expand(); // expand the stack if possible
3405 }
3406 
3407 
3408 void CMSConcMarkingTask::do_work_steal(int i) {
3409   OopTaskQueue* work_q = work_queue(i);
3410   oop obj_to_scan;
3411   CMSBitMap* bm = &(_collector->_markBitMap);
3412   CMSMarkStack* ovflw = &(_collector->_markStack);
3413   int* seed = _collector->hash_seed(i);
3414   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3415   while (true) {
3416     cl.trim_queue(0);
3417     assert(work_q->size() == 0, "Should have been emptied above");
3418     if (get_work_from_overflow_stack(ovflw, work_q)) {
3419       // Can't assert below because the work obtained from the
3420       // overflow stack may already have been stolen from us.
3421       // assert(work_q->size() > 0, "Work from overflow stack");
3422       continue;
3423     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3424       assert(obj_to_scan->is_oop(), "Should be an oop");
3425       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3426       obj_to_scan->oop_iterate(&cl);
3427     } else if (terminator()->offer_termination(&_term_term)) {
3428       assert(work_q->size() == 0, "Impossible!");
3429       break;
3430     } else if (yielding() || should_yield()) {
3431       yield();
3432     }
3433   }
3434 }
3435 
3436 // This is run by the CMS (coordinator) thread.
3437 void CMSConcMarkingTask::coordinator_yield() {
3438   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3439          "CMS thread should hold CMS token");
3440   // First give up the locks, then yield, then re-lock
3441   // We should probably use a constructor/destructor idiom to
3442   // do this unlock/lock or modify the MutexUnlocker class to
3443   // serve our purpose. XXX
3444   assert_lock_strong(_bit_map_lock);
3445   _bit_map_lock->unlock();
3446   ConcurrentMarkSweepThread::desynchronize(true);
3447   _collector->stopTimer();
3448   _collector->incrementYields();
3449 
3450   // It is possible for whichever thread initiated the yield request
3451   // not to get a chance to wake up and take the bitmap lock between
3452   // this thread releasing it and reacquiring it. So, while the
3453   // should_yield() flag is on, let's sleep for a bit to give the
3454   // other thread a chance to wake up. The limit imposed on the number
3455   // of iterations is defensive, to avoid any unforseen circumstances
3456   // putting us into an infinite loop. Since it's always been this
3457   // (coordinator_yield()) method that was observed to cause the
3458   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3459   // which is by default non-zero. For the other seven methods that
3460   // also perform the yield operation, as are using a different
3461   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3462   // can enable the sleeping for those methods too, if necessary.
3463   // See 6442774.
3464   //
3465   // We really need to reconsider the synchronization between the GC
3466   // thread and the yield-requesting threads in the future and we
3467   // should really use wait/notify, which is the recommended
3468   // way of doing this type of interaction. Additionally, we should
3469   // consolidate the eight methods that do the yield operation and they
3470   // are almost identical into one for better maintainability and
3471   // readability. See 6445193.
3472   //
3473   // Tony 2006.06.29
3474   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3475                    ConcurrentMarkSweepThread::should_yield() &&
3476                    !CMSCollector::foregroundGCIsActive(); ++i) {
3477     os::sleep(Thread::current(), 1, false);
3478   }
3479 
3480   ConcurrentMarkSweepThread::synchronize(true);
3481   _bit_map_lock->lock_without_safepoint_check();
3482   _collector->startTimer();
3483 }
3484 
3485 bool CMSCollector::do_marking_mt() {
3486   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3487   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3488                                                                   conc_workers()->active_workers(),
3489                                                                   Threads::number_of_non_daemon_threads());
3490   conc_workers()->set_active_workers(num_workers);
3491 
3492   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3493 
3494   CMSConcMarkingTask tsk(this,
3495                          cms_space,
3496                          conc_workers(),
3497                          task_queues());
3498 
3499   // Since the actual number of workers we get may be different
3500   // from the number we requested above, do we need to do anything different
3501   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3502   // class?? XXX
3503   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3504 
3505   // Refs discovery is already non-atomic.
3506   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3507   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3508   conc_workers()->start_task(&tsk);
3509   while (tsk.yielded()) {
3510     tsk.coordinator_yield();
3511     conc_workers()->continue_task(&tsk);
3512   }
3513   // If the task was aborted, _restart_addr will be non-NULL
3514   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3515   while (_restart_addr != NULL) {
3516     // XXX For now we do not make use of ABORTED state and have not
3517     // yet implemented the right abort semantics (even in the original
3518     // single-threaded CMS case). That needs some more investigation
3519     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3520     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3521     // If _restart_addr is non-NULL, a marking stack overflow
3522     // occurred; we need to do a fresh marking iteration from the
3523     // indicated restart address.
3524     if (_foregroundGCIsActive) {
3525       // We may be running into repeated stack overflows, having
3526       // reached the limit of the stack size, while making very
3527       // slow forward progress. It may be best to bail out and
3528       // let the foreground collector do its job.
3529       // Clear _restart_addr, so that foreground GC
3530       // works from scratch. This avoids the headache of
3531       // a "rescan" which would otherwise be needed because
3532       // of the dirty mod union table & card table.
3533       _restart_addr = NULL;
3534       return false;
3535     }
3536     // Adjust the task to restart from _restart_addr
3537     tsk.reset(_restart_addr);
3538     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3539                   _restart_addr);
3540     _restart_addr = NULL;
3541     // Get the workers going again
3542     conc_workers()->start_task(&tsk);
3543     while (tsk.yielded()) {
3544       tsk.coordinator_yield();
3545       conc_workers()->continue_task(&tsk);
3546     }
3547   }
3548   assert(tsk.completed(), "Inconsistency");
3549   assert(tsk.result() == true, "Inconsistency");
3550   return true;
3551 }
3552 
3553 bool CMSCollector::do_marking_st() {
3554   ResourceMark rm;
3555   HandleMark   hm;
3556 
3557   // Temporarily make refs discovery single threaded (non-MT)
3558   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3559   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3560     &_markStack, CMSYield);
3561   // the last argument to iterate indicates whether the iteration
3562   // should be incremental with periodic yields.
3563   _markBitMap.iterate(&markFromRootsClosure);
3564   // If _restart_addr is non-NULL, a marking stack overflow
3565   // occurred; we need to do a fresh iteration from the
3566   // indicated restart address.
3567   while (_restart_addr != NULL) {
3568     if (_foregroundGCIsActive) {
3569       // We may be running into repeated stack overflows, having
3570       // reached the limit of the stack size, while making very
3571       // slow forward progress. It may be best to bail out and
3572       // let the foreground collector do its job.
3573       // Clear _restart_addr, so that foreground GC
3574       // works from scratch. This avoids the headache of
3575       // a "rescan" which would otherwise be needed because
3576       // of the dirty mod union table & card table.
3577       _restart_addr = NULL;
3578       return false;  // indicating failure to complete marking
3579     }
3580     // Deal with stack overflow:
3581     // we restart marking from _restart_addr
3582     HeapWord* ra = _restart_addr;
3583     markFromRootsClosure.reset(ra);
3584     _restart_addr = NULL;
3585     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3586   }
3587   return true;
3588 }
3589 
3590 void CMSCollector::preclean() {
3591   check_correct_thread_executing();
3592   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3593   verify_work_stacks_empty();
3594   verify_overflow_empty();
3595   _abort_preclean = false;
3596   if (CMSPrecleaningEnabled) {
3597     if (!CMSEdenChunksRecordAlways) {
3598       _eden_chunk_index = 0;
3599     }
3600     size_t used = get_eden_used();
3601     size_t capacity = get_eden_capacity();
3602     // Don't start sampling unless we will get sufficiently
3603     // many samples.
3604     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3605                 * CMSScheduleRemarkEdenPenetration)) {
3606       _start_sampling = true;
3607     } else {
3608       _start_sampling = false;
3609     }
3610     GCTraceCPUTime tcpu;
3611     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3612     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3613   }
3614   CMSTokenSync x(true); // is cms thread
3615   if (CMSPrecleaningEnabled) {
3616     sample_eden();
3617     _collectorState = AbortablePreclean;
3618   } else {
3619     _collectorState = FinalMarking;
3620   }
3621   verify_work_stacks_empty();
3622   verify_overflow_empty();
3623 }
3624 
3625 // Try and schedule the remark such that young gen
3626 // occupancy is CMSScheduleRemarkEdenPenetration %.
3627 void CMSCollector::abortable_preclean() {
3628   check_correct_thread_executing();
3629   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3630   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3631 
3632   // If Eden's current occupancy is below this threshold,
3633   // immediately schedule the remark; else preclean
3634   // past the next scavenge in an effort to
3635   // schedule the pause as described above. By choosing
3636   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3637   // we will never do an actual abortable preclean cycle.
3638   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3639     GCTraceCPUTime tcpu;
3640     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3641     // We need more smarts in the abortable preclean
3642     // loop below to deal with cases where allocation
3643     // in young gen is very very slow, and our precleaning
3644     // is running a losing race against a horde of
3645     // mutators intent on flooding us with CMS updates
3646     // (dirty cards).
3647     // One, admittedly dumb, strategy is to give up
3648     // after a certain number of abortable precleaning loops
3649     // or after a certain maximum time. We want to make
3650     // this smarter in the next iteration.
3651     // XXX FIX ME!!! YSR
3652     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3653     while (!(should_abort_preclean() ||
3654              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3655       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3656       cumworkdone += workdone;
3657       loops++;
3658       // Voluntarily terminate abortable preclean phase if we have
3659       // been at it for too long.
3660       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3661           loops >= CMSMaxAbortablePrecleanLoops) {
3662         log_debug(gc)(" CMS: abort preclean due to loops ");
3663         break;
3664       }
3665       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3666         log_debug(gc)(" CMS: abort preclean due to time ");
3667         break;
3668       }
3669       // If we are doing little work each iteration, we should
3670       // take a short break.
3671       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3672         // Sleep for some time, waiting for work to accumulate
3673         stopTimer();
3674         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3675         startTimer();
3676         waited++;
3677       }
3678     }
3679     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3680                                loops, waited, cumworkdone);
3681   }
3682   CMSTokenSync x(true); // is cms thread
3683   if (_collectorState != Idling) {
3684     assert(_collectorState == AbortablePreclean,
3685            "Spontaneous state transition?");
3686     _collectorState = FinalMarking;
3687   } // Else, a foreground collection completed this CMS cycle.
3688   return;
3689 }
3690 
3691 // Respond to an Eden sampling opportunity
3692 void CMSCollector::sample_eden() {
3693   // Make sure a young gc cannot sneak in between our
3694   // reading and recording of a sample.
3695   assert(Thread::current()->is_ConcurrentGC_thread(),
3696          "Only the cms thread may collect Eden samples");
3697   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3698          "Should collect samples while holding CMS token");
3699   if (!_start_sampling) {
3700     return;
3701   }
3702   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3703   // is populated by the young generation.
3704   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3705     if (_eden_chunk_index < _eden_chunk_capacity) {
3706       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3707       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3708              "Unexpected state of Eden");
3709       // We'd like to check that what we just sampled is an oop-start address;
3710       // however, we cannot do that here since the object may not yet have been
3711       // initialized. So we'll instead do the check when we _use_ this sample
3712       // later.
3713       if (_eden_chunk_index == 0 ||
3714           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3715                          _eden_chunk_array[_eden_chunk_index-1])
3716            >= CMSSamplingGrain)) {
3717         _eden_chunk_index++;  // commit sample
3718       }
3719     }
3720   }
3721   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3722     size_t used = get_eden_used();
3723     size_t capacity = get_eden_capacity();
3724     assert(used <= capacity, "Unexpected state of Eden");
3725     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3726       _abort_preclean = true;
3727     }
3728   }
3729 }
3730 
3731 
3732 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3733   assert(_collectorState == Precleaning ||
3734          _collectorState == AbortablePreclean, "incorrect state");
3735   ResourceMark rm;
3736   HandleMark   hm;
3737 
3738   // Precleaning is currently not MT but the reference processor
3739   // may be set for MT.  Disable it temporarily here.
3740   ReferenceProcessor* rp = ref_processor();
3741   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3742 
3743   // Do one pass of scrubbing the discovered reference lists
3744   // to remove any reference objects with strongly-reachable
3745   // referents.
3746   if (clean_refs) {
3747     CMSPrecleanRefsYieldClosure yield_cl(this);
3748     assert(rp->span().equals(_span), "Spans should be equal");
3749     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3750                                    &_markStack, true /* preclean */);
3751     CMSDrainMarkingStackClosure complete_trace(this,
3752                                    _span, &_markBitMap, &_markStack,
3753                                    &keep_alive, true /* preclean */);
3754 
3755     // We don't want this step to interfere with a young
3756     // collection because we don't want to take CPU
3757     // or memory bandwidth away from the young GC threads
3758     // (which may be as many as there are CPUs).
3759     // Note that we don't need to protect ourselves from
3760     // interference with mutators because they can't
3761     // manipulate the discovered reference lists nor affect
3762     // the computed reachability of the referents, the
3763     // only properties manipulated by the precleaning
3764     // of these reference lists.
3765     stopTimer();
3766     CMSTokenSyncWithLocks x(true /* is cms thread */,
3767                             bitMapLock());
3768     startTimer();
3769     sample_eden();
3770 
3771     // The following will yield to allow foreground
3772     // collection to proceed promptly. XXX YSR:
3773     // The code in this method may need further
3774     // tweaking for better performance and some restructuring
3775     // for cleaner interfaces.
3776     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3777     rp->preclean_discovered_references(
3778           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3779           gc_timer);
3780   }
3781 
3782   if (clean_survivor) {  // preclean the active survivor space(s)
3783     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3784                              &_markBitMap, &_modUnionTable,
3785                              &_markStack, true /* precleaning phase */);
3786     stopTimer();
3787     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3788                              bitMapLock());
3789     startTimer();
3790     unsigned int before_count =
3791       GenCollectedHeap::heap()->total_collections();
3792     SurvivorSpacePrecleanClosure
3793       sss_cl(this, _span, &_markBitMap, &_markStack,
3794              &pam_cl, before_count, CMSYield);
3795     _young_gen->from()->object_iterate_careful(&sss_cl);
3796     _young_gen->to()->object_iterate_careful(&sss_cl);
3797   }
3798   MarkRefsIntoAndScanClosure
3799     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3800              &_markStack, this, CMSYield,
3801              true /* precleaning phase */);
3802   // CAUTION: The following closure has persistent state that may need to
3803   // be reset upon a decrease in the sequence of addresses it
3804   // processes.
3805   ScanMarkedObjectsAgainCarefullyClosure
3806     smoac_cl(this, _span,
3807       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3808 
3809   // Preclean dirty cards in ModUnionTable and CardTable using
3810   // appropriate convergence criterion;
3811   // repeat CMSPrecleanIter times unless we find that
3812   // we are losing.
3813   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3814   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3815          "Bad convergence multiplier");
3816   assert(CMSPrecleanThreshold >= 100,
3817          "Unreasonably low CMSPrecleanThreshold");
3818 
3819   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3820   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3821        numIter < CMSPrecleanIter;
3822        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3823     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3824     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3825     // Either there are very few dirty cards, so re-mark
3826     // pause will be small anyway, or our pre-cleaning isn't
3827     // that much faster than the rate at which cards are being
3828     // dirtied, so we might as well stop and re-mark since
3829     // precleaning won't improve our re-mark time by much.
3830     if (curNumCards <= CMSPrecleanThreshold ||
3831         (numIter > 0 &&
3832          (curNumCards * CMSPrecleanDenominator >
3833          lastNumCards * CMSPrecleanNumerator))) {
3834       numIter++;
3835       cumNumCards += curNumCards;
3836       break;
3837     }
3838   }
3839 
3840   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3841 
3842   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3843   cumNumCards += curNumCards;
3844   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3845                              curNumCards, cumNumCards, numIter);
3846   return cumNumCards;   // as a measure of useful work done
3847 }
3848 
3849 // PRECLEANING NOTES:
3850 // Precleaning involves:
3851 // . reading the bits of the modUnionTable and clearing the set bits.
3852 // . For the cards corresponding to the set bits, we scan the
3853 //   objects on those cards. This means we need the free_list_lock
3854 //   so that we can safely iterate over the CMS space when scanning
3855 //   for oops.
3856 // . When we scan the objects, we'll be both reading and setting
3857 //   marks in the marking bit map, so we'll need the marking bit map.
3858 // . For protecting _collector_state transitions, we take the CGC_lock.
3859 //   Note that any races in the reading of of card table entries by the
3860 //   CMS thread on the one hand and the clearing of those entries by the
3861 //   VM thread or the setting of those entries by the mutator threads on the
3862 //   other are quite benign. However, for efficiency it makes sense to keep
3863 //   the VM thread from racing with the CMS thread while the latter is
3864 //   dirty card info to the modUnionTable. We therefore also use the
3865 //   CGC_lock to protect the reading of the card table and the mod union
3866 //   table by the CM thread.
3867 // . We run concurrently with mutator updates, so scanning
3868 //   needs to be done carefully  -- we should not try to scan
3869 //   potentially uninitialized objects.
3870 //
3871 // Locking strategy: While holding the CGC_lock, we scan over and
3872 // reset a maximal dirty range of the mod union / card tables, then lock
3873 // the free_list_lock and bitmap lock to do a full marking, then
3874 // release these locks; and repeat the cycle. This allows for a
3875 // certain amount of fairness in the sharing of these locks between
3876 // the CMS collector on the one hand, and the VM thread and the
3877 // mutators on the other.
3878 
3879 // NOTE: preclean_mod_union_table() and preclean_card_table()
3880 // further below are largely identical; if you need to modify
3881 // one of these methods, please check the other method too.
3882 
3883 size_t CMSCollector::preclean_mod_union_table(
3884   ConcurrentMarkSweepGeneration* old_gen,
3885   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3886   verify_work_stacks_empty();
3887   verify_overflow_empty();
3888 
3889   // strategy: starting with the first card, accumulate contiguous
3890   // ranges of dirty cards; clear these cards, then scan the region
3891   // covered by these cards.
3892 
3893   // Since all of the MUT is committed ahead, we can just use
3894   // that, in case the generations expand while we are precleaning.
3895   // It might also be fine to just use the committed part of the
3896   // generation, but we might potentially miss cards when the
3897   // generation is rapidly expanding while we are in the midst
3898   // of precleaning.
3899   HeapWord* startAddr = old_gen->reserved().start();
3900   HeapWord* endAddr   = old_gen->reserved().end();
3901 
3902   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3903 
3904   size_t numDirtyCards, cumNumDirtyCards;
3905   HeapWord *nextAddr, *lastAddr;
3906   for (cumNumDirtyCards = numDirtyCards = 0,
3907        nextAddr = lastAddr = startAddr;
3908        nextAddr < endAddr;
3909        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3910 
3911     ResourceMark rm;
3912     HandleMark   hm;
3913 
3914     MemRegion dirtyRegion;
3915     {
3916       stopTimer();
3917       // Potential yield point
3918       CMSTokenSync ts(true);
3919       startTimer();
3920       sample_eden();
3921       // Get dirty region starting at nextOffset (inclusive),
3922       // simultaneously clearing it.
3923       dirtyRegion =
3924         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3925       assert(dirtyRegion.start() >= nextAddr,
3926              "returned region inconsistent?");
3927     }
3928     // Remember where the next search should begin.
3929     // The returned region (if non-empty) is a right open interval,
3930     // so lastOffset is obtained from the right end of that
3931     // interval.
3932     lastAddr = dirtyRegion.end();
3933     // Should do something more transparent and less hacky XXX
3934     numDirtyCards =
3935       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3936 
3937     // We'll scan the cards in the dirty region (with periodic
3938     // yields for foreground GC as needed).
3939     if (!dirtyRegion.is_empty()) {
3940       assert(numDirtyCards > 0, "consistency check");
3941       HeapWord* stop_point = NULL;
3942       stopTimer();
3943       // Potential yield point
3944       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3945                                bitMapLock());
3946       startTimer();
3947       {
3948         verify_work_stacks_empty();
3949         verify_overflow_empty();
3950         sample_eden();
3951         stop_point =
3952           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3953       }
3954       if (stop_point != NULL) {
3955         // The careful iteration stopped early either because it found an
3956         // uninitialized object, or because we were in the midst of an
3957         // "abortable preclean", which should now be aborted. Redirty
3958         // the bits corresponding to the partially-scanned or unscanned
3959         // cards. We'll either restart at the next block boundary or
3960         // abort the preclean.
3961         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3962                "Should only be AbortablePreclean.");
3963         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3964         if (should_abort_preclean()) {
3965           break; // out of preclean loop
3966         } else {
3967           // Compute the next address at which preclean should pick up;
3968           // might need bitMapLock in order to read P-bits.
3969           lastAddr = next_card_start_after_block(stop_point);
3970         }
3971       }
3972     } else {
3973       assert(lastAddr == endAddr, "consistency check");
3974       assert(numDirtyCards == 0, "consistency check");
3975       break;
3976     }
3977   }
3978   verify_work_stacks_empty();
3979   verify_overflow_empty();
3980   return cumNumDirtyCards;
3981 }
3982 
3983 // NOTE: preclean_mod_union_table() above and preclean_card_table()
3984 // below are largely identical; if you need to modify
3985 // one of these methods, please check the other method too.
