1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsOopClosures.inline.hpp"
  33 #include "gc/cms/compactibleFreeListSpace.hpp"
  34 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc/cms/concurrentMarkSweepThread.hpp"
  36 #include "gc/cms/parNewGeneration.hpp"
  37 #include "gc/cms/vmCMSOperations.hpp"
  38 #include "gc/serial/genMarkSweep.hpp"
  39 #include "gc/serial/tenuredGeneration.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/cardGeneration.inline.hpp"
  42 #include "gc/shared/cardTableRS.hpp"
  43 #include "gc/shared/collectedHeap.inline.hpp"
  44 #include "gc/shared/collectorCounters.hpp"
  45 #include "gc/shared/collectorPolicy.hpp"
  46 #include "gc/shared/gcLocker.inline.hpp"
  47 #include "gc/shared/gcPolicyCounters.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/genCollectedHeap.hpp"
  52 #include "gc/shared/genOopClosures.inline.hpp"
  53 #include "gc/shared/isGCActiveMark.hpp"
  54 #include "gc/shared/referencePolicy.hpp"
  55 #include "gc/shared/strongRootsScope.hpp"
  56 #include "gc/shared/taskqueue.inline.hpp"
  57 #include "logging/log.hpp"
  58 #include "memory/allocation.hpp"
  59 #include "memory/iterator.inline.hpp"
  60 #include "memory/padded.hpp"
  61 #include "memory/resourceArea.hpp"
  62 #include "oops/oop.inline.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "runtime/atomic.inline.hpp"
  65 #include "runtime/globals_extension.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "services/memoryService.hpp"
  72 #include "services/runtimeService.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 // statics
  76 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  77 bool CMSCollector::_full_gc_requested = false;
  78 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  79 
  80 //////////////////////////////////////////////////////////////////
  81 // In support of CMS/VM thread synchronization
  82 //////////////////////////////////////////////////////////////////
  83 // We split use of the CGC_lock into 2 "levels".
  84 // The low-level locking is of the usual CGC_lock monitor. We introduce
  85 // a higher level "token" (hereafter "CMS token") built on top of the
  86 // low level monitor (hereafter "CGC lock").
  87 // The token-passing protocol gives priority to the VM thread. The
  88 // CMS-lock doesn't provide any fairness guarantees, but clients
  89 // should ensure that it is only held for very short, bounded
  90 // durations.
  91 //
  92 // When either of the CMS thread or the VM thread is involved in
  93 // collection operations during which it does not want the other
  94 // thread to interfere, it obtains the CMS token.
  95 //
  96 // If either thread tries to get the token while the other has
  97 // it, that thread waits. However, if the VM thread and CMS thread
  98 // both want the token, then the VM thread gets priority while the
  99 // CMS thread waits. This ensures, for instance, that the "concurrent"
 100 // phases of the CMS thread's work do not block out the VM thread
 101 // for long periods of time as the CMS thread continues to hog
 102 // the token. (See bug 4616232).
 103 //
 104 // The baton-passing functions are, however, controlled by the
 105 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 106 // and here the low-level CMS lock, not the high level token,
 107 // ensures mutual exclusion.
 108 //
 109 // Two important conditions that we have to satisfy:
 110 // 1. if a thread does a low-level wait on the CMS lock, then it
 111 //    relinquishes the CMS token if it were holding that token
 112 //    when it acquired the low-level CMS lock.
 113 // 2. any low-level notifications on the low-level lock
 114 //    should only be sent when a thread has relinquished the token.
 115 //
 116 // In the absence of either property, we'd have potential deadlock.
 117 //
 118 // We protect each of the CMS (concurrent and sequential) phases
 119 // with the CMS _token_, not the CMS _lock_.
 120 //
 121 // The only code protected by CMS lock is the token acquisition code
 122 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 123 // baton-passing code.
 124 //
 125 // Unfortunately, i couldn't come up with a good abstraction to factor and
 126 // hide the naked CGC_lock manipulation in the baton-passing code
 127 // further below. That's something we should try to do. Also, the proof
 128 // of correctness of this 2-level locking scheme is far from obvious,
 129 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 130 // that there may be a theoretical possibility of delay/starvation in the
 131 // low-level lock/wait/notify scheme used for the baton-passing because of
 132 // potential interference with the priority scheme embodied in the
 133 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 134 // invocation further below and marked with "XXX 20011219YSR".
 135 // Indeed, as we note elsewhere, this may become yet more slippery
 136 // in the presence of multiple CMS and/or multiple VM threads. XXX
 137 
 138 class CMSTokenSync: public StackObj {
 139  private:
 140   bool _is_cms_thread;
 141  public:
 142   CMSTokenSync(bool is_cms_thread):
 143     _is_cms_thread(is_cms_thread) {
 144     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 145            "Incorrect argument to constructor");
 146     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 147   }
 148 
 149   ~CMSTokenSync() {
 150     assert(_is_cms_thread ?
 151              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 152              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 153           "Incorrect state");
 154     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 155   }
 156 };
 157 
 158 // Convenience class that does a CMSTokenSync, and then acquires
 159 // upto three locks.
 160 class CMSTokenSyncWithLocks: public CMSTokenSync {
 161  private:
 162   // Note: locks are acquired in textual declaration order
 163   // and released in the opposite order
 164   MutexLockerEx _locker1, _locker2, _locker3;
 165  public:
 166   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 167                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 168     CMSTokenSync(is_cms_thread),
 169     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 170     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 171     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 172   { }
 173 };
 174 
 175 
 176 //////////////////////////////////////////////////////////////////
 177 //  Concurrent Mark-Sweep Generation /////////////////////////////
 178 //////////////////////////////////////////////////////////////////
 179 
 180 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 181 
 182 // This struct contains per-thread things necessary to support parallel
 183 // young-gen collection.
 184 class CMSParGCThreadState: public CHeapObj<mtGC> {
 185  public:
 186   CompactibleFreeListSpaceLAB lab;
 187   PromotionInfo promo;
 188 
 189   // Constructor.
 190   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 191     promo.setSpace(cfls);
 192   }
 193 };
 194 
 195 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 196      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 197   CardGeneration(rs, initial_byte_size, ct),
 198   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 199   _did_compact(false)
 200 {
 201   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 202   HeapWord* end    = (HeapWord*) _virtual_space.high();
 203 
 204   _direct_allocated_words = 0;
 205   NOT_PRODUCT(
 206     _numObjectsPromoted = 0;
 207     _numWordsPromoted = 0;
 208     _numObjectsAllocated = 0;
 209     _numWordsAllocated = 0;
 210   )
 211 
 212   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 213   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 214   _cmsSpace->_old_gen = this;
 215 
 216   _gc_stats = new CMSGCStats();
 217 
 218   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 219   // offsets match. The ability to tell free chunks from objects
 220   // depends on this property.
 221   debug_only(
 222     FreeChunk* junk = NULL;
 223     assert(UseCompressedClassPointers ||
 224            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 225            "Offset of FreeChunk::_prev within FreeChunk must match"
 226            "  that of OopDesc::_klass within OopDesc");
 227   )
 228 
 229   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 230   for (uint i = 0; i < ParallelGCThreads; i++) {
 231     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 232   }
 233 
 234   _incremental_collection_failed = false;
 235   // The "dilatation_factor" is the expansion that can occur on
 236   // account of the fact that the minimum object size in the CMS
 237   // generation may be larger than that in, say, a contiguous young
 238   //  generation.
 239   // Ideally, in the calculation below, we'd compute the dilatation
 240   // factor as: MinChunkSize/(promoting_gen's min object size)
 241   // Since we do not have such a general query interface for the
 242   // promoting generation, we'll instead just use the minimum
 243   // object size (which today is a header's worth of space);
 244   // note that all arithmetic is in units of HeapWords.
 245   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 246   assert(_dilatation_factor >= 1.0, "from previous assert");
 247 }
 248 
 249 
 250 // The field "_initiating_occupancy" represents the occupancy percentage
 251 // at which we trigger a new collection cycle.  Unless explicitly specified
 252 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 253 // is calculated by:
 254 //
 255 //   Let "f" be MinHeapFreeRatio in
 256 //
 257 //    _initiating_occupancy = 100-f +
 258 //                           f * (CMSTriggerRatio/100)
 259 //   where CMSTriggerRatio is the argument "tr" below.
 260 //
 261 // That is, if we assume the heap is at its desired maximum occupancy at the
 262 // end of a collection, we let CMSTriggerRatio of the (purported) free
 263 // space be allocated before initiating a new collection cycle.
 264 //
 265 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 266   assert(io <= 100 && tr <= 100, "Check the arguments");
 267   if (io >= 0) {
 268     _initiating_occupancy = (double)io / 100.0;
 269   } else {
 270     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 271                              (double)(tr * MinHeapFreeRatio) / 100.0)
 272                             / 100.0;
 273   }
 274 }
 275 
 276 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 277   assert(collector() != NULL, "no collector");
 278   collector()->ref_processor_init();
 279 }
 280 
 281 void CMSCollector::ref_processor_init() {
 282   if (_ref_processor == NULL) {
 283     // Allocate and initialize a reference processor
 284     _ref_processor =
 285       new ReferenceProcessor(_span,                               // span
 286                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 287                              ParallelGCThreads,                   // mt processing degree
 288                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 289                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 290                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 291                              &_is_alive_closure);                 // closure for liveness info
 292     // Initialize the _ref_processor field of CMSGen
 293     _cmsGen->set_ref_processor(_ref_processor);
 294 
 295   }
 296 }
 297 
 298 AdaptiveSizePolicy* CMSCollector::size_policy() {
 299   GenCollectedHeap* gch = GenCollectedHeap::heap();
 300   return gch->gen_policy()->size_policy();
 301 }
 302 
 303 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 304 
 305   const char* gen_name = "old";
 306   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 307   // Generation Counters - generation 1, 1 subspace
 308   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 309       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 310 
 311   _space_counters = new GSpaceCounters(gen_name, 0,
 312                                        _virtual_space.reserved_size(),
 313                                        this, _gen_counters);
 314 }
 315 
 316 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 317   _cms_gen(cms_gen)
 318 {
 319   assert(alpha <= 100, "bad value");
 320   _saved_alpha = alpha;
 321 
 322   // Initialize the alphas to the bootstrap value of 100.
 323   _gc0_alpha = _cms_alpha = 100;
 324 
 325   _cms_begin_time.update();
 326   _cms_end_time.update();
 327 
 328   _gc0_duration = 0.0;
 329   _gc0_period = 0.0;
 330   _gc0_promoted = 0;
 331 
 332   _cms_duration = 0.0;
 333   _cms_period = 0.0;
 334   _cms_allocated = 0;
 335 
 336   _cms_used_at_gc0_begin = 0;
 337   _cms_used_at_gc0_end = 0;
 338   _allow_duty_cycle_reduction = false;
 339   _valid_bits = 0;
 340 }
 341 
 342 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 343   // TBD: CR 6909490
 344   return 1.0;
 345 }
 346 
 347 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 348 }
 349 
 350 // If promotion failure handling is on use
 351 // the padded average size of the promotion for each
 352 // young generation collection.
 353 double CMSStats::time_until_cms_gen_full() const {
 354   size_t cms_free = _cms_gen->cmsSpace()->free();
 355   GenCollectedHeap* gch = GenCollectedHeap::heap();
 356   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 357                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 358   if (cms_free > expected_promotion) {
 359     // Start a cms collection if there isn't enough space to promote
 360     // for the next young collection.  Use the padded average as
 361     // a safety factor.
 362     cms_free -= expected_promotion;
 363 
 364     // Adjust by the safety factor.
 365     double cms_free_dbl = (double)cms_free;
 366     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 367     // Apply a further correction factor which tries to adjust
 368     // for recent occurance of concurrent mode failures.
 369     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 370     cms_free_dbl = cms_free_dbl * cms_adjustment;
 371 
 372     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 373                   cms_free, expected_promotion);
 374     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 375     // Add 1 in case the consumption rate goes to zero.
 376     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 377   }
 378   return 0.0;
 379 }
 380 
 381 // Compare the duration of the cms collection to the
 382 // time remaining before the cms generation is empty.
 383 // Note that the time from the start of the cms collection
 384 // to the start of the cms sweep (less than the total
 385 // duration of the cms collection) can be used.  This
 386 // has been tried and some applications experienced
 387 // promotion failures early in execution.  This was
 388 // possibly because the averages were not accurate
 389 // enough at the beginning.
 390 double CMSStats::time_until_cms_start() const {
 391   // We add "gc0_period" to the "work" calculation
 392   // below because this query is done (mostly) at the
 393   // end of a scavenge, so we need to conservatively
 394   // account for that much possible delay
 395   // in the query so as to avoid concurrent mode failures
 396   // due to starting the collection just a wee bit too
 397   // late.
 398   double work = cms_duration() + gc0_period();
 399   double deadline = time_until_cms_gen_full();
 400   // If a concurrent mode failure occurred recently, we want to be
 401   // more conservative and halve our expected time_until_cms_gen_full()
 402   if (work > deadline) {
 403     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 404                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 405     return 0.0;
 406   }
 407   return work - deadline;
 408 }
 409 
 410 #ifndef PRODUCT
 411 void CMSStats::print_on(outputStream *st) const {
 412   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 413   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 414                gc0_duration(), gc0_period(), gc0_promoted());
 415   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 416             cms_duration(), cms_period(), cms_allocated());
 417   st->print(",cms_since_beg=%g,cms_since_end=%g",
 418             cms_time_since_begin(), cms_time_since_end());
 419   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 420             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 421 
 422   if (valid()) {
 423     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 424               promotion_rate(), cms_allocation_rate());
 425     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 426               cms_consumption_rate(), time_until_cms_gen_full());
 427   }
 428   st->cr();
 429 }
 430 #endif // #ifndef PRODUCT
 431 
 432 CMSCollector::CollectorState CMSCollector::_collectorState =
 433                              CMSCollector::Idling;
 434 bool CMSCollector::_foregroundGCIsActive = false;
 435 bool CMSCollector::_foregroundGCShouldWait = false;
 436 
 437 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 438                            CardTableRS*                   ct,
 439                            ConcurrentMarkSweepPolicy*     cp):
 440   _cmsGen(cmsGen),
 441   _ct(ct),
 442   _ref_processor(NULL),    // will be set later
 443   _conc_workers(NULL),     // may be set later
 444   _abort_preclean(false),
 445   _start_sampling(false),
 446   _between_prologue_and_epilogue(false),
 447   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 448   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 449                  -1 /* lock-free */, "No_lock" /* dummy */),
 450   _modUnionClosurePar(&_modUnionTable),
 451   // Adjust my span to cover old (cms) gen
 452   _span(cmsGen->reserved()),
 453   // Construct the is_alive_closure with _span & markBitMap
 454   _is_alive_closure(_span, &_markBitMap),
 455   _restart_addr(NULL),
 456   _overflow_list(NULL),
 457   _stats(cmsGen),
 458   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 459                              //verify that this lock should be acquired with safepoint check.
 460                              Monitor::_safepoint_check_sometimes)),
 461   _eden_chunk_array(NULL),     // may be set in ctor body
 462   _eden_chunk_capacity(0),     // -- ditto --
 463   _eden_chunk_index(0),        // -- ditto --
 464   _survivor_plab_array(NULL),  // -- ditto --
 465   _survivor_chunk_array(NULL), // -- ditto --
 466   _survivor_chunk_capacity(0), // -- ditto --
 467   _survivor_chunk_index(0),    // -- ditto --
 468   _ser_pmc_preclean_ovflw(0),
 469   _ser_kac_preclean_ovflw(0),
 470   _ser_pmc_remark_ovflw(0),
 471   _par_pmc_remark_ovflw(0),
 472   _ser_kac_ovflw(0),
 473   _par_kac_ovflw(0),
 474 #ifndef PRODUCT
 475   _num_par_pushes(0),
 476 #endif
 477   _collection_count_start(0),
 478   _verifying(false),
 479   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 480   _completed_initialization(false),
 481   _collector_policy(cp),
 482   _should_unload_classes(ClassUnloadingWithConcurrentMark),
 483   _concurrent_cycles_since_last_unload(0),
 484   _roots_scanning_options(GenCollectedHeap::SO_None),
 485   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 486   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 487   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 488   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 489   _cms_start_registered(false)
 490 {
 491   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 492     ExplicitGCInvokesConcurrent = true;
 493   }
 494   // Now expand the span and allocate the collection support structures
 495   // (MUT, marking bit map etc.) to cover both generations subject to
 496   // collection.
 497 
 498   // For use by dirty card to oop closures.
 499   _cmsGen->cmsSpace()->set_collector(this);
 500 
 501   // Allocate MUT and marking bit map
 502   {
 503     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 504     if (!_markBitMap.allocate(_span)) {
 505       log_warning(gc)("Failed to allocate CMS Bit Map");
 506       return;
 507     }
 508     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 509   }
 510   {
 511     _modUnionTable.allocate(_span);
 512     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 513   }
 514 
 515   if (!_markStack.allocate(MarkStackSize)) {
 516     log_warning(gc)("Failed to allocate CMS Marking Stack");
 517     return;
 518   }
 519 
 520   // Support for multi-threaded concurrent phases
 521   if (CMSConcurrentMTEnabled) {
 522     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 523       // just for now
 524       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 525     }
 526     if (ConcGCThreads > 1) {
 527       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 528                                  ConcGCThreads, true);
 529       if (_conc_workers == NULL) {
 530         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 531         CMSConcurrentMTEnabled = false;
 532       } else {
 533         _conc_workers->initialize_workers();
 534       }
 535     } else {
 536       CMSConcurrentMTEnabled = false;
 537     }
 538   }
 539   if (!CMSConcurrentMTEnabled) {
 540     ConcGCThreads = 0;
 541   } else {
 542     // Turn off CMSCleanOnEnter optimization temporarily for
 543     // the MT case where it's not fixed yet; see 6178663.
 544     CMSCleanOnEnter = false;
 545   }
 546   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 547          "Inconsistency");
 548   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 549   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 550 
 551   // Parallel task queues; these are shared for the
 552   // concurrent and stop-world phases of CMS, but
 553   // are not shared with parallel scavenge (ParNew).
 554   {
 555     uint i;
 556     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 557 
 558     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 559          || ParallelRefProcEnabled)
 560         && num_queues > 0) {
 561       _task_queues = new OopTaskQueueSet(num_queues);
 562       if (_task_queues == NULL) {
 563         log_warning(gc)("task_queues allocation failure.");
 564         return;
 565       }
 566       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 567       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 568       for (i = 0; i < num_queues; i++) {
 569         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 570         if (q == NULL) {
 571           log_warning(gc)("work_queue allocation failure.");
 572           return;
 573         }
 574         _task_queues->register_queue(i, q);
 575       }
 576       for (i = 0; i < num_queues; i++) {
 577         _task_queues->queue(i)->initialize();
 578         _hash_seed[i] = 17;  // copied from ParNew
 579       }
 580     }
 581   }
 582 
 583   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 584 
 585   // Clip CMSBootstrapOccupancy between 0 and 100.
 586   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 587 
 588   // Now tell CMS generations the identity of their collector
 589   ConcurrentMarkSweepGeneration::set_collector(this);
 590 
 591   // Create & start a CMS thread for this CMS collector
 592   _cmsThread = ConcurrentMarkSweepThread::start(this);
 593   assert(cmsThread() != NULL, "CMS Thread should have been created");
 594   assert(cmsThread()->collector() == this,
 595          "CMS Thread should refer to this gen");
 596   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 597 
 598   // Support for parallelizing young gen rescan
 599   GenCollectedHeap* gch = GenCollectedHeap::heap();
 600   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 601   _young_gen = (ParNewGeneration*)gch->young_gen();
 602   if (gch->supports_inline_contig_alloc()) {
 603     _top_addr = gch->top_addr();
 604     _end_addr = gch->end_addr();
 605     assert(_young_gen != NULL, "no _young_gen");
 606     _eden_chunk_index = 0;
 607     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 608     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 609   }
 610 
 611   // Support for parallelizing survivor space rescan
 612   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 613     const size_t max_plab_samples =
 614       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 615 
 616     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 617     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 618     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 619     _survivor_chunk_capacity = max_plab_samples;
 620     for (uint i = 0; i < ParallelGCThreads; i++) {
 621       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 622       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 623       assert(cur->end() == 0, "Should be 0");
 624       assert(cur->array() == vec, "Should be vec");
 625       assert(cur->capacity() == max_plab_samples, "Error");
 626     }
 627   }
 628 
 629   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 630   _gc_counters = new CollectorCounters("CMS", 1);
 631   _completed_initialization = true;
 632   _inter_sweep_timer.start();  // start of time
 633 }
 634 
 635 const char* ConcurrentMarkSweepGeneration::name() const {
 636   return "concurrent mark-sweep generation";
 637 }
 638 void ConcurrentMarkSweepGeneration::update_counters() {
 639   if (UsePerfData) {
 640     _space_counters->update_all();
 641     _gen_counters->update_all();
 642   }
 643 }
 644 
 645 // this is an optimized version of update_counters(). it takes the
 646 // used value as a parameter rather than computing it.
 647 //
 648 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 649   if (UsePerfData) {
 650     _space_counters->update_used(used);
 651     _space_counters->update_capacity();
 652     _gen_counters->update_all();
 653   }
 654 }
 655 
 656 void ConcurrentMarkSweepGeneration::print() const {
 657   Generation::print();
 658   cmsSpace()->print();
 659 }
 660 
 661 #ifndef PRODUCT
 662 void ConcurrentMarkSweepGeneration::print_statistics() {
 663   cmsSpace()->printFLCensus(0);
 664 }
 665 #endif
 666 
 667 size_t
 668 ConcurrentMarkSweepGeneration::contiguous_available() const {
 669   // dld proposes an improvement in precision here. If the committed
 670   // part of the space ends in a free block we should add that to
 671   // uncommitted size in the calculation below. Will make this
 672   // change later, staying with the approximation below for the
 673   // time being. -- ysr.
 674   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 675 }
 676 
 677 size_t
 678 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 679   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 680 }
 681 
 682 size_t ConcurrentMarkSweepGeneration::max_available() const {
 683   return free() + _virtual_space.uncommitted_size();
 684 }
 685 
 686 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 687   size_t available = max_available();
 688   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 689   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 690   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 691                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 692   return res;
 693 }
 694 
 695 // At a promotion failure dump information on block layout in heap
 696 // (cms old generation).
 697 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 698   Log(gc, promotion) log;
 699   if (log.is_trace()) {
 700     ResourceMark rm;
 701     cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
 702   }
 703 }
 704 
 705 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 706   // Clear the promotion information.  These pointers can be adjusted
 707   // along with all the other pointers into the heap but
 708   // compaction is expected to be a rare event with
 709   // a heap using cms so don't do it without seeing the need.
 710   for (uint i = 0; i < ParallelGCThreads; i++) {
 711     _par_gc_thread_states[i]->promo.reset();
 712   }
 713 }
 714 
 715 void ConcurrentMarkSweepGeneration::compute_new_size() {
 716   assert_locked_or_safepoint(Heap_lock);
 717 
 718   // If incremental collection failed, we just want to expand
 719   // to the limit.
 720   if (incremental_collection_failed()) {
 721     clear_incremental_collection_failed();
 722     grow_to_reserved();
 723     return;
 724   }
 725 
 726   // The heap has been compacted but not reset yet.
 727   // Any metric such as free() or used() will be incorrect.
 728 
 729   CardGeneration::compute_new_size();
 730 
 731   // Reset again after a possible resizing
 732   if (did_compact()) {
 733     cmsSpace()->reset_after_compaction();
 734   }
 735 }
 736 
 737 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 738   assert_locked_or_safepoint(Heap_lock);
 739 
 740   // If incremental collection failed, we just want to expand
 741   // to the limit.
 742   if (incremental_collection_failed()) {
 743     clear_incremental_collection_failed();
 744     grow_to_reserved();
 745     return;
 746   }
 747 
 748   double free_percentage = ((double) free()) / capacity();
 749   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 750   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 751 
 752   // compute expansion delta needed for reaching desired free percentage
 753   if (free_percentage < desired_free_percentage) {
 754     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 755     assert(desired_capacity >= capacity(), "invalid expansion size");
 756     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 757     Log(gc) log;
 758     if (log.is_trace()) {
 759       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 760       log.trace("From compute_new_size: ");
 761       log.trace("  Free fraction %f", free_percentage);
 762       log.trace("  Desired free fraction %f", desired_free_percentage);
 763       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 764       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 765       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 766       GenCollectedHeap* gch = GenCollectedHeap::heap();
 767       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 768       size_t young_size = gch->young_gen()->capacity();
 769       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 770       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 771       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 772       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 773     }
 774     // safe if expansion fails
 775     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 776     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 777   } else {
 778     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 779     assert(desired_capacity <= capacity(), "invalid expansion size");
 780     size_t shrink_bytes = capacity() - desired_capacity;
 781     // Don't shrink unless the delta is greater than the minimum shrink we want
 782     if (shrink_bytes >= MinHeapDeltaBytes) {
 783       shrink_free_list_by(shrink_bytes);
 784     }
 785   }
 786 }
 787 
 788 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 789   return cmsSpace()->freelistLock();
 790 }
 791 
 792 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 793   CMSSynchronousYieldRequest yr;
 794   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 795   return have_lock_and_allocate(size, tlab);
 796 }
 797 
 798 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 799                                                                 bool   tlab /* ignored */) {
 800   assert_lock_strong(freelistLock());
 801   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 802   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 803   // Allocate the object live (grey) if the background collector has
 804   // started marking. This is necessary because the marker may
 805   // have passed this address and consequently this object will
 806   // not otherwise be greyed and would be incorrectly swept up.
 807   // Note that if this object contains references, the writing
 808   // of those references will dirty the card containing this object
 809   // allowing the object to be blackened (and its references scanned)
 810   // either during a preclean phase or at the final checkpoint.
 811   if (res != NULL) {
 812     // We may block here with an uninitialized object with
 813     // its mark-bit or P-bits not yet set. Such objects need
 814     // to be safely navigable by block_start().
 815     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 816     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 817     collector()->direct_allocated(res, adjustedSize);
 818     _direct_allocated_words += adjustedSize;
 819     // allocation counters
 820     NOT_PRODUCT(
 821       _numObjectsAllocated++;
 822       _numWordsAllocated += (int)adjustedSize;
 823     )
 824   }
 825   return res;
 826 }
 827 
 828 // In the case of direct allocation by mutators in a generation that
 829 // is being concurrently collected, the object must be allocated
 830 // live (grey) if the background collector has started marking.
 831 // This is necessary because the marker may
 832 // have passed this address and consequently this object will
 833 // not otherwise be greyed and would be incorrectly swept up.
 834 // Note that if this object contains references, the writing
 835 // of those references will dirty the card containing this object
 836 // allowing the object to be blackened (and its references scanned)
 837 // either during a preclean phase or at the final checkpoint.
 838 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 839   assert(_markBitMap.covers(start, size), "Out of bounds");
 840   if (_collectorState >= Marking) {
 841     MutexLockerEx y(_markBitMap.lock(),
 842                     Mutex::_no_safepoint_check_flag);
 843     // [see comments preceding SweepClosure::do_blk() below for details]
 844     //
 845     // Can the P-bits be deleted now?  JJJ
 846     //
 847     // 1. need to mark the object as live so it isn't collected
 848     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 849     // 3. need to mark the end of the object so marking, precleaning or sweeping
 850     //    can skip over uninitialized or unparsable objects. An allocated
 851     //    object is considered uninitialized for our purposes as long as
 852     //    its klass word is NULL.  All old gen objects are parsable
 853     //    as soon as they are initialized.)
 854     _markBitMap.mark(start);          // object is live
 855     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 856     _markBitMap.mark(start + size - 1);
 857                                       // mark end of object
 858   }
 859   // check that oop looks uninitialized
 860   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 861 }
 862 
 863 void CMSCollector::promoted(bool par, HeapWord* start,
 864                             bool is_obj_array, size_t obj_size) {
 865   assert(_markBitMap.covers(start), "Out of bounds");
 866   // See comment in direct_allocated() about when objects should
 867   // be allocated live.
 868   if (_collectorState >= Marking) {
 869     // we already hold the marking bit map lock, taken in
 870     // the prologue
 871     if (par) {
 872       _markBitMap.par_mark(start);
 873     } else {
 874       _markBitMap.mark(start);
 875     }
 876     // We don't need to mark the object as uninitialized (as
 877     // in direct_allocated above) because this is being done with the
 878     // world stopped and the object will be initialized by the
 879     // time the marking, precleaning or sweeping get to look at it.
 880     // But see the code for copying objects into the CMS generation,
 881     // where we need to ensure that concurrent readers of the
 882     // block offset table are able to safely navigate a block that
 883     // is in flux from being free to being allocated (and in
 884     // transition while being copied into) and subsequently
 885     // becoming a bona-fide object when the copy/promotion is complete.
 886     assert(SafepointSynchronize::is_at_safepoint(),
 887            "expect promotion only at safepoints");
 888 
 889     if (_collectorState < Sweeping) {
 890       // Mark the appropriate cards in the modUnionTable, so that
 891       // this object gets scanned before the sweep. If this is
 892       // not done, CMS generation references in the object might
 893       // not get marked.
 894       // For the case of arrays, which are otherwise precisely
 895       // marked, we need to dirty the entire array, not just its head.
 896       if (is_obj_array) {
 897         // The [par_]mark_range() method expects mr.end() below to
 898         // be aligned to the granularity of a bit's representation
 899         // in the heap. In the case of the MUT below, that's a
 900         // card size.
 901         MemRegion mr(start,
 902                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 903                         CardTableModRefBS::card_size /* bytes */));
 904         if (par) {
 905           _modUnionTable.par_mark_range(mr);
 906         } else {
 907           _modUnionTable.mark_range(mr);
 908         }
 909       } else {  // not an obj array; we can just mark the head
 910         if (par) {
 911           _modUnionTable.par_mark(start);
 912         } else {
 913           _modUnionTable.mark(start);
 914         }
 915       }
 916     }
 917   }
 918 }
 919 
 920 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 921   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 922   // allocate, copy and if necessary update promoinfo --
 923   // delegate to underlying space.
 924   assert_lock_strong(freelistLock());
 925 
 926 #ifndef PRODUCT
 927   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 928     return NULL;
 929   }
 930 #endif  // #ifndef PRODUCT
 931 
 932   oop res = _cmsSpace->promote(obj, obj_size);
 933   if (res == NULL) {
 934     // expand and retry
 935     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 936     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 937     // Since this is the old generation, we don't try to promote
 938     // into a more senior generation.
 939     res = _cmsSpace->promote(obj, obj_size);
 940   }
 941   if (res != NULL) {
 942     // See comment in allocate() about when objects should
 943     // be allocated live.
 944     assert(obj->is_oop(), "Will dereference klass pointer below");
 945     collector()->promoted(false,           // Not parallel
 946                           (HeapWord*)res, obj->is_objArray(), obj_size);
 947     // promotion counters
 948     NOT_PRODUCT(
 949       _numObjectsPromoted++;
 950       _numWordsPromoted +=
 951         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 952     )
 953   }
 954   return res;
 955 }
 956 
 957 
 958 // IMPORTANT: Notes on object size recognition in CMS.
 959 // ---------------------------------------------------
 960 // A block of storage in the CMS generation is always in
 961 // one of three states. A free block (FREE), an allocated
 962 // object (OBJECT) whose size() method reports the correct size,
 963 // and an intermediate state (TRANSIENT) in which its size cannot
 964 // be accurately determined.
 965 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 966 // -----------------------------------------------------
 967 // FREE:      klass_word & 1 == 1; mark_word holds block size
 968 //
 969 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 970 //            obj->size() computes correct size
 971 //
 972 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 973 //
 974 // STATE IDENTIFICATION: (64 bit+COOPS)
 975 // ------------------------------------
 976 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 977 //
 978 // OBJECT:    klass_word installed; klass_word != 0;
 979 //            obj->size() computes correct size
 980 //
 981 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 982 //
 983 //
 984 // STATE TRANSITION DIAGRAM
 985 //
 986 //        mut / parnew                     mut  /  parnew
 987 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 988 //  ^                                                                   |
 989 //  |------------------------ DEAD <------------------------------------|
 990 //         sweep                            mut
 991 //
 992 // While a block is in TRANSIENT state its size cannot be determined
 993 // so readers will either need to come back later or stall until
 994 // the size can be determined. Note that for the case of direct
 995 // allocation, P-bits, when available, may be used to determine the
 996 // size of an object that may not yet have been initialized.
 997 
 998 // Things to support parallel young-gen collection.
 999 oop
1000 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1001                                            oop old, markOop m,
1002                                            size_t word_sz) {
1003 #ifndef PRODUCT
1004   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1005     return NULL;
1006   }
1007 #endif  // #ifndef PRODUCT
1008 
1009   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1010   PromotionInfo* promoInfo = &ps->promo;
1011   // if we are tracking promotions, then first ensure space for
1012   // promotion (including spooling space for saving header if necessary).
1013   // then allocate and copy, then track promoted info if needed.
1014   // When tracking (see PromotionInfo::track()), the mark word may
1015   // be displaced and in this case restoration of the mark word
1016   // occurs in the (oop_since_save_marks_)iterate phase.
1017   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1018     // Out of space for allocating spooling buffers;
1019     // try expanding and allocating spooling buffers.
1020     if (!expand_and_ensure_spooling_space(promoInfo)) {
1021       return NULL;
1022     }
1023   }
1024   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1025   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1026   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1027   if (obj_ptr == NULL) {
1028      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1029      if (obj_ptr == NULL) {
1030        return NULL;
1031      }
1032   }
1033   oop obj = oop(obj_ptr);
1034   OrderAccess::storestore();
1035   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1036   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1037   // IMPORTANT: See note on object initialization for CMS above.
1038   // Otherwise, copy the object.  Here we must be careful to insert the
1039   // klass pointer last, since this marks the block as an allocated object.
1040   // Except with compressed oops it's the mark word.
1041   HeapWord* old_ptr = (HeapWord*)old;
1042   // Restore the mark word copied above.
1043   obj->set_mark(m);
1044   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1045   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1046   OrderAccess::storestore();
1047 
1048   if (UseCompressedClassPointers) {
1049     // Copy gap missed by (aligned) header size calculation below
1050     obj->set_klass_gap(old->klass_gap());
1051   }
1052   if (word_sz > (size_t)oopDesc::header_size()) {
1053     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1054                                  obj_ptr + oopDesc::header_size(),
1055                                  word_sz - oopDesc::header_size());
1056   }
1057 
1058   // Now we can track the promoted object, if necessary.  We take care
1059   // to delay the transition from uninitialized to full object
1060   // (i.e., insertion of klass pointer) until after, so that it
1061   // atomically becomes a promoted object.
1062   if (promoInfo->tracking()) {
1063     promoInfo->track((PromotedObject*)obj, old->klass());
1064   }
1065   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1066   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1067   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1068 
1069   // Finally, install the klass pointer (this should be volatile).
1070   OrderAccess::storestore();
1071   obj->set_klass(old->klass());
1072   // We should now be able to calculate the right size for this object
1073   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1074 
1075   collector()->promoted(true,          // parallel
1076                         obj_ptr, old->is_objArray(), word_sz);
1077 
1078   NOT_PRODUCT(
1079     Atomic::inc_ptr(&_numObjectsPromoted);
1080     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1081   )
1082 
1083   return obj;
1084 }
1085 
1086 void
1087 ConcurrentMarkSweepGeneration::
1088 par_promote_alloc_done(int thread_num) {
1089   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1090   ps->lab.retire(thread_num);
1091 }
1092 
1093 void
1094 ConcurrentMarkSweepGeneration::
1095 par_oop_since_save_marks_iterate_done(int thread_num) {
1096   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1097   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1098   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1099 
1100   // Because card-scanning has been completed, subsequent phases
1101   // (e.g., reference processing) will not need to recognize which
1102   // objects have been promoted during this GC. So, we can now disable
1103   // promotion tracking.
