1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2017 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "nativeInst_ppc.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/icache.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/g1CollectedHeap.inline.hpp"
  45 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  46 #include "gc/g1/heapRegion.hpp"
  47 #endif // INCLUDE_ALL_GCS
  48 #ifdef COMPILER2
  49 #include "opto/intrinsicnode.hpp"
  50 #endif
  51 
  52 #ifdef PRODUCT
  53 #define BLOCK_COMMENT(str) // nothing
  54 #else
  55 #define BLOCK_COMMENT(str) block_comment(str)
  56 #endif
  57 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  58 
  59 #ifdef ASSERT
  60 // On RISC, there's no benefit to verifying instruction boundaries.
  61 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
  62 #endif
  63 
  64 void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) {
  65   assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range");
  66   if (Assembler::is_simm(si31, 16)) {
  67     ld(d, si31, a);
  68     if (emit_filler_nop) nop();
  69   } else {
  70     const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31);
  71     const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31);
  72     addis(d, a, hi);
  73     ld(d, lo, d);
  74   }
  75 }
  76 
  77 void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) {
  78   assert_different_registers(d, a);
  79   ld_largeoffset_unchecked(d, si31, a, emit_filler_nop);
  80 }
  81 
  82 void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base,
  83                                       size_t size_in_bytes, bool is_signed) {
  84   switch (size_in_bytes) {
  85   case  8:              ld(dst, offs, base);                         break;
  86   case  4:  is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break;
  87   case  2:  is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break;
  88   case  1:  lbz(dst, offs, base); if (is_signed) extsb(dst, dst);    break; // lba doesn't exist :(
  89   default:  ShouldNotReachHere();
  90   }
  91 }
  92 
  93 void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base,
  94                                        size_t size_in_bytes) {
  95   switch (size_in_bytes) {
  96   case  8:  std(dst, offs, base); break;
  97   case  4:  stw(dst, offs, base); break;
  98   case  2:  sth(dst, offs, base); break;
  99   case  1:  stb(dst, offs, base); break;
 100   default:  ShouldNotReachHere();
 101   }
 102 }
 103 
 104 void MacroAssembler::align(int modulus, int max, int rem) {
 105   int padding = (rem + modulus - (offset() % modulus)) % modulus;
 106   if (padding > max) return;
 107   for (int c = (padding >> 2); c > 0; --c) { nop(); }
 108 }
 109 
 110 // Issue instructions that calculate given TOC from global TOC.
 111 void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16,
 112                                                        bool add_relocation, bool emit_dummy_addr) {
 113   int offset = -1;
 114   if (emit_dummy_addr) {
 115     offset = -128; // dummy address
 116   } else if (addr != (address)(intptr_t)-1) {
 117     offset = MacroAssembler::offset_to_global_toc(addr);
 118   }
 119 
 120   if (hi16) {
 121     addis(dst, R29_TOC, MacroAssembler::largeoffset_si16_si16_hi(offset));
 122   }
 123   if (lo16) {
 124     if (add_relocation) {
 125       // Relocate at the addi to avoid confusion with a load from the method's TOC.
 126       relocate(internal_word_Relocation::spec(addr));
 127     }
 128     addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset));
 129   }
 130 }
 131 
 132 int MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) {
 133   const int offset = MacroAssembler::offset_to_global_toc(addr);
 134 
 135   const address inst2_addr = a;
 136   const int inst2 = *(int *)inst2_addr;
 137 
 138   // The relocation points to the second instruction, the addi,
 139   // and the addi reads and writes the same register dst.
 140   const int dst = inv_rt_field(inst2);
 141   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 142 
 143   // Now, find the preceding addis which writes to dst.
 144   int inst1 = 0;
 145   address inst1_addr = inst2_addr - BytesPerInstWord;
 146   while (inst1_addr >= bound) {
 147     inst1 = *(int *) inst1_addr;
 148     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 149       // Stop, found the addis which writes dst.
 150       break;
 151     }
 152     inst1_addr -= BytesPerInstWord;
 153   }
 154 
 155   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 156   set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset));
 157   set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset));
 158   return (int)((intptr_t)addr - (intptr_t)inst1_addr);
 159 }
 160 
 161 address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) {
 162   const address inst2_addr = a;
 163   const int inst2 = *(int *)inst2_addr;
 164 
 165   // The relocation points to the second instruction, the addi,
 166   // and the addi reads and writes the same register dst.
 167   const int dst = inv_rt_field(inst2);
 168   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 169 
 170   // Now, find the preceding addis which writes to dst.
 171   int inst1 = 0;
 172   address inst1_addr = inst2_addr - BytesPerInstWord;
 173   while (inst1_addr >= bound) {
 174     inst1 = *(int *) inst1_addr;
 175     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 176       // stop, found the addis which writes dst
 177       break;
 178     }
 179     inst1_addr -= BytesPerInstWord;
 180   }
 181 
 182   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 183 
 184   int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0);
 185   // -1 is a special case
 186   if (offset == -1) {
 187     return (address)(intptr_t)-1;
 188   } else {
 189     return global_toc() + offset;
 190   }
 191 }
 192 
 193 #ifdef _LP64
 194 // Patch compressed oops or klass constants.
 195 // Assembler sequence is
 196 // 1) compressed oops:
 197 //    lis  rx = const.hi
 198 //    ori rx = rx | const.lo
 199 // 2) compressed klass:
 200 //    lis  rx = const.hi
 201 //    clrldi rx = rx & 0xFFFFffff // clearMS32b, optional
 202 //    ori rx = rx | const.lo
 203 // Clrldi will be passed by.
 204 int MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) {
 205   assert(UseCompressedOops, "Should only patch compressed oops");
 206 
 207   const address inst2_addr = a;
 208   const int inst2 = *(int *)inst2_addr;
 209 
 210   // The relocation points to the second instruction, the ori,
 211   // and the ori reads and writes the same register dst.
 212   const int dst = inv_rta_field(inst2);
 213   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 214   // Now, find the preceding addis which writes to dst.
 215   int inst1 = 0;
 216   address inst1_addr = inst2_addr - BytesPerInstWord;
 217   bool inst1_found = false;
 218   while (inst1_addr >= bound) {
 219     inst1 = *(int *)inst1_addr;
 220     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; }
 221     inst1_addr -= BytesPerInstWord;
 222   }
 223   assert(inst1_found, "inst is not lis");
 224 
 225   int xc = (data >> 16) & 0xffff;
 226   int xd = (data >>  0) & 0xffff;
 227 
 228   set_imm((int *)inst1_addr, (short)(xc)); // see enc_load_con_narrow_hi/_lo
 229   set_imm((int *)inst2_addr,        (xd)); // unsigned int
 230   return (int)((intptr_t)inst2_addr - (intptr_t)inst1_addr);
 231 }
 232 
 233 // Get compressed oop or klass constant.
 234 narrowOop MacroAssembler::get_narrow_oop(address a, address bound) {
 235   assert(UseCompressedOops, "Should only patch compressed oops");
 236 
 237   const address inst2_addr = a;
 238   const int inst2 = *(int *)inst2_addr;
 239 
 240   // The relocation points to the second instruction, the ori,
 241   // and the ori reads and writes the same register dst.
 242   const int dst = inv_rta_field(inst2);
 243   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 244   // Now, find the preceding lis which writes to dst.
 245   int inst1 = 0;
 246   address inst1_addr = inst2_addr - BytesPerInstWord;
 247   bool inst1_found = false;
 248 
 249   while (inst1_addr >= bound) {
 250     inst1 = *(int *) inst1_addr;
 251     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;}
 252     inst1_addr -= BytesPerInstWord;
 253   }
 254   assert(inst1_found, "inst is not lis");
 255 
 256   uint xl = ((unsigned int) (get_imm(inst2_addr, 0) & 0xffff));
 257   uint xh = (((get_imm(inst1_addr, 0)) & 0xffff) << 16);
 258 
 259   return (int) (xl | xh);
 260 }
 261 #endif // _LP64
 262 
 263 // Returns true if successful.
 264 bool MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a,
 265                                                 Register toc, bool fixed_size) {
 266   int toc_offset = 0;
 267   // Use RelocationHolder::none for the constant pool entry, otherwise
 268   // we will end up with a failing NativeCall::verify(x) where x is
 269   // the address of the constant pool entry.
 270   // FIXME: We should insert relocation information for oops at the constant
 271   // pool entries instead of inserting it at the loads; patching of a constant
 272   // pool entry should be less expensive.
 273   address const_address = address_constant((address)a.value(), RelocationHolder::none);
 274   if (const_address == NULL) { return false; } // allocation failure
 275   // Relocate at the pc of the load.
 276   relocate(a.rspec());
 277   toc_offset = (int)(const_address - code()->consts()->start());
 278   ld_largeoffset_unchecked(dst, toc_offset, toc, fixed_size);
 279   return true;
 280 }
 281 
 282 bool MacroAssembler::is_load_const_from_method_toc_at(address a) {
 283   const address inst1_addr = a;
 284   const int inst1 = *(int *)inst1_addr;
 285 
 286    // The relocation points to the ld or the addis.
 287    return (is_ld(inst1)) ||
 288           (is_addis(inst1) && inv_ra_field(inst1) != 0);
 289 }
 290 
 291 int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) {
 292   assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc");
 293 
 294   const address inst1_addr = a;
 295   const int inst1 = *(int *)inst1_addr;
 296 
 297   if (is_ld(inst1)) {
 298     return inv_d1_field(inst1);
 299   } else if (is_addis(inst1)) {
 300     const int dst = inv_rt_field(inst1);
 301 
 302     // Now, find the succeeding ld which reads and writes to dst.
 303     address inst2_addr = inst1_addr + BytesPerInstWord;
 304     int inst2 = 0;
 305     while (true) {
 306       inst2 = *(int *) inst2_addr;
 307       if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) {
 308         // Stop, found the ld which reads and writes dst.
 309         break;
 310       }
 311       inst2_addr += BytesPerInstWord;
 312     }
 313     return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
 314   }
 315   ShouldNotReachHere();
 316   return 0;
 317 }
 318 
 319 // Get the constant from a `load_const' sequence.
 320 long MacroAssembler::get_const(address a) {
 321   assert(is_load_const_at(a), "not a load of a constant");
 322   const int *p = (const int*) a;
 323   unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48);
 324   if (is_ori(*(p+1))) {
 325     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32);
 326     x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16);
 327     x |= (((unsigned long) (get_imm(a,4) & 0xffff)));
 328   } else if (is_lis(*(p+1))) {
 329     x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32);
 330     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16);
 331     x |= (((unsigned long) (get_imm(a,3) & 0xffff)));
 332   } else {
 333     ShouldNotReachHere();
 334     return (long) 0;
 335   }
 336   return (long) x;
 337 }
 338 
 339 // Patch the 64 bit constant of a `load_const' sequence. This is a low
 340 // level procedure. It neither flushes the instruction cache nor is it
 341 // mt safe.
 342 void MacroAssembler::patch_const(address a, long x) {
 343   assert(is_load_const_at(a), "not a load of a constant");
 344   int *p = (int*) a;
 345   if (is_ori(*(p+1))) {
 346     set_imm(0 + p, (x >> 48) & 0xffff);
 347     set_imm(1 + p, (x >> 32) & 0xffff);
 348     set_imm(3 + p, (x >> 16) & 0xffff);
 349     set_imm(4 + p, x & 0xffff);
 350   } else if (is_lis(*(p+1))) {
 351     set_imm(0 + p, (x >> 48) & 0xffff);
 352     set_imm(2 + p, (x >> 32) & 0xffff);
 353     set_imm(1 + p, (x >> 16) & 0xffff);
 354     set_imm(3 + p, x & 0xffff);
 355   } else {
 356     ShouldNotReachHere();
 357   }
 358 }
 359 
 360 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
 361   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
 362   int index = oop_recorder()->allocate_metadata_index(obj);
 363   RelocationHolder rspec = metadata_Relocation::spec(index);
 364   return AddressLiteral((address)obj, rspec);
 365 }
 366 
 367 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
 368   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
 369   int index = oop_recorder()->find_index(obj);
 370   RelocationHolder rspec = metadata_Relocation::spec(index);
 371   return AddressLiteral((address)obj, rspec);
 372 }
 373 
 374 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
 375   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
 376   int oop_index = oop_recorder()->allocate_oop_index(obj);
 377   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 378 }
 379 
 380 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
 381   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
 382   int oop_index = oop_recorder()->find_index(obj);
 383   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 384 }
 385 
 386 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
 387                                                       Register tmp, int offset) {
 388   intptr_t value = *delayed_value_addr;
 389   if (value != 0) {
 390     return RegisterOrConstant(value + offset);
 391   }
 392 
 393   // Load indirectly to solve generation ordering problem.
 394   // static address, no relocation
 395   int simm16_offset = load_const_optimized(tmp, delayed_value_addr, noreg, true);
 396   ld(tmp, simm16_offset, tmp); // must be aligned ((xa & 3) == 0)
 397 
 398   if (offset != 0) {
 399     addi(tmp, tmp, offset);
 400   }
 401 
 402   return RegisterOrConstant(tmp);
 403 }
 404 
 405 #ifndef PRODUCT
 406 void MacroAssembler::pd_print_patched_instruction(address branch) {
 407   Unimplemented(); // TODO: PPC port
 408 }
 409 #endif // ndef PRODUCT
 410 
 411 // Conditional far branch for destinations encodable in 24+2 bits.
 412 void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) {
 413 
 414   // If requested by flag optimize, relocate the bc_far as a
 415   // runtime_call and prepare for optimizing it when the code gets
 416   // relocated.
 417   if (optimize == bc_far_optimize_on_relocate) {
 418     relocate(relocInfo::runtime_call_type);
 419   }
 420 
 421   // variant 2:
 422   //
 423   //    b!cxx SKIP
 424   //    bxx   DEST
 425   //  SKIP:
 426   //
 427 
 428   const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 429                                                 opposite_bcond(inv_boint_bcond(boint)));
 430 
 431   // We emit two branches.
 432   // First, a conditional branch which jumps around the far branch.
 433   const address not_taken_pc = pc() + 2 * BytesPerInstWord;
 434   const address bc_pc        = pc();
 435   bc(opposite_boint, biint, not_taken_pc);
 436 
 437   const int bc_instr = *(int*)bc_pc;
 438   assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition");
 439   assert(opposite_boint == inv_bo_field(bc_instr), "postcondition");
 440   assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))),
 441                                      opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))),
 442          "postcondition");
 443   assert(biint == inv_bi_field(bc_instr), "postcondition");
 444 
 445   // Second, an unconditional far branch which jumps to dest.
 446   // Note: target(dest) remembers the current pc (see CodeSection::target)
 447   //       and returns the current pc if the label is not bound yet; when
 448   //       the label gets bound, the unconditional far branch will be patched.
 449   const address target_pc = target(dest);
 450   const address b_pc  = pc();
 451   b(target_pc);
 452 
 453   assert(not_taken_pc == pc(),                     "postcondition");
 454   assert(dest.is_bound() || target_pc == b_pc, "postcondition");
 455 }
 456 
 457 // 1 or 2 instructions
 458 void MacroAssembler::bc_far_optimized(int boint, int biint, Label& dest) {
 459   if (dest.is_bound() && is_within_range_of_bcxx(target(dest), pc())) {
 460     bc(boint, biint, dest);
 461   } else {
 462     bc_far(boint, biint, dest, MacroAssembler::bc_far_optimize_on_relocate);
 463   }
 464 }
 465 
 466 bool MacroAssembler::is_bc_far_at(address instruction_addr) {
 467   return is_bc_far_variant1_at(instruction_addr) ||
 468          is_bc_far_variant2_at(instruction_addr) ||
 469          is_bc_far_variant3_at(instruction_addr);
 470 }
 471 
 472 address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) {
 473   if (is_bc_far_variant1_at(instruction_addr)) {
 474     const address instruction_1_addr = instruction_addr;
 475     const int instruction_1 = *(int*)instruction_1_addr;
 476     return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr);
 477   } else if (is_bc_far_variant2_at(instruction_addr)) {
 478     const address instruction_2_addr = instruction_addr + 4;
 479     return bxx_destination(instruction_2_addr);
 480   } else if (is_bc_far_variant3_at(instruction_addr)) {
 481     return instruction_addr + 8;
 482   }
 483   // variant 4 ???
 484   ShouldNotReachHere();
 485   return NULL;
 486 }
 487 void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) {
 488 
 489   if (is_bc_far_variant3_at(instruction_addr)) {
 490     // variant 3, far cond branch to the next instruction, already patched to nops:
 491     //
 492     //    nop
 493     //    endgroup
 494     //  SKIP/DEST:
 495     //
 496     return;
 497   }
 498 
 499   // first, extract boint and biint from the current branch
 500   int boint = 0;
 501   int biint = 0;
 502 
 503   ResourceMark rm;
 504   const int code_size = 2 * BytesPerInstWord;
 505   CodeBuffer buf(instruction_addr, code_size);
 506   MacroAssembler masm(&buf);
 507   if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) {
 508     // Far branch to next instruction: Optimize it by patching nops (produce variant 3).
 509     masm.nop();
 510     masm.endgroup();
 511   } else {
 512     if (is_bc_far_variant1_at(instruction_addr)) {
 513       // variant 1, the 1st instruction contains the destination address:
 514       //
 515       //    bcxx  DEST
 516       //    nop
 517       //
 518       const int instruction_1 = *(int*)(instruction_addr);
 519       boint = inv_bo_field(instruction_1);
 520       biint = inv_bi_field(instruction_1);
 521     } else if (is_bc_far_variant2_at(instruction_addr)) {
 522       // variant 2, the 2nd instruction contains the destination address:
 523       //
 524       //    b!cxx SKIP
 525       //    bxx   DEST
 526       //  SKIP:
 527       //
 528       const int instruction_1 = *(int*)(instruction_addr);
 529       boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))),
 530           opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1))));
 531       biint = inv_bi_field(instruction_1);
 532     } else {
 533       // variant 4???
 534       ShouldNotReachHere();
 535     }
 536 
 537     // second, set the new branch destination and optimize the code
 538     if (dest != instruction_addr + 4 && // the bc_far is still unbound!
 539         masm.is_within_range_of_bcxx(dest, instruction_addr)) {
 540       // variant 1:
 541       //
 542       //    bcxx  DEST
 543       //    nop
 544       //
 545       masm.bc(boint, biint, dest);
 546       masm.nop();
 547     } else {
 548       // variant 2:
 549       //
 550       //    b!cxx SKIP
 551       //    bxx   DEST
 552       //  SKIP:
 553       //
 554       const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 555                                                     opposite_bcond(inv_boint_bcond(boint)));
 556       const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord;
 557       masm.bc(opposite_boint, biint, not_taken_pc);
 558       masm.b(dest);
 559     }
 560   }
 561   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 562 }
 563 
 564 // Emit a NOT mt-safe patchable 64 bit absolute call/jump.
 565 void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) {
 566   // get current pc
 567   uint64_t start_pc = (uint64_t) pc();
 568 
 569   const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last
 570   const address pc_of_b  = (address) (start_pc + (0*BytesPerInstWord)); // b is first
 571 
 572   // relocate here
 573   if (rt != relocInfo::none) {
 574     relocate(rt);
 575   }
 576 
 577   if ( ReoptimizeCallSequences &&
 578        (( link && is_within_range_of_b(dest, pc_of_bl)) ||
 579         (!link && is_within_range_of_b(dest, pc_of_b)))) {
 580     // variant 2:
 581     // Emit an optimized, pc-relative call/jump.
 582 
 583     if (link) {
 584       // some padding
 585       nop();
 586       nop();
 587       nop();
 588       nop();
 589       nop();
 590       nop();
 591 
 592       // do the call
 593       assert(pc() == pc_of_bl, "just checking");
 594       bl(dest, relocInfo::none);
 595     } else {
 596       // do the jump
 597       assert(pc() == pc_of_b, "just checking");
 598       b(dest, relocInfo::none);
 599 
 600       // some padding
 601       nop();
 602       nop();
 603       nop();
 604       nop();
 605       nop();
 606       nop();
 607     }
 608 
 609     // Assert that we can identify the emitted call/jump.
 610     assert(is_bxx64_patchable_variant2_at((address)start_pc, link),
 611            "can't identify emitted call");
 612   } else {
 613     // variant 1:
 614     mr(R0, R11);  // spill R11 -> R0.
 615 
 616     // Load the destination address into CTR,
 617     // calculate destination relative to global toc.
 618     calculate_address_from_global_toc(R11, dest, true, true, false);
 619 
 620     mtctr(R11);
 621     mr(R11, R0);  // spill R11 <- R0.
 622     nop();
 623 
 624     // do the call/jump
 625     if (link) {
 626       bctrl();
 627     } else{
 628       bctr();
 629     }
 630     // Assert that we can identify the emitted call/jump.
 631     assert(is_bxx64_patchable_variant1b_at((address)start_pc, link),
 632            "can't identify emitted call");
 633   }
 634 
 635   // Assert that we can identify the emitted call/jump.
 636   assert(is_bxx64_patchable_at((address)start_pc, link),
 637          "can't identify emitted call");
 638   assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest,
 639          "wrong encoding of dest address");
 640 }
 641 
 642 // Identify a bxx64_patchable instruction.
 643 bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) {
 644   return is_bxx64_patchable_variant1b_at(instruction_addr, link)
 645     //|| is_bxx64_patchable_variant1_at(instruction_addr, link)
 646       || is_bxx64_patchable_variant2_at(instruction_addr, link);
 647 }
 648 
 649 // Does the call64_patchable instruction use a pc-relative encoding of
 650 // the call destination?
 651 bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) {
 652   // variant 2 is pc-relative
 653   return is_bxx64_patchable_variant2_at(instruction_addr, link);
 654 }
 655 
 656 // Identify variant 1.
 657 bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) {
 658   unsigned int* instr = (unsigned int*) instruction_addr;
 659   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 660       && is_mtctr(instr[5]) // mtctr
 661     && is_load_const_at(instruction_addr);
 662 }
 663 
 664 // Identify variant 1b: load destination relative to global toc.
 665 bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) {
 666   unsigned int* instr = (unsigned int*) instruction_addr;
 667   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 668     && is_mtctr(instr[3]) // mtctr
 669     && is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr);
 670 }
 671 
 672 // Identify variant 2.
 673 bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) {
 674   unsigned int* instr = (unsigned int*) instruction_addr;
 675   if (link) {
 676     return is_bl (instr[6])  // bl dest is last
 677       && is_nop(instr[0])  // nop
 678       && is_nop(instr[1])  // nop
 679       && is_nop(instr[2])  // nop
 680       && is_nop(instr[3])  // nop
 681       && is_nop(instr[4])  // nop
 682       && is_nop(instr[5]); // nop
 683   } else {
 684     return is_b  (instr[0])  // b  dest is first
 685       && is_nop(instr[1])  // nop
 686       && is_nop(instr[2])  // nop
 687       && is_nop(instr[3])  // nop
 688       && is_nop(instr[4])  // nop
 689       && is_nop(instr[5])  // nop
 690       && is_nop(instr[6]); // nop
 691   }
 692 }
 693 
 694 // Set dest address of a bxx64_patchable instruction.
 695 void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) {
 696   ResourceMark rm;
 697   int code_size = MacroAssembler::bxx64_patchable_size;
 698   CodeBuffer buf(instruction_addr, code_size);
 699   MacroAssembler masm(&buf);
 700   masm.bxx64_patchable(dest, relocInfo::none, link);
 701   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 702 }
 703 
 704 // Get dest address of a bxx64_patchable instruction.
 705 address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) {
 706   if (is_bxx64_patchable_variant1_at(instruction_addr, link)) {
 707     return (address) (unsigned long) get_const(instruction_addr);
 708   } else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) {
 709     unsigned int* instr = (unsigned int*) instruction_addr;
 710     if (link) {
 711       const int instr_idx = 6; // bl is last
 712       int branchoffset = branch_destination(instr[instr_idx], 0);
 713       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 714     } else {
 715       const int instr_idx = 0; // b is first
 716       int branchoffset = branch_destination(instr[instr_idx], 0);
 717       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 718     }
 719   // Load dest relative to global toc.
 720   } else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) {
 721     return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord,
 722                                                                instruction_addr);
 723   } else {
 724     ShouldNotReachHere();
 725     return NULL;
 726   }
 727 }
 728 
 729 // Uses ordering which corresponds to ABI:
 730 //    _savegpr0_14:  std  r14,-144(r1)
 731 //    _savegpr0_15:  std  r15,-136(r1)
 732 //    _savegpr0_16:  std  r16,-128(r1)
 733 void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) {
 734   std(R14, offset, dst);   offset += 8;
 735   std(R15, offset, dst);   offset += 8;
 736   std(R16, offset, dst);   offset += 8;
 737   std(R17, offset, dst);   offset += 8;
 738   std(R18, offset, dst);   offset += 8;
 739   std(R19, offset, dst);   offset += 8;
 740   std(R20, offset, dst);   offset += 8;
 741   std(R21, offset, dst);   offset += 8;
 742   std(R22, offset, dst);   offset += 8;
 743   std(R23, offset, dst);   offset += 8;
 744   std(R24, offset, dst);   offset += 8;
 745   std(R25, offset, dst);   offset += 8;
 746   std(R26, offset, dst);   offset += 8;
 747   std(R27, offset, dst);   offset += 8;
 748   std(R28, offset, dst);   offset += 8;
 749   std(R29, offset, dst);   offset += 8;
 750   std(R30, offset, dst);   offset += 8;
 751   std(R31, offset, dst);   offset += 8;
 752 
 753   stfd(F14, offset, dst);   offset += 8;
 754   stfd(F15, offset, dst);   offset += 8;
 755   stfd(F16, offset, dst);   offset += 8;
 756   stfd(F17, offset, dst);   offset += 8;
 757   stfd(F18, offset, dst);   offset += 8;
 758   stfd(F19, offset, dst);   offset += 8;
 759   stfd(F20, offset, dst);   offset += 8;
 760   stfd(F21, offset, dst);   offset += 8;
 761   stfd(F22, offset, dst);   offset += 8;
 762   stfd(F23, offset, dst);   offset += 8;
 763   stfd(F24, offset, dst);   offset += 8;
 764   stfd(F25, offset, dst);   offset += 8;
 765   stfd(F26, offset, dst);   offset += 8;
 766   stfd(F27, offset, dst);   offset += 8;
 767   stfd(F28, offset, dst);   offset += 8;
 768   stfd(F29, offset, dst);   offset += 8;
 769   stfd(F30, offset, dst);   offset += 8;
 770   stfd(F31, offset, dst);
 771 }
 772 
 773 // Uses ordering which corresponds to ABI:
 774 //    _restgpr0_14:  ld   r14,-144(r1)
 775 //    _restgpr0_15:  ld   r15,-136(r1)
 776 //    _restgpr0_16:  ld   r16,-128(r1)
 777 void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) {
 778   ld(R14, offset, src);   offset += 8;
 779   ld(R15, offset, src);   offset += 8;
 780   ld(R16, offset, src);   offset += 8;
 781   ld(R17, offset, src);   offset += 8;
 782   ld(R18, offset, src);   offset += 8;
 783   ld(R19, offset, src);   offset += 8;
 784   ld(R20, offset, src);   offset += 8;
 785   ld(R21, offset, src);   offset += 8;
 786   ld(R22, offset, src);   offset += 8;
 787   ld(R23, offset, src);   offset += 8;
 788   ld(R24, offset, src);   offset += 8;
 789   ld(R25, offset, src);   offset += 8;
 790   ld(R26, offset, src);   offset += 8;
 791   ld(R27, offset, src);   offset += 8;
 792   ld(R28, offset, src);   offset += 8;
 793   ld(R29, offset, src);   offset += 8;
 794   ld(R30, offset, src);   offset += 8;
 795   ld(R31, offset, src);   offset += 8;
 796 
 797   // FP registers
 798   lfd(F14, offset, src);   offset += 8;
 799   lfd(F15, offset, src);   offset += 8;
 800   lfd(F16, offset, src);   offset += 8;
 801   lfd(F17, offset, src);   offset += 8;
 802   lfd(F18, offset, src);   offset += 8;
 803   lfd(F19, offset, src);   offset += 8;
 804   lfd(F20, offset, src);   offset += 8;
 805   lfd(F21, offset, src);   offset += 8;
 806   lfd(F22, offset, src);   offset += 8;
 807   lfd(F23, offset, src);   offset += 8;
 808   lfd(F24, offset, src);   offset += 8;
 809   lfd(F25, offset, src);   offset += 8;
 810   lfd(F26, offset, src);   offset += 8;
 811   lfd(F27, offset, src);   offset += 8;
 812   lfd(F28, offset, src);   offset += 8;
 813   lfd(F29, offset, src);   offset += 8;
 814   lfd(F30, offset, src);   offset += 8;
 815   lfd(F31, offset, src);
 816 }
 817 
 818 // For verify_oops.