3986 
3987 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
3988   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3989   // strategy: it's similar to precleamModUnionTable above, in that
3990   // we accumulate contiguous ranges of dirty cards, mark these cards
3991   // precleaned, then scan the region covered by these cards.
3992   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
3993   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
3994 
3995   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3996 
3997   size_t numDirtyCards, cumNumDirtyCards;
3998   HeapWord *lastAddr, *nextAddr;
3999 
4000   for (cumNumDirtyCards = numDirtyCards = 0,
4001        nextAddr = lastAddr = startAddr;
4002        nextAddr < endAddr;
4003        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4004 
4005     ResourceMark rm;
4006     HandleMark   hm;
4007 
4008     MemRegion dirtyRegion;
4009     {
4010       // See comments in "Precleaning notes" above on why we
4011       // do this locking. XXX Could the locking overheads be
4012       // too high when dirty cards are sparse? [I don't think so.]
4013       stopTimer();
4014       CMSTokenSync x(true); // is cms thread
4015       startTimer();
4016       sample_eden();
4017       // Get and clear dirty region from card table
4018       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4019                                     MemRegion(nextAddr, endAddr),
4020                                     true,
4021                                     CardTableModRefBS::precleaned_card_val());
4022 
4023       assert(dirtyRegion.start() >= nextAddr,
4024              "returned region inconsistent?");
4025     }
4026     lastAddr = dirtyRegion.end();
4027     numDirtyCards =
4028       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4029 
4030     if (!dirtyRegion.is_empty()) {
4031       stopTimer();
4032       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4033       startTimer();
4034       sample_eden();
4035       verify_work_stacks_empty();
4036       verify_overflow_empty();
4037       HeapWord* stop_point =
4038         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4039       if (stop_point != NULL) {
4040         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4041                "Should only be AbortablePreclean.");
4042         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4043         if (should_abort_preclean()) {
4044           break; // out of preclean loop
4045         } else {
4046           // Compute the next address at which preclean should pick up.
4047           lastAddr = next_card_start_after_block(stop_point);
4048         }
4049       }
4050     } else {
4051       break;
4052     }
4053   }
4054   verify_work_stacks_empty();
4055   verify_overflow_empty();
4056   return cumNumDirtyCards;
4057 }
4058 
4059 class PrecleanKlassClosure : public KlassClosure {
4060   KlassToOopClosure _cm_klass_closure;
4061  public:
4062   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4063   void do_klass(Klass* k) {
4064     if (k->has_accumulated_modified_oops()) {
4065       k->clear_accumulated_modified_oops();
4066 
4067       _cm_klass_closure.do_klass(k);
4068     }
4069   }
4070 };
4071 
4072 // The freelist lock is needed to prevent asserts, is it really needed?
4073 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4074 
4075   cl->set_freelistLock(freelistLock);
4076 
4077   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4078 
4079   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4080   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4081   PrecleanKlassClosure preclean_klass_closure(cl);
4082   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4083 
4084   verify_work_stacks_empty();
4085   verify_overflow_empty();
4086 }
4087 
4088 void CMSCollector::checkpointRootsFinal() {
4089   assert(_collectorState == FinalMarking, "incorrect state transition?");
4090   check_correct_thread_executing();
4091   // world is stopped at this checkpoint
4092   assert(SafepointSynchronize::is_at_safepoint(),
4093          "world should be stopped");
4094   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4095 
4096   verify_work_stacks_empty();
4097   verify_overflow_empty();
4098 
4099   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4100                 _young_gen->used() / K, _young_gen->capacity() / K);
4101   {
4102     if (CMSScavengeBeforeRemark) {
4103       GenCollectedHeap* gch = GenCollectedHeap::heap();
4104       // Temporarily set flag to false, GCH->do_collection will
4105       // expect it to be false and set to true
4106       FlagSetting fl(gch->_is_gc_active, false);
4107 
4108       gch->do_collection(true,                      // full (i.e. force, see below)
4109                          false,                     // !clear_all_soft_refs
4110                          0,                         // size
4111                          false,                     // is_tlab
4112                          GenCollectedHeap::YoungGen // type
4113         );
4114     }
4115     FreelistLocker x(this);
4116     MutexLockerEx y(bitMapLock(),
4117                     Mutex::_no_safepoint_check_flag);
4118     checkpointRootsFinalWork();
4119   }
4120   verify_work_stacks_empty();
4121   verify_overflow_empty();
4122 }
4123 
4124 void CMSCollector::checkpointRootsFinalWork() {
4125   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4126 
4127   assert(haveFreelistLocks(), "must have free list locks");
4128   assert_lock_strong(bitMapLock());
4129 
4130   ResourceMark rm;
4131   HandleMark   hm;
4132 
4133   GenCollectedHeap* gch = GenCollectedHeap::heap();
4134 
4135   if (should_unload_classes()) {
4136     CodeCache::gc_prologue();
4137   }
4138   assert(haveFreelistLocks(), "must have free list locks");
4139   assert_lock_strong(bitMapLock());
4140 
4141   // We might assume that we need not fill TLAB's when
4142   // CMSScavengeBeforeRemark is set, because we may have just done
4143   // a scavenge which would have filled all TLAB's -- and besides
4144   // Eden would be empty. This however may not always be the case --
4145   // for instance although we asked for a scavenge, it may not have
4146   // happened because of a JNI critical section. We probably need
4147   // a policy for deciding whether we can in that case wait until
4148   // the critical section releases and then do the remark following
4149   // the scavenge, and skip it here. In the absence of that policy,
4150   // or of an indication of whether the scavenge did indeed occur,
4151   // we cannot rely on TLAB's having been filled and must do
4152   // so here just in case a scavenge did not happen.
4153   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4154   // Update the saved marks which may affect the root scans.
4155   gch->save_marks();
4156 
4157   print_eden_and_survivor_chunk_arrays();
4158 
4159   {
4160 #if defined(COMPILER2) || INCLUDE_JVMCI
4161     DerivedPointerTableDeactivate dpt_deact;
4162 #endif
4163 
4164     // Note on the role of the mod union table:
4165     // Since the marker in "markFromRoots" marks concurrently with
4166     // mutators, it is possible for some reachable objects not to have been
4167     // scanned. For instance, an only reference to an object A was
4168     // placed in object B after the marker scanned B. Unless B is rescanned,
4169     // A would be collected. Such updates to references in marked objects
4170     // are detected via the mod union table which is the set of all cards
4171     // dirtied since the first checkpoint in this GC cycle and prior to
4172     // the most recent young generation GC, minus those cleaned up by the
4173     // concurrent precleaning.
4174     if (CMSParallelRemarkEnabled) {
4175       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4176       do_remark_parallel();
4177     } else {
4178       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4179       do_remark_non_parallel();
4180     }
4181   }
4182   verify_work_stacks_empty();
4183   verify_overflow_empty();
4184 
4185   {
4186     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4187     refProcessingWork();
4188   }
4189   verify_work_stacks_empty();
4190   verify_overflow_empty();
4191 
4192   if (should_unload_classes()) {
4193     CodeCache::gc_epilogue();
4194   }
4195   JvmtiExport::gc_epilogue();
4196 
4197   // If we encountered any (marking stack / work queue) overflow
4198   // events during the current CMS cycle, take appropriate
4199   // remedial measures, where possible, so as to try and avoid
4200   // recurrence of that condition.
4201   assert(_markStack.isEmpty(), "No grey objects");
4202   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4203                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4204   if (ser_ovflw > 0) {
4205     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4206                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4207     _markStack.expand();
4208     _ser_pmc_remark_ovflw = 0;
4209     _ser_pmc_preclean_ovflw = 0;
4210     _ser_kac_preclean_ovflw = 0;
4211     _ser_kac_ovflw = 0;
4212   }
4213   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4214      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4215                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4216      _par_pmc_remark_ovflw = 0;
4217     _par_kac_ovflw = 0;
4218   }
4219    if (_markStack._hit_limit > 0) {
4220      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4221                           _markStack._hit_limit);
4222    }
4223    if (_markStack._failed_double > 0) {
4224      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4225                           _markStack._failed_double, _markStack.capacity());
4226    }
4227   _markStack._hit_limit = 0;
4228   _markStack._failed_double = 0;
4229 
4230   if ((VerifyAfterGC || VerifyDuringGC) &&
4231       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4232     verify_after_remark();
4233   }
4234 
4235   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4236 
4237   // Change under the freelistLocks.
4238   _collectorState = Sweeping;
4239   // Call isAllClear() under bitMapLock
4240   assert(_modUnionTable.isAllClear(),
4241       "Should be clear by end of the final marking");
4242   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4243       "Should be clear by end of the final marking");
4244 }
4245 
4246 void CMSParInitialMarkTask::work(uint worker_id) {
4247   elapsedTimer _timer;
4248   ResourceMark rm;
4249   HandleMark   hm;
4250 
4251   // ---------- scan from roots --------------
4252   _timer.start();
4253   GenCollectedHeap* gch = GenCollectedHeap::heap();
4254   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4255 
4256   // ---------- young gen roots --------------
4257   {
4258     work_on_young_gen_roots(&par_mri_cl);
4259     _timer.stop();
4260     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4261   }
4262 
4263   // ---------- remaining roots --------------
4264   _timer.reset();
4265   _timer.start();
4266 
4267   CLDToOopClosure cld_closure(&par_mri_cl, true);
4268 
4269   gch->gen_process_roots(_strong_roots_scope,
4270                          GenCollectedHeap::OldGen,
4271                          false,     // yg was scanned above
4272                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4273                          _collector->should_unload_classes(),
4274                          &par_mri_cl,
4275                          NULL,
4276                          &cld_closure);
4277   assert(_collector->should_unload_classes()
4278          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4279          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4280   _timer.stop();
4281   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4282 }
4283 
4284 // Parallel remark task
4285 class CMSParRemarkTask: public CMSParMarkTask {
4286   CompactibleFreeListSpace* _cms_space;
4287 
4288   // The per-thread work queues, available here for stealing.
4289   OopTaskQueueSet*       _task_queues;
4290   ParallelTaskTerminator _term;
4291   StrongRootsScope*      _strong_roots_scope;
4292 
4293  public:
4294   // A value of 0 passed to n_workers will cause the number of
4295   // workers to be taken from the active workers in the work gang.
4296   CMSParRemarkTask(CMSCollector* collector,
4297                    CompactibleFreeListSpace* cms_space,
4298                    uint n_workers, WorkGang* workers,
4299                    OopTaskQueueSet* task_queues,
4300                    StrongRootsScope* strong_roots_scope):
4301     CMSParMarkTask("Rescan roots and grey objects in parallel",
4302                    collector, n_workers),
4303     _cms_space(cms_space),
4304     _task_queues(task_queues),
4305     _term(n_workers, task_queues),
4306     _strong_roots_scope(strong_roots_scope) { }
4307 
4308   OopTaskQueueSet* task_queues() { return _task_queues; }
4309 
4310   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4311 
4312   ParallelTaskTerminator* terminator() { return &_term; }
4313   uint n_workers() { return _n_workers; }
4314 
4315   void work(uint worker_id);
4316 
4317  private:
4318   // ... of  dirty cards in old space
4319   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4320                                   ParMarkRefsIntoAndScanClosure* cl);
4321 
4322   // ... work stealing for the above
4323   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4324 };
4325 
4326 class RemarkKlassClosure : public KlassClosure {
4327   KlassToOopClosure _cm_klass_closure;
4328  public:
4329   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4330   void do_klass(Klass* k) {
4331     // Check if we have modified any oops in the Klass during the concurrent marking.
4332     if (k->has_accumulated_modified_oops()) {
4333       k->clear_accumulated_modified_oops();
4334 
4335       // We could have transfered the current modified marks to the accumulated marks,
4336       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4337     } else if (k->has_modified_oops()) {
4338       // Don't clear anything, this info is needed by the next young collection.
4339     } else {
4340       // No modified oops in the Klass.
4341       return;
4342     }
4343 
4344     // The klass has modified fields, need to scan the klass.
4345     _cm_klass_closure.do_klass(k);
4346   }
4347 };
4348 
4349 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4350   ParNewGeneration* young_gen = _collector->_young_gen;
4351   ContiguousSpace* eden_space = young_gen->eden();
4352   ContiguousSpace* from_space = young_gen->from();
4353   ContiguousSpace* to_space   = young_gen->to();
4354 
4355   HeapWord** eca = _collector->_eden_chunk_array;
4356   size_t     ect = _collector->_eden_chunk_index;
4357   HeapWord** sca = _collector->_survivor_chunk_array;
4358   size_t     sct = _collector->_survivor_chunk_index;
4359 
4360   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4361   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4362 
4363   do_young_space_rescan(cl, to_space, NULL, 0);
4364   do_young_space_rescan(cl, from_space, sca, sct);
4365   do_young_space_rescan(cl, eden_space, eca, ect);
4366 }
4367 
4368 // work_queue(i) is passed to the closure
4369 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4370 // also is passed to do_dirty_card_rescan_tasks() and to
4371 // do_work_steal() to select the i-th task_queue.
4372 
4373 void CMSParRemarkTask::work(uint worker_id) {
4374   elapsedTimer _timer;
4375   ResourceMark rm;
4376   HandleMark   hm;
4377 
4378   // ---------- rescan from roots --------------
4379   _timer.start();
4380   GenCollectedHeap* gch = GenCollectedHeap::heap();
4381   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4382     _collector->_span, _collector->ref_processor(),
4383     &(_collector->_markBitMap),
4384     work_queue(worker_id));
4385 
4386   // Rescan young gen roots first since these are likely
4387   // coarsely partitioned and may, on that account, constitute
4388   // the critical path; thus, it's best to start off that
4389   // work first.
4390   // ---------- young gen roots --------------
4391   {
4392     work_on_young_gen_roots(&par_mrias_cl);
4393     _timer.stop();
4394     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4395   }
4396 
4397   // ---------- remaining roots --------------
4398   _timer.reset();
4399   _timer.start();
4400   gch->gen_process_roots(_strong_roots_scope,
4401                          GenCollectedHeap::OldGen,
4402                          false,     // yg was scanned above
4403                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4404                          _collector->should_unload_classes(),
4405                          &par_mrias_cl,
4406                          NULL,
4407                          NULL);     // The dirty klasses will be handled below
4408 
4409   assert(_collector->should_unload_classes()
4410          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4411          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4412   _timer.stop();
4413   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4414 
4415   // ---------- unhandled CLD scanning ----------
4416   if (worker_id == 0) { // Single threaded at the moment.
4417     _timer.reset();
4418     _timer.start();
4419 
4420     // Scan all new class loader data objects and new dependencies that were
4421     // introduced during concurrent marking.
4422     ResourceMark rm;
4423     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4424     for (int i = 0; i < array->length(); i++) {
4425       par_mrias_cl.do_cld_nv(array->at(i));
4426     }
4427 
4428     // We don't need to keep track of new CLDs anymore.
4429     ClassLoaderDataGraph::remember_new_clds(false);
4430 
4431     _timer.stop();
4432     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4433   }
4434 
4435   // ---------- dirty klass scanning ----------
4436   if (worker_id == 0) { // Single threaded at the moment.
4437     _timer.reset();
4438     _timer.start();
4439 
4440     // Scan all classes that was dirtied during the concurrent marking phase.
4441     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4442     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4443 
4444     _timer.stop();
4445     log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4446   }
4447 
4448   // We might have added oops to ClassLoaderData::_handles during the
4449   // concurrent marking phase. These oops point to newly allocated objects
4450   // that are guaranteed to be kept alive. Either by the direct allocation
4451   // code, or when the young collector processes the roots. Hence,
4452   // we don't have to revisit the _handles block during the remark phase.
4453 
4454   // ---------- rescan dirty cards ------------
4455   _timer.reset();
4456   _timer.start();
4457 
4458   // Do the rescan tasks for each of the two spaces
4459   // (cms_space) in turn.
4460   // "worker_id" is passed to select the task_queue for "worker_id"
4461   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4462   _timer.stop();
4463   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4464 
4465   // ---------- steal work from other threads ...
4466   // ---------- ... and drain overflow list.
4467   _timer.reset();
4468   _timer.start();
4469   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4470   _timer.stop();
4471   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4472 }
4473 
4474 void
4475 CMSParMarkTask::do_young_space_rescan(
4476   OopsInGenClosure* cl, ContiguousSpace* space,
4477   HeapWord** chunk_array, size_t chunk_top) {
4478   // Until all tasks completed:
4479   // . claim an unclaimed task
4480   // . compute region boundaries corresponding to task claimed
4481   //   using chunk_array
4482   // . par_oop_iterate(cl) over that region
4483 
4484   ResourceMark rm;
4485   HandleMark   hm;
4486 
4487   SequentialSubTasksDone* pst = space->par_seq_tasks();
4488 
4489   uint nth_task = 0;
4490   uint n_tasks  = pst->n_tasks();
4491 
4492   if (n_tasks > 0) {
4493     assert(pst->valid(), "Uninitialized use?");
4494     HeapWord *start, *end;
4495     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4496       // We claimed task # nth_task; compute its boundaries.
4497       if (chunk_top == 0) {  // no samples were taken
4498         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4499         start = space->bottom();
4500         end   = space->top();
4501       } else if (nth_task == 0) {
4502         start = space->bottom();
4503         end   = chunk_array[nth_task];
4504       } else if (nth_task < (uint)chunk_top) {
4505         assert(nth_task >= 1, "Control point invariant");
4506         start = chunk_array[nth_task - 1];
4507         end   = chunk_array[nth_task];
4508       } else {
4509         assert(nth_task == (uint)chunk_top, "Control point invariant");
4510         start = chunk_array[chunk_top - 1];
4511         end   = space->top();
4512       }
4513       MemRegion mr(start, end);
4514       // Verify that mr is in space
4515       assert(mr.is_empty() || space->used_region().contains(mr),
4516              "Should be in space");
4517       // Verify that "start" is an object boundary
4518       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4519              "Should be an oop");
4520       space->par_oop_iterate(mr, cl);
4521     }
4522     pst->all_tasks_completed();
4523   }
4524 }
4525 
4526 void
4527 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4528   CompactibleFreeListSpace* sp, int i,
4529   ParMarkRefsIntoAndScanClosure* cl) {
4530   // Until all tasks completed:
4531   // . claim an unclaimed task
4532   // . compute region boundaries corresponding to task claimed
4533   // . transfer dirty bits ct->mut for that region
4534   // . apply rescanclosure to dirty mut bits for that region
4535 
4536   ResourceMark rm;
4537   HandleMark   hm;
4538 
4539   OopTaskQueue* work_q = work_queue(i);
4540   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4541   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4542   // CAUTION: This closure has state that persists across calls to
4543   // the work method dirty_range_iterate_clear() in that it has
4544   // embedded in it a (subtype of) UpwardsObjectClosure. The
4545   // use of that state in the embedded UpwardsObjectClosure instance
4546   // assumes that the cards are always iterated (even if in parallel
4547   // by several threads) in monotonically increasing order per each
4548   // thread. This is true of the implementation below which picks
4549   // card ranges (chunks) in monotonically increasing order globally
4550   // and, a-fortiori, in monotonically increasing order per thread
4551   // (the latter order being a subsequence of the former).
4552   // If the work code below is ever reorganized into a more chaotic
4553   // work-partitioning form than the current "sequential tasks"
4554   // paradigm, the use of that persistent state will have to be
4555   // revisited and modified appropriately. See also related
4556   // bug 4756801 work on which should examine this code to make
4557   // sure that the changes there do not run counter to the
4558   // assumptions made here and necessary for correctness and
4559   // efficiency. Note also that this code might yield inefficient
4560   // behavior in the case of very large objects that span one or
4561   // more work chunks. Such objects would potentially be scanned
4562   // several times redundantly. Work on 4756801 should try and
4563   // address that performance anomaly if at all possible. XXX
4564   MemRegion  full_span  = _collector->_span;
4565   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4566   MarkFromDirtyCardsClosure
4567     greyRescanClosure(_collector, full_span, // entire span of interest
4568                       sp, bm, work_q, cl);
4569 
4570   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4571   assert(pst->valid(), "Uninitialized use?");
4572   uint nth_task = 0;
4573   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4574   MemRegion span = sp->used_region();
4575   HeapWord* start_addr = span.start();
4576   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4577                                            alignment);
4578   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4579   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4580          start_addr, "Check alignment");
4581   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4582          chunk_size, "Check alignment");
4583 
4584   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4585     // Having claimed the nth_task, compute corresponding mem-region,
4586     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4587     // The alignment restriction ensures that we do not need any
4588     // synchronization with other gang-workers while setting or
4589     // clearing bits in thus chunk of the MUT.
4590     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4591                                     start_addr + (nth_task+1)*chunk_size);
4592     // The last chunk's end might be way beyond end of the
4593     // used region. In that case pull back appropriately.
4594     if (this_span.end() > end_addr) {
4595       this_span.set_end(end_addr);
4596       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4597     }
4598     // Iterate over the dirty cards covering this chunk, marking them
4599     // precleaned, and setting the corresponding bits in the mod union
4600     // table. Since we have been careful to partition at Card and MUT-word
4601     // boundaries no synchronization is needed between parallel threads.