1104   ps->promo.stopTrackingPromotions();
1105 }
1106 
1107 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1108                                                    size_t size,
1109                                                    bool   tlab)
1110 {
1111   // We allow a STW collection only if a full
1112   // collection was requested.
1113   return full || should_allocate(size, tlab); // FIX ME !!!
1114   // This and promotion failure handling are connected at the
1115   // hip and should be fixed by untying them.
1116 }
1117 
1118 bool CMSCollector::shouldConcurrentCollect() {
1119   LogTarget(Trace, gc) log;
1120 
1121   if (_full_gc_requested) {
1122     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1123     return true;
1124   }
1125 
1126   FreelistLocker x(this);
1127   // ------------------------------------------------------------------
1128   // Print out lots of information which affects the initiation of
1129   // a collection.
1130   if (log.is_enabled() && stats().valid()) {
1131     log.print("CMSCollector shouldConcurrentCollect: ");
1132 
1133     LogStream out(log);
1134     stats().print_on(&out);
1135 
1136     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1137     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1138     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1139     log.print("promotion_rate=%g", stats().promotion_rate());
1140     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1141     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1142     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1143     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1144     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1145     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1146   }
1147   // ------------------------------------------------------------------
1148 
1149   // If the estimated time to complete a cms collection (cms_duration())
1150   // is less than the estimated time remaining until the cms generation
1151   // is full, start a collection.
1152   if (!UseCMSInitiatingOccupancyOnly) {
1153     if (stats().valid()) {
1154       if (stats().time_until_cms_start() == 0.0) {
1155         return true;
1156       }
1157     } else {
1158       // We want to conservatively collect somewhat early in order
1159       // to try and "bootstrap" our CMS/promotion statistics;
1160       // this branch will not fire after the first successful CMS
1161       // collection because the stats should then be valid.
1162       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1163         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1164                   _cmsGen->occupancy(), _bootstrap_occupancy);
1165         return true;
1166       }
1167     }
1168   }
1169 
1170   // Otherwise, we start a collection cycle if
1171   // old gen want a collection cycle started. Each may use
1172   // an appropriate criterion for making this decision.
1173   // XXX We need to make sure that the gen expansion
1174   // criterion dovetails well with this. XXX NEED TO FIX THIS
1175   if (_cmsGen->should_concurrent_collect()) {
1176     log.print("CMS old gen initiated");
1177     return true;
1178   }
1179 
1180   // We start a collection if we believe an incremental collection may fail;
1181   // this is not likely to be productive in practice because it's probably too
1182   // late anyway.
1183   GenCollectedHeap* gch = GenCollectedHeap::heap();
1184   assert(gch->collector_policy()->is_generation_policy(),
1185          "You may want to check the correctness of the following");
1186   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1187     log.print("CMSCollector: collect because incremental collection will fail ");
1188     return true;
1189   }
1190 
1191   if (MetaspaceGC::should_concurrent_collect()) {
1192     log.print("CMSCollector: collect for metadata allocation ");
1193     return true;
1194   }
1195 
1196   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1197   if (CMSTriggerInterval >= 0) {
1198     if (CMSTriggerInterval == 0) {
1199       // Trigger always
1200       return true;
1201     }
1202 
1203     // Check the CMS time since begin (we do not check the stats validity
1204     // as we want to be able to trigger the first CMS cycle as well)
1205     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1206       if (stats().valid()) {
1207         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1208                   stats().cms_time_since_begin());
1209       } else {
1210         log.print("CMSCollector: collect because of trigger interval (first collection)");
1211       }
1212       return true;
1213     }
1214   }
1215 
1216   return false;
1217 }
1218 
1219 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1220 
1221 // Clear _expansion_cause fields of constituent generations
1222 void CMSCollector::clear_expansion_cause() {
1223   _cmsGen->clear_expansion_cause();
1224 }
1225 
1226 // We should be conservative in starting a collection cycle.  To
1227 // start too eagerly runs the risk of collecting too often in the
1228 // extreme.  To collect too rarely falls back on full collections,
1229 // which works, even if not optimum in terms of concurrent work.
1230 // As a work around for too eagerly collecting, use the flag
1231 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1232 // giving the user an easily understandable way of controlling the
1233 // collections.
1234 // We want to start a new collection cycle if any of the following
1235 // conditions hold:
1236 // . our current occupancy exceeds the configured initiating occupancy
1237 //   for this generation, or
1238 // . we recently needed to expand this space and have not, since that
1239 //   expansion, done a collection of this generation, or
1240 // . the underlying space believes that it may be a good idea to initiate
1241 //   a concurrent collection (this may be based on criteria such as the
1242 //   following: the space uses linear allocation and linear allocation is
1243 //   going to fail, or there is believed to be excessive fragmentation in
1244 //   the generation, etc... or ...
1245 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1246 //   the case of the old generation; see CR 6543076):
1247 //   we may be approaching a point at which allocation requests may fail because
1248 //   we will be out of sufficient free space given allocation rate estimates.]
1249 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1250 
1251   assert_lock_strong(freelistLock());
1252   if (occupancy() > initiating_occupancy()) {
1253     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1254                   short_name(), occupancy(), initiating_occupancy());
1255     return true;
1256   }
1257   if (UseCMSInitiatingOccupancyOnly) {
1258     return false;
1259   }
1260   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1261     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1262     return true;
1263   }
1264   return false;
1265 }
1266 
1267 void ConcurrentMarkSweepGeneration::collect(bool   full,
1268                                             bool   clear_all_soft_refs,
1269                                             size_t size,
1270                                             bool   tlab)
1271 {
1272   collector()->collect(full, clear_all_soft_refs, size, tlab);
1273 }
1274 
1275 void CMSCollector::collect(bool   full,
1276                            bool   clear_all_soft_refs,
1277                            size_t size,
1278                            bool   tlab)
1279 {
1280   // The following "if" branch is present for defensive reasons.
1281   // In the current uses of this interface, it can be replaced with:
1282   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1283   // But I am not placing that assert here to allow future
1284   // generality in invoking this interface.
1285   if (GCLocker::is_active()) {
1286     // A consistency test for GCLocker
1287     assert(GCLocker::needs_gc(), "Should have been set already");
1288     // Skip this foreground collection, instead
1289     // expanding the heap if necessary.
1290     // Need the free list locks for the call to free() in compute_new_size()
1291     compute_new_size();
1292     return;
1293   }
1294   acquire_control_and_collect(full, clear_all_soft_refs);
1295 }
1296 
1297 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1298   GenCollectedHeap* gch = GenCollectedHeap::heap();
1299   unsigned int gc_count = gch->total_full_collections();
1300   if (gc_count == full_gc_count) {
1301     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1302     _full_gc_requested = true;
1303     _full_gc_cause = cause;
1304     CGC_lock->notify();   // nudge CMS thread
1305   } else {
1306     assert(gc_count > full_gc_count, "Error: causal loop");
1307   }
1308 }
1309 
1310 bool CMSCollector::is_external_interruption() {
1311   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1312   return GCCause::is_user_requested_gc(cause) ||
1313          GCCause::is_serviceability_requested_gc(cause);
1314 }
1315 
1316 void CMSCollector::report_concurrent_mode_interruption() {
1317   if (is_external_interruption()) {
1318     log_debug(gc)("Concurrent mode interrupted");
1319   } else {
1320     log_debug(gc)("Concurrent mode failure");
1321     _gc_tracer_cm->report_concurrent_mode_failure();
1322   }
1323 }
1324 
1325 
1326 // The foreground and background collectors need to coordinate in order
1327 // to make sure that they do not mutually interfere with CMS collections.
1328 // When a background collection is active,
1329 // the foreground collector may need to take over (preempt) and
1330 // synchronously complete an ongoing collection. Depending on the
1331 // frequency of the background collections and the heap usage
1332 // of the application, this preemption can be seldom or frequent.
1333 // There are only certain
1334 // points in the background collection that the "collection-baton"
1335 // can be passed to the foreground collector.
1336 //
1337 // The foreground collector will wait for the baton before
1338 // starting any part of the collection.  The foreground collector
1339 // will only wait at one location.
1340 //
1341 // The background collector will yield the baton before starting a new
1342 // phase of the collection (e.g., before initial marking, marking from roots,
1343 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1344 // of the loop which switches the phases. The background collector does some
1345 // of the phases (initial mark, final re-mark) with the world stopped.
1346 // Because of locking involved in stopping the world,
1347 // the foreground collector should not block waiting for the background
1348 // collector when it is doing a stop-the-world phase.  The background
1349 // collector will yield the baton at an additional point just before
1350 // it enters a stop-the-world phase.  Once the world is stopped, the
1351 // background collector checks the phase of the collection.  If the
1352 // phase has not changed, it proceeds with the collection.  If the
1353 // phase has changed, it skips that phase of the collection.  See
1354 // the comments on the use of the Heap_lock in collect_in_background().
1355 //
1356 // Variable used in baton passing.
1357 //   _foregroundGCIsActive - Set to true by the foreground collector when
1358 //      it wants the baton.  The foreground clears it when it has finished
1359 //      the collection.
1360 //   _foregroundGCShouldWait - Set to true by the background collector
1361 //        when it is running.  The foreground collector waits while
1362 //      _foregroundGCShouldWait is true.
1363 //  CGC_lock - monitor used to protect access to the above variables
1364 //      and to notify the foreground and background collectors.
1365 //  _collectorState - current state of the CMS collection.
1366 //
1367 // The foreground collector
1368 //   acquires the CGC_lock
1369 //   sets _foregroundGCIsActive
1370 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1371 //     various locks acquired in preparation for the collection
1372 //     are released so as not to block the background collector
1373 //     that is in the midst of a collection
1374 //   proceeds with the collection
1375 //   clears _foregroundGCIsActive
1376 //   returns
1377 //
1378 // The background collector in a loop iterating on the phases of the
1379 //      collection
1380 //   acquires the CGC_lock
1381 //   sets _foregroundGCShouldWait
1382 //   if _foregroundGCIsActive is set
1383 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1384 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1385 //     and exits the loop.
1386 //   otherwise
1387 //     proceed with that phase of the collection
1388 //     if the phase is a stop-the-world phase,
1389 //       yield the baton once more just before enqueueing
1390 //       the stop-world CMS operation (executed by the VM thread).
1391 //   returns after all phases of the collection are done
1392 //
1393 
1394 void CMSCollector::acquire_control_and_collect(bool full,
1395         bool clear_all_soft_refs) {
1396   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1397   assert(!Thread::current()->is_ConcurrentGC_thread(),
1398          "shouldn't try to acquire control from self!");
1399 
1400   // Start the protocol for acquiring control of the
1401   // collection from the background collector (aka CMS thread).
1402   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1403          "VM thread should have CMS token");
1404   // Remember the possibly interrupted state of an ongoing
1405   // concurrent collection
1406   CollectorState first_state = _collectorState;
1407 
1408   // Signal to a possibly ongoing concurrent collection that
1409   // we want to do a foreground collection.
1410   _foregroundGCIsActive = true;
1411 
1412   // release locks and wait for a notify from the background collector
1413   // releasing the locks in only necessary for phases which
1414   // do yields to improve the granularity of the collection.
1415   assert_lock_strong(bitMapLock());
1416   // We need to lock the Free list lock for the space that we are
1417   // currently collecting.
1418   assert(haveFreelistLocks(), "Must be holding free list locks");
1419   bitMapLock()->unlock();
1420   releaseFreelistLocks();
1421   {
1422     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1423     if (_foregroundGCShouldWait) {
1424       // We are going to be waiting for action for the CMS thread;
1425       // it had better not be gone (for instance at shutdown)!
1426       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1427              "CMS thread must be running");
1428       // Wait here until the background collector gives us the go-ahead
1429       ConcurrentMarkSweepThread::clear_CMS_flag(
1430         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1431       // Get a possibly blocked CMS thread going:
1432       //   Note that we set _foregroundGCIsActive true above,
1433       //   without protection of the CGC_lock.
1434       CGC_lock->notify();
1435       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1436              "Possible deadlock");
1437       while (_foregroundGCShouldWait) {
1438         // wait for notification
1439         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1440         // Possibility of delay/starvation here, since CMS token does
1441         // not know to give priority to VM thread? Actually, i think
1442         // there wouldn't be any delay/starvation, but the proof of
1443         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1444       }
1445       ConcurrentMarkSweepThread::set_CMS_flag(
1446         ConcurrentMarkSweepThread::CMS_vm_has_token);
1447     }
1448   }
1449   // The CMS_token is already held.  Get back the other locks.
1450   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1451          "VM thread should have CMS token");
1452   getFreelistLocks();
1453   bitMapLock()->lock_without_safepoint_check();
1454   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1455                        p2i(Thread::current()), first_state);
1456   log_debug(gc, state)("    gets control with state %d", _collectorState);
1457 
1458   // Inform cms gen if this was due to partial collection failing.
1459   // The CMS gen may use this fact to determine its expansion policy.
1460   GenCollectedHeap* gch = GenCollectedHeap::heap();
1461   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1462     assert(!_cmsGen->incremental_collection_failed(),
1463            "Should have been noticed, reacted to and cleared");
1464     _cmsGen->set_incremental_collection_failed();
1465   }
1466 
1467   if (first_state > Idling) {
1468     report_concurrent_mode_interruption();
1469   }
1470 
1471   set_did_compact(true);
1472 
1473   // If the collection is being acquired from the background
1474   // collector, there may be references on the discovered
1475   // references lists.  Abandon those references, since some
1476   // of them may have become unreachable after concurrent
1477   // discovery; the STW compacting collector will redo discovery
1478   // more precisely, without being subject to floating garbage.
1479   // Leaving otherwise unreachable references in the discovered
1480   // lists would require special handling.
1481   ref_processor()->disable_discovery();
1482   ref_processor()->abandon_partial_discovery();
1483   ref_processor()->verify_no_references_recorded();
1484 
1485   if (first_state > Idling) {
1486     save_heap_summary();
1487   }
1488 
1489   do_compaction_work(clear_all_soft_refs);
1490 
1491   // Has the GC time limit been exceeded?
1492   size_t max_eden_size = _young_gen->max_eden_size();
1493   GCCause::Cause gc_cause = gch->gc_cause();
1494   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1495                                          _young_gen->eden()->used(),
1496                                          _cmsGen->max_capacity(),
1497                                          max_eden_size,
1498                                          full,
1499                                          gc_cause,
1500                                          gch->collector_policy());
1501 
1502   // Reset the expansion cause, now that we just completed
1503   // a collection cycle.
1504   clear_expansion_cause();
1505   _foregroundGCIsActive = false;
1506   return;
1507 }
1508 
1509 // Resize the tenured generation
1510 // after obtaining the free list locks for the
1511 // two generations.
1512 void CMSCollector::compute_new_size() {
1513   assert_locked_or_safepoint(Heap_lock);
1514   FreelistLocker z(this);
1515   MetaspaceGC::compute_new_size();
1516   _cmsGen->compute_new_size_free_list();
1517 }
1518 
1519 // A work method used by the foreground collector to do
1520 // a mark-sweep-compact.
1521 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1522   GenCollectedHeap* gch = GenCollectedHeap::heap();
1523 
1524   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1525   gc_timer->register_gc_start();
1526 
1527   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1528   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1529 
1530   gch->pre_full_gc_dump(gc_timer);
1531 
1532   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1533 
1534   // Temporarily widen the span of the weak reference processing to
1535   // the entire heap.
1536   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1537   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1538   // Temporarily, clear the "is_alive_non_header" field of the
1539   // reference processor.
1540   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1541   // Temporarily make reference _processing_ single threaded (non-MT).
1542   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1543   // Temporarily make refs discovery atomic
1544   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1545   // Temporarily make reference _discovery_ single threaded (non-MT)
1546   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1547 
1548   ref_processor()->set_enqueuing_is_done(false);
1549   ref_processor()->enable_discovery();
1550   ref_processor()->setup_policy(clear_all_soft_refs);
1551   // If an asynchronous collection finishes, the _modUnionTable is
1552   // all clear.  If we are assuming the collection from an asynchronous
1553   // collection, clear the _modUnionTable.
1554   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1555     "_modUnionTable should be clear if the baton was not passed");
1556   _modUnionTable.clear_all();
1557   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1558     "mod union for klasses should be clear if the baton was passed");
1559   _ct->klass_rem_set()->clear_mod_union();
1560 
1561   // We must adjust the allocation statistics being maintained
1562   // in the free list space. We do so by reading and clearing
1563   // the sweep timer and updating the block flux rate estimates below.
1564   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1565   if (_inter_sweep_timer.is_active()) {
1566     _inter_sweep_timer.stop();
1567     // Note that we do not use this sample to update the _inter_sweep_estimate.
1568     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1569                                             _inter_sweep_estimate.padded_average(),
1570                                             _intra_sweep_estimate.padded_average());
1571   }
1572 
1573   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1574   #ifdef ASSERT
1575     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1576     size_t free_size = cms_space->free();
1577     assert(free_size ==
1578            pointer_delta(cms_space->end(), cms_space->compaction_top())
1579            * HeapWordSize,
1580       "All the free space should be compacted into one chunk at top");
1581     assert(cms_space->dictionary()->total_chunk_size(
1582                                       debug_only(cms_space->freelistLock())) == 0 ||
1583            cms_space->totalSizeInIndexedFreeLists() == 0,
1584       "All the free space should be in a single chunk");
1585     size_t num = cms_space->totalCount();
1586     assert((free_size == 0 && num == 0) ||
1587            (free_size > 0  && (num == 1 || num == 2)),
1588          "There should be at most 2 free chunks after compaction");
1589   #endif // ASSERT
1590   _collectorState = Resetting;
1591   assert(_restart_addr == NULL,
1592          "Should have been NULL'd before baton was passed");
1593   reset_stw();
1594   _cmsGen->reset_after_compaction();
1595   _concurrent_cycles_since_last_unload = 0;
1596 
1597   // Clear any data recorded in the PLAB chunk arrays.
1598   if (_survivor_plab_array != NULL) {
1599     reset_survivor_plab_arrays();
1600   }
1601 
1602   // Adjust the per-size allocation stats for the next epoch.
1603   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1604   // Restart the "inter sweep timer" for the next epoch.
1605   _inter_sweep_timer.reset();
1606   _inter_sweep_timer.start();
1607 
1608   gch->post_full_gc_dump(gc_timer);
1609 
1610   gc_timer->register_gc_end();
1611 
1612   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1613 
1614   // For a mark-sweep-compact, compute_new_size() will be called
1615   // in the heap's do_collection() method.
1616 }
1617 
1618 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1619   Log(gc, heap) log;
1620   if (!log.is_trace()) {
1621     return;
1622   }
1623 
1624   ContiguousSpace* eden_space = _young_gen->eden();
1625   ContiguousSpace* from_space = _young_gen->from();
1626   ContiguousSpace* to_space   = _young_gen->to();
1627   // Eden
1628   if (_eden_chunk_array != NULL) {
1629     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1630               p2i(eden_space->bottom()), p2i(eden_space->top()),
1631               p2i(eden_space->end()), eden_space->capacity());
1632     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1633               _eden_chunk_index, _eden_chunk_capacity);
1634     for (size_t i = 0; i < _eden_chunk_index; i++) {
1635       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1636     }
1637   }
1638   // Survivor
1639   if (_survivor_chunk_array != NULL) {
1640     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1641               p2i(from_space->bottom()), p2i(from_space->top()),
1642               p2i(from_space->end()), from_space->capacity());
1643     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1644               _survivor_chunk_index, _survivor_chunk_capacity);
1645     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1646       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1647     }
1648   }
1649 }
1650 
1651 void CMSCollector::getFreelistLocks() const {
1652   // Get locks for all free lists in all generations that this
1653   // collector is responsible for
1654   _cmsGen->freelistLock()->lock_without_safepoint_check();
1655 }
1656 
1657 void CMSCollector::releaseFreelistLocks() const {
1658   // Release locks for all free lists in all generations that this
1659   // collector is responsible for
1660   _cmsGen->freelistLock()->unlock();
1661 }
1662 
1663 bool CMSCollector::haveFreelistLocks() const {
1664   // Check locks for all free lists in all generations that this
1665   // collector is responsible for
1666   assert_lock_strong(_cmsGen->freelistLock());
1667   PRODUCT_ONLY(ShouldNotReachHere());
1668   return true;
1669 }
1670 
1671 // A utility class that is used by the CMS collector to
1672 // temporarily "release" the foreground collector from its
1673 // usual obligation to wait for the background collector to
1674 // complete an ongoing phase before proceeding.
1675 class ReleaseForegroundGC: public StackObj {
1676  private:
1677   CMSCollector* _c;
1678  public:
1679   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1680     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1681     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1682     // allow a potentially blocked foreground collector to proceed
1683     _c->_foregroundGCShouldWait = false;
1684     if (_c->_foregroundGCIsActive) {
1685       CGC_lock->notify();
1686     }
1687     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1688            "Possible deadlock");
1689   }
1690 
1691   ~ReleaseForegroundGC() {
1692     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1693     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1694     _c->_foregroundGCShouldWait = true;
1695   }
1696 };
1697 
1698 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1699   assert(Thread::current()->is_ConcurrentGC_thread(),
1700     "A CMS asynchronous collection is only allowed on a CMS thread.");
1701 
1702   GenCollectedHeap* gch = GenCollectedHeap::heap();
1703   {
1704     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1705     MutexLockerEx hl(Heap_lock, safepoint_check);
1706     FreelistLocker fll(this);
1707     MutexLockerEx x(CGC_lock, safepoint_check);
1708     if (_foregroundGCIsActive) {
1709       // The foreground collector is. Skip this
1710       // background collection.
1711       assert(!_foregroundGCShouldWait, "Should be clear");
1712       return;
1713     } else {
1714       assert(_collectorState == Idling, "Should be idling before start.");
1715       _collectorState = InitialMarking;
1716       register_gc_start(cause);
1717       // Reset the expansion cause, now that we are about to begin
1718       // a new cycle.
1719       clear_expansion_cause();
1720 
1721       // Clear the MetaspaceGC flag since a concurrent collection
1722       // is starting but also clear it after the collection.
1723       MetaspaceGC::set_should_concurrent_collect(false);
1724     }
1725     // Decide if we want to enable class unloading as part of the
1726     // ensuing concurrent GC cycle.
1727     update_should_unload_classes();
1728     _full_gc_requested = false;           // acks all outstanding full gc requests
1729     _full_gc_cause = GCCause::_no_gc;
1730     // Signal that we are about to start a collection
1731     gch->increment_total_full_collections();  // ... starting a collection cycle
1732     _collection_count_start = gch->total_full_collections();
1733   }
1734 
1735   size_t prev_used = _cmsGen->used();
1736 
1737   // The change of the collection state is normally done at this level;
1738   // the exceptions are phases that are executed while the world is
1739   // stopped.  For those phases the change of state is done while the
1740   // world is stopped.  For baton passing purposes this allows the
1741   // background collector to finish the phase and change state atomically.
1742   // The foreground collector cannot wait on a phase that is done
1743   // while the world is stopped because the foreground collector already
1744   // has the world stopped and would deadlock.
1745   while (_collectorState != Idling) {
1746     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1747                          p2i(Thread::current()), _collectorState);
1748     // The foreground collector
1749     //   holds the Heap_lock throughout its collection.
1750     //   holds the CMS token (but not the lock)
1751     //     except while it is waiting for the background collector to yield.
1752     //
1753     // The foreground collector should be blocked (not for long)
1754     //   if the background collector is about to start a phase
1755     //   executed with world stopped.  If the background
1756     //   collector has already started such a phase, the
1757     //   foreground collector is blocked waiting for the
1758     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1759     //   are executed in the VM thread.
1760     //
1761     // The locking order is
1762     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1763     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1764     //   CMS token  (claimed in
1765     //                stop_world_and_do() -->
1766     //                  safepoint_synchronize() -->
1767     //                    CMSThread::synchronize())
1768 
1769     {
1770       // Check if the FG collector wants us to yield.
1771       CMSTokenSync x(true); // is cms thread
1772       if (waitForForegroundGC()) {
1773         // We yielded to a foreground GC, nothing more to be
1774         // done this round.
1775         assert(_foregroundGCShouldWait == false, "We set it to false in "
1776                "waitForForegroundGC()");
1777         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1778                              p2i(Thread::current()), _collectorState);
1779         return;
1780       } else {
1781         // The background collector can run but check to see if the
1782         // foreground collector has done a collection while the
1783         // background collector was waiting to get the CGC_lock
1784         // above.  If yes, break so that _foregroundGCShouldWait
1785         // is cleared before returning.
1786         if (_collectorState == Idling) {
1787           break;
1788         }
1789       }
1790     }
1791 
1792     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1793       "should be waiting");
1794 
1795     switch (_collectorState) {
1796       case InitialMarking:
1797         {
1798           ReleaseForegroundGC x(this);
1799           stats().record_cms_begin();
1800           VM_CMS_Initial_Mark initial_mark_op(this);
1801           VMThread::execute(&initial_mark_op);
1802         }
1803         // The collector state may be any legal state at this point
1804         // since the background collector may have yielded to the
1805         // foreground collector.
1806         break;
1807       case Marking:
1808         // initial marking in checkpointRootsInitialWork has been completed
1809         if (markFromRoots()) { // we were successful
1810           assert(_collectorState == Precleaning, "Collector state should "
1811             "have changed");
1812         } else {
1813           assert(_foregroundGCIsActive, "Internal state inconsistency");
1814         }
1815         break;
1816       case Precleaning:
1817         // marking from roots in markFromRoots has been completed
1818         preclean();
1819         assert(_collectorState == AbortablePreclean ||
1820                _collectorState == FinalMarking,
1821                "Collector state should have changed");
1822         break;
1823       case AbortablePreclean:
1824         abortable_preclean();
1825         assert(_collectorState == FinalMarking, "Collector state should "
1826           "have changed");
1827         break;
1828       case FinalMarking:
1829         {
1830           ReleaseForegroundGC x(this);
1831 
1832           VM_CMS_Final_Remark final_remark_op(this);
1833           VMThread::execute(&final_remark_op);
1834         }
1835         assert(_foregroundGCShouldWait, "block post-condition");
1836         break;
1837       case Sweeping:
1838         // final marking in checkpointRootsFinal has been completed
1839         sweep();
1840         assert(_collectorState == Resizing, "Collector state change "
1841           "to Resizing must be done under the free_list_lock");
1842 
1843       case Resizing: {
1844         // Sweeping has been completed...
1845         // At this point the background collection has completed.
1846         // Don't move the call to compute_new_size() down
1847         // into code that might be executed if the background
1848         // collection was preempted.
1849         {
1850           ReleaseForegroundGC x(this);   // unblock FG collection
1851           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1852           CMSTokenSync        z(true);   // not strictly needed.
1853           if (_collectorState == Resizing) {
1854             compute_new_size();
1855             save_heap_summary();
1856             _collectorState = Resetting;
1857           } else {
1858             assert(_collectorState == Idling, "The state should only change"
1859                    " because the foreground collector has finished the collection");
1860           }
1861         }
1862         break;
1863       }
1864       case Resetting:
1865         // CMS heap resizing has been completed
1866         reset_concurrent();
1867         assert(_collectorState == Idling, "Collector state should "
1868           "have changed");
1869 
1870         MetaspaceGC::set_should_concurrent_collect(false);
1871 
1872         stats().record_cms_end();
1873         // Don't move the concurrent_phases_end() and compute_new_size()
1874         // calls to here because a preempted background collection
1875         // has it's state set to "Resetting".
1876         break;
1877       case Idling:
1878       default:
1879         ShouldNotReachHere();
1880         break;
1881     }
1882     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1883                          p2i(Thread::current()), _collectorState);
1884     assert(_foregroundGCShouldWait, "block post-condition");
1885   }
1886 
1887   // Should this be in gc_epilogue?
1888   collector_policy()->counters()->update_counters();
1889 
1890   {
1891     // Clear _foregroundGCShouldWait and, in the event that the
1892     // foreground collector is waiting, notify it, before
1893     // returning.
1894     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1895     _foregroundGCShouldWait = false;
1896     if (_foregroundGCIsActive) {
1897       CGC_lock->notify();
1898     }
1899     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1900            "Possible deadlock");
1901   }
1902   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1903                        p2i(Thread::current()), _collectorState);
1904   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1905                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1906 }
1907 
1908 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1909   _cms_start_registered = true;
1910   _gc_timer_cm->register_gc_start();
1911   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1912 }
1913 
1914 void CMSCollector::register_gc_end() {
1915   if (_cms_start_registered) {
1916     report_heap_summary(GCWhen::AfterGC);
1917 
1918     _gc_timer_cm->register_gc_end();
1919     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1920     _cms_start_registered = false;
1921   }
1922 }
1923 
1924 void CMSCollector::save_heap_summary() {
1925   GenCollectedHeap* gch = GenCollectedHeap::heap();
1926   _last_heap_summary = gch->create_heap_summary();
1927   _last_metaspace_summary = gch->create_metaspace_summary();
1928 }
1929 
1930 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1931   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1932   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1933 }
1934 
1935 bool CMSCollector::waitForForegroundGC() {
1936   bool res = false;
1937   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1938          "CMS thread should have CMS token");
1939   // Block the foreground collector until the
1940   // background collectors decides whether to
1941   // yield.
1942   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1943   _foregroundGCShouldWait = true;
1944   if (_foregroundGCIsActive) {
1945     // The background collector yields to the
1946     // foreground collector and returns a value
1947     // indicating that it has yielded.  The foreground
1948     // collector can proceed.
1949     res = true;
1950     _foregroundGCShouldWait = false;
1951     ConcurrentMarkSweepThread::clear_CMS_flag(
1952       ConcurrentMarkSweepThread::CMS_cms_has_token);
1953     ConcurrentMarkSweepThread::set_CMS_flag(
1954       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1955     // Get a possibly blocked foreground thread going
1956     CGC_lock->notify();
1957     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1958                          p2i(Thread::current()), _collectorState);
1959     while (_foregroundGCIsActive) {
1960       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1961     }
1962     ConcurrentMarkSweepThread::set_CMS_flag(
1963       ConcurrentMarkSweepThread::CMS_cms_has_token);
1964     ConcurrentMarkSweepThread::clear_CMS_flag(
1965       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1966   }
1967   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1968                        p2i(Thread::current()), _collectorState);
1969   return res;
1970 }
1971 
1972 // Because of the need to lock the free lists and other structures in
1973 // the collector, common to all the generations that the collector is
1974 // collecting, we need the gc_prologues of individual CMS generations
1975 // delegate to their collector. It may have been simpler had the
1976 // current infrastructure allowed one to call a prologue on a
1977 // collector. In the absence of that we have the generation's
1978 // prologue delegate to the collector, which delegates back
1979 // some "local" work to a worker method in the individual generations
1980 // that it's responsible for collecting, while itself doing any
1981 // work common to all generations it's responsible for. A similar
1982 // comment applies to the  gc_epilogue()'s.
1983 // The role of the variable _between_prologue_and_epilogue is to
1984 // enforce the invocation protocol.
1985 void CMSCollector::gc_prologue(bool full) {
1986   // Call gc_prologue_work() for the CMSGen
1987   // we are responsible for.
1988 
1989   // The following locking discipline assumes that we are only called
1990   // when the world is stopped.
1991   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1992 
1993   // The CMSCollector prologue must call the gc_prologues for the
1994   // "generations" that it's responsible
1995   // for.
1996 
1997   assert(   Thread::current()->is_VM_thread()
1998          || (   CMSScavengeBeforeRemark
1999              && Thread::current()->is_ConcurrentGC_thread()),
2000          "Incorrect thread type for prologue execution");
2001 
2002   if (_between_prologue_and_epilogue) {
2003     // We have already been invoked; this is a gc_prologue delegation
2004     // from yet another CMS generation that we are responsible for, just
2005     // ignore it since all relevant work has already been done.
2006     return;
2007   }
2008 
2009   // set a bit saying prologue has been called; cleared in epilogue
2010   _between_prologue_and_epilogue = true;
2011   // Claim locks for common data structures, then call gc_prologue_work()
2012   // for each CMSGen.
2013 
2014   getFreelistLocks();   // gets free list locks on constituent spaces
2015   bitMapLock()->lock_without_safepoint_check();
2016 
2017   // Should call gc_prologue_work() for all cms gens we are responsible for
2018   bool duringMarking =    _collectorState >= Marking
2019                          && _collectorState < Sweeping;
2020 
2021   // The young collections clear the modified oops state, which tells if
2022   // there are any modified oops in the class. The remark phase also needs
2023   // that information. Tell the young collection to save the union of all
2024   // modified klasses.
2025   if (duringMarking) {
2026     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2027   }
2028 
2029   bool registerClosure = duringMarking;
2030 
2031   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2032 
2033   if (!full) {
2034     stats().record_gc0_begin();
2035   }
2036 }
2037 
2038 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2039 
2040   _capacity_at_prologue = capacity();
2041   _used_at_prologue = used();
2042 
2043   // We enable promotion tracking so that card-scanning can recognize
2044   // which objects have been promoted during this GC and skip them.
2045   for (uint i = 0; i < ParallelGCThreads; i++) {
2046     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2047   }
2048 
2049   // Delegate to CMScollector which knows how to coordinate between
2050   // this and any other CMS generations that it is responsible for
2051   // collecting.
2052   collector()->gc_prologue(full);
2053 }
2054 
2055 // This is a "private" interface for use by this generation's CMSCollector.
2056 // Not to be called directly by any other entity (for instance,
2057 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2058 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2059   bool registerClosure, ModUnionClosure* modUnionClosure) {
2060   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2061   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2062     "Should be NULL");
2063   if (registerClosure) {
2064     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2065   }
2066   cmsSpace()->gc_prologue();
2067   // Clear stat counters
2068   NOT_PRODUCT(
2069     assert(_numObjectsPromoted == 0, "check");
2070     assert(_numWordsPromoted   == 0, "check");
2071     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2072                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2073     _numObjectsAllocated = 0;
2074     _numWordsAllocated   = 0;
2075   )
2076 }
2077 
2078 void CMSCollector::gc_epilogue(bool full) {
2079   // The following locking discipline assumes that we are only called
2080   // when the world is stopped.
2081   assert(SafepointSynchronize::is_at_safepoint(),
2082          "world is stopped assumption");
2083 
2084   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2085   // if linear allocation blocks need to be appropriately marked to allow the
2086   // the blocks to be parsable. We also check here whether we need to nudge the
2087   // CMS collector thread to start a new cycle (if it's not already active).
2088   assert(   Thread::current()->is_VM_thread()
2089          || (   CMSScavengeBeforeRemark
2090              && Thread::current()->is_ConcurrentGC_thread()),
2091          "Incorrect thread type for epilogue execution");
2092 
2093   if (!_between_prologue_and_epilogue) {
2094     // We have already been invoked; this is a gc_epilogue delegation
2095     // from yet another CMS generation that we are responsible for, just
2096     // ignore it since all relevant work has already been done.