 819 void MacroAssembler::save_volatile_gprs(Register dst, int offset) {
 820   std(R2,  offset, dst);   offset += 8;
 821   std(R3,  offset, dst);   offset += 8;
 822   std(R4,  offset, dst);   offset += 8;
 823   std(R5,  offset, dst);   offset += 8;
 824   std(R6,  offset, dst);   offset += 8;
 825   std(R7,  offset, dst);   offset += 8;
 826   std(R8,  offset, dst);   offset += 8;
 827   std(R9,  offset, dst);   offset += 8;
 828   std(R10, offset, dst);   offset += 8;
 829   std(R11, offset, dst);   offset += 8;
 830   std(R12, offset, dst);   offset += 8;
 831 
 832   stfd(F0, offset, dst);   offset += 8;
 833   stfd(F1, offset, dst);   offset += 8;
 834   stfd(F2, offset, dst);   offset += 8;
 835   stfd(F3, offset, dst);   offset += 8;
 836   stfd(F4, offset, dst);   offset += 8;
 837   stfd(F5, offset, dst);   offset += 8;
 838   stfd(F6, offset, dst);   offset += 8;
 839   stfd(F7, offset, dst);   offset += 8;
 840   stfd(F8, offset, dst);   offset += 8;
 841   stfd(F9, offset, dst);   offset += 8;
 842   stfd(F10, offset, dst);  offset += 8;
 843   stfd(F11, offset, dst);  offset += 8;
 844   stfd(F12, offset, dst);  offset += 8;
 845   stfd(F13, offset, dst);
 846 }
 847 
 848 // For verify_oops.
 849 void MacroAssembler::restore_volatile_gprs(Register src, int offset) {
 850   ld(R2,  offset, src);   offset += 8;
 851   ld(R3,  offset, src);   offset += 8;
 852   ld(R4,  offset, src);   offset += 8;
 853   ld(R5,  offset, src);   offset += 8;
 854   ld(R6,  offset, src);   offset += 8;
 855   ld(R7,  offset, src);   offset += 8;
 856   ld(R8,  offset, src);   offset += 8;
 857   ld(R9,  offset, src);   offset += 8;
 858   ld(R10, offset, src);   offset += 8;
 859   ld(R11, offset, src);   offset += 8;
 860   ld(R12, offset, src);   offset += 8;
 861 
 862   lfd(F0, offset, src);   offset += 8;
 863   lfd(F1, offset, src);   offset += 8;
 864   lfd(F2, offset, src);   offset += 8;
 865   lfd(F3, offset, src);   offset += 8;
 866   lfd(F4, offset, src);   offset += 8;
 867   lfd(F5, offset, src);   offset += 8;
 868   lfd(F6, offset, src);   offset += 8;
 869   lfd(F7, offset, src);   offset += 8;
 870   lfd(F8, offset, src);   offset += 8;
 871   lfd(F9, offset, src);   offset += 8;
 872   lfd(F10, offset, src);  offset += 8;
 873   lfd(F11, offset, src);  offset += 8;
 874   lfd(F12, offset, src);  offset += 8;
 875   lfd(F13, offset, src);
 876 }
 877 
 878 void MacroAssembler::save_LR_CR(Register tmp) {
 879   mfcr(tmp);
 880   std(tmp, _abi(cr), R1_SP);
 881   mflr(tmp);
 882   std(tmp, _abi(lr), R1_SP);
 883   // Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad)
 884 }
 885 
 886 void MacroAssembler::restore_LR_CR(Register tmp) {
 887   assert(tmp != R1_SP, "must be distinct");
 888   ld(tmp, _abi(lr), R1_SP);
 889   mtlr(tmp);
 890   ld(tmp, _abi(cr), R1_SP);
 891   mtcr(tmp);
 892 }
 893 
 894 address MacroAssembler::get_PC_trash_LR(Register result) {
 895   Label L;
 896   bl(L);
 897   bind(L);
 898   address lr_pc = pc();
 899   mflr(result);
 900   return lr_pc;
 901 }
 902 
 903 void MacroAssembler::resize_frame(Register offset, Register tmp) {
 904 #ifdef ASSERT
 905   assert_different_registers(offset, tmp, R1_SP);
 906   andi_(tmp, offset, frame::alignment_in_bytes-1);
 907   asm_assert_eq("resize_frame: unaligned", 0x204);
 908 #endif
 909 
 910   // tmp <- *(SP)
 911   ld(tmp, _abi(callers_sp), R1_SP);
 912   // addr <- SP + offset;
 913   // *(addr) <- tmp;
 914   // SP <- addr
 915   stdux(tmp, R1_SP, offset);
 916 }
 917 
 918 void MacroAssembler::resize_frame(int offset, Register tmp) {
 919   assert(is_simm(offset, 16), "too big an offset");
 920   assert_different_registers(tmp, R1_SP);
 921   assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned");
 922   // tmp <- *(SP)
 923   ld(tmp, _abi(callers_sp), R1_SP);
 924   // addr <- SP + offset;
 925   // *(addr) <- tmp;
 926   // SP <- addr
 927   stdu(tmp, offset, R1_SP);
 928 }
 929 
 930 void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) {
 931   // (addr == tmp1) || (addr == tmp2) is allowed here!
 932   assert(tmp1 != tmp2, "must be distinct");
 933 
 934   // compute offset w.r.t. current stack pointer
 935   // tmp_1 <- addr - SP (!)
 936   subf(tmp1, R1_SP, addr);
 937 
 938   // atomically update SP keeping back link.
 939   resize_frame(tmp1/* offset */, tmp2/* tmp */);
 940 }
 941 
 942 void MacroAssembler::push_frame(Register bytes, Register tmp) {
 943 #ifdef ASSERT
 944   assert(bytes != R0, "r0 not allowed here");
 945   andi_(R0, bytes, frame::alignment_in_bytes-1);
 946   asm_assert_eq("push_frame(Reg, Reg): unaligned", 0x203);
 947 #endif
 948   neg(tmp, bytes);
 949   stdux(R1_SP, R1_SP, tmp);
 950 }
 951 
 952 // Push a frame of size `bytes'.
 953 void MacroAssembler::push_frame(unsigned int bytes, Register tmp) {
 954   long offset = align_addr(bytes, frame::alignment_in_bytes);
 955   if (is_simm(-offset, 16)) {
 956     stdu(R1_SP, -offset, R1_SP);
 957   } else {
 958     load_const_optimized(tmp, -offset);
 959     stdux(R1_SP, R1_SP, tmp);
 960   }
 961 }
 962 
 963 // Push a frame of size `bytes' plus abi_reg_args on top.
 964 void MacroAssembler::push_frame_reg_args(unsigned int bytes, Register tmp) {
 965   push_frame(bytes + frame::abi_reg_args_size, tmp);
 966 }
 967 
 968 // Setup up a new C frame with a spill area for non-volatile GPRs and
 969 // additional space for local variables.
 970 void MacroAssembler::push_frame_reg_args_nonvolatiles(unsigned int bytes,
 971                                                       Register tmp) {
 972   push_frame(bytes + frame::abi_reg_args_size + frame::spill_nonvolatiles_size, tmp);
 973 }
 974 
 975 // Pop current C frame.
 976 void MacroAssembler::pop_frame() {
 977   ld(R1_SP, _abi(callers_sp), R1_SP);
 978 }
 979 
 980 #if defined(ABI_ELFv2)
 981 address MacroAssembler::branch_to(Register r_function_entry, bool and_link) {
 982   // TODO(asmundak): make sure the caller uses R12 as function descriptor
 983   // most of the times.
 984   if (R12 != r_function_entry) {
 985     mr(R12, r_function_entry);
 986   }
 987   mtctr(R12);
 988   // Do a call or a branch.
 989   if (and_link) {
 990     bctrl();
 991   } else {
 992     bctr();
 993   }
 994   _last_calls_return_pc = pc();
 995 
 996   return _last_calls_return_pc;
 997 }
 998 
 999 // Call a C function via a function descriptor and use full C
1000 // calling conventions. Updates and returns _last_calls_return_pc.
1001 address MacroAssembler::call_c(Register r_function_entry) {
1002   return branch_to(r_function_entry, /*and_link=*/true);
1003 }
1004 
1005 // For tail calls: only branch, don't link, so callee returns to caller of this function.
1006 address MacroAssembler::call_c_and_return_to_caller(Register r_function_entry) {
1007   return branch_to(r_function_entry, /*and_link=*/false);
1008 }
1009 
1010 address MacroAssembler::call_c(address function_entry, relocInfo::relocType rt) {
1011   load_const(R12, function_entry, R0);
1012   return branch_to(R12,  /*and_link=*/true);
1013 }
1014 
1015 #else
1016 // Generic version of a call to C function via a function descriptor
1017 // with variable support for C calling conventions (TOC, ENV, etc.).
1018 // Updates and returns _last_calls_return_pc.
1019 address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
1020                                   bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) {
1021   // we emit standard ptrgl glue code here
1022   assert((function_descriptor != R0), "function_descriptor cannot be R0");
1023 
1024   // retrieve necessary entries from the function descriptor
1025   ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor);
1026   mtctr(R0);
1027 
1028   if (load_toc_of_callee) {
1029     ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor);
1030   }
1031   if (load_env_of_callee) {
1032     ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor);
1033   } else if (load_toc_of_callee) {
1034     li(R11, 0);
1035   }
1036 
1037   // do a call or a branch
1038   if (and_link) {
1039     bctrl();
1040   } else {
1041     bctr();
1042   }
1043   _last_calls_return_pc = pc();
1044 
1045   return _last_calls_return_pc;
1046 }
1047 
1048 // Call a C function via a function descriptor and use full C calling
1049 // conventions.
1050 // We don't use the TOC in generated code, so there is no need to save
1051 // and restore its value.
1052 address MacroAssembler::call_c(Register fd) {
1053   return branch_to(fd, /*and_link=*/true,
1054                        /*save toc=*/false,
1055                        /*restore toc=*/false,
1056                        /*load toc=*/true,
1057                        /*load env=*/true);
1058 }
1059 
1060 address MacroAssembler::call_c_and_return_to_caller(Register fd) {
1061   return branch_to(fd, /*and_link=*/false,
1062                        /*save toc=*/false,
1063                        /*restore toc=*/false,
1064                        /*load toc=*/true,
1065                        /*load env=*/true);
1066 }
1067 
1068 address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) {
1069   if (rt != relocInfo::none) {
1070     // this call needs to be relocatable
1071     if (!ReoptimizeCallSequences
1072         || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1073         || fd == NULL   // support code-size estimation
1074         || !fd->is_friend_function()
1075         || fd->entry() == NULL) {
1076       // it's not a friend function as defined by class FunctionDescriptor,
1077       // so do a full call-c here.
1078       load_const(R11, (address)fd, R0);
1079 
1080       bool has_env = (fd != NULL && fd->env() != NULL);
1081       return branch_to(R11, /*and_link=*/true,
1082                             /*save toc=*/false,
1083                             /*restore toc=*/false,
1084                             /*load toc=*/true,
1085                             /*load env=*/has_env);
1086     } else {
1087       // It's a friend function. Load the entry point and don't care about
1088       // toc and env. Use an optimizable call instruction, but ensure the
1089       // same code-size as in the case of a non-friend function.
1090       nop();
1091       nop();
1092       nop();
1093       bl64_patchable(fd->entry(), rt);
1094       _last_calls_return_pc = pc();
1095       return _last_calls_return_pc;
1096     }
1097   } else {
1098     // This call does not need to be relocatable, do more aggressive
1099     // optimizations.
1100     if (!ReoptimizeCallSequences
1101       || !fd->is_friend_function()) {
1102       // It's not a friend function as defined by class FunctionDescriptor,
1103       // so do a full call-c here.
1104       load_const(R11, (address)fd, R0);
1105       return branch_to(R11, /*and_link=*/true,
1106                             /*save toc=*/false,
1107                             /*restore toc=*/false,
1108                             /*load toc=*/true,
1109                             /*load env=*/true);
1110     } else {
1111       // it's a friend function, load the entry point and don't care about
1112       // toc and env.
1113       address dest = fd->entry();
1114       if (is_within_range_of_b(dest, pc())) {
1115         bl(dest);
1116       } else {
1117         bl64_patchable(dest, rt);
1118       }
1119       _last_calls_return_pc = pc();
1120       return _last_calls_return_pc;
1121     }
1122   }
1123 }
1124 
1125 // Call a C function.  All constants needed reside in TOC.
1126 //
1127 // Read the address to call from the TOC.
1128 // Read env from TOC, if fd specifies an env.
1129 // Read new TOC from TOC.
1130 address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
1131                                          relocInfo::relocType rt, Register toc) {
1132   if (!ReoptimizeCallSequences
1133     || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1134     || !fd->is_friend_function()) {
1135     // It's not a friend function as defined by class FunctionDescriptor,
1136     // so do a full call-c here.
1137     assert(fd->entry() != NULL, "function must be linked");
1138 
1139     AddressLiteral fd_entry(fd->entry());
1140     bool success = load_const_from_method_toc(R11, fd_entry, toc, /*fixed_size*/ true);
1141     mtctr(R11);
1142     if (fd->env() == NULL) {
1143       li(R11, 0);
1144       nop();
1145     } else {
1146       AddressLiteral fd_env(fd->env());
1147       success = success && load_const_from_method_toc(R11, fd_env, toc, /*fixed_size*/ true);
1148     }
1149     AddressLiteral fd_toc(fd->toc());
1150     // Set R2_TOC (load from toc)
1151     success = success && load_const_from_method_toc(R2_TOC, fd_toc, toc, /*fixed_size*/ true);
1152     bctrl();
1153     _last_calls_return_pc = pc();
1154     if (!success) { return NULL; }
1155   } else {
1156     // It's a friend function, load the entry point and don't care about
1157     // toc and env. Use an optimizable call instruction, but ensure the
1158     // same code-size as in the case of a non-friend function.
1159     nop();
1160     bl64_patchable(fd->entry(), rt);
1161     _last_calls_return_pc = pc();
1162   }
1163   return _last_calls_return_pc;
1164 }
1165 #endif // ABI_ELFv2
1166 
1167 void MacroAssembler::call_VM_base(Register oop_result,
1168                                   Register last_java_sp,
1169                                   address  entry_point,
1170                                   bool     check_exceptions) {
1171   BLOCK_COMMENT("call_VM {");
1172   // Determine last_java_sp register.
1173   if (!last_java_sp->is_valid()) {
1174     last_java_sp = R1_SP;
1175   }
1176   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1);
1177 
1178   // ARG1 must hold thread address.
1179   mr(R3_ARG1, R16_thread);
1180 #if defined(ABI_ELFv2)
1181   address return_pc = call_c(entry_point, relocInfo::none);
1182 #else
1183   address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none);
1184 #endif
1185 
1186   reset_last_Java_frame();
1187 
1188   // Check for pending exceptions.
1189   if (check_exceptions) {
1190     // We don't check for exceptions here.
1191     ShouldNotReachHere();
1192   }
1193 
1194   // Get oop result if there is one and reset the value in the thread.
1195   if (oop_result->is_valid()) {
1196     get_vm_result(oop_result);
1197   }
1198 
1199   _last_calls_return_pc = return_pc;
1200   BLOCK_COMMENT("} call_VM");
1201 }
1202 
1203 void MacroAssembler::call_VM_leaf_base(address entry_point) {
1204   BLOCK_COMMENT("call_VM_leaf {");
1205 #if defined(ABI_ELFv2)
1206   call_c(entry_point, relocInfo::none);
1207 #else
1208   call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none);
1209 #endif
1210   BLOCK_COMMENT("} call_VM_leaf");
1211 }
1212 
1213 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
1214   call_VM_base(oop_result, noreg, entry_point, check_exceptions);
1215 }
1216 
1217 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1,
1218                              bool check_exceptions) {
1219   // R3_ARG1 is reserved for the thread.
1220   mr_if_needed(R4_ARG2, arg_1);
1221   call_VM(oop_result, entry_point, check_exceptions);
1222 }
1223 
1224 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
1225                              bool check_exceptions) {
1226   // R3_ARG1 is reserved for the thread
1227   mr_if_needed(R4_ARG2, arg_1);
1228   assert(arg_2 != R4_ARG2, "smashed argument");
1229   mr_if_needed(R5_ARG3, arg_2);
1230   call_VM(oop_result, entry_point, check_exceptions);
1231 }
1232 
1233 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3,
1234                              bool check_exceptions) {
1235   // R3_ARG1 is reserved for the thread
1236   mr_if_needed(R4_ARG2, arg_1);
1237   assert(arg_2 != R4_ARG2, "smashed argument");
1238   mr_if_needed(R5_ARG3, arg_2);
1239   mr_if_needed(R6_ARG4, arg_3);
1240   call_VM(oop_result, entry_point, check_exceptions);
1241 }
1242 
1243 void MacroAssembler::call_VM_leaf(address entry_point) {
1244   call_VM_leaf_base(entry_point);
1245 }
1246 
1247 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
1248   mr_if_needed(R3_ARG1, arg_1);
1249   call_VM_leaf(entry_point);
1250 }
1251 
1252 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
1253   mr_if_needed(R3_ARG1, arg_1);
1254   assert(arg_2 != R3_ARG1, "smashed argument");
1255   mr_if_needed(R4_ARG2, arg_2);
1256   call_VM_leaf(entry_point);
1257 }
1258 
1259 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1260   mr_if_needed(R3_ARG1, arg_1);
1261   assert(arg_2 != R3_ARG1, "smashed argument");
1262   mr_if_needed(R4_ARG2, arg_2);
1263   assert(arg_3 != R3_ARG1 && arg_3 != R4_ARG2, "smashed argument");
1264   mr_if_needed(R5_ARG3, arg_3);
1265   call_VM_leaf(entry_point);
1266 }
1267 
1268 // Check whether instruction is a read access to the polling page
1269 // which was emitted by load_from_polling_page(..).
1270 bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext,
1271                                                address* polling_address_ptr) {
1272   if (!is_ld(instruction))
1273     return false; // It's not a ld. Fail.
1274 
1275   int rt = inv_rt_field(instruction);
1276   int ra = inv_ra_field(instruction);
1277   int ds = inv_ds_field(instruction);
1278   if (!(ds == 0 && ra != 0 && rt == 0)) {
1279     return false; // It's not a ld(r0, X, ra). Fail.
1280   }
1281 
1282   if (!ucontext) {
1283     // Set polling address.
1284     if (polling_address_ptr != NULL) {
1285       *polling_address_ptr = NULL;
1286     }
1287     return true; // No ucontext given. Can't check value of ra. Assume true.
1288   }
1289 
1290 #ifdef LINUX
1291   // Ucontext given. Check that register ra contains the address of
1292   // the safepoing polling page.
1293   ucontext_t* uc = (ucontext_t*) ucontext;
1294   // Set polling address.
1295   address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds;
1296   if (polling_address_ptr != NULL) {
1297     *polling_address_ptr = addr;
1298   }
1299   return os::is_poll_address(addr);
1300 #else
1301   // Not on Linux, ucontext must be NULL.
1302   ShouldNotReachHere();
1303   return false;
1304 #endif
1305 }
1306 
1307 bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) {
1308 #ifdef LINUX
1309   ucontext_t* uc = (ucontext_t*) ucontext;
1310 
1311   if (is_stwx(instruction) || is_stwux(instruction)) {
1312     int ra = inv_ra_field(instruction);
1313     int rb = inv_rb_field(instruction);
1314 
1315     // look up content of ra and rb in ucontext
1316     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1317     long rb_val=(long)uc->uc_mcontext.regs->gpr[rb];
1318     return os::is_memory_serialize_page(thread, ra_val+rb_val);
1319   } else if (is_stw(instruction) || is_stwu(instruction)) {
1320     int ra = inv_ra_field(instruction);
1321     int d1 = inv_d1_field(instruction);
1322 
1323     // look up content of ra in ucontext
1324     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1325     return os::is_memory_serialize_page(thread, ra_val+d1);
1326   } else {
1327     return false;
1328   }
1329 #else
1330   // workaround not needed on !LINUX :-)
1331   ShouldNotCallThis();
1332   return false;
1333 #endif
1334 }
1335 
1336 void MacroAssembler::bang_stack_with_offset(int offset) {
1337   // When increasing the stack, the old stack pointer will be written
1338   // to the new top of stack according to the PPC64 abi.
1339   // Therefore, stack banging is not necessary when increasing
1340   // the stack by <= os::vm_page_size() bytes.
1341   // When increasing the stack by a larger amount, this method is
1342   // called repeatedly to bang the intermediate pages.
1343 
1344   // Stack grows down, caller passes positive offset.
1345   assert(offset > 0, "must bang with positive offset");
1346 
1347   long stdoffset = -offset;
1348 
1349   if (is_simm(stdoffset, 16)) {
1350     // Signed 16 bit offset, a simple std is ok.
1351     if (UseLoadInstructionsForStackBangingPPC64) {
1352       ld(R0, (int)(signed short)stdoffset, R1_SP);
1353     } else {
1354       std(R0,(int)(signed short)stdoffset, R1_SP);
1355     }
1356   } else if (is_simm(stdoffset, 31)) {
1357     const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1358     const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1359 
1360     Register tmp = R11;
1361     addis(tmp, R1_SP, hi);
1362     if (UseLoadInstructionsForStackBangingPPC64) {
1363       ld(R0,  lo, tmp);
1364     } else {
1365       std(R0, lo, tmp);
1366     }
1367   } else {
1368     ShouldNotReachHere();
1369   }
1370 }
1371 
1372 // If instruction is a stack bang of the form
1373 //    std    R0,    x(Ry),       (see bang_stack_with_offset())
1374 //    stdu   R1_SP, x(R1_SP),    (see push_frame(), resize_frame())
1375 // or stdux  R1_SP, Rx, R1_SP    (see push_frame(), resize_frame())
1376 // return the banged address. Otherwise, return 0.
1377 address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) {
1378 #ifdef LINUX
1379   ucontext_t* uc = (ucontext_t*) ucontext;
1380   int rs = inv_rs_field(instruction);
1381   int ra = inv_ra_field(instruction);
1382   if (   (is_ld(instruction)   && rs == 0 &&  UseLoadInstructionsForStackBangingPPC64)
1383       || (is_std(instruction)  && rs == 0 && !UseLoadInstructionsForStackBangingPPC64)
1384       || (is_stdu(instruction) && rs == 1)) {
1385     int ds = inv_ds_field(instruction);
1386     // return banged address
1387     return ds+(address)uc->uc_mcontext.regs->gpr[ra];
1388   } else if (is_stdux(instruction) && rs == 1) {
1389     int rb = inv_rb_field(instruction);
1390     address sp = (address)uc->uc_mcontext.regs->gpr[1];
1391     long rb_val = (long)uc->uc_mcontext.regs->gpr[rb];
1392     return ra != 1 || rb_val >= 0 ? NULL         // not a stack bang
1393                                   : sp + rb_val; // banged address
1394   }
1395   return NULL; // not a stack bang
1396 #else
1397   // workaround not needed on !LINUX :-)
1398   ShouldNotCallThis();
1399   return NULL;
1400 #endif
1401 }
1402 
1403 void MacroAssembler::reserved_stack_check(Register return_pc) {
1404   // Test if reserved zone needs to be enabled.
1405   Label no_reserved_zone_enabling;
1406 
1407   ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
1408   cmpld(CCR0, R1_SP, R0);
1409   blt_predict_taken(CCR0, no_reserved_zone_enabling);
1410 
1411   // Enable reserved zone again, throw stack overflow exception.
1412   push_frame_reg_args(0, R0);
1413   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
1414   pop_frame();
1415   mtlr(return_pc);
1416   load_const_optimized(R0, StubRoutines::throw_delayed_StackOverflowError_entry());
1417   mtctr(R0);
1418   bctr();
1419 
1420   should_not_reach_here();
1421 
1422   bind(no_reserved_zone_enabling);
1423 }
1424 
1425 void MacroAssembler::getandsetd(Register dest_current_value, Register exchange_value, Register addr_base,
1426                                 bool cmpxchgx_hint) {
1427   Label retry;
1428   bind(retry);
1429   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1430   stdcx_(exchange_value, addr_base);
1431   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1432     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1433   } else {
1434     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1435   }
1436 }
1437 
1438 void MacroAssembler::getandaddd(Register dest_current_value, Register inc_value, Register addr_base,
1439                                 Register tmp, bool cmpxchgx_hint) {
1440   Label retry;
1441   bind(retry);
1442   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1443   add(tmp, dest_current_value, inc_value);
1444   stdcx_(tmp, addr_base);
1445   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1446     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1447   } else {
1448     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1449   }
1450 }
1451 
1452 // Word/sub-word atomic helper functions
1453 
1454 // Temps and addr_base are killed if size < 4 and processor does not support respective instructions.
1455 // Only signed types are supported with size < 4.
1456 // Atomic add always kills tmp1.
1457 void MacroAssembler::atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value,
1458                                                    Register addr_base, Register tmp1, Register tmp2, Register tmp3,
1459                                                    bool cmpxchgx_hint, bool is_add, int size) {
1460   // Sub-word instructions are available since Power 8.
1461   // For older processors, instruction_type != size holds, and we
1462   // emulate the sub-word instructions by constructing a 4-byte value
1463   // that leaves the other bytes unchanged.
1464   const int instruction_type = VM_Version::has_lqarx() ? size : 4;
1465 
1466   Label retry;
1467   Register shift_amount = noreg,
1468            val32 = dest_current_value,
1469            modval = is_add ? tmp1 : exchange_value;
1470 
1471   if (instruction_type != size) {
1472     assert_different_registers(tmp1, tmp2, tmp3, dest_current_value, exchange_value, addr_base);
1473     modval = tmp1;
1474     shift_amount = tmp2;
1475     val32 = tmp3;
1476     // Need some preperation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
1477 #ifdef VM_LITTLE_ENDIAN
1478     rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
1479     clrrdi(addr_base, addr_base, 2);
1480 #else
1481     xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
1482     clrrdi(addr_base, addr_base, 2);
1483     rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
1484 #endif
1485   }
1486 
1487   // atomic emulation loop
1488   bind(retry);
1489 
1490   switch (instruction_type) {
1491     case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
1492     case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
1493     case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
1494     default: ShouldNotReachHere();
1495   }
1496 
1497   if (instruction_type != size) {
1498     srw(dest_current_value, val32, shift_amount);
1499   }
1500 
1501   if (is_add) { add(modval, dest_current_value, exchange_value); }
1502 
1503   if (instruction_type != size) {
1504     // Transform exchange value such that the replacement can be done by one xor instruction.