4602     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4603                                                  &modUnionClosure);
4604 
4605     // Having transferred these marks into the modUnionTable,
4606     // rescan the marked objects on the dirty cards in the modUnionTable.
4607     // Even if this is at a synchronous collection, the initial marking
4608     // may have been done during an asynchronous collection so there
4609     // may be dirty bits in the mod-union table.
4610     _collector->_modUnionTable.dirty_range_iterate_clear(
4611                   this_span, &greyRescanClosure);
4612     _collector->_modUnionTable.verifyNoOneBitsInRange(
4613                                  this_span.start(),
4614                                  this_span.end());
4615   }
4616   pst->all_tasks_completed();  // declare that i am done
4617 }
4618 
4619 // . see if we can share work_queues with ParNew? XXX
4620 void
4621 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4622                                 int* seed) {
4623   OopTaskQueue* work_q = work_queue(i);
4624   NOT_PRODUCT(int num_steals = 0;)
4625   oop obj_to_scan;
4626   CMSBitMap* bm = &(_collector->_markBitMap);
4627 
4628   while (true) {
4629     // Completely finish any left over work from (an) earlier round(s)
4630     cl->trim_queue(0);
4631     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4632                                          (size_t)ParGCDesiredObjsFromOverflowList);
4633     // Now check if there's any work in the overflow list
4634     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4635     // only affects the number of attempts made to get work from the
4636     // overflow list and does not affect the number of workers.  Just
4637     // pass ParallelGCThreads so this behavior is unchanged.
4638     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4639                                                 work_q,
4640                                                 ParallelGCThreads)) {
4641       // found something in global overflow list;
4642       // not yet ready to go stealing work from others.
4643       // We'd like to assert(work_q->size() != 0, ...)
4644       // because we just took work from the overflow list,
4645       // but of course we can't since all of that could have
4646       // been already stolen from us.
4647       // "He giveth and He taketh away."
4648       continue;
4649     }
4650     // Verify that we have no work before we resort to stealing
4651     assert(work_q->size() == 0, "Have work, shouldn't steal");
4652     // Try to steal from other queues that have work
4653     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4654       NOT_PRODUCT(num_steals++;)
4655       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4656       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4657       // Do scanning work
4658       obj_to_scan->oop_iterate(cl);
4659       // Loop around, finish this work, and try to steal some more
4660     } else if (terminator()->offer_termination()) {
4661         break;  // nirvana from the infinite cycle
4662     }
4663   }
4664   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4665   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4666          "Else our work is not yet done");
4667 }
4668 
4669 // Record object boundaries in _eden_chunk_array by sampling the eden
4670 // top in the slow-path eden object allocation code path and record
4671 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4672 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4673 // sampling in sample_eden() that activates during the part of the
4674 // preclean phase.
4675 void CMSCollector::sample_eden_chunk() {
4676   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4677     if (_eden_chunk_lock->try_lock()) {
4678       // Record a sample. This is the critical section. The contents
4679       // of the _eden_chunk_array have to be non-decreasing in the
4680       // address order.
4681       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4682       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4683              "Unexpected state of Eden");
4684       if (_eden_chunk_index == 0 ||
4685           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4686            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4687                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4688         _eden_chunk_index++;  // commit sample
4689       }
4690       _eden_chunk_lock->unlock();
4691     }
4692   }
4693 }
4694 
4695 // Return a thread-local PLAB recording array, as appropriate.
4696 void* CMSCollector::get_data_recorder(int thr_num) {
4697   if (_survivor_plab_array != NULL &&
4698       (CMSPLABRecordAlways ||
4699        (_collectorState > Marking && _collectorState < FinalMarking))) {
4700     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4701     ChunkArray* ca = &_survivor_plab_array[thr_num];
4702     ca->reset();   // clear it so that fresh data is recorded
4703     return (void*) ca;
4704   } else {
4705     return NULL;
4706   }
4707 }
4708 
4709 // Reset all the thread-local PLAB recording arrays
4710 void CMSCollector::reset_survivor_plab_arrays() {
4711   for (uint i = 0; i < ParallelGCThreads; i++) {
4712     _survivor_plab_array[i].reset();
4713   }
4714 }
4715 
4716 // Merge the per-thread plab arrays into the global survivor chunk
4717 // array which will provide the partitioning of the survivor space
4718 // for CMS initial scan and rescan.
4719 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4720                                               int no_of_gc_threads) {
4721   assert(_survivor_plab_array  != NULL, "Error");
4722   assert(_survivor_chunk_array != NULL, "Error");
4723   assert(_collectorState == FinalMarking ||
4724          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4725   for (int j = 0; j < no_of_gc_threads; j++) {
4726     _cursor[j] = 0;
4727   }
4728   HeapWord* top = surv->top();
4729   size_t i;
4730   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4731     HeapWord* min_val = top;          // Higher than any PLAB address
4732     uint      min_tid = 0;            // position of min_val this round
4733     for (int j = 0; j < no_of_gc_threads; j++) {
4734       ChunkArray* cur_sca = &_survivor_plab_array[j];
4735       if (_cursor[j] == cur_sca->end()) {
4736         continue;
4737       }
4738       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4739       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4740       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4741       if (cur_val < min_val) {
4742         min_tid = j;
4743         min_val = cur_val;
4744       } else {
4745         assert(cur_val < top, "All recorded addresses should be less");
4746       }
4747     }
4748     // At this point min_val and min_tid are respectively
4749     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4750     // and the thread (j) that witnesses that address.
4751     // We record this address in the _survivor_chunk_array[i]
4752     // and increment _cursor[min_tid] prior to the next round i.
4753     if (min_val == top) {
4754       break;
4755     }
4756     _survivor_chunk_array[i] = min_val;
4757     _cursor[min_tid]++;
4758   }
4759   // We are all done; record the size of the _survivor_chunk_array
4760   _survivor_chunk_index = i; // exclusive: [0, i)
4761   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4762   // Verify that we used up all the recorded entries
4763   #ifdef ASSERT
4764     size_t total = 0;
4765     for (int j = 0; j < no_of_gc_threads; j++) {
4766       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4767       total += _cursor[j];
4768     }
4769     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4770     // Check that the merged array is in sorted order
4771     if (total > 0) {
4772       for (size_t i = 0; i < total - 1; i++) {
4773         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4774                                      i, p2i(_survivor_chunk_array[i]));
4775         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4776                "Not sorted");
4777       }
4778     }
4779   #endif // ASSERT
4780 }
4781 
4782 // Set up the space's par_seq_tasks structure for work claiming
4783 // for parallel initial scan and rescan of young gen.
4784 // See ParRescanTask where this is currently used.
4785 void
4786 CMSCollector::
4787 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4788   assert(n_threads > 0, "Unexpected n_threads argument");
4789 
4790   // Eden space
4791   if (!_young_gen->eden()->is_empty()) {
4792     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4793     assert(!pst->valid(), "Clobbering existing data?");
4794     // Each valid entry in [0, _eden_chunk_index) represents a task.
4795     size_t n_tasks = _eden_chunk_index + 1;
4796     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4797     // Sets the condition for completion of the subtask (how many threads
4798     // need to finish in order to be done).
4799     pst->set_n_threads(n_threads);
4800     pst->set_n_tasks((int)n_tasks);
4801   }
4802 
4803   // Merge the survivor plab arrays into _survivor_chunk_array
4804   if (_survivor_plab_array != NULL) {
4805     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4806   } else {
4807     assert(_survivor_chunk_index == 0, "Error");
4808   }
4809 
4810   // To space
4811   {
4812     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4813     assert(!pst->valid(), "Clobbering existing data?");
4814     // Sets the condition for completion of the subtask (how many threads
4815     // need to finish in order to be done).
4816     pst->set_n_threads(n_threads);
4817     pst->set_n_tasks(1);
4818     assert(pst->valid(), "Error");
4819   }
4820 
4821   // From space
4822   {
4823     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4824     assert(!pst->valid(), "Clobbering existing data?");
4825     size_t n_tasks = _survivor_chunk_index + 1;
4826     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4827     // Sets the condition for completion of the subtask (how many threads
4828     // need to finish in order to be done).
4829     pst->set_n_threads(n_threads);
4830     pst->set_n_tasks((int)n_tasks);
4831     assert(pst->valid(), "Error");
4832   }
4833 }
4834 
4835 // Parallel version of remark
4836 void CMSCollector::do_remark_parallel() {
4837   GenCollectedHeap* gch = GenCollectedHeap::heap();
4838   WorkGang* workers = gch->workers();
4839   assert(workers != NULL, "Need parallel worker threads.");
4840   // Choose to use the number of GC workers most recently set
4841   // into "active_workers".
4842   uint n_workers = workers->active_workers();
4843 
4844   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4845 
4846   StrongRootsScope srs(n_workers);
4847 
4848   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4849 
4850   // We won't be iterating over the cards in the card table updating
4851   // the younger_gen cards, so we shouldn't call the following else
4852   // the verification code as well as subsequent younger_refs_iterate
4853   // code would get confused. XXX
4854   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4855 
4856   // The young gen rescan work will not be done as part of
4857   // process_roots (which currently doesn't know how to
4858   // parallelize such a scan), but rather will be broken up into
4859   // a set of parallel tasks (via the sampling that the [abortable]
4860   // preclean phase did of eden, plus the [two] tasks of
4861   // scanning the [two] survivor spaces. Further fine-grain
4862   // parallelization of the scanning of the survivor spaces
4863   // themselves, and of precleaning of the young gen itself
4864   // is deferred to the future.
4865   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4866 
4867   // The dirty card rescan work is broken up into a "sequence"
4868   // of parallel tasks (per constituent space) that are dynamically
4869   // claimed by the parallel threads.
4870   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4871 
4872   // It turns out that even when we're using 1 thread, doing the work in a
4873   // separate thread causes wide variance in run times.  We can't help this
4874   // in the multi-threaded case, but we special-case n=1 here to get
4875   // repeatable measurements of the 1-thread overhead of the parallel code.
4876   if (n_workers > 1) {
4877     // Make refs discovery MT-safe, if it isn't already: it may not
4878     // necessarily be so, since it's possible that we are doing
4879     // ST marking.
4880     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4881     workers->run_task(&tsk);
4882   } else {
4883     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4884     tsk.work(0);
4885   }
4886 
4887   // restore, single-threaded for now, any preserved marks
4888   // as a result of work_q overflow
4889   restore_preserved_marks_if_any();
4890 }
4891 
4892 // Non-parallel version of remark
4893 void CMSCollector::do_remark_non_parallel() {
4894   ResourceMark rm;
4895   HandleMark   hm;
4896   GenCollectedHeap* gch = GenCollectedHeap::heap();
4897   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4898 
4899   MarkRefsIntoAndScanClosure
4900     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4901              &_markStack, this,
4902              false /* should_yield */, false /* not precleaning */);
4903   MarkFromDirtyCardsClosure
4904     markFromDirtyCardsClosure(this, _span,
4905                               NULL,  // space is set further below
4906                               &_markBitMap, &_markStack, &mrias_cl);
4907   {
4908     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4909     // Iterate over the dirty cards, setting the corresponding bits in the
4910     // mod union table.
4911     {
4912       ModUnionClosure modUnionClosure(&_modUnionTable);
4913       _ct->ct_bs()->dirty_card_iterate(
4914                       _cmsGen->used_region(),
4915                       &modUnionClosure);
4916     }
4917     // Having transferred these marks into the modUnionTable, we just need
4918     // to rescan the marked objects on the dirty cards in the modUnionTable.
4919     // The initial marking may have been done during an asynchronous
4920     // collection so there may be dirty bits in the mod-union table.
4921     const int alignment =
4922       CardTableModRefBS::card_size * BitsPerWord;
4923     {
4924       // ... First handle dirty cards in CMS gen
4925       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4926       MemRegion ur = _cmsGen->used_region();
4927       HeapWord* lb = ur.start();
4928       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4929       MemRegion cms_span(lb, ub);
4930       _modUnionTable.dirty_range_iterate_clear(cms_span,
4931                                                &markFromDirtyCardsClosure);
4932       verify_work_stacks_empty();
4933       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4934     }
4935   }
4936   if (VerifyDuringGC &&
4937       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4938     HandleMark hm;  // Discard invalid handles created during verification
4939     Universe::verify();
4940   }
4941   {
4942     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4943 
4944     verify_work_stacks_empty();
4945 
4946     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4947     StrongRootsScope srs(1);
4948 
4949     gch->gen_process_roots(&srs,
4950                            GenCollectedHeap::OldGen,
4951                            true,  // young gen as roots
4952                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
4953                            should_unload_classes(),
4954                            &mrias_cl,
4955                            NULL,
4956                            NULL); // The dirty klasses will be handled below
4957 
4958     assert(should_unload_classes()
4959            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4960            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4961   }
4962 
4963   {
4964     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4965 
4966     verify_work_stacks_empty();
4967 
4968     // Scan all class loader data objects that might have been introduced
4969     // during concurrent marking.
4970     ResourceMark rm;
4971     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4972     for (int i = 0; i < array->length(); i++) {
4973       mrias_cl.do_cld_nv(array->at(i));
4974     }
4975 
4976     // We don't need to keep track of new CLDs anymore.
4977     ClassLoaderDataGraph::remember_new_clds(false);
4978 
4979     verify_work_stacks_empty();
4980   }
4981 
4982   {
4983     GCTraceTime(Trace, gc, phases) t("Dirty Klass Scan", _gc_timer_cm);
4984 
4985     verify_work_stacks_empty();
4986 
4987     RemarkKlassClosure remark_klass_closure(&mrias_cl);
4988     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4989 
4990     verify_work_stacks_empty();
4991   }
4992 
4993   // We might have added oops to ClassLoaderData::_handles during the
4994   // concurrent marking phase. These oops point to newly allocated objects
4995   // that are guaranteed to be kept alive. Either by the direct allocation
4996   // code, or when the young collector processes the roots. Hence,
4997   // we don't have to revisit the _handles block during the remark phase.
4998 
4999   verify_work_stacks_empty();
5000   // Restore evacuated mark words, if any, used for overflow list links
5001   restore_preserved_marks_if_any();
5002 
5003   verify_overflow_empty();
5004 }
5005 
5006 ////////////////////////////////////////////////////////
5007 // Parallel Reference Processing Task Proxy Class
5008 ////////////////////////////////////////////////////////
5009 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5010   OopTaskQueueSet*       _queues;
5011   ParallelTaskTerminator _terminator;
5012  public:
5013   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5014     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5015   ParallelTaskTerminator* terminator() { return &_terminator; }
5016   OopTaskQueueSet* queues() { return _queues; }
5017 };
5018 
5019 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5020   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5021   CMSCollector*          _collector;
5022   CMSBitMap*             _mark_bit_map;
5023   const MemRegion        _span;
5024   ProcessTask&           _task;
5025 
5026 public:
5027   CMSRefProcTaskProxy(ProcessTask&     task,
5028                       CMSCollector*    collector,
5029                       const MemRegion& span,
5030                       CMSBitMap*       mark_bit_map,
5031                       AbstractWorkGang* workers,
5032                       OopTaskQueueSet* task_queues):
5033     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5034       task_queues,
5035       workers->active_workers()),
5036     _task(task),
5037     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5038   {
5039     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5040            "Inconsistency in _span");
5041   }
5042 
5043   OopTaskQueueSet* task_queues() { return queues(); }
5044 
5045   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5046 
5047   void do_work_steal(int i,
5048                      CMSParDrainMarkingStackClosure* drain,
5049                      CMSParKeepAliveClosure* keep_alive,
5050                      int* seed);
5051 
5052   virtual void work(uint worker_id);
5053 };
5054 
5055 void CMSRefProcTaskProxy::work(uint worker_id) {
5056   ResourceMark rm;
5057   HandleMark hm;
5058   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5059   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5060                                         _mark_bit_map,
5061                                         work_queue(worker_id));
5062   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5063                                                  _mark_bit_map,
5064                                                  work_queue(worker_id));
5065   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5066   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5067   if (_task.marks_oops_alive()) {
5068     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5069                   _collector->hash_seed(worker_id));
5070   }
5071   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5072   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5073 }
5074 
5075 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5076   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5077   EnqueueTask& _task;
5078 
5079 public:
5080   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5081     : AbstractGangTask("Enqueue reference objects in parallel"),
5082       _task(task)
5083   { }
5084 
5085   virtual void work(uint worker_id)
5086   {
5087     _task.work(worker_id);
5088   }
5089 };
5090 
5091 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5092   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5093    _span(span),
5094    _bit_map(bit_map),
5095    _work_queue(work_queue),
5096    _mark_and_push(collector, span, bit_map, work_queue),
5097    _low_water_mark(MIN2((work_queue->max_elems()/4),
5098                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5099 { }
5100 
5101 // . see if we can share work_queues with ParNew? XXX
5102 void CMSRefProcTaskProxy::do_work_steal(int i,
5103   CMSParDrainMarkingStackClosure* drain,
5104   CMSParKeepAliveClosure* keep_alive,
5105   int* seed) {
5106   OopTaskQueue* work_q = work_queue(i);
5107   NOT_PRODUCT(int num_steals = 0;)
5108   oop obj_to_scan;
5109 
5110   while (true) {
5111     // Completely finish any left over work from (an) earlier round(s)
5112     drain->trim_queue(0);
5113     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5114                                          (size_t)ParGCDesiredObjsFromOverflowList);
5115     // Now check if there's any work in the overflow list
5116     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5117     // only affects the number of attempts made to get work from the
5118     // overflow list and does not affect the number of workers.  Just
5119     // pass ParallelGCThreads so this behavior is unchanged.
5120     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5121                                                 work_q,
5122                                                 ParallelGCThreads)) {
5123       // Found something in global overflow list;
5124       // not yet ready to go stealing work from others.
5125       // We'd like to assert(work_q->size() != 0, ...)
5126       // because we just took work from the overflow list,
5127       // but of course we can't, since all of that might have
5128       // been already stolen from us.
5129       continue;
5130     }
5131     // Verify that we have no work before we resort to stealing
5132     assert(work_q->size() == 0, "Have work, shouldn't steal");
5133     // Try to steal from other queues that have work
5134     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5135       NOT_PRODUCT(num_steals++;)
5136       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5137       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5138       // Do scanning work
5139       obj_to_scan->oop_iterate(keep_alive);
5140       // Loop around, finish this work, and try to steal some more
5141     } else if (terminator()->offer_termination()) {
5142       break;  // nirvana from the infinite cycle
5143     }
5144   }
5145   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5146 }
5147 
5148 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5149 {
5150   GenCollectedHeap* gch = GenCollectedHeap::heap();
5151   WorkGang* workers = gch->workers();
5152   assert(workers != NULL, "Need parallel worker threads.");
5153   CMSRefProcTaskProxy rp_task(task, &_collector,
5154                               _collector.ref_processor()->span(),
5155                               _collector.markBitMap(),
5156                               workers, _collector.task_queues());
5157   workers->run_task(&rp_task);
5158 }
5159 
5160 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5161 {
5162 
5163   GenCollectedHeap* gch = GenCollectedHeap::heap();
5164   WorkGang* workers = gch->workers();
5165   assert(workers != NULL, "Need parallel worker threads.");
5166   CMSRefEnqueueTaskProxy enq_task(task);
5167   workers->run_task(&enq_task);
5168 }
5169 
5170 void CMSCollector::refProcessingWork() {
5171   ResourceMark rm;
5172   HandleMark   hm;
5173 
5174   ReferenceProcessor* rp = ref_processor();
5175   assert(rp->span().equals(_span), "Spans should be equal");
5176   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5177   // Process weak references.
5178   rp->setup_policy(false);
5179   verify_work_stacks_empty();
5180 
5181   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5182                                           &_markStack, false /* !preclean */);
5183   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5184                                 _span, &_markBitMap, &_markStack,
5185                                 &cmsKeepAliveClosure, false /* !preclean */);
5186   {
5187     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5188 
5189     ReferenceProcessorStats stats;
5190     if (rp->processing_is_mt()) {
5191       // Set the degree of MT here.  If the discovery is done MT, there
5192       // may have been a different number of threads doing the discovery
5193       // and a different number of discovered lists may have Ref objects.
5194       // That is OK as long as the Reference lists are balanced (see
5195       // balance_all_queues() and balance_queues()).
5196       GenCollectedHeap* gch = GenCollectedHeap::heap();
5197       uint active_workers = ParallelGCThreads;
5198       WorkGang* workers = gch->workers();
5199       if (workers != NULL) {
5200         active_workers = workers->active_workers();
5201         // The expectation is that active_workers will have already
5202         // been set to a reasonable value.  If it has not been set,
5203         // investigate.
5204         assert(active_workers > 0, "Should have been set during scavenge");
5205       }
5206       rp->set_active_mt_degree(active_workers);
5207       CMSRefProcTaskExecutor task_executor(*this);
5208       stats = rp->process_discovered_references(&_is_alive_closure,
5209                                         &cmsKeepAliveClosure,
5210                                         &cmsDrainMarkingStackClosure,
5211                                         &task_executor,
5212                                         _gc_timer_cm);
5213     } else {
5214       stats = rp->process_discovered_references(&_is_alive_closure,
5215                                         &cmsKeepAliveClosure,
5216                                         &cmsDrainMarkingStackClosure,
5217                                         NULL,
5218                                         _gc_timer_cm);
5219     }
5220     _gc_tracer_cm->report_gc_reference_stats(stats);
5221 
5222   }
5223 
5224   // This is the point where the entire marking should have completed.
