1 /*
   2  * Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2015, 2017 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/interp_masm.hpp"
  32 #include "interpreter/templateInterpreterGenerator.hpp"
  33 #include "interpreter/templateTable.hpp"
  34 #include "oops/arrayOop.hpp"
  35 #include "oops/methodData.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "prims/jvmtiExport.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/deoptimization.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "runtime/synchronizer.hpp"
  46 #include "runtime/timer.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "utilities/debug.hpp"
  49 #include "utilities/macros.hpp"
  50 
  51 #undef __
  52 #define __ _masm->
  53 
  54 // Size of interpreter code.  Increase if too small.  Interpreter will
  55 // fail with a guarantee ("not enough space for interpreter generation");
  56 // if too small.
  57 // Run with +PrintInterpreter to get the VM to print out the size.
  58 // Max size with JVMTI
  59 int TemplateInterpreter::InterpreterCodeSize = 230*K;
  60 
  61 #ifdef PRODUCT
  62 #define BLOCK_COMMENT(str) /* nothing */
  63 #else
  64 #define BLOCK_COMMENT(str) __ block_comment(str)
  65 #endif
  66 
  67 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  68 
  69 //-----------------------------------------------------------------------------
  70 
  71 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  72   // Slow_signature handler that respects the PPC C calling conventions.
  73   //
  74   // We get called by the native entry code with our output register
  75   // area == 8. First we call InterpreterRuntime::get_result_handler
  76   // to copy the pointer to the signature string temporarily to the
  77   // first C-argument and to return the result_handler in
  78   // R3_RET. Since native_entry will copy the jni-pointer to the
  79   // first C-argument slot later on, it is OK to occupy this slot
  80   // temporarilly. Then we copy the argument list on the java
  81   // expression stack into native varargs format on the native stack
  82   // and load arguments into argument registers. Integer arguments in
  83   // the varargs vector will be sign-extended to 8 bytes.
  84   //
  85   // On entry:
  86   //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
  87   //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
  88   //     this method
  89   //   R19_method
  90   //
  91   // On exit (just before return instruction):
  92   //   R3_RET            - contains the address of the result_handler.
  93   //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
  94   //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
  95   //                       ARGi contains this argument. Otherwise, ARGi is not updated.
  96   //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
  97 
  98   const int LogSizeOfTwoInstructions = 3;
  99 
 100   // FIXME: use Argument:: GL: Argument names different numbers!
 101   const int max_fp_register_arguments  = 13;
 102   const int max_int_register_arguments = 6;  // first 2 are reserved
 103 
 104   const Register arg_java       = R21_tmp1;
 105   const Register arg_c          = R22_tmp2;
 106   const Register signature      = R23_tmp3;  // is string
 107   const Register sig_byte       = R24_tmp4;
 108   const Register fpcnt          = R25_tmp5;
 109   const Register argcnt         = R26_tmp6;
 110   const Register intSlot        = R27_tmp7;
 111   const Register target_sp      = R28_tmp8;
 112   const FloatRegister floatSlot = F0;
 113 
 114   address entry = __ function_entry();
 115 
 116   __ save_LR_CR(R0);
 117   __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 118   // We use target_sp for storing arguments in the C frame.
 119   __ mr(target_sp, R1_SP);
 120   __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
 121 
 122   __ mr(arg_java, R3_ARG1);
 123 
 124   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
 125 
 126   // Signature is in R3_RET. Signature is callee saved.
 127   __ mr(signature, R3_RET);
 128 
 129   // Get the result handler.
 130   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
 131 
 132   {
 133     Label L;
 134     // test if static
 135     // _access_flags._flags must be at offset 0.
 136     // TODO PPC port: requires change in shared code.
 137     //assert(in_bytes(AccessFlags::flags_offset()) == 0,
 138     //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
 139     // _access_flags must be a 32 bit value.
 140     assert(sizeof(AccessFlags) == 4, "wrong size");
 141     __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
 142     // testbit with condition register.
 143     __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
 144     __ btrue(CCR0, L);
 145     // For non-static functions, pass "this" in R4_ARG2 and copy it
 146     // to 2nd C-arg slot.
 147     // We need to box the Java object here, so we use arg_java
 148     // (address of current Java stack slot) as argument and don't
 149     // dereference it as in case of ints, floats, etc.
 150     __ mr(R4_ARG2, arg_java);
 151     __ addi(arg_java, arg_java, -BytesPerWord);
 152     __ std(R4_ARG2, _abi(carg_2), target_sp);
 153     __ bind(L);
 154   }
 155 
 156   // Will be incremented directly after loop_start. argcnt=0
 157   // corresponds to 3rd C argument.
 158   __ li(argcnt, -1);
 159   // arg_c points to 3rd C argument
 160   __ addi(arg_c, target_sp, _abi(carg_3));
 161   // no floating-point args parsed so far
 162   __ li(fpcnt, 0);
 163 
 164   Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
 165   Label loop_start, loop_end;
 166   Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
 167 
 168   // signature points to '(' at entry
 169 #ifdef ASSERT
 170   __ lbz(sig_byte, 0, signature);
 171   __ cmplwi(CCR0, sig_byte, '(');
 172   __ bne(CCR0, do_dontreachhere);
 173 #endif
 174 
 175   __ bind(loop_start);
 176 
 177   __ addi(argcnt, argcnt, 1);
 178   __ lbzu(sig_byte, 1, signature);
 179 
 180   __ cmplwi(CCR0, sig_byte, ')'); // end of signature
 181   __ beq(CCR0, loop_end);
 182 
 183   __ cmplwi(CCR0, sig_byte, 'B'); // byte
 184   __ beq(CCR0, do_int);
 185 
 186   __ cmplwi(CCR0, sig_byte, 'C'); // char
 187   __ beq(CCR0, do_int);
 188 
 189   __ cmplwi(CCR0, sig_byte, 'D'); // double
 190   __ beq(CCR0, do_double);
 191 
 192   __ cmplwi(CCR0, sig_byte, 'F'); // float
 193   __ beq(CCR0, do_float);
 194 
 195   __ cmplwi(CCR0, sig_byte, 'I'); // int
 196   __ beq(CCR0, do_int);
 197 
 198   __ cmplwi(CCR0, sig_byte, 'J'); // long
 199   __ beq(CCR0, do_long);
 200 
 201   __ cmplwi(CCR0, sig_byte, 'S'); // short
 202   __ beq(CCR0, do_int);
 203 
 204   __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
 205   __ beq(CCR0, do_int);
 206 
 207   __ cmplwi(CCR0, sig_byte, 'L'); // object
 208   __ beq(CCR0, do_object);
 209 
 210   __ cmplwi(CCR0, sig_byte, '['); // array
 211   __ beq(CCR0, do_array);
 212 
 213   //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
 214   //  __ beq(CCR0, do_void);
 215 
 216   __ bind(do_dontreachhere);
 217 
 218   __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
 219 
 220   __ bind(do_array);
 221 
 222   {
 223     Label start_skip, end_skip;
 224 
 225     __ bind(start_skip);
 226     __ lbzu(sig_byte, 1, signature);
 227     __ cmplwi(CCR0, sig_byte, '[');
 228     __ beq(CCR0, start_skip); // skip further brackets
 229     __ cmplwi(CCR0, sig_byte, '9');
 230     __ bgt(CCR0, end_skip);   // no optional size
 231     __ cmplwi(CCR0, sig_byte, '0');
 232     __ bge(CCR0, start_skip); // skip optional size
 233     __ bind(end_skip);
 234 
 235     __ cmplwi(CCR0, sig_byte, 'L');
 236     __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
 237     __ b(do_boxed);          // otherwise, go directly to do_boxed
 238   }
 239 
 240   __ bind(do_object);
 241   {
 242     Label L;
 243     __ bind(L);
 244     __ lbzu(sig_byte, 1, signature);
 245     __ cmplwi(CCR0, sig_byte, ';');
 246     __ bne(CCR0, L);
 247    }
 248   // Need to box the Java object here, so we use arg_java (address of
 249   // current Java stack slot) as argument and don't dereference it as
 250   // in case of ints, floats, etc.
 251   Label do_null;
 252   __ bind(do_boxed);
 253   __ ld(R0,0, arg_java);
 254   __ cmpdi(CCR0, R0, 0);
 255   __ li(intSlot,0);
 256   __ beq(CCR0, do_null);
 257   __ mr(intSlot, arg_java);
 258   __ bind(do_null);
 259   __ std(intSlot, 0, arg_c);
 260   __ addi(arg_java, arg_java, -BytesPerWord);
 261   __ addi(arg_c, arg_c, BytesPerWord);
 262   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 263   __ blt(CCR0, move_intSlot_to_ARG);
 264   __ b(loop_start);
 265 
 266   __ bind(do_int);
 267   __ lwa(intSlot, 0, arg_java);
 268   __ std(intSlot, 0, arg_c);
 269   __ addi(arg_java, arg_java, -BytesPerWord);
 270   __ addi(arg_c, arg_c, BytesPerWord);
 271   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 272   __ blt(CCR0, move_intSlot_to_ARG);
 273   __ b(loop_start);
 274 
 275   __ bind(do_long);
 276   __ ld(intSlot, -BytesPerWord, arg_java);
 277   __ std(intSlot, 0, arg_c);
 278   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 279   __ addi(arg_c, arg_c, BytesPerWord);
 280   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 281   __ blt(CCR0, move_intSlot_to_ARG);
 282   __ b(loop_start);
 283 
 284   __ bind(do_float);
 285   __ lfs(floatSlot, 0, arg_java);
 286 #if defined(LINUX)
 287   // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
 288   // in the least significant word of an argument slot.
 289 #if defined(VM_LITTLE_ENDIAN)
 290   __ stfs(floatSlot, 0, arg_c);
 291 #else
 292   __ stfs(floatSlot, 4, arg_c);
 293 #endif
 294 #elif defined(AIX)
 295   // Although AIX runs on big endian CPU, float is in most significant
 296   // word of an argument slot.