1505     xorr(modval, dest_current_value, is_add ? modval : exchange_value);
1506     clrldi(modval, modval, (size == 1) ? 56 : 48);
1507     slw(modval, modval, shift_amount);
1508     xorr(modval, val32, modval);
1509   }
1510 
1511   switch (instruction_type) {
1512     case 4: stwcx_(modval, addr_base); break;
1513     case 2: sthcx_(modval, addr_base); break;
1514     case 1: stbcx_(modval, addr_base); break;
1515     default: ShouldNotReachHere();
1516   }
1517 
1518   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1519     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1520   } else {
1521     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1522   }
1523 
1524   // l?arx zero-extends, but Java wants byte/short values sign-extended.
1525   if (size == 1) {
1526     extsb(dest_current_value, dest_current_value);
1527   } else if (size == 2) {
1528     extsh(dest_current_value, dest_current_value);
1529   };
1530 }
1531 
1532 // Temps, addr_base and exchange_value are killed if size < 4 and processor does not support respective instructions.
1533 // Only signed types are supported with size < 4.
1534 void MacroAssembler::cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value,
1535                                        Register compare_value, Register exchange_value,
1536                                        Register addr_base, Register tmp1, Register tmp2,
1537                                        Label &retry, Label &failed, bool cmpxchgx_hint, int size) {
1538   // Sub-word instructions are available since Power 8.
1539   // For older processors, instruction_type != size holds, and we
1540   // emulate the sub-word instructions by constructing a 4-byte value
1541   // that leaves the other bytes unchanged.
1542   const int instruction_type = VM_Version::has_lqarx() ? size : 4;
1543 
1544   Register shift_amount = noreg,
1545            val32 = dest_current_value,
1546            modval = exchange_value;
1547 
1548   if (instruction_type != size) {
1549     assert_different_registers(tmp1, tmp2, dest_current_value, compare_value, exchange_value, addr_base);
1550     shift_amount = tmp1;
1551     val32 = tmp2;
1552     modval = tmp2;
1553     // Need some preperation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
1554 #ifdef VM_LITTLE_ENDIAN
1555     rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
1556     clrrdi(addr_base, addr_base, 2);
1557 #else
1558     xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
1559     clrrdi(addr_base, addr_base, 2);
1560     rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
1561 #endif
1562     // Transform exchange value such that the replacement can be done by one xor instruction.
1563     xorr(exchange_value, compare_value, exchange_value);
1564     clrldi(exchange_value, exchange_value, (size == 1) ? 56 : 48);
1565     slw(exchange_value, exchange_value, shift_amount);
1566   }
1567 
1568   // atomic emulation loop
1569   bind(retry);
1570 
1571   switch (instruction_type) {
1572     case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
1573     case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
1574     case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
1575     default: ShouldNotReachHere();
1576   }
1577 
1578   if (instruction_type != size) {
1579     srw(dest_current_value, val32, shift_amount);
1580   }
1581   if (size == 1) {
1582     extsb(dest_current_value, dest_current_value);
1583   } else if (size == 2) {
1584     extsh(dest_current_value, dest_current_value);
1585   };
1586 
1587   cmpw(flag, dest_current_value, compare_value);
1588   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1589     bne_predict_not_taken(flag, failed);
1590   } else {
1591     bne(                  flag, failed);
1592   }
1593   // branch to done  => (flag == ne), (dest_current_value != compare_value)
1594   // fall through    => (flag == eq), (dest_current_value == compare_value)
1595 
1596   if (instruction_type != size) {
1597     xorr(modval, val32, exchange_value);
1598   }
1599 
1600   switch (instruction_type) {
1601     case 4: stwcx_(modval, addr_base); break;
1602     case 2: sthcx_(modval, addr_base); break;
1603     case 1: stbcx_(modval, addr_base); break;
1604     default: ShouldNotReachHere();
1605   }
1606 }
1607 
1608 // CmpxchgX sets condition register to cmpX(current, compare).
1609 void MacroAssembler::cmpxchg_generic(ConditionRegister flag, Register dest_current_value,
1610                                      Register compare_value, Register exchange_value,
1611                                      Register addr_base, Register tmp1, Register tmp2,
1612                                      int semantics, bool cmpxchgx_hint,
1613                                      Register int_flag_success, bool contention_hint, bool weak, int size) {
1614   Label retry;
1615   Label failed;
1616   Label done;
1617 
1618   // Save one branch if result is returned via register and
1619   // result register is different from the other ones.
1620   bool use_result_reg    = (int_flag_success != noreg);
1621   bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value &&
1622                             int_flag_success != exchange_value && int_flag_success != addr_base &&
1623                             int_flag_success != tmp1 && int_flag_success != tmp2);
1624   assert(!weak || flag == CCR0, "weak only supported with CCR0");
1625   assert(size == 1 || size == 2 || size == 4, "unsupported");
1626 
1627   if (use_result_reg && preset_result_reg) {
1628     li(int_flag_success, 0); // preset (assume cas failed)
1629   }
1630 
1631   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1632   if (contention_hint) { // Don't try to reserve if cmp fails.
1633     switch (size) {
1634       case 1: lbz(dest_current_value, 0, addr_base); extsb(dest_current_value, dest_current_value); break;
1635       case 2: lha(dest_current_value, 0, addr_base); break;
1636       case 4: lwz(dest_current_value, 0, addr_base); break;
1637       default: ShouldNotReachHere();
1638     }
1639     cmpw(flag, dest_current_value, compare_value);
1640     bne(flag, failed);
1641   }
1642 
1643   // release/fence semantics
1644   if (semantics & MemBarRel) {
1645     release();
1646   }
1647 
1648   cmpxchg_loop_body(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
1649                     retry, failed, cmpxchgx_hint, size);
1650   if (!weak || use_result_reg) {
1651     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1652       bne_predict_not_taken(CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
1653     } else {
1654       bne(                  CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
1655     }
1656   }
1657   // fall through    => (flag == eq), (dest_current_value == compare_value), (swapped)
1658 
1659   // Result in register (must do this at the end because int_flag_success can be the
1660   // same register as one above).
1661   if (use_result_reg) {
1662     li(int_flag_success, 1);
1663   }
1664 
1665   if (semantics & MemBarFenceAfter) {
1666     fence();
1667   } else if (semantics & MemBarAcq) {
1668     isync();
1669   }
1670 
1671   if (use_result_reg && !preset_result_reg) {
1672     b(done);
1673   }
1674 
1675   bind(failed);
1676   if (use_result_reg && !preset_result_reg) {
1677     li(int_flag_success, 0);
1678   }
1679 
1680   bind(done);
1681   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1682   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1683 }
1684 
1685 // Preforms atomic compare exchange:
1686 //   if (compare_value == *addr_base)
1687 //     *addr_base = exchange_value
1688 //     int_flag_success = 1;
1689 //   else
1690 //     int_flag_success = 0;
1691 //
1692 // ConditionRegister flag       = cmp(compare_value, *addr_base)
1693 // Register dest_current_value  = *addr_base
1694 // Register compare_value       Used to compare with value in memory
1695 // Register exchange_value      Written to memory if compare_value == *addr_base
1696 // Register addr_base           The memory location to compareXChange
1697 // Register int_flag_success    Set to 1 if exchange_value was written to *addr_base
1698 //
1699 // To avoid the costly compare exchange the value is tested beforehand.
1700 // Several special cases exist to avoid that unnecessary information is generated.
1701 //
1702 void MacroAssembler::cmpxchgd(ConditionRegister flag,
1703                               Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value,
1704                               Register addr_base, int semantics, bool cmpxchgx_hint,
1705                               Register int_flag_success, Label* failed_ext, bool contention_hint, bool weak) {
1706   Label retry;
1707   Label failed_int;
1708   Label& failed = (failed_ext != NULL) ? *failed_ext : failed_int;
1709   Label done;
1710 
1711   // Save one branch if result is returned via register and result register is different from the other ones.
1712   bool use_result_reg    = (int_flag_success!=noreg);
1713   bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value.register_or_noreg() &&
1714                             int_flag_success!=exchange_value && int_flag_success!=addr_base);
1715   assert(!weak || flag == CCR0, "weak only supported with CCR0");
1716   assert(int_flag_success == noreg || failed_ext == NULL, "cannot have both");
1717 
1718   if (use_result_reg && preset_result_reg) {
1719     li(int_flag_success, 0); // preset (assume cas failed)
1720   }
1721 
1722   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1723   if (contention_hint) { // Don't try to reserve if cmp fails.
1724     ld(dest_current_value, 0, addr_base);
1725     cmpd(flag, compare_value, dest_current_value);
1726     bne(flag, failed);
1727   }
1728 
1729   // release/fence semantics
1730   if (semantics & MemBarRel) {
1731     release();
1732   }
1733 
1734   // atomic emulation loop
1735   bind(retry);
1736 
1737   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1738   cmpd(flag, compare_value, dest_current_value);
1739   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1740     bne_predict_not_taken(flag, failed);
1741   } else {
1742     bne(                  flag, failed);
1743   }
1744 
1745   stdcx_(exchange_value, addr_base);
1746   if (!weak || use_result_reg || failed_ext) {
1747     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1748       bne_predict_not_taken(CCR0, weak ? failed : retry); // stXcx_ sets CCR0
1749     } else {
1750       bne(                  CCR0, weak ? failed : retry); // stXcx_ sets CCR0
1751     }
1752   }
1753 
1754   // result in register (must do this at the end because int_flag_success can be the same register as one above)
1755   if (use_result_reg) {
1756     li(int_flag_success, 1);
1757   }
1758 
1759   if (semantics & MemBarFenceAfter) {
1760     fence();
1761   } else if (semantics & MemBarAcq) {
1762     isync();
1763   }
1764 
1765   if (use_result_reg && !preset_result_reg) {
1766     b(done);
1767   }
1768 
1769   bind(failed_int);
1770   if (use_result_reg && !preset_result_reg) {
1771     li(int_flag_success, 0);
1772   }
1773 
1774   bind(done);
1775   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1776   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1777 }
1778 
1779 // Look up the method for a megamorphic invokeinterface call.
1780 // The target method is determined by <intf_klass, itable_index>.
1781 // The receiver klass is in recv_klass.
1782 // On success, the result will be in method_result, and execution falls through.
1783 // On failure, execution transfers to the given label.
1784 void MacroAssembler::lookup_interface_method(Register recv_klass,
1785                                              Register intf_klass,
1786                                              RegisterOrConstant itable_index,
1787                                              Register method_result,
1788                                              Register scan_temp,
1789                                              Register sethi_temp,
1790                                              Label& L_no_such_interface) {
1791   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
1792   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1793          "caller must use same register for non-constant itable index as for method");
1794 
1795   // Compute start of first itableOffsetEntry (which is at the end of the vtable).
1796   int vtable_base = in_bytes(Klass::vtable_start_offset());
1797   int itentry_off = itableMethodEntry::method_offset_in_bytes();
1798   int logMEsize   = exact_log2(itableMethodEntry::size() * wordSize);
1799   int scan_step   = itableOffsetEntry::size() * wordSize;
1800   int log_vte_size= exact_log2(vtableEntry::size_in_bytes());
1801 
1802   lwz(scan_temp, in_bytes(Klass::vtable_length_offset()), recv_klass);
1803   // %%% We should store the aligned, prescaled offset in the klassoop.
1804   // Then the next several instructions would fold away.
1805 
1806   sldi(scan_temp, scan_temp, log_vte_size);
1807   addi(scan_temp, scan_temp, vtable_base);
1808   add(scan_temp, recv_klass, scan_temp);
1809 
1810   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
1811   if (itable_index.is_register()) {
1812     Register itable_offset = itable_index.as_register();
1813     sldi(itable_offset, itable_offset, logMEsize);
1814     if (itentry_off) addi(itable_offset, itable_offset, itentry_off);
1815     add(recv_klass, itable_offset, recv_klass);
1816   } else {
1817     long itable_offset = (long)itable_index.as_constant();
1818     load_const_optimized(sethi_temp, (itable_offset<<logMEsize)+itentry_off); // static address, no relocation
1819     add(recv_klass, sethi_temp, recv_klass);
1820   }
1821 
1822   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
1823   //   if (scan->interface() == intf) {
1824   //     result = (klass + scan->offset() + itable_index);
1825   //   }
1826   // }
1827   Label search, found_method;
1828 
1829   for (int peel = 1; peel >= 0; peel--) {
1830     // %%%% Could load both offset and interface in one ldx, if they were
1831     // in the opposite order. This would save a load.
1832     ld(method_result, itableOffsetEntry::interface_offset_in_bytes(), scan_temp);
1833 
1834     // Check that this entry is non-null. A null entry means that
1835     // the receiver class doesn't implement the interface, and wasn't the
1836     // same as when the caller was compiled.
1837     cmpd(CCR0, method_result, intf_klass);
1838 
1839     if (peel) {
1840       beq(CCR0, found_method);
1841     } else {
1842       bne(CCR0, search);
1843       // (invert the test to fall through to found_method...)
1844     }
1845 
1846     if (!peel) break;
1847 
1848     bind(search);
1849 
1850     cmpdi(CCR0, method_result, 0);
1851     beq(CCR0, L_no_such_interface);
1852     addi(scan_temp, scan_temp, scan_step);
1853   }
1854 
1855   bind(found_method);
1856 
1857   // Got a hit.
1858   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
1859   lwz(scan_temp, ito_offset, scan_temp);
1860   ldx(method_result, scan_temp, recv_klass);
1861 }
1862 
1863 // virtual method calling
1864 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1865                                            RegisterOrConstant vtable_index,
1866                                            Register method_result) {
1867 
1868   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
1869 
1870   const int base = in_bytes(Klass::vtable_start_offset());
1871   assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1872 
1873   if (vtable_index.is_register()) {
1874     sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord);
1875     add(recv_klass, vtable_index.as_register(), recv_klass);
1876   } else {
1877     addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord);
1878   }
1879   ld(R19_method, base + vtableEntry::method_offset_in_bytes(), recv_klass);
1880 }
1881 
1882 /////////////////////////////////////////// subtype checking ////////////////////////////////////////////
1883 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1884                                                    Register super_klass,
1885                                                    Register temp1_reg,
1886                                                    Register temp2_reg,
1887                                                    Label* L_success,
1888                                                    Label* L_failure,
1889                                                    Label* L_slow_path,
1890                                                    RegisterOrConstant super_check_offset) {
1891 
1892   const Register check_cache_offset = temp1_reg;
1893   const Register cached_super       = temp2_reg;
1894 
1895   assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super);
1896 
1897   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1898   int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
1899 
1900   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1901   bool need_slow_path = (must_load_sco || super_check_offset.constant_or_zero() == sco_offset);
1902 
1903   Label L_fallthrough;
1904   int label_nulls = 0;
1905   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1906   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1907   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
1908   assert(label_nulls <= 1 ||
1909          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
1910          "at most one NULL in the batch, usually");
1911 
1912   // If the pointers are equal, we are done (e.g., String[] elements).
1913   // This self-check enables sharing of secondary supertype arrays among
1914   // non-primary types such as array-of-interface. Otherwise, each such
1915   // type would need its own customized SSA.
1916   // We move this check to the front of the fast path because many
1917   // type checks are in fact trivially successful in this manner,
1918   // so we get a nicely predicted branch right at the start of the check.
1919   cmpd(CCR0, sub_klass, super_klass);
1920   beq(CCR0, *L_success);
1921 
1922   // Check the supertype display:
1923   if (must_load_sco) {
1924     // The super check offset is always positive...
1925     lwz(check_cache_offset, sco_offset, super_klass);
1926     super_check_offset = RegisterOrConstant(check_cache_offset);
1927     // super_check_offset is register.
1928     assert_different_registers(sub_klass, super_klass, cached_super, super_check_offset.as_register());
1929   }
1930   // The loaded value is the offset from KlassOopDesc.
1931 
1932   ld(cached_super, super_check_offset, sub_klass);
1933   cmpd(CCR0, cached_super, super_klass);
1934 
1935   // This check has worked decisively for primary supers.
1936   // Secondary supers are sought in the super_cache ('super_cache_addr').
1937   // (Secondary supers are interfaces and very deeply nested subtypes.)
1938   // This works in the same check above because of a tricky aliasing
1939   // between the super_cache and the primary super display elements.
1940   // (The 'super_check_addr' can address either, as the case requires.)
1941   // Note that the cache is updated below if it does not help us find
1942   // what we need immediately.
1943   // So if it was a primary super, we can just fail immediately.
1944   // Otherwise, it's the slow path for us (no success at this point).
1945 
1946 #define FINAL_JUMP(label) if (&(label) != &L_fallthrough) { b(label); }
1947 
1948   if (super_check_offset.is_register()) {
1949     beq(CCR0, *L_success);
1950     cmpwi(CCR0, super_check_offset.as_register(), sc_offset);
1951     if (L_failure == &L_fallthrough) {
1952       beq(CCR0, *L_slow_path);
1953     } else {
1954       bne(CCR0, *L_failure);
1955       FINAL_JUMP(*L_slow_path);
1956     }
1957   } else {
1958     if (super_check_offset.as_constant() == sc_offset) {
1959       // Need a slow path; fast failure is impossible.
1960       if (L_slow_path == &L_fallthrough) {
1961         beq(CCR0, *L_success);
1962       } else {
1963         bne(CCR0, *L_slow_path);
1964         FINAL_JUMP(*L_success);
1965       }
1966     } else {
1967       // No slow path; it's a fast decision.
1968       if (L_failure == &L_fallthrough) {
1969         beq(CCR0, *L_success);
1970       } else {
1971         bne(CCR0, *L_failure);
1972         FINAL_JUMP(*L_success);
1973       }
1974     }
1975   }
1976 
1977   bind(L_fallthrough);
1978 #undef FINAL_JUMP
1979 }
1980 
1981 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1982                                                    Register super_klass,
1983                                                    Register temp1_reg,
1984                                                    Register temp2_reg,
1985                                                    Label* L_success,
1986                                                    Register result_reg) {
1987   const Register array_ptr = temp1_reg; // current value from cache array
1988   const Register temp      = temp2_reg;
1989 
1990   assert_different_registers(sub_klass, super_klass, array_ptr, temp);
1991 
1992   int source_offset = in_bytes(Klass::secondary_supers_offset());
1993   int target_offset = in_bytes(Klass::secondary_super_cache_offset());
1994 
1995   int length_offset = Array<Klass*>::length_offset_in_bytes();
1996   int base_offset   = Array<Klass*>::base_offset_in_bytes();
1997 
1998   Label hit, loop, failure, fallthru;
1999 
2000   ld(array_ptr, source_offset, sub_klass);
2001 
2002   // TODO: PPC port: assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated.");
2003   lwz(temp, length_offset, array_ptr);
2004   cmpwi(CCR0, temp, 0);
2005   beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0
2006 
2007   mtctr(temp); // load ctr
2008 
2009   bind(loop);
2010   // Oops in table are NO MORE compressed.
2011   ld(temp, base_offset, array_ptr);
2012   cmpd(CCR0, temp, super_klass);
2013   beq(CCR0, hit);
2014   addi(array_ptr, array_ptr, BytesPerWord);
2015   bdnz(loop);
2016 
2017   bind(failure);
2018   if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss)
2019   b(fallthru);
2020 
2021   bind(hit);
2022   std(super_klass, target_offset, sub_klass); // save result to cache
2023   if (result_reg != noreg) { li(result_reg, 0); } // load zero result (indicates a hit)
2024   if (L_success != NULL) { b(*L_success); }
2025   else if (result_reg == noreg) { blr(); } // return with CR0.eq if neither label nor result reg provided
2026 
2027   bind(fallthru);
2028 }
2029 
2030 // Try fast path, then go to slow one if not successful
2031 void MacroAssembler::check_klass_subtype(Register sub_klass,
2032                          Register super_klass,
2033                          Register temp1_reg,
2034                          Register temp2_reg,
2035                          Label& L_success) {
2036   Label L_failure;
2037   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success, &L_failure);
2038   check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success);
2039   bind(L_failure); // Fallthru if not successful.
2040 }
2041 
2042 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
2043                                               Register temp_reg,
2044                                               Label& wrong_method_type) {
2045   assert_different_registers(mtype_reg, mh_reg, temp_reg);
2046   // Compare method type against that of the receiver.
2047   load_heap_oop_not_null(temp_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg), mh_reg);
2048   cmpd(CCR0, temp_reg, mtype_reg);
2049   bne(CCR0, wrong_method_type);
2050 }
2051 
2052 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
2053                                                    Register temp_reg,
2054                                                    int extra_slot_offset) {
2055   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
2056   int stackElementSize = Interpreter::stackElementSize;
2057   int offset = extra_slot_offset * stackElementSize;
2058   if (arg_slot.is_constant()) {
2059     offset += arg_slot.as_constant() * stackElementSize;
2060     return offset;
2061   } else {
2062     assert(temp_reg != noreg, "must specify");
2063     sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize));
2064     if (offset != 0)
2065       addi(temp_reg, temp_reg, offset);
2066     return temp_reg;
2067   }
2068 }
2069 
2070 // Supports temp2_reg = R0.
2071 void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj_reg,
2072                                           Register mark_reg, Register temp_reg,
2073                                           Register temp2_reg, Label& done, Label* slow_case) {
2074   assert(UseBiasedLocking, "why call this otherwise?");
2075 
2076 #ifdef ASSERT
2077   assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
2078 #endif
2079 
2080   Label cas_label;
2081 
2082   // Branch to done if fast path fails and no slow_case provided.
2083   Label *slow_case_int = (slow_case != NULL) ? slow_case : &done;
2084 
2085   // Biased locking
2086   // See whether the lock is currently biased toward our thread and
2087   // whether the epoch is still valid
2088   // Note that the runtime guarantees sufficient alignment of JavaThread
2089   // pointers to allow age to be placed into low bits
2090   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits,
2091          "biased locking makes assumptions about bit layout");
2092 
2093   if (PrintBiasedLockingStatistics) {
2094     load_const(temp2_reg, (address) BiasedLocking::total_entry_count_addr(), temp_reg);
2095     lwzx(temp_reg, temp2_reg);
2096     addi(temp_reg, temp_reg, 1);
2097     stwx(temp_reg, temp2_reg);
2098   }
2099 
2100   andi(temp_reg, mark_reg, markOopDesc::biased_lock_mask_in_place);
2101   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
2102   bne(cr_reg, cas_label);
2103 
2104   load_klass(temp_reg, obj_reg);
2105 
2106   load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
2107   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2108   orr(temp_reg, R16_thread, temp_reg);
2109   xorr(temp_reg, mark_reg, temp_reg);
2110   andr(temp_reg, temp_reg, temp2_reg);
2111   cmpdi(cr_reg, temp_reg, 0);
2112   if (PrintBiasedLockingStatistics) {
2113     Label l;
2114     bne(cr_reg, l);
2115     load_const(temp2_reg, (address) BiasedLocking::biased_lock_entry_count_addr());
2116     lwzx(mark_reg, temp2_reg);
2117     addi(mark_reg, mark_reg, 1);
2118     stwx(mark_reg, temp2_reg);
2119     // restore mark_reg
2120     ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
2121     bind(l);
2122   }
2123   beq(cr_reg, done);
2124 
2125   Label try_revoke_bias;
2126   Label try_rebias;
2127 
2128   // At this point we know that the header has the bias pattern and
2129   // that we are not the bias owner in the current epoch. We need to
2130   // figure out more details about the state of the header in order to
2131   // know what operations can be legally performed on the object's
2132   // header.
2133 
2134   // If the low three bits in the xor result aren't clear, that means
2135   // the prototype header is no longer biased and we have to revoke
2136   // the bias on this object.
2137   andi(temp2_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
2138   cmpwi(cr_reg, temp2_reg, 0);
2139   bne(cr_reg, try_revoke_bias);
2140 
2141   // Biasing is still enabled for this data type. See whether the
2142   // epoch of the current bias is still valid, meaning that the epoch
2143   // bits of the mark word are equal to the epoch bits of the
2144   // prototype header. (Note that the prototype header's epoch bits
2145   // only change at a safepoint.) If not, attempt to rebias the object
2146   // toward the current thread. Note that we must be absolutely sure
2147   // that the current epoch is invalid in order to do this because
2148   // otherwise the manipulations it performs on the mark word are
2149   // illegal.
2150 
2151   int shift_amount = 64 - markOopDesc::epoch_shift;
2152   // rotate epoch bits to right (little) end and set other bits to 0
2153   // [ big part | epoch | little part ] -> [ 0..0 | epoch ]
2154   rldicl_(temp2_reg, temp_reg, shift_amount, 64 - markOopDesc::epoch_bits);
2155   // branch if epoch bits are != 0, i.e. they differ, because the epoch has been incremented
2156   bne(CCR0, try_rebias);
2157 
2158   // The epoch of the current bias is still valid but we know nothing
2159   // about the owner; it might be set or it might be clear. Try to
2160   // acquire the bias of the object using an atomic operation. If this
2161   // fails we will go in to the runtime to revoke the object's bias.
2162   // Note that we first construct the presumed unbiased header so we
2163   // don't accidentally blow away another thread's valid bias.
2164   andi(mark_reg, mark_reg, (markOopDesc::biased_lock_mask_in_place |
2165                                 markOopDesc::age_mask_in_place |
2166                                 markOopDesc::epoch_mask_in_place));
2167   orr(temp_reg, R16_thread, mark_reg);
2168 
2169   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2170 
2171   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
2172   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2173            /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2174            /*where=*/obj_reg,
2175            MacroAssembler::MemBarAcq,
2176            MacroAssembler::cmpxchgx_hint_acquire_lock(),
2177            noreg, slow_case_int); // bail out if failed
2178 
2179   // If the biasing toward our thread failed, this means that
2180   // another thread succeeded in biasing it toward itself and we
2181   // need to revoke that bias. The revocation will occur in the
2182   // interpreter runtime in the slow case.
2183   if (PrintBiasedLockingStatistics) {
2184     load_const(temp2_reg, (address) BiasedLocking::anonymously_biased_lock_entry_count_addr(), temp_reg);
2185     lwzx(temp_reg, temp2_reg);
2186     addi(temp_reg, temp_reg, 1);
2187     stwx(temp_reg, temp2_reg);
2188   }
2189   b(done);
2190 
2191   bind(try_rebias);
2192   // At this point we know the epoch has expired, meaning that the
2193   // current "bias owner", if any, is actually invalid. Under these
2194   // circumstances _only_, we are allowed to use the current header's
2195   // value as the comparison value when doing the cas to acquire the
2196   // bias in the current epoch. In other words, we allow transfer of
2197   // the bias from one thread to another directly in this situation.
2198   load_klass(temp_reg, obj_reg);
2199   andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
2200   orr(temp2_reg, R16_thread, temp2_reg);
2201   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2202   orr(temp_reg, temp2_reg, temp_reg);
2203 
2204   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2205 
2206   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2207                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2208                  /*where=*/obj_reg,
2209                  MacroAssembler::MemBarAcq,
2210                  MacroAssembler::cmpxchgx_hint_acquire_lock(),
2211                  noreg, slow_case_int); // bail out if failed
2212 
2213   // If the biasing toward our thread failed, this means that
2214   // another thread succeeded in biasing it toward itself and we
2215   // need to revoke that bias. The revocation will occur in the
2216   // interpreter runtime in the slow case.