5225   verify_work_stacks_empty();
5226 
5227   if (should_unload_classes()) {
5228     {
5229       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5230 
5231       // Unload classes and purge the SystemDictionary.
5232       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5233 
5234       // Unload nmethods.
5235       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5236 
5237       // Prune dead klasses from subklass/sibling/implementor lists.
5238       Klass::clean_weak_klass_links(&_is_alive_closure);
5239     }
5240 
5241     {
5242       GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5243       // Clean up unreferenced symbols in symbol table.
5244       SymbolTable::unlink();
5245     }
5246 
5247     {
5248       GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5249       // Delete entries for dead interned strings.
5250       StringTable::unlink(&_is_alive_closure);
5251     }
5252   }
5253 
5254 
5255   // Restore any preserved marks as a result of mark stack or
5256   // work queue overflow
5257   restore_preserved_marks_if_any();  // done single-threaded for now
5258 
5259   rp->set_enqueuing_is_done(true);
5260   if (rp->processing_is_mt()) {
5261     rp->balance_all_queues();
5262     CMSRefProcTaskExecutor task_executor(*this);
5263     rp->enqueue_discovered_references(&task_executor);
5264   } else {
5265     rp->enqueue_discovered_references(NULL);
5266   }
5267   rp->verify_no_references_recorded();
5268   assert(!rp->discovery_enabled(), "should have been disabled");
5269 }
5270 
5271 #ifndef PRODUCT
5272 void CMSCollector::check_correct_thread_executing() {
5273   Thread* t = Thread::current();
5274   // Only the VM thread or the CMS thread should be here.
5275   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5276          "Unexpected thread type");
5277   // If this is the vm thread, the foreground process
5278   // should not be waiting.  Note that _foregroundGCIsActive is
5279   // true while the foreground collector is waiting.
5280   if (_foregroundGCShouldWait) {
5281     // We cannot be the VM thread
5282     assert(t->is_ConcurrentGC_thread(),
5283            "Should be CMS thread");
5284   } else {
5285     // We can be the CMS thread only if we are in a stop-world
5286     // phase of CMS collection.
5287     if (t->is_ConcurrentGC_thread()) {
5288       assert(_collectorState == InitialMarking ||
5289              _collectorState == FinalMarking,
5290              "Should be a stop-world phase");
5291       // The CMS thread should be holding the CMS_token.
5292       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5293              "Potential interference with concurrently "
5294              "executing VM thread");
5295     }
5296   }
5297 }
5298 #endif
5299 
5300 void CMSCollector::sweep() {
5301   assert(_collectorState == Sweeping, "just checking");
5302   check_correct_thread_executing();
5303   verify_work_stacks_empty();
5304   verify_overflow_empty();
5305   increment_sweep_count();
5306   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5307 
5308   _inter_sweep_timer.stop();
5309   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5310 
5311   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5312   _intra_sweep_timer.reset();
5313   _intra_sweep_timer.start();
5314   {
5315     GCTraceCPUTime tcpu;
5316     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5317     // First sweep the old gen
5318     {
5319       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5320                                bitMapLock());
5321       sweepWork(_cmsGen);
5322     }
5323 
5324     // Update Universe::_heap_*_at_gc figures.
5325     // We need all the free list locks to make the abstract state
5326     // transition from Sweeping to Resetting. See detailed note
5327     // further below.
5328     {
5329       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5330       // Update heap occupancy information which is used as
5331       // input to soft ref clearing policy at the next gc.
5332       Universe::update_heap_info_at_gc();
5333       _collectorState = Resizing;
5334     }
5335   }
5336   verify_work_stacks_empty();
5337   verify_overflow_empty();
5338 
5339   if (should_unload_classes()) {
5340     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5341     // requires that the virtual spaces are stable and not deleted.
5342     ClassLoaderDataGraph::set_should_purge(true);
5343   }
5344 
5345   _intra_sweep_timer.stop();
5346   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5347 
5348   _inter_sweep_timer.reset();
5349   _inter_sweep_timer.start();
5350 
5351   // We need to use a monotonically non-decreasing time in ms
5352   // or we will see time-warp warnings and os::javaTimeMillis()
5353   // does not guarantee monotonicity.
5354   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5355   update_time_of_last_gc(now);
5356 
5357   // NOTE on abstract state transitions:
5358   // Mutators allocate-live and/or mark the mod-union table dirty
5359   // based on the state of the collection.  The former is done in
5360   // the interval [Marking, Sweeping] and the latter in the interval
5361   // [Marking, Sweeping).  Thus the transitions into the Marking state
5362   // and out of the Sweeping state must be synchronously visible
5363   // globally to the mutators.
5364   // The transition into the Marking state happens with the world
5365   // stopped so the mutators will globally see it.  Sweeping is
5366   // done asynchronously by the background collector so the transition
5367   // from the Sweeping state to the Resizing state must be done
5368   // under the freelistLock (as is the check for whether to
5369   // allocate-live and whether to dirty the mod-union table).
5370   assert(_collectorState == Resizing, "Change of collector state to"
5371     " Resizing must be done under the freelistLocks (plural)");
5372 
5373   // Now that sweeping has been completed, we clear
5374   // the incremental_collection_failed flag,
5375   // thus inviting a younger gen collection to promote into
5376   // this generation. If such a promotion may still fail,
5377   // the flag will be set again when a young collection is
5378   // attempted.
5379   GenCollectedHeap* gch = GenCollectedHeap::heap();
5380   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5381   gch->update_full_collections_completed(_collection_count_start);
5382 }
5383 
5384 // FIX ME!!! Looks like this belongs in CFLSpace, with
5385 // CMSGen merely delegating to it.
5386 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5387   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5388   HeapWord*  minAddr        = _cmsSpace->bottom();
5389   HeapWord*  largestAddr    =
5390     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5391   if (largestAddr == NULL) {
5392     // The dictionary appears to be empty.  In this case
5393     // try to coalesce at the end of the heap.
5394     largestAddr = _cmsSpace->end();
5395   }
5396   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5397   size_t nearLargestOffset =
5398     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5399   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5400                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5401   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5402 }
5403 
5404 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5405   return addr >= _cmsSpace->nearLargestChunk();
5406 }
5407 
5408 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5409   return _cmsSpace->find_chunk_at_end();
5410 }
5411 
5412 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5413                                                     bool full) {
5414   // If the young generation has been collected, gather any statistics
5415   // that are of interest at this point.
5416   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5417   if (!full && current_is_young) {
5418     // Gather statistics on the young generation collection.
5419     collector()->stats().record_gc0_end(used());
5420   }
5421 }
5422 
5423 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5424   // We iterate over the space(s) underlying this generation,
5425   // checking the mark bit map to see if the bits corresponding
5426   // to specific blocks are marked or not. Blocks that are
5427   // marked are live and are not swept up. All remaining blocks
5428   // are swept up, with coalescing on-the-fly as we sweep up
5429   // contiguous free and/or garbage blocks:
5430   // We need to ensure that the sweeper synchronizes with allocators
5431   // and stop-the-world collectors. In particular, the following
5432   // locks are used:
5433   // . CMS token: if this is held, a stop the world collection cannot occur
5434   // . freelistLock: if this is held no allocation can occur from this
5435   //                 generation by another thread
5436   // . bitMapLock: if this is held, no other thread can access or update
5437   //
5438 
5439   // Note that we need to hold the freelistLock if we use
5440   // block iterate below; else the iterator might go awry if
5441   // a mutator (or promotion) causes block contents to change
5442   // (for instance if the allocator divvies up a block).
5443   // If we hold the free list lock, for all practical purposes
5444   // young generation GC's can't occur (they'll usually need to
5445   // promote), so we might as well prevent all young generation
5446   // GC's while we do a sweeping step. For the same reason, we might
5447   // as well take the bit map lock for the entire duration
5448 
5449   // check that we hold the requisite locks
5450   assert(have_cms_token(), "Should hold cms token");
5451   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5452   assert_lock_strong(old_gen->freelistLock());
5453   assert_lock_strong(bitMapLock());
5454 
5455   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5456   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5457   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5458                                           _inter_sweep_estimate.padded_average(),
5459                                           _intra_sweep_estimate.padded_average());
5460   old_gen->setNearLargestChunk();
5461 
5462   {
5463     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5464     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5465     // We need to free-up/coalesce garbage/blocks from a
5466     // co-terminal free run. This is done in the SweepClosure
5467     // destructor; so, do not remove this scope, else the
5468     // end-of-sweep-census below will be off by a little bit.
5469   }
5470   old_gen->cmsSpace()->sweep_completed();
5471   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5472   if (should_unload_classes()) {                // unloaded classes this cycle,
5473     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5474   } else {                                      // did not unload classes,
5475     _concurrent_cycles_since_last_unload++;     // ... increment count
5476   }
5477 }
5478 
5479 // Reset CMS data structures (for now just the marking bit map)
5480 // preparatory for the next cycle.
5481 void CMSCollector::reset_concurrent() {
5482   CMSTokenSyncWithLocks ts(true, bitMapLock());
5483 
5484   // If the state is not "Resetting", the foreground  thread
5485   // has done a collection and the resetting.
5486   if (_collectorState != Resetting) {
5487     assert(_collectorState == Idling, "The state should only change"
5488       " because the foreground collector has finished the collection");
5489     return;
5490   }
5491 
5492   {
5493     // Clear the mark bitmap (no grey objects to start with)
5494     // for the next cycle.
5495     GCTraceCPUTime tcpu;
5496     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5497 
5498     HeapWord* curAddr = _markBitMap.startWord();
5499     while (curAddr < _markBitMap.endWord()) {
5500       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5501       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5502       _markBitMap.clear_large_range(chunk);
5503       if (ConcurrentMarkSweepThread::should_yield() &&
5504           !foregroundGCIsActive() &&
5505           CMSYield) {
5506         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5507                "CMS thread should hold CMS token");
5508         assert_lock_strong(bitMapLock());
5509         bitMapLock()->unlock();
5510         ConcurrentMarkSweepThread::desynchronize(true);
5511         stopTimer();
5512         incrementYields();
5513 
5514         // See the comment in coordinator_yield()
5515         for (unsigned i = 0; i < CMSYieldSleepCount &&
5516                          ConcurrentMarkSweepThread::should_yield() &&
5517                          !CMSCollector::foregroundGCIsActive(); ++i) {
5518           os::sleep(Thread::current(), 1, false);
5519         }
5520 
5521         ConcurrentMarkSweepThread::synchronize(true);
5522         bitMapLock()->lock_without_safepoint_check();
5523         startTimer();
5524       }
5525       curAddr = chunk.end();
5526     }
5527     // A successful mostly concurrent collection has been done.
5528     // Because only the full (i.e., concurrent mode failure) collections
5529     // are being measured for gc overhead limits, clean the "near" flag
5530     // and count.
5531     size_policy()->reset_gc_overhead_limit_count();
5532     _collectorState = Idling;
5533   }
5534 
5535   register_gc_end();
5536 }
5537 
5538 // Same as above but for STW paths
5539 void CMSCollector::reset_stw() {
5540   // already have the lock
5541   assert(_collectorState == Resetting, "just checking");
5542   assert_lock_strong(bitMapLock());
5543   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5544   _markBitMap.clear_all();
5545   _collectorState = Idling;
5546   register_gc_end();
5547 }
5548 
5549 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5550   GCTraceCPUTime tcpu;
5551   TraceCollectorStats tcs(counters());
5552 
5553   switch (op) {
5554     case CMS_op_checkpointRootsInitial: {
5555       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5556       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5557       checkpointRootsInitial();
5558       break;
5559     }
5560     case CMS_op_checkpointRootsFinal: {
5561       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5562       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5563       checkpointRootsFinal();
5564       break;
5565     }
5566     default:
5567       fatal("No such CMS_op");
5568   }
5569 }
5570 
5571 #ifndef PRODUCT
5572 size_t const CMSCollector::skip_header_HeapWords() {
5573   return FreeChunk::header_size();
5574 }
5575 
5576 // Try and collect here conditions that should hold when
5577 // CMS thread is exiting. The idea is that the foreground GC
5578 // thread should not be blocked if it wants to terminate
5579 // the CMS thread and yet continue to run the VM for a while
5580 // after that.
5581 void CMSCollector::verify_ok_to_terminate() const {
5582   assert(Thread::current()->is_ConcurrentGC_thread(),
5583          "should be called by CMS thread");
5584   assert(!_foregroundGCShouldWait, "should be false");
5585   // We could check here that all the various low-level locks
5586   // are not held by the CMS thread, but that is overkill; see
5587   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5588   // is checked.
5589 }
5590 #endif
5591 
5592 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5593    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5594           "missing Printezis mark?");
5595   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5596   size_t size = pointer_delta(nextOneAddr + 1, addr);
5597   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5598          "alignment problem");
5599   assert(size >= 3, "Necessary for Printezis marks to work");
5600   return size;
5601 }
5602 
5603 // A variant of the above (block_size_using_printezis_bits()) except
5604 // that we return 0 if the P-bits are not yet set.
5605 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5606   if (_markBitMap.isMarked(addr + 1)) {
5607     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5608     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5609     size_t size = pointer_delta(nextOneAddr + 1, addr);
5610     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5611            "alignment problem");
5612     assert(size >= 3, "Necessary for Printezis marks to work");
5613     return size;
5614   }
5615   return 0;
5616 }
5617 
5618 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5619   size_t sz = 0;
5620   oop p = (oop)addr;
5621   if (p->klass_or_null() != NULL) {
5622     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5623   } else {
5624     sz = block_size_using_printezis_bits(addr);
5625   }
5626   assert(sz > 0, "size must be nonzero");
5627   HeapWord* next_block = addr + sz;
5628   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5629                                              CardTableModRefBS::card_size);
5630   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5631          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5632          "must be different cards");
5633   return next_card;
5634 }
5635 
5636 
5637 // CMS Bit Map Wrapper /////////////////////////////////////////
5638 
5639 // Construct a CMS bit map infrastructure, but don't create the
5640 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5641 // further below.
5642 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5643   _bm(),
5644   _shifter(shifter),
5645   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5646                                     Monitor::_safepoint_check_sometimes) : NULL)
5647 {
5648   _bmStartWord = 0;
5649   _bmWordSize  = 0;
5650 }
5651 
5652 bool CMSBitMap::allocate(MemRegion mr) {
5653   _bmStartWord = mr.start();
5654   _bmWordSize  = mr.word_size();
5655   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5656                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5657   if (!brs.is_reserved()) {
5658     log_warning(gc)("CMS bit map allocation failure");
5659     return false;
5660   }
5661   // For now we'll just commit all of the bit map up front.
5662   // Later on we'll try to be more parsimonious with swap.
5663   if (!_virtual_space.initialize(brs, brs.size())) {
5664     log_warning(gc)("CMS bit map backing store failure");
5665     return false;
5666   }
5667   assert(_virtual_space.committed_size() == brs.size(),
5668          "didn't reserve backing store for all of CMS bit map?");
5669   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5670   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5671          _bmWordSize, "inconsistency in bit map sizing");
5672   _bm.set_size(_bmWordSize >> _shifter);
5673 
5674   // bm.clear(); // can we rely on getting zero'd memory? verify below
5675   assert(isAllClear(),
5676          "Expected zero'd memory from ReservedSpace constructor");
5677   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5678          "consistency check");
5679   return true;
5680 }
5681 
5682 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5683   HeapWord *next_addr, *end_addr, *last_addr;
5684   assert_locked();
5685   assert(covers(mr), "out-of-range error");
5686   // XXX assert that start and end are appropriately aligned
5687   for (next_addr = mr.start(), end_addr = mr.end();
5688        next_addr < end_addr; next_addr = last_addr) {
5689     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5690     last_addr = dirty_region.end();
5691     if (!dirty_region.is_empty()) {
5692       cl->do_MemRegion(dirty_region);
5693     } else {
5694       assert(last_addr == end_addr, "program logic");
5695       return;
5696     }
5697   }
5698 }
5699 
5700 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5701   _bm.print_on_error(st, prefix);
5702 }
5703 
5704 #ifndef PRODUCT
5705 void CMSBitMap::assert_locked() const {
5706   CMSLockVerifier::assert_locked(lock());
5707 }
5708 
5709 bool CMSBitMap::covers(MemRegion mr) const {
5710   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5711   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5712          "size inconsistency");
5713   return (mr.start() >= _bmStartWord) &&
5714          (mr.end()   <= endWord());
5715 }
5716 
5717 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5718     return (start >= _bmStartWord && (start + size) <= endWord());
5719 }
5720 
5721 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5722   // verify that there are no 1 bits in the interval [left, right)
5723   FalseBitMapClosure falseBitMapClosure;
5724   iterate(&falseBitMapClosure, left, right);
5725 }
5726 
5727 void CMSBitMap::region_invariant(MemRegion mr)
5728 {
5729   assert_locked();
5730   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5731   assert(!mr.is_empty(), "unexpected empty region");
5732   assert(covers(mr), "mr should be covered by bit map");
5733   // convert address range into offset range
5734   size_t start_ofs = heapWordToOffset(mr.start());
5735   // Make sure that end() is appropriately aligned
5736   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5737                         (1 << (_shifter+LogHeapWordSize))),
5738          "Misaligned mr.end()");
5739   size_t end_ofs   = heapWordToOffset(mr.end());
5740   assert(end_ofs > start_ofs, "Should mark at least one bit");
5741 }
5742 
5743 #endif
5744 
5745 bool CMSMarkStack::allocate(size_t size) {
5746   // allocate a stack of the requisite depth
5747   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5748                    size * sizeof(oop)));
5749   if (!rs.is_reserved()) {
5750     log_warning(gc)("CMSMarkStack allocation failure");
5751     return false;
5752   }
5753   if (!_virtual_space.initialize(rs, rs.size())) {
5754     log_warning(gc)("CMSMarkStack backing store failure");
5755     return false;
5756   }
5757   assert(_virtual_space.committed_size() == rs.size(),
5758          "didn't reserve backing store for all of CMS stack?");
5759   _base = (oop*)(_virtual_space.low());
5760   _index = 0;
5761   _capacity = size;
5762   NOT_PRODUCT(_max_depth = 0);
5763   return true;
5764 }
5765 
5766 // XXX FIX ME !!! In the MT case we come in here holding a
5767 // leaf lock. For printing we need to take a further lock
5768 // which has lower rank. We need to recalibrate the two
5769 // lock-ranks involved in order to be able to print the
5770 // messages below. (Or defer the printing to the caller.
5771 // For now we take the expedient path of just disabling the
5772 // messages for the problematic case.)
5773 void CMSMarkStack::expand() {
5774   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5775   if (_capacity == MarkStackSizeMax) {
5776     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5777       // We print a warning message only once per CMS cycle.
5778       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5779     }
5780     return;
5781   }
5782   // Double capacity if possible
5783   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5784   // Do not give up existing stack until we have managed to
5785   // get the double capacity that we desired.
5786   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5787                    new_capacity * sizeof(oop)));
5788   if (rs.is_reserved()) {
5789     // Release the backing store associated with old stack
5790     _virtual_space.release();
5791     // Reinitialize virtual space for new stack
5792     if (!_virtual_space.initialize(rs, rs.size())) {
5793       fatal("Not enough swap for expanded marking stack");
5794     }
5795     _base = (oop*)(_virtual_space.low());
5796     _index = 0;
5797     _capacity = new_capacity;
5798   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5799     // Failed to double capacity, continue;
5800     // we print a detail message only once per CMS cycle.
5801     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5802                         _capacity / K, new_capacity / K);
5803   }
5804 }
5805 
5806 
5807 // Closures
5808 // XXX: there seems to be a lot of code  duplication here;
5809 // should refactor and consolidate common code.
5810 
5811 // This closure is used to mark refs into the CMS generation in
5812 // the CMS bit map. Called at the first checkpoint. This closure
5813 // assumes that we do not need to re-mark dirty cards; if the CMS
5814 // generation on which this is used is not an oldest
5815 // generation then this will lose younger_gen cards!
5816 
5817 MarkRefsIntoClosure::MarkRefsIntoClosure(
5818   MemRegion span, CMSBitMap* bitMap):
5819     _span(span),
5820     _bitMap(bitMap)
5821 {
5822   assert(ref_processor() == NULL, "deliberately left NULL");
5823   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5824 }
5825 
5826 void MarkRefsIntoClosure::do_oop(oop obj) {
5827   // if p points into _span, then mark corresponding bit in _markBitMap
5828   assert(obj->is_oop(), "expected an oop");
5829   HeapWord* addr = (HeapWord*)obj;
5830   if (_span.contains(addr)) {
5831     // this should be made more efficient
5832     _bitMap->mark(addr);
5833   }
5834 }
5835 
5836 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5837 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5838 
5839 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5840   MemRegion span, CMSBitMap* bitMap):
5841     _span(span),
5842     _bitMap(bitMap)
5843 {
5844   assert(ref_processor() == NULL, "deliberately left NULL");
5845   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5846 }
5847 
5848 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5849   // if p points into _span, then mark corresponding bit in _markBitMap
5850   assert(obj->is_oop(), "expected an oop");
5851   HeapWord* addr = (HeapWord*)obj;
5852   if (_span.contains(addr)) {
5853     // this should be made more efficient
5854     _bitMap->par_mark(addr);
5855   }
5856 }
5857 
5858 void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5859 void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5860 
5861 // A variant of the above, used for CMS marking verification.
