1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/templateInterpreterGenerator.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 #include "utilities/macros.hpp"
  49 
  50 #ifndef FAST_DISPATCH
  51 #define FAST_DISPATCH 1
  52 #endif
  53 #undef FAST_DISPATCH
  54 
  55 // Size of interpreter code.  Increase if too small.  Interpreter will
  56 // fail with a guarantee ("not enough space for interpreter generation");
  57 // if too small.
  58 // Run with +PrintInterpreter to get the VM to print out the size.
  59 // Max size with JVMTI
  60 #ifdef _LP64
  61   // The sethi() instruction generates lots more instructions when shell
  62   // stack limit is unlimited, so that's why this is much bigger.
  63 int TemplateInterpreter::InterpreterCodeSize = 260 * K;
  64 #else
  65 int TemplateInterpreter::InterpreterCodeSize = 230 * K;
  66 #endif
  67 
  68 // Generation of Interpreter
  69 //
  70 // The TemplateInterpreterGenerator generates the interpreter into Interpreter::_code.
  71 
  72 
  73 #define __ _masm->
  74 
  75 
  76 //----------------------------------------------------------------------------------------------------
  77 
  78 #ifndef _LP64
  79 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  80   address entry = __ pc();
  81   Argument argv(0, true);
  82 
  83   // We are in the jni transition frame. Save the last_java_frame corresponding to the
  84   // outer interpreter frame
  85   //
  86   __ set_last_Java_frame(FP, noreg);
  87   // make sure the interpreter frame we've pushed has a valid return pc
  88   __ mov(O7, I7);
  89   __ mov(Lmethod, G3_scratch);
  90   __ mov(Llocals, G4_scratch);
  91   __ save_frame(0);
  92   __ mov(G2_thread, L7_thread_cache);
  93   __ add(argv.address_in_frame(), O3);
  94   __ mov(G2_thread, O0);
  95   __ mov(G3_scratch, O1);
  96   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
  97   __ delayed()->mov(G4_scratch, O2);
  98   __ mov(L7_thread_cache, G2_thread);
  99   __ reset_last_Java_frame();
 100 
 101   // load the register arguments (the C code packed them as varargs)
 102   for (Argument ldarg = argv.successor(); ldarg.is_register(); ldarg = ldarg.successor()) {
 103       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
 104   }
 105   __ ret();
 106   __ delayed()->
 107      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
 108   return entry;
 109 }
 110 
 111 
 112 #else
 113 // LP64 passes floating point arguments in F1, F3, F5, etc. instead of
 114 // O0, O1, O2 etc..
 115 // Doubles are passed in D0, D2, D4
 116 // We store the signature of the first 16 arguments in the first argument
 117 // slot because it will be overwritten prior to calling the native
 118 // function, with the pointer to the JNIEnv.
 119 // If LP64 there can be up to 16 floating point arguments in registers
 120 // or 6 integer registers.
 121 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
 122 
 123   enum {
 124     non_float  = 0,
 125     float_sig  = 1,
 126     double_sig = 2,
 127     sig_mask   = 3
 128   };
 129 
 130   address entry = __ pc();
 131   Argument argv(0, true);
 132 
 133   // We are in the jni transition frame. Save the last_java_frame corresponding to the
 134   // outer interpreter frame
 135   //
 136   __ set_last_Java_frame(FP, noreg);
 137   // make sure the interpreter frame we've pushed has a valid return pc
 138   __ mov(O7, I7);
 139   __ mov(Lmethod, G3_scratch);
 140   __ mov(Llocals, G4_scratch);
 141   __ save_frame(0);
 142   __ mov(G2_thread, L7_thread_cache);
 143   __ add(argv.address_in_frame(), O3);
 144   __ mov(G2_thread, O0);
 145   __ mov(G3_scratch, O1);
 146   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
 147   __ delayed()->mov(G4_scratch, O2);
 148   __ mov(L7_thread_cache, G2_thread);
 149   __ reset_last_Java_frame();
 150 
 151 
 152   // load the register arguments (the C code packed them as varargs)
 153   Address Sig = argv.address_in_frame();        // Argument 0 holds the signature
 154   __ ld_ptr( Sig, G3_scratch );                   // Get register argument signature word into G3_scratch
 155   __ mov( G3_scratch, G4_scratch);
 156   __ srl( G4_scratch, 2, G4_scratch);             // Skip Arg 0
 157   Label done;
 158   for (Argument ldarg = argv.successor(); ldarg.is_float_register(); ldarg = ldarg.successor()) {
 159     Label NonFloatArg;
 160     Label LoadFloatArg;
 161     Label LoadDoubleArg;
 162     Label NextArg;
 163     Address a = ldarg.address_in_frame();
 164     __ andcc(G4_scratch, sig_mask, G3_scratch);
 165     __ br(Assembler::zero, false, Assembler::pt, NonFloatArg);
 166     __ delayed()->nop();
 167 
 168     __ cmp(G3_scratch, float_sig );
 169     __ br(Assembler::equal, false, Assembler::pt, LoadFloatArg);
 170     __ delayed()->nop();
 171 
 172     __ cmp(G3_scratch, double_sig );
 173     __ br(Assembler::equal, false, Assembler::pt, LoadDoubleArg);
 174     __ delayed()->nop();
 175 
 176     __ bind(NonFloatArg);
 177     // There are only 6 integer register arguments!
 178     if ( ldarg.is_register() )
 179       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
 180     else {
 181     // Optimization, see if there are any more args and get out prior to checking
 182     // all 16 float registers.  My guess is that this is rare.
 183     // If is_register is false, then we are done the first six integer args.
 184       __ br_null_short(G4_scratch, Assembler::pt, done);
 185     }
 186     __ ba(NextArg);
 187     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 188 
 189     __ bind(LoadFloatArg);
 190     __ ldf( FloatRegisterImpl::S, a, ldarg.as_float_register(), 4);
 191     __ ba(NextArg);
 192     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 193 
 194     __ bind(LoadDoubleArg);
 195     __ ldf( FloatRegisterImpl::D, a, ldarg.as_double_register() );
 196     __ ba(NextArg);
 197     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 198 
 199     __ bind(NextArg);
 200 
 201   }
 202 
 203   __ bind(done);
 204   __ ret();
 205   __ delayed()->
 206      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
 207   return entry;
 208 }
 209 #endif
 210 
 211 void TemplateInterpreterGenerator::generate_counter_overflow(Label& Lcontinue) {
 212 
 213   // Generate code to initiate compilation on the counter overflow.
 214 
 215   // InterpreterRuntime::frequency_counter_overflow takes two arguments,
 216   // the first indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 217   // and the second is only used when the first is true.  We pass zero for both.
 218   // The call returns the address of the verified entry point for the method or NULL
 219   // if the compilation did not complete (either went background or bailed out).
 220   __ set((int)false, O2);
 221   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O2, O2, true);
 222   // returns verified_entry_point or NULL
 223   // we ignore it in any case
 224   __ ba_short(Lcontinue);
 225 
 226 }
 227 
 228 
 229 // End of helpers
 230 
 231 // Various method entries
 232 
 233 // Abstract method entry
 234 // Attempt to execute abstract method. Throw exception
 235 //
 236 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 237   address entry = __ pc();
 238   // abstract method entry
 239   // throw exception
 240   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
 241   // the call_VM checks for exception, so we should never return here.