2217   if (PrintBiasedLockingStatistics) {
2218     load_const(temp2_reg, (address) BiasedLocking::rebiased_lock_entry_count_addr(), temp_reg);
2219     lwzx(temp_reg, temp2_reg);
2220     addi(temp_reg, temp_reg, 1);
2221     stwx(temp_reg, temp2_reg);
2222   }
2223   b(done);
2224 
2225   bind(try_revoke_bias);
2226   // The prototype mark in the klass doesn't have the bias bit set any
2227   // more, indicating that objects of this data type are not supposed
2228   // to be biased any more. We are going to try to reset the mark of
2229   // this object to the prototype value and fall through to the
2230   // CAS-based locking scheme. Note that if our CAS fails, it means
2231   // that another thread raced us for the privilege of revoking the
2232   // bias of this particular object, so it's okay to continue in the
2233   // normal locking code.
2234   load_klass(temp_reg, obj_reg);
2235   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2236   andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
2237   orr(temp_reg, temp_reg, temp2_reg);
2238 
2239   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2240 
2241   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
2242   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2243                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2244                  /*where=*/obj_reg,
2245                  MacroAssembler::MemBarAcq,
2246                  MacroAssembler::cmpxchgx_hint_acquire_lock());
2247 
2248   // reload markOop in mark_reg before continuing with lightweight locking
2249   ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
2250 
2251   // Fall through to the normal CAS-based lock, because no matter what
2252   // the result of the above CAS, some thread must have succeeded in
2253   // removing the bias bit from the object's header.
2254   if (PrintBiasedLockingStatistics) {
2255     Label l;
2256     bne(cr_reg, l);
2257     load_const(temp2_reg, (address) BiasedLocking::revoked_lock_entry_count_addr(), temp_reg);
2258     lwzx(temp_reg, temp2_reg);
2259     addi(temp_reg, temp_reg, 1);
2260     stwx(temp_reg, temp2_reg);
2261     bind(l);
2262   }
2263 
2264   bind(cas_label);
2265 }
2266 
2267 void MacroAssembler::biased_locking_exit (ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done) {
2268   // Check for biased locking unlock case, which is a no-op
2269   // Note: we do not have to check the thread ID for two reasons.
2270   // First, the interpreter checks for IllegalMonitorStateException at
2271   // a higher level. Second, if the bias was revoked while we held the
2272   // lock, the object could not be rebiased toward another thread, so
2273   // the bias bit would be clear.
2274 
2275   ld(temp_reg, 0, mark_addr);
2276   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
2277 
2278   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
2279   beq(cr_reg, done);
2280 }
2281 
2282 // allocation (for C1)
2283 void MacroAssembler::eden_allocate(
2284   Register obj,                      // result: pointer to object after successful allocation
2285   Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2286   int      con_size_in_bytes,        // object size in bytes if   known at compile time
2287   Register t1,                       // temp register
2288   Register t2,                       // temp register
2289   Label&   slow_case                 // continuation point if fast allocation fails
2290 ) {
2291   b(slow_case);
2292 }
2293 
2294 void MacroAssembler::tlab_allocate(
2295   Register obj,                      // result: pointer to object after successful allocation
2296   Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2297   int      con_size_in_bytes,        // object size in bytes if   known at compile time
2298   Register t1,                       // temp register
2299   Label&   slow_case                 // continuation point if fast allocation fails
2300 ) {
2301   // make sure arguments make sense
2302   assert_different_registers(obj, var_size_in_bytes, t1);
2303   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
2304   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
2305 
2306   const Register new_top = t1;
2307   //verify_tlab(); not implemented
2308 
2309   ld(obj, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
2310   ld(R0, in_bytes(JavaThread::tlab_end_offset()), R16_thread);
2311   if (var_size_in_bytes == noreg) {
2312     addi(new_top, obj, con_size_in_bytes);
2313   } else {
2314     add(new_top, obj, var_size_in_bytes);
2315   }
2316   cmpld(CCR0, new_top, R0);
2317   bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_case);
2318 
2319 #ifdef ASSERT
2320   // make sure new free pointer is properly aligned
2321   {
2322     Label L;
2323     andi_(R0, new_top, MinObjAlignmentInBytesMask);
2324     beq(CCR0, L);
2325     stop("updated TLAB free is not properly aligned", 0x934);
2326     bind(L);
2327   }
2328 #endif // ASSERT
2329 
2330   // update the tlab top pointer
2331   std(new_top, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
2332   //verify_tlab(); not implemented
2333 }
2334 void MacroAssembler::tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case) {
2335   unimplemented("tlab_refill");
2336 }
2337 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2) {
2338   unimplemented("incr_allocated_bytes");
2339 }
2340 
2341 address MacroAssembler::emit_trampoline_stub(int destination_toc_offset,
2342                                              int insts_call_instruction_offset, Register Rtoc) {
2343   // Start the stub.
2344   address stub = start_a_stub(64);
2345   if (stub == NULL) { return NULL; } // CodeCache full: bail out
2346 
2347   // Create a trampoline stub relocation which relates this trampoline stub
2348   // with the call instruction at insts_call_instruction_offset in the
2349   // instructions code-section.
2350   relocate(trampoline_stub_Relocation::spec(code()->insts()->start() + insts_call_instruction_offset));
2351   const int stub_start_offset = offset();
2352 
2353   // For java_to_interp stubs we use R11_scratch1 as scratch register
2354   // and in call trampoline stubs we use R12_scratch2. This way we
2355   // can distinguish them (see is_NativeCallTrampolineStub_at()).
2356   Register reg_scratch = R12_scratch2;
2357 
2358   // Now, create the trampoline stub's code:
2359   // - load the TOC
2360   // - load the call target from the constant pool
2361   // - call
2362   if (Rtoc == noreg) {
2363     calculate_address_from_global_toc(reg_scratch, method_toc());
2364     Rtoc = reg_scratch;
2365   }
2366 
2367   ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, Rtoc, false);
2368   mtctr(reg_scratch);
2369   bctr();
2370 
2371   const address stub_start_addr = addr_at(stub_start_offset);
2372 
2373   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
2374   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
2375          "encoded offset into the constant pool must match");
2376   // Trampoline_stub_size should be good.
2377   assert((uint)(offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
2378   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
2379 
2380   // End the stub.
2381   end_a_stub();
2382   return stub;
2383 }
2384 
2385 // TM on PPC64.
2386 void MacroAssembler::atomic_inc_ptr(Register addr, Register result, int simm16) {
2387   Label retry;
2388   bind(retry);
2389   ldarx(result, addr, /*hint*/ false);
2390   addi(result, result, simm16);
2391   stdcx_(result, addr);
2392   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
2393     bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
2394   } else {
2395     bne(                  CCR0, retry); // stXcx_ sets CCR0
2396   }
2397 }
2398 
2399 void MacroAssembler::atomic_ori_int(Register addr, Register result, int uimm16) {
2400   Label retry;
2401   bind(retry);
2402   lwarx(result, addr, /*hint*/ false);
2403   ori(result, result, uimm16);
2404   stwcx_(result, addr);
2405   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
2406     bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
2407   } else {
2408     bne(                  CCR0, retry); // stXcx_ sets CCR0
2409   }
2410 }
2411 
2412 #if INCLUDE_RTM_OPT
2413 
2414 // Update rtm_counters based on abort status
2415 // input: abort_status
2416 //        rtm_counters (RTMLockingCounters*)
2417 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters_Reg) {
2418   // Mapping to keep PreciseRTMLockingStatistics similar to x86.
2419   // x86 ppc (! means inverted, ? means not the same)
2420   //  0   31  Set if abort caused by XABORT instruction.
2421   //  1  ! 7  If set, the transaction may succeed on a retry. This bit is always clear if bit 0 is set.
2422   //  2   13  Set if another logical processor conflicted with a memory address that was part of the transaction that aborted.
2423   //  3   10  Set if an internal buffer overflowed.
2424   //  4  ?12  Set if a debug breakpoint was hit.
2425   //  5  ?32  Set if an abort occurred during execution of a nested transaction.
2426   const  int tm_failure_bit[] = {Assembler::tm_tabort, // Note: Seems like signal handler sets this, too.
2427                                  Assembler::tm_failure_persistent, // inverted: transient
2428                                  Assembler::tm_trans_cf,
2429                                  Assembler::tm_footprint_of,
2430                                  Assembler::tm_non_trans_cf,
2431                                  Assembler::tm_suspended};
2432   const bool tm_failure_inv[] = {false, true, false, false, false, false};
2433   assert(sizeof(tm_failure_bit)/sizeof(int) == RTMLockingCounters::ABORT_STATUS_LIMIT, "adapt mapping!");
2434 
2435   const Register addr_Reg = R0;
2436   // Keep track of offset to where rtm_counters_Reg had pointed to.
2437   int counters_offs = RTMLockingCounters::abort_count_offset();
2438   addi(addr_Reg, rtm_counters_Reg, counters_offs);
2439   const Register temp_Reg = rtm_counters_Reg;
2440 
2441   //atomic_inc_ptr(addr_Reg, temp_Reg); We don't increment atomically
2442   ldx(temp_Reg, addr_Reg);
2443   addi(temp_Reg, temp_Reg, 1);
2444   stdx(temp_Reg, addr_Reg);
2445 
2446   if (PrintPreciseRTMLockingStatistics) {
2447     int counters_offs_delta = RTMLockingCounters::abortX_count_offset() - counters_offs;
2448 
2449     //mftexasr(abort_status); done by caller
2450     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
2451       counters_offs += counters_offs_delta;
2452       li(temp_Reg, counters_offs_delta); // can't use addi with R0
2453       add(addr_Reg, addr_Reg, temp_Reg); // point to next counter
2454       counters_offs_delta = sizeof(uintx);
2455 
2456       Label check_abort;
2457       rldicr_(temp_Reg, abort_status, tm_failure_bit[i], 0);
2458       if (tm_failure_inv[i]) {
2459         bne(CCR0, check_abort);
2460       } else {
2461         beq(CCR0, check_abort);
2462       }
2463       //atomic_inc_ptr(addr_Reg, temp_Reg); We don't increment atomically
2464       ldx(temp_Reg, addr_Reg);
2465       addi(temp_Reg, temp_Reg, 1);
2466       stdx(temp_Reg, addr_Reg);
2467       bind(check_abort);
2468     }
2469   }
2470   li(temp_Reg, -counters_offs); // can't use addi with R0
2471   add(rtm_counters_Reg, addr_Reg, temp_Reg); // restore
2472 }
2473 
2474 // Branch if (random & (count-1) != 0), count is 2^n
2475 // tmp and CR0 are killed
2476 void MacroAssembler::branch_on_random_using_tb(Register tmp, int count, Label& brLabel) {
2477   mftb(tmp);
2478   andi_(tmp, tmp, count-1);
2479   bne(CCR0, brLabel);
2480 }
2481 
2482 // Perform abort ratio calculation, set no_rtm bit if high ratio.
2483 // input:  rtm_counters_Reg (RTMLockingCounters* address) - KILLED
2484 void MacroAssembler::rtm_abort_ratio_calculation(Register rtm_counters_Reg,
2485                                                  RTMLockingCounters* rtm_counters,
2486                                                  Metadata* method_data) {
2487   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
2488 
2489   if (RTMLockingCalculationDelay > 0) {
2490     // Delay calculation.
2491     ld(rtm_counters_Reg, (RegisterOrConstant)(intptr_t)RTMLockingCounters::rtm_calculation_flag_addr());
2492     cmpdi(CCR0, rtm_counters_Reg, 0);
2493     beq(CCR0, L_done);
2494     load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
2495   }
2496   // Abort ratio calculation only if abort_count > RTMAbortThreshold.
2497   //   Aborted transactions = abort_count * 100
2498   //   All transactions = total_count *  RTMTotalCountIncrRate
2499   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
2500   ld(R0, RTMLockingCounters::abort_count_offset(), rtm_counters_Reg);
2501   cmpdi(CCR0, R0, RTMAbortThreshold);
2502   blt(CCR0, L_check_always_rtm2);
2503   mulli(R0, R0, 100);
2504 
2505   const Register tmpReg = rtm_counters_Reg;
2506   ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
2507   mulli(tmpReg, tmpReg, RTMTotalCountIncrRate);
2508   mulli(tmpReg, tmpReg, RTMAbortRatio);
2509   cmpd(CCR0, R0, tmpReg);
2510   blt(CCR0, L_check_always_rtm1); // jump to reload
2511   if (method_data != NULL) {
2512     // Set rtm_state to "no rtm" in MDO.
2513     // Not using a metadata relocation. Method and Class Loader are kept alive anyway.
2514     // (See nmethod::metadata_do and CodeBuffer::finalize_oop_references.)
2515     load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
2516     atomic_ori_int(R0, tmpReg, NoRTM);
2517   }
2518   b(L_done);
2519 
2520   bind(L_check_always_rtm1);
2521   load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
2522   bind(L_check_always_rtm2);
2523   ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
2524   cmpdi(CCR0, tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
2525   blt(CCR0, L_done);
2526   if (method_data != NULL) {
2527     // Set rtm_state to "always rtm" in MDO.
2528     // Not using a metadata relocation. See above.
2529     load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
2530     atomic_ori_int(R0, tmpReg, UseRTM);
2531   }
2532   bind(L_done);
2533 }
2534 
2535 // Update counters and perform abort ratio calculation.
2536 // input: abort_status_Reg
2537 void MacroAssembler::rtm_profiling(Register abort_status_Reg, Register temp_Reg,
2538                                    RTMLockingCounters* rtm_counters,
2539                                    Metadata* method_data,
2540                                    bool profile_rtm) {
2541 
2542   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2543   // Update rtm counters based on state at abort.
2544   // Reads abort_status_Reg, updates flags.
2545   assert_different_registers(abort_status_Reg, temp_Reg);
2546   load_const_optimized(temp_Reg, (address)rtm_counters, R0);
2547   rtm_counters_update(abort_status_Reg, temp_Reg);
2548   if (profile_rtm) {
2549     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2550     rtm_abort_ratio_calculation(temp_Reg, rtm_counters, method_data);
2551   }
2552 }
2553 
2554 // Retry on abort if abort's status indicates non-persistent failure.
2555 // inputs: retry_count_Reg
2556 //       : abort_status_Reg
2557 // output: retry_count_Reg decremented by 1
2558 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg,
2559                                              Label& retryLabel, Label* checkRetry) {
2560   Label doneRetry;
2561   rldicr_(R0, abort_status_Reg, tm_failure_persistent, 0);
2562   bne(CCR0, doneRetry);
2563   if (checkRetry) { bind(*checkRetry); }
2564   addic_(retry_count_Reg, retry_count_Reg, -1);
2565   blt(CCR0, doneRetry);
2566   smt_yield(); // Can't use wait(). No permission (SIGILL).
2567   b(retryLabel);
2568   bind(doneRetry);
2569 }
2570 
2571 // Spin and retry if lock is busy.
2572 // inputs: owner_addr_Reg (monitor address)
2573 //       : retry_count_Reg
2574 // output: retry_count_Reg decremented by 1
2575 // CTR is killed
2576 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register owner_addr_Reg, Label& retryLabel) {
2577   Label SpinLoop, doneRetry;
2578   addic_(retry_count_Reg, retry_count_Reg, -1);
2579   blt(CCR0, doneRetry);
2580 
2581   if (RTMSpinLoopCount > 1) {
2582     li(R0, RTMSpinLoopCount);
2583     mtctr(R0);
2584   }
2585 
2586   bind(SpinLoop);
2587   smt_yield(); // Can't use waitrsv(). No permission (SIGILL).
2588 
2589   if (RTMSpinLoopCount > 1) {
2590     bdz(retryLabel);
2591     ld(R0, 0, owner_addr_Reg);
2592     cmpdi(CCR0, R0, 0);
2593     bne(CCR0, SpinLoop);
2594   }
2595 
2596   b(retryLabel);
2597 
2598   bind(doneRetry);
2599 }
2600 
2601 // Use RTM for normal stack locks.
2602 // Input: objReg (object to lock)
2603 void MacroAssembler::rtm_stack_locking(ConditionRegister flag,
2604                                        Register obj, Register mark_word, Register tmp,
2605                                        Register retry_on_abort_count_Reg,
2606                                        RTMLockingCounters* stack_rtm_counters,
2607                                        Metadata* method_data, bool profile_rtm,
2608                                        Label& DONE_LABEL, Label& IsInflated) {
2609   assert(UseRTMForStackLocks, "why call this otherwise?");
2610   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2611   Label L_rtm_retry, L_decrement_retry, L_on_abort;
2612 
2613   if (RTMRetryCount > 0) {
2614     load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
2615     bind(L_rtm_retry);
2616   }
2617   andi_(R0, mark_word, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
2618   bne(CCR0, IsInflated);
2619 
2620   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2621     Label L_noincrement;
2622     if (RTMTotalCountIncrRate > 1) {
2623       branch_on_random_using_tb(tmp, (int)RTMTotalCountIncrRate, L_noincrement);
2624     }
2625     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
2626     load_const_optimized(tmp, (address)stack_rtm_counters->total_count_addr(), R0);
2627     //atomic_inc_ptr(tmp, /*temp, will be reloaded*/mark_word); We don't increment atomically
2628     ldx(mark_word, tmp);
2629     addi(mark_word, mark_word, 1);
2630     stdx(mark_word, tmp);
2631     bind(L_noincrement);
2632   }
2633   tbegin_();
2634   beq(CCR0, L_on_abort);
2635   ld(mark_word, oopDesc::mark_offset_in_bytes(), obj);         // Reload in transaction, conflicts need to be tracked.
2636   andi(R0, mark_word, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2637   cmpwi(flag, R0, markOopDesc::unlocked_value);                // bits = 001 unlocked
2638   beq(flag, DONE_LABEL);                                       // all done if unlocked
2639 
2640   if (UseRTMXendForLockBusy) {
2641     tend_();
2642     b(L_decrement_retry);
2643   } else {
2644     tabort_();
2645   }
2646   bind(L_on_abort);
2647   const Register abort_status_Reg = tmp;
2648   mftexasr(abort_status_Reg);
2649   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2650     rtm_profiling(abort_status_Reg, /*temp*/mark_word, stack_rtm_counters, method_data, profile_rtm);
2651   }
2652   ld(mark_word, oopDesc::mark_offset_in_bytes(), obj); // reload
2653   if (RTMRetryCount > 0) {
2654     // Retry on lock abort if abort status is not permanent.
2655     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry, &L_decrement_retry);
2656   } else {
2657     bind(L_decrement_retry);
2658   }
2659 }
2660 
2661 // Use RTM for inflating locks
2662 // inputs: obj       (object to lock)
2663 //         mark_word (current header - KILLED)
2664 //         boxReg    (on-stack box address (displaced header location) - KILLED)
2665 void MacroAssembler::rtm_inflated_locking(ConditionRegister flag,
2666                                           Register obj, Register mark_word, Register boxReg,
2667                                           Register retry_on_busy_count_Reg, Register retry_on_abort_count_Reg,
2668                                           RTMLockingCounters* rtm_counters,
2669                                           Metadata* method_data, bool profile_rtm,
2670                                           Label& DONE_LABEL) {
2671   assert(UseRTMLocking, "why call this otherwise?");
2672   Label L_rtm_retry, L_decrement_retry, L_on_abort;
2673   // Clean monitor_value bit to get valid pointer.
2674   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
2675 
2676   // Store non-null, using boxReg instead of (intptr_t)markOopDesc::unused_mark().
2677   std(boxReg, BasicLock::displaced_header_offset_in_bytes(), boxReg);
2678   const Register tmpReg = boxReg;
2679   const Register owner_addr_Reg = mark_word;
2680   addi(owner_addr_Reg, mark_word, owner_offset);
2681 
2682   if (RTMRetryCount > 0) {
2683     load_const_optimized(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy.
2684     load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort.
2685     bind(L_rtm_retry);
2686   }
2687   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2688     Label L_noincrement;
2689     if (RTMTotalCountIncrRate > 1) {
2690       branch_on_random_using_tb(R0, (int)RTMTotalCountIncrRate, L_noincrement);
2691     }
2692     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2693     load_const(R0, (address)rtm_counters->total_count_addr(), tmpReg);
2694     //atomic_inc_ptr(R0, tmpReg); We don't increment atomically
2695     ldx(tmpReg, R0);
2696     addi(tmpReg, tmpReg, 1);
2697     stdx(tmpReg, R0);
2698     bind(L_noincrement);
2699   }
2700   tbegin_();
2701   beq(CCR0, L_on_abort);
2702   // We don't reload mark word. Will only be reset at safepoint.
2703   ld(R0, 0, owner_addr_Reg); // Load in transaction, conflicts need to be tracked.
2704   cmpdi(flag, R0, 0);
2705   beq(flag, DONE_LABEL);
2706 
2707   if (UseRTMXendForLockBusy) {
2708     tend_();
2709     b(L_decrement_retry);
2710   } else {
2711     tabort_();
2712   }
2713   bind(L_on_abort);
2714   const Register abort_status_Reg = tmpReg;
2715   mftexasr(abort_status_Reg);
2716   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2717     rtm_profiling(abort_status_Reg, /*temp*/ owner_addr_Reg, rtm_counters, method_data, profile_rtm);
2718     // Restore owner_addr_Reg
2719     ld(mark_word, oopDesc::mark_offset_in_bytes(), obj);
2720 #ifdef ASSERT
2721     andi_(R0, mark_word, markOopDesc::monitor_value);
2722     asm_assert_ne("must be inflated", 0xa754); // Deflating only allowed at safepoint.
2723 #endif
2724     addi(owner_addr_Reg, mark_word, owner_offset);
2725   }
2726   if (RTMRetryCount > 0) {
2727     // Retry on lock abort if abort status is not permanent.
2728     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
2729   }
2730 
2731   // Appears unlocked - try to swing _owner from null to non-null.
2732   cmpxchgd(flag, /*current val*/ R0, (intptr_t)0, /*new val*/ R16_thread, owner_addr_Reg,
2733            MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2734            MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, &L_decrement_retry, true);
2735 
2736   if (RTMRetryCount > 0) {
2737     // success done else retry
2738     b(DONE_LABEL);
2739     bind(L_decrement_retry);
2740     // Spin and retry if lock is busy.
2741     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, owner_addr_Reg, L_rtm_retry);
2742   } else {
2743     bind(L_decrement_retry);
2744   }
2745 }
2746 
2747 #endif //  INCLUDE_RTM_OPT
2748 
2749 // "The box" is the space on the stack where we copy the object mark.
2750 void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
2751                                                Register temp, Register displaced_header, Register current_header,
2752                                                bool try_bias,
2753                                                RTMLockingCounters* rtm_counters,
2754                                                RTMLockingCounters* stack_rtm_counters,
2755                                                Metadata* method_data,
2756                                                bool use_rtm, bool profile_rtm) {
2757   assert_different_registers(oop, box, temp, displaced_header, current_header);
2758   assert(flag != CCR0, "bad condition register");
2759   Label cont;
2760   Label object_has_monitor;
2761   Label cas_failed;
2762 
2763   // Load markOop from object into displaced_header.
2764   ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop);
2765 
2766 
2767   // Always do locking in runtime.
2768   if (EmitSync & 0x01) {
2769     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
2770     return;
2771   }
2772 
2773   if (try_bias) {
2774     biased_locking_enter(flag, oop, displaced_header, temp, current_header, cont);
2775   }
2776 
2777 #if INCLUDE_RTM_OPT
2778   if (UseRTMForStackLocks && use_rtm) {
2779     rtm_stack_locking(flag, oop, displaced_header, temp, /*temp*/ current_header,
2780                       stack_rtm_counters, method_data, profile_rtm,
2781                       cont, object_has_monitor);
2782   }
2783 #endif // INCLUDE_RTM_OPT
2784 
2785   // Handle existing monitor.
2786   if ((EmitSync & 0x02) == 0) {
2787     // The object has an existing monitor iff (mark & monitor_value) != 0.
2788     andi_(temp, displaced_header, markOopDesc::monitor_value);
2789     bne(CCR0, object_has_monitor);
2790   }
2791 
2792   // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
2793   ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
2794 
2795   // Load Compare Value application register.
2796 
2797   // Initialize the box. (Must happen before we update the object mark!)
2798   std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2799 
2800   // Must fence, otherwise, preceding store(s) may float below cmpxchg.
2801   // Compare object markOop with mark and if equal exchange scratch1 with object markOop.
2802   cmpxchgd(/*flag=*/flag,
2803            /*current_value=*/current_header,
2804            /*compare_value=*/displaced_header,
2805            /*exchange_value=*/box,
2806            /*where=*/oop,
2807            MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2808            MacroAssembler::cmpxchgx_hint_acquire_lock(),
2809            noreg,
2810            &cas_failed,
2811            /*check without membar and ldarx first*/true);
2812   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2813 
2814   // If the compare-and-exchange succeeded, then we found an unlocked
2815   // object and we have now locked it.
2816   b(cont);
2817 
2818   bind(cas_failed);
2819   // We did not see an unlocked object so try the fast recursive case.
2820 
2821   // Check if the owner is self by comparing the value in the markOop of object
2822   // (current_header) with the stack pointer.
2823   sub(current_header, current_header, R1_SP);
2824   load_const_optimized(temp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place);
2825 
2826   and_(R0/*==0?*/, current_header, temp);
2827   // If condition is true we are cont and hence we can store 0 as the
2828   // displaced header in the box, which indicates that it is a recursive lock.
2829   mcrf(flag,CCR0);
2830   std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box);
2831 
2832   // Handle existing monitor.
2833   if ((EmitSync & 0x02) == 0) {
2834     b(cont);
2835 
2836     bind(object_has_monitor);
2837     // The object's monitor m is unlocked iff m->owner == NULL,
2838     // otherwise m->owner may contain a thread or a stack address.
2839 
2840 #if INCLUDE_RTM_OPT
2841     // Use the same RTM locking code in 32- and 64-bit VM.
2842     if (use_rtm) {
2843       rtm_inflated_locking(flag, oop, displaced_header, box, temp, /*temp*/ current_header,
2844                            rtm_counters, method_data, profile_rtm, cont);
2845     } else {
2846 #endif // INCLUDE_RTM_OPT
2847 
2848     // Try to CAS m->owner from NULL to current thread.
2849     addi(temp, displaced_header, ObjectMonitor::owner_offset_in_bytes()-markOopDesc::monitor_value);
2850     cmpxchgd(/*flag=*/flag,
2851              /*current_value=*/current_header,
2852              /*compare_value=*/(intptr_t)0,
2853              /*exchange_value=*/R16_thread,
2854              /*where=*/temp,
2855              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2856              MacroAssembler::cmpxchgx_hint_acquire_lock());
2857 
2858     // Store a non-null value into the box.
2859     std(box, BasicLock::displaced_header_offset_in_bytes(), box);
2860 
2861 #   ifdef ASSERT
2862     bne(flag, cont);
2863     // We have acquired the monitor, check some invariants.
2864     addi(/*monitor=*/temp, temp, -ObjectMonitor::owner_offset_in_bytes());
2865     // Invariant 1: _recursions should be 0.
2866     //assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size");
2867     asm_assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), temp,
2868                             "monitor->_recursions should be 0", -1);
2869     // Invariant 2: OwnerIsThread shouldn't be 0.