2097     return;
2098   }
2099   assert(haveFreelistLocks(), "must have freelist locks");
2100   assert_lock_strong(bitMapLock());
2101 
2102   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2103 
2104   _cmsGen->gc_epilogue_work(full);
2105 
2106   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2107     // in case sampling was not already enabled, enable it
2108     _start_sampling = true;
2109   }
2110   // reset _eden_chunk_array so sampling starts afresh
2111   _eden_chunk_index = 0;
2112 
2113   size_t cms_used   = _cmsGen->cmsSpace()->used();
2114 
2115   // update performance counters - this uses a special version of
2116   // update_counters() that allows the utilization to be passed as a
2117   // parameter, avoiding multiple calls to used().
2118   //
2119   _cmsGen->update_counters(cms_used);
2120 
2121   bitMapLock()->unlock();
2122   releaseFreelistLocks();
2123 
2124   if (!CleanChunkPoolAsync) {
2125     Chunk::clean_chunk_pool();
2126   }
2127 
2128   set_did_compact(false);
2129   _between_prologue_and_epilogue = false;  // ready for next cycle
2130 }
2131 
2132 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2133   collector()->gc_epilogue(full);
2134 
2135   // When using ParNew, promotion tracking should have already been
2136   // disabled. However, the prologue (which enables promotion
2137   // tracking) and epilogue are called irrespective of the type of
2138   // GC. So they will also be called before and after Full GCs, during
2139   // which promotion tracking will not be explicitly disabled. So,
2140   // it's safer to also disable it here too (to be symmetric with
2141   // enabling it in the prologue).
2142   for (uint i = 0; i < ParallelGCThreads; i++) {
2143     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2144   }
2145 }
2146 
2147 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2148   assert(!incremental_collection_failed(), "Should have been cleared");
2149   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2150   cmsSpace()->gc_epilogue();
2151     // Print stat counters
2152   NOT_PRODUCT(
2153     assert(_numObjectsAllocated == 0, "check");
2154     assert(_numWordsAllocated == 0, "check");
2155     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2156                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2157     _numObjectsPromoted = 0;
2158     _numWordsPromoted   = 0;
2159   )
2160 
2161   // Call down the chain in contiguous_available needs the freelistLock
2162   // so print this out before releasing the freeListLock.
2163   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2164 }
2165 
2166 #ifndef PRODUCT
2167 bool CMSCollector::have_cms_token() {
2168   Thread* thr = Thread::current();
2169   if (thr->is_VM_thread()) {
2170     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2171   } else if (thr->is_ConcurrentGC_thread()) {
2172     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2173   } else if (thr->is_GC_task_thread()) {
2174     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2175            ParGCRareEvent_lock->owned_by_self();
2176   }
2177   return false;
2178 }
2179 
2180 // Check reachability of the given heap address in CMS generation,
2181 // treating all other generations as roots.
2182 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2183   // We could "guarantee" below, rather than assert, but I'll
2184   // leave these as "asserts" so that an adventurous debugger
2185   // could try this in the product build provided some subset of
2186   // the conditions were met, provided they were interested in the
2187   // results and knew that the computation below wouldn't interfere
2188   // with other concurrent computations mutating the structures
2189   // being read or written.
2190   assert(SafepointSynchronize::is_at_safepoint(),
2191          "Else mutations in object graph will make answer suspect");
2192   assert(have_cms_token(), "Should hold cms token");
2193   assert(haveFreelistLocks(), "must hold free list locks");
2194   assert_lock_strong(bitMapLock());
2195 
2196   // Clear the marking bit map array before starting, but, just
2197   // for kicks, first report if the given address is already marked
2198   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2199                 _markBitMap.isMarked(addr) ? "" : " not");
2200 
2201   if (verify_after_remark()) {
2202     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2203     bool result = verification_mark_bm()->isMarked(addr);
2204     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2205                   result ? "IS" : "is NOT");
2206     return result;
2207   } else {
2208     tty->print_cr("Could not compute result");
2209     return false;
2210   }
2211 }
2212 #endif
2213 
2214 void
2215 CMSCollector::print_on_error(outputStream* st) {
2216   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2217   if (collector != NULL) {
2218     CMSBitMap* bitmap = &collector->_markBitMap;
2219     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2220     bitmap->print_on_error(st, " Bits: ");
2221 
2222     st->cr();
2223 
2224     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2225     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2226     mut_bitmap->print_on_error(st, " Bits: ");
2227   }
2228 }
2229 
2230 ////////////////////////////////////////////////////////
2231 // CMS Verification Support
2232 ////////////////////////////////////////////////////////
2233 // Following the remark phase, the following invariant
2234 // should hold -- each object in the CMS heap which is
2235 // marked in markBitMap() should be marked in the verification_mark_bm().
2236 
2237 class VerifyMarkedClosure: public BitMapClosure {
2238   CMSBitMap* _marks;
2239   bool       _failed;
2240 
2241  public:
2242   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2243 
2244   bool do_bit(size_t offset) {
2245     HeapWord* addr = _marks->offsetToHeapWord(offset);
2246     if (!_marks->isMarked(addr)) {
2247       Log(gc, verify) log;
2248       ResourceMark rm;
2249       oop(addr)->print_on(log.error_stream());
2250       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2251       _failed = true;
2252     }
2253     return true;
2254   }
2255 
2256   bool failed() { return _failed; }
2257 };
2258 
2259 bool CMSCollector::verify_after_remark() {
2260   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2261   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2262   static bool init = false;
2263 
2264   assert(SafepointSynchronize::is_at_safepoint(),
2265          "Else mutations in object graph will make answer suspect");
2266   assert(have_cms_token(),
2267          "Else there may be mutual interference in use of "
2268          " verification data structures");
2269   assert(_collectorState > Marking && _collectorState <= Sweeping,
2270          "Else marking info checked here may be obsolete");
2271   assert(haveFreelistLocks(), "must hold free list locks");
2272   assert_lock_strong(bitMapLock());
2273 
2274 
2275   // Allocate marking bit map if not already allocated
2276   if (!init) { // first time
2277     if (!verification_mark_bm()->allocate(_span)) {
2278       return false;
2279     }
2280     init = true;
2281   }
2282 
2283   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2284 
2285   // Turn off refs discovery -- so we will be tracing through refs.
2286   // This is as intended, because by this time
2287   // GC must already have cleared any refs that need to be cleared,
2288   // and traced those that need to be marked; moreover,
2289   // the marking done here is not going to interfere in any
2290   // way with the marking information used by GC.
2291   NoRefDiscovery no_discovery(ref_processor());
2292 
2293 #if defined(COMPILER2) || INCLUDE_JVMCI
2294   DerivedPointerTableDeactivate dpt_deact;
2295 #endif
2296 
2297   // Clear any marks from a previous round
2298   verification_mark_bm()->clear_all();
2299   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2300   verify_work_stacks_empty();
2301 
2302   GenCollectedHeap* gch = GenCollectedHeap::heap();
2303   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2304   // Update the saved marks which may affect the root scans.
2305   gch->save_marks();
2306 
2307   if (CMSRemarkVerifyVariant == 1) {
2308     // In this first variant of verification, we complete
2309     // all marking, then check if the new marks-vector is
2310     // a subset of the CMS marks-vector.
2311     verify_after_remark_work_1();
2312   } else {
2313     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2314     // In this second variant of verification, we flag an error
2315     // (i.e. an object reachable in the new marks-vector not reachable
2316     // in the CMS marks-vector) immediately, also indicating the
2317     // identify of an object (A) that references the unmarked object (B) --
2318     // presumably, a mutation to A failed to be picked up by preclean/remark?
2319     verify_after_remark_work_2();
2320   }
2321 
2322   return true;
2323 }
2324 
2325 void CMSCollector::verify_after_remark_work_1() {
2326   ResourceMark rm;
2327   HandleMark  hm;
2328   GenCollectedHeap* gch = GenCollectedHeap::heap();
2329 
2330   // Get a clear set of claim bits for the roots processing to work with.
2331   ClassLoaderDataGraph::clear_claimed_marks();
2332 
2333   // Mark from roots one level into CMS
2334   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2335   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2336 
2337   {
2338     StrongRootsScope srs(1);
2339 
2340     gch->gen_process_roots(&srs,
2341                            GenCollectedHeap::OldGen,
2342                            true,   // young gen as roots
2343                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2344                            should_unload_classes(),
2345                            &notOlder,
2346                            NULL,
2347                            NULL);
2348   }
2349 
2350   // Now mark from the roots
2351   MarkFromRootsClosure markFromRootsClosure(this, _span,
2352     verification_mark_bm(), verification_mark_stack(),
2353     false /* don't yield */, true /* verifying */);
2354   assert(_restart_addr == NULL, "Expected pre-condition");
2355   verification_mark_bm()->iterate(&markFromRootsClosure);
2356   while (_restart_addr != NULL) {
2357     // Deal with stack overflow: by restarting at the indicated
2358     // address.
2359     HeapWord* ra = _restart_addr;
2360     markFromRootsClosure.reset(ra);
2361     _restart_addr = NULL;
2362     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2363   }
2364   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2365   verify_work_stacks_empty();
2366 
2367   // Marking completed -- now verify that each bit marked in
2368   // verification_mark_bm() is also marked in markBitMap(); flag all
2369   // errors by printing corresponding objects.
2370   VerifyMarkedClosure vcl(markBitMap());
2371   verification_mark_bm()->iterate(&vcl);
2372   if (vcl.failed()) {
2373     Log(gc, verify) log;
2374     log.error("Failed marking verification after remark");
2375     ResourceMark rm;
2376     gch->print_on(log.error_stream());
2377     fatal("CMS: failed marking verification after remark");
2378   }
2379 }
2380 
2381 class VerifyKlassOopsKlassClosure : public KlassClosure {
2382   class VerifyKlassOopsClosure : public OopClosure {
2383     CMSBitMap* _bitmap;
2384    public:
2385     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2386     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2387     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2388   } _oop_closure;
2389  public:
2390   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2391   void do_klass(Klass* k) {
2392     k->oops_do(&_oop_closure);
2393   }
2394 };
2395 
2396 void CMSCollector::verify_after_remark_work_2() {
2397   ResourceMark rm;
2398   HandleMark  hm;
2399   GenCollectedHeap* gch = GenCollectedHeap::heap();
2400 
2401   // Get a clear set of claim bits for the roots processing to work with.
2402   ClassLoaderDataGraph::clear_claimed_marks();
2403 
2404   // Mark from roots one level into CMS
2405   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2406                                      markBitMap());
2407   CLDToOopClosure cld_closure(&notOlder, true);
2408 
2409   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2410 
2411   {
2412     StrongRootsScope srs(1);
2413 
2414     gch->gen_process_roots(&srs,
2415                            GenCollectedHeap::OldGen,
2416                            true,   // young gen as roots
2417                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2418                            should_unload_classes(),
2419                            &notOlder,
2420                            NULL,
2421                            &cld_closure);
2422   }
2423 
2424   // Now mark from the roots
2425   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2426     verification_mark_bm(), markBitMap(), verification_mark_stack());
2427   assert(_restart_addr == NULL, "Expected pre-condition");
2428   verification_mark_bm()->iterate(&markFromRootsClosure);
2429   while (_restart_addr != NULL) {
2430     // Deal with stack overflow: by restarting at the indicated
2431     // address.
2432     HeapWord* ra = _restart_addr;
2433     markFromRootsClosure.reset(ra);
2434     _restart_addr = NULL;
2435     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2436   }
2437   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2438   verify_work_stacks_empty();
2439 
2440   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2441   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2442 
2443   // Marking completed -- now verify that each bit marked in
2444   // verification_mark_bm() is also marked in markBitMap(); flag all
2445   // errors by printing corresponding objects.
2446   VerifyMarkedClosure vcl(markBitMap());
2447   verification_mark_bm()->iterate(&vcl);
2448   assert(!vcl.failed(), "Else verification above should not have succeeded");
2449 }
2450 
2451 void ConcurrentMarkSweepGeneration::save_marks() {
2452   // delegate to CMS space
2453   cmsSpace()->save_marks();
2454 }
2455 
2456 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2457   return cmsSpace()->no_allocs_since_save_marks();
2458 }
2459 
2460 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2461                                                                 \
2462 void ConcurrentMarkSweepGeneration::                            \
2463 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2464   cl->set_generation(this);                                     \
2465   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2466   cl->reset_generation();                                       \
2467   save_marks();                                                 \
2468 }
2469 
2470 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2471 
2472 void
2473 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2474   if (freelistLock()->owned_by_self()) {
2475     Generation::oop_iterate(cl);
2476   } else {
2477     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2478     Generation::oop_iterate(cl);
2479   }
2480 }
2481 
2482 void
2483 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2484   if (freelistLock()->owned_by_self()) {
2485     Generation::object_iterate(cl);
2486   } else {
2487     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2488     Generation::object_iterate(cl);
2489   }
2490 }
2491 
2492 void
2493 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2494   if (freelistLock()->owned_by_self()) {
2495     Generation::safe_object_iterate(cl);
2496   } else {
2497     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2498     Generation::safe_object_iterate(cl);
2499   }
2500 }
2501 
2502 void
2503 ConcurrentMarkSweepGeneration::post_compact() {
2504 }
2505 
2506 void
2507 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2508   // Fix the linear allocation blocks to look like free blocks.
2509 
2510   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2511   // are not called when the heap is verified during universe initialization and
2512   // at vm shutdown.
2513   if (freelistLock()->owned_by_self()) {
2514     cmsSpace()->prepare_for_verify();
2515   } else {
2516     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2517     cmsSpace()->prepare_for_verify();
2518   }
2519 }
2520 
2521 void
2522 ConcurrentMarkSweepGeneration::verify() {
2523   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2524   // are not called when the heap is verified during universe initialization and
2525   // at vm shutdown.
2526   if (freelistLock()->owned_by_self()) {
2527     cmsSpace()->verify();
2528   } else {
2529     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2530     cmsSpace()->verify();
2531   }
2532 }
2533 
2534 void CMSCollector::verify() {
2535   _cmsGen->verify();
2536 }
2537 
2538 #ifndef PRODUCT
2539 bool CMSCollector::overflow_list_is_empty() const {
2540   assert(_num_par_pushes >= 0, "Inconsistency");
2541   if (_overflow_list == NULL) {
2542     assert(_num_par_pushes == 0, "Inconsistency");
2543   }
2544   return _overflow_list == NULL;
2545 }
2546 
2547 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2548 // merely consolidate assertion checks that appear to occur together frequently.
2549 void CMSCollector::verify_work_stacks_empty() const {
2550   assert(_markStack.isEmpty(), "Marking stack should be empty");
2551   assert(overflow_list_is_empty(), "Overflow list should be empty");
2552 }
2553 
2554 void CMSCollector::verify_overflow_empty() const {
2555   assert(overflow_list_is_empty(), "Overflow list should be empty");
2556   assert(no_preserved_marks(), "No preserved marks");
2557 }
2558 #endif // PRODUCT
2559 
2560 // Decide if we want to enable class unloading as part of the
2561 // ensuing concurrent GC cycle. We will collect and
2562 // unload classes if it's the case that:
2563 // (1) an explicit gc request has been made and the flag
2564 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2565 // (2) (a) class unloading is enabled at the command line, and
2566 //     (b) old gen is getting really full
2567 // NOTE: Provided there is no change in the state of the heap between
2568 // calls to this method, it should have idempotent results. Moreover,
2569 // its results should be monotonically increasing (i.e. going from 0 to 1,
2570 // but not 1 to 0) between successive calls between which the heap was
2571 // not collected. For the implementation below, it must thus rely on
2572 // the property that concurrent_cycles_since_last_unload()
2573 // will not decrease unless a collection cycle happened and that
2574 // _cmsGen->is_too_full() are
2575 // themselves also monotonic in that sense. See check_monotonicity()
2576 // below.
2577 void CMSCollector::update_should_unload_classes() {
2578   _should_unload_classes = false;
2579   // Condition 1 above
2580   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2581     _should_unload_classes = true;
2582   } else if (ClassUnloadingWithConcurrentMark) { // Condition 2.a above
2583     // Disjuncts 2.b.(i,ii,iii) above
2584     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2585                               CMSClassUnloadingMaxInterval)
2586                            || _cmsGen->is_too_full();
2587   }
2588 }
2589 
2590 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2591   bool res = should_concurrent_collect();
2592   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2593   return res;
2594 }
2595 
2596 void CMSCollector::setup_cms_unloading_and_verification_state() {
2597   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2598                              || VerifyBeforeExit;
2599   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2600 
2601   // We set the proper root for this CMS cycle here.
2602   if (should_unload_classes()) {   // Should unload classes this cycle
2603     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2604     set_verifying(should_verify);    // Set verification state for this cycle
2605     return;                            // Nothing else needs to be done at this time
2606   }
2607 
2608   // Not unloading classes this cycle
2609   assert(!should_unload_classes(), "Inconsistency!");
2610 
2611   // If we are not unloading classes then add SO_AllCodeCache to root
2612   // scanning options.
2613   add_root_scanning_option(rso);
2614 
2615   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2616     set_verifying(true);
2617   } else if (verifying() && !should_verify) {
2618     // We were verifying, but some verification flags got disabled.
2619     set_verifying(false);
2620     // Exclude symbols, strings and code cache elements from root scanning to
2621     // reduce IM and RM pauses.
2622     remove_root_scanning_option(rso);
2623   }
2624 }
2625 
2626 
2627 #ifndef PRODUCT
2628 HeapWord* CMSCollector::block_start(const void* p) const {
2629   const HeapWord* addr = (HeapWord*)p;
2630   if (_span.contains(p)) {
2631     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2632       return _cmsGen->cmsSpace()->block_start(p);
2633     }
2634   }
2635   return NULL;
2636 }
2637 #endif
2638 
2639 HeapWord*
2640 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2641                                                    bool   tlab,
2642                                                    bool   parallel) {
2643   CMSSynchronousYieldRequest yr;
2644   assert(!tlab, "Can't deal with TLAB allocation");
2645   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2646   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2647   if (GCExpandToAllocateDelayMillis > 0) {
2648     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2649   }
2650   return have_lock_and_allocate(word_size, tlab);
2651 }
2652 
2653 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2654     size_t bytes,
2655     size_t expand_bytes,
2656     CMSExpansionCause::Cause cause)
2657 {
2658 
2659   bool success = expand(bytes, expand_bytes);
2660 
2661   // remember why we expanded; this information is used
2662   // by shouldConcurrentCollect() when making decisions on whether to start
2663   // a new CMS cycle.
2664   if (success) {
2665     set_expansion_cause(cause);
2666     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2667   }
2668 }
2669 
2670 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2671   HeapWord* res = NULL;
2672   MutexLocker x(ParGCRareEvent_lock);
2673   while (true) {
2674     // Expansion by some other thread might make alloc OK now:
2675     res = ps->lab.alloc(word_sz);
2676     if (res != NULL) return res;
2677     // If there's not enough expansion space available, give up.
2678     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2679       return NULL;
2680     }
2681     // Otherwise, we try expansion.
2682     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2683     // Now go around the loop and try alloc again;
2684     // A competing par_promote might beat us to the expansion space,
2685     // so we may go around the loop again if promotion fails again.
2686     if (GCExpandToAllocateDelayMillis > 0) {
2687       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2688     }
2689   }
2690 }
2691 
2692 
2693 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2694   PromotionInfo* promo) {
2695   MutexLocker x(ParGCRareEvent_lock);
2696   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2697   while (true) {
2698     // Expansion by some other thread might make alloc OK now:
2699     if (promo->ensure_spooling_space()) {
2700       assert(promo->has_spooling_space(),
2701              "Post-condition of successful ensure_spooling_space()");
2702       return true;
2703     }
2704     // If there's not enough expansion space available, give up.
2705     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2706       return false;
2707     }
2708     // Otherwise, we try expansion.
2709     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2710     // Now go around the loop and try alloc again;
2711     // A competing allocation might beat us to the expansion space,
2712     // so we may go around the loop again if allocation fails again.
2713     if (GCExpandToAllocateDelayMillis > 0) {
2714       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2715     }
2716   }
2717 }
2718 
2719 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2720   // Only shrink if a compaction was done so that all the free space
2721   // in the generation is in a contiguous block at the end.
2722   if (did_compact()) {
2723     CardGeneration::shrink(bytes);
2724   }
2725 }
2726 
2727 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2728   assert_locked_or_safepoint(Heap_lock);
2729 }
2730 
2731 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2732   assert_locked_or_safepoint(Heap_lock);
2733   assert_lock_strong(freelistLock());
2734   log_trace(gc)("Shrinking of CMS not yet implemented");
2735   return;
2736 }
2737 
2738 
2739 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2740 // phases.
2741 class CMSPhaseAccounting: public StackObj {
2742  public:
2743   CMSPhaseAccounting(CMSCollector *collector,
2744                      const char *title);
2745   ~CMSPhaseAccounting();
2746 
2747  private:
2748   CMSCollector *_collector;
2749   const char *_title;
2750   GCTraceConcTime(Info, gc) _trace_time;
2751 
2752  public:
2753   // Not MT-safe; so do not pass around these StackObj's
2754   // where they may be accessed by other threads.
2755   double wallclock_millis() {
2756     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2757   }
2758 };
2759 
2760 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2761                                        const char *title) :
2762   _collector(collector), _title(title), _trace_time(title) {
2763 
2764   _collector->resetYields();
2765   _collector->resetTimer();
2766   _collector->startTimer();
2767   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2768 }
2769 
2770 CMSPhaseAccounting::~CMSPhaseAccounting() {
2771   _collector->gc_timer_cm()->register_gc_concurrent_end();
2772   _collector->stopTimer();
2773   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2774   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2775 }
2776 
2777 // CMS work
2778 
2779 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2780 class CMSParMarkTask : public AbstractGangTask {
2781  protected:
2782   CMSCollector*     _collector;
2783   uint              _n_workers;
2784   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2785       AbstractGangTask(name),
2786       _collector(collector),
2787       _n_workers(n_workers) {}
2788   // Work method in support of parallel rescan ... of young gen spaces
2789   void do_young_space_rescan(OopsInGenClosure* cl,
2790                              ContiguousSpace* space,
2791                              HeapWord** chunk_array, size_t chunk_top);
2792   void work_on_young_gen_roots(OopsInGenClosure* cl);
2793 };
2794 
2795 // Parallel initial mark task
2796 class CMSParInitialMarkTask: public CMSParMarkTask {
2797   StrongRootsScope* _strong_roots_scope;
2798  public:
2799   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2800       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2801       _strong_roots_scope(strong_roots_scope) {}
2802   void work(uint worker_id);
2803 };
2804 
2805 // Checkpoint the roots into this generation from outside
2806 // this generation. [Note this initial checkpoint need only
2807 // be approximate -- we'll do a catch up phase subsequently.]
2808 void CMSCollector::checkpointRootsInitial() {
2809   assert(_collectorState == InitialMarking, "Wrong collector state");
2810   check_correct_thread_executing();
2811   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2812 
2813   save_heap_summary();
2814   report_heap_summary(GCWhen::BeforeGC);
2815 
2816   ReferenceProcessor* rp = ref_processor();
2817   assert(_restart_addr == NULL, "Control point invariant");
2818   {
2819     // acquire locks for subsequent manipulations
2820     MutexLockerEx x(bitMapLock(),
2821                     Mutex::_no_safepoint_check_flag);
2822     checkpointRootsInitialWork();
2823     // enable ("weak") refs discovery
2824     rp->enable_discovery();
2825     _collectorState = Marking;
2826   }
2827 }
2828 
2829 void CMSCollector::checkpointRootsInitialWork() {
2830   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2831   assert(_collectorState == InitialMarking, "just checking");
2832 
2833   // Already have locks.
2834   assert_lock_strong(bitMapLock());
2835   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2836 
2837   // Setup the verification and class unloading state for this
2838   // CMS collection cycle.
2839   setup_cms_unloading_and_verification_state();
2840 
2841   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2842 
2843   // Reset all the PLAB chunk arrays if necessary.
2844   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2845     reset_survivor_plab_arrays();
2846   }
2847 
2848   ResourceMark rm;
2849   HandleMark  hm;
2850 
2851   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2852   GenCollectedHeap* gch = GenCollectedHeap::heap();
2853 
2854   verify_work_stacks_empty();
2855   verify_overflow_empty();
2856 
2857   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2858   // Update the saved marks which may affect the root scans.
2859   gch->save_marks();
2860 
2861   // weak reference processing has not started yet.
2862   ref_processor()->set_enqueuing_is_done(false);
2863 
2864   // Need to remember all newly created CLDs,
2865   // so that we can guarantee that the remark finds them.
2866   ClassLoaderDataGraph::remember_new_clds(true);
2867 
2868   // Whenever a CLD is found, it will be claimed before proceeding to mark
2869   // the klasses. The claimed marks need to be cleared before marking starts.
2870   ClassLoaderDataGraph::clear_claimed_marks();
2871 
2872   print_eden_and_survivor_chunk_arrays();
2873 
2874   {
2875 #if defined(COMPILER2) || INCLUDE_JVMCI
2876     DerivedPointerTableDeactivate dpt_deact;
2877 #endif
2878     if (CMSParallelInitialMarkEnabled) {
2879       // The parallel version.
2880       WorkGang* workers = gch->workers();
2881       assert(workers != NULL, "Need parallel worker threads.");
2882       uint n_workers = workers->active_workers();
2883 
2884       StrongRootsScope srs(n_workers);
2885 
2886       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2887       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2888       if (n_workers > 1) {
2889         workers->run_task(&tsk);
2890       } else {
2891         tsk.work(0);
2892       }
2893     } else {
2894       // The serial version.
2895       CLDToOopClosure cld_closure(&notOlder, true);
2896       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2897 
2898       StrongRootsScope srs(1);
2899 
2900       gch->gen_process_roots(&srs,
2901                              GenCollectedHeap::OldGen,
2902                              true,   // young gen as roots
2903                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2904                              should_unload_classes(),
2905                              &notOlder,
2906                              NULL,
2907                              &cld_closure);
2908     }
2909   }
2910 
2911   // Clear mod-union table; it will be dirtied in the prologue of
2912   // CMS generation per each young generation collection.
2913 
2914   assert(_modUnionTable.isAllClear(),
2915        "Was cleared in most recent final checkpoint phase"
2916        " or no bits are set in the gc_prologue before the start of the next "
2917        "subsequent marking phase.");
2918 
2919   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2920 
2921   // Save the end of the used_region of the constituent generations
2922   // to be used to limit the extent of sweep in each generation.
2923   save_sweep_limits();
2924   verify_overflow_empty();
2925 }
2926 
2927 bool CMSCollector::markFromRoots() {
2928   // we might be tempted to assert that:
2929   // assert(!SafepointSynchronize::is_at_safepoint(),
2930   //        "inconsistent argument?");
2931   // However that wouldn't be right, because it's possible that
2932   // a safepoint is indeed in progress as a young generation
2933   // stop-the-world GC happens even as we mark in this generation.
2934   assert(_collectorState == Marking, "inconsistent state?");
2935   check_correct_thread_executing();
2936   verify_overflow_empty();
2937 
2938   // Weak ref discovery note: We may be discovering weak
2939   // refs in this generation concurrent (but interleaved) with
2940   // weak ref discovery by the young generation collector.
2941 
2942   CMSTokenSyncWithLocks ts(true, bitMapLock());
2943   GCTraceCPUTime tcpu;
2944   CMSPhaseAccounting pa(this, "Concurrent Mark");
2945   bool res = markFromRootsWork();
2946   if (res) {
2947     _collectorState = Precleaning;
2948   } else { // We failed and a foreground collection wants to take over
2949     assert(_foregroundGCIsActive, "internal state inconsistency");
2950     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2951     log_debug(gc)("bailing out to foreground collection");
2952   }
2953   verify_overflow_empty();
2954   return res;
2955 }
2956 
2957 bool CMSCollector::markFromRootsWork() {
2958   // iterate over marked bits in bit map, doing a full scan and mark
2959   // from these roots using the following algorithm:
2960   // . if oop is to the right of the current scan pointer,
2961   //   mark corresponding bit (we'll process it later)
2962   // . else (oop is to left of current scan pointer)
2963   //   push oop on marking stack
2964   // . drain the marking stack
2965 
2966   // Note that when we do a marking step we need to hold the
2967   // bit map lock -- recall that direct allocation (by mutators)
2968   // and promotion (by the young generation collector) is also
2969   // marking the bit map. [the so-called allocate live policy.]
2970   // Because the implementation of bit map marking is not
2971   // robust wrt simultaneous marking of bits in the same word,
2972   // we need to make sure that there is no such interference
2973   // between concurrent such updates.
2974 
2975   // already have locks
2976   assert_lock_strong(bitMapLock());
2977 
2978   verify_work_stacks_empty();
2979   verify_overflow_empty();
2980   bool result = false;
2981   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2982     result = do_marking_mt();
2983   } else {
2984     result = do_marking_st();
2985   }
2986   return result;
2987 }
2988 
2989 // Forward decl
2990 class CMSConcMarkingTask;
2991 
2992 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2993   CMSCollector*       _collector;
2994   CMSConcMarkingTask* _task;
2995  public:
2996   virtual void yield();
2997 
2998   // "n_threads" is the number of threads to be terminated.
2999   // "queue_set" is a set of work queues of other threads.
3000   // "collector" is the CMS collector associated with this task terminator.
3001   // "yield" indicates whether we need the gang as a whole to yield.
3002   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3003     ParallelTaskTerminator(n_threads, queue_set),
3004     _collector(collector) { }
3005 
3006   void set_task(CMSConcMarkingTask* task) {
3007     _task = task;
3008   }
3009 };
3010 
3011 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3012   CMSConcMarkingTask* _task;
3013  public:
3014   bool should_exit_termination();
3015   void set_task(CMSConcMarkingTask* task) {
3016     _task = task;
3017   }
3018 };
3019 
3020 // MT Concurrent Marking Task
3021 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3022   CMSCollector* _collector;
3023   uint          _n_workers;       // requested/desired # workers
3024   bool          _result;
3025   CompactibleFreeListSpace*  _cms_space;
3026   char          _pad_front[64];   // padding to ...
3027   HeapWord*     _global_finger;   // ... avoid sharing cache line
3028   char          _pad_back[64];
3029   HeapWord*     _restart_addr;
3030 
3031   //  Exposed here for yielding support
3032   Mutex* const _bit_map_lock;
3033 
3034   // The per thread work queues, available here for stealing
3035   OopTaskQueueSet*  _task_queues;
3036 
3037   // Termination (and yielding) support
3038   CMSConcMarkingTerminator _term;
3039   CMSConcMarkingTerminatorTerminator _term_term;
3040 
3041  public:
3042   CMSConcMarkingTask(CMSCollector* collector,
3043                  CompactibleFreeListSpace* cms_space,
3044                  YieldingFlexibleWorkGang* workers,
3045                  OopTaskQueueSet* task_queues):
3046     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3047     _collector(collector),
3048     _cms_space(cms_space),
3049     _n_workers(0), _result(true),
3050     _task_queues(task_queues),
3051     _term(_n_workers, task_queues, _collector),
3052     _bit_map_lock(collector->bitMapLock())
3053   {
3054     _requested_size = _n_workers;
3055     _term.set_task(this);
3056     _term_term.set_task(this);
3057     _restart_addr = _global_finger = _cms_space->bottom();
3058   }
3059 
3060 
3061   OopTaskQueueSet* task_queues()  { return _task_queues; }
3062 
3063   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3064 
3065   HeapWord** global_finger_addr() { return &_global_finger; }
3066 
3067   CMSConcMarkingTerminator* terminator() { return &_term; }
3068 
3069   virtual void set_for_termination(uint active_workers) {
3070     terminator()->reset_for_reuse(active_workers);
3071   }
3072 
3073   void work(uint worker_id);
3074   bool should_yield() {
3075     return    ConcurrentMarkSweepThread::should_yield()
3076            && !_collector->foregroundGCIsActive();
3077   }
3078 
3079   virtual void coordinator_yield();  // stuff done by coordinator
3080   bool result() { return _result; }
3081 
3082   void reset(HeapWord* ra) {
3083     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3084     _restart_addr = _global_finger = ra;
3085     _term.reset_for_reuse();
3086   }
3087 
3088   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3089                                            OopTaskQueue* work_q);
3090 
3091  private:
3092   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3093   void do_work_steal(int i);
3094   void bump_global_finger(HeapWord* f);
3095 };
3096 
3097 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3098   assert(_task != NULL, "Error");
3099   return _task->yielding();
3100   // Note that we do not need the disjunct || _task->should_yield() above
3101   // because we want terminating threads to yield only if the task
3102   // is already in the midst of yielding, which happens only after at least one
3103   // thread has yielded.
3104 }
3105 
3106 void CMSConcMarkingTerminator::yield() {
3107   if (_task->should_yield()) {
3108     _task->yield();
3109   } else {
3110     ParallelTaskTerminator::yield();
3111   }
3112 }
3113 
3114 ////////////////////////////////////////////////////////////////
3115 // Concurrent Marking Algorithm Sketch
3116 ////////////////////////////////////////////////////////////////
3117 // Until all tasks exhausted (both spaces):
3118 // -- claim next available chunk
3119 // -- bump global finger via CAS
3120 // -- find first object that starts in this chunk
3121 //    and start scanning bitmap from that position
3122 // -- scan marked objects for oops
3123 // -- CAS-mark target, and if successful:
3124 //    . if target oop is above global finger (volatile read)
3125 //      nothing to do
3126 //    . if target oop is in chunk and above local finger
3127 //        then nothing to do
3128 //    . else push on work-queue
3129 // -- Deal with possible overflow issues:
3130 //    . local work-queue overflow causes stuff to be pushed on
3131 //      global (common) overflow queue
3132 //    . always first empty local work queue
3133 //    . then get a batch of oops from global work queue if any
3134 //    . then do work stealing
3135 // -- When all tasks claimed (both spaces)
3136 //    and local work queue empty,
3137 //    then in a loop do:
3138 //    . check global overflow stack; steal a batch of oops and trace
3139 //    . try to steal from other threads oif GOS is empty
3140 //    . if neither is available, offer termination
3141 // -- Terminate and return result
3142 //
3143 void CMSConcMarkingTask::work(uint worker_id) {
3144   elapsedTimer _timer;
3145   ResourceMark rm;
3146   HandleMark hm;
3147 
3148   DEBUG_ONLY(_collector->verify_overflow_empty();)
3149 
3150   // Before we begin work, our work queue should be empty
3151   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3152   // Scan the bitmap covering _cms_space, tracing through grey objects.
3153   _timer.start();
3154   do_scan_and_mark(worker_id, _cms_space);
3155   _timer.stop();
3156   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3157 
3158   // ... do work stealing
3159   _timer.reset();
3160   _timer.start();
3161   do_work_steal(worker_id);
3162   _timer.stop();
3163   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3164   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3165   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3166   // Note that under the current task protocol, the
3167   // following assertion is true even of the spaces
3168   // expanded since the completion of the concurrent
3169   // marking. XXX This will likely change under a strict
3170   // ABORT semantics.
3171   // After perm removal the comparison was changed to
3172   // greater than or equal to from strictly greater than.
3173   // Before perm removal the highest address sweep would
3174   // have been at the end of perm gen but now is at the
3175   // end of the tenured gen.