 297   __ stfs(floatSlot, 0, arg_c);
 298 #else
 299 #error "unknown OS"
 300 #endif
 301   __ addi(arg_java, arg_java, -BytesPerWord);
 302   __ addi(arg_c, arg_c, BytesPerWord);
 303   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 304   __ blt(CCR0, move_floatSlot_to_FARG);
 305   __ b(loop_start);
 306 
 307   __ bind(do_double);
 308   __ lfd(floatSlot, - BytesPerWord, arg_java);
 309   __ stfd(floatSlot, 0, arg_c);
 310   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 311   __ addi(arg_c, arg_c, BytesPerWord);
 312   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 313   __ blt(CCR0, move_floatSlot_to_FARG);
 314   __ b(loop_start);
 315 
 316   __ bind(loop_end);
 317 
 318   __ pop_frame();
 319   __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 320   __ restore_LR_CR(R0);
 321 
 322   __ blr();
 323 
 324   Label move_int_arg, move_float_arg;
 325   __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 326   __ mr(R5_ARG3, intSlot);  __ b(loop_start);
 327   __ mr(R6_ARG4, intSlot);  __ b(loop_start);
 328   __ mr(R7_ARG5, intSlot);  __ b(loop_start);
 329   __ mr(R8_ARG6, intSlot);  __ b(loop_start);
 330   __ mr(R9_ARG7, intSlot);  __ b(loop_start);
 331   __ mr(R10_ARG8, intSlot); __ b(loop_start);
 332 
 333   __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 334   __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
 335   __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
 336   __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
 337   __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
 338   __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
 339   __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
 340   __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
 341   __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
 342   __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
 343   __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
 344   __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
 345   __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
 346   __ fmr(F13_ARG13, floatSlot); __ b(loop_start);
 347 
 348   __ bind(move_intSlot_to_ARG);
 349   __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
 350   __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
 351   __ add(R11_scratch1, R0, R11_scratch1);
 352   __ mtctr(R11_scratch1/*branch_target*/);
 353   __ bctr();
 354   __ bind(move_floatSlot_to_FARG);
 355   __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
 356   __ addi(fpcnt, fpcnt, 1);
 357   __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
 358   __ add(R11_scratch1, R0, R11_scratch1);
 359   __ mtctr(R11_scratch1/*branch_target*/);
 360   __ bctr();
 361 
 362   return entry;
 363 }
 364 
 365 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 366   //
 367   // Registers alive
 368   //   R3_RET
 369   //   LR
 370   //
 371   // Registers updated
 372   //   R3_RET
 373   //
 374 
 375   Label done;
 376   address entry = __ pc();
 377 
 378   switch (type) {
 379   case T_BOOLEAN:
 380     // convert !=0 to 1
 381     __ neg(R0, R3_RET);
 382     __ orr(R0, R3_RET, R0);
 383     __ srwi(R3_RET, R0, 31);
 384     break;
 385   case T_BYTE:
 386      // sign extend 8 bits
 387      __ extsb(R3_RET, R3_RET);
 388      break;
 389   case T_CHAR:
 390      // zero extend 16 bits
 391      __ clrldi(R3_RET, R3_RET, 48);
 392      break;
 393   case T_SHORT:
 394      // sign extend 16 bits
 395      __ extsh(R3_RET, R3_RET);
 396      break;
 397   case T_INT:
 398      // sign extend 32 bits
 399      __ extsw(R3_RET, R3_RET);
 400      break;
 401   case T_LONG:
 402      break;
 403   case T_OBJECT:
 404     // JNIHandles::resolve result.
 405     __ resolve_jobject(R3_RET, R11_scratch1, R12_scratch2, /* needs_frame */ true); // kills R31
 406     break;
 407   case T_FLOAT:
 408      break;
 409   case T_DOUBLE:
 410      break;
 411   case T_VOID:
 412      break;
 413   default: ShouldNotReachHere();
 414   }
 415 
 416   BIND(done);
 417   __ blr();
 418 
 419   return entry;
 420 }
 421 
 422 // Abstract method entry.
 423 //
 424 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 425   address entry = __ pc();
 426 
 427   //
 428   // Registers alive
 429   //   R16_thread     - JavaThread*
 430   //   R19_method     - callee's method (method to be invoked)
 431   //   R1_SP          - SP prepared such that caller's outgoing args are near top
 432   //   LR             - return address to caller
 433   //
 434   // Stack layout at this point:
 435   //
 436   //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
 437   //           alignment (optional)
 438   //           [outgoing Java arguments]
 439   //           ...
 440   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
 441   //            ...
 442   //
 443 
 444   // Can't use call_VM here because we have not set up a new
 445   // interpreter state. Make the call to the vm and make it look like
 446   // our caller set up the JavaFrameAnchor.
 447   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
 448 
 449   // Push a new C frame and save LR.
 450   __ save_LR_CR(R0);
 451   __ push_frame_reg_args(0, R11_scratch1);
 452 
 453   // This is not a leaf but we have a JavaFrameAnchor now and we will
 454   // check (create) exceptions afterward so this is ok.
 455   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError),
 456                   R16_thread);
 457 
 458   // Pop the C frame and restore LR.
 459   __ pop_frame();
 460   __ restore_LR_CR(R0);
 461 
 462   // Reset JavaFrameAnchor from call_VM_leaf above.
 463   __ reset_last_Java_frame();
 464 
 465   // We don't know our caller, so jump to the general forward exception stub,
 466   // which will also pop our full frame off. Satisfy the interface of
 467   // SharedRuntime::generate_forward_exception()
 468   __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
 469   __ mtctr(R11_scratch1);
 470   __ bctr();
 471 
 472   return entry;
 473 }
 474 
 475 // Interpreter intrinsic for WeakReference.get().
 476 // 1. Don't push a full blown frame and go on dispatching, but fetch the value
 477 //    into R8 and return quickly
 478 // 2. If G1 is active we *must* execute this intrinsic for corrrectness:
 479 //    It contains a GC barrier which puts the reference into the satb buffer
 480 //    to indicate that someone holds a strong reference to the object the
 481 //    weak ref points to!
 482 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 483   // Code: _aload_0, _getfield, _areturn
 484   // parameter size = 1
 485   //
 486   // The code that gets generated by this routine is split into 2 parts:
 487   //    1. the "intrinsified" code for G1 (or any SATB based GC),
 488   //    2. the slow path - which is an expansion of the regular method entry.
 489   //
 490   // Notes:
 491   // * In the G1 code we do not check whether we need to block for
 492   //   a safepoint. If G1 is enabled then we must execute the specialized
 493   //   code for Reference.get (except when the Reference object is null)
 494   //   so that we can log the value in the referent field with an SATB
 495   //   update buffer.
 496   //   If the code for the getfield template is modified so that the
 497   //   G1 pre-barrier code is executed when the current method is
 498   //   Reference.get() then going through the normal method entry
 499   //   will be fine.
 500   // * The G1 code can, however, check the receiver object (the instance
 501   //   of java.lang.Reference) and jump to the slow path if null. If the
 502   //   Reference object is null then we obviously cannot fetch the referent
 503   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 504   //   regular method entry code to generate the NPE.
 505   //
 506 
 507   if (UseG1GC) {
 508     address entry = __ pc();
 509 
 510     const int referent_offset = java_lang_ref_Reference::referent_offset;
 511     guarantee(referent_offset > 0, "referent offset not initialized");
 512 
 513     Label slow_path;
 514 
 515     // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
 516 
 517     // In the G1 code we don't check if we need to reach a safepoint. We
 518     // continue and the thread will safepoint at the next bytecode dispatch.
 519 
 520     // If the receiver is null then it is OK to jump to the slow path.
 521     __ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
 522 
 523     // Check if receiver == NULL and go the slow path.
 524     __ cmpdi(CCR0, R3_RET, 0);
 525     __ beq(CCR0, slow_path);
 526 
 527     // Load the value of the referent field.
 528     __ load_heap_oop(R3_RET, referent_offset, R3_RET);
 529 
 530     // Generate the G1 pre-barrier code to log the value of
 531     // the referent field in an SATB buffer. Note with
 532     // these parameters the pre-barrier does not generate
 533     // the load of the previous value.
 534 
 535     // Restore caller sp for c2i case.
 536 #ifdef ASSERT
 537       __ ld(R9_ARG7, 0, R1_SP);
 538       __ ld(R10_ARG8, 0, R21_sender_SP);
 539       __ cmpd(CCR0, R9_ARG7, R10_ARG8);
 540       __ asm_assert_eq("backlink", 0x544);
 541 #endif // ASSERT
 542     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
 543 
 544     __ g1_write_barrier_pre(noreg,         // obj
 545                             noreg,         // offset
 546                             R3_RET,        // pre_val
 547                             R11_scratch1,  // tmp
 548                             R12_scratch2,  // tmp
 549                             true);         // needs_frame
 550 
 551     __ blr();
 552 
 553     // Generate regular method entry.
 554     __ bind(slow_path);
 555     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
 556     return entry;
 557   }
 558 
 559   return NULL;
 560 }
 561 
 562 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 563   address entry = __ pc();
 564 
 565   // Expression stack must be empty before entering the VM if an
 566   // exception happened.
 567   __ empty_expression_stack();
 568   // Throw exception.
 569   __ call_VM(noreg,
 570              CAST_FROM_FN_PTR(address,
 571                               InterpreterRuntime::throw_StackOverflowError));
 572   return entry;
 573 }
 574 
 575 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 576   address entry = __ pc();
 577   __ empty_expression_stack();
 578   __ load_const_optimized(R4_ARG2, (address) name);
 579   // Index is in R17_tos.
 580   __ mr(R5_ARG3, R17_tos);
 581   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
 582   return entry;
 583 }
 584 
 585 #if 0
 586 // Call special ClassCastException constructor taking object to cast
 587 // and target class as arguments.
 588 address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() {
 589   address entry = __ pc();
 590 
 591   // Expression stack must be empty before entering the VM if an
 592   // exception happened.
 593   __ empty_expression_stack();
 594 
 595   // Thread will be loaded to R3_ARG1.
 596   // Target class oop is in register R5_ARG3 by convention!
 597   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3);
 598   // Above call must not return here since exception pending.
 599   DEBUG_ONLY(__ should_not_reach_here();)
 600   return entry;
 601 }
 602 #endif
 603 
 604 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 605   address entry = __ pc();
 606   // Expression stack must be empty before entering the VM if an
 607   // exception happened.