2870     //assert(ObjectMonitor::OwnerIsThread_size_in_bytes() == 4, "unexpected size");
2871     //asm_assert_mem4_isnot_zero(ObjectMonitor::OwnerIsThread_offset_in_bytes(), temp,
2872     //                           "monitor->OwnerIsThread shouldn't be 0", -1);
2873 #   endif
2874 
2875 #if INCLUDE_RTM_OPT
2876     } // use_rtm()
2877 #endif
2878   }
2879 
2880   bind(cont);
2881   // flag == EQ indicates success
2882   // flag == NE indicates failure
2883 }
2884 
2885 void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
2886                                                  Register temp, Register displaced_header, Register current_header,
2887                                                  bool try_bias, bool use_rtm) {
2888   assert_different_registers(oop, box, temp, displaced_header, current_header);
2889   assert(flag != CCR0, "bad condition register");
2890   Label cont;
2891   Label object_has_monitor;
2892 
2893   // Always do locking in runtime.
2894   if (EmitSync & 0x01) {
2895     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
2896     return;
2897   }
2898 
2899   if (try_bias) {
2900     biased_locking_exit(flag, oop, current_header, cont);
2901   }
2902 
2903 #if INCLUDE_RTM_OPT
2904   if (UseRTMForStackLocks && use_rtm) {
2905     assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2906     Label L_regular_unlock;
2907     ld(current_header, oopDesc::mark_offset_in_bytes(), oop);         // fetch markword
2908     andi(R0, current_header, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2909     cmpwi(flag, R0, markOopDesc::unlocked_value);                     // bits = 001 unlocked
2910     bne(flag, L_regular_unlock);                                      // else RegularLock
2911     tend_();                                                          // otherwise end...
2912     b(cont);                                                          // ... and we're done
2913     bind(L_regular_unlock);
2914   }
2915 #endif
2916 
2917   // Find the lock address and load the displaced header from the stack.
2918   ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2919 
2920   // If the displaced header is 0, we have a recursive unlock.
2921   cmpdi(flag, displaced_header, 0);
2922   beq(flag, cont);
2923 
2924   // Handle existing monitor.
2925   if ((EmitSync & 0x02) == 0) {
2926     // The object has an existing monitor iff (mark & monitor_value) != 0.
2927     RTM_OPT_ONLY( if (!(UseRTMForStackLocks && use_rtm)) ) // skip load if already done
2928     ld(current_header, oopDesc::mark_offset_in_bytes(), oop);
2929     andi_(R0, current_header, markOopDesc::monitor_value);
2930     bne(CCR0, object_has_monitor);
2931   }
2932 
2933   // Check if it is still a light weight lock, this is is true if we see
2934   // the stack address of the basicLock in the markOop of the object.
2935   // Cmpxchg sets flag to cmpd(current_header, box).
2936   cmpxchgd(/*flag=*/flag,
2937            /*current_value=*/current_header,
2938            /*compare_value=*/box,
2939            /*exchange_value=*/displaced_header,
2940            /*where=*/oop,
2941            MacroAssembler::MemBarRel,
2942            MacroAssembler::cmpxchgx_hint_release_lock(),
2943            noreg,
2944            &cont);
2945 
2946   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2947 
2948   // Handle existing monitor.
2949   if ((EmitSync & 0x02) == 0) {
2950     b(cont);
2951 
2952     bind(object_has_monitor);
2953     addi(current_header, current_header, -markOopDesc::monitor_value); // monitor
2954     ld(temp,             ObjectMonitor::owner_offset_in_bytes(), current_header);
2955 
2956     // It's inflated.
2957 #if INCLUDE_RTM_OPT
2958     if (use_rtm) {
2959       Label L_regular_inflated_unlock;
2960       // Clean monitor_value bit to get valid pointer
2961       cmpdi(flag, temp, 0);
2962       bne(flag, L_regular_inflated_unlock);
2963       tend_();
2964       b(cont);
2965       bind(L_regular_inflated_unlock);
2966     }
2967 #endif
2968 
2969     ld(displaced_header, ObjectMonitor::recursions_offset_in_bytes(), current_header);
2970     xorr(temp, R16_thread, temp);      // Will be 0 if we are the owner.
2971     orr(temp, temp, displaced_header); // Will be 0 if there are 0 recursions.
2972     cmpdi(flag, temp, 0);
2973     bne(flag, cont);
2974 
2975     ld(temp,             ObjectMonitor::EntryList_offset_in_bytes(), current_header);
2976     ld(displaced_header, ObjectMonitor::cxq_offset_in_bytes(), current_header);
2977     orr(temp, temp, displaced_header); // Will be 0 if both are 0.
2978     cmpdi(flag, temp, 0);
2979     bne(flag, cont);
2980     release();
2981     std(temp, ObjectMonitor::owner_offset_in_bytes(), current_header);
2982   }
2983 
2984   bind(cont);
2985   // flag == EQ indicates success
2986   // flag == NE indicates failure
2987 }
2988 
2989 // Write serialization page so VM thread can do a pseudo remote membar.
2990 // We use the current thread pointer to calculate a thread specific
2991 // offset to write to within the page. This minimizes bus traffic
2992 // due to cache line collision.
2993 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
2994   srdi(tmp2, thread, os::get_serialize_page_shift_count());
2995 
2996   int mask = os::vm_page_size() - sizeof(int);
2997   if (Assembler::is_simm(mask, 16)) {
2998     andi(tmp2, tmp2, mask);
2999   } else {
3000     lis(tmp1, (int)((signed short) (mask >> 16)));
3001     ori(tmp1, tmp1, mask & 0x0000ffff);
3002     andr(tmp2, tmp2, tmp1);
3003   }
3004 
3005   load_const(tmp1, (long) os::get_memory_serialize_page());
3006   release();
3007   stwx(R0, tmp1, tmp2);
3008 }
3009 
3010 
3011 // GC barrier helper macros
3012 
3013 // Write the card table byte if needed.
3014 void MacroAssembler::card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp) {
3015   CardTableModRefBS* bs =
3016     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
3017   assert(bs->kind() == BarrierSet::CardTableForRS ||
3018          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
3019 #ifdef ASSERT
3020   cmpdi(CCR0, Rnew_val, 0);
3021   asm_assert_ne("null oop not allowed", 0x321);
3022 #endif
3023   card_table_write(bs->byte_map_base, Rtmp, Rstore_addr);
3024 }
3025 
3026 // Write the card table byte.
3027 void MacroAssembler::card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj) {
3028   assert_different_registers(Robj, Rtmp, R0);
3029   load_const_optimized(Rtmp, (address)byte_map_base, R0);
3030   srdi(Robj, Robj, CardTableModRefBS::card_shift);
3031   li(R0, 0); // dirty
3032   if (UseConcMarkSweepGC) membar(Assembler::StoreStore);
3033   stbx(R0, Rtmp, Robj);
3034 }
3035 
3036 // Kills R31 if value is a volatile register.
3037 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2, bool needs_frame) {
3038   Label done;
3039   cmpdi(CCR0, value, 0);
3040   beq(CCR0, done);         // Use NULL as-is.
3041 
3042   clrrdi(tmp1, value, JNIHandles::weak_tag_size);
3043 #if INCLUDE_ALL_GCS
3044   if (UseG1GC) { andi_(tmp2, value, JNIHandles::weak_tag_mask); }
3045 #endif
3046   ld(value, 0, tmp1);      // Resolve (untagged) jobject.
3047 
3048 #if INCLUDE_ALL_GCS
3049   if (UseG1GC) {
3050     Label not_weak;
3051     beq(CCR0, not_weak);   // Test for jweak tag.
3052     verify_oop(value);
3053     g1_write_barrier_pre(noreg, // obj
3054                          noreg, // offset
3055                          value, // pre_val
3056                          tmp1, tmp2, needs_frame);
3057     bind(not_weak);
3058   }
3059 #endif // INCLUDE_ALL_GCS
3060   verify_oop(value);
3061   bind(done);
3062 }
3063 
3064 #if INCLUDE_ALL_GCS
3065 // General G1 pre-barrier generator.
3066 // Goal: record the previous value if it is not null.
3067 void MacroAssembler::g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
3068                                           Register Rtmp1, Register Rtmp2, bool needs_frame) {
3069   Label runtime, filtered;
3070 
3071   // Is marking active?
3072   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
3073     lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
3074   } else {
3075     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
3076     lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
3077   }
3078   cmpdi(CCR0, Rtmp1, 0);
3079   beq(CCR0, filtered);
3080 
3081   // Do we need to load the previous value?
3082   if (Robj != noreg) {
3083     // Load the previous value...
3084     if (UseCompressedOops) {
3085       lwz(Rpre_val, offset, Robj);
3086     } else {
3087       ld(Rpre_val, offset, Robj);
3088     }
3089     // Previous value has been loaded into Rpre_val.
3090   }
3091   assert(Rpre_val != noreg, "must have a real register");
3092 
3093   // Is the previous value null?
3094   cmpdi(CCR0, Rpre_val, 0);
3095   beq(CCR0, filtered);
3096 
3097   if (Robj != noreg && UseCompressedOops) {
3098     decode_heap_oop_not_null(Rpre_val);
3099   }
3100 
3101   // OK, it's not filtered, so we'll need to call enqueue. In the normal
3102   // case, pre_val will be a scratch G-reg, but there are some cases in
3103   // which it's an O-reg. In the first case, do a normal call. In the
3104   // latter, do a save here and call the frameless version.
3105 
3106   // Can we store original value in the thread's buffer?
3107   // Is index == 0?
3108   // (The index field is typed as size_t.)
3109   const Register Rbuffer = Rtmp1, Rindex = Rtmp2;
3110 
3111   ld(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index()), R16_thread);
3112   cmpdi(CCR0, Rindex, 0);
3113   beq(CCR0, runtime); // If index == 0, goto runtime.
3114   ld(Rbuffer, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_buf()), R16_thread);
3115 
3116   addi(Rindex, Rindex, -wordSize); // Decrement index.
3117   std(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index()), R16_thread);
3118 
3119   // Record the previous value.
3120   stdx(Rpre_val, Rbuffer, Rindex);
3121   b(filtered);
3122 
3123   bind(runtime);
3124 
3125   // May need to preserve LR. Also needed if current frame is not compatible with C calling convention.
3126   if (needs_frame) {
3127     save_LR_CR(Rtmp1);
3128     push_frame_reg_args(0, Rtmp2);
3129   }
3130 
3131   if (Rpre_val->is_volatile() && Robj == noreg) mr(R31, Rpre_val); // Save pre_val across C call if it was preloaded.
3132   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), Rpre_val, R16_thread);
3133   if (Rpre_val->is_volatile() && Robj == noreg) mr(Rpre_val, R31); // restore
3134 
3135   if (needs_frame) {
3136     pop_frame();
3137     restore_LR_CR(Rtmp1);
3138   }
3139 
3140   bind(filtered);
3141 }
3142 
3143 // General G1 post-barrier generator
3144 // Store cross-region card.
3145 void MacroAssembler::g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1, Register Rtmp2, Register Rtmp3, Label *filtered_ext) {
3146   Label runtime, filtered_int;
3147   Label& filtered = (filtered_ext != NULL) ? *filtered_ext : filtered_int;
3148   assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2);
3149 
3150   G1SATBCardTableLoggingModRefBS* bs =
3151     barrier_set_cast<G1SATBCardTableLoggingModRefBS>(Universe::heap()->barrier_set());
3152 
3153   // Does store cross heap regions?
3154   if (G1RSBarrierRegionFilter) {
3155     xorr(Rtmp1, Rstore_addr, Rnew_val);
3156     srdi_(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes);
3157     beq(CCR0, filtered);
3158   }
3159 
3160   // Crosses regions, storing NULL?
3161 #ifdef ASSERT
3162   cmpdi(CCR0, Rnew_val, 0);
3163   asm_assert_ne("null oop not allowed (G1)", 0x322); // Checked by caller on PPC64, so following branch is obsolete:
3164   //beq(CCR0, filtered);
3165 #endif
3166 
3167   // Storing region crossing non-NULL, is card already dirty?
3168   assert(sizeof(*bs->byte_map_base) == sizeof(jbyte), "adjust this code");
3169   const Register Rcard_addr = Rtmp1;
3170   Register Rbase = Rtmp2;
3171   load_const_optimized(Rbase, (address)bs->byte_map_base, /*temp*/ Rtmp3);
3172 
3173   srdi(Rcard_addr, Rstore_addr, CardTableModRefBS::card_shift);
3174 
3175   // Get the address of the card.
3176   lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr);
3177   cmpwi(CCR0, Rtmp3, (int)G1SATBCardTableModRefBS::g1_young_card_val());
3178   beq(CCR0, filtered);
3179 
3180   membar(Assembler::StoreLoad);
3181   lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr);  // Reload after membar.
3182   cmpwi(CCR0, Rtmp3 /* card value */, CardTableModRefBS::dirty_card_val());
3183   beq(CCR0, filtered);
3184 
3185   // Storing a region crossing, non-NULL oop, card is clean.
3186   // Dirty card and log.
3187   li(Rtmp3, CardTableModRefBS::dirty_card_val());
3188   //release(); // G1: oops are allowed to get visible after dirty marking.
3189   stbx(Rtmp3, Rbase, Rcard_addr);
3190 
3191   add(Rcard_addr, Rbase, Rcard_addr); // This is the address which needs to get enqueued.
3192   Rbase = noreg; // end of lifetime
3193 
3194   const Register Rqueue_index = Rtmp2,
3195                  Rqueue_buf   = Rtmp3;
3196   ld(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index()), R16_thread);
3197   cmpdi(CCR0, Rqueue_index, 0);
3198   beq(CCR0, runtime); // index == 0 then jump to runtime
3199   ld(Rqueue_buf, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_buf()), R16_thread);
3200 
3201   addi(Rqueue_index, Rqueue_index, -wordSize); // decrement index
3202   std(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index()), R16_thread);
3203 
3204   stdx(Rcard_addr, Rqueue_buf, Rqueue_index); // store card
3205   b(filtered);
3206 
3207   bind(runtime);
3208 
3209   // Save the live input values.
3210   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr, R16_thread);
3211 
3212   bind(filtered_int);
3213 }
3214 #endif // INCLUDE_ALL_GCS
3215 
3216 // Values for last_Java_pc, and last_Java_sp must comply to the rules
3217 // in frame_ppc.hpp.
3218 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) {
3219   // Always set last_Java_pc and flags first because once last_Java_sp
3220   // is visible has_last_Java_frame is true and users will look at the
3221   // rest of the fields. (Note: flags should always be zero before we
3222   // get here so doesn't need to be set.)
3223 
3224   // Verify that last_Java_pc was zeroed on return to Java
3225   asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread,
3226                           "last_Java_pc not zeroed before leaving Java", 0x200);
3227 
3228   // When returning from calling out from Java mode the frame anchor's
3229   // last_Java_pc will always be set to NULL. It is set here so that
3230   // if we are doing a call to native (not VM) that we capture the
3231   // known pc and don't have to rely on the native call having a
3232   // standard frame linkage where we can find the pc.
3233   if (last_Java_pc != noreg)
3234     std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
3235 
3236   // Set last_Java_sp last.
3237   std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
3238 }
3239 
3240 void MacroAssembler::reset_last_Java_frame(void) {
3241   asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
3242                              R16_thread, "SP was not set, still zero", 0x202);
3243 
3244   BLOCK_COMMENT("reset_last_Java_frame {");
3245   li(R0, 0);
3246 
3247   // _last_Java_sp = 0
3248   std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
3249 
3250   // _last_Java_pc = 0
3251   std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
3252   BLOCK_COMMENT("} reset_last_Java_frame");
3253 }
3254 
3255 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) {
3256   assert_different_registers(sp, tmp1);
3257 
3258   // sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via
3259   // TOP_IJAVA_FRAME_ABI.
3260   // FIXME: assert that we really have a TOP_IJAVA_FRAME here!
3261   address entry = pc();
3262   load_const_optimized(tmp1, entry);
3263 
3264   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1);
3265 }
3266 
3267 void MacroAssembler::get_vm_result(Register oop_result) {
3268   // Read:
3269   //   R16_thread
3270   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
3271   //
3272   // Updated:
3273   //   oop_result
3274   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
3275 
3276   verify_thread();
3277 
3278   ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3279   li(R0, 0);
3280   std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3281 
3282   verify_oop(oop_result);
3283 }
3284 
3285 void MacroAssembler::get_vm_result_2(Register metadata_result) {
3286   // Read:
3287   //   R16_thread
3288   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
3289   //
3290   // Updated:
3291   //   metadata_result
3292   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
3293 
3294   ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
3295   li(R0, 0);
3296   std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
3297 }
3298 
3299 Register MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3300   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided.
3301   if (Universe::narrow_klass_base() != 0) {
3302     // Use dst as temp if it is free.
3303     sub_const_optimized(dst, current, Universe::narrow_klass_base(), R0);
3304     current = dst;
3305   }
3306   if (Universe::narrow_klass_shift() != 0) {
3307     srdi(dst, current, Universe::narrow_klass_shift());
3308     current = dst;
3309   }
3310   return current;
3311 }
3312 
3313 void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) {
3314   if (UseCompressedClassPointers) {
3315     Register compressedKlass = encode_klass_not_null(ck, klass);
3316     stw(compressedKlass, oopDesc::klass_offset_in_bytes(), dst_oop);
3317   } else {
3318     std(klass, oopDesc::klass_offset_in_bytes(), dst_oop);
3319   }
3320 }
3321 
3322 void MacroAssembler::store_klass_gap(Register dst_oop, Register val) {
3323   if (UseCompressedClassPointers) {
3324     if (val == noreg) {
3325       val = R0;
3326       li(val, 0);
3327     }
3328     stw(val, oopDesc::klass_gap_offset_in_bytes(), dst_oop); // klass gap if compressed
3329   }
3330 }
3331 
3332 int MacroAssembler::instr_size_for_decode_klass_not_null() {
3333   if (!UseCompressedClassPointers) return 0;
3334   int num_instrs = 1;  // shift or move
3335   if (Universe::narrow_klass_base() != 0) num_instrs = 7;  // shift + load const + add
3336   return num_instrs * BytesPerInstWord;
3337 }
3338 
3339 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3340   assert(dst != R0, "Dst reg may not be R0, as R0 is used here.");
3341   if (src == noreg) src = dst;
3342   Register shifted_src = src;
3343   if (Universe::narrow_klass_shift() != 0 ||
3344       Universe::narrow_klass_base() == 0 && src != dst) {  // Move required.
3345     shifted_src = dst;
3346     sldi(shifted_src, src, Universe::narrow_klass_shift());
3347   }
3348   if (Universe::narrow_klass_base() != 0) {
3349     add_const_optimized(dst, shifted_src, Universe::narrow_klass_base(), R0);
3350   }
3351 }
3352 
3353 void MacroAssembler::load_klass(Register dst, Register src) {
3354   if (UseCompressedClassPointers) {
3355     lwz(dst, oopDesc::klass_offset_in_bytes(), src);
3356     // Attention: no null check here!
3357     decode_klass_not_null(dst, dst);
3358   } else {
3359     ld(dst, oopDesc::klass_offset_in_bytes(), src);
3360   }
3361 }
3362 
3363 void MacroAssembler::load_mirror_from_const_method(Register mirror, Register const_method) {
3364   ld(mirror, in_bytes(ConstMethod::constants_offset()), const_method);
3365   ld(mirror, ConstantPool::pool_holder_offset_in_bytes(), mirror);
3366   ld(mirror, in_bytes(Klass::java_mirror_offset()), mirror);
3367 }
3368 
3369 // Clear Array
3370 // For very short arrays. tmp == R0 is allowed.
3371 void MacroAssembler::clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp, int offset) {
3372   if (cnt_dwords > 0) { li(tmp, 0); }
3373   for (int i = 0; i < cnt_dwords; ++i) { std(tmp, offset + i * 8, base_ptr); }
3374 }
3375 
3376 // Version for constant short array length. Kills base_ptr. tmp == R0 is allowed.
3377 void MacroAssembler::clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp) {
3378   if (cnt_dwords < 8) {
3379     clear_memory_unrolled(base_ptr, cnt_dwords, tmp);
3380     return;
3381   }
3382 
3383   Label loop;
3384   const long loopcnt   = cnt_dwords >> 1,
3385              remainder = cnt_dwords & 1;
3386 
3387   li(tmp, loopcnt);
3388   mtctr(tmp);
3389   li(tmp, 0);
3390   bind(loop);
3391     std(tmp, 0, base_ptr);
3392     std(tmp, 8, base_ptr);
3393     addi(base_ptr, base_ptr, 16);
3394     bdnz(loop);
3395   if (remainder) { std(tmp, 0, base_ptr); }
3396 }
3397 
3398 // Kills both input registers. tmp == R0 is allowed.
3399 void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp, long const_cnt) {
3400   // Procedure for large arrays (uses data cache block zero instruction).
3401     Label startloop, fast, fastloop, small_rest, restloop, done;
3402     const int cl_size         = VM_Version::L1_data_cache_line_size(),
3403               cl_dwords       = cl_size >> 3,
3404               cl_dw_addr_bits = exact_log2(cl_dwords),
3405               dcbz_min        = 1,  // Min count of dcbz executions, needs to be >0.
3406               min_cnt         = ((dcbz_min + 1) << cl_dw_addr_bits) - 1;
3407 
3408   if (const_cnt >= 0) {
3409     // Constant case.
3410     if (const_cnt < min_cnt) {
3411       clear_memory_constlen(base_ptr, const_cnt, tmp);
3412       return;
3413     }
3414     load_const_optimized(cnt_dwords, const_cnt, tmp);
3415   } else {
3416     // cnt_dwords already loaded in register. Need to check size.
3417     cmpdi(CCR1, cnt_dwords, min_cnt); // Big enough? (ensure >= dcbz_min lines included).
3418     blt(CCR1, small_rest);
3419   }
3420     rldicl_(tmp, base_ptr, 64-3, 64-cl_dw_addr_bits); // Extract dword offset within first cache line.
3421     beq(CCR0, fast);                                  // Already 128byte aligned.
3422 
3423     subfic(tmp, tmp, cl_dwords);
3424     mtctr(tmp);                        // Set ctr to hit 128byte boundary (0<ctr<cl_dwords).
3425     subf(cnt_dwords, tmp, cnt_dwords); // rest.
3426     li(tmp, 0);
3427 
3428   bind(startloop);                     // Clear at the beginning to reach 128byte boundary.
3429     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
3430     addi(base_ptr, base_ptr, 8);
3431     bdnz(startloop);
3432 
3433   bind(fast);                                  // Clear 128byte blocks.
3434     srdi(tmp, cnt_dwords, cl_dw_addr_bits);    // Loop count for 128byte loop (>0).
3435     andi(cnt_dwords, cnt_dwords, cl_dwords-1); // Rest in dwords.
3436     mtctr(tmp);                                // Load counter.
3437 
3438   bind(fastloop);
3439     dcbz(base_ptr);                    // Clear 128byte aligned block.
3440     addi(base_ptr, base_ptr, cl_size);
3441     bdnz(fastloop);
3442 
3443   bind(small_rest);
3444     cmpdi(CCR0, cnt_dwords, 0);        // size 0?
3445     beq(CCR0, done);                   // rest == 0
3446     li(tmp, 0);
3447     mtctr(cnt_dwords);                 // Load counter.
3448 
3449   bind(restloop);                      // Clear rest.
3450     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
3451     addi(base_ptr, base_ptr, 8);
3452     bdnz(restloop);
3453 
3454   bind(done);
3455 }
3456 
3457 /////////////////////////////////////////// String intrinsics ////////////////////////////////////////////
3458 
3459 #ifdef COMPILER2
3460 // Intrinsics for CompactStrings
3461 
3462 // Compress char[] to byte[] by compressing 16 bytes at once.
3463 void MacroAssembler::string_compress_16(Register src, Register dst, Register cnt,
3464                                         Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
3465                                         Label& Lfailure) {
3466 
3467   const Register tmp0 = R0;
3468   assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3469   Label Lloop, Lslow;
3470 
3471   // Check if cnt >= 8 (= 16 bytes)
3472   lis(tmp1, 0xFF);                // tmp1 = 0x00FF00FF00FF00FF
3473   srwi_(tmp2, cnt, 3);
3474   beq(CCR0, Lslow);
3475   ori(tmp1, tmp1, 0xFF);
3476   rldimi(tmp1, tmp1, 32, 0);
3477   mtctr(tmp2);
3478 
3479   // 2x unrolled loop
3480   bind(Lloop);
3481   ld(tmp2, 0, src);               // _0_1_2_3 (Big Endian)
3482   ld(tmp4, 8, src);               // _4_5_6_7
3483 
3484   orr(tmp0, tmp2, tmp4);
3485   rldicl(tmp3, tmp2, 6*8, 64-24); // _____1_2
3486   rldimi(tmp2, tmp2, 2*8, 2*8);   // _0_2_3_3
3487   rldicl(tmp5, tmp4, 6*8, 64-24); // _____5_6
3488   rldimi(tmp4, tmp4, 2*8, 2*8);   // _4_6_7_7
3489 
3490   andc_(tmp0, tmp0, tmp1);
3491   bne(CCR0, Lfailure);            // Not latin1.
3492   addi(src, src, 16);
3493 
3494   rlwimi(tmp3, tmp2, 0*8, 24, 31);// _____1_3
3495   srdi(tmp2, tmp2, 3*8);          // ____0_2_
3496   rlwimi(tmp5, tmp4, 0*8, 24, 31);// _____5_7
3497   srdi(tmp4, tmp4, 3*8);          // ____4_6_
3498 
3499   orr(tmp2, tmp2, tmp3);          // ____0123
3500   orr(tmp4, tmp4, tmp5);          // ____4567
3501 
3502   stw(tmp2, 0, dst);
3503   stw(tmp4, 4, dst);
3504   addi(dst, dst, 8);
3505   bdnz(Lloop);
3506 
3507   bind(Lslow);                    // Fallback to slow version
3508 }
3509 
3510 // Compress char[] to byte[]. cnt must be positive int.
3511 void MacroAssembler::string_compress(Register src, Register dst, Register cnt, Register tmp, Label& Lfailure) {
3512   Label Lloop;
3513   mtctr(cnt);
3514 
3515   bind(Lloop);
3516   lhz(tmp, 0, src);
3517   cmplwi(CCR0, tmp, 0xff);
3518   bgt(CCR0, Lfailure);            // Not latin1.
3519   addi(src, src, 2);
3520   stb(tmp, 0, dst);
3521   addi(dst, dst, 1);
3522   bdnz(Lloop);
3523 }
3524 
3525 // Inflate byte[] to char[] by inflating 16 bytes at once.