3176   assert(_global_finger >=  _cms_space->end(),
3177          "All tasks have been completed");
3178   DEBUG_ONLY(_collector->verify_overflow_empty();)
3179 }
3180 
3181 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3182   HeapWord* read = _global_finger;
3183   HeapWord* cur  = read;
3184   while (f > read) {
3185     cur = read;
3186     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3187     if (cur == read) {
3188       // our cas succeeded
3189       assert(_global_finger >= f, "protocol consistency");
3190       break;
3191     }
3192   }
3193 }
3194 
3195 // This is really inefficient, and should be redone by
3196 // using (not yet available) block-read and -write interfaces to the
3197 // stack and the work_queue. XXX FIX ME !!!
3198 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3199                                                       OopTaskQueue* work_q) {
3200   // Fast lock-free check
3201   if (ovflw_stk->length() == 0) {
3202     return false;
3203   }
3204   assert(work_q->size() == 0, "Shouldn't steal");
3205   MutexLockerEx ml(ovflw_stk->par_lock(),
3206                    Mutex::_no_safepoint_check_flag);
3207   // Grab up to 1/4 the size of the work queue
3208   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3209                     (size_t)ParGCDesiredObjsFromOverflowList);
3210   num = MIN2(num, ovflw_stk->length());
3211   for (int i = (int) num; i > 0; i--) {
3212     oop cur = ovflw_stk->pop();
3213     assert(cur != NULL, "Counted wrong?");
3214     work_q->push(cur);
3215   }
3216   return num > 0;
3217 }
3218 
3219 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3220   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3221   int n_tasks = pst->n_tasks();
3222   // We allow that there may be no tasks to do here because
3223   // we are restarting after a stack overflow.
3224   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3225   uint nth_task = 0;
3226 
3227   HeapWord* aligned_start = sp->bottom();
3228   if (sp->used_region().contains(_restart_addr)) {
3229     // Align down to a card boundary for the start of 0th task
3230     // for this space.
3231     aligned_start =
3232       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3233                                  CardTableModRefBS::card_size);
3234   }
3235 
3236   size_t chunk_size = sp->marking_task_size();
3237   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3238     // Having claimed the nth task in this space,
3239     // compute the chunk that it corresponds to:
3240     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3241                                aligned_start + (nth_task+1)*chunk_size);
3242     // Try and bump the global finger via a CAS;
3243     // note that we need to do the global finger bump
3244     // _before_ taking the intersection below, because
3245     // the task corresponding to that region will be
3246     // deemed done even if the used_region() expands
3247     // because of allocation -- as it almost certainly will
3248     // during start-up while the threads yield in the
3249     // closure below.
3250     HeapWord* finger = span.end();
3251     bump_global_finger(finger);   // atomically
3252     // There are null tasks here corresponding to chunks
3253     // beyond the "top" address of the space.
3254     span = span.intersection(sp->used_region());
3255     if (!span.is_empty()) {  // Non-null task
3256       HeapWord* prev_obj;
3257       assert(!span.contains(_restart_addr) || nth_task == 0,
3258              "Inconsistency");
3259       if (nth_task == 0) {
3260         // For the 0th task, we'll not need to compute a block_start.
3261         if (span.contains(_restart_addr)) {
3262           // In the case of a restart because of stack overflow,
3263           // we might additionally skip a chunk prefix.
3264           prev_obj = _restart_addr;
3265         } else {
3266           prev_obj = span.start();
3267         }
3268       } else {
3269         // We want to skip the first object because
3270         // the protocol is to scan any object in its entirety
3271         // that _starts_ in this span; a fortiori, any
3272         // object starting in an earlier span is scanned
3273         // as part of an earlier claimed task.
3274         // Below we use the "careful" version of block_start
3275         // so we do not try to navigate uninitialized objects.
3276         prev_obj = sp->block_start_careful(span.start());
3277         // Below we use a variant of block_size that uses the
3278         // Printezis bits to avoid waiting for allocated
3279         // objects to become initialized/parsable.
3280         while (prev_obj < span.start()) {
3281           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3282           if (sz > 0) {
3283             prev_obj += sz;
3284           } else {
3285             // In this case we may end up doing a bit of redundant
3286             // scanning, but that appears unavoidable, short of
3287             // locking the free list locks; see bug 6324141.
3288             break;
3289           }
3290         }
3291       }
3292       if (prev_obj < span.end()) {
3293         MemRegion my_span = MemRegion(prev_obj, span.end());
3294         // Do the marking work within a non-empty span --
3295         // the last argument to the constructor indicates whether the
3296         // iteration should be incremental with periodic yields.
3297         ParMarkFromRootsClosure cl(this, _collector, my_span,
3298                                    &_collector->_markBitMap,
3299                                    work_queue(i),
3300                                    &_collector->_markStack);
3301         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3302       } // else nothing to do for this task
3303     }   // else nothing to do for this task
3304   }
3305   // We'd be tempted to assert here that since there are no
3306   // more tasks left to claim in this space, the global_finger
3307   // must exceed space->top() and a fortiori space->end(). However,
3308   // that would not quite be correct because the bumping of
3309   // global_finger occurs strictly after the claiming of a task,
3310   // so by the time we reach here the global finger may not yet
3311   // have been bumped up by the thread that claimed the last
3312   // task.
3313   pst->all_tasks_completed();
3314 }
3315 
3316 class ParConcMarkingClosure: public MetadataAwareOopClosure {
3317  private:
3318   CMSCollector* _collector;
3319   CMSConcMarkingTask* _task;
3320   MemRegion     _span;
3321   CMSBitMap*    _bit_map;
3322   CMSMarkStack* _overflow_stack;
3323   OopTaskQueue* _work_queue;
3324  protected:
3325   DO_OOP_WORK_DEFN
3326  public:
3327   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3328                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3329     MetadataAwareOopClosure(collector->ref_processor()),
3330     _collector(collector),
3331     _task(task),
3332     _span(collector->_span),
3333     _work_queue(work_queue),
3334     _bit_map(bit_map),
3335     _overflow_stack(overflow_stack)
3336   { }
3337   virtual void do_oop(oop* p);
3338   virtual void do_oop(narrowOop* p);
3339 
3340   void trim_queue(size_t max);
3341   void handle_stack_overflow(HeapWord* lost);
3342   void do_yield_check() {
3343     if (_task->should_yield()) {
3344       _task->yield();
3345     }
3346   }
3347 };
3348 
3349 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3350 
3351 // Grey object scanning during work stealing phase --
3352 // the salient assumption here is that any references
3353 // that are in these stolen objects being scanned must
3354 // already have been initialized (else they would not have
3355 // been published), so we do not need to check for
3356 // uninitialized objects before pushing here.
3357 void ParConcMarkingClosure::do_oop(oop obj) {
3358   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3359   HeapWord* addr = (HeapWord*)obj;
3360   // Check if oop points into the CMS generation
3361   // and is not marked
3362   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3363     // a white object ...
3364     // If we manage to "claim" the object, by being the
3365     // first thread to mark it, then we push it on our
3366     // marking stack
3367     if (_bit_map->par_mark(addr)) {     // ... now grey
3368       // push on work queue (grey set)
3369       bool simulate_overflow = false;
3370       NOT_PRODUCT(
3371         if (CMSMarkStackOverflowALot &&
3372             _collector->simulate_overflow()) {
3373           // simulate a stack overflow
3374           simulate_overflow = true;
3375         }
3376       )
3377       if (simulate_overflow ||
3378           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3379         // stack overflow
3380         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3381         // We cannot assert that the overflow stack is full because
3382         // it may have been emptied since.
3383         assert(simulate_overflow ||
3384                _work_queue->size() == _work_queue->max_elems(),
3385               "Else push should have succeeded");
3386         handle_stack_overflow(addr);
3387       }
3388     } // Else, some other thread got there first
3389     do_yield_check();
3390   }
3391 }
3392 
3393 void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3394 void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3395 
3396 void ParConcMarkingClosure::trim_queue(size_t max) {
3397   while (_work_queue->size() > max) {
3398     oop new_oop;
3399     if (_work_queue->pop_local(new_oop)) {
3400       assert(new_oop->is_oop(), "Should be an oop");
3401       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3402       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3403       new_oop->oop_iterate(this);  // do_oop() above
3404       do_yield_check();
3405     }
3406   }
3407 }
3408 
3409 // Upon stack overflow, we discard (part of) the stack,
3410 // remembering the least address amongst those discarded
3411 // in CMSCollector's _restart_address.
3412 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3413   // We need to do this under a mutex to prevent other
3414   // workers from interfering with the work done below.
3415   MutexLockerEx ml(_overflow_stack->par_lock(),
3416                    Mutex::_no_safepoint_check_flag);
3417   // Remember the least grey address discarded
3418   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3419   _collector->lower_restart_addr(ra);
3420   _overflow_stack->reset();  // discard stack contents
3421   _overflow_stack->expand(); // expand the stack if possible
3422 }
3423 
3424 
3425 void CMSConcMarkingTask::do_work_steal(int i) {
3426   OopTaskQueue* work_q = work_queue(i);
3427   oop obj_to_scan;
3428   CMSBitMap* bm = &(_collector->_markBitMap);
3429   CMSMarkStack* ovflw = &(_collector->_markStack);
3430   int* seed = _collector->hash_seed(i);
3431   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3432   while (true) {
3433     cl.trim_queue(0);
3434     assert(work_q->size() == 0, "Should have been emptied above");
3435     if (get_work_from_overflow_stack(ovflw, work_q)) {
3436       // Can't assert below because the work obtained from the
3437       // overflow stack may already have been stolen from us.
3438       // assert(work_q->size() > 0, "Work from overflow stack");
3439       continue;
3440     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3441       assert(obj_to_scan->is_oop(), "Should be an oop");
3442       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3443       obj_to_scan->oop_iterate(&cl);
3444     } else if (terminator()->offer_termination(&_term_term)) {
3445       assert(work_q->size() == 0, "Impossible!");
3446       break;
3447     } else if (yielding() || should_yield()) {
3448       yield();
3449     }
3450   }
3451 }
3452 
3453 // This is run by the CMS (coordinator) thread.
3454 void CMSConcMarkingTask::coordinator_yield() {
3455   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3456          "CMS thread should hold CMS token");
3457   // First give up the locks, then yield, then re-lock
3458   // We should probably use a constructor/destructor idiom to
3459   // do this unlock/lock or modify the MutexUnlocker class to
3460   // serve our purpose. XXX
3461   assert_lock_strong(_bit_map_lock);
3462   _bit_map_lock->unlock();
3463   ConcurrentMarkSweepThread::desynchronize(true);
3464   _collector->stopTimer();
3465   _collector->incrementYields();
3466 
3467   // It is possible for whichever thread initiated the yield request
3468   // not to get a chance to wake up and take the bitmap lock between
3469   // this thread releasing it and reacquiring it. So, while the
3470   // should_yield() flag is on, let's sleep for a bit to give the
3471   // other thread a chance to wake up. The limit imposed on the number
3472   // of iterations is defensive, to avoid any unforseen circumstances
3473   // putting us into an infinite loop. Since it's always been this
3474   // (coordinator_yield()) method that was observed to cause the
3475   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3476   // which is by default non-zero. For the other seven methods that
3477   // also perform the yield operation, as are using a different
3478   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3479   // can enable the sleeping for those methods too, if necessary.
3480   // See 6442774.
3481   //
3482   // We really need to reconsider the synchronization between the GC
3483   // thread and the yield-requesting threads in the future and we
3484   // should really use wait/notify, which is the recommended
3485   // way of doing this type of interaction. Additionally, we should
3486   // consolidate the eight methods that do the yield operation and they
3487   // are almost identical into one for better maintainability and
3488   // readability. See 6445193.
3489   //
3490   // Tony 2006.06.29
3491   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3492                    ConcurrentMarkSweepThread::should_yield() &&
3493                    !CMSCollector::foregroundGCIsActive(); ++i) {
3494     os::sleep(Thread::current(), 1, false);
3495   }
3496 
3497   ConcurrentMarkSweepThread::synchronize(true);
3498   _bit_map_lock->lock_without_safepoint_check();
3499   _collector->startTimer();
3500 }
3501 
3502 bool CMSCollector::do_marking_mt() {
3503   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3504   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3505                                                                   conc_workers()->active_workers(),
3506                                                                   Threads::number_of_non_daemon_threads());
3507   conc_workers()->set_active_workers(num_workers);
3508 
3509   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3510 
3511   CMSConcMarkingTask tsk(this,
3512                          cms_space,
3513                          conc_workers(),
3514                          task_queues());
3515 
3516   // Since the actual number of workers we get may be different
3517   // from the number we requested above, do we need to do anything different
3518   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3519   // class?? XXX
3520   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3521 
3522   // Refs discovery is already non-atomic.
3523   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3524   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3525   conc_workers()->start_task(&tsk);
3526   while (tsk.yielded()) {
3527     tsk.coordinator_yield();
3528     conc_workers()->continue_task(&tsk);
3529   }
3530   // If the task was aborted, _restart_addr will be non-NULL
3531   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3532   while (_restart_addr != NULL) {
3533     // XXX For now we do not make use of ABORTED state and have not
3534     // yet implemented the right abort semantics (even in the original
3535     // single-threaded CMS case). That needs some more investigation
3536     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3537     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3538     // If _restart_addr is non-NULL, a marking stack overflow
3539     // occurred; we need to do a fresh marking iteration from the
3540     // indicated restart address.
3541     if (_foregroundGCIsActive) {
3542       // We may be running into repeated stack overflows, having
3543       // reached the limit of the stack size, while making very
3544       // slow forward progress. It may be best to bail out and
3545       // let the foreground collector do its job.
3546       // Clear _restart_addr, so that foreground GC
3547       // works from scratch. This avoids the headache of
3548       // a "rescan" which would otherwise be needed because
3549       // of the dirty mod union table & card table.
3550       _restart_addr = NULL;
3551       return false;
3552     }
3553     // Adjust the task to restart from _restart_addr
3554     tsk.reset(_restart_addr);
3555     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3556                   _restart_addr);
3557     _restart_addr = NULL;
3558     // Get the workers going again
3559     conc_workers()->start_task(&tsk);
3560     while (tsk.yielded()) {
3561       tsk.coordinator_yield();
3562       conc_workers()->continue_task(&tsk);
3563     }
3564   }
3565   assert(tsk.completed(), "Inconsistency");
3566   assert(tsk.result() == true, "Inconsistency");
3567   return true;
3568 }
3569 
3570 bool CMSCollector::do_marking_st() {
3571   ResourceMark rm;
3572   HandleMark   hm;
3573 
3574   // Temporarily make refs discovery single threaded (non-MT)
3575   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3576   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3577     &_markStack, CMSYield);
3578   // the last argument to iterate indicates whether the iteration
3579   // should be incremental with periodic yields.
3580   _markBitMap.iterate(&markFromRootsClosure);
3581   // If _restart_addr is non-NULL, a marking stack overflow
3582   // occurred; we need to do a fresh iteration from the
3583   // indicated restart address.
3584   while (_restart_addr != NULL) {
3585     if (_foregroundGCIsActive) {
3586       // We may be running into repeated stack overflows, having
3587       // reached the limit of the stack size, while making very
3588       // slow forward progress. It may be best to bail out and
3589       // let the foreground collector do its job.
3590       // Clear _restart_addr, so that foreground GC
3591       // works from scratch. This avoids the headache of
3592       // a "rescan" which would otherwise be needed because
3593       // of the dirty mod union table & card table.
3594       _restart_addr = NULL;
3595       return false;  // indicating failure to complete marking
3596     }
3597     // Deal with stack overflow:
3598     // we restart marking from _restart_addr
3599     HeapWord* ra = _restart_addr;
3600     markFromRootsClosure.reset(ra);
3601     _restart_addr = NULL;
3602     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3603   }
3604   return true;
3605 }
3606 
3607 void CMSCollector::preclean() {
3608   check_correct_thread_executing();
3609   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3610   verify_work_stacks_empty();
3611   verify_overflow_empty();
3612   _abort_preclean = false;
3613   if (CMSPrecleaningEnabled) {
3614     if (!CMSEdenChunksRecordAlways) {
3615       _eden_chunk_index = 0;
3616     }
3617     size_t used = get_eden_used();
3618     size_t capacity = get_eden_capacity();
3619     // Don't start sampling unless we will get sufficiently
3620     // many samples.
3621     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3622                 * CMSScheduleRemarkEdenPenetration)) {
3623       _start_sampling = true;
3624     } else {
3625       _start_sampling = false;
3626     }
3627     GCTraceCPUTime tcpu;
3628     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3629     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3630   }
3631   CMSTokenSync x(true); // is cms thread
3632   if (CMSPrecleaningEnabled) {
3633     sample_eden();
3634     _collectorState = AbortablePreclean;
3635   } else {
3636     _collectorState = FinalMarking;
3637   }
3638   verify_work_stacks_empty();
3639   verify_overflow_empty();
3640 }
3641 
3642 // Try and schedule the remark such that young gen
3643 // occupancy is CMSScheduleRemarkEdenPenetration %.
3644 void CMSCollector::abortable_preclean() {
3645   check_correct_thread_executing();
3646   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3647   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3648 
3649   // If Eden's current occupancy is below this threshold,
3650   // immediately schedule the remark; else preclean
3651   // past the next scavenge in an effort to
3652   // schedule the pause as described above. By choosing
3653   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3654   // we will never do an actual abortable preclean cycle.
3655   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3656     GCTraceCPUTime tcpu;
3657     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3658     // We need more smarts in the abortable preclean
3659     // loop below to deal with cases where allocation
3660     // in young gen is very very slow, and our precleaning
3661     // is running a losing race against a horde of
3662     // mutators intent on flooding us with CMS updates
3663     // (dirty cards).
3664     // One, admittedly dumb, strategy is to give up
3665     // after a certain number of abortable precleaning loops
3666     // or after a certain maximum time. We want to make
3667     // this smarter in the next iteration.
3668     // XXX FIX ME!!! YSR
3669     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3670     while (!(should_abort_preclean() ||
3671              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3672       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3673       cumworkdone += workdone;
3674       loops++;
3675       // Voluntarily terminate abortable preclean phase if we have
3676       // been at it for too long.
3677       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3678           loops >= CMSMaxAbortablePrecleanLoops) {
3679         log_debug(gc)(" CMS: abort preclean due to loops ");
3680         break;
3681       }
3682       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3683         log_debug(gc)(" CMS: abort preclean due to time ");
3684         break;
3685       }
3686       // If we are doing little work each iteration, we should
3687       // take a short break.
3688       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3689         // Sleep for some time, waiting for work to accumulate
3690         stopTimer();
3691         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3692         startTimer();
3693         waited++;
3694       }
3695     }
3696     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3697                                loops, waited, cumworkdone);
3698   }
3699   CMSTokenSync x(true); // is cms thread
3700   if (_collectorState != Idling) {
3701     assert(_collectorState == AbortablePreclean,
3702            "Spontaneous state transition?");
3703     _collectorState = FinalMarking;
3704   } // Else, a foreground collection completed this CMS cycle.
3705   return;
3706 }
3707 
3708 // Respond to an Eden sampling opportunity
3709 void CMSCollector::sample_eden() {
3710   // Make sure a young gc cannot sneak in between our
3711   // reading and recording of a sample.
3712   assert(Thread::current()->is_ConcurrentGC_thread(),
3713          "Only the cms thread may collect Eden samples");
3714   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3715          "Should collect samples while holding CMS token");
3716   if (!_start_sampling) {
3717     return;
3718   }
3719   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3720   // is populated by the young generation.
3721   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3722     if (_eden_chunk_index < _eden_chunk_capacity) {
3723       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3724       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3725              "Unexpected state of Eden");
3726       // We'd like to check that what we just sampled is an oop-start address;
3727       // however, we cannot do that here since the object may not yet have been
3728       // initialized. So we'll instead do the check when we _use_ this sample
3729       // later.
3730       if (_eden_chunk_index == 0 ||
3731           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3732                          _eden_chunk_array[_eden_chunk_index-1])
3733            >= CMSSamplingGrain)) {
3734         _eden_chunk_index++;  // commit sample
3735       }
3736     }
3737   }
3738   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3739     size_t used = get_eden_used();
3740     size_t capacity = get_eden_capacity();
3741     assert(used <= capacity, "Unexpected state of Eden");
3742     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3743       _abort_preclean = true;
3744     }
3745   }
3746 }
3747 
3748 
3749 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3750   assert(_collectorState == Precleaning ||
3751          _collectorState == AbortablePreclean, "incorrect state");
3752   ResourceMark rm;
3753   HandleMark   hm;
3754 
3755   // Precleaning is currently not MT but the reference processor
3756   // may be set for MT.  Disable it temporarily here.
3757   ReferenceProcessor* rp = ref_processor();
3758   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3759 
3760   // Do one pass of scrubbing the discovered reference lists
3761   // to remove any reference objects with strongly-reachable
3762   // referents.
3763   if (clean_refs) {
3764     CMSPrecleanRefsYieldClosure yield_cl(this);
3765     assert(rp->span().equals(_span), "Spans should be equal");
3766     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3767                                    &_markStack, true /* preclean */);
3768     CMSDrainMarkingStackClosure complete_trace(this,
3769                                    _span, &_markBitMap, &_markStack,
3770                                    &keep_alive, true /* preclean */);
3771 
3772     // We don't want this step to interfere with a young
3773     // collection because we don't want to take CPU
3774     // or memory bandwidth away from the young GC threads
3775     // (which may be as many as there are CPUs).
3776     // Note that we don't need to protect ourselves from
3777     // interference with mutators because they can't
3778     // manipulate the discovered reference lists nor affect
3779     // the computed reachability of the referents, the
3780     // only properties manipulated by the precleaning
3781     // of these reference lists.
3782     stopTimer();
3783     CMSTokenSyncWithLocks x(true /* is cms thread */,
3784                             bitMapLock());
3785     startTimer();
3786     sample_eden();
3787 
3788     // The following will yield to allow foreground
3789     // collection to proceed promptly. XXX YSR:
3790     // The code in this method may need further
3791     // tweaking for better performance and some restructuring
3792     // for cleaner interfaces.
3793     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3794     rp->preclean_discovered_references(
3795           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3796           gc_timer);
3797   }
3798 
3799   if (clean_survivor) {  // preclean the active survivor space(s)
3800     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3801                              &_markBitMap, &_modUnionTable,
3802                              &_markStack, true /* precleaning phase */);
3803     stopTimer();
3804     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3805                              bitMapLock());
3806     startTimer();
3807     unsigned int before_count =
3808       GenCollectedHeap::heap()->total_collections();
3809     SurvivorSpacePrecleanClosure
3810       sss_cl(this, _span, &_markBitMap, &_markStack,
3811              &pam_cl, before_count, CMSYield);
3812     _young_gen->from()->object_iterate_careful(&sss_cl);
3813     _young_gen->to()->object_iterate_careful(&sss_cl);
3814   }
3815   MarkRefsIntoAndScanClosure
3816     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3817              &_markStack, this, CMSYield,
3818              true /* precleaning phase */);
3819   // CAUTION: The following closure has persistent state that may need to
3820   // be reset upon a decrease in the sequence of addresses it
3821   // processes.
3822   ScanMarkedObjectsAgainCarefullyClosure
3823     smoac_cl(this, _span,
3824       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3825 
3826   // Preclean dirty cards in ModUnionTable and CardTable using
3827   // appropriate convergence criterion;
3828   // repeat CMSPrecleanIter times unless we find that
3829   // we are losing.
3830   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3831   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3832          "Bad convergence multiplier");
3833   assert(CMSPrecleanThreshold >= 100,
3834          "Unreasonably low CMSPrecleanThreshold");
3835 
3836   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3837   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3838        numIter < CMSPrecleanIter;
3839        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3840     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3841     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3842     // Either there are very few dirty cards, so re-mark
3843     // pause will be small anyway, or our pre-cleaning isn't
3844     // that much faster than the rate at which cards are being
3845     // dirtied, so we might as well stop and re-mark since
3846     // precleaning won't improve our re-mark time by much.
3847     if (curNumCards <= CMSPrecleanThreshold ||
3848         (numIter > 0 &&
3849          (curNumCards * CMSPrecleanDenominator >
3850          lastNumCards * CMSPrecleanNumerator))) {
3851       numIter++;
3852       cumNumCards += curNumCards;
3853       break;
3854     }
3855   }
3856 
3857   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3858 
3859   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3860   cumNumCards += curNumCards;
3861   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3862                              curNumCards, cumNumCards, numIter);
3863   return cumNumCards;   // as a measure of useful work done
3864 }
3865 
3866 // PRECLEANING NOTES:
3867 // Precleaning involves:
3868 // . reading the bits of the modUnionTable and clearing the set bits.
3869 // . For the cards corresponding to the set bits, we scan the
3870 //   objects on those cards. This means we need the free_list_lock
3871 //   so that we can safely iterate over the CMS space when scanning
3872 //   for oops.
3873 // . When we scan the objects, we'll be both reading and setting
3874 //   marks in the marking bit map, so we'll need the marking bit map.
3875 // . For protecting _collector_state transitions, we take the CGC_lock.
3876 //   Note that any races in the reading of of card table entries by the
3877 //   CMS thread on the one hand and the clearing of those entries by the
3878 //   VM thread or the setting of those entries by the mutator threads on the
3879 //   other are quite benign. However, for efficiency it makes sense to keep
3880 //   the VM thread from racing with the CMS thread while the latter is
3881 //   dirty card info to the modUnionTable. We therefore also use the
3882 //   CGC_lock to protect the reading of the card table and the mod union
3883 //   table by the CM thread.
3884 // . We run concurrently with mutator updates, so scanning
3885 //   needs to be done carefully  -- we should not try to scan
3886 //   potentially uninitialized objects.
3887 //
3888 // Locking strategy: While holding the CGC_lock, we scan over and
3889 // reset a maximal dirty range of the mod union / card tables, then lock
3890 // the free_list_lock and bitmap lock to do a full marking, then
3891 // release these locks; and repeat the cycle. This allows for a
3892 // certain amount of fairness in the sharing of these locks between
3893 // the CMS collector on the one hand, and the VM thread and the
3894 // mutators on the other.
3895 
3896 // NOTE: preclean_mod_union_table() and preclean_card_table()
3897 // further below are largely identical; if you need to modify
3898 // one of these methods, please check the other method too.
3899 
3900 size_t CMSCollector::preclean_mod_union_table(
3901   ConcurrentMarkSweepGeneration* old_gen,
3902   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3903   verify_work_stacks_empty();
3904   verify_overflow_empty();
3905 
3906   // strategy: starting with the first card, accumulate contiguous
3907   // ranges of dirty cards; clear these cards, then scan the region
3908   // covered by these cards.
3909 
3910   // Since all of the MUT is committed ahead, we can just use
3911   // that, in case the generations expand while we are precleaning.
3912   // It might also be fine to just use the committed part of the
3913   // generation, but we might potentially miss cards when the
3914   // generation is rapidly expanding while we are in the midst
3915   // of precleaning.
3916   HeapWord* startAddr = old_gen->reserved().start();
3917   HeapWord* endAddr   = old_gen->reserved().end();
3918 
3919   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3920 
3921   size_t numDirtyCards, cumNumDirtyCards;
3922   HeapWord *nextAddr, *lastAddr;
3923   for (cumNumDirtyCards = numDirtyCards = 0,
3924        nextAddr = lastAddr = startAddr;
3925        nextAddr < endAddr;
3926        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3927 
3928     ResourceMark rm;
3929     HandleMark   hm;
3930 
3931     MemRegion dirtyRegion;
3932     {
3933       stopTimer();
3934       // Potential yield point
3935       CMSTokenSync ts(true);
3936       startTimer();
3937       sample_eden();
3938       // Get dirty region starting at nextOffset (inclusive),
3939       // simultaneously clearing it.
3940       dirtyRegion =
3941         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3942       assert(dirtyRegion.start() >= nextAddr,
3943              "returned region inconsistent?");
3944     }
3945     // Remember where the next search should begin.
3946     // The returned region (if non-empty) is a right open interval,
3947     // so lastOffset is obtained from the right end of that
3948     // interval.
3949     lastAddr = dirtyRegion.end();
3950     // Should do something more transparent and less hacky XXX
3951     numDirtyCards =
3952       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3953 
3954     // We'll scan the cards in the dirty region (with periodic
3955     // yields for foreground GC as needed).
3956     if (!dirtyRegion.is_empty()) {
3957       assert(numDirtyCards > 0, "consistency check");
3958       HeapWord* stop_point = NULL;
3959       stopTimer();
3960       // Potential yield point
3961       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3962                                bitMapLock());
3963       startTimer();
3964       {
3965         verify_work_stacks_empty();
3966         verify_overflow_empty();
3967         sample_eden();
3968         stop_point =
3969           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3970       }
3971       if (stop_point != NULL) {
3972         // The careful iteration stopped early either because it found an
3973         // uninitialized object, or because we were in the midst of an
3974         // "abortable preclean", which should now be aborted. Redirty
3975         // the bits corresponding to the partially-scanned or unscanned
3976         // cards. We'll either restart at the next block boundary or
3977         // abort the preclean.
3978         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3979                "Should only be AbortablePreclean.");
3980         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3981         if (should_abort_preclean()) {
3982           break; // out of preclean loop
3983         } else {
3984           // Compute the next address at which preclean should pick up;
3985           // might need bitMapLock in order to read P-bits.
3986           lastAddr = next_card_start_after_block(stop_point);
3987         }
3988       }
3989     } else {
3990       assert(lastAddr == endAddr, "consistency check");
3991       assert(numDirtyCards == 0, "consistency check");
3992       break;
3993     }
3994   }
3995   verify_work_stacks_empty();
3996   verify_overflow_empty();
3997   return cumNumDirtyCards;
3998 }
3999 
4000 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4001 // below are largely identical; if you need to modify
4002 // one of these methods, please check the other method too.
4003 
4004 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4005   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4006   // strategy: it's similar to precleamModUnionTable above, in that
4007   // we accumulate contiguous ranges of dirty cards, mark these cards
4008   // precleaned, then scan the region covered by these cards.
4009   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4010   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4011 
4012   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4013 
4014   size_t numDirtyCards, cumNumDirtyCards;
4015   HeapWord *lastAddr, *nextAddr;
4016 
4017   for (cumNumDirtyCards = numDirtyCards = 0,
4018        nextAddr = lastAddr = startAddr;
4019        nextAddr < endAddr;
4020        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4021 
4022     ResourceMark rm;
4023     HandleMark   hm;
4024 
4025     MemRegion dirtyRegion;
4026     {
4027       // See comments in "Precleaning notes" above on why we
4028       // do this locking. XXX Could the locking overheads be
4029       // too high when dirty cards are sparse? [I don't think so.]
4030       stopTimer();
4031       CMSTokenSync x(true); // is cms thread
4032       startTimer();
4033       sample_eden();
4034       // Get and clear dirty region from card table
4035       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4036                                     MemRegion(nextAddr, endAddr),
4037                                     true,
4038                                     CardTableModRefBS::precleaned_card_val());
4039 
4040       assert(dirtyRegion.start() >= nextAddr,
4041              "returned region inconsistent?");
4042     }
4043     lastAddr = dirtyRegion.end();
4044     numDirtyCards =
4045       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4046 
4047     if (!dirtyRegion.is_empty()) {
4048       stopTimer();
4049       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4050       startTimer();
4051       sample_eden();
4052       verify_work_stacks_empty();
4053       verify_overflow_empty();
4054       HeapWord* stop_point =
4055         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4056       if (stop_point != NULL) {
4057         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4058                "Should only be AbortablePreclean.");
4059         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4060         if (should_abort_preclean()) {
4061           break; // out of preclean loop
4062         } else {
4063           // Compute the next address at which preclean should pick up.
4064           lastAddr = next_card_start_after_block(stop_point);
4065         }
4066       }
4067     } else {
4068       break;
4069     }
4070   }
4071   verify_work_stacks_empty();
4072   verify_overflow_empty();
4073   return cumNumDirtyCards;
4074 }
4075 
4076 class PrecleanKlassClosure : public KlassClosure {
4077   KlassToOopClosure _cm_klass_closure;
4078  public:
4079   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4080   void do_klass(Klass* k) {
4081     if (k->has_accumulated_modified_oops()) {
4082       k->clear_accumulated_modified_oops();
4083 
4084       _cm_klass_closure.do_klass(k);
4085     }
4086   }
4087 };
4088 
4089 // The freelist lock is needed to prevent asserts, is it really needed?
4090 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4091 
4092   cl->set_freelistLock(freelistLock);
4093 
4094   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4095 
4096   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4097   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4098   PrecleanKlassClosure preclean_klass_closure(cl);
4099   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4100 
4101   verify_work_stacks_empty();
4102   verify_overflow_empty();
4103 }
4104 
4105 void CMSCollector::checkpointRootsFinal() {
4106   assert(_collectorState == FinalMarking, "incorrect state transition?");
4107   check_correct_thread_executing();
4108   // world is stopped at this checkpoint
4109   assert(SafepointSynchronize::is_at_safepoint(),
4110          "world should be stopped");
4111   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4112 
4113   verify_work_stacks_empty();
4114   verify_overflow_empty();
4115 
4116   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4117                 _young_gen->used() / K, _young_gen->capacity() / K);
4118   {
4119     if (CMSScavengeBeforeRemark) {
4120       GenCollectedHeap* gch = GenCollectedHeap::heap();
4121       // Temporarily set flag to false, GCH->do_collection will
4122       // expect it to be false and set to true
4123       FlagSetting fl(gch->_is_gc_active, false);
4124 
4125       gch->do_collection(true,                      // full (i.e. force, see below)
4126                          false,                     // !clear_all_soft_refs
4127                          0,                         // size
4128                          false,                     // is_tlab
4129                          GenCollectedHeap::YoungGen // type
4130         );
4131     }
4132     FreelistLocker x(this);
4133     MutexLockerEx y(bitMapLock(),
4134                     Mutex::_no_safepoint_check_flag);
4135     checkpointRootsFinalWork();
4136   }
4137   verify_work_stacks_empty();
4138   verify_overflow_empty();
4139 }
4140 
4141 void CMSCollector::checkpointRootsFinalWork() {
4142   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4143 
4144   assert(haveFreelistLocks(), "must have free list locks");
4145   assert_lock_strong(bitMapLock());
4146 
4147   ResourceMark rm;
4148   HandleMark   hm;
4149 
4150   GenCollectedHeap* gch = GenCollectedHeap::heap();
4151 
4152   if (should_unload_classes()) {
4153     CodeCache::gc_prologue();
4154   }
4155   assert(haveFreelistLocks(), "must have free list locks");
4156   assert_lock_strong(bitMapLock());
4157 
4158   // We might assume that we need not fill TLAB's when
4159   // CMSScavengeBeforeRemark is set, because we may have just done
4160   // a scavenge which would have filled all TLAB's -- and besides
4161   // Eden would be empty. This however may not always be the case --
4162   // for instance although we asked for a scavenge, it may not have
4163   // happened because of a JNI critical section. We probably need
4164   // a policy for deciding whether we can in that case wait until
4165   // the critical section releases and then do the remark following
4166   // the scavenge, and skip it here. In the absence of that policy,
4167   // or of an indication of whether the scavenge did indeed occur,
4168   // we cannot rely on TLAB's having been filled and must do
4169   // so here just in case a scavenge did not happen.
4170   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4171   // Update the saved marks which may affect the root scans.
4172   gch->save_marks();
4173 
4174   print_eden_and_survivor_chunk_arrays();
4175 
4176   {
4177 #if defined(COMPILER2) || INCLUDE_JVMCI
4178     DerivedPointerTableDeactivate dpt_deact;
4179 #endif
4180 
4181     // Note on the role of the mod union table:
4182     // Since the marker in "markFromRoots" marks concurrently with
4183     // mutators, it is possible for some reachable objects not to have been
4184     // scanned. For instance, an only reference to an object A was
4185     // placed in object B after the marker scanned B. Unless B is rescanned,
4186     // A would be collected. Such updates to references in marked objects
4187     // are detected via the mod union table which is the set of all cards
4188     // dirtied since the first checkpoint in this GC cycle and prior to
4189     // the most recent young generation GC, minus those cleaned up by the
4190     // concurrent precleaning.