 608   __ empty_expression_stack();
 609 
 610   // Load exception object.
 611   // Thread will be loaded to R3_ARG1.
 612   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
 613 #ifdef ASSERT
 614   // Above call must not return here since exception pending.
 615   __ should_not_reach_here();
 616 #endif
 617   return entry;
 618 }
 619 
 620 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 621   address entry = __ pc();
 622   //__ untested("generate_exception_handler_common");
 623   Register Rexception = R17_tos;
 624 
 625   // Expression stack must be empty before entering the VM if an exception happened.
 626   __ empty_expression_stack();
 627 
 628   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
 629   if (pass_oop) {
 630     __ mr(R5_ARG3, Rexception);
 631     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
 632   } else {
 633     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
 634     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
 635   }
 636 
 637   // Throw exception.
 638   __ mr(R3_ARG1, Rexception);
 639   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
 640   __ mtctr(R11_scratch1);
 641   __ bctr();
 642 
 643   return entry;
 644 }
 645 
 646 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 647   address entry = __ pc();
 648   __ unimplemented("generate_continuation_for");
 649   return entry;
 650 }
 651 
 652 // This entry is returned to when a call returns to the interpreter.
 653 // When we arrive here, we expect that the callee stack frame is already popped.
 654 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 655   address entry = __ pc();
 656 
 657   // Move the value out of the return register back to the TOS cache of current frame.
 658   switch (state) {
 659     case ltos:
 660     case btos:
 661     case ztos:
 662     case ctos:
 663     case stos:
 664     case atos:
 665     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
 666     case ftos:
 667     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 668     case vtos: break;                           // Nothing to do, this was a void return.
 669     default  : ShouldNotReachHere();
 670   }
 671 
 672   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
 673   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
 674   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
 675 
 676   // Compiled code destroys templateTableBase, reload.
 677   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
 678 
 679   if (state == atos) {
 680     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
 681   }
 682 
 683   const Register cache = R11_scratch1;
 684   const Register size  = R12_scratch2;
 685   __ get_cache_and_index_at_bcp(cache, 1, index_size);
 686 
 687   // Get least significant byte of 64 bit value:
 688 #if defined(VM_LITTLE_ENDIAN)
 689   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
 690 #else
 691   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
 692 #endif
 693   __ sldi(size, size, Interpreter::logStackElementSize);
 694   __ add(R15_esp, R15_esp, size);
 695   __ dispatch_next(state, step);
 696   return entry;
 697 }
 698 
 699 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 700   address entry = __ pc();
 701   // If state != vtos, we're returning from a native method, which put it's result
 702   // into the result register. So move the value out of the return register back
 703   // to the TOS cache of current frame.
 704 
 705   switch (state) {
 706     case ltos:
 707     case btos:
 708     case ztos:
 709     case ctos:
 710     case stos:
 711     case atos:
 712     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
 713     case ftos:
 714     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 715     case vtos: break;                           // Nothing to do, this was a void return.
 716     default  : ShouldNotReachHere();
 717   }
 718 
 719   // Load LcpoolCache @@@ should be already set!
 720   __ get_constant_pool_cache(R27_constPoolCache);
 721 
 722   // Handle a pending exception, fall through if none.
 723   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
 724 
 725   // Start executing bytecodes.
 726   __ dispatch_next(state, step);
 727 
 728   return entry;
 729 }
 730 
 731 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 732   address entry = __ pc();
 733 
 734   __ push(state);
 735   __ call_VM(noreg, runtime_entry);
 736   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 737 
 738   return entry;
 739 }
 740 
 741 // Helpers for commoning out cases in the various type of method entries.
 742 
 743 // Increment invocation count & check for overflow.
 744 //
 745 // Note: checking for negative value instead of overflow
 746 //       so we have a 'sticky' overflow test.
 747 //
 748 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 749   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
 750   Register Rscratch1   = R11_scratch1;
 751   Register Rscratch2   = R12_scratch2;
 752   Register R3_counters = R3_ARG1;
 753   Label done;
 754 
 755   if (TieredCompilation) {
 756     const int increment = InvocationCounter::count_increment;
 757     Label no_mdo;
 758     if (ProfileInterpreter) {
 759       const Register Rmdo = R3_counters;
 760       // If no method data exists, go to profile_continue.
 761       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
 762       __ cmpdi(CCR0, Rmdo, 0);
 763       __ beq(CCR0, no_mdo);
 764 
 765       // Increment invocation counter in the MDO.
 766       const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 767       __ lwz(Rscratch2, mdo_ic_offs, Rmdo);
 768       __ lwz(Rscratch1, in_bytes(MethodData::invoke_mask_offset()), Rmdo);
 769       __ addi(Rscratch2, Rscratch2, increment);
 770       __ stw(Rscratch2, mdo_ic_offs, Rmdo);
 771       __ and_(Rscratch1, Rscratch2, Rscratch1);
 772       __ bne(CCR0, done);
 773       __ b(*overflow);
 774     }
 775 
 776     // Increment counter in MethodCounters*.
 777     const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 778     __ bind(no_mdo);
 779     __ get_method_counters(R19_method, R3_counters, done);
 780     __ lwz(Rscratch2, mo_ic_offs, R3_counters);
 781     __ lwz(Rscratch1, in_bytes(MethodCounters::invoke_mask_offset()), R3_counters);
 782     __ addi(Rscratch2, Rscratch2, increment);
 783     __ stw(Rscratch2, mo_ic_offs, R3_counters);
 784     __ and_(Rscratch1, Rscratch2, Rscratch1);
 785     __ beq(CCR0, *overflow);
 786 
 787     __ bind(done);
 788 
 789   } else {
 790 
 791     // Update standard invocation counters.
 792     Register Rsum_ivc_bec = R4_ARG2;
 793     __ get_method_counters(R19_method, R3_counters, done);
 794     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
 795     // Increment interpreter invocation counter.
 796     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
 797       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 798       __ addi(R12_scratch2, R12_scratch2, 1);
 799       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 800     }
 801     // Check if we must create a method data obj.
 802     if (ProfileInterpreter && profile_method != NULL) {
 803       const Register profile_limit = Rscratch1;
 804       __ lwz(profile_limit, in_bytes(MethodCounters::interpreter_profile_limit_offset()), R3_counters);
 805       // Test to see if we should create a method data oop.
 806       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
 807       __ blt(CCR0, *profile_method_continue);
 808       // If no method data exists, go to profile_method.
 809       __ test_method_data_pointer(*profile_method);
 810     }
 811     // Finally check for counter overflow.
 812     if (overflow) {
 813       const Register invocation_limit = Rscratch1;
 814       __ lwz(invocation_limit, in_bytes(MethodCounters::interpreter_invocation_limit_offset()), R3_counters);
 815       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
 816       __ bge(CCR0, *overflow);
 817     }
 818 
 819     __ bind(done);
 820   }
 821 }
 822 
 823 // Generate code to initiate compilation on invocation counter overflow.
 824 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
 825   // Generate code to initiate compilation on the counter overflow.
 826 
 827   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
 828   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 829   // We pass zero in.
 830   // The call returns the address of the verified entry point for the method or NULL
 831   // if the compilation did not complete (either went background or bailed out).
 832   //
 833   // Unlike the C++ interpreter above: Check exceptions!
 834   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
 835   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
 836 
 837   __ li(R4_ARG2, 0);
 838   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
 839 
 840   // Returns verified_entry_point or NULL.
 841   // We ignore it in any case.
 842   __ b(continue_entry);
 843 }
 844 
 845 // See if we've got enough room on the stack for locals plus overhead below
 846 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 847 // without going through the signal handler, i.e., reserved and yellow zones
 848 // will not be made usable. The shadow zone must suffice to handle the
 849 // overflow.
 850 //
 851 // Kills Rmem_frame_size, Rscratch1.
 852 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
 853   Label done;
 854   assert_different_registers(Rmem_frame_size, Rscratch1);
 855 
 856   BLOCK_COMMENT("stack_overflow_check_with_compare {");
 857   __ sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
 858   __ ld(Rscratch1, thread_(stack_overflow_limit));
 859   __ cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
 860   __ bgt(CCR0/*is_stack_overflow*/, done);
 861 
 862   // The stack overflows. Load target address of the runtime stub and call it.
 863   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
 864   __ load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
 865   __ mtctr(Rscratch1);
 866   // Restore caller_sp.
 867 #ifdef ASSERT
 868   __ ld(Rscratch1, 0, R1_SP);
 869   __ ld(R0, 0, R21_sender_SP);
 870   __ cmpd(CCR0, R0, Rscratch1);
 871   __ asm_assert_eq("backlink", 0x547);
 872 #endif // ASSERT
 873   __ mr(R1_SP, R21_sender_SP);
 874   __ bctr();
 875 
 876   __ align(32, 12);
 877   __ bind(done);
 878   BLOCK_COMMENT("} stack_overflow_check_with_compare");
 879 }
 880 
 881 // Lock the current method, interpreter register window must be set up!
 882 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
 883   const Register Robj_to_lock = Rscratch2;
 884 
 885   {
 886     if (!flags_preloaded) {
 887       __ lwz(Rflags, method_(access_flags));
 888     }
 889 
 890 #ifdef ASSERT
 891     // Check if methods needs synchronization.
 892     {
 893       Label Lok;
 894       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
 895       __ btrue(CCR0,Lok);
 896       __ stop("method doesn't need synchronization");
 897       __ bind(Lok);
 898     }
 899 #endif // ASSERT
 900   }
 901 
 902   // Get synchronization object to Rscratch2.
 903   {
 904     Label Lstatic;
 905     Label Ldone;
 906 
 907     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
 908     __ btrue(CCR0, Lstatic);
 909 
 910     // Non-static case: load receiver obj from stack and we're done.
 911     __ ld(Robj_to_lock, R18_locals);
 912     __ b(Ldone);
 913 
 914     __ bind(Lstatic); // Static case: Lock the java mirror
 915     // Load mirror from interpreter frame.