3526 void MacroAssembler::string_inflate_16(Register src, Register dst, Register cnt,
3527                                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
3528   const Register tmp0 = R0;
3529   assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3530   Label Lloop, Lslow;
3531 
3532   // Check if cnt >= 8
3533   srwi_(tmp2, cnt, 3);
3534   beq(CCR0, Lslow);
3535   lis(tmp1, 0xFF);                // tmp1 = 0x00FF00FF
3536   ori(tmp1, tmp1, 0xFF);
3537   mtctr(tmp2);
3538 
3539   // 2x unrolled loop
3540   bind(Lloop);
3541   lwz(tmp2, 0, src);              // ____0123 (Big Endian)
3542   lwz(tmp4, 4, src);              // ____4567
3543   addi(src, src, 8);
3544 
3545   rldicl(tmp3, tmp2, 7*8, 64-8);  // _______2
3546   rlwimi(tmp2, tmp2, 3*8, 16, 23);// ____0113
3547   rldicl(tmp5, tmp4, 7*8, 64-8);  // _______6
3548   rlwimi(tmp4, tmp4, 3*8, 16, 23);// ____4557
3549 
3550   andc(tmp0, tmp2, tmp1);         // ____0_1_
3551   rlwimi(tmp2, tmp3, 2*8, 0, 23); // _____2_3
3552   andc(tmp3, tmp4, tmp1);         // ____4_5_
3553   rlwimi(tmp4, tmp5, 2*8, 0, 23); // _____6_7
3554 
3555   rldimi(tmp2, tmp0, 3*8, 0*8);   // _0_1_2_3
3556   rldimi(tmp4, tmp3, 3*8, 0*8);   // _4_5_6_7
3557 
3558   std(tmp2, 0, dst);
3559   std(tmp4, 8, dst);
3560   addi(dst, dst, 16);
3561   bdnz(Lloop);
3562 
3563   bind(Lslow);                    // Fallback to slow version
3564 }
3565 
3566 // Inflate byte[] to char[]. cnt must be positive int.
3567 void MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp) {
3568   Label Lloop;
3569   mtctr(cnt);
3570 
3571   bind(Lloop);
3572   lbz(tmp, 0, src);
3573   addi(src, src, 1);
3574   sth(tmp, 0, dst);
3575   addi(dst, dst, 2);
3576   bdnz(Lloop);
3577 }
3578 
3579 void MacroAssembler::string_compare(Register str1, Register str2,
3580                                     Register cnt1, Register cnt2,
3581                                     Register tmp1, Register result, int ae) {
3582   const Register tmp0 = R0,
3583                  diff = tmp1;
3584 
3585   assert_different_registers(str1, str2, cnt1, cnt2, tmp0, tmp1, result);
3586   Label Ldone, Lslow, Lloop, Lreturn_diff;
3587 
3588   // Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
3589   // we interchange str1 and str2 in the UL case and negate the result.
3590   // Like this, str1 is always latin1 encoded, except for the UU case.
3591   // In addition, we need 0 (or sign which is 0) extend.
3592 
3593   if (ae == StrIntrinsicNode::UU) {
3594     srwi(cnt1, cnt1, 1);
3595   } else {
3596     clrldi(cnt1, cnt1, 32);
3597   }
3598 
3599   if (ae != StrIntrinsicNode::LL) {
3600     srwi(cnt2, cnt2, 1);
3601   } else {
3602     clrldi(cnt2, cnt2, 32);
3603   }
3604 
3605   // See if the lengths are different, and calculate min in cnt1.
3606   // Save diff in case we need it for a tie-breaker.
3607   subf_(diff, cnt2, cnt1); // diff = cnt1 - cnt2
3608   // if (diff > 0) { cnt1 = cnt2; }
3609   if (VM_Version::has_isel()) {
3610     isel(cnt1, CCR0, Assembler::greater, /*invert*/ false, cnt2);
3611   } else {
3612     Label Lskip;
3613     blt(CCR0, Lskip);
3614     mr(cnt1, cnt2);
3615     bind(Lskip);
3616   }
3617 
3618   // Rename registers
3619   Register chr1 = result;
3620   Register chr2 = tmp0;
3621 
3622   // Compare multiple characters in fast loop (only implemented for same encoding).
3623   int stride1 = 8, stride2 = 8;
3624   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
3625     int log2_chars_per_iter = (ae == StrIntrinsicNode::LL) ? 3 : 2;
3626     Label Lfastloop, Lskipfast;
3627 
3628     srwi_(tmp0, cnt1, log2_chars_per_iter);
3629     beq(CCR0, Lskipfast);
3630     rldicl(cnt2, cnt1, 0, 64 - log2_chars_per_iter); // Remaining characters.
3631     li(cnt1, 1 << log2_chars_per_iter); // Initialize for failure case: Rescan characters from current iteration.
3632     mtctr(tmp0);
3633 
3634     bind(Lfastloop);
3635     ld(chr1, 0, str1);
3636     ld(chr2, 0, str2);
3637     cmpd(CCR0, chr1, chr2);
3638     bne(CCR0, Lslow);
3639     addi(str1, str1, stride1);
3640     addi(str2, str2, stride2);
3641     bdnz(Lfastloop);
3642     mr(cnt1, cnt2); // Remaining characters.
3643     bind(Lskipfast);
3644   }
3645 
3646   // Loop which searches the first difference character by character.
3647   cmpwi(CCR0, cnt1, 0);
3648   beq(CCR0, Lreturn_diff);
3649   bind(Lslow);
3650   mtctr(cnt1);
3651 
3652   switch (ae) {
3653     case StrIntrinsicNode::LL: stride1 = 1; stride2 = 1; break;
3654     case StrIntrinsicNode::UL: // fallthru (see comment above)
3655     case StrIntrinsicNode::LU: stride1 = 1; stride2 = 2; break;
3656     case StrIntrinsicNode::UU: stride1 = 2; stride2 = 2; break;
3657     default: ShouldNotReachHere(); break;
3658   }
3659 
3660   bind(Lloop);
3661   if (stride1 == 1) { lbz(chr1, 0, str1); } else { lhz(chr1, 0, str1); }
3662   if (stride2 == 1) { lbz(chr2, 0, str2); } else { lhz(chr2, 0, str2); }
3663   subf_(result, chr2, chr1); // result = chr1 - chr2
3664   bne(CCR0, Ldone);
3665   addi(str1, str1, stride1);
3666   addi(str2, str2, stride2);
3667   bdnz(Lloop);
3668 
3669   // If strings are equal up to min length, return the length difference.
3670   bind(Lreturn_diff);
3671   mr(result, diff);
3672 
3673   // Otherwise, return the difference between the first mismatched chars.
3674   bind(Ldone);
3675   if (ae == StrIntrinsicNode::UL) {
3676     neg(result, result); // Negate result (see note above).
3677   }
3678 }
3679 
3680 void MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2,
3681                                   Register limit, Register tmp1, Register result, bool is_byte) {
3682   const Register tmp0 = R0;
3683   assert_different_registers(ary1, ary2, limit, tmp0, tmp1, result);
3684   Label Ldone, Lskiploop, Lloop, Lfastloop, Lskipfast;
3685   bool limit_needs_shift = false;
3686 
3687   if (is_array_equ) {
3688     const int length_offset = arrayOopDesc::length_offset_in_bytes();
3689     const int base_offset   = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
3690 
3691     // Return true if the same array.
3692     cmpd(CCR0, ary1, ary2);
3693     beq(CCR0, Lskiploop);
3694 
3695     // Return false if one of them is NULL.
3696     cmpdi(CCR0, ary1, 0);
3697     cmpdi(CCR1, ary2, 0);
3698     li(result, 0);
3699     cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
3700     beq(CCR0, Ldone);
3701 
3702     // Load the lengths of arrays.
3703     lwz(limit, length_offset, ary1);
3704     lwz(tmp0, length_offset, ary2);
3705 
3706     // Return false if the two arrays are not equal length.
3707     cmpw(CCR0, limit, tmp0);
3708     bne(CCR0, Ldone);
3709 
3710     // Load array addresses.
3711     addi(ary1, ary1, base_offset);
3712     addi(ary2, ary2, base_offset);
3713   } else {
3714     limit_needs_shift = !is_byte;
3715     li(result, 0); // Assume not equal.
3716   }
3717 
3718   // Rename registers
3719   Register chr1 = tmp0;
3720   Register chr2 = tmp1;
3721 
3722   // Compare 8 bytes per iteration in fast loop.
3723   const int log2_chars_per_iter = is_byte ? 3 : 2;
3724 
3725   srwi_(tmp0, limit, log2_chars_per_iter + (limit_needs_shift ? 1 : 0));
3726   beq(CCR0, Lskipfast);
3727   mtctr(tmp0);
3728 
3729   bind(Lfastloop);
3730   ld(chr1, 0, ary1);
3731   ld(chr2, 0, ary2);
3732   addi(ary1, ary1, 8);
3733   addi(ary2, ary2, 8);
3734   cmpd(CCR0, chr1, chr2);
3735   bne(CCR0, Ldone);
3736   bdnz(Lfastloop);
3737 
3738   bind(Lskipfast);
3739   rldicl_(limit, limit, limit_needs_shift ? 64 - 1 : 0, 64 - log2_chars_per_iter); // Remaining characters.
3740   beq(CCR0, Lskiploop);
3741   mtctr(limit);
3742 
3743   // Character by character.
3744   bind(Lloop);
3745   if (is_byte) {
3746     lbz(chr1, 0, ary1);
3747     lbz(chr2, 0, ary2);
3748     addi(ary1, ary1, 1);
3749     addi(ary2, ary2, 1);
3750   } else {
3751     lhz(chr1, 0, ary1);
3752     lhz(chr2, 0, ary2);
3753     addi(ary1, ary1, 2);
3754     addi(ary2, ary2, 2);
3755   }
3756   cmpw(CCR0, chr1, chr2);
3757   bne(CCR0, Ldone);
3758   bdnz(Lloop);
3759 
3760   bind(Lskiploop);
3761   li(result, 1); // All characters are equal.
3762   bind(Ldone);
3763 }
3764 
3765 void MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
3766                                     Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
3767                                     Register tmp1, Register tmp2, Register tmp3, Register tmp4, int ae) {
3768 
3769   // Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
3770   Label L_TooShort, L_Found, L_NotFound, L_End;
3771   Register last_addr = haycnt, // Kill haycnt at the beginning.
3772   addr      = tmp1,
3773   n_start   = tmp2,
3774   ch1       = tmp3,
3775   ch2       = R0;
3776 
3777   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
3778   const int h_csize = (ae == StrIntrinsicNode::LL) ? 1 : 2;
3779   const int n_csize = (ae == StrIntrinsicNode::UU) ? 2 : 1;
3780 
3781   // **************************************************************************************************
3782   // Prepare for main loop: optimized for needle count >=2, bail out otherwise.
3783   // **************************************************************************************************
3784 
3785   // Compute last haystack addr to use if no match gets found.
3786   clrldi(haycnt, haycnt, 32);         // Ensure positive int is valid as 64 bit value.
3787   addi(addr, haystack, -h_csize);     // Accesses use pre-increment.
3788   if (needlecntval == 0) { // variable needlecnt
3789    cmpwi(CCR6, needlecnt, 2);
3790    clrldi(needlecnt, needlecnt, 32);  // Ensure positive int is valid as 64 bit value.
3791    blt(CCR6, L_TooShort);             // Variable needlecnt: handle short needle separately.
3792   }
3793 
3794   if (n_csize == 2) { lwz(n_start, 0, needle); } else { lhz(n_start, 0, needle); } // Load first 2 characters of needle.
3795 
3796   if (needlecntval == 0) { // variable needlecnt
3797    subf(ch1, needlecnt, haycnt);      // Last character index to compare is haycnt-needlecnt.
3798    addi(needlecnt, needlecnt, -2);    // Rest of needle.
3799   } else { // constant needlecnt
3800   guarantee(needlecntval != 1, "IndexOf with single-character needle must be handled separately");
3801   assert((needlecntval & 0x7fff) == needlecntval, "wrong immediate");
3802    addi(ch1, haycnt, -needlecntval);  // Last character index to compare is haycnt-needlecnt.
3803    if (needlecntval > 3) { li(needlecnt, needlecntval - 2); } // Rest of needle.
3804   }
3805 
3806   if (h_csize == 2) { slwi(ch1, ch1, 1); } // Scale to number of bytes.
3807 
3808   if (ae ==StrIntrinsicNode::UL) {
3809    srwi(tmp4, n_start, 1*8);          // ___0
3810    rlwimi(n_start, tmp4, 2*8, 0, 23); // _0_1
3811   }
3812 
3813   add(last_addr, haystack, ch1);      // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
3814 
3815   // Main Loop (now we have at least 2 characters).
3816   Label L_OuterLoop, L_InnerLoop, L_FinalCheck, L_Comp1, L_Comp2;
3817   bind(L_OuterLoop); // Search for 1st 2 characters.
3818   Register addr_diff = tmp4;
3819    subf(addr_diff, addr, last_addr);  // Difference between already checked address and last address to check.
3820    addi(addr, addr, h_csize);         // This is the new address we want to use for comparing.
3821    srdi_(ch2, addr_diff, h_csize);
3822    beq(CCR0, L_FinalCheck);           // 2 characters left?
3823    mtctr(ch2);                        // num of characters / 2
3824   bind(L_InnerLoop);                  // Main work horse (2x unrolled search loop)
3825    if (h_csize == 2) {                // Load 2 characters of haystack (ignore alignment).
3826     lwz(ch1, 0, addr);
3827     lwz(ch2, 2, addr);
3828    } else {
3829     lhz(ch1, 0, addr);
3830     lhz(ch2, 1, addr);
3831    }
3832    cmpw(CCR0, ch1, n_start);          // Compare 2 characters (1 would be sufficient but try to reduce branches to CompLoop).
3833    cmpw(CCR1, ch2, n_start);
3834    beq(CCR0, L_Comp1);                // Did we find the needle start?
3835    beq(CCR1, L_Comp2);
3836    addi(addr, addr, 2 * h_csize);
3837    bdnz(L_InnerLoop);
3838   bind(L_FinalCheck);
3839    andi_(addr_diff, addr_diff, h_csize); // Remaining characters not covered by InnerLoop: (num of characters) & 1.
3840    beq(CCR0, L_NotFound);
3841    if (h_csize == 2) { lwz(ch1, 0, addr); } else { lhz(ch1, 0, addr); } // One position left at which we have to compare.
3842    cmpw(CCR1, ch1, n_start);
3843    beq(CCR1, L_Comp1);
3844   bind(L_NotFound);
3845    li(result, -1);                    // not found
3846    b(L_End);
3847 
3848    // **************************************************************************************************
3849    // Special Case: unfortunately, the variable needle case can be called with needlecnt<2
3850    // **************************************************************************************************
3851   if (needlecntval == 0) {           // We have to handle these cases separately.
3852   Label L_OneCharLoop;
3853   bind(L_TooShort);
3854    mtctr(haycnt);
3855    if (n_csize == 2) { lhz(n_start, 0, needle); } else { lbz(n_start, 0, needle); } // First character of needle
3856   bind(L_OneCharLoop);
3857    if (h_csize == 2) { lhzu(ch1, 2, addr); } else { lbzu(ch1, 1, addr); }
3858    cmpw(CCR1, ch1, n_start);
3859    beq(CCR1, L_Found);               // Did we find the one character needle?
3860    bdnz(L_OneCharLoop);
3861    li(result, -1);                   // Not found.
3862    b(L_End);
3863   }
3864 
3865   // **************************************************************************************************
3866   // Regular Case Part II: compare rest of needle (first 2 characters have been compared already)
3867   // **************************************************************************************************
3868 
3869   // Compare the rest
3870   bind(L_Comp2);
3871    addi(addr, addr, h_csize);        // First comparison has failed, 2nd one hit.
3872   bind(L_Comp1);                     // Addr points to possible needle start.
3873   if (needlecntval != 2) {           // Const needlecnt==2?
3874    if (needlecntval != 3) {
3875     if (needlecntval == 0) { beq(CCR6, L_Found); } // Variable needlecnt==2?
3876     Register n_ind = tmp4,
3877              h_ind = n_ind;
3878     li(n_ind, 2 * n_csize);          // First 2 characters are already compared, use index 2.
3879     mtctr(needlecnt);                // Decremented by 2, still > 0.
3880    Label L_CompLoop;
3881    bind(L_CompLoop);
3882     if (ae ==StrIntrinsicNode::UL) {
3883       h_ind = ch1;
3884       sldi(h_ind, n_ind, 1);
3885     }
3886     if (n_csize == 2) { lhzx(ch2, needle, n_ind); } else { lbzx(ch2, needle, n_ind); }
3887     if (h_csize == 2) { lhzx(ch1, addr, h_ind); } else { lbzx(ch1, addr, h_ind); }
3888     cmpw(CCR1, ch1, ch2);
3889     bne(CCR1, L_OuterLoop);
3890     addi(n_ind, n_ind, n_csize);
3891     bdnz(L_CompLoop);
3892    } else { // No loop required if there's only one needle character left.
3893     if (n_csize == 2) { lhz(ch2, 2 * 2, needle); } else { lbz(ch2, 2 * 1, needle); }
3894     if (h_csize == 2) { lhz(ch1, 2 * 2, addr); } else { lbz(ch1, 2 * 1, addr); }
3895     cmpw(CCR1, ch1, ch2);
3896     bne(CCR1, L_OuterLoop);
3897    }
3898   }
3899   // Return index ...
3900   bind(L_Found);
3901    subf(result, haystack, addr);     // relative to haystack, ...
3902    if (h_csize == 2) { srdi(result, result, 1); } // in characters.
3903   bind(L_End);
3904 } // string_indexof
3905 
3906 void MacroAssembler::string_indexof_char(Register result, Register haystack, Register haycnt,
3907                                          Register needle, jchar needleChar, Register tmp1, Register tmp2, bool is_byte) {
3908   assert_different_registers(haystack, haycnt, needle, tmp1, tmp2);
3909 
3910   Label L_InnerLoop, L_FinalCheck, L_Found1, L_Found2, L_NotFound, L_End;
3911   Register addr = tmp1,
3912            ch1 = tmp2,
3913            ch2 = R0;
3914 
3915   const int h_csize = is_byte ? 1 : 2;
3916 
3917 //4:
3918    srwi_(tmp2, haycnt, 1);   // Shift right by exact_log2(UNROLL_FACTOR).
3919    mr(addr, haystack);
3920    beq(CCR0, L_FinalCheck);
3921    mtctr(tmp2);              // Move to count register.
3922 //8:
3923   bind(L_InnerLoop);         // Main work horse (2x unrolled search loop).
3924    if (!is_byte) {
3925     lhz(ch1, 0, addr);
3926     lhz(ch2, 2, addr);
3927    } else {
3928     lbz(ch1, 0, addr);
3929     lbz(ch2, 1, addr);
3930    }
3931    (needle != R0) ? cmpw(CCR0, ch1, needle) : cmplwi(CCR0, ch1, (unsigned int)needleChar);
3932    (needle != R0) ? cmpw(CCR1, ch2, needle) : cmplwi(CCR1, ch2, (unsigned int)needleChar);
3933    beq(CCR0, L_Found1);      // Did we find the needle?
3934    beq(CCR1, L_Found2);
3935    addi(addr, addr, 2 * h_csize);
3936    bdnz(L_InnerLoop);
3937 //16:
3938   bind(L_FinalCheck);
3939    andi_(R0, haycnt, 1);
3940    beq(CCR0, L_NotFound);
3941    if (!is_byte) { lhz(ch1, 0, addr); } else { lbz(ch1, 0, addr); } // One position left at which we have to compare.
3942    (needle != R0) ? cmpw(CCR1, ch1, needle) : cmplwi(CCR1, ch1, (unsigned int)needleChar);
3943    beq(CCR1, L_Found1);
3944 //21:
3945   bind(L_NotFound);
3946    li(result, -1);           // Not found.
3947    b(L_End);
3948 
3949   bind(L_Found2);
3950    addi(addr, addr, h_csize);
3951 //24:
3952   bind(L_Found1);            // Return index ...
3953    subf(result, haystack, addr); // relative to haystack, ...
3954    if (!is_byte) { srdi(result, result, 1); } // in characters.
3955   bind(L_End);
3956 } // string_indexof_char
3957 
3958 
3959 void MacroAssembler::has_negatives(Register src, Register cnt, Register result,
3960                                    Register tmp1, Register tmp2) {
3961   const Register tmp0 = R0;
3962   assert_different_registers(src, result, cnt, tmp0, tmp1, tmp2);
3963   Label Lfastloop, Lslow, Lloop, Lnoneg, Ldone;
3964 
3965   // Check if cnt >= 8 (= 16 bytes)
3966   lis(tmp1, (int)(short)0x8080);  // tmp1 = 0x8080808080808080
3967   srwi_(tmp2, cnt, 4);
3968   li(result, 1);                  // Assume there's a negative byte.
3969   beq(CCR0, Lslow);
3970   ori(tmp1, tmp1, 0x8080);
3971   rldimi(tmp1, tmp1, 32, 0);
3972   mtctr(tmp2);
3973 
3974   // 2x unrolled loop
3975   bind(Lfastloop);
3976   ld(tmp2, 0, src);
3977   ld(tmp0, 8, src);
3978 
3979   orr(tmp0, tmp2, tmp0);
3980 
3981   and_(tmp0, tmp0, tmp1);
3982   bne(CCR0, Ldone);               // Found negative byte.
3983   addi(src, src, 16);
3984 
3985   bdnz(Lfastloop);
3986 
3987   bind(Lslow);                    // Fallback to slow version
3988   rldicl_(tmp0, cnt, 0, 64-4);
3989   beq(CCR0, Lnoneg);
3990   mtctr(tmp0);
3991   bind(Lloop);
3992   lbz(tmp0, 0, src);
3993   addi(src, src, 1);
3994   andi_(tmp0, tmp0, 0x80);
3995   bne(CCR0, Ldone);               // Found negative byte.
3996   bdnz(Lloop);
3997   bind(Lnoneg);
3998   li(result, 0);
3999 
4000   bind(Ldone);
4001 }
4002 
4003 #endif // Compiler2
4004 
4005 // Helpers for Intrinsic Emitters
4006 //
4007 // Revert the byte order of a 32bit value in a register
4008 //   src: 0x44556677
4009 //   dst: 0x77665544
4010 // Three steps to obtain the result:
4011 //  1) Rotate src (as doubleword) left 5 bytes. That puts the leftmost byte of the src word
4012 //     into the rightmost byte position. Afterwards, everything left of the rightmost byte is cleared.
4013 //     This value initializes dst.
4014 //  2) Rotate src (as word) left 3 bytes. That puts the rightmost byte of the src word into the leftmost
4015 //     byte position. Furthermore, byte 5 is rotated into byte 6 position where it is supposed to go.
4016 //     This value is mask inserted into dst with a [0..23] mask of 1s.
4017 //  3) Rotate src (as word) left 1 byte. That puts byte 6 into byte 5 position.
4018 //     This value is mask inserted into dst with a [8..15] mask of 1s.
4019 void MacroAssembler::load_reverse_32(Register dst, Register src) {
4020   assert_different_registers(dst, src);
4021 
4022   rldicl(dst, src, (4+1)*8, 56);       // Rotate byte 4 into position 7 (rightmost), clear all to the left.
4023   rlwimi(dst, src,     3*8,  0, 23);   // Insert byte 5 into position 6, 7 into 4, leave pos 7 alone.
4024   rlwimi(dst, src,     1*8,  8, 15);   // Insert byte 6 into position 5, leave the rest alone.
4025 }
4026 
4027 // Calculate the column addresses of the crc32 lookup table into distinct registers.
4028 // This loop-invariant calculation is moved out of the loop body, reducing the loop
4029 // body size from 20 to 16 instructions.
4030 // Returns the offset that was used to calculate the address of column tc3.
4031 // Due to register shortage, setting tc3 may overwrite table. With the return offset
4032 // at hand, the original table address can be easily reconstructed.
4033 int MacroAssembler::crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3) {
4034 
4035 #ifdef VM_LITTLE_ENDIAN
4036   // This is what we implement (the DOLIT4 part):
4037   // ========================================================================= */
4038   // #define DOLIT4 c ^= *buf4++; \
4039   //         c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
4040   //             crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
4041   // #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
4042   // ========================================================================= */
4043   const int ix0 = 3*(4*CRC32_COLUMN_SIZE);
4044   const int ix1 = 2*(4*CRC32_COLUMN_SIZE);
4045   const int ix2 = 1*(4*CRC32_COLUMN_SIZE);
4046   const int ix3 = 0*(4*CRC32_COLUMN_SIZE);
4047 #else
4048   // This is what we implement (the DOBIG4 part):
4049   // =========================================================================
4050   // #define DOBIG4 c ^= *++buf4; \
4051   //         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
4052   //             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
4053   // #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
4054   // =========================================================================
4055   const int ix0 = 4*(4*CRC32_COLUMN_SIZE);
4056   const int ix1 = 5*(4*CRC32_COLUMN_SIZE);
4057   const int ix2 = 6*(4*CRC32_COLUMN_SIZE);
4058   const int ix3 = 7*(4*CRC32_COLUMN_SIZE);
4059 #endif
4060   assert_different_registers(table, tc0, tc1, tc2);
4061   assert(table == tc3, "must be!");
4062 
4063   addi(tc0, table, ix0);
4064   addi(tc1, table, ix1);
4065   addi(tc2, table, ix2);
4066   if (ix3 != 0) addi(tc3, table, ix3);
4067 
4068   return ix3;
4069 }
4070 
4071 /**
4072  * uint32_t crc;
4073  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
4074  */
4075 void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
4076   assert_different_registers(crc, table, tmp);
4077   assert_different_registers(val, table);
4078 
4079   if (crc == val) {                   // Must rotate first to use the unmodified value.
4080     rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
4081                                       // As we use a word (4-byte) instruction, we have to adapt the mask bit positions.
4082     srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
4083   } else {
4084     srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
4085     rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
4086   }
4087   lwzx(tmp, table, tmp);
4088   xorr(crc, crc, tmp);
4089 }
4090 
4091 /**
4092  * uint32_t crc;
4093  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
4094  */
4095 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
4096   fold_byte_crc32(crc, crc, table, tmp);
4097 }
4098 
4099 /**
4100  * Emits code to update CRC-32 with a byte value according to constants in table.
4101  *
4102  * @param [in,out]crc   Register containing the crc.
4103  * @param [in]val       Register containing the byte to fold into the CRC.
4104  * @param [in]table     Register containing the table of crc constants.
4105  *
4106  * uint32_t crc;
4107  * val = crc_table[(val ^ crc) & 0xFF];
4108  * crc = val ^ (crc >> 8);
4109  */
4110 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
4111   BLOCK_COMMENT("update_byte_crc32:");
4112   xorr(val, val, crc);
4113   fold_byte_crc32(crc, val, table, val);
4114 }
4115 
4116 /**
4117  * @param crc   register containing existing CRC (32-bit)
4118  * @param buf   register pointing to input byte buffer (byte*)
4119  * @param len   register containing number of bytes
4120  * @param table register pointing to CRC table
4121  */
4122 void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
4123                                            Register data, bool loopAlignment, bool invertCRC) {
4124   assert_different_registers(crc, buf, len, table, data);
4125 
4126   Label L_mainLoop, L_done;
4127   const int mainLoop_stepping  = 1;
4128   const int mainLoop_alignment = loopAlignment ? 32 : 4; // (InputForNewCode > 4 ? InputForNewCode : 32) : 4;
4129 
4130   // Process all bytes in a single-byte loop.
4131   clrldi_(len, len, 32);                         // Enforce 32 bit. Anything to do?
4132   beq(CCR0, L_done);
4133 
4134   if (invertCRC) {
4135     nand(crc, crc, crc);                         // ~c
4136   }
4137 
4138   mtctr(len);
4139   align(mainLoop_alignment);
4140   BIND(L_mainLoop);
4141     lbz(data, 0, buf);                           // Byte from buffer, zero-extended.
4142     addi(buf, buf, mainLoop_stepping);           // Advance buffer position.