 242   __ should_not_reach_here();
 243   return entry;
 244 
 245 }
 246 
 247 void TemplateInterpreterGenerator::save_native_result(void) {
 248   // result potentially in O0/O1: save it across calls
 249   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
 250 
 251   // result potentially in F0/F1: save it across calls
 252   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
 253 
 254   // save and restore any potential method result value around the unlocking operation
 255   __ stf(FloatRegisterImpl::D, F0, d_tmp);
 256 #ifdef _LP64
 257   __ stx(O0, l_tmp);
 258 #else
 259   __ std(O0, l_tmp);
 260 #endif
 261 }
 262 
 263 void TemplateInterpreterGenerator::restore_native_result(void) {
 264   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
 265   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
 266 
 267   // Restore any method result value
 268   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
 269 #ifdef _LP64
 270   __ ldx(l_tmp, O0);
 271 #else
 272   __ ldd(l_tmp, O0);
 273 #endif
 274 }
 275 
 276 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 277   assert(!pass_oop || message == NULL, "either oop or message but not both");
 278   address entry = __ pc();
 279   // expression stack must be empty before entering the VM if an exception happened
 280   __ empty_expression_stack();
 281   // load exception object
 282   __ set((intptr_t)name, G3_scratch);
 283   if (pass_oop) {
 284     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
 285   } else {
 286     __ set((intptr_t)message, G4_scratch);
 287     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
 288   }
 289   // throw exception
 290   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
 291   AddressLiteral thrower(Interpreter::throw_exception_entry());
 292   __ jump_to(thrower, G3_scratch);
 293   __ delayed()->nop();
 294   return entry;
 295 }
 296 
 297 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 298   address entry = __ pc();
 299   // expression stack must be empty before entering the VM if an exception
 300   // happened
 301   __ empty_expression_stack();
 302   // load exception object
 303   __ call_VM(Oexception,
 304              CAST_FROM_FN_PTR(address,
 305                               InterpreterRuntime::throw_ClassCastException),
 306              Otos_i);
 307   __ should_not_reach_here();
 308   return entry;
 309 }
 310 
 311 
 312 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 313   address entry = __ pc();
 314   // expression stack must be empty before entering the VM if an exception happened
 315   __ empty_expression_stack();
 316   // convention: expect aberrant index in register G3_scratch, then shuffle the
 317   // index to G4_scratch for the VM call
 318   __ mov(G3_scratch, G4_scratch);
 319   __ set((intptr_t)name, G3_scratch);
 320   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 321   __ should_not_reach_here();
 322   return entry;
 323 }
 324 
 325 
 326 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 327   address entry = __ pc();
 328   // expression stack must be empty before entering the VM if an exception happened
 329   __ empty_expression_stack();
 330   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 331   __ should_not_reach_here();
 332   return entry;
 333 }
 334 
 335 
 336 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 337   address entry = __ pc();
 338 
 339   if (state == atos) {
 340     __ profile_return_type(O0, G3_scratch, G1_scratch);
 341   }
 342 
 343 #if !defined(_LP64) && defined(COMPILER2)
 344   // All return values are where we want them, except for Longs.  C2 returns
 345   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 346   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 347   // build even if we are returning from interpreted we just do a little
 348   // stupid shuffing.
 349   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 350   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 351   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 352 
 353   if (state == ltos) {
 354     __ srl (G1,  0, O1);
 355     __ srlx(G1, 32, O0);
 356   }
 357 #endif // !_LP64 && COMPILER2
 358 
 359   // The callee returns with the stack possibly adjusted by adapter transition
 360   // We remove that possible adjustment here.
 361   // All interpreter local registers are untouched. Any result is passed back
 362   // in the O0/O1 or float registers. Before continuing, the arguments must be
 363   // popped from the java expression stack; i.e., Lesp must be adjusted.
 364 
 365   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 366 
 367   const Register cache = G3_scratch;
 368   const Register index  = G1_scratch;
 369   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
 370 
 371   const Register flags = cache;
 372   __ ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), flags);
 373   const Register parameter_size = flags;
 374   __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, parameter_size);  // argument size in words
 375   __ sll(parameter_size, Interpreter::logStackElementSize, parameter_size);     // each argument size in bytes
 376   __ add(Lesp, parameter_size, Lesp);                                           // pop arguments
 377   __ dispatch_next(state, step);
 378 
 379   return entry;
 380 }
 381 
 382 
 383 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 384   address entry = __ pc();
 385   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 386 #if INCLUDE_JVMCI
 387   // Check if we need to take lock at entry of synchronized method.  This can
 388   // only occur on method entry so emit it only for vtos with step 0.
 389   if (UseJVMCICompiler && state == vtos && step == 0) {
 390     Label L;
 391     Address pending_monitor_enter_addr(G2_thread, JavaThread::pending_monitorenter_offset());
 392     __ ldbool(pending_monitor_enter_addr, Gtemp);  // Load if pending monitor enter
 393     __ cmp_and_br_short(Gtemp, G0, Assembler::equal, Assembler::pn, L);
 394     // Clear flag.
 395     __ stbool(G0, pending_monitor_enter_addr);
 396     // Take lock.
 397     lock_method();
 398     __ bind(L);
 399   } else {
 400 #ifdef ASSERT
 401     if (UseJVMCICompiler) {
 402       Label L;
 403       Address pending_monitor_enter_addr(G2_thread, JavaThread::pending_monitorenter_offset());
 404       __ ldbool(pending_monitor_enter_addr, Gtemp);  // Load if pending monitor enter
 405       __ cmp_and_br_short(Gtemp, G0, Assembler::equal, Assembler::pn, L);
 406       __ stop("unexpected pending monitor in deopt entry");
 407       __ bind(L);
 408     }
 409 #endif
 410   }
 411 #endif
 412   { Label L;
 413     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 414     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 415     __ br_null_short(Gtemp, Assembler::pt, L);
 416     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 417     __ should_not_reach_here();
 418     __ bind(L);
 419   }
 420   __ dispatch_next(state, step);
 421   return entry;
 422 }
 423 
 424 // A result handler converts/unboxes a native call result into
 425 // a java interpreter/compiler result. The current frame is an
 426 // interpreter frame. The activation frame unwind code must be
 427 // consistent with that of TemplateTable::_return(...). In the
 428 // case of native methods, the caller's SP was not modified.
 429 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 430   address entry = __ pc();
 431   Register Itos_i  = Otos_i ->after_save();
 432   Register Itos_l  = Otos_l ->after_save();
 433   Register Itos_l1 = Otos_l1->after_save();
 434   Register Itos_l2 = Otos_l2->after_save();
 435   switch (type) {
 436     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 437     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 438     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 439     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 440     case T_LONG   :
 441 #ifndef _LP64
 442                     __ mov(O1, Itos_l2);  // move other half of long
 443 #endif              // ifdef or no ifdef, fall through to the T_INT case
 444     case T_INT    : __ mov(O0, Itos_i);                         break;
 445     case T_VOID   : /* nothing to do */                         break;
 446     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 447     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 448     case T_OBJECT :
 449       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 450       __ verify_oop(Itos_i);
 451       break;
 452     default       : ShouldNotReachHere();
 453   }
 454   __ ret();                           // return from interpreter activation
 455   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 456   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 457   return entry;
 458 }
 459 
 460 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 461   address entry = __ pc();
 462   __ push(state);
 463   __ call_VM(noreg, runtime_entry);
 464   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 465   return entry;
 466 }
 467 
 468 
 469 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 470   address entry = __ pc();
 471   __ dispatch_next(state);
 472   return entry;
 473 }
 474 
 475 //
 476 // Helpers for commoning out cases in the various type of method entries.
 477 //
 478 
 479 // increment invocation count & check for overflow
 480 //
 481 // Note: checking for negative value instead of overflow
 482 //       so we have a 'sticky' overflow test
 483 //
 484 // Lmethod: method
 485 // ??: invocation counter
 486 //
 487 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 488   // Note: In tiered we increment either counters in MethodCounters* or in
 489   // MDO depending if we're profiling or not.
 490   const Register G3_method_counters = G3_scratch;
 491   Label done;
 492 
 493   if (TieredCompilation) {
 494     const int increment = InvocationCounter::count_increment;
 495     Label no_mdo;
 496     if (ProfileInterpreter) {
 497       // If no method data exists, go to profile_continue.
 498       __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
 499       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
 500       // Increment counter
 501       Address mdo_invocation_counter(G4_scratch,
 502                                      in_bytes(MethodData::invocation_counter_offset()) +
 503                                      in_bytes(InvocationCounter::counter_offset()));
 504       Address mask(G4_scratch, in_bytes(MethodData::invoke_mask_offset()));
 505       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 506                                  G3_scratch, Lscratch,
 507                                  Assembler::zero, overflow);
 508       __ ba_short(done);
 509     }
 510 
 511     // Increment counter in MethodCounters*
 512     __ bind(no_mdo);
 513     Address invocation_counter(G3_method_counters,
 514             in_bytes(MethodCounters::invocation_counter_offset()) +
 515             in_bytes(InvocationCounter::counter_offset()));
 516     __ get_method_counters(Lmethod, G3_method_counters, done);
 517     Address mask(G3_method_counters, in_bytes(MethodCounters::invoke_mask_offset()));
 518     __ increment_mask_and_jump(invocation_counter, increment, mask,
 519                                G4_scratch, Lscratch,
 520                                Assembler::zero, overflow);
 521     __ bind(done);
 522   } else { // not TieredCompilation
 523     // Update standard invocation counters
 524     __ get_method_counters(Lmethod, G3_method_counters, done);
 525     __ increment_invocation_counter(G3_method_counters, O0, G4_scratch);
 526     if (ProfileInterpreter) {
 527       Address interpreter_invocation_counter(G3_method_counters,
 528             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
 529       __ ld(interpreter_invocation_counter, G4_scratch);
 530       __ inc(G4_scratch);
 531       __ st(G4_scratch, interpreter_invocation_counter);
 532     }
 533 
 534     if (ProfileInterpreter && profile_method != NULL) {
 535       // Test to see if we should create a method data oop
 536       Address profile_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_profile_limit_offset()));
 537       __ ld(profile_limit, G1_scratch);
 538       __ cmp_and_br_short(O0, G1_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
 539 
 540       // if no method data exists, go to profile_method
 541       __ test_method_data_pointer(*profile_method);
 542     }
 543 
 544     Address invocation_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_invocation_limit_offset()));
 545     __ ld(invocation_limit, G3_scratch);
 546     __ cmp(O0, G3_scratch);
 547     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
 548     __ delayed()->nop();
 549     __ bind(done);
 550   }
 551 
 552 }
 553 
 554 // Allocate monitor and lock method (asm interpreter)
 555 // ebx - Method*
 556 //
 557 void TemplateInterpreterGenerator::lock_method() {
 558   __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0);  // Load access flags.