 916     __ ld(Robj_to_lock, _abi(callers_sp), R1_SP);
 917     __ ld(Robj_to_lock, _ijava_state_neg(mirror), Robj_to_lock);
 918 
 919     __ bind(Ldone);
 920     __ verify_oop(Robj_to_lock);
 921   }
 922 
 923   // Got the oop to lock => execute!
 924   __ add_monitor_to_stack(true, Rscratch1, R0);
 925 
 926   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
 927   __ lock_object(R26_monitor, Robj_to_lock);
 928 }
 929 
 930 // Generate a fixed interpreter frame for pure interpreter
 931 // and I2N native transition frames.
 932 //
 933 // Before (stack grows downwards):
 934 //
 935 //         |  ...         |
 936 //         |------------- |
 937 //         |  java arg0   |
 938 //         |  ...         |
 939 //         |  java argn   |
 940 //         |              |   <-   R15_esp
 941 //         |              |
 942 //         |--------------|
 943 //         | abi_112      |
 944 //         |              |   <-   R1_SP
 945 //         |==============|
 946 //
 947 //
 948 // After:
 949 //
 950 //         |  ...         |
 951 //         |  java arg0   |<-   R18_locals
 952 //         |  ...         |
 953 //         |  java argn   |
 954 //         |--------------|
 955 //         |              |
 956 //         |  java locals |
 957 //         |              |
 958 //         |--------------|
 959 //         |  abi_48      |
 960 //         |==============|
 961 //         |              |
 962 //         |   istate     |
 963 //         |              |
 964 //         |--------------|
 965 //         |   monitor    |<-   R26_monitor
 966 //         |--------------|
 967 //         |              |<-   R15_esp
 968 //         | expression   |
 969 //         | stack        |
 970 //         |              |
 971 //         |--------------|
 972 //         |              |
 973 //         | abi_112      |<-   R1_SP
 974 //         |==============|
 975 //
 976 // The top most frame needs an abi space of 112 bytes. This space is needed,
 977 // since we call to c. The c function may spill their arguments to the caller
 978 // frame. When we call to java, we don't need these spill slots. In order to save
 979 // space on the stack, we resize the caller. However, java locals reside in
 980 // the caller frame and the frame has to be increased. The frame_size for the
 981 // current frame was calculated based on max_stack as size for the expression
 982 // stack. At the call, just a part of the expression stack might be used.
 983 // We don't want to waste this space and cut the frame back accordingly.
 984 // The resulting amount for resizing is calculated as follows:
 985 // resize =   (number_of_locals - number_of_arguments) * slot_size
 986 //          + (R1_SP - R15_esp) + 48
 987 //
 988 // The size for the callee frame is calculated:
 989 // framesize = 112 + max_stack + monitor + state_size
 990 //
 991 // maxstack:   Max number of slots on the expression stack, loaded from the method.
 992 // monitor:    We statically reserve room for one monitor object.
 993 // state_size: We save the current state of the interpreter to this area.
 994 //
 995 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
 996   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
 997            top_frame_size      = R7_ARG5,
 998            Rconst_method       = R8_ARG6;
 999 
1000   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
1001 
1002   __ ld(Rconst_method, method_(const));
1003   __ lhz(Rsize_of_parameters /* number of params */,
1004          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
1005   if (native_call) {
1006     // If we're calling a native method, we reserve space for the worst-case signature
1007     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
1008     // We add two slots to the parameter_count, one for the jni
1009     // environment and one for a possible native mirror.
1010     Label skip_native_calculate_max_stack;
1011     __ addi(top_frame_size, Rsize_of_parameters, 2);
1012     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
1013     __ bge(CCR0, skip_native_calculate_max_stack);
1014     __ li(top_frame_size, Argument::n_register_parameters);
1015     __ bind(skip_native_calculate_max_stack);
1016     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
1017     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1018     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
1019     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
1020   } else {
1021     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
1022     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
1023     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
1024     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
1025     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
1026     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
1027     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1028     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
1029   }
1030 
1031   // Compute top frame size.
1032   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
1033 
1034   // Cut back area between esp and max_stack.
1035   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
1036 
1037   __ round_to(top_frame_size, frame::alignment_in_bytes);
1038   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
1039   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
1040   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
1041 
1042   if (!native_call) {
1043     // Stack overflow check.
1044     // Native calls don't need the stack size check since they have no
1045     // expression stack and the arguments are already on the stack and
1046     // we only add a handful of words to the stack.
1047     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
1048     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
1049   }
1050 
1051   // Set up interpreter state registers.
1052 
1053   __ add(R18_locals, R15_esp, Rsize_of_parameters);
1054   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
1055   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
1056 
1057   // Set method data pointer.
1058   if (ProfileInterpreter) {
1059     Label zero_continue;
1060     __ ld(R28_mdx, method_(method_data));
1061     __ cmpdi(CCR0, R28_mdx, 0);
1062     __ beq(CCR0, zero_continue);
1063     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1064     __ bind(zero_continue);
1065   }
1066 
1067   if (native_call) {
1068     __ li(R14_bcp, 0); // Must initialize.
1069   } else {
1070     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
1071   }
1072 
1073   // Resize parent frame.
1074   __ mflr(R12_scratch2);
1075   __ neg(parent_frame_resize, parent_frame_resize);
1076   __ resize_frame(parent_frame_resize, R11_scratch1);
1077   __ std(R12_scratch2, _abi(lr), R1_SP);
1078 
1079   // Get mirror and store it in the frame as GC root for this Method*.
1080   __ load_mirror_from_const_method(R12_scratch2, Rconst_method);
1081 
1082   __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
1083   __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
1084 
1085   // Store values.
1086   // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
1087   // in InterpreterMacroAssembler::call_from_interpreter.
1088   __ std(R19_method, _ijava_state_neg(method), R1_SP);
1089   __ std(R12_scratch2, _ijava_state_neg(mirror), R1_SP);
1090   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
1091   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
1092   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
1093 
1094   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
1095   // be found in the frame after save_interpreter_state is done. This is always true
1096   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
1097   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
1098   // (Enhanced Stack Trace).
1099   // The signal handler does not save the interpreter state into the frame.
1100   __ li(R0, 0);
1101 #ifdef ASSERT
1102   // Fill remaining slots with constants.
1103   __ load_const_optimized(R11_scratch1, 0x5afe);
1104   __ load_const_optimized(R12_scratch2, 0xdead);
1105 #endif
1106   // We have to initialize some frame slots for native calls (accessed by GC).
1107   if (native_call) {
1108     __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
1109     __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
1110     if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
1111   }
1112 #ifdef ASSERT
1113   else {
1114     __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
1115     __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
1116     __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
1117   }
1118   __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
1119   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
1120   __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
1121   __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
1122 #endif
1123   __ subf(R12_scratch2, top_frame_size, R1_SP);
1124   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
1125   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
1126 
1127   // Push top frame.
1128   __ push_frame(top_frame_size, R11_scratch1);
1129 }
1130 
1131 // End of helpers
1132 
1133 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1134 
1135   // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
1136   bool use_instruction = false;
1137   address runtime_entry = NULL;
1138   int num_args = 1;
1139   bool double_precision = true;
1140 
1141   // PPC64 specific:
1142   switch (kind) {
1143     case Interpreter::java_lang_math_sqrt: use_instruction = VM_Version::has_fsqrt(); break;
1144     case Interpreter::java_lang_math_abs:  use_instruction = true; break;
1145     case Interpreter::java_lang_math_fmaF:
1146     case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
1147     default: break; // Fall back to runtime call.
1148   }
1149 
1150   switch (kind) {
1151     case Interpreter::java_lang_math_sin  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);   break;
1152     case Interpreter::java_lang_math_cos  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);   break;
1153     case Interpreter::java_lang_math_tan  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);   break;
1154     case Interpreter::java_lang_math_abs  : /* run interpreted */ break;
1155     case Interpreter::java_lang_math_sqrt : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);  break;
1156     case Interpreter::java_lang_math_log  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);   break;
1157     case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
1158     case Interpreter::java_lang_math_pow  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
1159     case Interpreter::java_lang_math_exp  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);   break;
1160     case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
1161     case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
1162     default: ShouldNotReachHere();
1163   }
1164 
1165   // Use normal entry if neither instruction nor runtime call is used.
1166   if (!use_instruction && runtime_entry == NULL) return NULL;
1167 
1168   address entry = __ pc();
1169 
1170   // Load arguments
1171   assert(num_args <= 13, "passed in registers");
1172   if (double_precision) {
1173     int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
1174     for (int i = 0; i < num_args; ++i) {
1175       __ lfd(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1176       offset -= 2 * Interpreter::stackElementSize;
1177     }
1178   } else {
1179     int offset = num_args * Interpreter::stackElementSize;
1180     for (int i = 0; i < num_args; ++i) {
1181       __ lfs(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1182       offset -= Interpreter::stackElementSize;
1183     }
1184   }
1185 
1186   // Pop c2i arguments (if any) off when we return.
1187 #ifdef ASSERT
1188   __ ld(R9_ARG7, 0, R1_SP);
1189   __ ld(R10_ARG8, 0, R21_sender_SP);
1190   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
1191   __ asm_assert_eq("backlink", 0x545);
1192 #endif // ASSERT
1193   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1194 
1195   if (use_instruction) {
1196     switch (kind) {
1197       case Interpreter::java_lang_math_sqrt: __ fsqrt(F1_RET, F1);          break;
1198       case Interpreter::java_lang_math_abs:  __ fabs(F1_RET, F1);           break;
1199       case Interpreter::java_lang_math_fmaF: __ fmadds(F1_RET, F1, F2, F3); break;
1200       case Interpreter::java_lang_math_fmaD: __ fmadd(F1_RET, F1, F2, F3);  break;
1201       default: ShouldNotReachHere();
1202     }
1203   } else {
1204     // Comment: Can use tail call if the unextended frame is always C ABI compliant:
1205     //__ load_const_optimized(R12_scratch2, runtime_entry, R0);
1206     //__ call_c_and_return_to_caller(R12_scratch2);
1207 
1208     // Push a new C frame and save LR.
1209     __ save_LR_CR(R0);
1210     __ push_frame_reg_args(0, R11_scratch1);
1211 
1212     __ call_VM_leaf(runtime_entry);
1213 
1214     // Pop the C frame and restore LR.