4191     if (CMSParallelRemarkEnabled) {
4192       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4193       do_remark_parallel();
4194     } else {
4195       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4196       do_remark_non_parallel();
4197     }
4198   }
4199   verify_work_stacks_empty();
4200   verify_overflow_empty();
4201 
4202   {
4203     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4204     refProcessingWork();
4205   }
4206   verify_work_stacks_empty();
4207   verify_overflow_empty();
4208 
4209   if (should_unload_classes()) {
4210     CodeCache::gc_epilogue();
4211   }
4212   JvmtiExport::gc_epilogue();
4213 
4214   // If we encountered any (marking stack / work queue) overflow
4215   // events during the current CMS cycle, take appropriate
4216   // remedial measures, where possible, so as to try and avoid
4217   // recurrence of that condition.
4218   assert(_markStack.isEmpty(), "No grey objects");
4219   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4220                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4221   if (ser_ovflw > 0) {
4222     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4223                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4224     _markStack.expand();
4225     _ser_pmc_remark_ovflw = 0;
4226     _ser_pmc_preclean_ovflw = 0;
4227     _ser_kac_preclean_ovflw = 0;
4228     _ser_kac_ovflw = 0;
4229   }
4230   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4231      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4232                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4233      _par_pmc_remark_ovflw = 0;
4234     _par_kac_ovflw = 0;
4235   }
4236    if (_markStack._hit_limit > 0) {
4237      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4238                           _markStack._hit_limit);
4239    }
4240    if (_markStack._failed_double > 0) {
4241      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4242                           _markStack._failed_double, _markStack.capacity());
4243    }
4244   _markStack._hit_limit = 0;
4245   _markStack._failed_double = 0;
4246 
4247   if ((VerifyAfterGC || VerifyDuringGC) &&
4248       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4249     verify_after_remark();
4250   }
4251 
4252   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4253 
4254   // Change under the freelistLocks.
4255   _collectorState = Sweeping;
4256   // Call isAllClear() under bitMapLock
4257   assert(_modUnionTable.isAllClear(),
4258       "Should be clear by end of the final marking");
4259   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4260       "Should be clear by end of the final marking");
4261 }
4262 
4263 void CMSParInitialMarkTask::work(uint worker_id) {
4264   elapsedTimer _timer;
4265   ResourceMark rm;
4266   HandleMark   hm;
4267 
4268   // ---------- scan from roots --------------
4269   _timer.start();
4270   GenCollectedHeap* gch = GenCollectedHeap::heap();
4271   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4272 
4273   // ---------- young gen roots --------------
4274   {
4275     work_on_young_gen_roots(&par_mri_cl);
4276     _timer.stop();
4277     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4278   }
4279 
4280   // ---------- remaining roots --------------
4281   _timer.reset();
4282   _timer.start();
4283 
4284   CLDToOopClosure cld_closure(&par_mri_cl, true);
4285 
4286   gch->gen_process_roots(_strong_roots_scope,
4287                          GenCollectedHeap::OldGen,
4288                          false,     // yg was scanned above
4289                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4290                          _collector->should_unload_classes(),
4291                          &par_mri_cl,
4292                          NULL,
4293                          &cld_closure);
4294   assert(_collector->should_unload_classes()
4295          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4296          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4297   _timer.stop();
4298   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4299 }
4300 
4301 // Parallel remark task
4302 class CMSParRemarkTask: public CMSParMarkTask {
4303   CompactibleFreeListSpace* _cms_space;
4304 
4305   // The per-thread work queues, available here for stealing.
4306   OopTaskQueueSet*       _task_queues;
4307   ParallelTaskTerminator _term;
4308   StrongRootsScope*      _strong_roots_scope;
4309 
4310  public:
4311   // A value of 0 passed to n_workers will cause the number of
4312   // workers to be taken from the active workers in the work gang.
4313   CMSParRemarkTask(CMSCollector* collector,
4314                    CompactibleFreeListSpace* cms_space,
4315                    uint n_workers, WorkGang* workers,
4316                    OopTaskQueueSet* task_queues,
4317                    StrongRootsScope* strong_roots_scope):
4318     CMSParMarkTask("Rescan roots and grey objects in parallel",
4319                    collector, n_workers),
4320     _cms_space(cms_space),
4321     _task_queues(task_queues),
4322     _term(n_workers, task_queues),
4323     _strong_roots_scope(strong_roots_scope) { }
4324 
4325   OopTaskQueueSet* task_queues() { return _task_queues; }
4326 
4327   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4328 
4329   ParallelTaskTerminator* terminator() { return &_term; }
4330   uint n_workers() { return _n_workers; }
4331 
4332   void work(uint worker_id);
4333 
4334  private:
4335   // ... of  dirty cards in old space
4336   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4337                                   ParMarkRefsIntoAndScanClosure* cl);
4338 
4339   // ... work stealing for the above
4340   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4341 };
4342 
4343 class RemarkKlassClosure : public KlassClosure {
4344   KlassToOopClosure _cm_klass_closure;
4345  public:
4346   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4347   void do_klass(Klass* k) {
4348     // Check if we have modified any oops in the Klass during the concurrent marking.
4349     if (k->has_accumulated_modified_oops()) {
4350       k->clear_accumulated_modified_oops();
4351 
4352       // We could have transfered the current modified marks to the accumulated marks,
4353       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4354     } else if (k->has_modified_oops()) {
4355       // Don't clear anything, this info is needed by the next young collection.
4356     } else {
4357       // No modified oops in the Klass.
4358       return;
4359     }
4360 
4361     // The klass has modified fields, need to scan the klass.
4362     _cm_klass_closure.do_klass(k);
4363   }
4364 };
4365 
4366 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4367   ParNewGeneration* young_gen = _collector->_young_gen;
4368   ContiguousSpace* eden_space = young_gen->eden();
4369   ContiguousSpace* from_space = young_gen->from();
4370   ContiguousSpace* to_space   = young_gen->to();
4371 
4372   HeapWord** eca = _collector->_eden_chunk_array;
4373   size_t     ect = _collector->_eden_chunk_index;
4374   HeapWord** sca = _collector->_survivor_chunk_array;
4375   size_t     sct = _collector->_survivor_chunk_index;
4376 
4377   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4378   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4379 
4380   do_young_space_rescan(cl, to_space, NULL, 0);
4381   do_young_space_rescan(cl, from_space, sca, sct);
4382   do_young_space_rescan(cl, eden_space, eca, ect);
4383 }
4384 
4385 // work_queue(i) is passed to the closure
4386 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4387 // also is passed to do_dirty_card_rescan_tasks() and to
4388 // do_work_steal() to select the i-th task_queue.
4389 
4390 void CMSParRemarkTask::work(uint worker_id) {
4391   elapsedTimer _timer;
4392   ResourceMark rm;
4393   HandleMark   hm;
4394 
4395   // ---------- rescan from roots --------------
4396   _timer.start();
4397   GenCollectedHeap* gch = GenCollectedHeap::heap();
4398   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4399     _collector->_span, _collector->ref_processor(),
4400     &(_collector->_markBitMap),
4401     work_queue(worker_id));
4402 
4403   // Rescan young gen roots first since these are likely
4404   // coarsely partitioned and may, on that account, constitute
4405   // the critical path; thus, it's best to start off that
4406   // work first.
4407   // ---------- young gen roots --------------
4408   {
4409     work_on_young_gen_roots(&par_mrias_cl);
4410     _timer.stop();
4411     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4412   }
4413 
4414   // ---------- remaining roots --------------
4415   _timer.reset();
4416   _timer.start();
4417   gch->gen_process_roots(_strong_roots_scope,
4418                          GenCollectedHeap::OldGen,
4419                          false,     // yg was scanned above
4420                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4421                          _collector->should_unload_classes(),
4422                          &par_mrias_cl,
4423                          NULL,
4424                          NULL);     // The dirty klasses will be handled below
4425 
4426   assert(_collector->should_unload_classes()
4427          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4428          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4429   _timer.stop();
4430   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4431 
4432   // ---------- unhandled CLD scanning ----------
4433   if (worker_id == 0) { // Single threaded at the moment.
4434     _timer.reset();
4435     _timer.start();
4436 
4437     // Scan all new class loader data objects and new dependencies that were
4438     // introduced during concurrent marking.
4439     ResourceMark rm;
4440     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4441     for (int i = 0; i < array->length(); i++) {
4442       par_mrias_cl.do_cld_nv(array->at(i));
4443     }
4444 
4445     // We don't need to keep track of new CLDs anymore.
4446     ClassLoaderDataGraph::remember_new_clds(false);
4447 
4448     _timer.stop();
4449     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4450   }
4451 
4452   // ---------- dirty klass scanning ----------
4453   if (worker_id == 0) { // Single threaded at the moment.
4454     _timer.reset();
4455     _timer.start();
4456 
4457     // Scan all classes that was dirtied during the concurrent marking phase.
4458     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4459     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4460 
4461     _timer.stop();
4462     log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4463   }
4464 
4465   // We might have added oops to ClassLoaderData::_handles during the
4466   // concurrent marking phase. These oops point to newly allocated objects
4467   // that are guaranteed to be kept alive. Either by the direct allocation
4468   // code, or when the young collector processes the roots. Hence,
4469   // we don't have to revisit the _handles block during the remark phase.
4470 
4471   // ---------- rescan dirty cards ------------
4472   _timer.reset();
4473   _timer.start();
4474 
4475   // Do the rescan tasks for each of the two spaces
4476   // (cms_space) in turn.
4477   // "worker_id" is passed to select the task_queue for "worker_id"
4478   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4479   _timer.stop();
4480   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4481 
4482   // ---------- steal work from other threads ...
4483   // ---------- ... and drain overflow list.
4484   _timer.reset();
4485   _timer.start();
4486   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4487   _timer.stop();
4488   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4489 }
4490 
4491 void
4492 CMSParMarkTask::do_young_space_rescan(
4493   OopsInGenClosure* cl, ContiguousSpace* space,
4494   HeapWord** chunk_array, size_t chunk_top) {
4495   // Until all tasks completed:
4496   // . claim an unclaimed task
4497   // . compute region boundaries corresponding to task claimed
4498   //   using chunk_array
4499   // . par_oop_iterate(cl) over that region
4500 
4501   ResourceMark rm;
4502   HandleMark   hm;
4503 
4504   SequentialSubTasksDone* pst = space->par_seq_tasks();
4505 
4506   uint nth_task = 0;
4507   uint n_tasks  = pst->n_tasks();
4508 
4509   if (n_tasks > 0) {
4510     assert(pst->valid(), "Uninitialized use?");
4511     HeapWord *start, *end;
4512     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4513       // We claimed task # nth_task; compute its boundaries.
4514       if (chunk_top == 0) {  // no samples were taken
4515         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4516         start = space->bottom();
4517         end   = space->top();
4518       } else if (nth_task == 0) {
4519         start = space->bottom();
4520         end   = chunk_array[nth_task];
4521       } else if (nth_task < (uint)chunk_top) {
4522         assert(nth_task >= 1, "Control point invariant");
4523         start = chunk_array[nth_task - 1];
4524         end   = chunk_array[nth_task];
4525       } else {
4526         assert(nth_task == (uint)chunk_top, "Control point invariant");
4527         start = chunk_array[chunk_top - 1];
4528         end   = space->top();
4529       }
4530       MemRegion mr(start, end);
4531       // Verify that mr is in space
4532       assert(mr.is_empty() || space->used_region().contains(mr),
4533              "Should be in space");
4534       // Verify that "start" is an object boundary
4535       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4536              "Should be an oop");
4537       space->par_oop_iterate(mr, cl);
4538     }
4539     pst->all_tasks_completed();
4540   }
4541 }
4542 
4543 void
4544 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4545   CompactibleFreeListSpace* sp, int i,
4546   ParMarkRefsIntoAndScanClosure* cl) {
4547   // Until all tasks completed:
4548   // . claim an unclaimed task
4549   // . compute region boundaries corresponding to task claimed
4550   // . transfer dirty bits ct->mut for that region
4551   // . apply rescanclosure to dirty mut bits for that region
4552 
4553   ResourceMark rm;
4554   HandleMark   hm;
4555 
4556   OopTaskQueue* work_q = work_queue(i);
4557   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4558   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4559   // CAUTION: This closure has state that persists across calls to
4560   // the work method dirty_range_iterate_clear() in that it has
4561   // embedded in it a (subtype of) UpwardsObjectClosure. The
4562   // use of that state in the embedded UpwardsObjectClosure instance
4563   // assumes that the cards are always iterated (even if in parallel
4564   // by several threads) in monotonically increasing order per each
4565   // thread. This is true of the implementation below which picks
4566   // card ranges (chunks) in monotonically increasing order globally
4567   // and, a-fortiori, in monotonically increasing order per thread
4568   // (the latter order being a subsequence of the former).
4569   // If the work code below is ever reorganized into a more chaotic
4570   // work-partitioning form than the current "sequential tasks"
4571   // paradigm, the use of that persistent state will have to be
4572   // revisited and modified appropriately. See also related
4573   // bug 4756801 work on which should examine this code to make
4574   // sure that the changes there do not run counter to the
4575   // assumptions made here and necessary for correctness and
4576   // efficiency. Note also that this code might yield inefficient
4577   // behavior in the case of very large objects that span one or
4578   // more work chunks. Such objects would potentially be scanned
4579   // several times redundantly. Work on 4756801 should try and
4580   // address that performance anomaly if at all possible. XXX
4581   MemRegion  full_span  = _collector->_span;
4582   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4583   MarkFromDirtyCardsClosure
4584     greyRescanClosure(_collector, full_span, // entire span of interest
4585                       sp, bm, work_q, cl);
4586 
4587   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4588   assert(pst->valid(), "Uninitialized use?");
4589   uint nth_task = 0;
4590   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4591   MemRegion span = sp->used_region();
4592   HeapWord* start_addr = span.start();
4593   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4594                                            alignment);
4595   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4596   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4597          start_addr, "Check alignment");
4598   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4599          chunk_size, "Check alignment");
4600 
4601   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4602     // Having claimed the nth_task, compute corresponding mem-region,
4603     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4604     // The alignment restriction ensures that we do not need any
4605     // synchronization with other gang-workers while setting or
4606     // clearing bits in thus chunk of the MUT.
4607     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4608                                     start_addr + (nth_task+1)*chunk_size);
4609     // The last chunk's end might be way beyond end of the
4610     // used region. In that case pull back appropriately.
4611     if (this_span.end() > end_addr) {
4612       this_span.set_end(end_addr);
4613       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4614     }
4615     // Iterate over the dirty cards covering this chunk, marking them
4616     // precleaned, and setting the corresponding bits in the mod union
4617     // table. Since we have been careful to partition at Card and MUT-word
4618     // boundaries no synchronization is needed between parallel threads.
4619     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4620                                                  &modUnionClosure);
4621 
4622     // Having transferred these marks into the modUnionTable,
4623     // rescan the marked objects on the dirty cards in the modUnionTable.
4624     // Even if this is at a synchronous collection, the initial marking
4625     // may have been done during an asynchronous collection so there
4626     // may be dirty bits in the mod-union table.
4627     _collector->_modUnionTable.dirty_range_iterate_clear(
4628                   this_span, &greyRescanClosure);
4629     _collector->_modUnionTable.verifyNoOneBitsInRange(
4630                                  this_span.start(),
4631                                  this_span.end());
4632   }
4633   pst->all_tasks_completed();  // declare that i am done
4634 }
4635 
4636 // . see if we can share work_queues with ParNew? XXX
4637 void
4638 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4639                                 int* seed) {
4640   OopTaskQueue* work_q = work_queue(i);
4641   NOT_PRODUCT(int num_steals = 0;)
4642   oop obj_to_scan;
4643   CMSBitMap* bm = &(_collector->_markBitMap);
4644 
4645   while (true) {
4646     // Completely finish any left over work from (an) earlier round(s)
4647     cl->trim_queue(0);
4648     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4649                                          (size_t)ParGCDesiredObjsFromOverflowList);
4650     // Now check if there's any work in the overflow list
4651     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4652     // only affects the number of attempts made to get work from the
4653     // overflow list and does not affect the number of workers.  Just
4654     // pass ParallelGCThreads so this behavior is unchanged.
4655     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4656                                                 work_q,
4657                                                 ParallelGCThreads)) {
4658       // found something in global overflow list;
4659       // not yet ready to go stealing work from others.
4660       // We'd like to assert(work_q->size() != 0, ...)
4661       // because we just took work from the overflow list,
4662       // but of course we can't since all of that could have
4663       // been already stolen from us.
4664       // "He giveth and He taketh away."
4665       continue;
4666     }
4667     // Verify that we have no work before we resort to stealing
4668     assert(work_q->size() == 0, "Have work, shouldn't steal");
4669     // Try to steal from other queues that have work
4670     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4671       NOT_PRODUCT(num_steals++;)
4672       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4673       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4674       // Do scanning work
4675       obj_to_scan->oop_iterate(cl);
4676       // Loop around, finish this work, and try to steal some more
4677     } else if (terminator()->offer_termination()) {
4678         break;  // nirvana from the infinite cycle
4679     }
4680   }
4681   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4682   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4683          "Else our work is not yet done");
4684 }
4685 
4686 // Record object boundaries in _eden_chunk_array by sampling the eden
4687 // top in the slow-path eden object allocation code path and record
4688 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4689 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4690 // sampling in sample_eden() that activates during the part of the
4691 // preclean phase.
4692 void CMSCollector::sample_eden_chunk() {
4693   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4694     if (_eden_chunk_lock->try_lock()) {
4695       // Record a sample. This is the critical section. The contents
4696       // of the _eden_chunk_array have to be non-decreasing in the
4697       // address order.
4698       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4699       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4700              "Unexpected state of Eden");
4701       if (_eden_chunk_index == 0 ||
4702           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4703            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4704                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4705         _eden_chunk_index++;  // commit sample
4706       }
4707       _eden_chunk_lock->unlock();
4708     }
4709   }
4710 }
4711 
4712 // Return a thread-local PLAB recording array, as appropriate.
4713 void* CMSCollector::get_data_recorder(int thr_num) {
4714   if (_survivor_plab_array != NULL &&
4715       (CMSPLABRecordAlways ||
4716        (_collectorState > Marking && _collectorState < FinalMarking))) {
4717     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4718     ChunkArray* ca = &_survivor_plab_array[thr_num];
4719     ca->reset();   // clear it so that fresh data is recorded
4720     return (void*) ca;
4721   } else {
4722     return NULL;
4723   }
4724 }
4725 
4726 // Reset all the thread-local PLAB recording arrays
4727 void CMSCollector::reset_survivor_plab_arrays() {
4728   for (uint i = 0; i < ParallelGCThreads; i++) {
4729     _survivor_plab_array[i].reset();
4730   }
4731 }
4732 
4733 // Merge the per-thread plab arrays into the global survivor chunk
4734 // array which will provide the partitioning of the survivor space
4735 // for CMS initial scan and rescan.
4736 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4737                                               int no_of_gc_threads) {
4738   assert(_survivor_plab_array  != NULL, "Error");
4739   assert(_survivor_chunk_array != NULL, "Error");
4740   assert(_collectorState == FinalMarking ||
4741          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4742   for (int j = 0; j < no_of_gc_threads; j++) {
4743     _cursor[j] = 0;
4744   }
4745   HeapWord* top = surv->top();
4746   size_t i;
4747   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4748     HeapWord* min_val = top;          // Higher than any PLAB address
4749     uint      min_tid = 0;            // position of min_val this round
4750     for (int j = 0; j < no_of_gc_threads; j++) {
4751       ChunkArray* cur_sca = &_survivor_plab_array[j];
4752       if (_cursor[j] == cur_sca->end()) {
4753         continue;
4754       }
4755       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4756       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4757       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4758       if (cur_val < min_val) {
4759         min_tid = j;
4760         min_val = cur_val;
4761       } else {
4762         assert(cur_val < top, "All recorded addresses should be less");
4763       }
4764     }
4765     // At this point min_val and min_tid are respectively
4766     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4767     // and the thread (j) that witnesses that address.
4768     // We record this address in the _survivor_chunk_array[i]
4769     // and increment _cursor[min_tid] prior to the next round i.
4770     if (min_val == top) {
4771       break;
4772     }
4773     _survivor_chunk_array[i] = min_val;
4774     _cursor[min_tid]++;
4775   }
4776   // We are all done; record the size of the _survivor_chunk_array
4777   _survivor_chunk_index = i; // exclusive: [0, i)
4778   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4779   // Verify that we used up all the recorded entries
4780   #ifdef ASSERT
4781     size_t total = 0;
4782     for (int j = 0; j < no_of_gc_threads; j++) {
4783       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4784       total += _cursor[j];
4785     }
4786     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4787     // Check that the merged array is in sorted order
4788     if (total > 0) {
4789       for (size_t i = 0; i < total - 1; i++) {
4790         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4791                                      i, p2i(_survivor_chunk_array[i]));
4792         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4793                "Not sorted");
4794       }
4795     }
4796   #endif // ASSERT
4797 }
4798 
4799 // Set up the space's par_seq_tasks structure for work claiming
4800 // for parallel initial scan and rescan of young gen.
4801 // See ParRescanTask where this is currently used.
4802 void
4803 CMSCollector::
4804 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4805   assert(n_threads > 0, "Unexpected n_threads argument");
4806 
4807   // Eden space
4808   if (!_young_gen->eden()->is_empty()) {
4809     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4810     assert(!pst->valid(), "Clobbering existing data?");
4811     // Each valid entry in [0, _eden_chunk_index) represents a task.
4812     size_t n_tasks = _eden_chunk_index + 1;
4813     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4814     // Sets the condition for completion of the subtask (how many threads
4815     // need to finish in order to be done).
4816     pst->set_n_threads(n_threads);
4817     pst->set_n_tasks((int)n_tasks);
4818   }
4819 
4820   // Merge the survivor plab arrays into _survivor_chunk_array
4821   if (_survivor_plab_array != NULL) {
4822     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4823   } else {
4824     assert(_survivor_chunk_index == 0, "Error");
4825   }
4826 
4827   // To space
4828   {
4829     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4830     assert(!pst->valid(), "Clobbering existing data?");
4831     // Sets the condition for completion of the subtask (how many threads
4832     // need to finish in order to be done).
4833     pst->set_n_threads(n_threads);
4834     pst->set_n_tasks(1);
4835     assert(pst->valid(), "Error");
4836   }
4837 
4838   // From space
4839   {
4840     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4841     assert(!pst->valid(), "Clobbering existing data?");
4842     size_t n_tasks = _survivor_chunk_index + 1;
4843     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4844     // Sets the condition for completion of the subtask (how many threads
4845     // need to finish in order to be done).
4846     pst->set_n_threads(n_threads);
4847     pst->set_n_tasks((int)n_tasks);
4848     assert(pst->valid(), "Error");
4849   }
4850 }
4851 
4852 // Parallel version of remark
4853 void CMSCollector::do_remark_parallel() {
4854   GenCollectedHeap* gch = GenCollectedHeap::heap();
4855   WorkGang* workers = gch->workers();
4856   assert(workers != NULL, "Need parallel worker threads.");
4857   // Choose to use the number of GC workers most recently set
4858   // into "active_workers".
4859   uint n_workers = workers->active_workers();
4860 
4861   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4862 
4863   StrongRootsScope srs(n_workers);
4864 
4865   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4866 
4867   // We won't be iterating over the cards in the card table updating
4868   // the younger_gen cards, so we shouldn't call the following else
4869   // the verification code as well as subsequent younger_refs_iterate
4870   // code would get confused. XXX
4871   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4872 
4873   // The young gen rescan work will not be done as part of
4874   // process_roots (which currently doesn't know how to
4875   // parallelize such a scan), but rather will be broken up into
4876   // a set of parallel tasks (via the sampling that the [abortable]
4877   // preclean phase did of eden, plus the [two] tasks of
4878   // scanning the [two] survivor spaces. Further fine-grain
4879   // parallelization of the scanning of the survivor spaces
4880   // themselves, and of precleaning of the young gen itself
4881   // is deferred to the future.
4882   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4883 
4884   // The dirty card rescan work is broken up into a "sequence"
4885   // of parallel tasks (per constituent space) that are dynamically
4886   // claimed by the parallel threads.
4887   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4888 
4889   // It turns out that even when we're using 1 thread, doing the work in a
4890   // separate thread causes wide variance in run times.  We can't help this
4891   // in the multi-threaded case, but we special-case n=1 here to get
4892   // repeatable measurements of the 1-thread overhead of the parallel code.
4893   if (n_workers > 1) {
4894     // Make refs discovery MT-safe, if it isn't already: it may not
4895     // necessarily be so, since it's possible that we are doing
4896     // ST marking.
4897     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4898     workers->run_task(&tsk);
4899   } else {
4900     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4901     tsk.work(0);
4902   }
4903 
4904   // restore, single-threaded for now, any preserved marks
4905   // as a result of work_q overflow
4906   restore_preserved_marks_if_any();
4907 }
4908 
4909 // Non-parallel version of remark
4910 void CMSCollector::do_remark_non_parallel() {
4911   ResourceMark rm;
4912   HandleMark   hm;
4913   GenCollectedHeap* gch = GenCollectedHeap::heap();
4914   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4915 
4916   MarkRefsIntoAndScanClosure
4917     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4918              &_markStack, this,
4919              false /* should_yield */, false /* not precleaning */);
4920   MarkFromDirtyCardsClosure
4921     markFromDirtyCardsClosure(this, _span,
4922                               NULL,  // space is set further below
4923                               &_markBitMap, &_markStack, &mrias_cl);
4924   {
4925     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4926     // Iterate over the dirty cards, setting the corresponding bits in the
4927     // mod union table.
4928     {
4929       ModUnionClosure modUnionClosure(&_modUnionTable);
4930       _ct->ct_bs()->dirty_card_iterate(
4931                       _cmsGen->used_region(),
4932                       &modUnionClosure);
4933     }
4934     // Having transferred these marks into the modUnionTable, we just need
4935     // to rescan the marked objects on the dirty cards in the modUnionTable.
4936     // The initial marking may have been done during an asynchronous
4937     // collection so there may be dirty bits in the mod-union table.
4938     const int alignment =
4939       CardTableModRefBS::card_size * BitsPerWord;
4940     {
4941       // ... First handle dirty cards in CMS gen
4942       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4943       MemRegion ur = _cmsGen->used_region();
4944       HeapWord* lb = ur.start();
4945       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4946       MemRegion cms_span(lb, ub);
4947       _modUnionTable.dirty_range_iterate_clear(cms_span,
4948                                                &markFromDirtyCardsClosure);
4949       verify_work_stacks_empty();
4950       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4951     }
4952   }
4953   if (VerifyDuringGC &&
4954       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4955     HandleMark hm;  // Discard invalid handles created during verification
4956     Universe::verify();
4957   }
4958   {
4959     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4960 
4961     verify_work_stacks_empty();
4962 
4963     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4964     StrongRootsScope srs(1);
4965 
4966     gch->gen_process_roots(&srs,
4967                            GenCollectedHeap::OldGen,
4968                            true,  // young gen as roots
4969                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
4970                            should_unload_classes(),
4971                            &mrias_cl,
4972                            NULL,
4973                            NULL); // The dirty klasses will be handled below
4974 
4975     assert(should_unload_classes()
4976            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4977            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4978   }
4979 
4980   {
4981     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4982 
4983     verify_work_stacks_empty();
4984 
4985     // Scan all class loader data objects that might have been introduced
4986     // during concurrent marking.
4987     ResourceMark rm;
4988     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4989     for (int i = 0; i < array->length(); i++) {
4990       mrias_cl.do_cld_nv(array->at(i));
4991     }
4992 
4993     // We don't need to keep track of new CLDs anymore.
4994     ClassLoaderDataGraph::remember_new_clds(false);
4995 
4996     verify_work_stacks_empty();
4997   }
4998 
4999   {
5000     GCTraceTime(Trace, gc, phases) t("Dirty Klass Scan", _gc_timer_cm);
5001 
5002     verify_work_stacks_empty();
5003 
5004     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5005     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5006 
5007     verify_work_stacks_empty();
5008   }
5009 
5010   // We might have added oops to ClassLoaderData::_handles during the
5011   // concurrent marking phase. These oops point to newly allocated objects
5012   // that are guaranteed to be kept alive. Either by the direct allocation
5013   // code, or when the young collector processes the roots. Hence,
5014   // we don't have to revisit the _handles block during the remark phase.
5015 
5016   verify_work_stacks_empty();
5017   // Restore evacuated mark words, if any, used for overflow list links
5018   restore_preserved_marks_if_any();
5019 
5020   verify_overflow_empty();
5021 }
5022 
5023 ////////////////////////////////////////////////////////
5024 // Parallel Reference Processing Task Proxy Class
5025 ////////////////////////////////////////////////////////
5026 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5027   OopTaskQueueSet*       _queues;
5028   ParallelTaskTerminator _terminator;
5029  public:
5030   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5031     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5032   ParallelTaskTerminator* terminator() { return &_terminator; }
5033   OopTaskQueueSet* queues() { return _queues; }
5034 };
5035 
5036 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5037   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5038   CMSCollector*          _collector;
5039   CMSBitMap*             _mark_bit_map;
5040   const MemRegion        _span;
5041   ProcessTask&           _task;
5042 
5043 public:
5044   CMSRefProcTaskProxy(ProcessTask&     task,
5045                       CMSCollector*    collector,
5046                       const MemRegion& span,
5047                       CMSBitMap*       mark_bit_map,
5048                       AbstractWorkGang* workers,
5049                       OopTaskQueueSet* task_queues):
5050     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5051       task_queues,
5052       workers->active_workers()),
5053     _task(task),
5054     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5055   {
5056     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5057            "Inconsistency in _span");
5058   }
5059 
5060   OopTaskQueueSet* task_queues() { return queues(); }
5061 
5062   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5063 
5064   void do_work_steal(int i,
5065                      CMSParDrainMarkingStackClosure* drain,
5066                      CMSParKeepAliveClosure* keep_alive,
5067                      int* seed);
5068 
5069   virtual void work(uint worker_id);
5070 };
5071 
5072 void CMSRefProcTaskProxy::work(uint worker_id) {
5073   ResourceMark rm;
5074   HandleMark hm;
5075   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5076   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5077                                         _mark_bit_map,
5078                                         work_queue(worker_id));
5079   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5080                                                  _mark_bit_map,
5081                                                  work_queue(worker_id));
5082   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5083   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5084   if (_task.marks_oops_alive()) {
5085     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5086                   _collector->hash_seed(worker_id));
5087   }
5088   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5089   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5090 }
5091 
5092 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5093   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5094   EnqueueTask& _task;
5095 
5096 public:
5097   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5098     : AbstractGangTask("Enqueue reference objects in parallel"),
5099       _task(task)
5100   { }
5101 
5102   virtual void work(uint worker_id)
5103   {
5104     _task.work(worker_id);
5105   }
5106 };
5107 
5108 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5109   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5110    _span(span),
5111    _bit_map(bit_map),
5112    _work_queue(work_queue),
5113    _mark_and_push(collector, span, bit_map, work_queue),
5114    _low_water_mark(MIN2((work_queue->max_elems()/4),
5115                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5116 { }
5117 
5118 // . see if we can share work_queues with ParNew? XXX
5119 void CMSRefProcTaskProxy::do_work_steal(int i,
5120   CMSParDrainMarkingStackClosure* drain,
5121   CMSParKeepAliveClosure* keep_alive,
5122   int* seed) {
5123   OopTaskQueue* work_q = work_queue(i);
5124   NOT_PRODUCT(int num_steals = 0;)
5125   oop obj_to_scan;
5126 
5127   while (true) {
5128     // Completely finish any left over work from (an) earlier round(s)
5129     drain->trim_queue(0);
5130     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5131                                          (size_t)ParGCDesiredObjsFromOverflowList);
5132     // Now check if there's any work in the overflow list
5133     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5134     // only affects the number of attempts made to get work from the
5135     // overflow list and does not affect the number of workers.  Just
5136     // pass ParallelGCThreads so this behavior is unchanged.
5137     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5138                                                 work_q,
5139                                                 ParallelGCThreads)) {
5140       // Found something in global overflow list;
5141       // not yet ready to go stealing work from others.
5142       // We'd like to assert(work_q->size() != 0, ...)
5143       // because we just took work from the overflow list,
5144       // but of course we can't, since all of that might have
5145       // been already stolen from us.
5146       continue;
5147     }
5148     // Verify that we have no work before we resort to stealing
5149     assert(work_q->size() == 0, "Have work, shouldn't steal");
5150     // Try to steal from other queues that have work
5151     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5152       NOT_PRODUCT(num_steals++;)
5153       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5154       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5155       // Do scanning work
5156       obj_to_scan->oop_iterate(keep_alive);
5157       // Loop around, finish this work, and try to steal some more
5158     } else if (terminator()->offer_termination()) {
5159       break;  // nirvana from the infinite cycle
5160     }
5161   }
5162   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5163 }
5164 
5165 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5166 {
5167   GenCollectedHeap* gch = GenCollectedHeap::heap();
5168   WorkGang* workers = gch->workers();
5169   assert(workers != NULL, "Need parallel worker threads.");
5170   CMSRefProcTaskProxy rp_task(task, &_collector,
5171                               _collector.ref_processor()->span(),
5172                               _collector.markBitMap(),
5173                               workers, _collector.task_queues());
5174   workers->run_task(&rp_task);
5175 }
5176 
5177 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5178 {
5179 
5180   GenCollectedHeap* gch = GenCollectedHeap::heap();
5181   WorkGang* workers = gch->workers();
5182   assert(workers != NULL, "Need parallel worker threads.");
5183   CMSRefEnqueueTaskProxy enq_task(task);
5184   workers->run_task(&enq_task);
5185 }
5186 
5187 void CMSCollector::refProcessingWork() {
5188   ResourceMark rm;
5189   HandleMark   hm;
5190 
5191   ReferenceProcessor* rp = ref_processor();
5192   assert(rp->span().equals(_span), "Spans should be equal");
5193   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5194   // Process weak references.
5195   rp->setup_policy(false);
5196   verify_work_stacks_empty();
5197 
5198   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5199                                           &_markStack, false /* !preclean */);
5200   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5201                                 _span, &_markBitMap, &_markStack,
5202                                 &cmsKeepAliveClosure, false /* !preclean */);
5203   {
5204     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5205 
5206     ReferenceProcessorStats stats;
5207     if (rp->processing_is_mt()) {
5208       // Set the degree of MT here.  If the discovery is done MT, there
5209       // may have been a different number of threads doing the discovery
5210       // and a different number of discovered lists may have Ref objects.
5211       // That is OK as long as the Reference lists are balanced (see
5212       // balance_all_queues() and balance_queues()).
5213       GenCollectedHeap* gch = GenCollectedHeap::heap();
5214       uint active_workers = ParallelGCThreads;
5215       WorkGang* workers = gch->workers();
5216       if (workers != NULL) {
5217         active_workers = workers->active_workers();
5218         // The expectation is that active_workers will have already
5219         // been set to a reasonable value.  If it has not been set,
5220         // investigate.