 559 
 560 #ifdef ASSERT
 561  { Label ok;
 562    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 563    __ br( Assembler::notZero, false, Assembler::pt, ok);
 564    __ delayed()->nop();
 565    __ stop("method doesn't need synchronization");
 566    __ bind(ok);
 567   }
 568 #endif // ASSERT
 569 
 570   // get synchronization object to O0
 571   { Label done;
 572     __ btst(JVM_ACC_STATIC, O0);
 573     __ br( Assembler::zero, true, Assembler::pt, done);
 574     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 575 
 576     // lock the mirror, not the Klass*
 577     __ load_mirror(O0, Lmethod);
 578 
 579 #ifdef ASSERT
 580     __ tst(O0);
 581     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
 582 #endif // ASSERT
 583 
 584     __ bind(done);
 585   }
 586 
 587   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 588   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 589   // __ untested("lock_object from method entry");
 590   __ lock_object(Lmonitors, O0);
 591 }
 592 
 593 // See if we've got enough room on the stack for locals plus overhead below
 594 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 595 // without going through the signal handler, i.e., reserved and yellow zones
 596 // will not be made usable. The shadow zone must suffice to handle the
 597 // overflow.
 598 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 599                                                                  Register Rscratch) {
 600   const int page_size = os::vm_page_size();
 601   Label after_frame_check;
 602 
 603   assert_different_registers(Rframe_size, Rscratch);
 604 
 605   __ set(page_size, Rscratch);
 606   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
 607 
 608   // Get the stack overflow limit, and in debug, verify it is non-zero.
 609   __ ld_ptr(G2_thread, JavaThread::stack_overflow_limit_offset(), Rscratch);
 610 #ifdef ASSERT
 611   Label limit_ok;
 612   __ br_notnull_short(Rscratch, Assembler::pn, limit_ok);
 613   __ stop("stack overflow limit is zero in generate_stack_overflow_check");
 614   __ bind(limit_ok);
 615 #endif
 616 
 617   // Add in the size of the frame (which is the same as subtracting it from the
 618   // SP, which would take another register.
 619   __ add(Rscratch, Rframe_size, Rscratch);
 620 
 621   // The frame is greater than one page in size, so check against
 622   // the bottom of the stack.
 623   __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check);
 624 
 625   // The stack will overflow, throw an exception.
 626 
 627   // Note that SP is restored to sender's sp (in the delay slot). This
 628   // is necessary if the sender's frame is an extended compiled frame
 629   // (see gen_c2i_adapter()) and safer anyway in case of JSR292
 630   // adaptations.
 631 
 632   // Note also that the restored frame is not necessarily interpreted.
 633   // Use the shared runtime version of the StackOverflowError.
 634   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 635   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 636   __ jump_to(stub, Rscratch);
 637   __ delayed()->mov(O5_savedSP, SP);
 638 
 639   // If you get to here, then there is enough stack space.
 640   __ bind(after_frame_check);
 641 }
 642 
 643 
 644 //
 645 // Generate a fixed interpreter frame. This is identical setup for interpreted
 646 // methods and for native methods hence the shared code.
 647 
 648 
 649 //----------------------------------------------------------------------------------------------------
 650 // Stack frame layout
 651 //
 652 // When control flow reaches any of the entry types for the interpreter
 653 // the following holds ->
 654 //
 655 // C2 Calling Conventions:
 656 //
 657 // The entry code below assumes that the following registers are set
 658 // when coming in:
 659 //    G5_method: holds the Method* of the method to call
 660 //    Lesp:    points to the TOS of the callers expression stack
 661 //             after having pushed all the parameters
 662 //
 663 // The entry code does the following to setup an interpreter frame
 664 //   pop parameters from the callers stack by adjusting Lesp
 665 //   set O0 to Lesp
 666 //   compute X = (max_locals - num_parameters)
 667 //   bump SP up by X to accomadate the extra locals
 668 //   compute X = max_expression_stack
 669 //               + vm_local_words
 670 //               + 16 words of register save area
 671 //   save frame doing a save sp, -X, sp growing towards lower addresses
 672 //   set Lbcp, Lmethod, LcpoolCache
 673 //   set Llocals to i0
 674 //   set Lmonitors to FP - rounded_vm_local_words
 675 //   set Lesp to Lmonitors - 4
 676 //
 677 //  The frame has now been setup to do the rest of the entry code
 678 
 679 // Try this optimization:  Most method entries could live in a
 680 // "one size fits all" stack frame without all the dynamic size
 681 // calculations.  It might be profitable to do all this calculation
 682 // statically and approximately for "small enough" methods.
 683 
 684 //-----------------------------------------------------------------------------------------------
 685 
 686 // C1 Calling conventions
 687 //
 688 // Upon method entry, the following registers are setup:
 689 //
 690 // g2 G2_thread: current thread
 691 // g5 G5_method: method to activate
 692 // g4 Gargs  : pointer to last argument
 693 //
 694 //
 695 // Stack:
 696 //
 697 // +---------------+ <--- sp
 698 // |               |
 699 // : reg save area :
 700 // |               |
 701 // +---------------+ <--- sp + 0x40
 702 // |               |
 703 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 704 // |               |
 705 // +---------------+ <--- sp + 0x5c
 706 // |               |
 707 // :     free      :
 708 // |               |
 709 // +---------------+ <--- Gargs
 710 // |               |
 711 // :   arguments   :
 712 // |               |
 713 // +---------------+
 714 // |               |
 715 //
 716 //
 717 //
 718 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
 719 //
 720 // +---------------+ <--- sp
 721 // |               |
 722 // : reg save area :
 723 // |               |
 724 // +---------------+ <--- sp + 0x40
 725 // |               |
 726 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 727 // |               |
 728 // +---------------+ <--- sp + 0x5c
 729 // |               |
 730 // :               :
 731 // |               | <--- Lesp
 732 // +---------------+ <--- Lmonitors (fp - 0x18)
 733 // |   VM locals   |
 734 // +---------------+ <--- fp
 735 // |               |
 736 // : reg save area :
 737 // |               |
 738 // +---------------+ <--- fp + 0x40
 739 // |               |
 740 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 741 // |               |
 742 // +---------------+ <--- fp + 0x5c
 743 // |               |
 744 // :     free      :
 745 // |               |
 746 // +---------------+
 747 // |               |
 748 // : nonarg locals :
 749 // |               |
 750 // +---------------+
 751 // |               |
 752 // :   arguments   :
 753 // |               | <--- Llocals
 754 // +---------------+ <--- Gargs
 755 // |               |
 756 
 757 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 758   //
 759   //
 760   // The entry code sets up a new interpreter frame in 4 steps:
 761   //
 762   // 1) Increase caller's SP by for the extra local space needed:
 763   //    (check for overflow)
 764   //    Efficient implementation of xload/xstore bytecodes requires
 765   //    that arguments and non-argument locals are in a contigously
 766   //    addressable memory block => non-argument locals must be
 767   //    allocated in the caller's frame.
 768   //
 769   // 2) Create a new stack frame and register window:
 770   //    The new stack frame must provide space for the standard
 771   //    register save area, the maximum java expression stack size,
 772   //    the monitor slots (0 slots initially), and some frame local
 773   //    scratch locations.
 774   //
 775   // 3) The following interpreter activation registers must be setup:
 776   //    Lesp       : expression stack pointer
 777   //    Lbcp       : bytecode pointer
 778   //    Lmethod    : method
 779   //    Llocals    : locals pointer
 780   //    Lmonitors  : monitor pointer
 781   //    LcpoolCache: constant pool cache
 782   //
 783   // 4) Initialize the non-argument locals if necessary:
 784   //    Non-argument locals may need to be initialized to NULL
 785   //    for GC to work. If the oop-map information is accurate
 786   //    (in the absence of the JSR problem), no initialization
 787   //    is necessary.
 788   //
 789   // (gri - 2/25/2000)
 790 
 791 
 792   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
 793 
 794   const int extra_space =
 795     rounded_vm_local_words +                   // frame local scratch space
 796     Method::extra_stack_entries() +            // extra stack for jsr 292
 797     frame::memory_parameter_word_sp_offset +   // register save area
 798     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 799 
 800   const Register Glocals_size = G3;
 801   const Register RconstMethod = Glocals_size;
 802   const Register Otmp1 = O3;
 803   const Register Otmp2 = O4;
 804   // Lscratch can't be used as a temporary because the call_stub uses
 805   // it to assert that the stack frame was setup correctly.