5862 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5863   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5864     _span(span),
5865     _verification_bm(verification_bm),
5866     _cms_bm(cms_bm)
5867 {
5868   assert(ref_processor() == NULL, "deliberately left NULL");
5869   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5870 }
5871 
5872 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5873   // if p points into _span, then mark corresponding bit in _markBitMap
5874   assert(obj->is_oop(), "expected an oop");
5875   HeapWord* addr = (HeapWord*)obj;
5876   if (_span.contains(addr)) {
5877     _verification_bm->mark(addr);
5878     if (!_cms_bm->isMarked(addr)) {
5879       Log(gc, verify) log;
5880       ResourceMark rm;
5881       oop(addr)->print_on(log.error_stream());
5882       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5883       fatal("... aborting");
5884     }
5885   }
5886 }
5887 
5888 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5889 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5890 
5891 //////////////////////////////////////////////////
5892 // MarkRefsIntoAndScanClosure
5893 //////////////////////////////////////////////////
5894 
5895 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5896                                                        ReferenceProcessor* rp,
5897                                                        CMSBitMap* bit_map,
5898                                                        CMSBitMap* mod_union_table,
5899                                                        CMSMarkStack*  mark_stack,
5900                                                        CMSCollector* collector,
5901                                                        bool should_yield,
5902                                                        bool concurrent_precleaning):
5903   _collector(collector),
5904   _span(span),
5905   _bit_map(bit_map),
5906   _mark_stack(mark_stack),
5907   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5908                       mark_stack, concurrent_precleaning),
5909   _yield(should_yield),
5910   _concurrent_precleaning(concurrent_precleaning),
5911   _freelistLock(NULL)
5912 {
5913   // FIXME: Should initialize in base class constructor.
5914   assert(rp != NULL, "ref_processor shouldn't be NULL");
5915   set_ref_processor_internal(rp);
5916 }
5917 
5918 // This closure is used to mark refs into the CMS generation at the
5919 // second (final) checkpoint, and to scan and transitively follow
5920 // the unmarked oops. It is also used during the concurrent precleaning
5921 // phase while scanning objects on dirty cards in the CMS generation.
5922 // The marks are made in the marking bit map and the marking stack is
5923 // used for keeping the (newly) grey objects during the scan.
5924 // The parallel version (Par_...) appears further below.
5925 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5926   if (obj != NULL) {
5927     assert(obj->is_oop(), "expected an oop");
5928     HeapWord* addr = (HeapWord*)obj;
5929     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5930     assert(_collector->overflow_list_is_empty(),
5931            "overflow list should be empty");
5932     if (_span.contains(addr) &&
5933         !_bit_map->isMarked(addr)) {
5934       // mark bit map (object is now grey)
5935       _bit_map->mark(addr);
5936       // push on marking stack (stack should be empty), and drain the
5937       // stack by applying this closure to the oops in the oops popped
5938       // from the stack (i.e. blacken the grey objects)
5939       bool res = _mark_stack->push(obj);
5940       assert(res, "Should have space to push on empty stack");
5941       do {
5942         oop new_oop = _mark_stack->pop();
5943         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5944         assert(_bit_map->isMarked((HeapWord*)new_oop),
5945                "only grey objects on this stack");
5946         // iterate over the oops in this oop, marking and pushing
5947         // the ones in CMS heap (i.e. in _span).
5948         new_oop->oop_iterate(&_pushAndMarkClosure);
5949         // check if it's time to yield
5950         do_yield_check();
5951       } while (!_mark_stack->isEmpty() ||
5952                (!_concurrent_precleaning && take_from_overflow_list()));
5953         // if marking stack is empty, and we are not doing this
5954         // during precleaning, then check the overflow list
5955     }
5956     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5957     assert(_collector->overflow_list_is_empty(),
5958            "overflow list was drained above");
5959 
5960     assert(_collector->no_preserved_marks(),
5961            "All preserved marks should have been restored above");
5962   }
5963 }
5964 
5965 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5966 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5967 
5968 void MarkRefsIntoAndScanClosure::do_yield_work() {
5969   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5970          "CMS thread should hold CMS token");
5971   assert_lock_strong(_freelistLock);
5972   assert_lock_strong(_bit_map->lock());
5973   // relinquish the free_list_lock and bitMaplock()
5974   _bit_map->lock()->unlock();
5975   _freelistLock->unlock();
5976   ConcurrentMarkSweepThread::desynchronize(true);
5977   _collector->stopTimer();
5978   _collector->incrementYields();
5979 
5980   // See the comment in coordinator_yield()
5981   for (unsigned i = 0;
5982        i < CMSYieldSleepCount &&
5983        ConcurrentMarkSweepThread::should_yield() &&
5984        !CMSCollector::foregroundGCIsActive();
5985        ++i) {
5986     os::sleep(Thread::current(), 1, false);
5987   }
5988 
5989   ConcurrentMarkSweepThread::synchronize(true);
5990   _freelistLock->lock_without_safepoint_check();
5991   _bit_map->lock()->lock_without_safepoint_check();
5992   _collector->startTimer();
5993 }
5994 
5995 ///////////////////////////////////////////////////////////
5996 // ParMarkRefsIntoAndScanClosure: a parallel version of
5997 //                                MarkRefsIntoAndScanClosure
5998 ///////////////////////////////////////////////////////////
5999 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6000   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6001   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6002   _span(span),
6003   _bit_map(bit_map),
6004   _work_queue(work_queue),
6005   _low_water_mark(MIN2((work_queue->max_elems()/4),
6006                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6007   _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6008 {
6009   // FIXME: Should initialize in base class constructor.
6010   assert(rp != NULL, "ref_processor shouldn't be NULL");
6011   set_ref_processor_internal(rp);
6012 }
6013 
6014 // This closure is used to mark refs into the CMS generation at the
6015 // second (final) checkpoint, and to scan and transitively follow
6016 // the unmarked oops. The marks are made in the marking bit map and
6017 // the work_queue is used for keeping the (newly) grey objects during
6018 // the scan phase whence they are also available for stealing by parallel
6019 // threads. Since the marking bit map is shared, updates are
6020 // synchronized (via CAS).
6021 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6022   if (obj != NULL) {
6023     // Ignore mark word because this could be an already marked oop
6024     // that may be chained at the end of the overflow list.
6025     assert(obj->is_oop(true), "expected an oop");
6026     HeapWord* addr = (HeapWord*)obj;
6027     if (_span.contains(addr) &&
6028         !_bit_map->isMarked(addr)) {
6029       // mark bit map (object will become grey):
6030       // It is possible for several threads to be
6031       // trying to "claim" this object concurrently;
6032       // the unique thread that succeeds in marking the
6033       // object first will do the subsequent push on
6034       // to the work queue (or overflow list).
6035       if (_bit_map->par_mark(addr)) {
6036         // push on work_queue (which may not be empty), and trim the
6037         // queue to an appropriate length by applying this closure to
6038         // the oops in the oops popped from the stack (i.e. blacken the
6039         // grey objects)
6040         bool res = _work_queue->push(obj);
6041         assert(res, "Low water mark should be less than capacity?");
6042         trim_queue(_low_water_mark);
6043       } // Else, another thread claimed the object
6044     }
6045   }
6046 }
6047 
6048 void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6049 void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6050 
6051 // This closure is used to rescan the marked objects on the dirty cards
6052 // in the mod union table and the card table proper.
6053 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6054   oop p, MemRegion mr) {
6055 
6056   size_t size = 0;
6057   HeapWord* addr = (HeapWord*)p;
6058   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6059   assert(_span.contains(addr), "we are scanning the CMS generation");
6060   // check if it's time to yield
6061   if (do_yield_check()) {
6062     // We yielded for some foreground stop-world work,
6063     // and we have been asked to abort this ongoing preclean cycle.
6064     return 0;
6065   }
6066   if (_bitMap->isMarked(addr)) {
6067     // it's marked; is it potentially uninitialized?
6068     if (p->klass_or_null() != NULL) {
6069         // an initialized object; ignore mark word in verification below
6070         // since we are running concurrent with mutators
6071         assert(p->is_oop(true), "should be an oop");
6072         if (p->is_objArray()) {
6073           // objArrays are precisely marked; restrict scanning
6074           // to dirty cards only.
6075           size = CompactibleFreeListSpace::adjustObjectSize(
6076                    p->oop_iterate_size(_scanningClosure, mr));
6077         } else {
6078           // A non-array may have been imprecisely marked; we need
6079           // to scan object in its entirety.
6080           size = CompactibleFreeListSpace::adjustObjectSize(
6081                    p->oop_iterate_size(_scanningClosure));
6082         }
6083         #ifdef ASSERT
6084           size_t direct_size =
6085             CompactibleFreeListSpace::adjustObjectSize(p->size());
6086           assert(size == direct_size, "Inconsistency in size");
6087           assert(size >= 3, "Necessary for Printezis marks to work");
6088           if (!_bitMap->isMarked(addr+1)) {
6089             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6090           } else {
6091             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6092             assert(_bitMap->isMarked(addr+size-1),
6093                    "inconsistent Printezis mark");
6094           }
6095         #endif // ASSERT
6096     } else {
6097       // An uninitialized object.
6098       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6099       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6100       size = pointer_delta(nextOneAddr + 1, addr);
6101       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6102              "alignment problem");
6103       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6104       // will dirty the card when the klass pointer is installed in the
6105       // object (signaling the completion of initialization).
6106     }
6107   } else {
6108     // Either a not yet marked object or an uninitialized object
6109     if (p->klass_or_null() == NULL) {
6110       // An uninitialized object, skip to the next card, since
6111       // we may not be able to read its P-bits yet.
6112       assert(size == 0, "Initial value");
6113     } else {
6114       // An object not (yet) reached by marking: we merely need to
6115       // compute its size so as to go look at the next block.
6116       assert(p->is_oop(true), "should be an oop");
6117       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6118     }
6119   }
6120   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6121   return size;
6122 }
6123 
6124 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6125   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6126          "CMS thread should hold CMS token");
6127   assert_lock_strong(_freelistLock);
6128   assert_lock_strong(_bitMap->lock());
6129   // relinquish the free_list_lock and bitMaplock()
6130   _bitMap->lock()->unlock();
6131   _freelistLock->unlock();
6132   ConcurrentMarkSweepThread::desynchronize(true);
6133   _collector->stopTimer();
6134   _collector->incrementYields();
6135 
6136   // See the comment in coordinator_yield()
6137   for (unsigned i = 0; i < CMSYieldSleepCount &&
6138                    ConcurrentMarkSweepThread::should_yield() &&
6139                    !CMSCollector::foregroundGCIsActive(); ++i) {
6140     os::sleep(Thread::current(), 1, false);
6141   }
6142 
6143   ConcurrentMarkSweepThread::synchronize(true);
6144   _freelistLock->lock_without_safepoint_check();
6145   _bitMap->lock()->lock_without_safepoint_check();
6146   _collector->startTimer();
6147 }
6148 
6149 
6150 //////////////////////////////////////////////////////////////////
6151 // SurvivorSpacePrecleanClosure
6152 //////////////////////////////////////////////////////////////////
6153 // This (single-threaded) closure is used to preclean the oops in
6154 // the survivor spaces.
6155 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6156 
6157   HeapWord* addr = (HeapWord*)p;
6158   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6159   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6160   assert(p->klass_or_null() != NULL, "object should be initialized");
6161   // an initialized object; ignore mark word in verification below
6162   // since we are running concurrent with mutators
6163   assert(p->is_oop(true), "should be an oop");
6164   // Note that we do not yield while we iterate over
6165   // the interior oops of p, pushing the relevant ones
6166   // on our marking stack.
6167   size_t size = p->oop_iterate_size(_scanning_closure);
6168   do_yield_check();
6169   // Observe that below, we do not abandon the preclean
6170   // phase as soon as we should; rather we empty the
6171   // marking stack before returning. This is to satisfy
6172   // some existing assertions. In general, it may be a
6173   // good idea to abort immediately and complete the marking
6174   // from the grey objects at a later time.
6175   while (!_mark_stack->isEmpty()) {
6176     oop new_oop = _mark_stack->pop();
6177     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6178     assert(_bit_map->isMarked((HeapWord*)new_oop),
6179            "only grey objects on this stack");
6180     // iterate over the oops in this oop, marking and pushing
6181     // the ones in CMS heap (i.e. in _span).
6182     new_oop->oop_iterate(_scanning_closure);
6183     // check if it's time to yield
6184     do_yield_check();
6185   }
6186   unsigned int after_count =
6187     GenCollectedHeap::heap()->total_collections();
6188   bool abort = (_before_count != after_count) ||
6189                _collector->should_abort_preclean();
6190   return abort ? 0 : size;
6191 }
6192 
6193 void SurvivorSpacePrecleanClosure::do_yield_work() {
6194   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6195          "CMS thread should hold CMS token");
6196   assert_lock_strong(_bit_map->lock());
6197   // Relinquish the bit map lock
6198   _bit_map->lock()->unlock();
6199   ConcurrentMarkSweepThread::desynchronize(true);
6200   _collector->stopTimer();
6201   _collector->incrementYields();
6202 
6203   // See the comment in coordinator_yield()
6204   for (unsigned i = 0; i < CMSYieldSleepCount &&
6205                        ConcurrentMarkSweepThread::should_yield() &&
6206                        !CMSCollector::foregroundGCIsActive(); ++i) {
6207     os::sleep(Thread::current(), 1, false);
6208   }
6209 
6210   ConcurrentMarkSweepThread::synchronize(true);
6211   _bit_map->lock()->lock_without_safepoint_check();
6212   _collector->startTimer();
6213 }
6214 
6215 // This closure is used to rescan the marked objects on the dirty cards
6216 // in the mod union table and the card table proper. In the parallel
6217 // case, although the bitMap is shared, we do a single read so the
6218 // isMarked() query is "safe".
6219 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6220   // Ignore mark word because we are running concurrent with mutators
6221   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6222   HeapWord* addr = (HeapWord*)p;
6223   assert(_span.contains(addr), "we are scanning the CMS generation");
6224   bool is_obj_array = false;
6225   #ifdef ASSERT
6226     if (!_parallel) {
6227       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6228       assert(_collector->overflow_list_is_empty(),
6229              "overflow list should be empty");
6230 
6231     }
6232   #endif // ASSERT
6233   if (_bit_map->isMarked(addr)) {
6234     // Obj arrays are precisely marked, non-arrays are not;
6235     // so we scan objArrays precisely and non-arrays in their
6236     // entirety.
6237     if (p->is_objArray()) {
6238       is_obj_array = true;
6239       if (_parallel) {
6240         p->oop_iterate(_par_scan_closure, mr);
6241       } else {
6242         p->oop_iterate(_scan_closure, mr);
6243       }
6244     } else {
6245       if (_parallel) {
6246         p->oop_iterate(_par_scan_closure);
6247       } else {
6248         p->oop_iterate(_scan_closure);
6249       }
6250     }
6251   }
6252   #ifdef ASSERT
6253     if (!_parallel) {
6254       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6255       assert(_collector->overflow_list_is_empty(),
6256              "overflow list should be empty");
6257 
6258     }
6259   #endif // ASSERT
6260   return is_obj_array;
6261 }
6262 
6263 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6264                         MemRegion span,
6265                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6266                         bool should_yield, bool verifying):
6267   _collector(collector),
6268   _span(span),
6269   _bitMap(bitMap),
6270   _mut(&collector->_modUnionTable),
6271   _markStack(markStack),
6272   _yield(should_yield),
6273   _skipBits(0)
6274 {
6275   assert(_markStack->isEmpty(), "stack should be empty");
6276   _finger = _bitMap->startWord();
6277   _threshold = _finger;
6278   assert(_collector->_restart_addr == NULL, "Sanity check");
6279   assert(_span.contains(_finger), "Out of bounds _finger?");
6280   DEBUG_ONLY(_verifying = verifying;)
6281 }
6282 
6283 void MarkFromRootsClosure::reset(HeapWord* addr) {
6284   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6285   assert(_span.contains(addr), "Out of bounds _finger?");
6286   _finger = addr;
6287   _threshold = (HeapWord*)round_to(
6288                  (intptr_t)_finger, CardTableModRefBS::card_size);
6289 }
6290 
6291 // Should revisit to see if this should be restructured for
6292 // greater efficiency.
6293 bool MarkFromRootsClosure::do_bit(size_t offset) {
6294   if (_skipBits > 0) {
6295     _skipBits--;
6296     return true;
6297   }
6298   // convert offset into a HeapWord*
6299   HeapWord* addr = _bitMap->startWord() + offset;
6300   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6301          "address out of range");
6302   assert(_bitMap->isMarked(addr), "tautology");
6303   if (_bitMap->isMarked(addr+1)) {
6304     // this is an allocated but not yet initialized object
6305     assert(_skipBits == 0, "tautology");
6306     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6307     oop p = oop(addr);
6308     if (p->klass_or_null() == NULL) {
6309       DEBUG_ONLY(if (!_verifying) {)
6310         // We re-dirty the cards on which this object lies and increase
6311         // the _threshold so that we'll come back to scan this object
6312         // during the preclean or remark phase. (CMSCleanOnEnter)
6313         if (CMSCleanOnEnter) {
6314           size_t sz = _collector->block_size_using_printezis_bits(addr);
6315           HeapWord* end_card_addr   = (HeapWord*)round_to(
6316                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6317           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6318           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6319           // Bump _threshold to end_card_addr; note that
6320           // _threshold cannot possibly exceed end_card_addr, anyhow.
6321           // This prevents future clearing of the card as the scan proceeds
6322           // to the right.
6323           assert(_threshold <= end_card_addr,
6324                  "Because we are just scanning into this object");
6325           if (_threshold < end_card_addr) {
6326             _threshold = end_card_addr;
6327           }
6328           if (p->klass_or_null() != NULL) {
6329             // Redirty the range of cards...
6330             _mut->mark_range(redirty_range);
6331           } // ...else the setting of klass will dirty the card anyway.
6332         }
6333       DEBUG_ONLY(})
6334       return true;
6335     }
6336   }
6337   scanOopsInOop(addr);
6338   return true;
6339 }
6340 
6341 // We take a break if we've been at this for a while,
6342 // so as to avoid monopolizing the locks involved.
6343 void MarkFromRootsClosure::do_yield_work() {
6344   // First give up the locks, then yield, then re-lock
6345   // We should probably use a constructor/destructor idiom to
6346   // do this unlock/lock or modify the MutexUnlocker class to
6347   // serve our purpose. XXX
6348   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6349          "CMS thread should hold CMS token");
6350   assert_lock_strong(_bitMap->lock());
6351   _bitMap->lock()->unlock();
6352   ConcurrentMarkSweepThread::desynchronize(true);
6353   _collector->stopTimer();
6354   _collector->incrementYields();
6355 
6356   // See the comment in coordinator_yield()
6357   for (unsigned i = 0; i < CMSYieldSleepCount &&
6358                        ConcurrentMarkSweepThread::should_yield() &&
6359                        !CMSCollector::foregroundGCIsActive(); ++i) {
6360     os::sleep(Thread::current(), 1, false);
6361   }
6362 
6363   ConcurrentMarkSweepThread::synchronize(true);
6364   _bitMap->lock()->lock_without_safepoint_check();
6365   _collector->startTimer();
6366 }
6367 
6368 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6369   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6370   assert(_markStack->isEmpty(),
6371          "should drain stack to limit stack usage");
6372   // convert ptr to an oop preparatory to scanning
6373   oop obj = oop(ptr);
6374   // Ignore mark word in verification below, since we
6375   // may be running concurrent with mutators.
6376   assert(obj->is_oop(true), "should be an oop");
6377   assert(_finger <= ptr, "_finger runneth ahead");
6378   // advance the finger to right end of this object
6379   _finger = ptr + obj->size();
6380   assert(_finger > ptr, "we just incremented it above");
6381   // On large heaps, it may take us some time to get through
6382   // the marking phase. During
6383   // this time it's possible that a lot of mutations have
6384   // accumulated in the card table and the mod union table --
6385   // these mutation records are redundant until we have
6386   // actually traced into the corresponding card.
6387   // Here, we check whether advancing the finger would make
6388   // us cross into a new card, and if so clear corresponding
6389   // cards in the MUT (preclean them in the card-table in the
6390   // future).
6391 
6392   DEBUG_ONLY(if (!_verifying) {)
6393     // The clean-on-enter optimization is disabled by default,
6394     // until we fix 6178663.
6395     if (CMSCleanOnEnter && (_finger > _threshold)) {
6396       // [_threshold, _finger) represents the interval
6397       // of cards to be cleared  in MUT (or precleaned in card table).
6398       // The set of cards to be cleared is all those that overlap
6399       // with the interval [_threshold, _finger); note that
6400       // _threshold is always kept card-aligned but _finger isn't
6401       // always card-aligned.