4143     update_byte_crc32(crc, data, table);
4144     bdnz(L_mainLoop);                            // Iterate.
4145 
4146   if (invertCRC) {
4147     nand(crc, crc, crc);                         // ~c
4148   }
4149 
4150   bind(L_done);
4151 }
4152 
4153 /**
4154  * Emits code to update CRC-32 with a 4-byte value according to constants in table
4155  * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c
4156  */
4157 // A not on the lookup table address(es):
4158 // The lookup table consists of two sets of four columns each.
4159 // The columns {0..3} are used for little-endian machines.
4160 // The columns {4..7} are used for big-endian machines.
4161 // To save the effort of adding the column offset to the table address each time
4162 // a table element is looked up, it is possible to pass the pre-calculated
4163 // column addresses.
4164 // Uses R9..R12 as work register. Must be saved/restored by caller, if necessary.
4165 void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
4166                                         Register t0,  Register t1,  Register t2,  Register t3,
4167                                         Register tc0, Register tc1, Register tc2, Register tc3) {
4168   assert_different_registers(crc, t3);
4169 
4170   // XOR crc with next four bytes of buffer.
4171   lwz(t3, bufDisp, buf);
4172   if (bufInc != 0) {
4173     addi(buf, buf, bufInc);
4174   }
4175   xorr(t3, t3, crc);
4176 
4177   // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
4178   rlwinm(t0, t3,  2,         24-2, 31-2);  // ((t1 >>  0) & 0xff) << 2
4179   rlwinm(t1, t3,  32+(2- 8), 24-2, 31-2);  // ((t1 >>  8) & 0xff) << 2
4180   rlwinm(t2, t3,  32+(2-16), 24-2, 31-2);  // ((t1 >> 16) & 0xff) << 2
4181   rlwinm(t3, t3,  32+(2-24), 24-2, 31-2);  // ((t1 >> 24) & 0xff) << 2
4182 
4183   // Use the pre-calculated column addresses.
4184   // Load pre-calculated table values.
4185   lwzx(t0, tc0, t0);
4186   lwzx(t1, tc1, t1);
4187   lwzx(t2, tc2, t2);
4188   lwzx(t3, tc3, t3);
4189 
4190   // Calculate new crc from table values.
4191   xorr(t0,  t0, t1);
4192   xorr(t2,  t2, t3);
4193   xorr(crc, t0, t2);  // Now crc contains the final checksum value.
4194 }
4195 
4196 /**
4197  * @param crc   register containing existing CRC (32-bit)
4198  * @param buf   register pointing to input byte buffer (byte*)
4199  * @param len   register containing number of bytes
4200  * @param table register pointing to CRC table
4201  *
4202  * Uses R9..R12 as work register. Must be saved/restored by caller!
4203  */
4204 void MacroAssembler::kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
4205                                         Register t0,  Register t1,  Register t2,  Register t3,
4206                                         Register tc0, Register tc1, Register tc2, Register tc3) {
4207   assert_different_registers(crc, buf, len, table);
4208 
4209   Label L_mainLoop, L_tail;
4210   Register  tmp  = t0;
4211   Register  data = t0;
4212   Register  tmp2 = t1;
4213   const int mainLoop_stepping  = 8;
4214   const int tailLoop_stepping  = 1;
4215   const int log_stepping       = exact_log2(mainLoop_stepping);
4216   const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
4217   const int complexThreshold   = 2*mainLoop_stepping;
4218 
4219   // Don't test for len <= 0 here. This pathological case should not occur anyway.
4220   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
4221   // The situation itself is detected and handled correctly by the conditional branches
4222   // following  aghi(len, -stepping) and aghi(len, +stepping).
4223   assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
4224 
4225   BLOCK_COMMENT("kernel_crc32_2word {");
4226 
4227   nand(crc, crc, crc);                           // ~c
4228 
4229   // Check for short (<mainLoop_stepping) buffer.
4230   cmpdi(CCR0, len, complexThreshold);
4231   blt(CCR0, L_tail);
4232 
4233   // Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
4234   // We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
4235   {
4236     // Align buf addr to mainLoop_stepping boundary.
4237     neg(tmp2, buf);                           // Calculate # preLoop iterations for alignment.
4238     rldicl(tmp2, tmp2, 0, 64-log_stepping);   // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
4239 
4240     if (complexThreshold > mainLoop_stepping) {
4241       sub(len, len, tmp2);                       // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4242     } else {
4243       sub(tmp, len, tmp2);                       // Remaining bytes for main loop.
4244       cmpdi(CCR0, tmp, mainLoop_stepping);
4245       blt(CCR0, L_tail);                         // For less than one mainloop_stepping left, do only tail processing
4246       mr(len, tmp);                              // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4247     }
4248     update_byteLoop_crc32(crc, buf, tmp2, table, data, false, false);
4249   }
4250 
4251   srdi(tmp2, len, log_stepping);                 // #iterations for mainLoop
4252   andi(len, len, mainLoop_stepping-1);           // remaining bytes for tailLoop
4253   mtctr(tmp2);
4254 
4255 #ifdef VM_LITTLE_ENDIAN
4256   Register crc_rv = crc;
4257 #else
4258   Register crc_rv = tmp;                         // Load_reverse needs separate registers to work on.
4259                                                  // Occupies tmp, but frees up crc.
4260   load_reverse_32(crc_rv, crc);                  // Revert byte order because we are dealing with big-endian data.
4261   tmp = crc;
4262 #endif
4263 
4264   int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
4265 
4266   align(mainLoop_alignment);                     // Octoword-aligned loop address. Shows 2% improvement.
4267   BIND(L_mainLoop);
4268     update_1word_crc32(crc_rv, buf, table, 0, 0, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4269     update_1word_crc32(crc_rv, buf, table, 4, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4270     bdnz(L_mainLoop);
4271 
4272 #ifndef VM_LITTLE_ENDIAN
4273   load_reverse_32(crc, crc_rv);                  // Revert byte order because we are dealing with big-endian data.
4274   tmp = crc_rv;                                  // Tmp uses it's original register again.
4275 #endif
4276 
4277   // Restore original table address for tailLoop.
4278   if (reconstructTableOffset != 0) {
4279     addi(table, table, -reconstructTableOffset);
4280   }
4281 
4282   // Process last few (<complexThreshold) bytes of buffer.
4283   BIND(L_tail);
4284   update_byteLoop_crc32(crc, buf, len, table, data, false, false);
4285 
4286   nand(crc, crc, crc);                           // ~c
4287   BLOCK_COMMENT("} kernel_crc32_2word");
4288 }
4289 
4290 /**
4291  * @param crc   register containing existing CRC (32-bit)
4292  * @param buf   register pointing to input byte buffer (byte*)
4293  * @param len   register containing number of bytes
4294  * @param table register pointing to CRC table
4295  *
4296  * uses R9..R12 as work register. Must be saved/restored by caller!
4297  */
4298 void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
4299                                         Register t0,  Register t1,  Register t2,  Register t3,
4300                                         Register tc0, Register tc1, Register tc2, Register tc3) {
4301   assert_different_registers(crc, buf, len, table);
4302 
4303   Label L_mainLoop, L_tail;
4304   Register  tmp          = t0;
4305   Register  data         = t0;
4306   Register  tmp2         = t1;
4307   const int mainLoop_stepping  = 4;
4308   const int tailLoop_stepping  = 1;
4309   const int log_stepping       = exact_log2(mainLoop_stepping);
4310   const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
4311   const int complexThreshold   = 2*mainLoop_stepping;
4312 
4313   // Don't test for len <= 0 here. This pathological case should not occur anyway.
4314   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
4315   // The situation itself is detected and handled correctly by the conditional branches
4316   // following  aghi(len, -stepping) and aghi(len, +stepping).
4317   assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
4318 
4319   BLOCK_COMMENT("kernel_crc32_1word {");
4320 
4321   nand(crc, crc, crc);                           // ~c
4322 
4323   // Check for short (<mainLoop_stepping) buffer.
4324   cmpdi(CCR0, len, complexThreshold);
4325   blt(CCR0, L_tail);
4326 
4327   // Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
4328   // We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
4329   {
4330     // Align buf addr to mainLoop_stepping boundary.
4331     neg(tmp2, buf);                              // Calculate # preLoop iterations for alignment.
4332     rldicl(tmp2, tmp2, 0, 64-log_stepping);      // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
4333 
4334     if (complexThreshold > mainLoop_stepping) {
4335       sub(len, len, tmp2);                       // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4336     } else {
4337       sub(tmp, len, tmp2);                       // Remaining bytes for main loop.
4338       cmpdi(CCR0, tmp, mainLoop_stepping);
4339       blt(CCR0, L_tail);                         // For less than one mainloop_stepping left, do only tail processing
4340       mr(len, tmp);                              // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4341     }
4342     update_byteLoop_crc32(crc, buf, tmp2, table, data, false, false);
4343   }
4344 
4345   srdi(tmp2, len, log_stepping);                 // #iterations for mainLoop
4346   andi(len, len, mainLoop_stepping-1);           // remaining bytes for tailLoop
4347   mtctr(tmp2);
4348 
4349 #ifdef VM_LITTLE_ENDIAN
4350   Register crc_rv = crc;
4351 #else
4352   Register crc_rv = tmp;                         // Load_reverse needs separate registers to work on.
4353                                                  // Occupies tmp, but frees up crc.
4354   load_reverse_32(crc_rv, crc);                  // Revert byte order because we are dealing with big-endian data.
4355   tmp = crc;
4356 #endif
4357 
4358   int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
4359 
4360   align(mainLoop_alignment);                     // Octoword-aligned loop address. Shows 2% improvement.
4361   BIND(L_mainLoop);
4362     update_1word_crc32(crc_rv, buf, table, 0, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4363     bdnz(L_mainLoop);
4364 
4365 #ifndef VM_LITTLE_ENDIAN
4366   load_reverse_32(crc, crc_rv);                  // Revert byte order because we are dealing with big-endian data.
4367   tmp = crc_rv;                                  // Tmp uses it's original register again.
4368 #endif
4369 
4370   // Restore original table address for tailLoop.
4371   if (reconstructTableOffset != 0) {
4372     addi(table, table, -reconstructTableOffset);
4373   }
4374 
4375   // Process last few (<complexThreshold) bytes of buffer.
4376   BIND(L_tail);
4377   update_byteLoop_crc32(crc, buf, len, table, data, false, false);
4378 
4379   nand(crc, crc, crc);                           // ~c
4380   BLOCK_COMMENT("} kernel_crc32_1word");
4381 }
4382 
4383 /**
4384  * @param crc   register containing existing CRC (32-bit)
4385  * @param buf   register pointing to input byte buffer (byte*)
4386  * @param len   register containing number of bytes
4387  * @param table register pointing to CRC table
4388  *
4389  * Uses R7_ARG5, R8_ARG6 as work registers.
4390  */
4391 void MacroAssembler::kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
4392                                         Register t0,  Register t1,  Register t2,  Register t3) {
4393   assert_different_registers(crc, buf, len, table);
4394 
4395   Register  data = t0;                   // Holds the current byte to be folded into crc.
4396 
4397   BLOCK_COMMENT("kernel_crc32_1byte {");
4398 
4399   // Process all bytes in a single-byte loop.
4400   update_byteLoop_crc32(crc, buf, len, table, data, true, true);
4401 
4402   BLOCK_COMMENT("} kernel_crc32_1byte");
4403 }
4404 
4405 /**
4406  * @param crc             register containing existing CRC (32-bit)
4407  * @param buf             register pointing to input byte buffer (byte*)
4408  * @param len             register containing number of bytes
4409  * @param table           register pointing to CRC table
4410  * @param constants       register pointing to CRC table for 128-bit aligned memory
4411  * @param barretConstants register pointing to table for barrett reduction
4412  * @param t0              volatile register
4413  * @param t1              volatile register
4414  * @param t2              volatile register
4415  * @param t3              volatile register
4416  */
4417 void MacroAssembler::kernel_crc32_1word_vpmsumd(Register crc, Register buf, Register len, Register table,
4418                                                 Register constants,  Register barretConstants,
4419                                                 Register t0,  Register t1, Register t2, Register t3, Register t4) {
4420   assert_different_registers(crc, buf, len, table);
4421 
4422   Label L_alignedHead, L_tail, L_alignTail, L_start, L_end;
4423 
4424   Register  prealign     = t0;
4425   Register  postalign    = t0;
4426 
4427   BLOCK_COMMENT("kernel_crc32_1word_vpmsumb {");
4428 
4429   // 1. use kernel_crc32_1word for shorter than 384bit
4430   clrldi(len, len, 32);
4431   cmpdi(CCR0, len, 384);
4432   bge(CCR0, L_start);
4433 
4434     Register tc0 = t4;
4435     Register tc1 = constants;
4436     Register tc2 = barretConstants;
4437     kernel_crc32_1word(crc, buf, len, table,t0, t1, t2, t3, tc0, tc1, tc2, table);
4438     b(L_end);
4439 
4440   BIND(L_start);
4441 
4442     // 2. ~c
4443     nand(crc, crc, crc);
4444 
4445     // 3. calculate from 0 to first 128bit-aligned address
4446     clrldi_(prealign, buf, 57);
4447     beq(CCR0, L_alignedHead);
4448 
4449     subfic(prealign, prealign, 128);
4450 
4451     subf(len, prealign, len);
4452     update_byteLoop_crc32(crc, buf, prealign, table, t2, false, false);
4453 
4454     // 4. calculate from first 128bit-aligned address to last 128bit-aligned address
4455     BIND(L_alignedHead);
4456 
4457     clrldi(postalign, len, 57);
4458     subf(len, postalign, len);
4459 
4460     // len must be more than 256bit
4461     kernel_crc32_1word_aligned(crc, buf, len, constants, barretConstants, t1, t2, t3);
4462 
4463     // 5. calculate remaining
4464     cmpdi(CCR0, postalign, 0);
4465     beq(CCR0, L_tail);
4466 
4467     update_byteLoop_crc32(crc, buf, postalign, table, t2, false, false);
4468 
4469     BIND(L_tail);
4470 
4471     // 6. ~c
4472     nand(crc, crc, crc);
4473 
4474   BIND(L_end);
4475 
4476   BLOCK_COMMENT("} kernel_crc32_1word_vpmsumb");
4477 }
4478 
4479 /**
4480  * @param crc             register containing existing CRC (32-bit)
4481  * @param buf             register pointing to input byte buffer (byte*)
4482  * @param len             register containing number of bytes
4483  * @param constants       register pointing to CRC table for 128-bit aligned memory
4484  * @param barretConstants register pointing to table for barrett reduction
4485  * @param t0              volatile register
4486  * @param t1              volatile register
4487  * @param t2              volatile register
4488  */
4489 void MacroAssembler::kernel_crc32_1word_aligned(Register crc, Register buf, Register len,
4490     Register constants, Register barretConstants, Register t0, Register t1, Register t2) {
4491   Label L_mainLoop, L_tail, L_alignTail, L_barrett_reduction, L_end, L_first_warm_up_done, L_first_cool_down, L_second_cool_down, L_XOR, L_test;
4492   Label L_lv0, L_lv1, L_lv2, L_lv3, L_lv4, L_lv5, L_lv6, L_lv7, L_lv8, L_lv9, L_lv10, L_lv11, L_lv12, L_lv13, L_lv14, L_lv15;
4493   Label L_1, L_2, L_3, L_4;
4494 
4495   Register  rLoaded      = t0;
4496   Register  rTmp1        = t1;
4497   Register  rTmp2        = t2;
4498   Register  off16        = R22;
4499   Register  off32        = R23;
4500   Register  off48        = R24;
4501   Register  off64        = R25;
4502   Register  off80        = R26;
4503   Register  off96        = R27;
4504   Register  off112       = R28;
4505   Register  rIdx         = R29;
4506   Register  rMax         = R30;
4507   Register  constantsPos = R31;
4508 
4509   VectorRegister mask_32bit = VR24;
4510   VectorRegister mask_64bit = VR25;
4511   VectorRegister zeroes     = VR26;
4512   VectorRegister const1     = VR27;
4513   VectorRegister const2     = VR28;
4514 
4515   // Save non-volatile vector registers (frameless).
4516   Register offset = t1;   int offsetInt = 0;
4517   offsetInt -= 16; li(offset, -16);           stvx(VR20, offset, R1_SP);
4518   offsetInt -= 16; addi(offset, offset, -16); stvx(VR21, offset, R1_SP);
4519   offsetInt -= 16; addi(offset, offset, -16); stvx(VR22, offset, R1_SP);
4520   offsetInt -= 16; addi(offset, offset, -16); stvx(VR23, offset, R1_SP);
4521   offsetInt -= 16; addi(offset, offset, -16); stvx(VR24, offset, R1_SP);
4522   offsetInt -= 16; addi(offset, offset, -16); stvx(VR25, offset, R1_SP);
4523   offsetInt -= 16; addi(offset, offset, -16); stvx(VR26, offset, R1_SP);
4524   offsetInt -= 16; addi(offset, offset, -16); stvx(VR27, offset, R1_SP);
4525   offsetInt -= 16; addi(offset, offset, -16); stvx(VR28, offset, R1_SP);
4526   offsetInt -= 8; std(R22, offsetInt, R1_SP);
4527   offsetInt -= 8; std(R23, offsetInt, R1_SP);
4528   offsetInt -= 8; std(R24, offsetInt, R1_SP);
4529   offsetInt -= 8; std(R25, offsetInt, R1_SP);
4530   offsetInt -= 8; std(R26, offsetInt, R1_SP);
4531   offsetInt -= 8; std(R27, offsetInt, R1_SP);
4532   offsetInt -= 8; std(R28, offsetInt, R1_SP);
4533   offsetInt -= 8; std(R29, offsetInt, R1_SP);
4534   offsetInt -= 8; std(R30, offsetInt, R1_SP);
4535   offsetInt -= 8; std(R31, offsetInt, R1_SP);
4536 
4537   // Set constants
4538   li(off16, 16);
4539   li(off32, 32);
4540   li(off48, 48);
4541   li(off64, 64);
4542   li(off80, 80);
4543   li(off96, 96);
4544   li(off112, 112);
4545 
4546   clrldi(crc, crc, 32);
4547 
4548   vxor(zeroes, zeroes, zeroes);
4549   vspltisw(VR0, -1);
4550 
4551   vsldoi(mask_32bit, zeroes, VR0, 4);
4552   vsldoi(mask_64bit, zeroes, VR0, -8);
4553 
4554   // Get the initial value into v8
4555   vxor(VR8, VR8, VR8);
4556   mtvrd(VR8, crc);
4557   vsldoi(VR8, zeroes, VR8, -8); // shift into bottom 32 bits
4558 
4559   li (rLoaded, 0);
4560 
4561   rldicr(rIdx, len, 0, 56);
4562 
4563   {
4564     BIND(L_1);
4565     // Checksum in blocks of MAX_SIZE (32768)
4566     lis(rMax, 0);
4567     ori(rMax, rMax, 32768);
4568     mr(rTmp2, rMax);
4569     cmpd(CCR0, rIdx, rMax);
4570     bgt(CCR0, L_2);
4571     mr(rMax, rIdx);
4572 
4573     BIND(L_2);
4574     subf(rIdx, rMax, rIdx);
4575 
4576     // our main loop does 128 bytes at a time
4577     srdi(rMax, rMax, 7);
4578 
4579     /*
4580      * Work out the offset into the constants table to start at. Each
4581      * constant is 16 bytes, and it is used against 128 bytes of input
4582      * data - 128 / 16 = 8
4583      */
4584     sldi(rTmp1, rMax, 4);
4585     srdi(rTmp2, rTmp2, 3);
4586     subf(rTmp1, rTmp1, rTmp2);
4587 
4588     // We reduce our final 128 bytes in a separate step
4589     addi(rMax, rMax, -1);
4590     mtctr(rMax);
4591 
4592     // Find the start of our constants
4593     add(constantsPos, constants, rTmp1);
4594 
4595     // zero VR0-v7 which will contain our checksums
4596     vxor(VR0, VR0, VR0);
4597     vxor(VR1, VR1, VR1);
4598     vxor(VR2, VR2, VR2);
4599     vxor(VR3, VR3, VR3);
4600     vxor(VR4, VR4, VR4);
4601     vxor(VR5, VR5, VR5);
4602     vxor(VR6, VR6, VR6);
4603     vxor(VR7, VR7, VR7);
4604 
4605     lvx(const1, constantsPos);
4606 
4607     /*
4608      * If we are looping back to consume more data we use the values
4609      * already in VR16-v23.
4610      */
4611     cmpdi(CCR0, rLoaded, 1);
4612     beq(CCR0, L_3);
4613     {
4614 
4615       // First warm up pass
4616       lvx(VR16, buf);
4617       lvx(VR17, off16, buf);
4618       lvx(VR18, off32, buf);
4619       lvx(VR19, off48, buf);
4620       lvx(VR20, off64, buf);
4621       lvx(VR21, off80, buf);
4622       lvx(VR22, off96, buf);
4623       lvx(VR23, off112, buf);
4624       addi(buf, buf, 8*16);
4625 
4626       // xor in initial value
4627       vxor(VR16, VR16, VR8);
4628     }
4629 
4630     BIND(L_3);
4631     bdz(L_first_warm_up_done);
4632 
4633     addi(constantsPos, constantsPos, 16);
4634     lvx(const2, constantsPos);
4635 
4636     // Second warm up pass
4637     vpmsumd(VR8, VR16, const1);
4638     lvx(VR16, buf);
4639 
4640     vpmsumd(VR9, VR17, const1);
4641     lvx(VR17, off16, buf);
4642 
4643     vpmsumd(VR10, VR18, const1);
4644     lvx(VR18, off32, buf);
4645 
4646     vpmsumd(VR11, VR19, const1);
4647     lvx(VR19, off48, buf);
4648 
4649     vpmsumd(VR12, VR20, const1);
4650     lvx(VR20, off64, buf);
4651 
4652     vpmsumd(VR13, VR21, const1);
4653     lvx(VR21, off80, buf);
4654 
4655     vpmsumd(VR14, VR22, const1);
4656     lvx(VR22, off96, buf);
4657 
4658     vpmsumd(VR15, VR23, const1);
4659     lvx(VR23, off112, buf);
4660 
4661     addi(buf, buf, 8 * 16);
4662 
4663     bdz(L_first_cool_down);
4664 
4665     /*
4666      * main loop. We modulo schedule it such that it takes three iterations
4667      * to complete - first iteration load, second iteration vpmsum, third
4668      * iteration xor.
4669      */
4670     {
4671       BIND(L_4);
4672       lvx(const1, constantsPos); addi(constantsPos, constantsPos, 16);
4673 
4674       vxor(VR0, VR0, VR8);
4675       vpmsumd(VR8, VR16, const2);
4676       lvx(VR16, buf);
4677 
4678       vxor(VR1, VR1, VR9);
4679       vpmsumd(VR9, VR17, const2);
4680       lvx(VR17, off16, buf);
4681 
4682       vxor(VR2, VR2, VR10);
4683       vpmsumd(VR10, VR18, const2);
4684       lvx(VR18, off32, buf);
4685 
4686       vxor(VR3, VR3, VR11);
4687       vpmsumd(VR11, VR19, const2);
4688       lvx(VR19, off48, buf);
4689       lvx(const2, constantsPos);
4690 
4691       vxor(VR4, VR4, VR12);
4692       vpmsumd(VR12, VR20, const1);
4693       lvx(VR20, off64, buf);
4694 
4695       vxor(VR5, VR5, VR13);
4696       vpmsumd(VR13, VR21, const1);
4697       lvx(VR21, off80, buf);
4698 
4699       vxor(VR6, VR6, VR14);
4700       vpmsumd(VR14, VR22, const1);
4701       lvx(VR22, off96, buf);
4702 
4703       vxor(VR7, VR7, VR15);
4704       vpmsumd(VR15, VR23, const1);
4705       lvx(VR23, off112, buf);
4706 
4707       addi(buf, buf, 8 * 16);
4708 
4709       bdnz(L_4);
4710     }
4711 
4712     BIND(L_first_cool_down);
4713 
4714     // First cool down pass
4715     lvx(const1, constantsPos);
4716     addi(constantsPos, constantsPos, 16);
4717 
4718     vxor(VR0, VR0, VR8);
4719     vpmsumd(VR8, VR16, const1);
4720 
4721     vxor(VR1, VR1, VR9);
4722     vpmsumd(VR9, VR17, const1);
4723 
4724     vxor(VR2, VR2, VR10);
4725     vpmsumd(VR10, VR18, const1);
4726 
4727     vxor(VR3, VR3, VR11);
4728     vpmsumd(VR11, VR19, const1);
4729 
4730     vxor(VR4, VR4, VR12);
4731     vpmsumd(VR12, VR20, const1);
4732 
4733     vxor(VR5, VR5, VR13);
4734     vpmsumd(VR13, VR21, const1);
4735 
4736     vxor(VR6, VR6, VR14);
4737     vpmsumd(VR14, VR22, const1);
4738 
4739     vxor(VR7, VR7, VR15);
4740     vpmsumd(VR15, VR23, const1);
4741 
4742     BIND(L_second_cool_down);
4743     // Second cool down pass
4744     vxor(VR0, VR0, VR8);
4745     vxor(VR1, VR1, VR9);
4746     vxor(VR2, VR2, VR10);
4747     vxor(VR3, VR3, VR11);
4748     vxor(VR4, VR4, VR12);
4749     vxor(VR5, VR5, VR13);
4750     vxor(VR6, VR6, VR14);
4751     vxor(VR7, VR7, VR15);
4752 
4753     /*
4754      * vpmsumd produces a 96 bit result in the least significant bits
4755      * of the register. Since we are bit reflected we have to shift it
4756      * left 32 bits so it occupies the least significant bits in the
4757      * bit reflected domain.