 806   const Address constMethod       (G5_method, Method::const_offset());
 807   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
 808 
 809   __ ld_ptr( constMethod, RconstMethod );
 810   __ lduh( size_of_parameters, Glocals_size);
 811 
 812   // Gargs points to first local + BytesPerWord
 813   // Set the saved SP after the register window save
 814   //
 815   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 816   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
 817   __ add(Gargs, Otmp1, Gargs);
 818 
 819   if (native_call) {
 820     __ calc_mem_param_words( Glocals_size, Gframe_size );
 821     __ add( Gframe_size,  extra_space, Gframe_size);
 822     __ round_to( Gframe_size, WordsPerLong );
 823     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 824 
 825     // Native calls don't need the stack size check since they have no
 826     // expression stack and the arguments are already on the stack and
 827     // we only add a handful of words to the stack.
 828   } else {
 829 
 830     //
 831     // Compute number of locals in method apart from incoming parameters
 832     //
 833     const Address size_of_locals(Otmp1, ConstMethod::size_of_locals_offset());
 834     __ ld_ptr(constMethod, Otmp1);
 835     __ lduh(size_of_locals, Otmp1);
 836     __ sub(Otmp1, Glocals_size, Glocals_size);
 837     __ round_to(Glocals_size, WordsPerLong);
 838     __ sll(Glocals_size, Interpreter::logStackElementSize, Glocals_size);
 839 
 840     // See if the frame is greater than one page in size. If so,
 841     // then we need to verify there is enough stack space remaining.
 842     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 843     __ ld_ptr(constMethod, Gframe_size);
 844     __ lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size);
 845     __ add(Gframe_size, extra_space, Gframe_size);
 846     __ round_to(Gframe_size, WordsPerLong);
 847     __ sll(Gframe_size, Interpreter::logStackElementSize, Gframe_size);
 848 
 849     // Add in java locals size for stack overflow check only
 850     __ add(Gframe_size, Glocals_size, Gframe_size);
 851 
 852     const Register Otmp2 = O4;
 853     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 854     generate_stack_overflow_check(Gframe_size, Otmp1);
 855 
 856     __ sub(Gframe_size, Glocals_size, Gframe_size);
 857 
 858     //
 859     // bump SP to accomodate the extra locals
 860     //
 861     __ sub(SP, Glocals_size, SP);
 862   }
 863 
 864   //
 865   // now set up a stack frame with the size computed above
 866   //
 867   __ neg( Gframe_size );
 868   __ save( SP, Gframe_size, SP );
 869 
 870   //
 871   // now set up all the local cache registers
 872   //
 873   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 874   // that all present references to Lbyte_code initialize the register
 875   // immediately before use
 876   if (native_call) {
 877     __ mov(G0, Lbcp);
 878   } else {
 879     __ ld_ptr(G5_method, Method::const_offset(), Lbcp);
 880     __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
 881   }
 882   __ mov( G5_method, Lmethod);                 // set Lmethod
 883   // Get mirror and store it in the frame as GC root for this Method*
 884   Register mirror = LcpoolCache;
 885   __ load_mirror(mirror, Lmethod);
 886   __ st_ptr(mirror, FP, (frame::interpreter_frame_mirror_offset * wordSize) + STACK_BIAS);
 887   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
 888   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 889 #ifdef _LP64
 890   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
 891 #endif
 892   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 893 
 894   // setup interpreter activation registers
 895   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 896 
 897   if (ProfileInterpreter) {
 898 #ifdef FAST_DISPATCH
 899     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
 900     // they both use I2.
 901     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
 902 #endif // FAST_DISPATCH
 903     __ set_method_data_pointer();
 904   }
 905 
 906 }
 907 
 908 // Method entry for java.lang.ref.Reference.get.
 909 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 910 #if INCLUDE_ALL_GCS
 911   // Code: _aload_0, _getfield, _areturn
 912   // parameter size = 1
 913   //
 914   // The code that gets generated by this routine is split into 2 parts:
 915   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 916   //    2. The slow path - which is an expansion of the regular method entry.
 917   //
 918   // Notes:-
 919   // * In the G1 code we do not check whether we need to block for
 920   //   a safepoint. If G1 is enabled then we must execute the specialized
 921   //   code for Reference.get (except when the Reference object is null)
 922   //   so that we can log the value in the referent field with an SATB
 923   //   update buffer.
 924   //   If the code for the getfield template is modified so that the
 925   //   G1 pre-barrier code is executed when the current method is
 926   //   Reference.get() then going through the normal method entry
 927   //   will be fine.
 928   // * The G1 code can, however, check the receiver object (the instance
 929   //   of java.lang.Reference) and jump to the slow path if null. If the
 930   //   Reference object is null then we obviously cannot fetch the referent
 931   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 932   //   regular method entry code to generate the NPE.
 933   //
 934   // This code is based on generate_accessor_enty.
 935 
 936   address entry = __ pc();
 937 
 938   const int referent_offset = java_lang_ref_Reference::referent_offset;
 939   guarantee(referent_offset > 0, "referent offset not initialized");
 940 
 941   if (UseG1GC) {
 942      Label slow_path;
 943 
 944     // In the G1 code we don't check if we need to reach a safepoint. We
 945     // continue and the thread will safepoint at the next bytecode dispatch.
 946 
 947     // Check if local 0 != NULL
 948     // If the receiver is null then it is OK to jump to the slow path.
 949     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 950     // check if local 0 == NULL and go the slow path
 951     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
 952 
 953 
 954     // Load the value of the referent field.
 955     if (Assembler::is_simm13(referent_offset)) {
 956       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
 957     } else {
 958       __ set(referent_offset, G3_scratch);
 959       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
 960     }
 961 
 962     // Generate the G1 pre-barrier code to log the value of
 963     // the referent field in an SATB buffer. Note with
 964     // these parameters the pre-barrier does not generate
 965     // the load of the previous value
 966 
 967     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
 968                             Otos_i /* pre_val */,
 969                             G3_scratch /* tmp */,
 970                             true /* preserve_o_regs */);
 971 
 972     // _areturn
 973     __ retl();                      // return from leaf routine
 974     __ delayed()->mov(O5_savedSP, SP);
 975 
 976     // Generate regular method entry
 977     __ bind(slow_path);
 978     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 979     return entry;
 980   }
 981 #endif // INCLUDE_ALL_GCS
 982 
 983   // If G1 is not enabled then attempt to go through the accessor entry point
 984   // Reference.get is an accessor
 985   return NULL;
 986 }
 987 
 988 /**
 989  * Method entry for static native methods:
 990  *   int java.util.zip.CRC32.update(int crc, int b)
 991  */
 992 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 993 
 994   if (UseCRC32Intrinsics) {
 995     address entry = __ pc();
 996 
 997     Label L_slow_path;
 998     // If we need a safepoint check, generate full interpreter entry.
 999     ExternalAddress state(SafepointSynchronize::address_of_state());
1000     __ set(ExternalAddress(SafepointSynchronize::address_of_state()), O2);
1001     __ set(SafepointSynchronize::_not_synchronized, O3);
1002     __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pt, L_slow_path);
1003 
1004     // Load parameters
1005     const Register crc   = O0; // initial crc
1006     const Register val   = O1; // byte to update with
1007     const Register table = O2; // address of 256-entry lookup table
1008 
1009     __ ldub(Gargs, 3, val);
1010     __ lduw(Gargs, 8, crc);
1011 
1012     __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
1013 
1014     __ not1(crc); // ~crc
1015     __ clruwu(crc);
1016     __ update_byte_crc32(crc, val, table);
1017     __ not1(crc); // ~crc
1018 
1019     // result in O0
1020     __ retl();
1021     __ delayed()->nop();
1022 
1023     // generate a vanilla native entry as the slow path
1024     __ bind(L_slow_path);
1025     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1026     return entry;
1027   }
1028   return NULL;
1029 }
1030 
1031 /**
1032  * Method entry for static native methods:
1033  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1034  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1035  */
1036 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1037 
1038   if (UseCRC32Intrinsics) {
1039     address entry = __ pc();
1040 
1041     Label L_slow_path;
1042     // If we need a safepoint check, generate full interpreter entry.