1215     __ pop_frame();
1216     __ restore_LR_CR(R0);
1217   }
1218 
1219   __ blr();
1220 
1221   __ flush();
1222 
1223   return entry;
1224 }
1225 
1226 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1227   // Quick & dirty stack overflow checking: bang the stack & handle trap.
1228   // Note that we do the banging after the frame is setup, since the exception
1229   // handling code expects to find a valid interpreter frame on the stack.
1230   // Doing the banging earlier fails if the caller frame is not an interpreter
1231   // frame.
1232   // (Also, the exception throwing code expects to unlock any synchronized
1233   // method receiever, so do the banging after locking the receiver.)
1234 
1235   // Bang each page in the shadow zone. We can't assume it's been done for
1236   // an interpreter frame with greater than a page of locals, so each page
1237   // needs to be checked.  Only true for non-native.
1238   if (UseStackBanging) {
1239     const int page_size = os::vm_page_size();
1240     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
1241     const int start_page = native_call ? n_shadow_pages : 1;
1242     BLOCK_COMMENT("bang_stack_shadow_pages:");
1243     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1244       __ bang_stack_with_offset(pages*page_size);
1245     }
1246   }
1247 }
1248 
1249 // Interpreter stub for calling a native method. (asm interpreter)
1250 // This sets up a somewhat different looking stack for calling the
1251 // native method than the typical interpreter frame setup.
1252 //
1253 // On entry:
1254 //   R19_method    - method
1255 //   R16_thread    - JavaThread*
1256 //   R15_esp       - intptr_t* sender tos
1257 //
1258 //   abstract stack (grows up)
1259 //     [  IJava (caller of JNI callee)  ]  <-- ASP
1260 //        ...
1261 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1262 
1263   address entry = __ pc();
1264 
1265   const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1266 
1267   // -----------------------------------------------------------------------------
1268   // Allocate a new frame that represents the native callee (i2n frame).
1269   // This is not a full-blown interpreter frame, but in particular, the
1270   // following registers are valid after this:
1271   // - R19_method
1272   // - R18_local (points to start of arguments to native function)
1273   //
1274   //   abstract stack (grows up)
1275   //     [  IJava (caller of JNI callee)  ]  <-- ASP
1276   //        ...
1277 
1278   const Register signature_handler_fd = R11_scratch1;
1279   const Register pending_exception    = R0;
1280   const Register result_handler_addr  = R31;
1281   const Register native_method_fd     = R11_scratch1;
1282   const Register access_flags         = R22_tmp2;
1283   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
1284   const Register sync_state           = R12_scratch2;
1285   const Register sync_state_addr      = sync_state;   // Address is dead after use.
1286   const Register suspend_flags        = R11_scratch1;
1287 
1288   //=============================================================================
1289   // Allocate new frame and initialize interpreter state.
1290 
1291   Label exception_return;
1292   Label exception_return_sync_check;
1293   Label stack_overflow_return;
1294 
1295   // Generate new interpreter state and jump to stack_overflow_return in case of
1296   // a stack overflow.
1297   //generate_compute_interpreter_state(stack_overflow_return);
1298 
1299   Register size_of_parameters = R22_tmp2;
1300 
1301   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
1302 
1303   //=============================================================================
1304   // Increment invocation counter. On overflow, entry to JNI method
1305   // will be compiled.
1306   Label invocation_counter_overflow, continue_after_compile;
1307   if (inc_counter) {
1308     if (synchronized) {
1309       // Since at this point in the method invocation the exception handler
1310       // would try to exit the monitor of synchronized methods which hasn't
1311       // been entered yet, we set the thread local variable
1312       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1313       // runtime, exception handling i.e. unlock_if_synchronized_method will
1314       // check this thread local flag.
1315       // This flag has two effects, one is to force an unwind in the topmost
1316       // interpreter frame and not perform an unlock while doing so.
1317       __ li(R0, 1);
1318       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1319     }
1320     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1321 
1322     BIND(continue_after_compile);
1323   }
1324 
1325   bang_stack_shadow_pages(true);
1326 
1327   if (inc_counter) {
1328     // Reset the _do_not_unlock_if_synchronized flag.
1329     if (synchronized) {
1330       __ li(R0, 0);
1331       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1332     }
1333   }
1334 
1335   // access_flags = method->access_flags();
1336   // Load access flags.
1337   assert(access_flags->is_nonvolatile(),
1338          "access_flags must be in a non-volatile register");
1339   // Type check.
1340   assert(4 == sizeof(AccessFlags), "unexpected field size");
1341   __ lwz(access_flags, method_(access_flags));
1342 
1343   // We don't want to reload R19_method and access_flags after calls
1344   // to some helper functions.
1345   assert(R19_method->is_nonvolatile(),
1346          "R19_method must be a non-volatile register");
1347 
1348   // Check for synchronized methods. Must happen AFTER invocation counter
1349   // check, so method is not locked if counter overflows.
1350 
1351   if (synchronized) {
1352     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
1353 
1354     // Update monitor in state.
1355     __ ld(R11_scratch1, 0, R1_SP);
1356     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
1357   }
1358 
1359   // jvmti/jvmpi support
1360   __ notify_method_entry();
1361 
1362   //=============================================================================
1363   // Get and call the signature handler.
1364 
1365   __ ld(signature_handler_fd, method_(signature_handler));
1366   Label call_signature_handler;
1367 
1368   __ cmpdi(CCR0, signature_handler_fd, 0);
1369   __ bne(CCR0, call_signature_handler);
1370 
1371   // Method has never been called. Either generate a specialized
1372   // handler or point to the slow one.
1373   //
1374   // Pass parameter 'false' to avoid exception check in call_VM.
1375   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
1376 
1377   // Check for an exception while looking up the target method. If we
1378   // incurred one, bail.
1379   __ ld(pending_exception, thread_(pending_exception));
1380   __ cmpdi(CCR0, pending_exception, 0);
1381   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
1382 
1383   // Reload signature handler, it may have been created/assigned in the meanwhile.
1384   __ ld(signature_handler_fd, method_(signature_handler));
1385   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
1386 
1387   BIND(call_signature_handler);
1388 
1389   // Before we call the signature handler we push a new frame to
1390   // protect the interpreter frame volatile registers when we return
1391   // from jni but before we can get back to Java.
1392 
1393   // First set the frame anchor while the SP/FP registers are
1394   // convenient and the slow signature handler can use this same frame
1395   // anchor.
1396 
1397   // We have a TOP_IJAVA_FRAME here, which belongs to us.
1398   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
1399 
1400   // Now the interpreter frame (and its call chain) have been
1401   // invalidated and flushed. We are now protected against eager
1402   // being enabled in native code. Even if it goes eager the
1403   // registers will be reloaded as clean and we will invalidate after
1404   // the call so no spurious flush should be possible.
1405 
1406   // Call signature handler and pass locals address.
1407   //
1408   // Our signature handlers copy required arguments to the C stack
1409   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
1410   __ mr(R3_ARG1, R18_locals);
1411 #if !defined(ABI_ELFv2)
1412   __ ld(signature_handler_fd, 0, signature_handler_fd);
1413 #endif
1414 
1415   __ call_stub(signature_handler_fd);
1416 
1417   // Remove the register parameter varargs slots we allocated in
1418   // compute_interpreter_state. SP+16 ends up pointing to the ABI
1419   // outgoing argument area.
1420   //
1421   // Not needed on PPC64.
1422   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
1423 
1424   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
1425   // Save across call to native method.
1426   __ mr(result_handler_addr, R3_RET);
1427 
1428   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
1429 
1430   // Set up fixed parameters and call the native method.
1431   // If the method is static, get mirror into R4_ARG2.
1432   {
1433     Label method_is_not_static;
1434     // Access_flags is non-volatile and still, no need to restore it.
1435 
1436     // Restore access flags.
1437     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
1438     __ bfalse(CCR0, method_is_not_static);
1439 
1440     __ ld(R11_scratch1, _abi(callers_sp), R1_SP);
1441     // Load mirror from interpreter frame.
1442     __ ld(R12_scratch2, _ijava_state_neg(mirror), R11_scratch1);
1443     // R4_ARG2 = &state->_oop_temp;
1444     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
1445     __ std(R12_scratch2/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
1446     BIND(method_is_not_static);
1447   }
1448 
1449   // At this point, arguments have been copied off the stack into
1450   // their JNI positions. Oops are boxed in-place on the stack, with
1451   // handles copied to arguments. The result handler address is in a
1452   // register.
1453 
1454   // Pass JNIEnv address as first parameter.
1455   __ addir(R3_ARG1, thread_(jni_environment));
1456 
1457   // Load the native_method entry before we change the thread state.
1458   __ ld(native_method_fd, method_(native_function));
1459 
1460   //=============================================================================
1461   // Transition from _thread_in_Java to _thread_in_native. As soon as
1462   // we make this change the safepoint code needs to be certain that
1463   // the last Java frame we established is good. The pc in that frame
1464   // just needs to be near here not an actual return address.
1465 
1466   // We use release_store_fence to update values like the thread state, where
1467   // we don't want the current thread to continue until all our prior memory
1468   // accesses (including the new thread state) are visible to other threads.
1469   __ li(R0, _thread_in_native);
1470   __ release();
1471 
1472   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
1473   __ stw(R0, thread_(thread_state));
1474 
1475   if (UseMembar) {
1476     __ fence();
1477   }
1478 
1479   //=============================================================================
1480   // Call the native method. Argument registers must not have been
1481   // overwritten since "__ call_stub(signature_handler);" (except for
1482   // ARG1 and ARG2 for static methods).
1483   __ call_c(native_method_fd);
1484 
1485   __ li(R0, 0);
1486   __ ld(R11_scratch1, 0, R1_SP);
1487   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1488   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1489   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
1490 
1491   // Note: C++ interpreter needs the following here:
1492   // The frame_manager_lr field, which we use for setting the last
1493   // java frame, gets overwritten by the signature handler. Restore
1494   // it now.
1495   //__ get_PC_trash_LR(R11_scratch1);
1496   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
1497 
1498   // Because of GC R19_method may no longer be valid.