6402       HeapWord* old_threshold = _threshold;
6403       assert(old_threshold == (HeapWord*)round_to(
6404               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6405              "_threshold should always be card-aligned");
6406       _threshold = (HeapWord*)round_to(
6407                      (intptr_t)_finger, CardTableModRefBS::card_size);
6408       MemRegion mr(old_threshold, _threshold);
6409       assert(!mr.is_empty(), "Control point invariant");
6410       assert(_span.contains(mr), "Should clear within span");
6411       _mut->clear_range(mr);
6412     }
6413   DEBUG_ONLY(})
6414   // Note: the finger doesn't advance while we drain
6415   // the stack below.
6416   PushOrMarkClosure pushOrMarkClosure(_collector,
6417                                       _span, _bitMap, _markStack,
6418                                       _finger, this);
6419   bool res = _markStack->push(obj);
6420   assert(res, "Empty non-zero size stack should have space for single push");
6421   while (!_markStack->isEmpty()) {
6422     oop new_oop = _markStack->pop();
6423     // Skip verifying header mark word below because we are
6424     // running concurrent with mutators.
6425     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6426     // now scan this oop's oops
6427     new_oop->oop_iterate(&pushOrMarkClosure);
6428     do_yield_check();
6429   }
6430   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6431 }
6432 
6433 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6434                        CMSCollector* collector, MemRegion span,
6435                        CMSBitMap* bit_map,
6436                        OopTaskQueue* work_queue,
6437                        CMSMarkStack*  overflow_stack):
6438   _collector(collector),
6439   _whole_span(collector->_span),
6440   _span(span),
6441   _bit_map(bit_map),
6442   _mut(&collector->_modUnionTable),
6443   _work_queue(work_queue),
6444   _overflow_stack(overflow_stack),
6445   _skip_bits(0),
6446   _task(task)
6447 {
6448   assert(_work_queue->size() == 0, "work_queue should be empty");
6449   _finger = span.start();
6450   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6451   assert(_span.contains(_finger), "Out of bounds _finger?");
6452 }
6453 
6454 // Should revisit to see if this should be restructured for
6455 // greater efficiency.
6456 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6457   if (_skip_bits > 0) {
6458     _skip_bits--;
6459     return true;
6460   }
6461   // convert offset into a HeapWord*
6462   HeapWord* addr = _bit_map->startWord() + offset;
6463   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6464          "address out of range");
6465   assert(_bit_map->isMarked(addr), "tautology");
6466   if (_bit_map->isMarked(addr+1)) {
6467     // this is an allocated object that might not yet be initialized
6468     assert(_skip_bits == 0, "tautology");
6469     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6470     oop p = oop(addr);
6471     if (p->klass_or_null() == NULL) {
6472       // in the case of Clean-on-Enter optimization, redirty card
6473       // and avoid clearing card by increasing  the threshold.
6474       return true;
6475     }
6476   }
6477   scan_oops_in_oop(addr);
6478   return true;
6479 }
6480 
6481 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6482   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6483   // Should we assert that our work queue is empty or
6484   // below some drain limit?
6485   assert(_work_queue->size() == 0,
6486          "should drain stack to limit stack usage");
6487   // convert ptr to an oop preparatory to scanning
6488   oop obj = oop(ptr);
6489   // Ignore mark word in verification below, since we
6490   // may be running concurrent with mutators.
6491   assert(obj->is_oop(true), "should be an oop");
6492   assert(_finger <= ptr, "_finger runneth ahead");
6493   // advance the finger to right end of this object
6494   _finger = ptr + obj->size();
6495   assert(_finger > ptr, "we just incremented it above");
6496   // On large heaps, it may take us some time to get through
6497   // the marking phase. During
6498   // this time it's possible that a lot of mutations have
6499   // accumulated in the card table and the mod union table --
6500   // these mutation records are redundant until we have
6501   // actually traced into the corresponding card.
6502   // Here, we check whether advancing the finger would make
6503   // us cross into a new card, and if so clear corresponding
6504   // cards in the MUT (preclean them in the card-table in the
6505   // future).
6506 
6507   // The clean-on-enter optimization is disabled by default,
6508   // until we fix 6178663.
6509   if (CMSCleanOnEnter && (_finger > _threshold)) {
6510     // [_threshold, _finger) represents the interval
6511     // of cards to be cleared  in MUT (or precleaned in card table).
6512     // The set of cards to be cleared is all those that overlap
6513     // with the interval [_threshold, _finger); note that
6514     // _threshold is always kept card-aligned but _finger isn't
6515     // always card-aligned.
6516     HeapWord* old_threshold = _threshold;
6517     assert(old_threshold == (HeapWord*)round_to(
6518             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6519            "_threshold should always be card-aligned");
6520     _threshold = (HeapWord*)round_to(
6521                    (intptr_t)_finger, CardTableModRefBS::card_size);
6522     MemRegion mr(old_threshold, _threshold);
6523     assert(!mr.is_empty(), "Control point invariant");
6524     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6525     _mut->clear_range(mr);
6526   }
6527 
6528   // Note: the local finger doesn't advance while we drain
6529   // the stack below, but the global finger sure can and will.
6530   HeapWord** gfa = _task->global_finger_addr();
6531   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6532                                          _span, _bit_map,
6533                                          _work_queue,
6534                                          _overflow_stack,
6535                                          _finger,
6536                                          gfa, this);
6537   bool res = _work_queue->push(obj);   // overflow could occur here
6538   assert(res, "Will hold once we use workqueues");
6539   while (true) {
6540     oop new_oop;
6541     if (!_work_queue->pop_local(new_oop)) {
6542       // We emptied our work_queue; check if there's stuff that can
6543       // be gotten from the overflow stack.
6544       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6545             _overflow_stack, _work_queue)) {
6546         do_yield_check();
6547         continue;
6548       } else {  // done
6549         break;
6550       }
6551     }
6552     // Skip verifying header mark word below because we are
6553     // running concurrent with mutators.
6554     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6555     // now scan this oop's oops
6556     new_oop->oop_iterate(&pushOrMarkClosure);
6557     do_yield_check();
6558   }
6559   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6560 }
6561 
6562 // Yield in response to a request from VM Thread or
6563 // from mutators.
6564 void ParMarkFromRootsClosure::do_yield_work() {
6565   assert(_task != NULL, "sanity");
6566   _task->yield();
6567 }
6568 
6569 // A variant of the above used for verifying CMS marking work.
6570 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6571                         MemRegion span,
6572                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6573                         CMSMarkStack*  mark_stack):
6574   _collector(collector),
6575   _span(span),
6576   _verification_bm(verification_bm),
6577   _cms_bm(cms_bm),
6578   _mark_stack(mark_stack),
6579   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6580                       mark_stack)
6581 {
6582   assert(_mark_stack->isEmpty(), "stack should be empty");
6583   _finger = _verification_bm->startWord();
6584   assert(_collector->_restart_addr == NULL, "Sanity check");
6585   assert(_span.contains(_finger), "Out of bounds _finger?");
6586 }
6587 
6588 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6589   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6590   assert(_span.contains(addr), "Out of bounds _finger?");
6591   _finger = addr;
6592 }
6593 
6594 // Should revisit to see if this should be restructured for
6595 // greater efficiency.
6596 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6597   // convert offset into a HeapWord*
6598   HeapWord* addr = _verification_bm->startWord() + offset;
6599   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6600          "address out of range");
6601   assert(_verification_bm->isMarked(addr), "tautology");
6602   assert(_cms_bm->isMarked(addr), "tautology");
6603 
6604   assert(_mark_stack->isEmpty(),
6605          "should drain stack to limit stack usage");
6606   // convert addr to an oop preparatory to scanning
6607   oop obj = oop(addr);
6608   assert(obj->is_oop(), "should be an oop");
6609   assert(_finger <= addr, "_finger runneth ahead");
6610   // advance the finger to right end of this object
6611   _finger = addr + obj->size();
6612   assert(_finger > addr, "we just incremented it above");
6613   // Note: the finger doesn't advance while we drain
6614   // the stack below.
6615   bool res = _mark_stack->push(obj);
6616   assert(res, "Empty non-zero size stack should have space for single push");
6617   while (!_mark_stack->isEmpty()) {
6618     oop new_oop = _mark_stack->pop();
6619     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6620     // now scan this oop's oops
6621     new_oop->oop_iterate(&_pam_verify_closure);
6622   }
6623   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6624   return true;
6625 }
6626 
6627 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6628   CMSCollector* collector, MemRegion span,
6629   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6630   CMSMarkStack*  mark_stack):
6631   MetadataAwareOopClosure(collector->ref_processor()),
6632   _collector(collector),
6633   _span(span),
6634   _verification_bm(verification_bm),
6635   _cms_bm(cms_bm),
6636   _mark_stack(mark_stack)
6637 { }
6638 
6639 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6640 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6641 
6642 // Upon stack overflow, we discard (part of) the stack,
6643 // remembering the least address amongst those discarded
6644 // in CMSCollector's _restart_address.
6645 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6646   // Remember the least grey address discarded
6647   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6648   _collector->lower_restart_addr(ra);
6649   _mark_stack->reset();  // discard stack contents
6650   _mark_stack->expand(); // expand the stack if possible
6651 }
6652 
6653 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6654   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6655   HeapWord* addr = (HeapWord*)obj;
6656   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6657     // Oop lies in _span and isn't yet grey or black
6658     _verification_bm->mark(addr);            // now grey
6659     if (!_cms_bm->isMarked(addr)) {
6660       Log(gc, verify) log;
6661       ResourceMark rm;
6662       oop(addr)->print_on(log.error_stream());
6663       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6664       fatal("... aborting");
6665     }
6666 
6667     if (!_mark_stack->push(obj)) { // stack overflow
6668       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6669       assert(_mark_stack->isFull(), "Else push should have succeeded");
6670       handle_stack_overflow(addr);
6671     }
6672     // anything including and to the right of _finger
6673     // will be scanned as we iterate over the remainder of the
6674     // bit map
6675   }
6676 }
6677 
6678 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6679                      MemRegion span,
6680                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6681                      HeapWord* finger, MarkFromRootsClosure* parent) :
6682   MetadataAwareOopClosure(collector->ref_processor()),
6683   _collector(collector),
6684   _span(span),
6685   _bitMap(bitMap),
6686   _markStack(markStack),
6687   _finger(finger),
6688   _parent(parent)
6689 { }
6690 
6691 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6692                                            MemRegion span,
6693                                            CMSBitMap* bit_map,
6694                                            OopTaskQueue* work_queue,
6695                                            CMSMarkStack*  overflow_stack,
6696                                            HeapWord* finger,
6697                                            HeapWord** global_finger_addr,
6698                                            ParMarkFromRootsClosure* parent) :
6699   MetadataAwareOopClosure(collector->ref_processor()),
6700   _collector(collector),
6701   _whole_span(collector->_span),
6702   _span(span),
6703   _bit_map(bit_map),
6704   _work_queue(work_queue),
6705   _overflow_stack(overflow_stack),
6706   _finger(finger),
6707   _global_finger_addr(global_finger_addr),
6708   _parent(parent)
6709 { }
6710 
6711 // Assumes thread-safe access by callers, who are
6712 // responsible for mutual exclusion.
6713 void CMSCollector::lower_restart_addr(HeapWord* low) {
6714   assert(_span.contains(low), "Out of bounds addr");
6715   if (_restart_addr == NULL) {
6716     _restart_addr = low;
6717   } else {
6718     _restart_addr = MIN2(_restart_addr, low);
6719   }
6720 }
6721 
6722 // Upon stack overflow, we discard (part of) the stack,
6723 // remembering the least address amongst those discarded
6724 // in CMSCollector's _restart_address.
6725 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6726   // Remember the least grey address discarded
6727   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6728   _collector->lower_restart_addr(ra);
6729   _markStack->reset();  // discard stack contents
6730   _markStack->expand(); // expand the stack if possible
6731 }
6732 
6733 // Upon stack overflow, we discard (part of) the stack,
6734 // remembering the least address amongst those discarded
6735 // in CMSCollector's _restart_address.
6736 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6737   // We need to do this under a mutex to prevent other
6738   // workers from interfering with the work done below.
6739   MutexLockerEx ml(_overflow_stack->par_lock(),
6740                    Mutex::_no_safepoint_check_flag);
6741   // Remember the least grey address discarded
6742   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6743   _collector->lower_restart_addr(ra);
6744   _overflow_stack->reset();  // discard stack contents
6745   _overflow_stack->expand(); // expand the stack if possible
6746 }
6747 
6748 void PushOrMarkClosure::do_oop(oop obj) {
6749   // Ignore mark word because we are running concurrent with mutators.
6750   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6751   HeapWord* addr = (HeapWord*)obj;
6752   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6753     // Oop lies in _span and isn't yet grey or black
6754     _bitMap->mark(addr);            // now grey
6755     if (addr < _finger) {
6756       // the bit map iteration has already either passed, or
6757       // sampled, this bit in the bit map; we'll need to
6758       // use the marking stack to scan this oop's oops.
6759       bool simulate_overflow = false;
6760       NOT_PRODUCT(
6761         if (CMSMarkStackOverflowALot &&
6762             _collector->simulate_overflow()) {
6763           // simulate a stack overflow
6764           simulate_overflow = true;
6765         }
6766       )
6767       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6768         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6769         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6770         handle_stack_overflow(addr);
6771       }
6772     }
6773     // anything including and to the right of _finger
6774     // will be scanned as we iterate over the remainder of the
6775     // bit map
6776     do_yield_check();
6777   }
6778 }
6779 
6780 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6781 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6782 
6783 void ParPushOrMarkClosure::do_oop(oop obj) {
6784   // Ignore mark word because we are running concurrent with mutators.
6785   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6786   HeapWord* addr = (HeapWord*)obj;
6787   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6788     // Oop lies in _span and isn't yet grey or black
6789     // We read the global_finger (volatile read) strictly after marking oop
6790     bool res = _bit_map->par_mark(addr);    // now grey
6791     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6792     // Should we push this marked oop on our stack?
6793     // -- if someone else marked it, nothing to do
6794     // -- if target oop is above global finger nothing to do
6795     // -- if target oop is in chunk and above local finger
6796     //      then nothing to do
6797     // -- else push on work queue
6798     if (   !res       // someone else marked it, they will deal with it
6799         || (addr >= *gfa)  // will be scanned in a later task
6800         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6801       return;
6802     }
6803     // the bit map iteration has already either passed, or
6804     // sampled, this bit in the bit map; we'll need to
6805     // use the marking stack to scan this oop's oops.
6806     bool simulate_overflow = false;
6807     NOT_PRODUCT(
6808       if (CMSMarkStackOverflowALot &&
6809           _collector->simulate_overflow()) {
6810         // simulate a stack overflow
6811         simulate_overflow = true;
6812       }
6813     )
6814     if (simulate_overflow ||
6815         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6816       // stack overflow
6817       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6818       // We cannot assert that the overflow stack is full because
6819       // it may have been emptied since.
6820       assert(simulate_overflow ||
6821              _work_queue->size() == _work_queue->max_elems(),
6822             "Else push should have succeeded");
6823       handle_stack_overflow(addr);
6824     }
6825     do_yield_check();
6826   }
6827 }
6828 
6829 void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6830 void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6831 
6832 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6833                                        MemRegion span,
6834                                        ReferenceProcessor* rp,
6835                                        CMSBitMap* bit_map,
6836                                        CMSBitMap* mod_union_table,
6837                                        CMSMarkStack*  mark_stack,
6838                                        bool           concurrent_precleaning):
6839   MetadataAwareOopClosure(rp),
6840   _collector(collector),
6841   _span(span),
6842   _bit_map(bit_map),
6843   _mod_union_table(mod_union_table),
6844   _mark_stack(mark_stack),
6845   _concurrent_precleaning(concurrent_precleaning)
6846 {
6847   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6848 }
6849 
6850 // Grey object rescan during pre-cleaning and second checkpoint phases --
6851 // the non-parallel version (the parallel version appears further below.)
6852 void PushAndMarkClosure::do_oop(oop obj) {
6853   // Ignore mark word verification. If during concurrent precleaning,
6854   // the object monitor may be locked. If during the checkpoint
6855   // phases, the object may already have been reached by a  different
6856   // path and may be at the end of the global overflow list (so
6857   // the mark word may be NULL).
6858   assert(obj->is_oop_or_null(true /* ignore mark word */),
6859          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6860   HeapWord* addr = (HeapWord*)obj;
6861   // Check if oop points into the CMS generation
6862   // and is not marked
6863   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6864     // a white object ...
6865     _bit_map->mark(addr);         // ... now grey
6866     // push on the marking stack (grey set)
6867     bool simulate_overflow = false;
6868     NOT_PRODUCT(
6869       if (CMSMarkStackOverflowALot &&
6870           _collector->simulate_overflow()) {
6871         // simulate a stack overflow
6872         simulate_overflow = true;
6873       }
6874     )
6875     if (simulate_overflow || !_mark_stack->push(obj)) {
6876       if (_concurrent_precleaning) {
6877          // During precleaning we can just dirty the appropriate card(s)
6878          // in the mod union table, thus ensuring that the object remains
6879          // in the grey set  and continue. In the case of object arrays
6880          // we need to dirty all of the cards that the object spans,
6881          // since the rescan of object arrays will be limited to the
6882          // dirty cards.
6883          // Note that no one can be interfering with us in this action
6884          // of dirtying the mod union table, so no locking or atomics
6885          // are required.
6886          if (obj->is_objArray()) {
6887            size_t sz = obj->size();
6888            HeapWord* end_card_addr = (HeapWord*)round_to(
6889                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6890            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6891            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6892            _mod_union_table->mark_range(redirty_range);
6893          } else {
6894            _mod_union_table->mark(addr);
6895          }
6896          _collector->_ser_pmc_preclean_ovflw++;
6897       } else {
6898          // During the remark phase, we need to remember this oop
6899          // in the overflow list.
6900          _collector->push_on_overflow_list(obj);
6901          _collector->_ser_pmc_remark_ovflw++;
6902       }
6903     }
6904   }
6905 }
6906 
6907 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6908                                              MemRegion span,
6909                                              ReferenceProcessor* rp,
6910                                              CMSBitMap* bit_map,
6911                                              OopTaskQueue* work_queue):
6912   MetadataAwareOopClosure(rp),
6913   _collector(collector),
6914   _span(span),
6915   _bit_map(bit_map),
6916   _work_queue(work_queue)
6917 {
6918   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6919 }
6920 
6921 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6922 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6923 
6924 // Grey object rescan during second checkpoint phase --
6925 // the parallel version.
6926 void ParPushAndMarkClosure::do_oop(oop obj) {
6927   // In the assert below, we ignore the mark word because
6928   // this oop may point to an already visited object that is
6929   // on the overflow stack (in which case the mark word has
6930   // been hijacked for chaining into the overflow stack --
6931   // if this is the last object in the overflow stack then
6932   // its mark word will be NULL). Because this object may
6933   // have been subsequently popped off the global overflow
6934   // stack, and the mark word possibly restored to the prototypical
6935   // value, by the time we get to examined this failing assert in
6936   // the debugger, is_oop_or_null(false) may subsequently start
6937   // to hold.
6938   assert(obj->is_oop_or_null(true),
6939          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6940   HeapWord* addr = (HeapWord*)obj;
6941   // Check if oop points into the CMS generation
6942   // and is not marked
6943   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6944     // a white object ...
6945     // If we manage to "claim" the object, by being the
6946     // first thread to mark it, then we push it on our
6947     // marking stack
6948     if (_bit_map->par_mark(addr)) {     // ... now grey
6949       // push on work queue (grey set)
6950       bool simulate_overflow = false;
6951       NOT_PRODUCT(
6952         if (CMSMarkStackOverflowALot &&
6953             _collector->par_simulate_overflow()) {
6954           // simulate a stack overflow
6955           simulate_overflow = true;
6956         }
6957       )
6958       if (simulate_overflow || !_work_queue->push(obj)) {
6959         _collector->par_push_on_overflow_list(obj);
6960         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6961       }
6962     } // Else, some other thread got there first
6963   }
6964 }
6965 
6966 void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6967 void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6968 
6969 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6970   Mutex* bml = _collector->bitMapLock();
6971   assert_lock_strong(bml);
6972   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6973          "CMS thread should hold CMS token");
6974 
6975   bml->unlock();
6976   ConcurrentMarkSweepThread::desynchronize(true);
6977 
6978   _collector->stopTimer();
6979   _collector->incrementYields();
6980 
6981   // See the comment in coordinator_yield()
6982   for (unsigned i = 0; i < CMSYieldSleepCount &&
6983                        ConcurrentMarkSweepThread::should_yield() &&
6984                        !CMSCollector::foregroundGCIsActive(); ++i) {
6985     os::sleep(Thread::current(), 1, false);
6986   }
6987 
6988   ConcurrentMarkSweepThread::synchronize(true);
6989   bml->lock();
6990 
6991   _collector->startTimer();
6992 }
6993 
6994 bool CMSPrecleanRefsYieldClosure::should_return() {
6995   if (ConcurrentMarkSweepThread::should_yield()) {
6996     do_yield_work();
6997   }
6998   return _collector->foregroundGCIsActive();
6999 }
7000 
7001 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7002   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7003          "mr should be aligned to start at a card boundary");
7004   // We'd like to assert:
7005   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7006   //        "mr should be a range of cards");
7007   // However, that would be too strong in one case -- the last
7008   // partition ends at _unallocated_block which, in general, can be
7009   // an arbitrary boundary, not necessarily card aligned.