1043     ExternalAddress state(SafepointSynchronize::address_of_state());
1044     __ set(ExternalAddress(SafepointSynchronize::address_of_state()), O2);
1045     __ set(SafepointSynchronize::_not_synchronized, O3);
1046     __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pt, L_slow_path);
1047 
1048     // Load parameters from the stack
1049     const Register crc    = O0; // initial crc
1050     const Register buf    = O1; // source java byte array address
1051     const Register len    = O2; // len
1052     const Register offset = O3; // offset
1053 
1054     // Arguments are reversed on java expression stack
1055     // Calculate address of start element
1056     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
1057       __ lduw(Gargs, 0,  len);
1058       __ lduw(Gargs, 8,  offset);
1059       __ ldx( Gargs, 16, buf);
1060       __ lduw(Gargs, 32, crc);
1061       __ add(buf, offset, buf);
1062     } else {
1063       __ lduw(Gargs, 0,  len);
1064       __ lduw(Gargs, 8,  offset);
1065       __ ldx( Gargs, 16, buf);
1066       __ lduw(Gargs, 24, crc);
1067       __ add(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE), buf); // account for the header size
1068       __ add(buf ,offset, buf);
1069     }
1070 
1071     // Call the crc32 kernel
1072     __ MacroAssembler::save_thread(L7_thread_cache);
1073     __ kernel_crc32(crc, buf, len, O3);
1074     __ MacroAssembler::restore_thread(L7_thread_cache);
1075 
1076     // result in O0
1077     __ retl();
1078     __ delayed()->nop();
1079 
1080     // generate a vanilla native entry as the slow path
1081     __ bind(L_slow_path);
1082     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1083     return entry;
1084   }
1085   return NULL;
1086 }
1087 
1088 /**
1089  * Method entry for intrinsic-candidate (non-native) methods:
1090  *   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1091  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1092  * Unlike CRC32, CRC32C does not have any methods marked as native
1093  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1094  */
1095 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1096 
1097   if (UseCRC32CIntrinsics) {
1098     address entry = __ pc();
1099 
1100     // Load parameters from the stack
1101     const Register crc    = O0; // initial crc
1102     const Register buf    = O1; // source java byte array address
1103     const Register offset = O2; // offset
1104     const Register end    = O3; // index of last element to process
1105     const Register len    = O2; // len argument to the kernel
1106     const Register table  = O3; // crc32c lookup table address
1107 
1108     // Arguments are reversed on java expression stack
1109     // Calculate address of start element
1110     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1111       __ lduw(Gargs, 0,  end);
1112       __ lduw(Gargs, 8,  offset);
1113       __ ldx( Gargs, 16, buf);
1114       __ lduw(Gargs, 32, crc);
1115       __ add(buf, offset, buf);
1116       __ sub(end, offset, len);
1117     } else {
1118       __ lduw(Gargs, 0,  end);
1119       __ lduw(Gargs, 8,  offset);
1120       __ ldx( Gargs, 16, buf);
1121       __ lduw(Gargs, 24, crc);
1122       __ add(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE), buf); // account for the header size
1123       __ add(buf, offset, buf);
1124       __ sub(end, offset, len);
1125     }
1126 
1127     // Call the crc32c kernel
1128     __ MacroAssembler::save_thread(L7_thread_cache);
1129     __ kernel_crc32c(crc, buf, len, table);
1130     __ MacroAssembler::restore_thread(L7_thread_cache);
1131 
1132     // result in O0
1133     __ retl();
1134     __ delayed()->nop();
1135 
1136     return entry;
1137   }
1138   return NULL;
1139 }
1140 
1141 // Not supported
1142 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1143   return NULL;
1144 }
1145 
1146 // TODO: rather than touching all pages, check against stack_overflow_limit and bang yellow page to
1147 // generate exception
1148 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1149   // Quick & dirty stack overflow checking: bang the stack & handle trap.
1150   // Note that we do the banging after the frame is setup, since the exception
1151   // handling code expects to find a valid interpreter frame on the stack.
1152   // Doing the banging earlier fails if the caller frame is not an interpreter
1153   // frame.
1154   // (Also, the exception throwing code expects to unlock any synchronized
1155   // method receiever, so do the banging after locking the receiver.)
1156 
1157   // Bang each page in the shadow zone. We can't assume it's been done for
1158   // an interpreter frame with greater than a page of locals, so each page
1159   // needs to be checked.  Only true for non-native.
1160   if (UseStackBanging) {
1161     const int page_size = os::vm_page_size();
1162     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
1163     const int start_page = native_call ? n_shadow_pages : 1;
1164     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1165       __ bang_stack_with_offset(pages*page_size);
1166     }
1167   }
1168 }
1169 
1170 //
1171 // Interpreter stub for calling a native method. (asm interpreter)
1172 // This sets up a somewhat different looking stack for calling the native method
1173 // than the typical interpreter frame setup.
1174 //
1175 
1176 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1177   address entry = __ pc();
1178 
1179   // the following temporary registers are used during frame creation
1180   const Register Gtmp1 = G3_scratch ;
1181   const Register Gtmp2 = G1_scratch;
1182   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1183 
1184   // make sure registers are different!
1185   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1186 
1187   const Address Laccess_flags(Lmethod, Method::access_flags_offset());
1188 
1189   const Register Glocals_size = G3;
1190   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1191 
1192   // make sure method is native & not abstract
1193   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1194 #ifdef ASSERT
1195   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1196   {
1197     Label L;
1198     __ btst(JVM_ACC_NATIVE, Gtmp1);
1199     __ br(Assembler::notZero, false, Assembler::pt, L);
1200     __ delayed()->nop();
1201     __ stop("tried to execute non-native method as native");
1202     __ bind(L);
1203   }
1204   { Label L;
1205     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1206     __ br(Assembler::zero, false, Assembler::pt, L);
1207     __ delayed()->nop();
1208     __ stop("tried to execute abstract method as non-abstract");
1209     __ bind(L);
1210   }
1211 #endif // ASSERT
1212 
1213  // generate the code to allocate the interpreter stack frame
1214   generate_fixed_frame(true);
1215 
1216   //
1217   // No locals to initialize for native method
1218   //
1219 
1220   // this slot will be set later, we initialize it to null here just in
1221   // case we get a GC before the actual value is stored later
1222   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
1223 
1224   const Address do_not_unlock_if_synchronized(G2_thread,
1225     JavaThread::do_not_unlock_if_synchronized_offset());
1226   // Since at this point in the method invocation the exception handler
1227   // would try to exit the monitor of synchronized methods which hasn't
1228   // been entered yet, we set the thread local variable
1229   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1230   // runtime, exception handling i.e. unlock_if_synchronized_method will
1231   // check this thread local flag.
1232   // This flag has two effects, one is to force an unwind in the topmost
1233   // interpreter frame and not perform an unlock while doing so.
1234 
1235   __ movbool(true, G3_scratch);
1236   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1237 
1238   // increment invocation counter and check for overflow
1239   //
1240   // Note: checking for negative value instead of overflow
1241   //       so we have a 'sticky' overflow test (may be of
1242   //       importance as soon as we have true MT/MP)
1243   Label invocation_counter_overflow;
1244   Label Lcontinue;
1245   if (inc_counter) {
1246     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1247 
1248   }
1249   __ bind(Lcontinue);
1250 
1251   bang_stack_shadow_pages(true);
1252 
1253   // reset the _do_not_unlock_if_synchronized flag
1254   __ stbool(G0, do_not_unlock_if_synchronized);
1255 
1256   // check for synchronized methods
1257   // Must happen AFTER invocation_counter check and stack overflow check,
1258   // so method is not locked if overflows.
1259 
1260   if (synchronized) {
1261     lock_method();
1262   } else {
1263 #ifdef ASSERT
1264     { Label ok;
1265       __ ld(Laccess_flags, O0);
1266       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1267       __ br( Assembler::zero, false, Assembler::pt, ok);
1268       __ delayed()->nop();
1269       __ stop("method needs synchronization");
1270       __ bind(ok);
1271     }
1272 #endif // ASSERT
1273   }
1274 
1275 
1276   // start execution
1277   __ verify_thread();
1278 
1279   // JVMTI support
1280   __ notify_method_entry();
1281 
1282   // native call
1283 
1284   // (note that O0 is never an oop--at most it is a handle)
1285   // It is important not to smash any handles created by this call,
1286   // until any oop handle in O0 is dereferenced.
1287 
1288   // (note that the space for outgoing params is preallocated)
1289 
1290   // get signature handler
1291   { Label L;
1292     Address signature_handler(Lmethod, Method::signature_handler_offset());
1293     __ ld_ptr(signature_handler, G3_scratch);
1294     __ br_notnull_short(G3_scratch, Assembler::pt, L);
1295     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
1296     __ ld_ptr(signature_handler, G3_scratch);
1297     __ bind(L);
1298   }
1299 
1300   // Push a new frame so that the args will really be stored in
1301   // Copy a few locals across so the new frame has the variables
1302   // we need but these values will be dead at the jni call and
1303   // therefore not gc volatile like the values in the current
1304   // frame (Lmethod in particular)
1305 
1306   // Flush the method pointer to the register save area
1307   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
1308   __ mov(Llocals, O1);
1309 
1310   // calculate where the mirror handle body is allocated in the interpreter frame:
1311   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
1312 
1313   // Calculate current frame size
1314   __ sub(SP, FP, O3);         // Calculate negative of current frame size
1315   __ save(SP, O3, SP);        // Allocate an identical sized frame
1316 
1317   // Note I7 has leftover trash. Slow signature handler will fill it in
1318   // should we get there. Normal jni call will set reasonable last_Java_pc
1319   // below (and fix I7 so the stack trace doesn't have a meaningless frame
1320   // in it).