5221         assert(active_workers > 0, "Should have been set during scavenge");
5222       }
5223       rp->set_active_mt_degree(active_workers);
5224       CMSRefProcTaskExecutor task_executor(*this);
5225       stats = rp->process_discovered_references(&_is_alive_closure,
5226                                         &cmsKeepAliveClosure,
5227                                         &cmsDrainMarkingStackClosure,
5228                                         &task_executor,
5229                                         _gc_timer_cm);
5230     } else {
5231       stats = rp->process_discovered_references(&_is_alive_closure,
5232                                         &cmsKeepAliveClosure,
5233                                         &cmsDrainMarkingStackClosure,
5234                                         NULL,
5235                                         _gc_timer_cm);
5236     }
5237     _gc_tracer_cm->report_gc_reference_stats(stats);
5238 
5239   }
5240 
5241   // This is the point where the entire marking should have completed.
5242   verify_work_stacks_empty();
5243 
5244   if (should_unload_classes()) {
5245     {
5246       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5247 
5248       // Unload classes and purge the SystemDictionary.
5249       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5250 
5251       // Unload nmethods.
5252       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5253 
5254       // Prune dead klasses from subklass/sibling/implementor lists.
5255       Klass::clean_weak_klass_links(&_is_alive_closure);
5256     }
5257 
5258     {
5259       GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5260       // Clean up unreferenced symbols in symbol table.
5261       SymbolTable::unlink();
5262     }
5263 
5264     {
5265       GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5266       // Delete entries for dead interned strings.
5267       StringTable::unlink(&_is_alive_closure);
5268     }
5269   }
5270 
5271 
5272   // Restore any preserved marks as a result of mark stack or
5273   // work queue overflow
5274   restore_preserved_marks_if_any();  // done single-threaded for now
5275 
5276   rp->set_enqueuing_is_done(true);
5277   if (rp->processing_is_mt()) {
5278     rp->balance_all_queues();
5279     CMSRefProcTaskExecutor task_executor(*this);
5280     rp->enqueue_discovered_references(&task_executor);
5281   } else {
5282     rp->enqueue_discovered_references(NULL);
5283   }
5284   rp->verify_no_references_recorded();
5285   assert(!rp->discovery_enabled(), "should have been disabled");
5286 }
5287 
5288 #ifndef PRODUCT
5289 void CMSCollector::check_correct_thread_executing() {
5290   Thread* t = Thread::current();
5291   // Only the VM thread or the CMS thread should be here.
5292   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5293          "Unexpected thread type");
5294   // If this is the vm thread, the foreground process
5295   // should not be waiting.  Note that _foregroundGCIsActive is
5296   // true while the foreground collector is waiting.
5297   if (_foregroundGCShouldWait) {
5298     // We cannot be the VM thread
5299     assert(t->is_ConcurrentGC_thread(),
5300            "Should be CMS thread");
5301   } else {
5302     // We can be the CMS thread only if we are in a stop-world
5303     // phase of CMS collection.
5304     if (t->is_ConcurrentGC_thread()) {
5305       assert(_collectorState == InitialMarking ||
5306              _collectorState == FinalMarking,
5307              "Should be a stop-world phase");
5308       // The CMS thread should be holding the CMS_token.
5309       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5310              "Potential interference with concurrently "
5311              "executing VM thread");
5312     }
5313   }
5314 }
5315 #endif
5316 
5317 void CMSCollector::sweep() {
5318   assert(_collectorState == Sweeping, "just checking");
5319   check_correct_thread_executing();
5320   verify_work_stacks_empty();
5321   verify_overflow_empty();
5322   increment_sweep_count();
5323   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5324 
5325   _inter_sweep_timer.stop();
5326   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5327 
5328   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5329   _intra_sweep_timer.reset();
5330   _intra_sweep_timer.start();
5331   {
5332     GCTraceCPUTime tcpu;
5333     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5334     // First sweep the old gen
5335     {
5336       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5337                                bitMapLock());
5338       sweepWork(_cmsGen);
5339     }
5340 
5341     // Update Universe::_heap_*_at_gc figures.
5342     // We need all the free list locks to make the abstract state
5343     // transition from Sweeping to Resetting. See detailed note
5344     // further below.
5345     {
5346       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5347       // Update heap occupancy information which is used as
5348       // input to soft ref clearing policy at the next gc.
5349       Universe::update_heap_info_at_gc();
5350       _collectorState = Resizing;
5351     }
5352   }
5353   verify_work_stacks_empty();
5354   verify_overflow_empty();
5355 
5356   if (should_unload_classes()) {
5357     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5358     // requires that the virtual spaces are stable and not deleted.
5359     ClassLoaderDataGraph::set_should_purge(true);
5360   }
5361 
5362   _intra_sweep_timer.stop();
5363   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5364 
5365   _inter_sweep_timer.reset();
5366   _inter_sweep_timer.start();
5367 
5368   // We need to use a monotonically non-decreasing time in ms
5369   // or we will see time-warp warnings and os::javaTimeMillis()
5370   // does not guarantee monotonicity.
5371   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5372   update_time_of_last_gc(now);
5373 
5374   // NOTE on abstract state transitions:
5375   // Mutators allocate-live and/or mark the mod-union table dirty
5376   // based on the state of the collection.  The former is done in
5377   // the interval [Marking, Sweeping] and the latter in the interval
5378   // [Marking, Sweeping).  Thus the transitions into the Marking state
5379   // and out of the Sweeping state must be synchronously visible
5380   // globally to the mutators.
5381   // The transition into the Marking state happens with the world
5382   // stopped so the mutators will globally see it.  Sweeping is
5383   // done asynchronously by the background collector so the transition
5384   // from the Sweeping state to the Resizing state must be done
5385   // under the freelistLock (as is the check for whether to
5386   // allocate-live and whether to dirty the mod-union table).
5387   assert(_collectorState == Resizing, "Change of collector state to"
5388     " Resizing must be done under the freelistLocks (plural)");
5389 
5390   // Now that sweeping has been completed, we clear
5391   // the incremental_collection_failed flag,
5392   // thus inviting a younger gen collection to promote into
5393   // this generation. If such a promotion may still fail,
5394   // the flag will be set again when a young collection is
5395   // attempted.
5396   GenCollectedHeap* gch = GenCollectedHeap::heap();
5397   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5398   gch->update_full_collections_completed(_collection_count_start);
5399 }
5400 
5401 // FIX ME!!! Looks like this belongs in CFLSpace, with
5402 // CMSGen merely delegating to it.
5403 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5404   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5405   HeapWord*  minAddr        = _cmsSpace->bottom();
5406   HeapWord*  largestAddr    =
5407     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5408   if (largestAddr == NULL) {
5409     // The dictionary appears to be empty.  In this case
5410     // try to coalesce at the end of the heap.
5411     largestAddr = _cmsSpace->end();
5412   }
5413   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5414   size_t nearLargestOffset =
5415     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5416   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5417                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5418   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5419 }
5420 
5421 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5422   return addr >= _cmsSpace->nearLargestChunk();
5423 }
5424 
5425 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5426   return _cmsSpace->find_chunk_at_end();
5427 }
5428 
5429 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5430                                                     bool full) {
5431   // If the young generation has been collected, gather any statistics
5432   // that are of interest at this point.
5433   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5434   if (!full && current_is_young) {
5435     // Gather statistics on the young generation collection.
5436     collector()->stats().record_gc0_end(used());
5437   }
5438 }
5439 
5440 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5441   // We iterate over the space(s) underlying this generation,
5442   // checking the mark bit map to see if the bits corresponding
5443   // to specific blocks are marked or not. Blocks that are
5444   // marked are live and are not swept up. All remaining blocks
5445   // are swept up, with coalescing on-the-fly as we sweep up
5446   // contiguous free and/or garbage blocks:
5447   // We need to ensure that the sweeper synchronizes with allocators
5448   // and stop-the-world collectors. In particular, the following
5449   // locks are used:
5450   // . CMS token: if this is held, a stop the world collection cannot occur
5451   // . freelistLock: if this is held no allocation can occur from this
5452   //                 generation by another thread
5453   // . bitMapLock: if this is held, no other thread can access or update
5454   //
5455 
5456   // Note that we need to hold the freelistLock if we use
5457   // block iterate below; else the iterator might go awry if
5458   // a mutator (or promotion) causes block contents to change
5459   // (for instance if the allocator divvies up a block).
5460   // If we hold the free list lock, for all practical purposes
5461   // young generation GC's can't occur (they'll usually need to
5462   // promote), so we might as well prevent all young generation
5463   // GC's while we do a sweeping step. For the same reason, we might
5464   // as well take the bit map lock for the entire duration
5465 
5466   // check that we hold the requisite locks
5467   assert(have_cms_token(), "Should hold cms token");
5468   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5469   assert_lock_strong(old_gen->freelistLock());
5470   assert_lock_strong(bitMapLock());
5471 
5472   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5473   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5474   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5475                                           _inter_sweep_estimate.padded_average(),
5476                                           _intra_sweep_estimate.padded_average());
5477   old_gen->setNearLargestChunk();
5478 
5479   {
5480     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5481     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5482     // We need to free-up/coalesce garbage/blocks from a
5483     // co-terminal free run. This is done in the SweepClosure
5484     // destructor; so, do not remove this scope, else the
5485     // end-of-sweep-census below will be off by a little bit.
5486   }
5487   old_gen->cmsSpace()->sweep_completed();
5488   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5489   if (should_unload_classes()) {                // unloaded classes this cycle,
5490     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5491   } else {                                      // did not unload classes,
5492     _concurrent_cycles_since_last_unload++;     // ... increment count
5493   }
5494 }
5495 
5496 // Reset CMS data structures (for now just the marking bit map)
5497 // preparatory for the next cycle.
5498 void CMSCollector::reset_concurrent() {
5499   CMSTokenSyncWithLocks ts(true, bitMapLock());
5500 
5501   // If the state is not "Resetting", the foreground  thread
5502   // has done a collection and the resetting.
5503   if (_collectorState != Resetting) {
5504     assert(_collectorState == Idling, "The state should only change"
5505       " because the foreground collector has finished the collection");
5506     return;
5507   }
5508 
5509   {
5510     // Clear the mark bitmap (no grey objects to start with)
5511     // for the next cycle.
5512     GCTraceCPUTime tcpu;
5513     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5514 
5515     HeapWord* curAddr = _markBitMap.startWord();
5516     while (curAddr < _markBitMap.endWord()) {
5517       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5518       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5519       _markBitMap.clear_large_range(chunk);
5520       if (ConcurrentMarkSweepThread::should_yield() &&
5521           !foregroundGCIsActive() &&
5522           CMSYield) {
5523         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5524                "CMS thread should hold CMS token");
5525         assert_lock_strong(bitMapLock());
5526         bitMapLock()->unlock();
5527         ConcurrentMarkSweepThread::desynchronize(true);
5528         stopTimer();
5529         incrementYields();
5530 
5531         // See the comment in coordinator_yield()
5532         for (unsigned i = 0; i < CMSYieldSleepCount &&
5533                          ConcurrentMarkSweepThread::should_yield() &&
5534                          !CMSCollector::foregroundGCIsActive(); ++i) {
5535           os::sleep(Thread::current(), 1, false);
5536         }
5537 
5538         ConcurrentMarkSweepThread::synchronize(true);
5539         bitMapLock()->lock_without_safepoint_check();
5540         startTimer();
5541       }
5542       curAddr = chunk.end();
5543     }
5544     // A successful mostly concurrent collection has been done.
5545     // Because only the full (i.e., concurrent mode failure) collections
5546     // are being measured for gc overhead limits, clean the "near" flag
5547     // and count.
5548     size_policy()->reset_gc_overhead_limit_count();
5549     _collectorState = Idling;
5550   }
5551 
5552   register_gc_end();
5553 }
5554 
5555 // Same as above but for STW paths
5556 void CMSCollector::reset_stw() {
5557   // already have the lock
5558   assert(_collectorState == Resetting, "just checking");
5559   assert_lock_strong(bitMapLock());
5560   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5561   _markBitMap.clear_all();
5562   _collectorState = Idling;
5563   register_gc_end();
5564 }
5565 
5566 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5567   GCTraceCPUTime tcpu;
5568   TraceCollectorStats tcs(counters());
5569 
5570   switch (op) {
5571     case CMS_op_checkpointRootsInitial: {
5572       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5573       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5574       checkpointRootsInitial();
5575       break;
5576     }
5577     case CMS_op_checkpointRootsFinal: {
5578       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5579       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5580       checkpointRootsFinal();
5581       break;
5582     }
5583     default:
5584       fatal("No such CMS_op");
5585   }
5586 }
5587 
5588 #ifndef PRODUCT
5589 size_t const CMSCollector::skip_header_HeapWords() {
5590   return FreeChunk::header_size();
5591 }
5592 
5593 // Try and collect here conditions that should hold when
5594 // CMS thread is exiting. The idea is that the foreground GC
5595 // thread should not be blocked if it wants to terminate
5596 // the CMS thread and yet continue to run the VM for a while
5597 // after that.
5598 void CMSCollector::verify_ok_to_terminate() const {
5599   assert(Thread::current()->is_ConcurrentGC_thread(),
5600          "should be called by CMS thread");
5601   assert(!_foregroundGCShouldWait, "should be false");
5602   // We could check here that all the various low-level locks
5603   // are not held by the CMS thread, but that is overkill; see
5604   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5605   // is checked.
5606 }
5607 #endif
5608 
5609 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5610    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5611           "missing Printezis mark?");
5612   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5613   size_t size = pointer_delta(nextOneAddr + 1, addr);
5614   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5615          "alignment problem");
5616   assert(size >= 3, "Necessary for Printezis marks to work");
5617   return size;
5618 }
5619 
5620 // A variant of the above (block_size_using_printezis_bits()) except
5621 // that we return 0 if the P-bits are not yet set.
5622 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5623   if (_markBitMap.isMarked(addr + 1)) {
5624     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5625     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5626     size_t size = pointer_delta(nextOneAddr + 1, addr);
5627     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5628            "alignment problem");
5629     assert(size >= 3, "Necessary for Printezis marks to work");
5630     return size;
5631   }
5632   return 0;
5633 }
5634 
5635 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5636   size_t sz = 0;
5637   oop p = (oop)addr;
5638   if (p->klass_or_null() != NULL) {
5639     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5640   } else {
5641     sz = block_size_using_printezis_bits(addr);
5642   }
5643   assert(sz > 0, "size must be nonzero");
5644   HeapWord* next_block = addr + sz;
5645   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5646                                              CardTableModRefBS::card_size);
5647   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5648          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5649          "must be different cards");
5650   return next_card;
5651 }
5652 
5653 
5654 // CMS Bit Map Wrapper /////////////////////////////////////////
5655 
5656 // Construct a CMS bit map infrastructure, but don't create the
5657 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5658 // further below.
5659 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5660   _bm(),
5661   _shifter(shifter),
5662   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5663                                     Monitor::_safepoint_check_sometimes) : NULL)
5664 {
5665   _bmStartWord = 0;
5666   _bmWordSize  = 0;
5667 }
5668 
5669 bool CMSBitMap::allocate(MemRegion mr) {
5670   _bmStartWord = mr.start();
5671   _bmWordSize  = mr.word_size();
5672   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5673                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5674   if (!brs.is_reserved()) {
5675     log_warning(gc)("CMS bit map allocation failure");
5676     return false;
5677   }
5678   // For now we'll just commit all of the bit map up front.
5679   // Later on we'll try to be more parsimonious with swap.
5680   if (!_virtual_space.initialize(brs, brs.size())) {
5681     log_warning(gc)("CMS bit map backing store failure");
5682     return false;
5683   }
5684   assert(_virtual_space.committed_size() == brs.size(),
5685          "didn't reserve backing store for all of CMS bit map?");
5686   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5687          _bmWordSize, "inconsistency in bit map sizing");
5688   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5689 
5690   // bm.clear(); // can we rely on getting zero'd memory? verify below
5691   assert(isAllClear(),
5692          "Expected zero'd memory from ReservedSpace constructor");
5693   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5694          "consistency check");
5695   return true;
5696 }
5697 
5698 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5699   HeapWord *next_addr, *end_addr, *last_addr;
5700   assert_locked();
5701   assert(covers(mr), "out-of-range error");
5702   // XXX assert that start and end are appropriately aligned
5703   for (next_addr = mr.start(), end_addr = mr.end();
5704        next_addr < end_addr; next_addr = last_addr) {
5705     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5706     last_addr = dirty_region.end();
5707     if (!dirty_region.is_empty()) {
5708       cl->do_MemRegion(dirty_region);
5709     } else {
5710       assert(last_addr == end_addr, "program logic");
5711       return;
5712     }
5713   }
5714 }
5715 
5716 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5717   _bm.print_on_error(st, prefix);
5718 }
5719 
5720 #ifndef PRODUCT
5721 void CMSBitMap::assert_locked() const {
5722   CMSLockVerifier::assert_locked(lock());
5723 }
5724 
5725 bool CMSBitMap::covers(MemRegion mr) const {
5726   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5727   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5728          "size inconsistency");
5729   return (mr.start() >= _bmStartWord) &&
5730          (mr.end()   <= endWord());
5731 }
5732 
5733 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5734     return (start >= _bmStartWord && (start + size) <= endWord());
5735 }
5736 
5737 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5738   // verify that there are no 1 bits in the interval [left, right)
5739   FalseBitMapClosure falseBitMapClosure;
5740   iterate(&falseBitMapClosure, left, right);
5741 }
5742 
5743 void CMSBitMap::region_invariant(MemRegion mr)
5744 {
5745   assert_locked();
5746   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5747   assert(!mr.is_empty(), "unexpected empty region");
5748   assert(covers(mr), "mr should be covered by bit map");
5749   // convert address range into offset range
5750   size_t start_ofs = heapWordToOffset(mr.start());
5751   // Make sure that end() is appropriately aligned
5752   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5753                         (1 << (_shifter+LogHeapWordSize))),
5754          "Misaligned mr.end()");
5755   size_t end_ofs   = heapWordToOffset(mr.end());
5756   assert(end_ofs > start_ofs, "Should mark at least one bit");
5757 }
5758 
5759 #endif
5760 
5761 bool CMSMarkStack::allocate(size_t size) {
5762   // allocate a stack of the requisite depth
5763   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5764                    size * sizeof(oop)));
5765   if (!rs.is_reserved()) {
5766     log_warning(gc)("CMSMarkStack allocation failure");
5767     return false;
5768   }
5769   if (!_virtual_space.initialize(rs, rs.size())) {
5770     log_warning(gc)("CMSMarkStack backing store failure");
5771     return false;
5772   }
5773   assert(_virtual_space.committed_size() == rs.size(),
5774          "didn't reserve backing store for all of CMS stack?");
5775   _base = (oop*)(_virtual_space.low());
5776   _index = 0;
5777   _capacity = size;
5778   NOT_PRODUCT(_max_depth = 0);
5779   return true;
5780 }
5781 
5782 // XXX FIX ME !!! In the MT case we come in here holding a
5783 // leaf lock. For printing we need to take a further lock
5784 // which has lower rank. We need to recalibrate the two
5785 // lock-ranks involved in order to be able to print the
5786 // messages below. (Or defer the printing to the caller.
5787 // For now we take the expedient path of just disabling the
5788 // messages for the problematic case.)
5789 void CMSMarkStack::expand() {
5790   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5791   if (_capacity == MarkStackSizeMax) {
5792     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5793       // We print a warning message only once per CMS cycle.
5794       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5795     }
5796     return;
5797   }
5798   // Double capacity if possible
5799   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5800   // Do not give up existing stack until we have managed to
5801   // get the double capacity that we desired.
5802   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5803                    new_capacity * sizeof(oop)));
5804   if (rs.is_reserved()) {
5805     // Release the backing store associated with old stack
5806     _virtual_space.release();
5807     // Reinitialize virtual space for new stack
5808     if (!_virtual_space.initialize(rs, rs.size())) {
5809       fatal("Not enough swap for expanded marking stack");
5810     }
5811     _base = (oop*)(_virtual_space.low());
5812     _index = 0;
5813     _capacity = new_capacity;
5814   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5815     // Failed to double capacity, continue;
5816     // we print a detail message only once per CMS cycle.
5817     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5818                         _capacity / K, new_capacity / K);
5819   }
5820 }
5821 
5822 
5823 // Closures
5824 // XXX: there seems to be a lot of code  duplication here;
5825 // should refactor and consolidate common code.
5826 
5827 // This closure is used to mark refs into the CMS generation in
5828 // the CMS bit map. Called at the first checkpoint. This closure
5829 // assumes that we do not need to re-mark dirty cards; if the CMS
5830 // generation on which this is used is not an oldest
5831 // generation then this will lose younger_gen cards!
5832 
5833 MarkRefsIntoClosure::MarkRefsIntoClosure(
5834   MemRegion span, CMSBitMap* bitMap):
5835     _span(span),
5836     _bitMap(bitMap)
5837 {
5838   assert(ref_processor() == NULL, "deliberately left NULL");
5839   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5840 }
5841 
5842 void MarkRefsIntoClosure::do_oop(oop obj) {
5843   // if p points into _span, then mark corresponding bit in _markBitMap
5844   assert(obj->is_oop(), "expected an oop");
5845   HeapWord* addr = (HeapWord*)obj;
5846   if (_span.contains(addr)) {
5847     // this should be made more efficient
5848     _bitMap->mark(addr);
5849   }
5850 }
5851 
5852 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5853 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5854 
5855 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5856   MemRegion span, CMSBitMap* bitMap):
5857     _span(span),
5858     _bitMap(bitMap)
5859 {
5860   assert(ref_processor() == NULL, "deliberately left NULL");
5861   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5862 }
5863 
5864 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5865   // if p points into _span, then mark corresponding bit in _markBitMap
5866   assert(obj->is_oop(), "expected an oop");
5867   HeapWord* addr = (HeapWord*)obj;
5868   if (_span.contains(addr)) {
5869     // this should be made more efficient
5870     _bitMap->par_mark(addr);
5871   }
5872 }
5873 
5874 void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5875 void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5876 
5877 // A variant of the above, used for CMS marking verification.
5878 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5879   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5880     _span(span),
5881     _verification_bm(verification_bm),
5882     _cms_bm(cms_bm)
5883 {
5884   assert(ref_processor() == NULL, "deliberately left NULL");
5885   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5886 }
5887 
5888 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5889   // if p points into _span, then mark corresponding bit in _markBitMap
5890   assert(obj->is_oop(), "expected an oop");
5891   HeapWord* addr = (HeapWord*)obj;
5892   if (_span.contains(addr)) {
5893     _verification_bm->mark(addr);
5894     if (!_cms_bm->isMarked(addr)) {
5895       Log(gc, verify) log;
5896       ResourceMark rm;
5897       oop(addr)->print_on(log.error_stream());
5898       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5899       fatal("... aborting");
5900     }
5901   }
5902 }
5903 
5904 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5905 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5906 
5907 //////////////////////////////////////////////////
5908 // MarkRefsIntoAndScanClosure
5909 //////////////////////////////////////////////////
5910 
5911 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5912                                                        ReferenceProcessor* rp,
5913                                                        CMSBitMap* bit_map,
5914                                                        CMSBitMap* mod_union_table,
5915                                                        CMSMarkStack*  mark_stack,
5916                                                        CMSCollector* collector,
5917                                                        bool should_yield,
5918                                                        bool concurrent_precleaning):
5919   _collector(collector),
5920   _span(span),
5921   _bit_map(bit_map),
5922   _mark_stack(mark_stack),
5923   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5924                       mark_stack, concurrent_precleaning),
5925   _yield(should_yield),
5926   _concurrent_precleaning(concurrent_precleaning),
5927   _freelistLock(NULL)
5928 {
5929   // FIXME: Should initialize in base class constructor.
5930   assert(rp != NULL, "ref_processor shouldn't be NULL");
5931   set_ref_processor_internal(rp);
5932 }
5933 
5934 // This closure is used to mark refs into the CMS generation at the
5935 // second (final) checkpoint, and to scan and transitively follow
5936 // the unmarked oops. It is also used during the concurrent precleaning
5937 // phase while scanning objects on dirty cards in the CMS generation.
5938 // The marks are made in the marking bit map and the marking stack is
5939 // used for keeping the (newly) grey objects during the scan.
5940 // The parallel version (Par_...) appears further below.
5941 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5942   if (obj != NULL) {
5943     assert(obj->is_oop(), "expected an oop");
5944     HeapWord* addr = (HeapWord*)obj;
5945     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5946     assert(_collector->overflow_list_is_empty(),
5947            "overflow list should be empty");
5948     if (_span.contains(addr) &&
5949         !_bit_map->isMarked(addr)) {
5950       // mark bit map (object is now grey)
5951       _bit_map->mark(addr);
5952       // push on marking stack (stack should be empty), and drain the
5953       // stack by applying this closure to the oops in the oops popped
5954       // from the stack (i.e. blacken the grey objects)
5955       bool res = _mark_stack->push(obj);
5956       assert(res, "Should have space to push on empty stack");
5957       do {
5958         oop new_oop = _mark_stack->pop();
5959         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5960         assert(_bit_map->isMarked((HeapWord*)new_oop),
5961                "only grey objects on this stack");
5962         // iterate over the oops in this oop, marking and pushing
5963         // the ones in CMS heap (i.e. in _span).
5964         new_oop->oop_iterate(&_pushAndMarkClosure);
5965         // check if it's time to yield
5966         do_yield_check();
5967       } while (!_mark_stack->isEmpty() ||
5968                (!_concurrent_precleaning && take_from_overflow_list()));
5969         // if marking stack is empty, and we are not doing this
5970         // during precleaning, then check the overflow list
5971     }
5972     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5973     assert(_collector->overflow_list_is_empty(),
5974            "overflow list was drained above");
5975 
5976     assert(_collector->no_preserved_marks(),
5977            "All preserved marks should have been restored above");
5978   }
5979 }
5980 
5981 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5982 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5983 
5984 void MarkRefsIntoAndScanClosure::do_yield_work() {
5985   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5986          "CMS thread should hold CMS token");
5987   assert_lock_strong(_freelistLock);
5988   assert_lock_strong(_bit_map->lock());
5989   // relinquish the free_list_lock and bitMaplock()
5990   _bit_map->lock()->unlock();
5991   _freelistLock->unlock();
5992   ConcurrentMarkSweepThread::desynchronize(true);
5993   _collector->stopTimer();
5994   _collector->incrementYields();
5995 
5996   // See the comment in coordinator_yield()
5997   for (unsigned i = 0;
5998        i < CMSYieldSleepCount &&
5999        ConcurrentMarkSweepThread::should_yield() &&
6000        !CMSCollector::foregroundGCIsActive();
6001        ++i) {
6002     os::sleep(Thread::current(), 1, false);
6003   }
6004 
6005   ConcurrentMarkSweepThread::synchronize(true);
6006   _freelistLock->lock_without_safepoint_check();
6007   _bit_map->lock()->lock_without_safepoint_check();
6008   _collector->startTimer();
6009 }
6010 
6011 ///////////////////////////////////////////////////////////
6012 // ParMarkRefsIntoAndScanClosure: a parallel version of
6013 //                                MarkRefsIntoAndScanClosure
6014 ///////////////////////////////////////////////////////////
6015 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6016   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6017   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6018   _span(span),
6019   _bit_map(bit_map),
6020   _work_queue(work_queue),
6021   _low_water_mark(MIN2((work_queue->max_elems()/4),
6022                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6023   _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6024 {
6025   // FIXME: Should initialize in base class constructor.
6026   assert(rp != NULL, "ref_processor shouldn't be NULL");
6027   set_ref_processor_internal(rp);
6028 }
6029 
6030 // This closure is used to mark refs into the CMS generation at the
6031 // second (final) checkpoint, and to scan and transitively follow
6032 // the unmarked oops. The marks are made in the marking bit map and
6033 // the work_queue is used for keeping the (newly) grey objects during
6034 // the scan phase whence they are also available for stealing by parallel
6035 // threads. Since the marking bit map is shared, updates are
6036 // synchronized (via CAS).
6037 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6038   if (obj != NULL) {
6039     // Ignore mark word because this could be an already marked oop
6040     // that may be chained at the end of the overflow list.
6041     assert(obj->is_oop(true), "expected an oop");
6042     HeapWord* addr = (HeapWord*)obj;
6043     if (_span.contains(addr) &&
6044         !_bit_map->isMarked(addr)) {
6045       // mark bit map (object will become grey):
6046       // It is possible for several threads to be
6047       // trying to "claim" this object concurrently;
6048       // the unique thread that succeeds in marking the
6049       // object first will do the subsequent push on
6050       // to the work queue (or overflow list).
6051       if (_bit_map->par_mark(addr)) {
6052         // push on work_queue (which may not be empty), and trim the
6053         // queue to an appropriate length by applying this closure to
6054         // the oops in the oops popped from the stack (i.e. blacken the
6055         // grey objects)
6056         bool res = _work_queue->push(obj);
6057         assert(res, "Low water mark should be less than capacity?");
6058         trim_queue(_low_water_mark);
6059       } // Else, another thread claimed the object
6060     }
6061   }
6062 }
6063 
6064 void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6065 void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6066 
6067 // This closure is used to rescan the marked objects on the dirty cards
6068 // in the mod union table and the card table proper.
6069 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6070   oop p, MemRegion mr) {
6071 
6072   size_t size = 0;
6073   HeapWord* addr = (HeapWord*)p;
6074   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6075   assert(_span.contains(addr), "we are scanning the CMS generation");
6076   // check if it's time to yield
6077   if (do_yield_check()) {
6078     // We yielded for some foreground stop-world work,
6079     // and we have been asked to abort this ongoing preclean cycle.
6080     return 0;
6081   }
6082   if (_bitMap->isMarked(addr)) {
6083     // it's marked; is it potentially uninitialized?
6084     if (p->klass_or_null() != NULL) {
6085         // an initialized object; ignore mark word in verification below
6086         // since we are running concurrent with mutators
6087         assert(p->is_oop(true), "should be an oop");
6088         if (p->is_objArray()) {
6089           // objArrays are precisely marked; restrict scanning
6090           // to dirty cards only.
6091           size = CompactibleFreeListSpace::adjustObjectSize(
6092                    p->oop_iterate_size(_scanningClosure, mr));
6093         } else {
6094           // A non-array may have been imprecisely marked; we need
6095           // to scan object in its entirety.
6096           size = CompactibleFreeListSpace::adjustObjectSize(
6097                    p->oop_iterate_size(_scanningClosure));
6098         }
6099       #ifdef ASSERT
6100         size_t direct_size =
6101           CompactibleFreeListSpace::adjustObjectSize(p->size());
6102         assert(size == direct_size, "Inconsistency in size");
6103         assert(size >= 3, "Necessary for Printezis marks to work");
6104         HeapWord* start_pbit = addr + 1;
6105         HeapWord* end_pbit = addr + size - 1;
6106         assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
6107                "inconsistent Printezis mark");
6108         // Verify inner mark bits (between Printezis bits) are clear,
6109         // but don't repeat if there are multiple dirty regions for
6110         // the same object, to avoid potential O(N^2) performance.
6111         if (addr != _last_scanned_object) {
6112           _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
6113           _last_scanned_object = addr;
6114         }
6115       #endif // ASSERT
6116     } else {
6117       // An uninitialized object.
6118       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6119       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6120       size = pointer_delta(nextOneAddr + 1, addr);
6121       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6122              "alignment problem");
6123       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6124       // will dirty the card when the klass pointer is installed in the
6125       // object (signaling the completion of initialization).
6126     }
6127   } else {
6128     // Either a not yet marked object or an uninitialized object
6129     if (p->klass_or_null() == NULL) {
6130       // An uninitialized object, skip to the next card, since
6131       // we may not be able to read its P-bits yet.
6132       assert(size == 0, "Initial value");
6133     } else {
6134       // An object not (yet) reached by marking: we merely need to
6135       // compute its size so as to go look at the next block.
6136       assert(p->is_oop(true), "should be an oop");
6137       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6138     }
6139   }
6140   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6141   return size;
6142 }
6143 
6144 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6145   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6146          "CMS thread should hold CMS token");
6147   assert_lock_strong(_freelistLock);
6148   assert_lock_strong(_bitMap->lock());
6149   // relinquish the free_list_lock and bitMaplock()
6150   _bitMap->lock()->unlock();
6151   _freelistLock->unlock();
6152   ConcurrentMarkSweepThread::desynchronize(true);
6153   _collector->stopTimer();
6154   _collector->incrementYields();
6155 
6156   // See the comment in coordinator_yield()
6157   for (unsigned i = 0; i < CMSYieldSleepCount &&
6158                    ConcurrentMarkSweepThread::should_yield() &&
6159                    !CMSCollector::foregroundGCIsActive(); ++i) {
6160     os::sleep(Thread::current(), 1, false);
6161   }
6162 
6163   ConcurrentMarkSweepThread::synchronize(true);
6164   _freelistLock->lock_without_safepoint_check();
6165   _bitMap->lock()->lock_without_safepoint_check();
6166   _collector->startTimer();
6167 }
6168 
6169 
6170 //////////////////////////////////////////////////////////////////
6171 // SurvivorSpacePrecleanClosure
6172 //////////////////////////////////////////////////////////////////
6173 // This (single-threaded) closure is used to preclean the oops in
6174 // the survivor spaces.
6175 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6176 
6177   HeapWord* addr = (HeapWord*)p;
6178   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6179   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6180   assert(p->klass_or_null() != NULL, "object should be initialized");
6181   // an initialized object; ignore mark word in verification below
6182   // since we are running concurrent with mutators
6183   assert(p->is_oop(true), "should be an oop");
6184   // Note that we do not yield while we iterate over
6185   // the interior oops of p, pushing the relevant ones
6186   // on our marking stack.
6187   size_t size = p->oop_iterate_size(_scanning_closure);
6188   do_yield_check();
6189   // Observe that below, we do not abandon the preclean
6190   // phase as soon as we should; rather we empty the
6191   // marking stack before returning. This is to satisfy
6192   // some existing assertions. In general, it may be a
6193   // good idea to abort immediately and complete the marking
6194   // from the grey objects at a later time.
6195   while (!_mark_stack->isEmpty()) {
6196     oop new_oop = _mark_stack->pop();
6197     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6198     assert(_bit_map->isMarked((HeapWord*)new_oop),
6199            "only grey objects on this stack");
6200     // iterate over the oops in this oop, marking and pushing
6201     // the ones in CMS heap (i.e. in _span).
6202     new_oop->oop_iterate(_scanning_closure);
6203     // check if it's time to yield
6204     do_yield_check();
6205   }
6206   unsigned int after_count =
6207     GenCollectedHeap::heap()->total_collections();
6208   bool abort = (_before_count != after_count) ||
6209                _collector->should_abort_preclean();
6210   return abort ? 0 : size;
6211 }
6212 
6213 void SurvivorSpacePrecleanClosure::do_yield_work() {
6214   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6215          "CMS thread should hold CMS token");
6216   assert_lock_strong(_bit_map->lock());
6217   // Relinquish the bit map lock
6218   _bit_map->lock()->unlock();
6219   ConcurrentMarkSweepThread::desynchronize(true);
6220   _collector->stopTimer();
6221   _collector->incrementYields();
6222 
6223   // See the comment in coordinator_yield()
6224   for (unsigned i = 0; i < CMSYieldSleepCount &&
6225                        ConcurrentMarkSweepThread::should_yield() &&
6226                        !CMSCollector::foregroundGCIsActive(); ++i) {
6227     os::sleep(Thread::current(), 1, false);
6228   }
6229 
6230   ConcurrentMarkSweepThread::synchronize(true);
6231   _bit_map->lock()->lock_without_safepoint_check();
6232   _collector->startTimer();
6233 }
6234 
6235 // This closure is used to rescan the marked objects on the dirty cards
6236 // in the mod union table and the card table proper. In the parallel
6237 // case, although the bitMap is shared, we do a single read so the
6238 // isMarked() query is "safe".