1499 
1500   // Block, if necessary, before resuming in _thread_in_Java state.
1501   // In order for GC to work, don't clear the last_Java_sp until after
1502   // blocking.
1503 
1504   //=============================================================================
1505   // Switch thread to "native transition" state before reading the
1506   // synchronization state. This additional state is necessary
1507   // because reading and testing the synchronization state is not
1508   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1509   // in _thread_in_native state, loads _not_synchronized and is
1510   // preempted. VM thread changes sync state to synchronizing and
1511   // suspends threads for GC. Thread A is resumed to finish this
1512   // native method, but doesn't block here since it didn't see any
1513   // synchronization in progress, and escapes.
1514 
1515   // We use release_store_fence to update values like the thread state, where
1516   // we don't want the current thread to continue until all our prior memory
1517   // accesses (including the new thread state) are visible to other threads.
1518   __ li(R0/*thread_state*/, _thread_in_native_trans);
1519   __ release();
1520   __ stw(R0/*thread_state*/, thread_(thread_state));
1521   if (UseMembar) {
1522     __ fence();
1523   }
1524   // Write serialization page so that the VM thread can do a pseudo remote
1525   // membar. We use the current thread pointer to calculate a thread
1526   // specific offset to write to within the page. This minimizes bus
1527   // traffic due to cache line collision.
1528   else {
1529     __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
1530   }
1531 
1532   // Now before we return to java we must look for a current safepoint
1533   // (a new safepoint can not start since we entered native_trans).
1534   // We must check here because a current safepoint could be modifying
1535   // the callers registers right this moment.
1536 
1537   // Acquire isn't strictly necessary here because of the fence, but
1538   // sync_state is declared to be volatile, so we do it anyway
1539   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
1540   int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1541 
1542   // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
1543   __ lwz(sync_state, sync_state_offs, sync_state_addr);
1544 
1545   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
1546   __ lwz(suspend_flags, thread_(suspend_flags));
1547 
1548   Label sync_check_done;
1549   Label do_safepoint;
1550   // No synchronization in progress nor yet synchronized.
1551   __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1552   // Not suspended.
1553   __ cmpwi(CCR1, suspend_flags, 0);
1554 
1555   __ bne(CCR0, do_safepoint);
1556   __ beq(CCR1, sync_check_done);
1557   __ bind(do_safepoint);
1558   __ isync();
1559   // Block. We do the call directly and leave the current
1560   // last_Java_frame setup undisturbed. We must save any possible
1561   // native result across the call. No oop is present.
1562 
1563   __ mr(R3_ARG1, R16_thread);
1564 #if defined(ABI_ELFv2)
1565   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1566             relocInfo::none);
1567 #else
1568   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
1569             relocInfo::none);
1570 #endif
1571 
1572   __ bind(sync_check_done);
1573 
1574   //=============================================================================
1575   // <<<<<< Back in Interpreter Frame >>>>>
1576 
1577   // We are in thread_in_native_trans here and back in the normal
1578   // interpreter frame. We don't have to do anything special about
1579   // safepoints and we can switch to Java mode anytime we are ready.
1580 
1581   // Note: frame::interpreter_frame_result has a dependency on how the
1582   // method result is saved across the call to post_method_exit. For
1583   // native methods it assumes that the non-FPU/non-void result is
1584   // saved in _native_lresult and a FPU result in _native_fresult. If
1585   // this changes then the interpreter_frame_result implementation
1586   // will need to be updated too.
1587 
1588   // On PPC64, we have stored the result directly after the native call.
1589 
1590   //=============================================================================
1591   // Back in Java
1592 
1593   // We use release_store_fence to update values like the thread state, where
1594   // we don't want the current thread to continue until all our prior memory
1595   // accesses (including the new thread state) are visible to other threads.
1596   __ li(R0/*thread_state*/, _thread_in_Java);
1597   __ release();
1598   __ stw(R0/*thread_state*/, thread_(thread_state));
1599   if (UseMembar) {
1600     __ fence();
1601   }
1602 
1603   if (CheckJNICalls) {
1604     // clear_pending_jni_exception_check
1605     __ load_const_optimized(R0, 0L);
1606     __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
1607   }
1608 
1609   __ reset_last_Java_frame();
1610 
1611   // Jvmdi/jvmpi support. Whether we've got an exception pending or
1612   // not, and whether unlocking throws an exception or not, we notify
1613   // on native method exit. If we do have an exception, we'll end up
1614   // in the caller's context to handle it, so if we don't do the
1615   // notify here, we'll drop it on the floor.
1616   __ notify_method_exit(true/*native method*/,
1617                         ilgl /*illegal state (not used for native methods)*/,
1618                         InterpreterMacroAssembler::NotifyJVMTI,
1619                         false /*check_exceptions*/);
1620 
1621   //=============================================================================
1622   // Handle exceptions
1623 
1624   if (synchronized) {
1625     // Don't check for exceptions since we're still in the i2n frame. Do that
1626     // manually afterwards.
1627     __ unlock_object(R26_monitor, false); // Can also unlock methods.
1628   }
1629 
1630   // Reset active handles after returning from native.
1631   // thread->active_handles()->clear();
1632   __ ld(active_handles, thread_(active_handles));
1633   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
1634   __ li(R0, 0);
1635   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
1636 
1637   Label exception_return_sync_check_already_unlocked;
1638   __ ld(R0/*pending_exception*/, thread_(pending_exception));
1639   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
1640   __ bne(CCR0, exception_return_sync_check_already_unlocked);
1641 
1642   //-----------------------------------------------------------------------------
1643   // No exception pending.
1644 
1645   // Move native method result back into proper registers and return.
1646   // Invoke result handler (may unbox/promote).
1647   __ ld(R11_scratch1, 0, R1_SP);
1648   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1649   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1650   __ call_stub(result_handler_addr);
1651 
1652   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1653 
1654   // Must use the return pc which was loaded from the caller's frame
1655   // as the VM uses return-pc-patching for deoptimization.
1656   __ mtlr(R0);
1657   __ blr();
1658 
1659   //-----------------------------------------------------------------------------
1660   // An exception is pending. We call into the runtime only if the
1661   // caller was not interpreted. If it was interpreted the
1662   // interpreter will do the correct thing. If it isn't interpreted
1663   // (call stub/compiled code) we will change our return and continue.
1664 
1665   BIND(exception_return_sync_check);
1666 
1667   if (synchronized) {
1668     // Don't check for exceptions since we're still in the i2n frame. Do that
1669     // manually afterwards.
1670     __ unlock_object(R26_monitor, false); // Can also unlock methods.
1671   }
1672   BIND(exception_return_sync_check_already_unlocked);
1673 
1674   const Register return_pc = R31;
1675 
1676   __ ld(return_pc, 0, R1_SP);
1677   __ ld(return_pc, _abi(lr), return_pc);
1678 
1679   // Get the address of the exception handler.
1680   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1681                   R16_thread,
1682                   return_pc /* return pc */);
1683   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1684 
1685   // Load the PC of the the exception handler into LR.
1686   __ mtlr(R3_RET);
1687 
1688   // Load exception into R3_ARG1 and clear pending exception in thread.
1689   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1690   __ li(R4_ARG2, 0);
1691   __ std(R4_ARG2, thread_(pending_exception));
1692 
1693   // Load the original return pc into R4_ARG2.
1694   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
1695 
1696   // Return to exception handler.
1697   __ blr();
1698 
1699   //=============================================================================
1700   // Counter overflow.
1701 
1702   if (inc_counter) {
1703     // Handle invocation counter overflow.
1704     __ bind(invocation_counter_overflow);
1705 
1706     generate_counter_overflow(continue_after_compile);
1707   }
1708 
1709   return entry;
1710 }
1711 
1712 // Generic interpreted method entry to (asm) interpreter.
1713 //
1714 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1715   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1716   address entry = __ pc();
1717   // Generate the code to allocate the interpreter stack frame.
1718   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
1719            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
1720 
1721   // Does also a stack check to assure this frame fits on the stack.
1722   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
1723 
1724   // --------------------------------------------------------------------------
1725   // Zero out non-parameter locals.
1726   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
1727   // worth to ask the flag, just do it.
1728   Register Rslot_addr = R6_ARG4,
1729            Rnum       = R7_ARG5;
1730   Label Lno_locals, Lzero_loop;
1731 
1732   // Set up the zeroing loop.
1733   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
1734   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
1735   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
1736   __ beq(CCR0, Lno_locals);
1737   __ li(R0, 0);
1738   __ mtctr(Rnum);
1739 
1740   // The zero locals loop.
1741   __ bind(Lzero_loop);
1742   __ std(R0, 0, Rslot_addr);
1743   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
1744   __ bdnz(Lzero_loop);
1745 
1746   __ bind(Lno_locals);
1747 
1748   // --------------------------------------------------------------------------
1749   // Counter increment and overflow check.
1750   Label invocation_counter_overflow,
1751         profile_method,
1752         profile_method_continue;
1753   if (inc_counter || ProfileInterpreter) {
1754 
1755     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
1756     if (synchronized) {
1757       // Since at this point in the method invocation the exception handler
1758       // would try to exit the monitor of synchronized methods which hasn't
1759       // been entered yet, we set the thread local variable
1760       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1761       // runtime, exception handling i.e. unlock_if_synchronized_method will
1762       // check this thread local flag.
1763       // This flag has two effects, one is to force an unwind in the topmost
1764       // interpreter frame and not perform an unlock while doing so.
1765       __ li(R0, 1);
1766       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1767     }
1768 
1769     // Argument and return type profiling.
1770     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
1771 
1772     // Increment invocation counter and check for overflow.
1773     if (inc_counter) {
1774       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1775     }
1776 
1777     __ bind(profile_method_continue);
1778   }
1779 
1780   bang_stack_shadow_pages(false);
1781 
1782   if (inc_counter || ProfileInterpreter) {
1783     // Reset the _do_not_unlock_if_synchronized flag.
1784     if (synchronized) {
1785       __ li(R0, 0);
1786       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1787     }
1788   }
1789 
1790   // --------------------------------------------------------------------------
1791   // Locking of synchronized methods. Must happen AFTER invocation_counter
1792   // check and stack overflow check, so method is not locked if overflows.