1321 
1322   // Load interpreter frame's Lmethod into same register here
1323 
1324   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1325 
1326   __ mov(I1, Llocals);
1327   __ mov(I2, Lscratch2);     // save the address of the mirror
1328 
1329 
1330   // ONLY Lmethod and Llocals are valid here!
1331 
1332   // call signature handler, It will move the arg properly since Llocals in current frame
1333   // matches that in outer frame
1334 
1335   __ callr(G3_scratch, 0);
1336   __ delayed()->nop();
1337 
1338   // Result handler is in Lscratch
1339 
1340   // Reload interpreter frame's Lmethod since slow signature handler may block
1341   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1342 
1343   { Label not_static;
1344 
1345     __ ld(Laccess_flags, O0);
1346     __ btst(JVM_ACC_STATIC, O0);
1347     __ br( Assembler::zero, false, Assembler::pt, not_static);
1348     // get native function entry point(O0 is a good temp until the very end)
1349     __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
1350     // for static methods insert the mirror argument
1351     __ load_mirror(O1, Lmethod);
1352 #ifdef ASSERT
1353     if (!PrintSignatureHandlers)  // do not dirty the output with this
1354     { Label L;
1355       __ br_notnull_short(O1, Assembler::pt, L);
1356       __ stop("mirror is missing");
1357       __ bind(L);
1358     }
1359 #endif // ASSERT
1360     __ st_ptr(O1, Lscratch2, 0);
1361     __ mov(Lscratch2, O1);
1362     __ bind(not_static);
1363   }
1364 
1365   // At this point, arguments have been copied off of stack into
1366   // their JNI positions, which are O1..O5 and SP[68..].
1367   // Oops are boxed in-place on the stack, with handles copied to arguments.
1368   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
1369 
1370 #ifdef ASSERT
1371   { Label L;
1372     __ br_notnull_short(O0, Assembler::pt, L);
1373     __ stop("native entry point is missing");
1374     __ bind(L);
1375   }
1376 #endif // ASSERT
1377 
1378   //
1379   // setup the frame anchor
1380   //
1381   // The scavenge function only needs to know that the PC of this frame is
1382   // in the interpreter method entry code, it doesn't need to know the exact
1383   // PC and hence we can use O7 which points to the return address from the
1384   // previous call in the code stream (signature handler function)
1385   //
1386   // The other trick is we set last_Java_sp to FP instead of the usual SP because
1387   // we have pushed the extra frame in order to protect the volatile register(s)
1388   // in that frame when we return from the jni call
1389   //
1390 
1391   __ set_last_Java_frame(FP, O7);
1392   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
1393                    // not meaningless information that'll confuse me.
1394 
1395   // flush the windows now. We don't care about the current (protection) frame
1396   // only the outer frames
1397 
1398   __ flushw();
1399 
1400   // mark windows as flushed
1401   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1402   __ set(JavaFrameAnchor::flushed, G3_scratch);
1403   __ st(G3_scratch, flags);
1404 
1405   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
1406 
1407   Address thread_state(G2_thread, JavaThread::thread_state_offset());
1408 #ifdef ASSERT
1409   { Label L;
1410     __ ld(thread_state, G3_scratch);
1411     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
1412     __ stop("Wrong thread state in native stub");
1413     __ bind(L);
1414   }
1415 #endif // ASSERT
1416   __ set(_thread_in_native, G3_scratch);
1417   __ st(G3_scratch, thread_state);
1418 
1419   // Call the jni method, using the delay slot to set the JNIEnv* argument.
1420   __ save_thread(L7_thread_cache); // save Gthread
1421   __ callr(O0, 0);
1422   __ delayed()->
1423      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
1424 
1425   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
1426 
1427   __ restore_thread(L7_thread_cache); // restore G2_thread
1428   __ reinit_heapbase();
1429 
1430   // must we block?
1431 
1432   // Block, if necessary, before resuming in _thread_in_Java state.
1433   // In order for GC to work, don't clear the last_Java_sp until after blocking.
1434   { Label no_block;
1435     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
1436 
1437     // Switch thread to "native transition" state before reading the synchronization state.
1438     // This additional state is necessary because reading and testing the synchronization
1439     // state is not atomic w.r.t. GC, as this scenario demonstrates:
1440     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1441     //     VM thread changes sync state to synchronizing and suspends threads for GC.
1442     //     Thread A is resumed to finish this native method, but doesn't block here since it
1443     //     didn't see any synchronization is progress, and escapes.
1444     __ set(_thread_in_native_trans, G3_scratch);
1445     __ st(G3_scratch, thread_state);
1446     if(os::is_MP()) {
1447       if (UseMembar) {
1448         // Force this write out before the read below
1449         __ membar(Assembler::StoreLoad);
1450       } else {
1451         // Write serialization page so VM thread can do a pseudo remote membar.
1452         // We use the current thread pointer to calculate a thread specific
1453         // offset to write to within the page. This minimizes bus traffic
1454         // due to cache line collision.
1455         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1456       }
1457     }
1458     __ load_contents(sync_state, G3_scratch);
1459     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
1460 
1461     Label L;
1462     __ br(Assembler::notEqual, false, Assembler::pn, L);
1463     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1464     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
1465     __ bind(L);
1466 
1467     // Block.  Save any potential method result value before the operation and
1468     // use a leaf call to leave the last_Java_frame setup undisturbed.
1469     save_native_result();
1470     __ call_VM_leaf(L7_thread_cache,
1471                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1472                     G2_thread);
1473 
1474     // Restore any method result value
1475     restore_native_result();
1476     __ bind(no_block);
1477   }
1478 
1479   // Clear the frame anchor now
1480 
1481   __ reset_last_Java_frame();
1482 
1483   // Move the result handler address
1484   __ mov(Lscratch, G3_scratch);
1485   // return possible result to the outer frame
1486 #ifndef __LP64
1487   __ mov(O0, I0);
1488   __ restore(O1, G0, O1);
1489 #else
1490   __ restore(O0, G0, O0);
1491 #endif /* __LP64 */
1492 
1493   // Move result handler to expected register
1494   __ mov(G3_scratch, Lscratch);
1495 
1496   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1497   // switch to thread_in_Java.
1498 
1499   __ set(_thread_in_Java, G3_scratch);
1500   __ st(G3_scratch, thread_state);
1501 
1502   if (CheckJNICalls) {
1503     // clear_pending_jni_exception_check
1504     __ st_ptr(G0, G2_thread, JavaThread::pending_jni_exception_check_fn_offset());
1505   }
1506 
1507   // reset handle block
1508   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1509   __ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1510 
1511   // If we have an oop result store it where it will be safe for any further gc
1512   // until we return now that we've released the handle it might be protected by
1513 
1514   {
1515     Label no_oop, store_result;
1516 
1517     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1518     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
1519     // Unbox oop result, e.g. JNIHandles::resolve value in O0.
1520     __ br_null(O0, false, Assembler::pn, store_result); // Use NULL as-is.
1521     __ delayed()->andcc(O0, JNIHandles::weak_tag_mask, G0); // Test for jweak
1522     __ brx(Assembler::zero, true, Assembler::pt, store_result);
1523     __ delayed()->ld_ptr(O0, 0, O0); // Maybe resolve (untagged) jobject.
1524     // Resolve jweak.
1525     __ ld_ptr(O0, -JNIHandles::weak_tag_value, O0);
1526 #if INCLUDE_ALL_GCS
1527     if (UseG1GC) {
1528       __ g1_write_barrier_pre(noreg /* obj */,
1529                               noreg /* index */,
1530                               0 /* offset */,
1531                               O0 /* pre_val */,
1532                               G3_scratch /* tmp */,
1533                               true /* preserve_o_regs */);
1534     }
1535 #endif // INCLUDE_ALL_GCS
1536     __ bind(store_result);
1537     // Store it where gc will look for it and result handler expects it.
1538     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1539 
1540     __ bind(no_oop);
1541 
1542   }
1543 
1544 
1545   // handle exceptions (exception handling will handle unlocking!)
1546   { Label L;
1547     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1548     __ ld_ptr(exception_addr, Gtemp);
1549     __ br_null_short(Gtemp, Assembler::pt, L);
1550     // Note: This could be handled more efficiently since we know that the native
1551     //       method doesn't have an exception handler. We could directly return
1552     //       to the exception handler for the caller.
1553     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1554     __ should_not_reach_here();
1555     __ bind(L);
1556   }
1557 
1558   // JVMTI support (preserves thread register)
1559   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1560 
1561   if (synchronized) {
1562     // save and restore any potential method result value around the unlocking operation
1563     save_native_result();
1564 
1565     __ add( __ top_most_monitor(), O1);
1566     __ unlock_object(O1);
1567 
1568     restore_native_result();
1569   }
1570 
1571 #if defined(COMPILER2) && !defined(_LP64)
1572 
1573   // C2 expects long results in G1 we can't tell if we're returning to interpreted
1574   // or compiled so just be safe.