6239 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6240   // Ignore mark word because we are running concurrent with mutators
6241   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6242   HeapWord* addr = (HeapWord*)p;
6243   assert(_span.contains(addr), "we are scanning the CMS generation");
6244   bool is_obj_array = false;
6245   #ifdef ASSERT
6246     if (!_parallel) {
6247       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6248       assert(_collector->overflow_list_is_empty(),
6249              "overflow list should be empty");
6250 
6251     }
6252   #endif // ASSERT
6253   if (_bit_map->isMarked(addr)) {
6254     // Obj arrays are precisely marked, non-arrays are not;
6255     // so we scan objArrays precisely and non-arrays in their
6256     // entirety.
6257     if (p->is_objArray()) {
6258       is_obj_array = true;
6259       if (_parallel) {
6260         p->oop_iterate(_par_scan_closure, mr);
6261       } else {
6262         p->oop_iterate(_scan_closure, mr);
6263       }
6264     } else {
6265       if (_parallel) {
6266         p->oop_iterate(_par_scan_closure);
6267       } else {
6268         p->oop_iterate(_scan_closure);
6269       }
6270     }
6271   }
6272   #ifdef ASSERT
6273     if (!_parallel) {
6274       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6275       assert(_collector->overflow_list_is_empty(),
6276              "overflow list should be empty");
6277 
6278     }
6279   #endif // ASSERT
6280   return is_obj_array;
6281 }
6282 
6283 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6284                         MemRegion span,
6285                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6286                         bool should_yield, bool verifying):
6287   _collector(collector),
6288   _span(span),
6289   _bitMap(bitMap),
6290   _mut(&collector->_modUnionTable),
6291   _markStack(markStack),
6292   _yield(should_yield),
6293   _skipBits(0)
6294 {
6295   assert(_markStack->isEmpty(), "stack should be empty");
6296   _finger = _bitMap->startWord();
6297   _threshold = _finger;
6298   assert(_collector->_restart_addr == NULL, "Sanity check");
6299   assert(_span.contains(_finger), "Out of bounds _finger?");
6300   DEBUG_ONLY(_verifying = verifying;)
6301 }
6302 
6303 void MarkFromRootsClosure::reset(HeapWord* addr) {
6304   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6305   assert(_span.contains(addr), "Out of bounds _finger?");
6306   _finger = addr;
6307   _threshold = (HeapWord*)round_to(
6308                  (intptr_t)_finger, CardTableModRefBS::card_size);
6309 }
6310 
6311 // Should revisit to see if this should be restructured for
6312 // greater efficiency.
6313 bool MarkFromRootsClosure::do_bit(size_t offset) {
6314   if (_skipBits > 0) {
6315     _skipBits--;
6316     return true;
6317   }
6318   // convert offset into a HeapWord*
6319   HeapWord* addr = _bitMap->startWord() + offset;
6320   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6321          "address out of range");
6322   assert(_bitMap->isMarked(addr), "tautology");
6323   if (_bitMap->isMarked(addr+1)) {
6324     // this is an allocated but not yet initialized object
6325     assert(_skipBits == 0, "tautology");
6326     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6327     oop p = oop(addr);
6328     if (p->klass_or_null() == NULL) {
6329       DEBUG_ONLY(if (!_verifying) {)
6330         // We re-dirty the cards on which this object lies and increase
6331         // the _threshold so that we'll come back to scan this object
6332         // during the preclean or remark phase. (CMSCleanOnEnter)
6333         if (CMSCleanOnEnter) {
6334           size_t sz = _collector->block_size_using_printezis_bits(addr);
6335           HeapWord* end_card_addr   = (HeapWord*)round_to(
6336                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6337           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6338           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6339           // Bump _threshold to end_card_addr; note that
6340           // _threshold cannot possibly exceed end_card_addr, anyhow.
6341           // This prevents future clearing of the card as the scan proceeds
6342           // to the right.
6343           assert(_threshold <= end_card_addr,
6344                  "Because we are just scanning into this object");
6345           if (_threshold < end_card_addr) {
6346             _threshold = end_card_addr;
6347           }
6348           if (p->klass_or_null() != NULL) {
6349             // Redirty the range of cards...
6350             _mut->mark_range(redirty_range);
6351           } // ...else the setting of klass will dirty the card anyway.
6352         }
6353       DEBUG_ONLY(})
6354       return true;
6355     }
6356   }
6357   scanOopsInOop(addr);
6358   return true;
6359 }
6360 
6361 // We take a break if we've been at this for a while,
6362 // so as to avoid monopolizing the locks involved.
6363 void MarkFromRootsClosure::do_yield_work() {
6364   // First give up the locks, then yield, then re-lock
6365   // We should probably use a constructor/destructor idiom to
6366   // do this unlock/lock or modify the MutexUnlocker class to
6367   // serve our purpose. XXX
6368   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6369          "CMS thread should hold CMS token");
6370   assert_lock_strong(_bitMap->lock());
6371   _bitMap->lock()->unlock();
6372   ConcurrentMarkSweepThread::desynchronize(true);
6373   _collector->stopTimer();
6374   _collector->incrementYields();
6375 
6376   // See the comment in coordinator_yield()
6377   for (unsigned i = 0; i < CMSYieldSleepCount &&
6378                        ConcurrentMarkSweepThread::should_yield() &&
6379                        !CMSCollector::foregroundGCIsActive(); ++i) {
6380     os::sleep(Thread::current(), 1, false);
6381   }
6382 
6383   ConcurrentMarkSweepThread::synchronize(true);
6384   _bitMap->lock()->lock_without_safepoint_check();
6385   _collector->startTimer();
6386 }
6387 
6388 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6389   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6390   assert(_markStack->isEmpty(),
6391          "should drain stack to limit stack usage");
6392   // convert ptr to an oop preparatory to scanning
6393   oop obj = oop(ptr);
6394   // Ignore mark word in verification below, since we
6395   // may be running concurrent with mutators.
6396   assert(obj->is_oop(true), "should be an oop");
6397   assert(_finger <= ptr, "_finger runneth ahead");
6398   // advance the finger to right end of this object
6399   _finger = ptr + obj->size();
6400   assert(_finger > ptr, "we just incremented it above");
6401   // On large heaps, it may take us some time to get through
6402   // the marking phase. During
6403   // this time it's possible that a lot of mutations have
6404   // accumulated in the card table and the mod union table --
6405   // these mutation records are redundant until we have
6406   // actually traced into the corresponding card.
6407   // Here, we check whether advancing the finger would make
6408   // us cross into a new card, and if so clear corresponding
6409   // cards in the MUT (preclean them in the card-table in the
6410   // future).
6411 
6412   DEBUG_ONLY(if (!_verifying) {)
6413     // The clean-on-enter optimization is disabled by default,
6414     // until we fix 6178663.
6415     if (CMSCleanOnEnter && (_finger > _threshold)) {
6416       // [_threshold, _finger) represents the interval
6417       // of cards to be cleared  in MUT (or precleaned in card table).
6418       // The set of cards to be cleared is all those that overlap
6419       // with the interval [_threshold, _finger); note that
6420       // _threshold is always kept card-aligned but _finger isn't
6421       // always card-aligned.
6422       HeapWord* old_threshold = _threshold;
6423       assert(old_threshold == (HeapWord*)round_to(
6424               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6425              "_threshold should always be card-aligned");
6426       _threshold = (HeapWord*)round_to(
6427                      (intptr_t)_finger, CardTableModRefBS::card_size);
6428       MemRegion mr(old_threshold, _threshold);
6429       assert(!mr.is_empty(), "Control point invariant");
6430       assert(_span.contains(mr), "Should clear within span");
6431       _mut->clear_range(mr);
6432     }
6433   DEBUG_ONLY(})
6434   // Note: the finger doesn't advance while we drain
6435   // the stack below.
6436   PushOrMarkClosure pushOrMarkClosure(_collector,
6437                                       _span, _bitMap, _markStack,
6438                                       _finger, this);
6439   bool res = _markStack->push(obj);
6440   assert(res, "Empty non-zero size stack should have space for single push");
6441   while (!_markStack->isEmpty()) {
6442     oop new_oop = _markStack->pop();
6443     // Skip verifying header mark word below because we are
6444     // running concurrent with mutators.
6445     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6446     // now scan this oop's oops
6447     new_oop->oop_iterate(&pushOrMarkClosure);
6448     do_yield_check();
6449   }
6450   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6451 }
6452 
6453 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6454                        CMSCollector* collector, MemRegion span,
6455                        CMSBitMap* bit_map,
6456                        OopTaskQueue* work_queue,
6457                        CMSMarkStack*  overflow_stack):
6458   _collector(collector),
6459   _whole_span(collector->_span),
6460   _span(span),
6461   _bit_map(bit_map),
6462   _mut(&collector->_modUnionTable),
6463   _work_queue(work_queue),
6464   _overflow_stack(overflow_stack),
6465   _skip_bits(0),
6466   _task(task)
6467 {
6468   assert(_work_queue->size() == 0, "work_queue should be empty");
6469   _finger = span.start();
6470   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6471   assert(_span.contains(_finger), "Out of bounds _finger?");
6472 }
6473 
6474 // Should revisit to see if this should be restructured for
6475 // greater efficiency.
6476 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6477   if (_skip_bits > 0) {
6478     _skip_bits--;
6479     return true;
6480   }
6481   // convert offset into a HeapWord*
6482   HeapWord* addr = _bit_map->startWord() + offset;
6483   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6484          "address out of range");
6485   assert(_bit_map->isMarked(addr), "tautology");
6486   if (_bit_map->isMarked(addr+1)) {
6487     // this is an allocated object that might not yet be initialized
6488     assert(_skip_bits == 0, "tautology");
6489     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6490     oop p = oop(addr);
6491     if (p->klass_or_null() == NULL) {
6492       // in the case of Clean-on-Enter optimization, redirty card
6493       // and avoid clearing card by increasing  the threshold.
6494       return true;
6495     }
6496   }
6497   scan_oops_in_oop(addr);
6498   return true;
6499 }
6500 
6501 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6502   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6503   // Should we assert that our work queue is empty or
6504   // below some drain limit?
6505   assert(_work_queue->size() == 0,
6506          "should drain stack to limit stack usage");
6507   // convert ptr to an oop preparatory to scanning
6508   oop obj = oop(ptr);
6509   // Ignore mark word in verification below, since we
6510   // may be running concurrent with mutators.
6511   assert(obj->is_oop(true), "should be an oop");
6512   assert(_finger <= ptr, "_finger runneth ahead");
6513   // advance the finger to right end of this object
6514   _finger = ptr + obj->size();
6515   assert(_finger > ptr, "we just incremented it above");
6516   // On large heaps, it may take us some time to get through
6517   // the marking phase. During
6518   // this time it's possible that a lot of mutations have
6519   // accumulated in the card table and the mod union table --
6520   // these mutation records are redundant until we have
6521   // actually traced into the corresponding card.
6522   // Here, we check whether advancing the finger would make
6523   // us cross into a new card, and if so clear corresponding
6524   // cards in the MUT (preclean them in the card-table in the
6525   // future).
6526 
6527   // The clean-on-enter optimization is disabled by default,
6528   // until we fix 6178663.
6529   if (CMSCleanOnEnter && (_finger > _threshold)) {
6530     // [_threshold, _finger) represents the interval
6531     // of cards to be cleared  in MUT (or precleaned in card table).
6532     // The set of cards to be cleared is all those that overlap
6533     // with the interval [_threshold, _finger); note that
6534     // _threshold is always kept card-aligned but _finger isn't
6535     // always card-aligned.
6536     HeapWord* old_threshold = _threshold;
6537     assert(old_threshold == (HeapWord*)round_to(
6538             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6539            "_threshold should always be card-aligned");
6540     _threshold = (HeapWord*)round_to(
6541                    (intptr_t)_finger, CardTableModRefBS::card_size);
6542     MemRegion mr(old_threshold, _threshold);
6543     assert(!mr.is_empty(), "Control point invariant");
6544     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6545     _mut->clear_range(mr);
6546   }
6547 
6548   // Note: the local finger doesn't advance while we drain
6549   // the stack below, but the global finger sure can and will.
6550   HeapWord** gfa = _task->global_finger_addr();
6551   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6552                                          _span, _bit_map,
6553                                          _work_queue,
6554                                          _overflow_stack,
6555                                          _finger,
6556                                          gfa, this);
6557   bool res = _work_queue->push(obj);   // overflow could occur here
6558   assert(res, "Will hold once we use workqueues");
6559   while (true) {
6560     oop new_oop;
6561     if (!_work_queue->pop_local(new_oop)) {
6562       // We emptied our work_queue; check if there's stuff that can
6563       // be gotten from the overflow stack.
6564       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6565             _overflow_stack, _work_queue)) {
6566         do_yield_check();
6567         continue;
6568       } else {  // done
6569         break;
6570       }
6571     }
6572     // Skip verifying header mark word below because we are
6573     // running concurrent with mutators.
6574     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6575     // now scan this oop's oops
6576     new_oop->oop_iterate(&pushOrMarkClosure);
6577     do_yield_check();
6578   }
6579   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6580 }
6581 
6582 // Yield in response to a request from VM Thread or
6583 // from mutators.
6584 void ParMarkFromRootsClosure::do_yield_work() {
6585   assert(_task != NULL, "sanity");
6586   _task->yield();
6587 }
6588 
6589 // A variant of the above used for verifying CMS marking work.
6590 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6591                         MemRegion span,
6592                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6593                         CMSMarkStack*  mark_stack):
6594   _collector(collector),
6595   _span(span),
6596   _verification_bm(verification_bm),
6597   _cms_bm(cms_bm),
6598   _mark_stack(mark_stack),
6599   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6600                       mark_stack)
6601 {
6602   assert(_mark_stack->isEmpty(), "stack should be empty");
6603   _finger = _verification_bm->startWord();
6604   assert(_collector->_restart_addr == NULL, "Sanity check");
6605   assert(_span.contains(_finger), "Out of bounds _finger?");
6606 }
6607 
6608 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6609   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6610   assert(_span.contains(addr), "Out of bounds _finger?");
6611   _finger = addr;
6612 }
6613 
6614 // Should revisit to see if this should be restructured for
6615 // greater efficiency.
6616 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6617   // convert offset into a HeapWord*
6618   HeapWord* addr = _verification_bm->startWord() + offset;
6619   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6620          "address out of range");
6621   assert(_verification_bm->isMarked(addr), "tautology");
6622   assert(_cms_bm->isMarked(addr), "tautology");
6623 
6624   assert(_mark_stack->isEmpty(),
6625          "should drain stack to limit stack usage");
6626   // convert addr to an oop preparatory to scanning
6627   oop obj = oop(addr);
6628   assert(obj->is_oop(), "should be an oop");
6629   assert(_finger <= addr, "_finger runneth ahead");
6630   // advance the finger to right end of this object
6631   _finger = addr + obj->size();
6632   assert(_finger > addr, "we just incremented it above");
6633   // Note: the finger doesn't advance while we drain
6634   // the stack below.
6635   bool res = _mark_stack->push(obj);
6636   assert(res, "Empty non-zero size stack should have space for single push");
6637   while (!_mark_stack->isEmpty()) {
6638     oop new_oop = _mark_stack->pop();
6639     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6640     // now scan this oop's oops
6641     new_oop->oop_iterate(&_pam_verify_closure);
6642   }
6643   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6644   return true;
6645 }
6646 
6647 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6648   CMSCollector* collector, MemRegion span,
6649   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6650   CMSMarkStack*  mark_stack):
6651   MetadataAwareOopClosure(collector->ref_processor()),
6652   _collector(collector),
6653   _span(span),
6654   _verification_bm(verification_bm),
6655   _cms_bm(cms_bm),
6656   _mark_stack(mark_stack)
6657 { }
6658 
6659 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6660 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6661 
6662 // Upon stack overflow, we discard (part of) the stack,
6663 // remembering the least address amongst those discarded
6664 // in CMSCollector's _restart_address.
6665 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6666   // Remember the least grey address discarded
6667   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6668   _collector->lower_restart_addr(ra);
6669   _mark_stack->reset();  // discard stack contents
6670   _mark_stack->expand(); // expand the stack if possible
6671 }
6672 
6673 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6674   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6675   HeapWord* addr = (HeapWord*)obj;
6676   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6677     // Oop lies in _span and isn't yet grey or black
6678     _verification_bm->mark(addr);            // now grey
6679     if (!_cms_bm->isMarked(addr)) {
6680       Log(gc, verify) log;
6681       ResourceMark rm;
6682       oop(addr)->print_on(log.error_stream());
6683       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6684       fatal("... aborting");
6685     }
6686 
6687     if (!_mark_stack->push(obj)) { // stack overflow
6688       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6689       assert(_mark_stack->isFull(), "Else push should have succeeded");
6690       handle_stack_overflow(addr);
6691     }
6692     // anything including and to the right of _finger
6693     // will be scanned as we iterate over the remainder of the
6694     // bit map
6695   }
6696 }
6697 
6698 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6699                      MemRegion span,
6700                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6701                      HeapWord* finger, MarkFromRootsClosure* parent) :
6702   MetadataAwareOopClosure(collector->ref_processor()),
6703   _collector(collector),
6704   _span(span),
6705   _bitMap(bitMap),
6706   _markStack(markStack),
6707   _finger(finger),
6708   _parent(parent)
6709 { }
6710 
6711 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6712                                            MemRegion span,
6713                                            CMSBitMap* bit_map,
6714                                            OopTaskQueue* work_queue,
6715                                            CMSMarkStack*  overflow_stack,
6716                                            HeapWord* finger,
6717                                            HeapWord** global_finger_addr,
6718                                            ParMarkFromRootsClosure* parent) :
6719   MetadataAwareOopClosure(collector->ref_processor()),
6720   _collector(collector),
6721   _whole_span(collector->_span),
6722   _span(span),
6723   _bit_map(bit_map),
6724   _work_queue(work_queue),
6725   _overflow_stack(overflow_stack),
6726   _finger(finger),
6727   _global_finger_addr(global_finger_addr),
6728   _parent(parent)
6729 { }
6730 
6731 // Assumes thread-safe access by callers, who are
6732 // responsible for mutual exclusion.
6733 void CMSCollector::lower_restart_addr(HeapWord* low) {
6734   assert(_span.contains(low), "Out of bounds addr");
6735   if (_restart_addr == NULL) {
6736     _restart_addr = low;
6737   } else {
6738     _restart_addr = MIN2(_restart_addr, low);
6739   }
6740 }
6741 
6742 // Upon stack overflow, we discard (part of) the stack,
6743 // remembering the least address amongst those discarded
6744 // in CMSCollector's _restart_address.
6745 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6746   // Remember the least grey address discarded
6747   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6748   _collector->lower_restart_addr(ra);
6749   _markStack->reset();  // discard stack contents
6750   _markStack->expand(); // expand the stack if possible
6751 }
6752 
6753 // Upon stack overflow, we discard (part of) the stack,
6754 // remembering the least address amongst those discarded
6755 // in CMSCollector's _restart_address.
6756 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6757   // We need to do this under a mutex to prevent other
6758   // workers from interfering with the work done below.
6759   MutexLockerEx ml(_overflow_stack->par_lock(),
6760                    Mutex::_no_safepoint_check_flag);
6761   // Remember the least grey address discarded
6762   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6763   _collector->lower_restart_addr(ra);
6764   _overflow_stack->reset();  // discard stack contents
6765   _overflow_stack->expand(); // expand the stack if possible
6766 }
6767 
6768 void PushOrMarkClosure::do_oop(oop obj) {
6769   // Ignore mark word because we are running concurrent with mutators.
6770   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6771   HeapWord* addr = (HeapWord*)obj;
6772   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6773     // Oop lies in _span and isn't yet grey or black
6774     _bitMap->mark(addr);            // now grey
6775     if (addr < _finger) {
6776       // the bit map iteration has already either passed, or
6777       // sampled, this bit in the bit map; we'll need to
6778       // use the marking stack to scan this oop's oops.
6779       bool simulate_overflow = false;
6780       NOT_PRODUCT(
6781         if (CMSMarkStackOverflowALot &&
6782             _collector->simulate_overflow()) {
6783           // simulate a stack overflow
6784           simulate_overflow = true;
6785         }
6786       )
6787       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6788         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6789         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6790         handle_stack_overflow(addr);
6791       }
6792     }
6793     // anything including and to the right of _finger
6794     // will be scanned as we iterate over the remainder of the
6795     // bit map
6796     do_yield_check();
6797   }
6798 }
6799 
6800 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6801 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6802 
6803 void ParPushOrMarkClosure::do_oop(oop obj) {
6804   // Ignore mark word because we are running concurrent with mutators.
6805   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6806   HeapWord* addr = (HeapWord*)obj;
6807   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6808     // Oop lies in _span and isn't yet grey or black
6809     // We read the global_finger (volatile read) strictly after marking oop
6810     bool res = _bit_map->par_mark(addr);    // now grey
6811     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6812     // Should we push this marked oop on our stack?
6813     // -- if someone else marked it, nothing to do
6814     // -- if target oop is above global finger nothing to do
6815     // -- if target oop is in chunk and above local finger
6816     //      then nothing to do
6817     // -- else push on work queue
6818     if (   !res       // someone else marked it, they will deal with it
6819         || (addr >= *gfa)  // will be scanned in a later task
6820         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6821       return;
6822     }
6823     // the bit map iteration has already either passed, or
6824     // sampled, this bit in the bit map; we'll need to
6825     // use the marking stack to scan this oop's oops.
6826     bool simulate_overflow = false;
6827     NOT_PRODUCT(
6828       if (CMSMarkStackOverflowALot &&
6829           _collector->simulate_overflow()) {
6830         // simulate a stack overflow
6831         simulate_overflow = true;
6832       }
6833     )
6834     if (simulate_overflow ||
6835         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6836       // stack overflow
6837       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6838       // We cannot assert that the overflow stack is full because
6839       // it may have been emptied since.
6840       assert(simulate_overflow ||
6841              _work_queue->size() == _work_queue->max_elems(),
6842             "Else push should have succeeded");
6843       handle_stack_overflow(addr);
6844     }
6845     do_yield_check();
6846   }
6847 }
6848 
6849 void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6850 void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6851 
6852 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6853                                        MemRegion span,
6854                                        ReferenceProcessor* rp,
6855                                        CMSBitMap* bit_map,
6856                                        CMSBitMap* mod_union_table,
6857                                        CMSMarkStack*  mark_stack,
6858                                        bool           concurrent_precleaning):
6859   MetadataAwareOopClosure(rp),
6860   _collector(collector),
6861   _span(span),
6862   _bit_map(bit_map),
6863   _mod_union_table(mod_union_table),
6864   _mark_stack(mark_stack),
6865   _concurrent_precleaning(concurrent_precleaning)
6866 {
6867   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6868 }
6869 
6870 // Grey object rescan during pre-cleaning and second checkpoint phases --
6871 // the non-parallel version (the parallel version appears further below.)
6872 void PushAndMarkClosure::do_oop(oop obj) {
6873   // Ignore mark word verification. If during concurrent precleaning,
6874   // the object monitor may be locked. If during the checkpoint
6875   // phases, the object may already have been reached by a  different
6876   // path and may be at the end of the global overflow list (so
6877   // the mark word may be NULL).
6878   assert(obj->is_oop_or_null(true /* ignore mark word */),
6879          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6880   HeapWord* addr = (HeapWord*)obj;
6881   // Check if oop points into the CMS generation
6882   // and is not marked
6883   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6884     // a white object ...
6885     _bit_map->mark(addr);         // ... now grey
6886     // push on the marking stack (grey set)
6887     bool simulate_overflow = false;
6888     NOT_PRODUCT(
6889       if (CMSMarkStackOverflowALot &&
6890           _collector->simulate_overflow()) {
6891         // simulate a stack overflow
6892         simulate_overflow = true;
6893       }
6894     )
6895     if (simulate_overflow || !_mark_stack->push(obj)) {
6896       if (_concurrent_precleaning) {
6897          // During precleaning we can just dirty the appropriate card(s)
6898          // in the mod union table, thus ensuring that the object remains
6899          // in the grey set  and continue. In the case of object arrays
6900          // we need to dirty all of the cards that the object spans,
6901          // since the rescan of object arrays will be limited to the
6902          // dirty cards.
6903          // Note that no one can be interfering with us in this action
6904          // of dirtying the mod union table, so no locking or atomics
6905          // are required.
6906          if (obj->is_objArray()) {
6907            size_t sz = obj->size();
6908            HeapWord* end_card_addr = (HeapWord*)round_to(
6909                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6910            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6911            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6912            _mod_union_table->mark_range(redirty_range);
6913          } else {
6914            _mod_union_table->mark(addr);
6915          }
6916          _collector->_ser_pmc_preclean_ovflw++;
6917       } else {
6918          // During the remark phase, we need to remember this oop
6919          // in the overflow list.
6920          _collector->push_on_overflow_list(obj);
6921          _collector->_ser_pmc_remark_ovflw++;
6922       }
6923     }
6924   }
6925 }
6926 
6927 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6928                                              MemRegion span,
6929                                              ReferenceProcessor* rp,
6930                                              CMSBitMap* bit_map,
6931                                              OopTaskQueue* work_queue):
6932   MetadataAwareOopClosure(rp),
6933   _collector(collector),
6934   _span(span),
6935   _bit_map(bit_map),
6936   _work_queue(work_queue)
6937 {
6938   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6939 }
6940 
6941 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6942 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6943 
6944 // Grey object rescan during second checkpoint phase --
6945 // the parallel version.
6946 void ParPushAndMarkClosure::do_oop(oop obj) {
6947   // In the assert below, we ignore the mark word because
6948   // this oop may point to an already visited object that is
6949   // on the overflow stack (in which case the mark word has
6950   // been hijacked for chaining into the overflow stack --
6951   // if this is the last object in the overflow stack then
6952   // its mark word will be NULL). Because this object may
6953   // have been subsequently popped off the global overflow
6954   // stack, and the mark word possibly restored to the prototypical
6955   // value, by the time we get to examined this failing assert in
6956   // the debugger, is_oop_or_null(false) may subsequently start
6957   // to hold.
6958   assert(obj->is_oop_or_null(true),
6959          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6960   HeapWord* addr = (HeapWord*)obj;
6961   // Check if oop points into the CMS generation
6962   // and is not marked
6963   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6964     // a white object ...
6965     // If we manage to "claim" the object, by being the
6966     // first thread to mark it, then we push it on our
6967     // marking stack
6968     if (_bit_map->par_mark(addr)) {     // ... now grey
6969       // push on work queue (grey set)
6970       bool simulate_overflow = false;
6971       NOT_PRODUCT(
6972         if (CMSMarkStackOverflowALot &&
6973             _collector->par_simulate_overflow()) {
6974           // simulate a stack overflow
6975           simulate_overflow = true;
6976         }
6977       )
6978       if (simulate_overflow || !_work_queue->push(obj)) {
6979         _collector->par_push_on_overflow_list(obj);
6980         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6981       }
6982     } // Else, some other thread got there first
6983   }
6984 }
6985 
6986 void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6987 void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6988 
6989 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6990   Mutex* bml = _collector->bitMapLock();
6991   assert_lock_strong(bml);
6992   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6993          "CMS thread should hold CMS token");
6994 
6995   bml->unlock();
6996   ConcurrentMarkSweepThread::desynchronize(true);
6997 
6998   _collector->stopTimer();
6999   _collector->incrementYields();
7000 
7001   // See the comment in coordinator_yield()
7002   for (unsigned i = 0; i < CMSYieldSleepCount &&
7003                        ConcurrentMarkSweepThread::should_yield() &&
7004                        !CMSCollector::foregroundGCIsActive(); ++i) {
7005     os::sleep(Thread::current(), 1, false);
7006   }
7007 
7008   ConcurrentMarkSweepThread::synchronize(true);
7009   bml->lock();
7010 
7011   _collector->startTimer();
7012 }
7013 
7014 bool CMSPrecleanRefsYieldClosure::should_return() {
7015   if (ConcurrentMarkSweepThread::should_yield()) {
7016     do_yield_work();
7017   }
7018   return _collector->foregroundGCIsActive();
7019 }
7020 
7021 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7022   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7023          "mr should be aligned to start at a card boundary");
7024   // We'd like to assert:
7025   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7026   //        "mr should be a range of cards");
7027   // However, that would be too strong in one case -- the last
7028   // partition ends at _unallocated_block which, in general, can be
7029   // an arbitrary boundary, not necessarily card aligned.
7030   _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7031   _space->object_iterate_mem(mr, &_scan_cl);
7032 }
7033 
7034 SweepClosure::SweepClosure(CMSCollector* collector,
7035                            ConcurrentMarkSweepGeneration* g,
7036                            CMSBitMap* bitMap, bool should_yield) :
7037   _collector(collector),
7038   _g(g),
7039   _sp(g->cmsSpace()),
7040   _limit(_sp->sweep_limit()),
7041   _freelistLock(_sp->freelistLock()),
7042   _bitMap(bitMap),
7043   _yield(should_yield),
7044   _inFreeRange(false),           // No free range at beginning of sweep
7045   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7046   _lastFreeRangeCoalesced(false),
7047   _freeFinger(g->used_region().start())
7048 {
7049   NOT_PRODUCT(
7050     _numObjectsFreed = 0;
7051     _numWordsFreed   = 0;
7052     _numObjectsLive = 0;
7053     _numWordsLive = 0;
7054     _numObjectsAlreadyFree = 0;
7055     _numWordsAlreadyFree = 0;
7056     _last_fc = NULL;
7057 
7058     _sp->initializeIndexedFreeListArrayReturnedBytes();
7059     _sp->dictionary()->initialize_dict_returned_bytes();
7060   )
7061   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7062          "sweep _limit out of bounds");
7063   log_develop_trace(gc, sweep)("====================");
7064   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7065 }
7066 
7067 void SweepClosure::print_on(outputStream* st) const {
7068   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7069                p2i(_sp->bottom()), p2i(_sp->end()));
7070   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7071   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7072   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7073   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7074                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7075 }
7076 
7077 #ifndef PRODUCT
7078 // Assertion checking only:  no useful work in product mode --
7079 // however, if any of the flags below become product flags,
7080 // you may need to review this code to see if it needs to be
7081 // enabled in product mode.
7082 SweepClosure::~SweepClosure() {
7083   assert_lock_strong(_freelistLock);
7084   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7085          "sweep _limit out of bounds");
7086   if (inFreeRange()) {
7087     Log(gc, sweep) log;
7088     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7089     ResourceMark rm;
7090     print_on(log.error_stream());
7091     ShouldNotReachHere();
7092   }
7093 
7094   if (log_is_enabled(Debug, gc, sweep)) {
7095     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7096                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7097     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7098                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7099     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7100     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7101   }
7102 
7103   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7104     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7105     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7106     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7107     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7108                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7109   }
7110   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7111   log_develop_trace(gc, sweep)("================");
7112 }
7113 #endif  // PRODUCT
7114 
7115 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7116     bool freeRangeInFreeLists) {
7117   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7118                                p2i(freeFinger), freeRangeInFreeLists);
7119   assert(!inFreeRange(), "Trampling existing free range");
7120   set_inFreeRange(true);
7121   set_lastFreeRangeCoalesced(false);
7122 
7123   set_freeFinger(freeFinger);
7124   set_freeRangeInFreeLists(freeRangeInFreeLists);
7125   if (CMSTestInFreeList) {
7126     if (freeRangeInFreeLists) {
7127       FreeChunk* fc = (FreeChunk*) freeFinger;
7128       assert(fc->is_free(), "A chunk on the free list should be free.");
7129       assert(fc->size() > 0, "Free range should have a size");
7130       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7131     }
7132   }
7133 }
7134 
7135 // Note that the sweeper runs concurrently with mutators. Thus,
7136 // it is possible for direct allocation in this generation to happen
7137 // in the middle of the sweep. Note that the sweeper also coalesces
7138 // contiguous free blocks. Thus, unless the sweeper and the allocator
7139 // synchronize appropriately freshly allocated blocks may get swept up.
7140 // This is accomplished by the sweeper locking the free lists while
7141 // it is sweeping. Thus blocks that are determined to be free are
7142 // indeed free. There is however one additional complication:
7143 // blocks that have been allocated since the final checkpoint and
7144 // mark, will not have been marked and so would be treated as
7145 // unreachable and swept up. To prevent this, the allocator marks
7146 // the bit map when allocating during the sweep phase. This leads,
7147 // however, to a further complication -- objects may have been allocated
7148 // but not yet initialized -- in the sense that the header isn't yet
7149 // installed. The sweeper can not then determine the size of the block
7150 // in order to skip over it. To deal with this case, we use a technique
7151 // (due to Printezis) to encode such uninitialized block sizes in the
7152 // bit map. Since the bit map uses a bit per every HeapWord, but the
7153 // CMS generation has a minimum object size of 3 HeapWords, it follows
7154 // that "normal marks" won't be adjacent in the bit map (there will
7155 // always be at least two 0 bits between successive 1 bits). We make use
7156 // of these "unused" bits to represent uninitialized blocks -- the bit
7157 // corresponding to the start of the uninitialized object and the next
7158 // bit are both set. Finally, a 1 bit marks the end of the object that
7159 // started with the two consecutive 1 bits to indicate its potentially
7160 // uninitialized state.
7161 
7162 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7163   FreeChunk* fc = (FreeChunk*)addr;
7164   size_t res;
7165 
7166   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7167   // than "addr == _limit" because although _limit was a block boundary when
7168   // we started the sweep, it may no longer be one because heap expansion
7169   // may have caused us to coalesce the block ending at the address _limit
7170   // with a newly expanded chunk (this happens when _limit was set to the
7171   // previous _end of the space), so we may have stepped past _limit:
7172   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7173   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7174     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7175            "sweep _limit out of bounds");
7176     assert(addr < _sp->end(), "addr out of bounds");
7177     // Flush any free range we might be holding as a single
7178     // coalesced chunk to the appropriate free list.
7179     if (inFreeRange()) {
7180       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7181              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7182       flush_cur_free_chunk(freeFinger(),
7183                            pointer_delta(addr, freeFinger()));
7184       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7185                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7186                                    lastFreeRangeCoalesced() ? 1 : 0);
7187     }
7188 
7189     // help the iterator loop finish
7190     return pointer_delta(_sp->end(), addr);
7191   }
7192 
7193   assert(addr < _limit, "sweep invariant");
7194   // check if we should yield
7195   do_yield_check(addr);
7196   if (fc->is_free()) {
7197     // Chunk that is already free
7198     res = fc->size();
7199     do_already_free_chunk(fc);
7200     debug_only(_sp->verifyFreeLists());
7201     // If we flush the chunk at hand in lookahead_and_flush()
7202     // and it's coalesced with a preceding chunk, then the
7203     // process of "mangling" the payload of the coalesced block
7204     // will cause erasure of the size information from the
7205     // (erstwhile) header of all the coalesced blocks but the
7206     // first, so the first disjunct in the assert will not hold
7207     // in that specific case (in which case the second disjunct
7208     // will hold).