1793   if (synchronized) {
1794     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
1795   }
1796 #ifdef ASSERT
1797   else {
1798     Label Lok;
1799     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1800     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
1801     __ asm_assert_eq("method needs synchronization", 0x8521);
1802     __ bind(Lok);
1803   }
1804 #endif // ASSERT
1805 
1806   __ verify_thread();
1807 
1808   // --------------------------------------------------------------------------
1809   // JVMTI support
1810   __ notify_method_entry();
1811 
1812   // --------------------------------------------------------------------------
1813   // Start executing instructions.
1814   __ dispatch_next(vtos);
1815 
1816   // --------------------------------------------------------------------------
1817   // Out of line counter overflow and MDO creation code.
1818   if (ProfileInterpreter) {
1819     // We have decided to profile this method in the interpreter.
1820     __ bind(profile_method);
1821     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1822     __ set_method_data_pointer_for_bcp();
1823     __ b(profile_method_continue);
1824   }
1825 
1826   if (inc_counter) {
1827     // Handle invocation counter overflow.
1828     __ bind(invocation_counter_overflow);
1829     generate_counter_overflow(profile_method_continue);
1830   }
1831   return entry;
1832 }
1833 
1834 // CRC32 Intrinsics.
1835 //
1836 // Contract on scratch and work registers.
1837 // =======================================
1838 //
1839 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
1840 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
1841 // You can't rely on these registers across calls.
1842 //
1843 // The generators for CRC32_update and for CRC32_updateBytes use the
1844 // scratch/work register set internally, passing the work registers
1845 // as arguments to the MacroAssembler emitters as required.
1846 //
1847 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
1848 // Their contents is not constant but may change according to the requirements
1849 // of the emitted code.
1850 //
1851 // All other registers from the scratch/work register set are used "internally"
1852 // and contain garbage (i.e. unpredictable values) once blr() is reached.
1853 // Basically, only R3_RET contains a defined value which is the function result.
1854 //
1855 /**
1856  * Method entry for static native methods:
1857  *   int java.util.zip.CRC32.update(int crc, int b)
1858  */
1859 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1860   if (UseCRC32Intrinsics) {
1861     address start = __ pc();  // Remember stub start address (is rtn value).
1862     Label slow_path;
1863 
1864     // Safepoint check
1865     const Register sync_state = R11_scratch1;
1866     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1867     __ lwz(sync_state, sync_state_offs, sync_state);
1868     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1869     __ bne(CCR0, slow_path);
1870 
1871     // We don't generate local frame and don't align stack because
1872     // we not even call stub code (we generate the code inline)
1873     // and there is no safepoint on this path.
1874 
1875     // Load java parameters.
1876     // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
1877     const Register argP    = R15_esp;
1878     const Register crc     = R3_ARG1;  // crc value
1879     const Register data    = R4_ARG2;  // address of java byte value (kernel_crc32 needs address)
1880     const Register dataLen = R5_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1881     const Register table   = R6_ARG4;  // address of crc32 table
1882     const Register tmp     = dataLen;  // Reuse unused len register to show we don't actually need a separate tmp here.
1883 
1884     BLOCK_COMMENT("CRC32_update {");
1885 
1886     // Arguments are reversed on java expression stack
1887 #ifdef VM_LITTLE_ENDIAN
1888     __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1889                                        // Being passed as an int, the single byte is at offset +0.
1890 #else
1891     __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1892                                        // Being passed from java as an int, the single byte is at offset +3.
1893 #endif
1894     __ lwz(crc,  2*wordSize, argP);    // Current crc state, zero extend to 64 bit to have a clean register.
1895 
1896     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1897     __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp);
1898 
1899     // Restore caller sp for c2i case and return.
1900     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1901     __ blr();
1902 
1903     // Generate a vanilla native entry as the slow path.
1904     BLOCK_COMMENT("} CRC32_update");
1905     BIND(slow_path);
1906     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1907     return start;
1908   }
1909 
1910   return NULL;
1911 }
1912 
1913 // CRC32 Intrinsics.
1914 /**
1915  * Method entry for static native methods:
1916  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1917  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1918  */
1919 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1920   if (UseCRC32Intrinsics) {
1921     address start = __ pc();  // Remember stub start address (is rtn value).
1922     Label slow_path;
1923 
1924     // Safepoint check
1925     const Register sync_state = R11_scratch1;
1926     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1927     __ lwz(sync_state, sync_state_offs, sync_state);
1928     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1929     __ bne(CCR0, slow_path);
1930 
1931     // We don't generate local frame and don't align stack because
1932     // we not even call stub code (we generate the code inline)
1933     // and there is no safepoint on this path.
1934 
1935     // Load parameters.
1936     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1937     const Register argP    = R15_esp;
1938     const Register crc     = R3_ARG1;  // crc value
1939     const Register data    = R4_ARG2;  // address of java byte array
1940     const Register dataLen = R5_ARG3;  // source data len
1941     const Register table   = R6_ARG4;  // address of crc32 table
1942 
1943     const Register t0      = R9;       // scratch registers for crc calculation
1944     const Register t1      = R10;
1945     const Register t2      = R11;
1946     const Register t3      = R12;
1947 
1948     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
1949     const Register tc1     = R7;
1950     const Register tc2     = R8;
1951     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
1952 
1953     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
1954 
1955     // Arguments are reversed on java expression stack.
1956     // Calculate address of start element.
1957     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1958       BLOCK_COMMENT("CRC32_updateByteBuffer {");
1959       // crc     @ (SP + 5W) (32bit)
1960       // buf     @ (SP + 3W) (64bit ptr to long array)
1961       // off     @ (SP + 2W) (32bit)
1962       // dataLen @ (SP + 1W) (32bit)
1963       // data = buf + off
1964       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1965       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1966       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1967       __ lwz( crc,     5*wordSize, argP);  // current crc state
1968       __ add( data, data, tmp);            // Add byte buffer offset.
1969     } else {                                                         // Used for "updateBytes update".
1970       BLOCK_COMMENT("CRC32_updateBytes {");
1971       // crc     @ (SP + 4W) (32bit)
1972       // buf     @ (SP + 3W) (64bit ptr to byte array)
1973       // off     @ (SP + 2W) (32bit)
1974       // dataLen @ (SP + 1W) (32bit)
1975       // data = buf + off + base_offset
1976       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1977       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1978       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1979       __ add( data, data, tmp);            // add byte buffer offset
1980       __ lwz( crc,     4*wordSize, argP);  // current crc state
1981       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1982     }
1983 
1984     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1985 
1986     // Performance measurements show the 1word and 2word variants to be almost equivalent,
1987     // with very light advantages for the 1word variant. We chose the 1word variant for
1988     // code compactness.
1989     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3);
1990 
1991     // Restore caller sp for c2i case and return.
1992     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1993     __ blr();
1994 
1995     // Generate a vanilla native entry as the slow path.
1996     BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
1997     BIND(slow_path);
1998     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1999     return start;
2000   }
2001 
2002   return NULL;
2003 }
2004 
2005 // Not supported
2006 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
2007   return NULL;
2008 }
2009 
2010 // =============================================================================
2011 // Exceptions
2012 
2013 void TemplateInterpreterGenerator::generate_throw_exception() {
2014   Register Rexception    = R17_tos,
2015            Rcontinuation = R3_RET;
2016 
2017   // --------------------------------------------------------------------------
2018   // Entry point if an method returns with a pending exception (rethrow).
2019   Interpreter::_rethrow_exception_entry = __ pc();
2020   {
2021     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
2022     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2023     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2024 
2025     // Compiled code destroys templateTableBase, reload.
2026     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
2027   }
2028 
2029   // Entry point if a interpreted method throws an exception (throw).
2030   Interpreter::_throw_exception_entry = __ pc();
2031   {
2032     __ mr(Rexception, R3_RET);
2033 
2034     __ verify_thread();
2035     __ verify_oop(Rexception);
2036 
2037     // Expression stack must be empty before entering the VM in case of an exception.
2038     __ empty_expression_stack();
2039     // Find exception handler address and preserve exception oop.
2040     // Call C routine to find handler and jump to it.
2041     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
2042     __ mtctr(Rcontinuation);
2043     // Push exception for exception handler bytecodes.
2044     __ push_ptr(Rexception);
2045 
2046     // Jump to exception handler (may be remove activation entry!).
2047     __ bctr();
2048   }
2049 
2050   // If the exception is not handled in the current frame the frame is
2051   // removed and the exception is rethrown (i.e. exception
2052   // continuation is _rethrow_exception).
2053   //
2054   // Note: At this point the bci is still the bxi for the instruction
2055   // which caused the exception and the expression stack is
2056   // empty. Thus, for any VM calls at this point, GC will find a legal
2057   // oop map (with empty expression stack).
2058 
2059   // In current activation
2060   // tos: exception
2061   // bcp: exception bcp
2062 
2063   // --------------------------------------------------------------------------
2064   // JVMTI PopFrame support
2065 
2066   Interpreter::_remove_activation_preserving_args_entry = __ pc();
2067   {
2068     // Set the popframe_processing bit in popframe_condition indicating that we are
2069     // currently handling popframe, so that call_VMs that may happen later do not
2070     // trigger new popframe handling cycles.
2071     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2072     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
2073     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2074 
2075     // Empty the expression stack, as in normal exception handling.
2076     __ empty_expression_stack();
2077     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
2078 
2079     // Check to see whether we are returning to a deoptimized frame.
2080     // (The PopFrame call ensures that the caller of the popped frame is
2081     // either interpreted or compiled and deoptimizes it if compiled.)
2082     // Note that we don't compare the return PC against the
2083     // deoptimization blob's unpack entry because of the presence of
2084     // adapter frames in C2.
2085     Label Lcaller_not_deoptimized;
2086     Register return_pc = R3_ARG1;
2087     __ ld(return_pc, 0, R1_SP);
2088     __ ld(return_pc, _abi(lr), return_pc);
2089     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
2090     __ cmpdi(CCR0, R3_RET, 0);
2091     __ bne(CCR0, Lcaller_not_deoptimized);
2092 
2093     // The deoptimized case.