4758      */
4759     vsldoi(VR0, VR0, zeroes, 4);
4760     vsldoi(VR1, VR1, zeroes, 4);
4761     vsldoi(VR2, VR2, zeroes, 4);
4762     vsldoi(VR3, VR3, zeroes, 4);
4763     vsldoi(VR4, VR4, zeroes, 4);
4764     vsldoi(VR5, VR5, zeroes, 4);
4765     vsldoi(VR6, VR6, zeroes, 4);
4766     vsldoi(VR7, VR7, zeroes, 4);
4767 
4768     // xor with last 1024 bits
4769     lvx(VR8, buf);
4770     lvx(VR9, off16, buf);
4771     lvx(VR10, off32, buf);
4772     lvx(VR11, off48, buf);
4773     lvx(VR12, off64, buf);
4774     lvx(VR13, off80, buf);
4775     lvx(VR14, off96, buf);
4776     lvx(VR15, off112, buf);
4777     addi(buf, buf, 8 * 16);
4778 
4779     vxor(VR16, VR0, VR8);
4780     vxor(VR17, VR1, VR9);
4781     vxor(VR18, VR2, VR10);
4782     vxor(VR19, VR3, VR11);
4783     vxor(VR20, VR4, VR12);
4784     vxor(VR21, VR5, VR13);
4785     vxor(VR22, VR6, VR14);
4786     vxor(VR23, VR7, VR15);
4787 
4788     li(rLoaded, 1);
4789     cmpdi(CCR0, rIdx, 0);
4790     addi(rIdx, rIdx, 128);
4791     bne(CCR0, L_1);
4792   }
4793 
4794   // Work out how many bytes we have left
4795   andi_(len, len, 127);
4796 
4797   // Calculate where in the constant table we need to start
4798   subfic(rTmp1, len, 128);
4799   add(constantsPos, constantsPos, rTmp1);
4800 
4801   // How many 16 byte chunks are in the tail
4802   srdi(rIdx, len, 4);
4803   mtctr(rIdx);
4804 
4805   /*
4806    * Reduce the previously calculated 1024 bits to 64 bits, shifting
4807    * 32 bits to include the trailing 32 bits of zeros
4808    */
4809   lvx(VR0, constantsPos);
4810   lvx(VR1, off16, constantsPos);
4811   lvx(VR2, off32, constantsPos);
4812   lvx(VR3, off48, constantsPos);
4813   lvx(VR4, off64, constantsPos);
4814   lvx(VR5, off80, constantsPos);
4815   lvx(VR6, off96, constantsPos);
4816   lvx(VR7, off112, constantsPos);
4817   addi(constantsPos, constantsPos, 8 * 16);
4818 
4819   vpmsumw(VR0, VR16, VR0);
4820   vpmsumw(VR1, VR17, VR1);
4821   vpmsumw(VR2, VR18, VR2);
4822   vpmsumw(VR3, VR19, VR3);
4823   vpmsumw(VR4, VR20, VR4);
4824   vpmsumw(VR5, VR21, VR5);
4825   vpmsumw(VR6, VR22, VR6);
4826   vpmsumw(VR7, VR23, VR7);
4827 
4828   // Now reduce the tail (0 - 112 bytes)
4829   cmpdi(CCR0, rIdx, 0);
4830   beq(CCR0, L_XOR);
4831 
4832   lvx(VR16, buf); addi(buf, buf, 16);
4833   lvx(VR17, constantsPos);
4834   vpmsumw(VR16, VR16, VR17);
4835   vxor(VR0, VR0, VR16);
4836   beq(CCR0, L_XOR);
4837 
4838   lvx(VR16, buf); addi(buf, buf, 16);
4839   lvx(VR17, off16, constantsPos);
4840   vpmsumw(VR16, VR16, VR17);
4841   vxor(VR0, VR0, VR16);
4842   beq(CCR0, L_XOR);
4843 
4844   lvx(VR16, buf); addi(buf, buf, 16);
4845   lvx(VR17, off32, constantsPos);
4846   vpmsumw(VR16, VR16, VR17);
4847   vxor(VR0, VR0, VR16);
4848   beq(CCR0, L_XOR);
4849 
4850   lvx(VR16, buf); addi(buf, buf, 16);
4851   lvx(VR17, off48,constantsPos);
4852   vpmsumw(VR16, VR16, VR17);
4853   vxor(VR0, VR0, VR16);
4854   beq(CCR0, L_XOR);
4855 
4856   lvx(VR16, buf); addi(buf, buf, 16);
4857   lvx(VR17, off64, constantsPos);
4858   vpmsumw(VR16, VR16, VR17);
4859   vxor(VR0, VR0, VR16);
4860   beq(CCR0, L_XOR);
4861 
4862   lvx(VR16, buf); addi(buf, buf, 16);
4863   lvx(VR17, off80, constantsPos);
4864   vpmsumw(VR16, VR16, VR17);
4865   vxor(VR0, VR0, VR16);
4866   beq(CCR0, L_XOR);
4867 
4868   lvx(VR16, buf); addi(buf, buf, 16);
4869   lvx(VR17, off96, constantsPos);
4870   vpmsumw(VR16, VR16, VR17);
4871   vxor(VR0, VR0, VR16);
4872 
4873   // Now xor all the parallel chunks together
4874   BIND(L_XOR);
4875   vxor(VR0, VR0, VR1);
4876   vxor(VR2, VR2, VR3);
4877   vxor(VR4, VR4, VR5);
4878   vxor(VR6, VR6, VR7);
4879 
4880   vxor(VR0, VR0, VR2);
4881   vxor(VR4, VR4, VR6);
4882 
4883   vxor(VR0, VR0, VR4);
4884 
4885   b(L_barrett_reduction);
4886 
4887   BIND(L_first_warm_up_done);
4888   lvx(const1, constantsPos);
4889   addi(constantsPos, constantsPos, 16);
4890   vpmsumd(VR8,  VR16, const1);
4891   vpmsumd(VR9,  VR17, const1);
4892   vpmsumd(VR10, VR18, const1);
4893   vpmsumd(VR11, VR19, const1);
4894   vpmsumd(VR12, VR20, const1);
4895   vpmsumd(VR13, VR21, const1);
4896   vpmsumd(VR14, VR22, const1);
4897   vpmsumd(VR15, VR23, const1);
4898   b(L_second_cool_down);
4899 
4900   BIND(L_barrett_reduction);
4901 
4902   lvx(const1, barretConstants);
4903   addi(barretConstants, barretConstants, 16);
4904   lvx(const2, barretConstants);
4905 
4906   vsldoi(VR1, VR0, VR0, -8);
4907   vxor(VR0, VR0, VR1);    // xor two 64 bit results together
4908 
4909   // shift left one bit
4910   vspltisb(VR1, 1);
4911   vsl(VR0, VR0, VR1);
4912 
4913   vand(VR0, VR0, mask_64bit);
4914 
4915   /*
4916    * The reflected version of Barrett reduction. Instead of bit
4917    * reflecting our data (which is expensive to do), we bit reflect our
4918    * constants and our algorithm, which means the intermediate data in
4919    * our vector registers goes from 0-63 instead of 63-0. We can reflect
4920    * the algorithm because we don't carry in mod 2 arithmetic.
4921    */
4922   vand(VR1, VR0, mask_32bit);  // bottom 32 bits of a
4923   vpmsumd(VR1, VR1, const1);   // ma
4924   vand(VR1, VR1, mask_32bit);  // bottom 32bits of ma
4925   vpmsumd(VR1, VR1, const2);   // qn */
4926   vxor(VR0, VR0, VR1);         // a - qn, subtraction is xor in GF(2)
4927 
4928   /*
4929    * Since we are bit reflected, the result (ie the low 32 bits) is in
4930    * the high 32 bits. We just need to shift it left 4 bytes
4931    * V0 [ 0 1 X 3 ]
4932    * V0 [ 0 X 2 3 ]
4933    */
4934   vsldoi(VR0, VR0, zeroes, 4);    // shift result into top 64 bits of
4935 
4936   // Get it into r3
4937   mfvrd(crc, VR0);
4938 
4939   BIND(L_end);
4940 
4941   offsetInt = 0;
4942   // Restore non-volatile Vector registers (frameless).
4943   offsetInt -= 16; li(offset, -16);           lvx(VR20, offset, R1_SP);
4944   offsetInt -= 16; addi(offset, offset, -16); lvx(VR21, offset, R1_SP);
4945   offsetInt -= 16; addi(offset, offset, -16); lvx(VR22, offset, R1_SP);
4946   offsetInt -= 16; addi(offset, offset, -16); lvx(VR23, offset, R1_SP);
4947   offsetInt -= 16; addi(offset, offset, -16); lvx(VR24, offset, R1_SP);
4948   offsetInt -= 16; addi(offset, offset, -16); lvx(VR25, offset, R1_SP);
4949   offsetInt -= 16; addi(offset, offset, -16); lvx(VR26, offset, R1_SP);
4950   offsetInt -= 16; addi(offset, offset, -16); lvx(VR27, offset, R1_SP);
4951   offsetInt -= 16; addi(offset, offset, -16); lvx(VR28, offset, R1_SP);
4952   offsetInt -= 8;  ld(R22, offsetInt, R1_SP);
4953   offsetInt -= 8;  ld(R23, offsetInt, R1_SP);
4954   offsetInt -= 8;  ld(R24, offsetInt, R1_SP);
4955   offsetInt -= 8;  ld(R25, offsetInt, R1_SP);
4956   offsetInt -= 8;  ld(R26, offsetInt, R1_SP);
4957   offsetInt -= 8;  ld(R27, offsetInt, R1_SP);
4958   offsetInt -= 8;  ld(R28, offsetInt, R1_SP);
4959   offsetInt -= 8;  ld(R29, offsetInt, R1_SP);
4960   offsetInt -= 8;  ld(R30, offsetInt, R1_SP);
4961   offsetInt -= 8;  ld(R31, offsetInt, R1_SP);
4962 }
4963 
4964 void MacroAssembler::kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp) {
4965   assert_different_registers(crc, buf, /* len,  not used!! */ table, tmp);
4966 
4967   BLOCK_COMMENT("kernel_crc32_singleByte:");
4968   nand(crc, crc, crc);       // ~c
4969 
4970   lbz(tmp, 0, buf);          // Byte from buffer, zero-extended.
4971   update_byte_crc32(crc, tmp, table);
4972 
4973   nand(crc, crc, crc);       // ~c
4974 }
4975 
4976 // dest_lo += src1 + src2
4977 // dest_hi += carry1 + carry2
4978 void MacroAssembler::add2_with_carry(Register dest_hi,
4979                                      Register dest_lo,
4980                                      Register src1, Register src2) {
4981   li(R0, 0);
4982   addc(dest_lo, dest_lo, src1);
4983   adde(dest_hi, dest_hi, R0);
4984   addc(dest_lo, dest_lo, src2);
4985   adde(dest_hi, dest_hi, R0);
4986 }
4987 
4988 // Multiply 64 bit by 64 bit first loop.
4989 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
4990                                            Register x_xstart,
4991                                            Register y, Register y_idx,
4992                                            Register z,
4993                                            Register carry,
4994                                            Register product_high, Register product,
4995                                            Register idx, Register kdx,
4996                                            Register tmp) {
4997   //  jlong carry, x[], y[], z[];
4998   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
4999   //    huge_128 product = y[idx] * x[xstart] + carry;
5000   //    z[kdx] = (jlong)product;
5001   //    carry  = (jlong)(product >>> 64);
5002   //  }
5003   //  z[xstart] = carry;
5004 
5005   Label L_first_loop, L_first_loop_exit;
5006   Label L_one_x, L_one_y, L_multiply;
5007 
5008   addic_(xstart, xstart, -1);
5009   blt(CCR0, L_one_x);   // Special case: length of x is 1.
5010 
5011   // Load next two integers of x.
5012   sldi(tmp, xstart, LogBytesPerInt);
5013   ldx(x_xstart, x, tmp);
5014 #ifdef VM_LITTLE_ENDIAN
5015   rldicl(x_xstart, x_xstart, 32, 0);
5016 #endif
5017 
5018   align(32, 16);
5019   bind(L_first_loop);
5020 
5021   cmpdi(CCR0, idx, 1);
5022   blt(CCR0, L_first_loop_exit);
5023   addi(idx, idx, -2);
5024   beq(CCR0, L_one_y);
5025 
5026   // Load next two integers of y.
5027   sldi(tmp, idx, LogBytesPerInt);
5028   ldx(y_idx, y, tmp);
5029 #ifdef VM_LITTLE_ENDIAN
5030   rldicl(y_idx, y_idx, 32, 0);
5031 #endif
5032 
5033 
5034   bind(L_multiply);
5035   multiply64(product_high, product, x_xstart, y_idx);
5036 
5037   li(tmp, 0);
5038   addc(product, product, carry);         // Add carry to result.
5039   adde(product_high, product_high, tmp); // Add carry of the last addition.
5040   addi(kdx, kdx, -2);
5041 
5042   // Store result.
5043 #ifdef VM_LITTLE_ENDIAN
5044   rldicl(product, product, 32, 0);
5045 #endif
5046   sldi(tmp, kdx, LogBytesPerInt);
5047   stdx(product, z, tmp);
5048   mr_if_needed(carry, product_high);
5049   b(L_first_loop);
5050 
5051 
5052   bind(L_one_y); // Load one 32 bit portion of y as (0,value).
5053 
5054   lwz(y_idx, 0, y);
5055   b(L_multiply);
5056 
5057 
5058   bind(L_one_x); // Load one 32 bit portion of x as (0,value).
5059 
5060   lwz(x_xstart, 0, x);
5061   b(L_first_loop);
5062 
5063   bind(L_first_loop_exit);
5064 }
5065 
5066 // Multiply 64 bit by 64 bit and add 128 bit.
5067 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
5068                                             Register z, Register yz_idx,
5069                                             Register idx, Register carry,
5070                                             Register product_high, Register product,
5071                                             Register tmp, int offset) {
5072 
5073   //  huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
5074   //  z[kdx] = (jlong)product;
5075 
5076   sldi(tmp, idx, LogBytesPerInt);
5077   if (offset) {
5078     addi(tmp, tmp, offset);
5079   }
5080   ldx(yz_idx, y, tmp);
5081 #ifdef VM_LITTLE_ENDIAN
5082   rldicl(yz_idx, yz_idx, 32, 0);
5083 #endif
5084 
5085   multiply64(product_high, product, x_xstart, yz_idx);
5086   ldx(yz_idx, z, tmp);
5087 #ifdef VM_LITTLE_ENDIAN
5088   rldicl(yz_idx, yz_idx, 32, 0);
5089 #endif
5090 
5091   add2_with_carry(product_high, product, carry, yz_idx);
5092 
5093   sldi(tmp, idx, LogBytesPerInt);
5094   if (offset) {
5095     addi(tmp, tmp, offset);
5096   }
5097 #ifdef VM_LITTLE_ENDIAN
5098   rldicl(product, product, 32, 0);
5099 #endif
5100   stdx(product, z, tmp);
5101 }
5102 
5103 // Multiply 128 bit by 128 bit. Unrolled inner loop.
5104 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
5105                                              Register y, Register z,
5106                                              Register yz_idx, Register idx, Register carry,
5107                                              Register product_high, Register product,
5108                                              Register carry2, Register tmp) {
5109 
5110   //  jlong carry, x[], y[], z[];
5111   //  int kdx = ystart+1;
5112   //  for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
5113   //    huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
5114   //    z[kdx+idx+1] = (jlong)product;
5115   //    jlong carry2 = (jlong)(product >>> 64);
5116   //    product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
5117   //    z[kdx+idx] = (jlong)product;
5118   //    carry = (jlong)(product >>> 64);
5119   //  }
5120   //  idx += 2;
5121   //  if (idx > 0) {
5122   //    product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
5123   //    z[kdx+idx] = (jlong)product;
5124   //    carry = (jlong)(product >>> 64);
5125   //  }
5126 
5127   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
5128   const Register jdx = R0;
5129 
5130   // Scale the index.
5131   srdi_(jdx, idx, 2);
5132   beq(CCR0, L_third_loop_exit);
5133   mtctr(jdx);
5134 
5135   align(32, 16);
5136   bind(L_third_loop);
5137 
5138   addi(idx, idx, -4);
5139 
5140   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 8);
5141   mr_if_needed(carry2, product_high);
5142 
5143   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product_high, product, tmp, 0);
5144   mr_if_needed(carry, product_high);
5145   bdnz(L_third_loop);
5146 
5147   bind(L_third_loop_exit);  // Handle any left-over operand parts.
5148 
5149   andi_(idx, idx, 0x3);
5150   beq(CCR0, L_post_third_loop_done);
5151 
5152   Label L_check_1;
5153 
5154   addic_(idx, idx, -2);
5155   blt(CCR0, L_check_1);
5156 
5157   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 0);
5158   mr_if_needed(carry, product_high);
5159 
5160   bind(L_check_1);
5161 
5162   addi(idx, idx, 0x2);
5163   andi_(idx, idx, 0x1);
5164   addic_(idx, idx, -1);
5165   blt(CCR0, L_post_third_loop_done);
5166 
5167   sldi(tmp, idx, LogBytesPerInt);
5168   lwzx(yz_idx, y, tmp);
5169   multiply64(product_high, product, x_xstart, yz_idx);
5170   lwzx(yz_idx, z, tmp);
5171 
5172   add2_with_carry(product_high, product, yz_idx, carry);
5173 
5174   sldi(tmp, idx, LogBytesPerInt);
5175   stwx(product, z, tmp);
5176   srdi(product, product, 32);
5177 
5178   sldi(product_high, product_high, 32);
5179   orr(product, product, product_high);
5180   mr_if_needed(carry, product);
5181 
5182   bind(L_post_third_loop_done);
5183 }   // multiply_128_x_128_loop
5184 
5185 void MacroAssembler::multiply_to_len(Register x, Register xlen,
5186                                      Register y, Register ylen,
5187                                      Register z, Register zlen,
5188                                      Register tmp1, Register tmp2,
5189                                      Register tmp3, Register tmp4,
5190                                      Register tmp5, Register tmp6,
5191                                      Register tmp7, Register tmp8,
5192                                      Register tmp9, Register tmp10,
5193                                      Register tmp11, Register tmp12,
5194                                      Register tmp13) {
5195 
5196   ShortBranchVerifier sbv(this);
5197 
5198   assert_different_registers(x, xlen, y, ylen, z, zlen,
5199                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
5200   assert_different_registers(x, xlen, y, ylen, z, zlen,
5201                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp7);
5202   assert_different_registers(x, xlen, y, ylen, z, zlen,
5203                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp8);
5204 
5205   const Register idx = tmp1;
5206   const Register kdx = tmp2;
5207   const Register xstart = tmp3;
5208 
5209   const Register y_idx = tmp4;
5210   const Register carry = tmp5;
5211   const Register product = tmp6;
5212   const Register product_high = tmp7;
5213   const Register x_xstart = tmp8;
5214   const Register tmp = tmp9;
5215 
5216   // First Loop.
5217   //
5218   //  final static long LONG_MASK = 0xffffffffL;
5219   //  int xstart = xlen - 1;
5220   //  int ystart = ylen - 1;
5221   //  long carry = 0;
5222   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
5223   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
5224   //    z[kdx] = (int)product;
5225   //    carry = product >>> 32;
5226   //  }
5227   //  z[xstart] = (int)carry;
5228 
5229   mr_if_needed(idx, ylen);        // idx = ylen
5230   mr_if_needed(kdx, zlen);        // kdx = xlen + ylen
5231   li(carry, 0);                   // carry = 0
5232 
5233   Label L_done;
5234 
5235   addic_(xstart, xlen, -1);
5236   blt(CCR0, L_done);
5237 
5238   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z,
5239                         carry, product_high, product, idx, kdx, tmp);
5240 
5241   Label L_second_loop;
5242 
5243   cmpdi(CCR0, kdx, 0);
5244   beq(CCR0, L_second_loop);
5245 
5246   Label L_carry;
5247 
5248   addic_(kdx, kdx, -1);
5249   beq(CCR0, L_carry);
5250 
5251   // Store lower 32 bits of carry.
5252   sldi(tmp, kdx, LogBytesPerInt);
5253   stwx(carry, z, tmp);
5254   srdi(carry, carry, 32);
5255   addi(kdx, kdx, -1);
5256 
5257 
5258   bind(L_carry);
5259 
5260   // Store upper 32 bits of carry.
5261   sldi(tmp, kdx, LogBytesPerInt);
5262   stwx(carry, z, tmp);
5263 
5264   // Second and third (nested) loops.
5265   //
5266   //  for (int i = xstart-1; i >= 0; i--) { // Second loop
5267   //    carry = 0;
5268   //    for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
5269   //      long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
5270   //                     (z[k] & LONG_MASK) + carry;
5271   //      z[k] = (int)product;
5272   //      carry = product >>> 32;
5273   //    }
5274   //    z[i] = (int)carry;
5275   //  }
5276   //
5277   //  i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
5278 
5279   bind(L_second_loop);
5280 
5281   li(carry, 0);                   // carry = 0;
5282 
5283   addic_(xstart, xstart, -1);     // i = xstart-1;
5284   blt(CCR0, L_done);
5285 
5286   Register zsave = tmp10;
5287 
5288   mr(zsave, z);
5289 
5290 
5291   Label L_last_x;
5292 
5293   sldi(tmp, xstart, LogBytesPerInt);
5294   add(z, z, tmp);                 // z = z + k - j
5295   addi(z, z, 4);
5296   addic_(xstart, xstart, -1);     // i = xstart-1;
5297   blt(CCR0, L_last_x);
5298 
5299   sldi(tmp, xstart, LogBytesPerInt);
5300   ldx(x_xstart, x, tmp);
5301 #ifdef VM_LITTLE_ENDIAN
5302   rldicl(x_xstart, x_xstart, 32, 0);
5303 #endif
5304 
5305 
5306   Label L_third_loop_prologue;
5307 
5308   bind(L_third_loop_prologue);
5309 
5310   Register xsave = tmp11;
5311   Register xlensave = tmp12;
5312   Register ylensave = tmp13;
5313 
5314   mr(xsave, x);
5315   mr(xlensave, xstart);
5316   mr(ylensave, ylen);
5317 
5318 
5319   multiply_128_x_128_loop(x_xstart, y, z, y_idx, ylen,
5320                           carry, product_high, product, x, tmp);
5321 
5322   mr(z, zsave);
5323   mr(x, xsave);
5324   mr(xlen, xlensave);   // This is the decrement of the loop counter!
5325   mr(ylen, ylensave);
5326 
5327   addi(tmp3, xlen, 1);
5328   sldi(tmp, tmp3, LogBytesPerInt);
5329   stwx(carry, z, tmp);
5330   addic_(tmp3, tmp3, -1);
5331   blt(CCR0, L_done);
5332 
5333   srdi(carry, carry, 32);
5334   sldi(tmp, tmp3, LogBytesPerInt);
5335   stwx(carry, z, tmp);
5336   b(L_second_loop);
5337 
5338   // Next infrequent code is moved outside loops.
5339   bind(L_last_x);
5340 
5341   lwz(x_xstart, 0, x);
5342   b(L_third_loop_prologue);
5343 
5344   bind(L_done);
5345 }   // multiply_to_len
5346 
5347 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
5348 #ifdef ASSERT
5349   Label ok;
5350   if (check_equal) {
5351     beq(CCR0, ok);
5352   } else {
5353     bne(CCR0, ok);
5354   }
5355   stop(msg, id);
5356   bind(ok);
5357 #endif
5358 }
5359 
5360 void MacroAssembler::asm_assert_mems_zero(bool check_equal, int size, int mem_offset,
5361                                           Register mem_base, const char* msg, int id) {
5362 #ifdef ASSERT
5363   switch (size) {
5364     case 4:
5365       lwz(R0, mem_offset, mem_base);
5366       cmpwi(CCR0, R0, 0);
5367       break;
5368     case 8:
5369       ld(R0, mem_offset, mem_base);
5370       cmpdi(CCR0, R0, 0);
5371       break;
5372     default:
5373       ShouldNotReachHere();
5374   }
5375   asm_assert(check_equal, msg, id);
5376 #endif // ASSERT
5377 }
5378 
5379 void MacroAssembler::verify_thread() {
5380   if (VerifyThread) {
5381     unimplemented("'VerifyThread' currently not implemented on PPC");
5382   }
5383 }
5384 
5385 // READ: oop. KILL: R0. Volatile floats perhaps.
5386 void MacroAssembler::verify_oop(Register oop, const char* msg) {
5387   if (!VerifyOops) {
5388     return;
5389   }
5390 
5391   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
5392   const Register tmp = R11; // Will be preserved.
5393   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
5394   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
5395 
5396   mr_if_needed(R4_ARG2, oop);
5397   save_LR_CR(tmp); // save in old frame
5398   push_frame_reg_args(nbytes_save, tmp);
5399   // load FunctionDescriptor** / entry_address *
5400   load_const_optimized(tmp, fd, R0);
5401   // load FunctionDescriptor* / entry_address
5402   ld(tmp, 0, tmp);
5403   load_const_optimized(R3_ARG1, (address)msg, R0);
5404   // Call destination for its side effect.
5405   call_c(tmp);
5406 
5407   pop_frame();
5408   restore_LR_CR(tmp);
5409   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
5410 }
5411 
5412 void MacroAssembler::verify_oop_addr(RegisterOrConstant offs, Register base, const char* msg) {
5413   if (!VerifyOops) {
5414     return;
5415   }
5416 
5417   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
5418   const Register tmp = R11; // Will be preserved.
5419   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
5420   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
5421 
5422   ld(R4_ARG2, offs, base);
5423   save_LR_CR(tmp); // save in old frame
5424   push_frame_reg_args(nbytes_save, tmp);
5425   // load FunctionDescriptor** / entry_address *
5426   load_const_optimized(tmp, fd, R0);
5427   // load FunctionDescriptor* / entry_address
5428   ld(tmp, 0, tmp);
5429   load_const_optimized(R3_ARG1, (address)msg, R0);
5430   // Call destination for its side effect.
5431   call_c(tmp);
5432 
5433   pop_frame();
5434   restore_LR_CR(tmp);
5435   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
5436 }
5437 
5438 const char* stop_types[] = {
5439   "stop",
5440   "untested",
5441   "unimplemented",
5442   "shouldnotreachhere"
5443 };
5444 
5445 static void stop_on_request(int tp, const char* msg) {
5446   tty->print("PPC assembly code requires stop: (%s) %s\n", stop_types[tp%/*stop_end*/4], msg);
5447   guarantee(false, "PPC assembly code requires stop: %s", msg);
5448 }
5449 
5450 // Call a C-function that prints output.
5451 void MacroAssembler::stop(int type, const char* msg, int id) {
5452 #ifndef PRODUCT
5453   block_comment(err_msg("stop: %s %s {", stop_types[type%stop_end], msg));
5454 #else
5455   block_comment("stop {");
5456 #endif
5457 
5458   // setup arguments
5459   load_const_optimized(R3_ARG1, type);
5460   load_const_optimized(R4_ARG2, (void *)msg, /*tmp=*/R0);
5461   call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), R3_ARG1, R4_ARG2);
5462   illtrap();
5463   emit_int32(id);
5464   block_comment("} stop;");
5465 }
5466 
5467 #ifndef PRODUCT
5468 // Write pattern 0x0101010101010101 in memory region [low-before, high+after].
5469 // Val, addr are temp registers.
5470 // If low == addr, addr is killed.
5471 // High is preserved.
5472 void MacroAssembler::zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) {
5473   if (!ZapMemory) return;
5474 
5475   assert_different_registers(low, val);
5476 
5477   BLOCK_COMMENT("zap memory region {");
5478   load_const_optimized(val, 0x0101010101010101);
5479   int size = before + after;
5480   if (low == high && size < 5 && size > 0) {
5481     int offset = -before*BytesPerWord;
5482     for (int i = 0; i < size; ++i) {
5483       std(val, offset, low);
5484       offset += (1*BytesPerWord);
5485     }
5486   } else {
5487     addi(addr, low, -before*BytesPerWord);
5488     assert_different_registers(high, val);
5489     if (after) addi(high, high, after * BytesPerWord);
5490     Label loop;
5491     bind(loop);
5492     std(val, 0, addr);
5493     addi(addr, addr, 8);
5494     cmpd(CCR6, addr, high);
5495     ble(CCR6, loop);
5496     if (after) addi(high, high, -after * BytesPerWord);  // Correct back to old value.
5497   }
5498   BLOCK_COMMENT("} zap memory region");
5499 }
5500 
5501 #endif // !PRODUCT
5502 
5503 SkipIfEqualZero::SkipIfEqualZero(MacroAssembler* masm, Register temp, const bool* flag_addr) : _masm(masm), _label() {
5504   int simm16_offset = masm->load_const_optimized(temp, (address)flag_addr, R0, true);
5505   assert(sizeof(bool) == 1, "PowerPC ABI");
5506   masm->lbz(temp, simm16_offset, temp);
5507   masm->cmpwi(CCR0, temp, 0);
5508   masm->beq(CCR0, _label);
5509 }
5510 
5511 SkipIfEqualZero::~SkipIfEqualZero() {
5512   _masm->bind(_label);
5513 }