7209     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7210            "Otherwise the size info doesn't change at this step");
7211     NOT_PRODUCT(
7212       _numObjectsAlreadyFree++;
7213       _numWordsAlreadyFree += res;
7214     )
7215     NOT_PRODUCT(_last_fc = fc;)
7216   } else if (!_bitMap->isMarked(addr)) {
7217     // Chunk is fresh garbage
7218     res = do_garbage_chunk(fc);
7219     debug_only(_sp->verifyFreeLists());
7220     NOT_PRODUCT(
7221       _numObjectsFreed++;
7222       _numWordsFreed += res;
7223     )
7224   } else {
7225     // Chunk that is alive.
7226     res = do_live_chunk(fc);
7227     debug_only(_sp->verifyFreeLists());
7228     NOT_PRODUCT(
7229         _numObjectsLive++;
7230         _numWordsLive += res;
7231     )
7232   }
7233   return res;
7234 }
7235 
7236 // For the smart allocation, record following
7237 //  split deaths - a free chunk is removed from its free list because
7238 //      it is being split into two or more chunks.
7239 //  split birth - a free chunk is being added to its free list because
7240 //      a larger free chunk has been split and resulted in this free chunk.
7241 //  coal death - a free chunk is being removed from its free list because
7242 //      it is being coalesced into a large free chunk.
7243 //  coal birth - a free chunk is being added to its free list because
7244 //      it was created when two or more free chunks where coalesced into
7245 //      this free chunk.
7246 //
7247 // These statistics are used to determine the desired number of free
7248 // chunks of a given size.  The desired number is chosen to be relative
7249 // to the end of a CMS sweep.  The desired number at the end of a sweep
7250 // is the
7251 //      count-at-end-of-previous-sweep (an amount that was enough)
7252 //              - count-at-beginning-of-current-sweep  (the excess)
7253 //              + split-births  (gains in this size during interval)
7254 //              - split-deaths  (demands on this size during interval)
7255 // where the interval is from the end of one sweep to the end of the
7256 // next.
7257 //
7258 // When sweeping the sweeper maintains an accumulated chunk which is
7259 // the chunk that is made up of chunks that have been coalesced.  That
7260 // will be termed the left-hand chunk.  A new chunk of garbage that
7261 // is being considered for coalescing will be referred to as the
7262 // right-hand chunk.
7263 //
7264 // When making a decision on whether to coalesce a right-hand chunk with
7265 // the current left-hand chunk, the current count vs. the desired count
7266 // of the left-hand chunk is considered.  Also if the right-hand chunk
7267 // is near the large chunk at the end of the heap (see
7268 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7269 // left-hand chunk is coalesced.
7270 //
7271 // When making a decision about whether to split a chunk, the desired count
7272 // vs. the current count of the candidate to be split is also considered.
7273 // If the candidate is underpopulated (currently fewer chunks than desired)
7274 // a chunk of an overpopulated (currently more chunks than desired) size may
7275 // be chosen.  The "hint" associated with a free list, if non-null, points
7276 // to a free list which may be overpopulated.
7277 //
7278 
7279 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7280   const size_t size = fc->size();
7281   // Chunks that cannot be coalesced are not in the
7282   // free lists.
7283   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7284     assert(_sp->verify_chunk_in_free_list(fc),
7285            "free chunk should be in free lists");
7286   }
7287   // a chunk that is already free, should not have been
7288   // marked in the bit map
7289   HeapWord* const addr = (HeapWord*) fc;
7290   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7291   // Verify that the bit map has no bits marked between
7292   // addr and purported end of this block.
7293   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7294 
7295   // Some chunks cannot be coalesced under any circumstances.
7296   // See the definition of cantCoalesce().
7297   if (!fc->cantCoalesce()) {
7298     // This chunk can potentially be coalesced.
7299     // All the work is done in
7300     do_post_free_or_garbage_chunk(fc, size);
7301     // Note that if the chunk is not coalescable (the else arm
7302     // below), we unconditionally flush, without needing to do
7303     // a "lookahead," as we do below.
7304     if (inFreeRange()) lookahead_and_flush(fc, size);
7305   } else {
7306     // Code path common to both original and adaptive free lists.
7307 
7308     // cant coalesce with previous block; this should be treated
7309     // as the end of a free run if any
7310     if (inFreeRange()) {
7311       // we kicked some butt; time to pick up the garbage
7312       assert(freeFinger() < addr, "freeFinger points too high");
7313       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7314     }
7315     // else, nothing to do, just continue
7316   }
7317 }
7318 
7319 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7320   // This is a chunk of garbage.  It is not in any free list.
7321   // Add it to a free list or let it possibly be coalesced into
7322   // a larger chunk.
7323   HeapWord* const addr = (HeapWord*) fc;
7324   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7325 
7326   // Verify that the bit map has no bits marked between
7327   // addr and purported end of just dead object.
7328   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7329   do_post_free_or_garbage_chunk(fc, size);
7330 
7331   assert(_limit >= addr + size,
7332          "A freshly garbage chunk can't possibly straddle over _limit");
7333   if (inFreeRange()) lookahead_and_flush(fc, size);
7334   return size;
7335 }
7336 
7337 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7338   HeapWord* addr = (HeapWord*) fc;
7339   // The sweeper has just found a live object. Return any accumulated
7340   // left hand chunk to the free lists.
7341   if (inFreeRange()) {
7342     assert(freeFinger() < addr, "freeFinger points too high");
7343     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7344   }
7345 
7346   // This object is live: we'd normally expect this to be
7347   // an oop, and like to assert the following:
7348   // assert(oop(addr)->is_oop(), "live block should be an oop");
7349   // However, as we commented above, this may be an object whose
7350   // header hasn't yet been initialized.
7351   size_t size;
7352   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7353   if (_bitMap->isMarked(addr + 1)) {
7354     // Determine the size from the bit map, rather than trying to
7355     // compute it from the object header.
7356     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7357     size = pointer_delta(nextOneAddr + 1, addr);
7358     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7359            "alignment problem");
7360 
7361 #ifdef ASSERT
7362       if (oop(addr)->klass_or_null() != NULL) {
7363         // Ignore mark word because we are running concurrent with mutators
7364         assert(oop(addr)->is_oop(true), "live block should be an oop");
7365         assert(size ==
7366                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7367                "P-mark and computed size do not agree");
7368       }
7369 #endif
7370 
7371   } else {
7372     // This should be an initialized object that's alive.
7373     assert(oop(addr)->klass_or_null() != NULL,
7374            "Should be an initialized object");
7375     // Ignore mark word because we are running concurrent with mutators
7376     assert(oop(addr)->is_oop(true), "live block should be an oop");
7377     // Verify that the bit map has no bits marked between
7378     // addr and purported end of this block.
7379     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7380     assert(size >= 3, "Necessary for Printezis marks to work");
7381     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7382     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7383   }
7384   return size;
7385 }
7386 
7387 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7388                                                  size_t chunkSize) {
7389   // do_post_free_or_garbage_chunk() should only be called in the case
7390   // of the adaptive free list allocator.
7391   const bool fcInFreeLists = fc->is_free();
7392   assert((HeapWord*)fc <= _limit, "sweep invariant");
7393   if (CMSTestInFreeList && fcInFreeLists) {
7394     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7395   }
7396 
7397   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7398 
7399   HeapWord* const fc_addr = (HeapWord*) fc;
7400 
7401   bool coalesce = false;
7402   const size_t left  = pointer_delta(fc_addr, freeFinger());
7403   const size_t right = chunkSize;
7404   switch (FLSCoalescePolicy) {
7405     // numeric value forms a coalition aggressiveness metric
7406     case 0:  { // never coalesce
7407       coalesce = false;
7408       break;
7409     }
7410     case 1: { // coalesce if left & right chunks on overpopulated lists
7411       coalesce = _sp->coalOverPopulated(left) &&
7412                  _sp->coalOverPopulated(right);
7413       break;
7414     }
7415     case 2: { // coalesce if left chunk on overpopulated list (default)
7416       coalesce = _sp->coalOverPopulated(left);
7417       break;
7418     }
7419     case 3: { // coalesce if left OR right chunk on overpopulated list
7420       coalesce = _sp->coalOverPopulated(left) ||
7421                  _sp->coalOverPopulated(right);
7422       break;
7423     }
7424     case 4: { // always coalesce
7425       coalesce = true;
7426       break;
7427     }
7428     default:
7429      ShouldNotReachHere();
7430   }
7431 
7432   // Should the current free range be coalesced?
7433   // If the chunk is in a free range and either we decided to coalesce above
7434   // or the chunk is near the large block at the end of the heap
7435   // (isNearLargestChunk() returns true), then coalesce this chunk.
7436   const bool doCoalesce = inFreeRange()
7437                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7438   if (doCoalesce) {
7439     // Coalesce the current free range on the left with the new
7440     // chunk on the right.  If either is on a free list,
7441     // it must be removed from the list and stashed in the closure.
7442     if (freeRangeInFreeLists()) {
7443       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7444       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7445              "Size of free range is inconsistent with chunk size.");
7446       if (CMSTestInFreeList) {
7447         assert(_sp->verify_chunk_in_free_list(ffc),
7448                "Chunk is not in free lists");
7449       }
7450       _sp->coalDeath(ffc->size());
7451       _sp->removeFreeChunkFromFreeLists(ffc);
7452       set_freeRangeInFreeLists(false);
7453     }
7454     if (fcInFreeLists) {
7455       _sp->coalDeath(chunkSize);
7456       assert(fc->size() == chunkSize,
7457         "The chunk has the wrong size or is not in the free lists");
7458       _sp->removeFreeChunkFromFreeLists(fc);
7459     }
7460     set_lastFreeRangeCoalesced(true);
7461     print_free_block_coalesced(fc);
7462   } else {  // not in a free range and/or should not coalesce
7463     // Return the current free range and start a new one.
7464     if (inFreeRange()) {
7465       // In a free range but cannot coalesce with the right hand chunk.
7466       // Put the current free range into the free lists.
7467       flush_cur_free_chunk(freeFinger(),
7468                            pointer_delta(fc_addr, freeFinger()));
7469     }
7470     // Set up for new free range.  Pass along whether the right hand
7471     // chunk is in the free lists.
7472     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7473   }
7474 }
7475 
7476 // Lookahead flush:
7477 // If we are tracking a free range, and this is the last chunk that
7478 // we'll look at because its end crosses past _limit, we'll preemptively
7479 // flush it along with any free range we may be holding on to. Note that
7480 // this can be the case only for an already free or freshly garbage
7481 // chunk. If this block is an object, it can never straddle
7482 // over _limit. The "straddling" occurs when _limit is set at
7483 // the previous end of the space when this cycle started, and
7484 // a subsequent heap expansion caused the previously co-terminal
7485 // free block to be coalesced with the newly expanded portion,
7486 // thus rendering _limit a non-block-boundary making it dangerous
7487 // for the sweeper to step over and examine.
7488 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7489   assert(inFreeRange(), "Should only be called if currently in a free range.");
7490   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7491   assert(_sp->used_region().contains(eob - 1),
7492          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7493          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7494          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7495          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7496   if (eob >= _limit) {
7497     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7498     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7499                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7500                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7501                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7502     // Return the storage we are tracking back into the free lists.
7503     log_develop_trace(gc, sweep)("Flushing ... ");
7504     assert(freeFinger() < eob, "Error");
7505     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7506   }
7507 }
7508 
7509 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7510   assert(inFreeRange(), "Should only be called if currently in a free range.");
7511   assert(size > 0,
7512     "A zero sized chunk cannot be added to the free lists.");
7513   if (!freeRangeInFreeLists()) {
7514     if (CMSTestInFreeList) {
7515       FreeChunk* fc = (FreeChunk*) chunk;
7516       fc->set_size(size);
7517       assert(!_sp->verify_chunk_in_free_list(fc),
7518              "chunk should not be in free lists yet");
7519     }
7520     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7521     // A new free range is going to be starting.  The current
7522     // free range has not been added to the free lists yet or
7523     // was removed so add it back.
7524     // If the current free range was coalesced, then the death
7525     // of the free range was recorded.  Record a birth now.
7526     if (lastFreeRangeCoalesced()) {
7527       _sp->coalBirth(size);
7528     }
7529     _sp->addChunkAndRepairOffsetTable(chunk, size,
7530             lastFreeRangeCoalesced());
7531   } else {
7532     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7533   }
7534   set_inFreeRange(false);
7535   set_freeRangeInFreeLists(false);
7536 }
7537 
7538 // We take a break if we've been at this for a while,
7539 // so as to avoid monopolizing the locks involved.
7540 void SweepClosure::do_yield_work(HeapWord* addr) {
7541   // Return current free chunk being used for coalescing (if any)
7542   // to the appropriate freelist.  After yielding, the next
7543   // free block encountered will start a coalescing range of
7544   // free blocks.  If the next free block is adjacent to the
7545   // chunk just flushed, they will need to wait for the next
7546   // sweep to be coalesced.
7547   if (inFreeRange()) {
7548     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7549   }
7550 
7551   // First give up the locks, then yield, then re-lock.
7552   // We should probably use a constructor/destructor idiom to
7553   // do this unlock/lock or modify the MutexUnlocker class to
7554   // serve our purpose. XXX
7555   assert_lock_strong(_bitMap->lock());
7556   assert_lock_strong(_freelistLock);
7557   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7558          "CMS thread should hold CMS token");
7559   _bitMap->lock()->unlock();
7560   _freelistLock->unlock();
7561   ConcurrentMarkSweepThread::desynchronize(true);
7562   _collector->stopTimer();
7563   _collector->incrementYields();
7564 
7565   // See the comment in coordinator_yield()
7566   for (unsigned i = 0; i < CMSYieldSleepCount &&
7567                        ConcurrentMarkSweepThread::should_yield() &&
7568                        !CMSCollector::foregroundGCIsActive(); ++i) {
7569     os::sleep(Thread::current(), 1, false);
7570   }
7571 
7572   ConcurrentMarkSweepThread::synchronize(true);
7573   _freelistLock->lock();
7574   _bitMap->lock()->lock_without_safepoint_check();
7575   _collector->startTimer();
7576 }
7577 
7578 #ifndef PRODUCT
7579 // This is actually very useful in a product build if it can
7580 // be called from the debugger.  Compile it into the product
7581 // as needed.
7582 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7583   return debug_cms_space->verify_chunk_in_free_list(fc);
7584 }
7585 #endif
7586 
7587 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7588   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7589                                p2i(fc), fc->size());
7590 }
7591 
7592 // CMSIsAliveClosure
7593 bool CMSIsAliveClosure::do_object_b(oop obj) {
7594   HeapWord* addr = (HeapWord*)obj;
7595   return addr != NULL &&
7596          (!_span.contains(addr) || _bit_map->isMarked(addr));
7597 }
7598 
7599 
7600 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7601                       MemRegion span,
7602                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7603                       bool cpc):
7604   _collector(collector),
7605   _span(span),
7606   _bit_map(bit_map),
7607   _mark_stack(mark_stack),
7608   _concurrent_precleaning(cpc) {
7609   assert(!_span.is_empty(), "Empty span could spell trouble");
7610 }
7611 
7612 
7613 // CMSKeepAliveClosure: the serial version
7614 void CMSKeepAliveClosure::do_oop(oop obj) {
7615   HeapWord* addr = (HeapWord*)obj;
7616   if (_span.contains(addr) &&
7617       !_bit_map->isMarked(addr)) {
7618     _bit_map->mark(addr);
7619     bool simulate_overflow = false;
7620     NOT_PRODUCT(
7621       if (CMSMarkStackOverflowALot &&
7622           _collector->simulate_overflow()) {
7623         // simulate a stack overflow
7624         simulate_overflow = true;
7625       }
7626     )
7627     if (simulate_overflow || !_mark_stack->push(obj)) {
7628       if (_concurrent_precleaning) {
7629         // We dirty the overflown object and let the remark
7630         // phase deal with it.
7631         assert(_collector->overflow_list_is_empty(), "Error");
7632         // In the case of object arrays, we need to dirty all of
7633         // the cards that the object spans. No locking or atomics
7634         // are needed since no one else can be mutating the mod union
7635         // table.
7636         if (obj->is_objArray()) {
7637           size_t sz = obj->size();
7638           HeapWord* end_card_addr =
7639             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7640           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7641           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7642           _collector->_modUnionTable.mark_range(redirty_range);
7643         } else {
7644           _collector->_modUnionTable.mark(addr);
7645         }
7646         _collector->_ser_kac_preclean_ovflw++;
7647       } else {
7648         _collector->push_on_overflow_list(obj);
7649         _collector->_ser_kac_ovflw++;
7650       }
7651     }
7652   }
7653 }
7654 
7655 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7656 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7657 
7658 // CMSParKeepAliveClosure: a parallel version of the above.
7659 // The work queues are private to each closure (thread),
7660 // but (may be) available for stealing by other threads.
7661 void CMSParKeepAliveClosure::do_oop(oop obj) {
7662   HeapWord* addr = (HeapWord*)obj;
7663   if (_span.contains(addr) &&
7664       !_bit_map->isMarked(addr)) {
7665     // In general, during recursive tracing, several threads
7666     // may be concurrently getting here; the first one to
7667     // "tag" it, claims it.
7668     if (_bit_map->par_mark(addr)) {
7669       bool res = _work_queue->push(obj);
7670       assert(res, "Low water mark should be much less than capacity");
7671       // Do a recursive trim in the hope that this will keep
7672       // stack usage lower, but leave some oops for potential stealers
7673       trim_queue(_low_water_mark);
7674     } // Else, another thread got there first
7675   }
7676 }
7677 
7678 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7679 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7680 
7681 void CMSParKeepAliveClosure::trim_queue(uint max) {
7682   while (_work_queue->size() > max) {
7683     oop new_oop;
7684     if (_work_queue->pop_local(new_oop)) {
7685       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7686       assert(_bit_map->isMarked((HeapWord*)new_oop),
7687              "no white objects on this stack!");
7688       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7689       // iterate over the oops in this oop, marking and pushing
7690       // the ones in CMS heap (i.e. in _span).
7691       new_oop->oop_iterate(&_mark_and_push);
7692     }
7693   }
7694 }
7695 
7696 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7697                                 CMSCollector* collector,
7698                                 MemRegion span, CMSBitMap* bit_map,
7699                                 OopTaskQueue* work_queue):
7700   _collector(collector),
7701   _span(span),
7702   _bit_map(bit_map),
7703   _work_queue(work_queue) { }
7704 
7705 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7706   HeapWord* addr = (HeapWord*)obj;
7707   if (_span.contains(addr) &&
7708       !_bit_map->isMarked(addr)) {
7709     if (_bit_map->par_mark(addr)) {
7710       bool simulate_overflow = false;
7711       NOT_PRODUCT(
7712         if (CMSMarkStackOverflowALot &&
7713             _collector->par_simulate_overflow()) {
7714           // simulate a stack overflow
7715           simulate_overflow = true;
7716         }
7717       )
7718       if (simulate_overflow || !_work_queue->push(obj)) {
7719         _collector->par_push_on_overflow_list(obj);
7720         _collector->_par_kac_ovflw++;
7721       }
7722     } // Else another thread got there already
7723   }
7724 }
7725 
7726 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7727 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7728 
7729 //////////////////////////////////////////////////////////////////
7730 //  CMSExpansionCause                /////////////////////////////
7731 //////////////////////////////////////////////////////////////////
7732 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7733   switch (cause) {
7734     case _no_expansion:
7735       return "No expansion";
7736     case _satisfy_free_ratio:
7737       return "Free ratio";
7738     case _satisfy_promotion:
7739       return "Satisfy promotion";
7740     case _satisfy_allocation:
7741       return "allocation";
7742     case _allocate_par_lab:
7743       return "Par LAB";
7744     case _allocate_par_spooling_space:
7745       return "Par Spooling Space";
7746     case _adaptive_size_policy:
7747       return "Ergonomics";
7748     default:
7749       return "unknown";
7750   }
7751 }
7752 
7753 void CMSDrainMarkingStackClosure::do_void() {
7754   // the max number to take from overflow list at a time
7755   const size_t num = _mark_stack->capacity()/4;
7756   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7757          "Overflow list should be NULL during concurrent phases");
7758   while (!_mark_stack->isEmpty() ||
7759          // if stack is empty, check the overflow list
7760          _collector->take_from_overflow_list(num, _mark_stack)) {
7761     oop obj = _mark_stack->pop();
7762     HeapWord* addr = (HeapWord*)obj;
7763     assert(_span.contains(addr), "Should be within span");
7764     assert(_bit_map->isMarked(addr), "Should be marked");
7765     assert(obj->is_oop(), "Should be an oop");
7766     obj->oop_iterate(_keep_alive);
7767   }
7768 }
7769 
7770 void CMSParDrainMarkingStackClosure::do_void() {
7771   // drain queue
7772   trim_queue(0);
7773 }
7774 
7775 // Trim our work_queue so its length is below max at return
7776 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7777   while (_work_queue->size() > max) {
7778     oop new_oop;
7779     if (_work_queue->pop_local(new_oop)) {
7780       assert(new_oop->is_oop(), "Expected an oop");
7781       assert(_bit_map->isMarked((HeapWord*)new_oop),
7782              "no white objects on this stack!");
7783       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7784       // iterate over the oops in this oop, marking and pushing
7785       // the ones in CMS heap (i.e. in _span).
7786       new_oop->oop_iterate(&_mark_and_push);
7787     }
7788   }
7789 }
7790 
7791 ////////////////////////////////////////////////////////////////////
7792 // Support for Marking Stack Overflow list handling and related code
7793 ////////////////////////////////////////////////////////////////////
7794 // Much of the following code is similar in shape and spirit to the
7795 // code used in ParNewGC. We should try and share that code
7796 // as much as possible in the future.
7797 
7798 #ifndef PRODUCT
7799 // Debugging support for CMSStackOverflowALot
7800 
7801 // It's OK to call this multi-threaded;  the worst thing
7802 // that can happen is that we'll get a bunch of closely
7803 // spaced simulated overflows, but that's OK, in fact
7804 // probably good as it would exercise the overflow code
7805 // under contention.
7806 bool CMSCollector::simulate_overflow() {
7807   if (_overflow_counter-- <= 0) { // just being defensive
7808     _overflow_counter = CMSMarkStackOverflowInterval;
7809     return true;
7810   } else {
7811     return false;
7812   }
7813 }
7814 
7815 bool CMSCollector::par_simulate_overflow() {
7816   return simulate_overflow();
7817 }
7818 #endif
7819 
7820 // Single-threaded
7821 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7822   assert(stack->isEmpty(), "Expected precondition");
7823   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7824   size_t i = num;
7825   oop  cur = _overflow_list;
7826   const markOop proto = markOopDesc::prototype();
7827   NOT_PRODUCT(ssize_t n = 0;)
7828   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7829     next = oop(cur->mark());
7830     cur->set_mark(proto);   // until proven otherwise
7831     assert(cur->is_oop(), "Should be an oop");
7832     bool res = stack->push(cur);
7833     assert(res, "Bit off more than can chew?");
7834     NOT_PRODUCT(n++;)
7835   }
7836   _overflow_list = cur;
7837 #ifndef PRODUCT
7838   assert(_num_par_pushes >= n, "Too many pops?");
7839   _num_par_pushes -=n;
7840 #endif
7841   return !stack->isEmpty();
7842 }
7843 
7844 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7845 // (MT-safe) Get a prefix of at most "num" from the list.
7846 // The overflow list is chained through the mark word of
7847 // each object in the list. We fetch the entire list,
7848 // break off a prefix of the right size and return the
7849 // remainder. If other threads try to take objects from
7850 // the overflow list at that time, they will wait for
7851 // some time to see if data becomes available. If (and
7852 // only if) another thread places one or more object(s)
7853 // on the global list before we have returned the suffix
7854 // to the global list, we will walk down our local list
7855 // to find its end and append the global list to
7856 // our suffix before returning it. This suffix walk can
7857 // prove to be expensive (quadratic in the amount of traffic)
7858 // when there are many objects in the overflow list and
7859 // there is much producer-consumer contention on the list.
7860 // *NOTE*: The overflow list manipulation code here and
7861 // in ParNewGeneration:: are very similar in shape,
7862 // except that in the ParNew case we use the old (from/eden)
7863 // copy of the object to thread the list via its klass word.
7864 // Because of the common code, if you make any changes in
7865 // the code below, please check the ParNew version to see if
7866 // similar changes might be needed.
7867 // CR 6797058 has been filed to consolidate the common code.
7868 bool CMSCollector::par_take_from_overflow_list(size_t num,
7869                                                OopTaskQueue* work_q,
7870                                                int no_of_gc_threads) {
7871   assert(work_q->size() == 0, "First empty local work queue");
7872   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7873   if (_overflow_list == NULL) {
7874     return false;
7875   }
7876   // Grab the entire list; we'll put back a suffix
7877   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7878   Thread* tid = Thread::current();
7879   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7880   // set to ParallelGCThreads.
7881   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7882   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7883   // If the list is busy, we spin for a short while,
7884   // sleeping between attempts to get the list.
7885   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7886     os::sleep(tid, sleep_time_millis, false);
7887     if (_overflow_list == NULL) {
7888       // Nothing left to take
7889       return false;
7890     } else if (_overflow_list != BUSY) {
7891       // Try and grab the prefix
7892       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7893     }
7894   }
7895   // If the list was found to be empty, or we spun long
7896   // enough, we give up and return empty-handed. If we leave
7897   // the list in the BUSY state below, it must be the case that
7898   // some other thread holds the overflow list and will set it
7899   // to a non-BUSY state in the future.
7900   if (prefix == NULL || prefix == BUSY) {
7901      // Nothing to take or waited long enough
7902      if (prefix == NULL) {
7903        // Write back the NULL in case we overwrote it with BUSY above
7904        // and it is still the same value.
7905        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7906      }
7907      return false;
7908   }
7909   assert(prefix != NULL && prefix != BUSY, "Error");
7910   size_t i = num;
7911   oop cur = prefix;
7912   // Walk down the first "num" objects, unless we reach the end.
7913   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7914   if (cur->mark() == NULL) {
7915     // We have "num" or fewer elements in the list, so there
7916     // is nothing to return to the global list.
7917     // Write back the NULL in lieu of the BUSY we wrote
7918     // above, if it is still the same value.
7919     if (_overflow_list == BUSY) {
7920       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7921     }
7922   } else {
7923     // Chop off the suffix and return it to the global list.
7924     assert(cur->mark() != BUSY, "Error");
7925     oop suffix_head = cur->mark(); // suffix will be put back on global list
7926     cur->set_mark(NULL);           // break off suffix
7927     // It's possible that the list is still in the empty(busy) state
7928     // we left it in a short while ago; in that case we may be
7929     // able to place back the suffix without incurring the cost
7930     // of a walk down the list.
7931     oop observed_overflow_list = _overflow_list;
7932     oop cur_overflow_list = observed_overflow_list;
7933     bool attached = false;
7934     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7935       observed_overflow_list =
7936         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7937       if (cur_overflow_list == observed_overflow_list) {
7938         attached = true;
7939         break;
7940       } else cur_overflow_list = observed_overflow_list;
7941     }
7942     if (!attached) {
7943       // Too bad, someone else sneaked in (at least) an element; we'll need
7944       // to do a splice. Find tail of suffix so we can prepend suffix to global
7945       // list.
7946       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7947       oop suffix_tail = cur;
7948       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7949              "Tautology");
7950       observed_overflow_list = _overflow_list;
7951       do {
7952         cur_overflow_list = observed_overflow_list;
7953         if (cur_overflow_list != BUSY) {
7954           // Do the splice ...
7955           suffix_tail->set_mark(markOop(cur_overflow_list));
7956         } else { // cur_overflow_list == BUSY
7957           suffix_tail->set_mark(NULL);
7958         }
7959         // ... and try to place spliced list back on overflow_list ...
7960         observed_overflow_list =
7961           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7962       } while (cur_overflow_list != observed_overflow_list);
7963       // ... until we have succeeded in doing so.
7964     }
7965   }
7966 
7967   // Push the prefix elements on work_q
7968   assert(prefix != NULL, "control point invariant");
7969   const markOop proto = markOopDesc::prototype();
7970   oop next;
7971   NOT_PRODUCT(ssize_t n = 0;)
7972   for (cur = prefix; cur != NULL; cur = next) {
7973     next = oop(cur->mark());
7974     cur->set_mark(proto);   // until proven otherwise
7975     assert(cur->is_oop(), "Should be an oop");
7976     bool res = work_q->push(cur);
7977     assert(res, "Bit off more than we can chew?");
7978     NOT_PRODUCT(n++;)
7979   }
7980 #ifndef PRODUCT
7981   assert(_num_par_pushes >= n, "Too many pops?");
7982   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7983 #endif
7984   return true;
7985 }
7986 
7987 // Single-threaded
7988 void CMSCollector::push_on_overflow_list(oop p) {
7989   NOT_PRODUCT(_num_par_pushes++;)
7990   assert(p->is_oop(), "Not an oop");
7991   preserve_mark_if_necessary(p);
7992   p->set_mark((markOop)_overflow_list);
7993   _overflow_list = p;
7994 }
7995 
7996 // Multi-threaded; use CAS to prepend to overflow list
7997 void CMSCollector::par_push_on_overflow_list(oop p) {
7998   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7999   assert(p->is_oop(), "Not an oop");
8000   par_preserve_mark_if_necessary(p);
8001   oop observed_overflow_list = _overflow_list;
8002   oop cur_overflow_list;
8003   do {
8004     cur_overflow_list = observed_overflow_list;
8005     if (cur_overflow_list != BUSY) {
8006       p->set_mark(markOop(cur_overflow_list));
8007     } else {
8008       p->set_mark(NULL);
8009     }
8010     observed_overflow_list =
8011       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8012   } while (cur_overflow_list != observed_overflow_list);
8013 }
8014 #undef BUSY
8015 
8016 // Single threaded
8017 // General Note on GrowableArray: pushes may silently fail
8018 // because we are (temporarily) out of C-heap for expanding
8019 // the stack. The problem is quite ubiquitous and affects
8020 // a lot of code in the JVM. The prudent thing for GrowableArray
8021 // to do (for now) is to exit with an error. However, that may
8022 // be too draconian in some cases because the caller may be
8023 // able to recover without much harm. For such cases, we
8024 // should probably introduce a "soft_push" method which returns
8025 // an indication of success or failure with the assumption that
8026 // the caller may be able to recover from a failure; code in
8027 // the VM can then be changed, incrementally, to deal with such
8028 // failures where possible, thus, incrementally hardening the VM
8029 // in such low resource situations.
8030 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8031   _preserved_oop_stack.push(p);
8032   _preserved_mark_stack.push(m);
8033   assert(m == p->mark(), "Mark word changed");
8034   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8035          "bijection");
8036 }
8037 
8038 // Single threaded
8039 void CMSCollector::preserve_mark_if_necessary(oop p) {
8040   markOop m = p->mark();
8041   if (m->must_be_preserved(p)) {
8042     preserve_mark_work(p, m);
8043   }
8044 }
8045 
8046 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8047   markOop m = p->mark();
8048   if (m->must_be_preserved(p)) {
8049     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8050     // Even though we read the mark word without holding
8051     // the lock, we are assured that it will not change
8052     // because we "own" this oop, so no other thread can
8053     // be trying to push it on the overflow list; see
8054     // the assertion in preserve_mark_work() that checks
8055     // that m == p->mark().
8056     preserve_mark_work(p, m);
8057   }
8058 }
8059 
8060 // We should be able to do this multi-threaded,
8061 // a chunk of stack being a task (this is
8062 // correct because each oop only ever appears
8063 // once in the overflow list. However, it's
8064 // not very easy to completely overlap this with
8065 // other operations, so will generally not be done
8066 // until all work's been completed. Because we
8067 // expect the preserved oop stack (set) to be small,
8068 // it's probably fine to do this single-threaded.
8069 // We can explore cleverer concurrent/overlapped/parallel
8070 // processing of preserved marks if we feel the
8071 // need for this in the future. Stack overflow should
8072 // be so rare in practice and, when it happens, its
8073 // effect on performance so great that this will
8074 // likely just be in the noise anyway.
8075 void CMSCollector::restore_preserved_marks_if_any() {
8076   assert(SafepointSynchronize::is_at_safepoint(),
8077          "world should be stopped");
8078   assert(Thread::current()->is_ConcurrentGC_thread() ||
8079          Thread::current()->is_VM_thread(),
8080          "should be single-threaded");
8081   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8082          "bijection");
8083 
8084   while (!_preserved_oop_stack.is_empty()) {
8085     oop p = _preserved_oop_stack.pop();
8086     assert(p->is_oop(), "Should be an oop");
8087     assert(_span.contains(p), "oop should be in _span");
8088     assert(p->mark() == markOopDesc::prototype(),
8089            "Set when taken from overflow list");
8090     markOop m = _preserved_mark_stack.pop();
8091     p->set_mark(m);
8092   }
8093   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8094          "stacks were cleared above");
8095 }
8096 
8097 #ifndef PRODUCT
8098 bool CMSCollector::no_preserved_marks() const {
8099   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8100 }
8101 #endif
8102 
8103 // Transfer some number of overflown objects to usual marking
8104 // stack. Return true if some objects were transferred.
8105 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8106   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8107                     (size_t)ParGCDesiredObjsFromOverflowList);
8108 
8109   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8110   assert(_collector->overflow_list_is_empty() || res,
8111          "If list is not empty, we should have taken something");
8112   assert(!res || !_mark_stack->isEmpty(),
8113          "If we took something, it should now be on our stack");
8114   return res;
8115 }
8116 
8117 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8118   size_t res = _sp->block_size_no_stall(addr, _collector);
8119   if (_sp->block_is_obj(addr)) {
8120     if (_live_bit_map->isMarked(addr)) {
8121       // It can't have been dead in a previous cycle
8122       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8123     } else {
8124       _dead_bit_map->mark(addr);      // mark the dead object
8125     }
8126   }
8127   // Could be 0, if the block size could not be computed without stalling.
8128   return res;
8129 }
8130 
8131 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8132 
8133   switch (phase) {
8134     case CMSCollector::InitialMarking:
8135       initialize(true  /* fullGC */ ,
8136                  cause /* cause of the GC */,
8137                  true  /* recordGCBeginTime */,
8138                  true  /* recordPreGCUsage */,
8139                  false /* recordPeakUsage */,
8140                  false /* recordPostGCusage */,
8141                  true  /* recordAccumulatedGCTime */,
8142                  false /* recordGCEndTime */,
8143                  false /* countCollection */  );
8144       break;
8145 
8146     case CMSCollector::FinalMarking:
8147       initialize(true  /* fullGC */ ,
8148                  cause /* cause of the GC */,
8149                  false /* recordGCBeginTime */,
8150                  false /* recordPreGCUsage */,
8151                  false /* recordPeakUsage */,
8152                  false /* recordPostGCusage */,
8153                  true  /* recordAccumulatedGCTime */,
8154                  false /* recordGCEndTime */,
8155                  false /* countCollection */  );
8156       break;
8157 
8158     case CMSCollector::Sweeping:
8159       initialize(true  /* fullGC */ ,
8160                  cause /* cause of the GC */,
8161                  false /* recordGCBeginTime */,
8162                  false /* recordPreGCUsage */,
8163                  true  /* recordPeakUsage */,
8164                  true  /* recordPostGCusage */,
8165                  false /* recordAccumulatedGCTime */,
8166                  true  /* recordGCEndTime */,
8167                  true  /* countCollection */  );
8168       break;
8169 
8170     default:
8171       ShouldNotReachHere();
8172   }
8173 }