2094     // In this case, we can't call dispatch_next() after the frame is
2095     // popped, but instead must save the incoming arguments and restore
2096     // them after deoptimization has occurred.
2097     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
2098     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
2099     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
2100     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
2101     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
2102     // Save these arguments.
2103     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
2104 
2105     // Inform deoptimization that it is responsible for restoring these arguments.
2106     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
2107     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2108 
2109     // Return from the current method into the deoptimization blob. Will eventually
2110     // end up in the deopt interpeter entry, deoptimization prepared everything that
2111     // we will reexecute the call that called us.
2112     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
2113     __ mtlr(return_pc);
2114     __ blr();
2115 
2116     // The non-deoptimized case.
2117     __ bind(Lcaller_not_deoptimized);
2118 
2119     // Clear the popframe condition flag.
2120     __ li(R0, 0);
2121     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2122 
2123     // Get out of the current method and re-execute the call that called us.
2124     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2125     __ restore_interpreter_state(R11_scratch1);
2126     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2127     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2128     if (ProfileInterpreter) {
2129       __ set_method_data_pointer_for_bcp();
2130       __ ld(R11_scratch1, 0, R1_SP);
2131       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
2132     }
2133 #if INCLUDE_JVMTI
2134     Label L_done;
2135 
2136     __ lbz(R11_scratch1, 0, R14_bcp);
2137     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
2138     __ bne(CCR0, L_done);
2139 
2140     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
2141     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
2142     __ ld(R4_ARG2, 0, R18_locals);
2143     __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
2144     __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2145     __ cmpdi(CCR0, R4_ARG2, 0);
2146     __ beq(CCR0, L_done);
2147     __ std(R4_ARG2, wordSize, R15_esp);
2148     __ bind(L_done);
2149 #endif // INCLUDE_JVMTI
2150     __ dispatch_next(vtos);
2151   }
2152   // end of JVMTI PopFrame support
2153 
2154   // --------------------------------------------------------------------------
2155   // Remove activation exception entry.
2156   // This is jumped to if an interpreted method can't handle an exception itself
2157   // (we come from the throw/rethrow exception entry above). We're going to call
2158   // into the VM to find the exception handler in the caller, pop the current
2159   // frame and return the handler we calculated.
2160   Interpreter::_remove_activation_entry = __ pc();
2161   {
2162     __ pop_ptr(Rexception);
2163     __ verify_thread();
2164     __ verify_oop(Rexception);
2165     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
2166 
2167     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
2168     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
2169 
2170     __ get_vm_result(Rexception);
2171 
2172     // We are done with this activation frame; find out where to go next.
2173     // The continuation point will be an exception handler, which expects
2174     // the following registers set up:
2175     //
2176     // RET:  exception oop
2177     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
2178 
2179     Register return_pc = R31; // Needs to survive the runtime call.
2180     __ ld(return_pc, 0, R1_SP);
2181     __ ld(return_pc, _abi(lr), return_pc);
2182     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
2183 
2184     // Remove the current activation.
2185     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2186 
2187     __ mr(R4_ARG2, return_pc);
2188     __ mtlr(R3_RET);
2189     __ mr(R3_RET, Rexception);
2190     __ blr();
2191   }
2192 }
2193 
2194 // JVMTI ForceEarlyReturn support.
2195 // Returns "in the middle" of a method with a "fake" return value.
2196 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
2197 
2198   Register Rscratch1 = R11_scratch1,
2199            Rscratch2 = R12_scratch2;
2200 
2201   address entry = __ pc();
2202   __ empty_expression_stack();
2203 
2204   __ load_earlyret_value(state, Rscratch1);
2205 
2206   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
2207   // Clear the earlyret state.
2208   __ li(R0, 0);
2209   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
2210 
2211   __ remove_activation(state, false, false);
2212   // Copied from TemplateTable::_return.
2213   // Restoration of lr done by remove_activation.
2214   switch (state) {
2215     // Narrow result if state is itos but result type is smaller.
2216     case btos:
2217     case ztos:
2218     case ctos:
2219     case stos:
2220     case itos: __ narrow(R17_tos); /* fall through */
2221     case ltos:
2222     case atos: __ mr(R3_RET, R17_tos); break;
2223     case ftos:
2224     case dtos: __ fmr(F1_RET, F15_ftos); break;
2225     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2226                // to get visible before the reference to the object gets stored anywhere.
2227                __ membar(Assembler::StoreStore); break;
2228     default  : ShouldNotReachHere();
2229   }
2230   __ blr();
2231 
2232   return entry;
2233 } // end of ForceEarlyReturn support
2234 
2235 //-----------------------------------------------------------------------------
2236 // Helper for vtos entry point generation
2237 
2238 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2239                                                          address& bep,
2240                                                          address& cep,
2241                                                          address& sep,
2242                                                          address& aep,
2243                                                          address& iep,
2244                                                          address& lep,
2245                                                          address& fep,
2246                                                          address& dep,
2247                                                          address& vep) {
2248   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2249   Label L;
2250 
2251   aep = __ pc();  __ push_ptr();  __ b(L);
2252   fep = __ pc();  __ push_f();    __ b(L);
2253   dep = __ pc();  __ push_d();    __ b(L);
2254   lep = __ pc();  __ push_l();    __ b(L);
2255   __ align(32, 12, 24); // align L
2256   bep = cep = sep =
2257   iep = __ pc();  __ push_i();
2258   vep = __ pc();
2259   __ bind(L);
2260   generate_and_dispatch(t);
2261 }
2262 
2263 //-----------------------------------------------------------------------------
2264 
2265 // Non-product code
2266 #ifndef PRODUCT
2267 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2268   //__ flush_bundle();
2269   address entry = __ pc();
2270 
2271   const char *bname = NULL;
2272   uint tsize = 0;
2273   switch(state) {
2274   case ftos:
2275     bname = "trace_code_ftos {";
2276     tsize = 2;
2277     break;
2278   case btos:
2279     bname = "trace_code_btos {";
2280     tsize = 2;
2281     break;
2282   case ztos:
2283     bname = "trace_code_ztos {";
2284     tsize = 2;
2285     break;
2286   case ctos:
2287     bname = "trace_code_ctos {";
2288     tsize = 2;
2289     break;
2290   case stos:
2291     bname = "trace_code_stos {";
2292     tsize = 2;
2293     break;
2294   case itos:
2295     bname = "trace_code_itos {";
2296     tsize = 2;
2297     break;
2298   case ltos:
2299     bname = "trace_code_ltos {";
2300     tsize = 3;
2301     break;
2302   case atos:
2303     bname = "trace_code_atos {";
2304     tsize = 2;
2305     break;
2306   case vtos:
2307     // Note: In case of vtos, the topmost of stack value could be a int or doubl
2308     // In case of a double (2 slots) we won't see the 2nd stack value.
2309     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
2310     bname = "trace_code_vtos {";
2311     tsize = 2;
2312 
2313     break;
2314   case dtos:
2315     bname = "trace_code_dtos {";
2316     tsize = 3;
2317     break;
2318   default:
2319     ShouldNotReachHere();
2320   }
2321   BLOCK_COMMENT(bname);
2322 
2323   // Support short-cut for TraceBytecodesAt.
2324   // Don't call into the VM if we don't want to trace to speed up things.
2325   Label Lskip_vm_call;
2326   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2327     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
2328     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2329     __ ld(R11_scratch1, offs1, R11_scratch1);
2330     __ lwa(R12_scratch2, offs2, R12_scratch2);
2331     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2332     __ blt(CCR0, Lskip_vm_call);
2333   }
2334 
2335   __ push(state);
2336   // Load 2 topmost expression stack values.
2337   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
2338   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
2339   __ mflr(R31);
2340   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
2341   __ mtlr(R31);
2342   __ pop(state);
2343 
2344   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2345     __ bind(Lskip_vm_call);
2346   }
2347   __ blr();
2348   BLOCK_COMMENT("} trace_code");
2349   return entry;
2350 }
2351 
2352 void TemplateInterpreterGenerator::count_bytecode() {
2353   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
2354   __ lwz(R12_scratch2, offs, R11_scratch1);
2355   __ addi(R12_scratch2, R12_scratch2, 1);
2356   __ stw(R12_scratch2, offs, R11_scratch1);
2357 }
2358 
2359 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2360   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
2361   __ lwz(R12_scratch2, offs, R11_scratch1);
2362   __ addi(R12_scratch2, R12_scratch2, 1);
2363   __ stw(R12_scratch2, offs, R11_scratch1);
2364 }
2365 
2366 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2367   const Register addr = R11_scratch1,
2368                  tmp  = R12_scratch2;
2369   // Get index, shift out old bytecode, bring in new bytecode, and store it.
2370   // _index = (_index >> log2_number_of_codes) |
2371   //          (bytecode << log2_number_of_codes);
2372   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
2373   __ lwz(tmp, offs1, addr);
2374   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
2375   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2376   __ stw(tmp, offs1, addr);
2377 
2378   // Bump bucket contents.
2379   // _counters[_index] ++;
2380   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
2381   __ sldi(tmp, tmp, LogBytesPerInt);
2382   __ add(addr, tmp, addr);
2383   __ lwz(tmp, offs2, addr);
2384   __ addi(tmp, tmp, 1);
2385   __ stw(tmp, offs2, addr);
2386 }
2387 
2388 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2389   // Call a little run-time stub to avoid blow-up for each bytecode.
2390   // The run-time runtime saves the right registers, depending on
2391   // the tosca in-state for the given template.
2392 
2393   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2394          "entry must have been generated");
2395 
2396   // Note: we destroy LR here.
2397   __ bl(Interpreter::trace_code(t->tos_in()));
2398 }
2399 
2400 void TemplateInterpreterGenerator::stop_interpreter_at() {
2401   Label L;
2402   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
2403   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2404   __ ld(R11_scratch1, offs1, R11_scratch1);
2405   __ lwa(R12_scratch2, offs2, R12_scratch2);
2406   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2407   __ bne(CCR0, L);
2408   __ illtrap();
2409   __ bind(L);
2410 }
2411 
2412 #endif // !PRODUCT