7010   _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7011   _space->object_iterate_mem(mr, &_scan_cl);
7012 }
7013 
7014 SweepClosure::SweepClosure(CMSCollector* collector,
7015                            ConcurrentMarkSweepGeneration* g,
7016                            CMSBitMap* bitMap, bool should_yield) :
7017   _collector(collector),
7018   _g(g),
7019   _sp(g->cmsSpace()),
7020   _limit(_sp->sweep_limit()),
7021   _freelistLock(_sp->freelistLock()),
7022   _bitMap(bitMap),
7023   _yield(should_yield),
7024   _inFreeRange(false),           // No free range at beginning of sweep
7025   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7026   _lastFreeRangeCoalesced(false),
7027   _freeFinger(g->used_region().start())
7028 {
7029   NOT_PRODUCT(
7030     _numObjectsFreed = 0;
7031     _numWordsFreed   = 0;
7032     _numObjectsLive = 0;
7033     _numWordsLive = 0;
7034     _numObjectsAlreadyFree = 0;
7035     _numWordsAlreadyFree = 0;
7036     _last_fc = NULL;
7037 
7038     _sp->initializeIndexedFreeListArrayReturnedBytes();
7039     _sp->dictionary()->initialize_dict_returned_bytes();
7040   )
7041   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7042          "sweep _limit out of bounds");
7043   log_develop_trace(gc, sweep)("====================");
7044   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7045 }
7046 
7047 void SweepClosure::print_on(outputStream* st) const {
7048   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7049                p2i(_sp->bottom()), p2i(_sp->end()));
7050   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7051   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7052   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7053   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7054                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7055 }
7056 
7057 #ifndef PRODUCT
7058 // Assertion checking only:  no useful work in product mode --
7059 // however, if any of the flags below become product flags,
7060 // you may need to review this code to see if it needs to be
7061 // enabled in product mode.
7062 SweepClosure::~SweepClosure() {
7063   assert_lock_strong(_freelistLock);
7064   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7065          "sweep _limit out of bounds");
7066   if (inFreeRange()) {
7067     Log(gc, sweep) log;
7068     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7069     ResourceMark rm;
7070     print_on(log.error_stream());
7071     ShouldNotReachHere();
7072   }
7073 
7074   if (log_is_enabled(Debug, gc, sweep)) {
7075     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7076                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7077     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7078                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7079     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7080     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7081   }
7082 
7083   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7084     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7085     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7086     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7087     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7088                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7089   }
7090   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7091   log_develop_trace(gc, sweep)("================");
7092 }
7093 #endif  // PRODUCT
7094 
7095 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7096     bool freeRangeInFreeLists) {
7097   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7098                                p2i(freeFinger), freeRangeInFreeLists);
7099   assert(!inFreeRange(), "Trampling existing free range");
7100   set_inFreeRange(true);
7101   set_lastFreeRangeCoalesced(false);
7102 
7103   set_freeFinger(freeFinger);
7104   set_freeRangeInFreeLists(freeRangeInFreeLists);
7105   if (CMSTestInFreeList) {
7106     if (freeRangeInFreeLists) {
7107       FreeChunk* fc = (FreeChunk*) freeFinger;
7108       assert(fc->is_free(), "A chunk on the free list should be free.");
7109       assert(fc->size() > 0, "Free range should have a size");
7110       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7111     }
7112   }
7113 }
7114 
7115 // Note that the sweeper runs concurrently with mutators. Thus,
7116 // it is possible for direct allocation in this generation to happen
7117 // in the middle of the sweep. Note that the sweeper also coalesces
7118 // contiguous free blocks. Thus, unless the sweeper and the allocator
7119 // synchronize appropriately freshly allocated blocks may get swept up.
7120 // This is accomplished by the sweeper locking the free lists while
7121 // it is sweeping. Thus blocks that are determined to be free are
7122 // indeed free. There is however one additional complication:
7123 // blocks that have been allocated since the final checkpoint and
7124 // mark, will not have been marked and so would be treated as
7125 // unreachable and swept up. To prevent this, the allocator marks
7126 // the bit map when allocating during the sweep phase. This leads,
7127 // however, to a further complication -- objects may have been allocated
7128 // but not yet initialized -- in the sense that the header isn't yet
7129 // installed. The sweeper can not then determine the size of the block
7130 // in order to skip over it. To deal with this case, we use a technique
7131 // (due to Printezis) to encode such uninitialized block sizes in the
7132 // bit map. Since the bit map uses a bit per every HeapWord, but the
7133 // CMS generation has a minimum object size of 3 HeapWords, it follows
7134 // that "normal marks" won't be adjacent in the bit map (there will
7135 // always be at least two 0 bits between successive 1 bits). We make use
7136 // of these "unused" bits to represent uninitialized blocks -- the bit
7137 // corresponding to the start of the uninitialized object and the next
7138 // bit are both set. Finally, a 1 bit marks the end of the object that
7139 // started with the two consecutive 1 bits to indicate its potentially
7140 // uninitialized state.
7141 
7142 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7143   FreeChunk* fc = (FreeChunk*)addr;
7144   size_t res;
7145 
7146   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7147   // than "addr == _limit" because although _limit was a block boundary when
7148   // we started the sweep, it may no longer be one because heap expansion
7149   // may have caused us to coalesce the block ending at the address _limit
7150   // with a newly expanded chunk (this happens when _limit was set to the
7151   // previous _end of the space), so we may have stepped past _limit:
7152   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7153   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7154     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7155            "sweep _limit out of bounds");
7156     assert(addr < _sp->end(), "addr out of bounds");
7157     // Flush any free range we might be holding as a single
7158     // coalesced chunk to the appropriate free list.
7159     if (inFreeRange()) {
7160       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7161              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7162       flush_cur_free_chunk(freeFinger(),
7163                            pointer_delta(addr, freeFinger()));
7164       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7165                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7166                                    lastFreeRangeCoalesced() ? 1 : 0);
7167     }
7168 
7169     // help the iterator loop finish
7170     return pointer_delta(_sp->end(), addr);
7171   }
7172 
7173   assert(addr < _limit, "sweep invariant");
7174   // check if we should yield
7175   do_yield_check(addr);
7176   if (fc->is_free()) {
7177     // Chunk that is already free
7178     res = fc->size();
7179     do_already_free_chunk(fc);
7180     debug_only(_sp->verifyFreeLists());
7181     // If we flush the chunk at hand in lookahead_and_flush()
7182     // and it's coalesced with a preceding chunk, then the
7183     // process of "mangling" the payload of the coalesced block
7184     // will cause erasure of the size information from the
7185     // (erstwhile) header of all the coalesced blocks but the
7186     // first, so the first disjunct in the assert will not hold
7187     // in that specific case (in which case the second disjunct
7188     // will hold).
7189     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7190            "Otherwise the size info doesn't change at this step");
7191     NOT_PRODUCT(
7192       _numObjectsAlreadyFree++;
7193       _numWordsAlreadyFree += res;
7194     )
7195     NOT_PRODUCT(_last_fc = fc;)
7196   } else if (!_bitMap->isMarked(addr)) {
7197     // Chunk is fresh garbage
7198     res = do_garbage_chunk(fc);
7199     debug_only(_sp->verifyFreeLists());
7200     NOT_PRODUCT(
7201       _numObjectsFreed++;
7202       _numWordsFreed += res;
7203     )
7204   } else {
7205     // Chunk that is alive.
7206     res = do_live_chunk(fc);
7207     debug_only(_sp->verifyFreeLists());
7208     NOT_PRODUCT(
7209         _numObjectsLive++;
7210         _numWordsLive += res;
7211     )
7212   }
7213   return res;
7214 }
7215 
7216 // For the smart allocation, record following
7217 //  split deaths - a free chunk is removed from its free list because
7218 //      it is being split into two or more chunks.
7219 //  split birth - a free chunk is being added to its free list because
7220 //      a larger free chunk has been split and resulted in this free chunk.
7221 //  coal death - a free chunk is being removed from its free list because
7222 //      it is being coalesced into a large free chunk.
7223 //  coal birth - a free chunk is being added to its free list because
7224 //      it was created when two or more free chunks where coalesced into
7225 //      this free chunk.
7226 //
7227 // These statistics are used to determine the desired number of free
7228 // chunks of a given size.  The desired number is chosen to be relative
7229 // to the end of a CMS sweep.  The desired number at the end of a sweep
7230 // is the
7231 //      count-at-end-of-previous-sweep (an amount that was enough)
7232 //              - count-at-beginning-of-current-sweep  (the excess)
7233 //              + split-births  (gains in this size during interval)
7234 //              - split-deaths  (demands on this size during interval)
7235 // where the interval is from the end of one sweep to the end of the
7236 // next.
7237 //
7238 // When sweeping the sweeper maintains an accumulated chunk which is
7239 // the chunk that is made up of chunks that have been coalesced.  That
7240 // will be termed the left-hand chunk.  A new chunk of garbage that
7241 // is being considered for coalescing will be referred to as the
7242 // right-hand chunk.
7243 //
7244 // When making a decision on whether to coalesce a right-hand chunk with
7245 // the current left-hand chunk, the current count vs. the desired count
7246 // of the left-hand chunk is considered.  Also if the right-hand chunk
7247 // is near the large chunk at the end of the heap (see
7248 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7249 // left-hand chunk is coalesced.
7250 //
7251 // When making a decision about whether to split a chunk, the desired count
7252 // vs. the current count of the candidate to be split is also considered.
7253 // If the candidate is underpopulated (currently fewer chunks than desired)
7254 // a chunk of an overpopulated (currently more chunks than desired) size may
7255 // be chosen.  The "hint" associated with a free list, if non-null, points
7256 // to a free list which may be overpopulated.
7257 //
7258 
7259 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7260   const size_t size = fc->size();
7261   // Chunks that cannot be coalesced are not in the
7262   // free lists.
7263   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7264     assert(_sp->verify_chunk_in_free_list(fc),
7265            "free chunk should be in free lists");
7266   }
7267   // a chunk that is already free, should not have been
7268   // marked in the bit map
7269   HeapWord* const addr = (HeapWord*) fc;
7270   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7271   // Verify that the bit map has no bits marked between
7272   // addr and purported end of this block.
7273   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7274 
7275   // Some chunks cannot be coalesced under any circumstances.
7276   // See the definition of cantCoalesce().
7277   if (!fc->cantCoalesce()) {
7278     // This chunk can potentially be coalesced.
7279     // All the work is done in
7280     do_post_free_or_garbage_chunk(fc, size);
7281     // Note that if the chunk is not coalescable (the else arm
7282     // below), we unconditionally flush, without needing to do
7283     // a "lookahead," as we do below.
7284     if (inFreeRange()) lookahead_and_flush(fc, size);
7285   } else {
7286     // Code path common to both original and adaptive free lists.
7287 
7288     // cant coalesce with previous block; this should be treated
7289     // as the end of a free run if any
7290     if (inFreeRange()) {
7291       // we kicked some butt; time to pick up the garbage
7292       assert(freeFinger() < addr, "freeFinger points too high");
7293       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7294     }
7295     // else, nothing to do, just continue
7296   }
7297 }
7298 
7299 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7300   // This is a chunk of garbage.  It is not in any free list.
7301   // Add it to a free list or let it possibly be coalesced into
7302   // a larger chunk.
7303   HeapWord* const addr = (HeapWord*) fc;
7304   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7305 
7306   // Verify that the bit map has no bits marked between
7307   // addr and purported end of just dead object.
7308   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7309   do_post_free_or_garbage_chunk(fc, size);
7310 
7311   assert(_limit >= addr + size,
7312          "A freshly garbage chunk can't possibly straddle over _limit");
7313   if (inFreeRange()) lookahead_and_flush(fc, size);
7314   return size;
7315 }
7316 
7317 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7318   HeapWord* addr = (HeapWord*) fc;
7319   // The sweeper has just found a live object. Return any accumulated
7320   // left hand chunk to the free lists.
7321   if (inFreeRange()) {
7322     assert(freeFinger() < addr, "freeFinger points too high");
7323     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7324   }
7325 
7326   // This object is live: we'd normally expect this to be
7327   // an oop, and like to assert the following:
7328   // assert(oop(addr)->is_oop(), "live block should be an oop");
7329   // However, as we commented above, this may be an object whose
7330   // header hasn't yet been initialized.
7331   size_t size;
7332   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7333   if (_bitMap->isMarked(addr + 1)) {
7334     // Determine the size from the bit map, rather than trying to
7335     // compute it from the object header.
7336     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7337     size = pointer_delta(nextOneAddr + 1, addr);
7338     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7339            "alignment problem");
7340 
7341 #ifdef ASSERT
7342       if (oop(addr)->klass_or_null() != NULL) {
7343         // Ignore mark word because we are running concurrent with mutators
7344         assert(oop(addr)->is_oop(true), "live block should be an oop");
7345         assert(size ==
7346                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7347                "P-mark and computed size do not agree");
7348       }
7349 #endif
7350 
7351   } else {
7352     // This should be an initialized object that's alive.
7353     assert(oop(addr)->klass_or_null() != NULL,
7354            "Should be an initialized object");
7355     // Ignore mark word because we are running concurrent with mutators
7356     assert(oop(addr)->is_oop(true), "live block should be an oop");
7357     // Verify that the bit map has no bits marked between
7358     // addr and purported end of this block.
7359     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7360     assert(size >= 3, "Necessary for Printezis marks to work");
7361     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7362     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7363   }
7364   return size;
7365 }
7366 
7367 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7368                                                  size_t chunkSize) {
7369   // do_post_free_or_garbage_chunk() should only be called in the case
7370   // of the adaptive free list allocator.
7371   const bool fcInFreeLists = fc->is_free();
7372   assert((HeapWord*)fc <= _limit, "sweep invariant");
7373   if (CMSTestInFreeList && fcInFreeLists) {
7374     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7375   }
7376 
7377   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7378 
7379   HeapWord* const fc_addr = (HeapWord*) fc;
7380 
7381   bool coalesce = false;
7382   const size_t left  = pointer_delta(fc_addr, freeFinger());
7383   const size_t right = chunkSize;
7384   switch (FLSCoalescePolicy) {
7385     // numeric value forms a coalition aggressiveness metric
7386     case 0:  { // never coalesce
7387       coalesce = false;
7388       break;
7389     }
7390     case 1: { // coalesce if left & right chunks on overpopulated lists
7391       coalesce = _sp->coalOverPopulated(left) &&
7392                  _sp->coalOverPopulated(right);
7393       break;
7394     }
7395     case 2: { // coalesce if left chunk on overpopulated list (default)
7396       coalesce = _sp->coalOverPopulated(left);
7397       break;
7398     }
7399     case 3: { // coalesce if left OR right chunk on overpopulated list
7400       coalesce = _sp->coalOverPopulated(left) ||
7401                  _sp->coalOverPopulated(right);
7402       break;
7403     }
7404     case 4: { // always coalesce
7405       coalesce = true;
7406       break;
7407     }
7408     default:
7409      ShouldNotReachHere();
7410   }
7411 
7412   // Should the current free range be coalesced?
7413   // If the chunk is in a free range and either we decided to coalesce above
7414   // or the chunk is near the large block at the end of the heap
7415   // (isNearLargestChunk() returns true), then coalesce this chunk.
7416   const bool doCoalesce = inFreeRange()
7417                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7418   if (doCoalesce) {
7419     // Coalesce the current free range on the left with the new
7420     // chunk on the right.  If either is on a free list,
7421     // it must be removed from the list and stashed in the closure.
7422     if (freeRangeInFreeLists()) {
7423       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7424       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7425              "Size of free range is inconsistent with chunk size.");
7426       if (CMSTestInFreeList) {
7427         assert(_sp->verify_chunk_in_free_list(ffc),
7428                "Chunk is not in free lists");
7429       }
7430       _sp->coalDeath(ffc->size());
7431       _sp->removeFreeChunkFromFreeLists(ffc);
7432       set_freeRangeInFreeLists(false);
7433     }
7434     if (fcInFreeLists) {
7435       _sp->coalDeath(chunkSize);
7436       assert(fc->size() == chunkSize,
7437         "The chunk has the wrong size or is not in the free lists");
7438       _sp->removeFreeChunkFromFreeLists(fc);
7439     }
7440     set_lastFreeRangeCoalesced(true);
7441     print_free_block_coalesced(fc);
7442   } else {  // not in a free range and/or should not coalesce
7443     // Return the current free range and start a new one.
7444     if (inFreeRange()) {
7445       // In a free range but cannot coalesce with the right hand chunk.
7446       // Put the current free range into the free lists.
7447       flush_cur_free_chunk(freeFinger(),
7448                            pointer_delta(fc_addr, freeFinger()));
7449     }
7450     // Set up for new free range.  Pass along whether the right hand
7451     // chunk is in the free lists.
7452     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7453   }
7454 }
7455 
7456 // Lookahead flush:
7457 // If we are tracking a free range, and this is the last chunk that
7458 // we'll look at because its end crosses past _limit, we'll preemptively
7459 // flush it along with any free range we may be holding on to. Note that
7460 // this can be the case only for an already free or freshly garbage
7461 // chunk. If this block is an object, it can never straddle
7462 // over _limit. The "straddling" occurs when _limit is set at
7463 // the previous end of the space when this cycle started, and
7464 // a subsequent heap expansion caused the previously co-terminal
7465 // free block to be coalesced with the newly expanded portion,
7466 // thus rendering _limit a non-block-boundary making it dangerous
7467 // for the sweeper to step over and examine.
7468 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7469   assert(inFreeRange(), "Should only be called if currently in a free range.");
7470   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7471   assert(_sp->used_region().contains(eob - 1),
7472          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7473          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7474          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7475          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7476   if (eob >= _limit) {
7477     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7478     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7479                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7480                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7481                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7482     // Return the storage we are tracking back into the free lists.
7483     log_develop_trace(gc, sweep)("Flushing ... ");
7484     assert(freeFinger() < eob, "Error");
7485     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7486   }
7487 }
7488 
7489 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7490   assert(inFreeRange(), "Should only be called if currently in a free range.");
7491   assert(size > 0,
7492     "A zero sized chunk cannot be added to the free lists.");
7493   if (!freeRangeInFreeLists()) {
7494     if (CMSTestInFreeList) {
7495       FreeChunk* fc = (FreeChunk*) chunk;
7496       fc->set_size(size);
7497       assert(!_sp->verify_chunk_in_free_list(fc),
7498              "chunk should not be in free lists yet");
7499     }
7500     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7501     // A new free range is going to be starting.  The current
7502     // free range has not been added to the free lists yet or
7503     // was removed so add it back.
7504     // If the current free range was coalesced, then the death
7505     // of the free range was recorded.  Record a birth now.
7506     if (lastFreeRangeCoalesced()) {
7507       _sp->coalBirth(size);
7508     }
7509     _sp->addChunkAndRepairOffsetTable(chunk, size,
7510             lastFreeRangeCoalesced());
7511   } else {
7512     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7513   }
7514   set_inFreeRange(false);
7515   set_freeRangeInFreeLists(false);
7516 }
7517 
7518 // We take a break if we've been at this for a while,
7519 // so as to avoid monopolizing the locks involved.
7520 void SweepClosure::do_yield_work(HeapWord* addr) {
7521   // Return current free chunk being used for coalescing (if any)
7522   // to the appropriate freelist.  After yielding, the next
7523   // free block encountered will start a coalescing range of
7524   // free blocks.  If the next free block is adjacent to the
7525   // chunk just flushed, they will need to wait for the next
7526   // sweep to be coalesced.
7527   if (inFreeRange()) {
7528     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7529   }
7530 
7531   // First give up the locks, then yield, then re-lock.
7532   // We should probably use a constructor/destructor idiom to
7533   // do this unlock/lock or modify the MutexUnlocker class to
7534   // serve our purpose. XXX
7535   assert_lock_strong(_bitMap->lock());
7536   assert_lock_strong(_freelistLock);
7537   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7538          "CMS thread should hold CMS token");
7539   _bitMap->lock()->unlock();
7540   _freelistLock->unlock();
7541   ConcurrentMarkSweepThread::desynchronize(true);
7542   _collector->stopTimer();
7543   _collector->incrementYields();
7544 
7545   // See the comment in coordinator_yield()
7546   for (unsigned i = 0; i < CMSYieldSleepCount &&
7547                        ConcurrentMarkSweepThread::should_yield() &&
7548                        !CMSCollector::foregroundGCIsActive(); ++i) {
7549     os::sleep(Thread::current(), 1, false);
7550   }
7551 
7552   ConcurrentMarkSweepThread::synchronize(true);
7553   _freelistLock->lock();
7554   _bitMap->lock()->lock_without_safepoint_check();
7555   _collector->startTimer();
7556 }
7557 
7558 #ifndef PRODUCT
7559 // This is actually very useful in a product build if it can
7560 // be called from the debugger.  Compile it into the product
7561 // as needed.