1575 
1576   __ sllx(O0, 32, G1);          // Shift bits into high G1
1577   __ srl (O1, 0, O1);           // Zero extend O1
1578   __ or3 (O1, G1, G1);          // OR 64 bits into G1
1579 
1580 #endif /* COMPILER2 && !_LP64 */
1581 
1582   // dispose of return address and remove activation
1583 #ifdef ASSERT
1584   {
1585     Label ok;
1586     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
1587     __ stop("bad I5_savedSP value");
1588     __ should_not_reach_here();
1589     __ bind(ok);
1590   }
1591 #endif
1592   __ jmp(Lscratch, 0);
1593   __ delayed()->nop();
1594 
1595 
1596   if (inc_counter) {
1597     // handle invocation counter overflow
1598     __ bind(invocation_counter_overflow);
1599     generate_counter_overflow(Lcontinue);
1600   }
1601 
1602 
1603 
1604   return entry;
1605 }
1606 
1607 
1608 // Generic method entry to (asm) interpreter
1609 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1610   address entry = __ pc();
1611 
1612   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1613 
1614   // the following temporary registers are used during frame creation
1615   const Register Gtmp1 = G3_scratch ;
1616   const Register Gtmp2 = G1_scratch;
1617 
1618   // make sure registers are different!
1619   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1620 
1621   const Address constMethod       (G5_method, Method::const_offset());
1622   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1623   // and use in the asserts.
1624   const Address access_flags      (Lmethod,   Method::access_flags_offset());
1625 
1626   const Register Glocals_size = G3;
1627   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1628 
1629   // make sure method is not native & not abstract
1630   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1631 #ifdef ASSERT
1632   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1633   {
1634     Label L;
1635     __ btst(JVM_ACC_NATIVE, Gtmp1);
1636     __ br(Assembler::zero, false, Assembler::pt, L);
1637     __ delayed()->nop();
1638     __ stop("tried to execute native method as non-native");
1639     __ bind(L);
1640   }
1641   { Label L;
1642     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1643     __ br(Assembler::zero, false, Assembler::pt, L);
1644     __ delayed()->nop();
1645     __ stop("tried to execute abstract method as non-abstract");
1646     __ bind(L);
1647   }
1648 #endif // ASSERT
1649 
1650   // generate the code to allocate the interpreter stack frame
1651 
1652   generate_fixed_frame(false);
1653 
1654 #ifdef FAST_DISPATCH
1655   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
1656                                           // set bytecode dispatch table base
1657 #endif
1658 
1659   //
1660   // Code to initialize the extra (i.e. non-parm) locals
1661   //
1662   Register init_value = noreg;    // will be G0 if we must clear locals
1663   // The way the code was setup before zerolocals was always true for vanilla java entries.
1664   // It could only be false for the specialized entries like accessor or empty which have
1665   // no extra locals so the testing was a waste of time and the extra locals were always
1666   // initialized. We removed this extra complication to already over complicated code.
1667 
1668   init_value = G0;
1669   Label clear_loop;
1670 
1671   const Register RconstMethod = O1;
1672   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1673   const Address size_of_locals    (RconstMethod, ConstMethod::size_of_locals_offset());
1674 
1675   // NOTE: If you change the frame layout, this code will need to
1676   // be updated!
1677   __ ld_ptr( constMethod, RconstMethod );
1678   __ lduh( size_of_locals, O2 );
1679   __ lduh( size_of_parameters, O1 );
1680   __ sll( O2, Interpreter::logStackElementSize, O2);
1681   __ sll( O1, Interpreter::logStackElementSize, O1 );
1682   __ sub( Llocals, O2, O2 );
1683   __ sub( Llocals, O1, O1 );
1684 
1685   __ bind( clear_loop );
1686   __ inc( O2, wordSize );
1687 
1688   __ cmp( O2, O1 );
1689   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1690   __ delayed()->st_ptr( init_value, O2, 0 );
1691 
1692   const Address do_not_unlock_if_synchronized(G2_thread,
1693     JavaThread::do_not_unlock_if_synchronized_offset());
1694   // Since at this point in the method invocation the exception handler
1695   // would try to exit the monitor of synchronized methods which hasn't
1696   // been entered yet, we set the thread local variable
1697   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1698   // runtime, exception handling i.e. unlock_if_synchronized_method will
1699   // check this thread local flag.
1700   __ movbool(true, G3_scratch);
1701   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1702 
1703   __ profile_parameters_type(G1_scratch, G3_scratch, G4_scratch, Lscratch);
1704   // increment invocation counter and check for overflow
1705   //
1706   // Note: checking for negative value instead of overflow
1707   //       so we have a 'sticky' overflow test (may be of
1708   //       importance as soon as we have true MT/MP)
1709   Label invocation_counter_overflow;
1710   Label profile_method;
1711   Label profile_method_continue;
1712   Label Lcontinue;
1713   if (inc_counter) {
1714     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1715     if (ProfileInterpreter) {
1716       __ bind(profile_method_continue);
1717     }
1718   }
1719   __ bind(Lcontinue);
1720 
1721   bang_stack_shadow_pages(false);
1722 
1723   // reset the _do_not_unlock_if_synchronized flag
1724   __ stbool(G0, do_not_unlock_if_synchronized);
1725 
1726   // check for synchronized methods
1727   // Must happen AFTER invocation_counter check and stack overflow check,
1728   // so method is not locked if overflows.
1729 
1730   if (synchronized) {
1731     lock_method();
1732   } else {
1733 #ifdef ASSERT
1734     { Label ok;
1735       __ ld(access_flags, O0);
1736       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1737       __ br( Assembler::zero, false, Assembler::pt, ok);
1738       __ delayed()->nop();
1739       __ stop("method needs synchronization");
1740       __ bind(ok);
1741     }
1742 #endif // ASSERT
1743   }
1744 
1745   // start execution
1746 
1747   __ verify_thread();
1748 
1749   // jvmti support
1750   __ notify_method_entry();
1751 
1752   // start executing instructions
1753   __ dispatch_next(vtos);
1754 
1755 
1756   if (inc_counter) {
1757     if (ProfileInterpreter) {
1758       // We have decided to profile this method in the interpreter
1759       __ bind(profile_method);
1760 
1761       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1762       __ set_method_data_pointer_for_bcp();
1763       __ ba_short(profile_method_continue);
1764     }
1765 
1766     // handle invocation counter overflow
1767     __ bind(invocation_counter_overflow);
1768     generate_counter_overflow(Lcontinue);
1769   }
1770 
1771 
1772   return entry;
1773 }
1774 
1775 //----------------------------------------------------------------------------------------------------
1776 // Exceptions
1777 void TemplateInterpreterGenerator::generate_throw_exception() {
1778 
1779   // Entry point in previous activation (i.e., if the caller was interpreted)
1780   Interpreter::_rethrow_exception_entry = __ pc();
1781   // O0: exception
1782 
1783   // entry point for exceptions thrown within interpreter code
1784   Interpreter::_throw_exception_entry = __ pc();
1785   __ verify_thread();
1786   // expression stack is undefined here
1787   // O0: exception, i.e. Oexception
1788   // Lbcp: exception bcp
1789   __ verify_oop(Oexception);
1790 
1791 
1792   // expression stack must be empty before entering the VM in case of an exception
1793   __ empty_expression_stack();
1794   // find exception handler address and preserve exception oop
1795   // call C routine to find handler and jump to it
1796   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1797   __ push_ptr(O1); // push exception for exception handler bytecodes
1798 
1799   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1800   __ delayed()->nop();
1801 
1802 
1803   // if the exception is not handled in the current frame
1804   // the frame is removed and the exception is rethrown
1805   // (i.e. exception continuation is _rethrow_exception)
1806   //
1807   // Note: At this point the bci is still the bxi for the instruction which caused
1808   //       the exception and the expression stack is empty. Thus, for any VM calls
1809   //       at this point, GC will find a legal oop map (with empty expression stack).
1810 
1811   // in current activation
1812   // tos: exception
1813   // Lbcp: exception bcp
1814 
1815   //
1816   // JVMTI PopFrame support
1817   //
1818 
1819   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1820   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1821   // Set the popframe_processing bit in popframe_condition indicating that we are
1822   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1823   // popframe handling cycles.
1824 
1825   __ ld(popframe_condition_addr, G3_scratch);
1826   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1827   __ stw(G3_scratch, popframe_condition_addr);
1828 
1829   // Empty the expression stack, as in normal exception handling
1830   __ empty_expression_stack();
1831   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1832 
1833   {
1834     // Check to see whether we are returning to a deoptimized frame.
1835     // (The PopFrame call ensures that the caller of the popped frame is
1836     // either interpreted or compiled and deoptimizes it if compiled.)
1837     // In this case, we can't call dispatch_next() after the frame is
1838     // popped, but instead must save the incoming arguments and restore
1839     // them after deoptimization has occurred.
1840     //
1841     // Note that we don't compare the return PC against the
1842     // deoptimization blob's unpack entry because of the presence of
1843     // adapter frames in C2.
1844     Label caller_not_deoptimized;
1845     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1846     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
1847 
1848     const Register Gtmp1 = G3_scratch;
1849     const Register Gtmp2 = G1_scratch;
1850     const Register RconstMethod = Gtmp1;
1851     const Address constMethod(Lmethod, Method::const_offset());
1852     const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1853 
1854     // Compute size of arguments for saving when returning to deoptimized caller
1855     __ ld_ptr(constMethod, RconstMethod);
1856     __ lduh(size_of_parameters, Gtmp1);
1857     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
1858     __ sub(Llocals, Gtmp1, Gtmp2);
1859     __ add(Gtmp2, wordSize, Gtmp2);
1860     // Save these arguments
1861     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1862     // Inform deoptimization that it is responsible for restoring these arguments
1863     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1864     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1865     __ st(Gtmp1, popframe_condition_addr);
1866 
1867     // Return from the current method
1868     // The caller's SP was adjusted upon method entry to accomodate
1869     // the callee's non-argument locals. Undo that adjustment.
1870     __ ret();
1871     __ delayed()->restore(I5_savedSP, G0, SP);
1872 
1873     __ bind(caller_not_deoptimized);
1874   }
1875 
1876   // Clear the popframe condition flag
1877   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1878 
1879   // Get out of the current method (how this is done depends on the particular compiler calling
1880   // convention that the interpreter currently follows)
1881   // The caller's SP was adjusted upon method entry to accomodate
1882   // the callee's non-argument locals. Undo that adjustment.
1883   __ restore(I5_savedSP, G0, SP);
1884   // The method data pointer was incremented already during
1885   // call profiling. We have to restore the mdp for the current bcp.
1886   if (ProfileInterpreter) {
1887     __ set_method_data_pointer_for_bcp();
1888   }
1889 
1890 #if INCLUDE_JVMTI
1891   {
1892     Label L_done;
1893 
1894     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode
1895     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokestatic, Assembler::notEqual, Assembler::pn, L_done);
1896 
1897     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1898     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1899 
1900     __ call_VM(G1_scratch, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), I0, Lmethod, Lbcp);
1901 
1902     __ br_null(G1_scratch, false, Assembler::pn, L_done);
1903     __ delayed()->nop();
1904 
1905     __ st_ptr(G1_scratch, Lesp, wordSize);
1906     __ bind(L_done);
1907   }
1908 #endif // INCLUDE_JVMTI
1909 
1910   // Resume bytecode interpretation at the current bcp
1911   __ dispatch_next(vtos);
1912   // end of JVMTI PopFrame support
1913 
1914   Interpreter::_remove_activation_entry = __ pc();
1915 
1916   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1917   __ pop_ptr(Oexception);                                  // get exception
1918 
1919   // Intel has the following comment:
1920   //// remove the activation (without doing throws on illegalMonitorExceptions)
1921   // They remove the activation without checking for bad monitor state.
1922   // %%% We should make sure this is the right semantics before implementing.
1923 
1924   __ set_vm_result(Oexception);
1925   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1926 
1927   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1928 
1929   __ get_vm_result(Oexception);
1930   __ verify_oop(Oexception);
1931 
1932     const int return_reg_adjustment = frame::pc_return_offset;
1933   Address issuing_pc_addr(I7, return_reg_adjustment);
1934 
1935   // We are done with this activation frame; find out where to go next.
1936   // The continuation point will be an exception handler, which expects
1937   // the following registers set up:
1938   //
1939   // Oexception: exception
1940   // Oissuing_pc: the local call that threw exception
1941   // Other On: garbage
1942   // In/Ln:  the contents of the caller's register window
1943   //
1944   // We do the required restore at the last possible moment, because we
1945   // need to preserve some state across a runtime call.
1946   // (Remember that the caller activation is unknown--it might not be
1947   // interpreted, so things like Lscratch are useless in the caller.)
1948 
1949   // Although the Intel version uses call_C, we can use the more
1950   // compact call_VM.  (The only real difference on SPARC is a
1951   // harmlessly ignored [re]set_last_Java_frame, compared with
1952   // the Intel code which lacks this.)
1953   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1954   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1955   __ super_call_VM_leaf(L7_thread_cache,
1956                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1957                         G2_thread, Oissuing_pc->after_save());
1958 
1959   // The caller's SP was adjusted upon method entry to accomodate
1960   // the callee's non-argument locals. Undo that adjustment.
1961   __ JMP(O0, 0);                         // return exception handler in caller
1962   __ delayed()->restore(I5_savedSP, G0, SP);
1963 
1964   // (same old exception object is already in Oexception; see above)
1965   // Note that an "issuing PC" is actually the next PC after the call
1966 }
1967 
1968 
1969 //
1970 // JVMTI ForceEarlyReturn support
1971 //
1972 
1973 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1974   address entry = __ pc();
1975 
1976   __ empty_expression_stack();
1977   __ load_earlyret_value(state);
1978 
1979   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1980   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1981 
1982   // Clear the earlyret state
1983   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
1984 
1985   __ remove_activation(state,
1986                        /* throw_monitor_exception */ false,
1987                        /* install_monitor_exception */ false);
1988 
1989   // The caller's SP was adjusted upon method entry to accomodate
1990   // the callee's non-argument locals. Undo that adjustment.
1991   __ ret();                             // return to caller
1992   __ delayed()->restore(I5_savedSP, G0, SP);
1993 
1994   return entry;
1995 } // end of JVMTI ForceEarlyReturn support
1996 
1997 
1998 //------------------------------------------------------------------------------------------------------------------------
1999 // Helper for vtos entry point generation
2000 
2001 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
2002   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2003   Label L;
2004   aep = __ pc(); __ push_ptr(); __ ba_short(L);
2005   fep = __ pc(); __ push_f();   __ ba_short(L);
2006   dep = __ pc(); __ push_d();   __ ba_short(L);
2007   lep = __ pc(); __ push_l();   __ ba_short(L);
2008   iep = __ pc(); __ push_i();
2009   bep = cep = sep = iep;                        // there aren't any
2010   vep = __ pc(); __ bind(L);                    // fall through
2011   generate_and_dispatch(t);
2012 }
2013 
2014 // --------------------------------------------------------------------------------
2015 
2016 // Non-product code
2017 #ifndef PRODUCT
2018 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2019   address entry = __ pc();
2020 
2021   __ push(state);
2022   __ mov(O7, Lscratch); // protect return address within interpreter
2023 
2024   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
2025   __ mov( Otos_l2, G3_scratch );
2026   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
2027   __ mov(Lscratch, O7); // restore return address
2028   __ pop(state);
2029   __ retl();
2030   __ delayed()->nop();
2031 
2032   return entry;
2033 }
2034 
2035 
2036 // helpers for generate_and_dispatch
2037 
2038 void TemplateInterpreterGenerator::count_bytecode() {
2039   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
2040 }
2041 
2042 
2043 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2044   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
2045 }
2046 
2047 
2048 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2049   AddressLiteral index   (&BytecodePairHistogram::_index);
2050   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
2051 
2052   // get index, shift out old bytecode, bring in new bytecode, and store it
2053   // _index = (_index >> log2_number_of_codes) |
2054   //          (bytecode << log2_number_of_codes);
2055 
2056   __ load_contents(index, G4_scratch);
2057   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
2058   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
2059   __ or3( G3_scratch,  G4_scratch, G4_scratch );
2060   __ store_contents(G4_scratch, index, G3_scratch);
2061 
2062   // bump bucket contents
2063   // _counters[_index] ++;
2064 
2065   __ set(counters, G3_scratch);                       // loads into G3_scratch
2066   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
2067   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
2068   __ ld (G3_scratch, 0, G4_scratch);
2069   __ inc (G4_scratch);
2070   __ st (G4_scratch, 0, G3_scratch);
2071 }
2072 
2073 
2074 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2075   // Call a little run-time stub to avoid blow-up for each bytecode.
2076   // The run-time runtime saves the right registers, depending on
2077   // the tosca in-state for the given template.
2078   address entry = Interpreter::trace_code(t->tos_in());
2079   guarantee(entry != NULL, "entry must have been generated");
2080   __ call(entry, relocInfo::none);
2081   __ delayed()->nop();
2082 }
2083 
2084 
2085 void TemplateInterpreterGenerator::stop_interpreter_at() {
2086   AddressLiteral counter(&BytecodeCounter::_counter_value);
2087   __ load_contents(counter, G3_scratch);
2088   AddressLiteral stop_at(&StopInterpreterAt);
2089   __ load_ptr_contents(stop_at, G4_scratch);
2090   __ cmp(G3_scratch, G4_scratch);
2091   __ breakpoint_trap(Assembler::equal, Assembler::icc);
2092 }
2093 #endif // not PRODUCT