7562 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7563   return debug_cms_space->verify_chunk_in_free_list(fc);
7564 }
7565 #endif
7566 
7567 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7568   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7569                                p2i(fc), fc->size());
7570 }
7571 
7572 // CMSIsAliveClosure
7573 bool CMSIsAliveClosure::do_object_b(oop obj) {
7574   HeapWord* addr = (HeapWord*)obj;
7575   return addr != NULL &&
7576          (!_span.contains(addr) || _bit_map->isMarked(addr));
7577 }
7578 
7579 
7580 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7581                       MemRegion span,
7582                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7583                       bool cpc):
7584   _collector(collector),
7585   _span(span),
7586   _bit_map(bit_map),
7587   _mark_stack(mark_stack),
7588   _concurrent_precleaning(cpc) {
7589   assert(!_span.is_empty(), "Empty span could spell trouble");
7590 }
7591 
7592 
7593 // CMSKeepAliveClosure: the serial version
7594 void CMSKeepAliveClosure::do_oop(oop obj) {
7595   HeapWord* addr = (HeapWord*)obj;
7596   if (_span.contains(addr) &&
7597       !_bit_map->isMarked(addr)) {
7598     _bit_map->mark(addr);
7599     bool simulate_overflow = false;
7600     NOT_PRODUCT(
7601       if (CMSMarkStackOverflowALot &&
7602           _collector->simulate_overflow()) {
7603         // simulate a stack overflow
7604         simulate_overflow = true;
7605       }
7606     )
7607     if (simulate_overflow || !_mark_stack->push(obj)) {
7608       if (_concurrent_precleaning) {
7609         // We dirty the overflown object and let the remark
7610         // phase deal with it.
7611         assert(_collector->overflow_list_is_empty(), "Error");
7612         // In the case of object arrays, we need to dirty all of
7613         // the cards that the object spans. No locking or atomics
7614         // are needed since no one else can be mutating the mod union
7615         // table.
7616         if (obj->is_objArray()) {
7617           size_t sz = obj->size();
7618           HeapWord* end_card_addr =
7619             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7620           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7621           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7622           _collector->_modUnionTable.mark_range(redirty_range);
7623         } else {
7624           _collector->_modUnionTable.mark(addr);
7625         }
7626         _collector->_ser_kac_preclean_ovflw++;
7627       } else {
7628         _collector->push_on_overflow_list(obj);
7629         _collector->_ser_kac_ovflw++;
7630       }
7631     }
7632   }
7633 }
7634 
7635 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7636 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7637 
7638 // CMSParKeepAliveClosure: a parallel version of the above.
7639 // The work queues are private to each closure (thread),
7640 // but (may be) available for stealing by other threads.
7641 void CMSParKeepAliveClosure::do_oop(oop obj) {
7642   HeapWord* addr = (HeapWord*)obj;
7643   if (_span.contains(addr) &&
7644       !_bit_map->isMarked(addr)) {
7645     // In general, during recursive tracing, several threads
7646     // may be concurrently getting here; the first one to
7647     // "tag" it, claims it.
7648     if (_bit_map->par_mark(addr)) {
7649       bool res = _work_queue->push(obj);
7650       assert(res, "Low water mark should be much less than capacity");
7651       // Do a recursive trim in the hope that this will keep
7652       // stack usage lower, but leave some oops for potential stealers
7653       trim_queue(_low_water_mark);
7654     } // Else, another thread got there first
7655   }
7656 }
7657 
7658 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7659 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7660 
7661 void CMSParKeepAliveClosure::trim_queue(uint max) {
7662   while (_work_queue->size() > max) {
7663     oop new_oop;
7664     if (_work_queue->pop_local(new_oop)) {
7665       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7666       assert(_bit_map->isMarked((HeapWord*)new_oop),
7667              "no white objects on this stack!");
7668       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7669       // iterate over the oops in this oop, marking and pushing
7670       // the ones in CMS heap (i.e. in _span).
7671       new_oop->oop_iterate(&_mark_and_push);
7672     }
7673   }
7674 }
7675 
7676 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7677                                 CMSCollector* collector,
7678                                 MemRegion span, CMSBitMap* bit_map,
7679                                 OopTaskQueue* work_queue):
7680   _collector(collector),
7681   _span(span),
7682   _bit_map(bit_map),
7683   _work_queue(work_queue) { }
7684 
7685 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7686   HeapWord* addr = (HeapWord*)obj;
7687   if (_span.contains(addr) &&
7688       !_bit_map->isMarked(addr)) {
7689     if (_bit_map->par_mark(addr)) {
7690       bool simulate_overflow = false;
7691       NOT_PRODUCT(
7692         if (CMSMarkStackOverflowALot &&
7693             _collector->par_simulate_overflow()) {
7694           // simulate a stack overflow
7695           simulate_overflow = true;
7696         }
7697       )
7698       if (simulate_overflow || !_work_queue->push(obj)) {
7699         _collector->par_push_on_overflow_list(obj);
7700         _collector->_par_kac_ovflw++;
7701       }
7702     } // Else another thread got there already
7703   }
7704 }
7705 
7706 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7707 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7708 
7709 //////////////////////////////////////////////////////////////////
7710 //  CMSExpansionCause                /////////////////////////////
7711 //////////////////////////////////////////////////////////////////
7712 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7713   switch (cause) {
7714     case _no_expansion:
7715       return "No expansion";
7716     case _satisfy_free_ratio:
7717       return "Free ratio";
7718     case _satisfy_promotion:
7719       return "Satisfy promotion";
7720     case _satisfy_allocation:
7721       return "allocation";
7722     case _allocate_par_lab:
7723       return "Par LAB";
7724     case _allocate_par_spooling_space:
7725       return "Par Spooling Space";
7726     case _adaptive_size_policy:
7727       return "Ergonomics";
7728     default:
7729       return "unknown";
7730   }
7731 }
7732 
7733 void CMSDrainMarkingStackClosure::do_void() {
7734   // the max number to take from overflow list at a time
7735   const size_t num = _mark_stack->capacity()/4;
7736   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7737          "Overflow list should be NULL during concurrent phases");
7738   while (!_mark_stack->isEmpty() ||
7739          // if stack is empty, check the overflow list
7740          _collector->take_from_overflow_list(num, _mark_stack)) {
7741     oop obj = _mark_stack->pop();
7742     HeapWord* addr = (HeapWord*)obj;
7743     assert(_span.contains(addr), "Should be within span");
7744     assert(_bit_map->isMarked(addr), "Should be marked");
7745     assert(obj->is_oop(), "Should be an oop");
7746     obj->oop_iterate(_keep_alive);
7747   }
7748 }
7749 
7750 void CMSParDrainMarkingStackClosure::do_void() {
7751   // drain queue
7752   trim_queue(0);
7753 }
7754 
7755 // Trim our work_queue so its length is below max at return
7756 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7757   while (_work_queue->size() > max) {
7758     oop new_oop;
7759     if (_work_queue->pop_local(new_oop)) {
7760       assert(new_oop->is_oop(), "Expected an oop");
7761       assert(_bit_map->isMarked((HeapWord*)new_oop),
7762              "no white objects on this stack!");
7763       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7764       // iterate over the oops in this oop, marking and pushing
7765       // the ones in CMS heap (i.e. in _span).
7766       new_oop->oop_iterate(&_mark_and_push);
7767     }
7768   }
7769 }
7770 
7771 ////////////////////////////////////////////////////////////////////
7772 // Support for Marking Stack Overflow list handling and related code
7773 ////////////////////////////////////////////////////////////////////
7774 // Much of the following code is similar in shape and spirit to the
7775 // code used in ParNewGC. We should try and share that code
7776 // as much as possible in the future.
7777 
7778 #ifndef PRODUCT
7779 // Debugging support for CMSStackOverflowALot
7780 
7781 // It's OK to call this multi-threaded;  the worst thing
7782 // that can happen is that we'll get a bunch of closely
7783 // spaced simulated overflows, but that's OK, in fact
7784 // probably good as it would exercise the overflow code
7785 // under contention.
7786 bool CMSCollector::simulate_overflow() {
7787   if (_overflow_counter-- <= 0) { // just being defensive
7788     _overflow_counter = CMSMarkStackOverflowInterval;
7789     return true;
7790   } else {
7791     return false;
7792   }
7793 }
7794 
7795 bool CMSCollector::par_simulate_overflow() {
7796   return simulate_overflow();
7797 }
7798 #endif
7799 
7800 // Single-threaded
7801 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7802   assert(stack->isEmpty(), "Expected precondition");
7803   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7804   size_t i = num;
7805   oop  cur = _overflow_list;
7806   const markOop proto = markOopDesc::prototype();
7807   NOT_PRODUCT(ssize_t n = 0;)
7808   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7809     next = oop(cur->mark());
7810     cur->set_mark(proto);   // until proven otherwise
7811     assert(cur->is_oop(), "Should be an oop");
7812     bool res = stack->push(cur);
7813     assert(res, "Bit off more than can chew?");
7814     NOT_PRODUCT(n++;)
7815   }
7816   _overflow_list = cur;
7817 #ifndef PRODUCT
7818   assert(_num_par_pushes >= n, "Too many pops?");
7819   _num_par_pushes -=n;
7820 #endif
7821   return !stack->isEmpty();
7822 }
7823 
7824 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7825 // (MT-safe) Get a prefix of at most "num" from the list.
7826 // The overflow list is chained through the mark word of
7827 // each object in the list. We fetch the entire list,
7828 // break off a prefix of the right size and return the
7829 // remainder. If other threads try to take objects from
7830 // the overflow list at that time, they will wait for
7831 // some time to see if data becomes available. If (and
7832 // only if) another thread places one or more object(s)
7833 // on the global list before we have returned the suffix
7834 // to the global list, we will walk down our local list
7835 // to find its end and append the global list to
7836 // our suffix before returning it. This suffix walk can
7837 // prove to be expensive (quadratic in the amount of traffic)
7838 // when there are many objects in the overflow list and
7839 // there is much producer-consumer contention on the list.
7840 // *NOTE*: The overflow list manipulation code here and
7841 // in ParNewGeneration:: are very similar in shape,
7842 // except that in the ParNew case we use the old (from/eden)
7843 // copy of the object to thread the list via its klass word.
7844 // Because of the common code, if you make any changes in
7845 // the code below, please check the ParNew version to see if
7846 // similar changes might be needed.
7847 // CR 6797058 has been filed to consolidate the common code.
7848 bool CMSCollector::par_take_from_overflow_list(size_t num,
7849                                                OopTaskQueue* work_q,
7850                                                int no_of_gc_threads) {
7851   assert(work_q->size() == 0, "First empty local work queue");
7852   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7853   if (_overflow_list == NULL) {
7854     return false;
7855   }
7856   // Grab the entire list; we'll put back a suffix
7857   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7858   Thread* tid = Thread::current();
7859   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7860   // set to ParallelGCThreads.
7861   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7862   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7863   // If the list is busy, we spin for a short while,
7864   // sleeping between attempts to get the list.
7865   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7866     os::sleep(tid, sleep_time_millis, false);
7867     if (_overflow_list == NULL) {
7868       // Nothing left to take
7869       return false;
7870     } else if (_overflow_list != BUSY) {
7871       // Try and grab the prefix
7872       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7873     }
7874   }
7875   // If the list was found to be empty, or we spun long
7876   // enough, we give up and return empty-handed. If we leave
7877   // the list in the BUSY state below, it must be the case that
7878   // some other thread holds the overflow list and will set it
7879   // to a non-BUSY state in the future.
7880   if (prefix == NULL || prefix == BUSY) {
7881      // Nothing to take or waited long enough
7882      if (prefix == NULL) {
7883        // Write back the NULL in case we overwrote it with BUSY above
7884        // and it is still the same value.
7885        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7886      }
7887      return false;
7888   }
7889   assert(prefix != NULL && prefix != BUSY, "Error");
7890   size_t i = num;
7891   oop cur = prefix;
7892   // Walk down the first "num" objects, unless we reach the end.
7893   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7894   if (cur->mark() == NULL) {
7895     // We have "num" or fewer elements in the list, so there
7896     // is nothing to return to the global list.
7897     // Write back the NULL in lieu of the BUSY we wrote
7898     // above, if it is still the same value.
7899     if (_overflow_list == BUSY) {
7900       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7901     }
7902   } else {
7903     // Chop off the suffix and return it to the global list.
7904     assert(cur->mark() != BUSY, "Error");
7905     oop suffix_head = cur->mark(); // suffix will be put back on global list
7906     cur->set_mark(NULL);           // break off suffix
7907     // It's possible that the list is still in the empty(busy) state
7908     // we left it in a short while ago; in that case we may be
7909     // able to place back the suffix without incurring the cost
7910     // of a walk down the list.
7911     oop observed_overflow_list = _overflow_list;
7912     oop cur_overflow_list = observed_overflow_list;
7913     bool attached = false;
7914     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7915       observed_overflow_list =
7916         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7917       if (cur_overflow_list == observed_overflow_list) {
7918         attached = true;
7919         break;
7920       } else cur_overflow_list = observed_overflow_list;
7921     }
7922     if (!attached) {
7923       // Too bad, someone else sneaked in (at least) an element; we'll need
7924       // to do a splice. Find tail of suffix so we can prepend suffix to global
7925       // list.
7926       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7927       oop suffix_tail = cur;
7928       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7929              "Tautology");
7930       observed_overflow_list = _overflow_list;
7931       do {
7932         cur_overflow_list = observed_overflow_list;
7933         if (cur_overflow_list != BUSY) {
7934           // Do the splice ...
7935           suffix_tail->set_mark(markOop(cur_overflow_list));
7936         } else { // cur_overflow_list == BUSY
7937           suffix_tail->set_mark(NULL);
7938         }
7939         // ... and try to place spliced list back on overflow_list ...
7940         observed_overflow_list =
7941           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7942       } while (cur_overflow_list != observed_overflow_list);
7943       // ... until we have succeeded in doing so.
7944     }
7945   }
7946 
7947   // Push the prefix elements on work_q
7948   assert(prefix != NULL, "control point invariant");
7949   const markOop proto = markOopDesc::prototype();
7950   oop next;
7951   NOT_PRODUCT(ssize_t n = 0;)
7952   for (cur = prefix; cur != NULL; cur = next) {
7953     next = oop(cur->mark());
7954     cur->set_mark(proto);   // until proven otherwise
7955     assert(cur->is_oop(), "Should be an oop");
7956     bool res = work_q->push(cur);
7957     assert(res, "Bit off more than we can chew?");
7958     NOT_PRODUCT(n++;)
7959   }
7960 #ifndef PRODUCT
7961   assert(_num_par_pushes >= n, "Too many pops?");
7962   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7963 #endif
7964   return true;
7965 }
7966 
7967 // Single-threaded
7968 void CMSCollector::push_on_overflow_list(oop p) {
7969   NOT_PRODUCT(_num_par_pushes++;)
7970   assert(p->is_oop(), "Not an oop");
7971   preserve_mark_if_necessary(p);
7972   p->set_mark((markOop)_overflow_list);
7973   _overflow_list = p;
7974 }
7975 
7976 // Multi-threaded; use CAS to prepend to overflow list
7977 void CMSCollector::par_push_on_overflow_list(oop p) {
7978   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7979   assert(p->is_oop(), "Not an oop");
7980   par_preserve_mark_if_necessary(p);
7981   oop observed_overflow_list = _overflow_list;
7982   oop cur_overflow_list;
7983   do {
7984     cur_overflow_list = observed_overflow_list;
7985     if (cur_overflow_list != BUSY) {
7986       p->set_mark(markOop(cur_overflow_list));
7987     } else {
7988       p->set_mark(NULL);
7989     }
7990     observed_overflow_list =
7991       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
7992   } while (cur_overflow_list != observed_overflow_list);
7993 }
7994 #undef BUSY
7995 
7996 // Single threaded
7997 // General Note on GrowableArray: pushes may silently fail
7998 // because we are (temporarily) out of C-heap for expanding
7999 // the stack. The problem is quite ubiquitous and affects
8000 // a lot of code in the JVM. The prudent thing for GrowableArray
8001 // to do (for now) is to exit with an error. However, that may
8002 // be too draconian in some cases because the caller may be
8003 // able to recover without much harm. For such cases, we
8004 // should probably introduce a "soft_push" method which returns
8005 // an indication of success or failure with the assumption that
8006 // the caller may be able to recover from a failure; code in
8007 // the VM can then be changed, incrementally, to deal with such
8008 // failures where possible, thus, incrementally hardening the VM
8009 // in such low resource situations.
8010 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8011   _preserved_oop_stack.push(p);
8012   _preserved_mark_stack.push(m);
8013   assert(m == p->mark(), "Mark word changed");
8014   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8015          "bijection");
8016 }
8017 
8018 // Single threaded
8019 void CMSCollector::preserve_mark_if_necessary(oop p) {
8020   markOop m = p->mark();
8021   if (m->must_be_preserved(p)) {
8022     preserve_mark_work(p, m);
8023   }
8024 }
8025 
8026 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8027   markOop m = p->mark();
8028   if (m->must_be_preserved(p)) {
8029     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8030     // Even though we read the mark word without holding
8031     // the lock, we are assured that it will not change
8032     // because we "own" this oop, so no other thread can
8033     // be trying to push it on the overflow list; see
8034     // the assertion in preserve_mark_work() that checks
8035     // that m == p->mark().
8036     preserve_mark_work(p, m);
8037   }
8038 }
8039 
8040 // We should be able to do this multi-threaded,
8041 // a chunk of stack being a task (this is
8042 // correct because each oop only ever appears
8043 // once in the overflow list. However, it's
8044 // not very easy to completely overlap this with
8045 // other operations, so will generally not be done
8046 // until all work's been completed. Because we
8047 // expect the preserved oop stack (set) to be small,
8048 // it's probably fine to do this single-threaded.
8049 // We can explore cleverer concurrent/overlapped/parallel
8050 // processing of preserved marks if we feel the
8051 // need for this in the future. Stack overflow should
8052 // be so rare in practice and, when it happens, its
8053 // effect on performance so great that this will
8054 // likely just be in the noise anyway.
8055 void CMSCollector::restore_preserved_marks_if_any() {
8056   assert(SafepointSynchronize::is_at_safepoint(),
8057          "world should be stopped");
8058   assert(Thread::current()->is_ConcurrentGC_thread() ||
8059          Thread::current()->is_VM_thread(),
8060          "should be single-threaded");
8061   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8062          "bijection");
8063 
8064   while (!_preserved_oop_stack.is_empty()) {
8065     oop p = _preserved_oop_stack.pop();
8066     assert(p->is_oop(), "Should be an oop");
8067     assert(_span.contains(p), "oop should be in _span");
8068     assert(p->mark() == markOopDesc::prototype(),
8069            "Set when taken from overflow list");
8070     markOop m = _preserved_mark_stack.pop();
8071     p->set_mark(m);
8072   }
8073   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8074          "stacks were cleared above");
8075 }
8076 
8077 #ifndef PRODUCT
8078 bool CMSCollector::no_preserved_marks() const {
8079   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8080 }
8081 #endif
8082 
8083 // Transfer some number of overflown objects to usual marking
8084 // stack. Return true if some objects were transferred.
8085 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8086   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8087                     (size_t)ParGCDesiredObjsFromOverflowList);
8088 
8089   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8090   assert(_collector->overflow_list_is_empty() || res,
8091          "If list is not empty, we should have taken something");
8092   assert(!res || !_mark_stack->isEmpty(),
8093          "If we took something, it should now be on our stack");
8094   return res;
8095 }
8096 
8097 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8098   size_t res = _sp->block_size_no_stall(addr, _collector);
8099   if (_sp->block_is_obj(addr)) {
8100     if (_live_bit_map->isMarked(addr)) {
8101       // It can't have been dead in a previous cycle
8102       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8103     } else {
8104       _dead_bit_map->mark(addr);      // mark the dead object
8105     }
8106   }
8107   // Could be 0, if the block size could not be computed without stalling.
8108   return res;
8109 }
8110 
8111 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8112 
8113   switch (phase) {
8114     case CMSCollector::InitialMarking:
8115       initialize(true  /* fullGC */ ,
8116                  cause /* cause of the GC */,
8117                  true  /* recordGCBeginTime */,
8118                  true  /* recordPreGCUsage */,
8119                  false /* recordPeakUsage */,
8120                  false /* recordPostGCusage */,
8121                  true  /* recordAccumulatedGCTime */,
8122                  false /* recordGCEndTime */,
8123                  false /* countCollection */  );
8124       break;
8125 
8126     case CMSCollector::FinalMarking:
8127       initialize(true  /* fullGC */ ,
8128                  cause /* cause of the GC */,
8129                  false /* recordGCBeginTime */,
8130                  false /* recordPreGCUsage */,
8131                  false /* recordPeakUsage */,
8132                  false /* recordPostGCusage */,
8133                  true  /* recordAccumulatedGCTime */,
8134                  false /* recordGCEndTime */,
8135                  false /* countCollection */  );
8136       break;
8137 
8138     case CMSCollector::Sweeping:
8139       initialize(true  /* fullGC */ ,
8140                  cause /* cause of the GC */,
8141                  false /* recordGCBeginTime */,
8142                  false /* recordPreGCUsage */,
8143                  true  /* recordPeakUsage */,
8144                  true  /* recordPostGCusage */,
8145                  false /* recordAccumulatedGCTime */,
8146                  true  /* recordGCEndTime */,
8147                  true  /* countCollection */  );
8148       break;
8149 
8150     default:
8151       ShouldNotReachHere();
8152   }
8153 }