1 /*
   2  * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #ifndef _WINDOWS
  27 #include "alloca.h"
  28 #endif
  29 #include "asm/macroAssembler.hpp"
  30 #include "asm/macroAssembler.inline.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/compiledICHolder.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/vframeArray.hpp"
  40 #include "vmreg_x86.inline.hpp"
  41 #ifdef COMPILER1
  42 #include "c1/c1_Runtime1.hpp"
  43 #endif
  44 #ifdef COMPILER2
  45 #include "opto/runtime.hpp"
  46 #endif
  47 #if INCLUDE_JVMCI
  48 #include "jvmci/jvmciJavaClasses.hpp"
  49 #endif
  50 
  51 #define __ masm->
  52 
  53 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  54 
  55 class SimpleRuntimeFrame {
  56 
  57   public:
  58 
  59   // Most of the runtime stubs have this simple frame layout.
  60   // This class exists to make the layout shared in one place.
  61   // Offsets are for compiler stack slots, which are jints.
  62   enum layout {
  63     // The frame sender code expects that rbp will be in the "natural" place and
  64     // will override any oopMap setting for it. We must therefore force the layout
  65     // so that it agrees with the frame sender code.
  66     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  67     rbp_off2,
  68     return_off, return_off2,
  69     framesize
  70   };
  71 };
  72 
  73 class RegisterSaver {
  74   // Capture info about frame layout.  Layout offsets are in jint
  75   // units because compiler frame slots are jints.
  76 #define XSAVE_AREA_BEGIN 160
  77 #define XSAVE_AREA_YMM_BEGIN 576
  78 #define XSAVE_AREA_ZMM_BEGIN 1152
  79 #define XSAVE_AREA_UPPERBANK 1664
  80 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  81 #define DEF_YMM_OFFS(regnum) ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off
  82 #define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
  83   enum layout {
  84     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  85     xmm_off       = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt,            // offset in fxsave save area
  86     DEF_XMM_OFFS(0),
  87     DEF_XMM_OFFS(1),
  88     // 2..15 are implied in range usage
  89     ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
  90     DEF_YMM_OFFS(0),
  91     DEF_YMM_OFFS(1),
  92     // 2..15 are implied in range usage
  93     zmm_high = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
  94     zmm_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt,
  95     DEF_ZMM_OFFS(16),
  96     DEF_ZMM_OFFS(17),
  97     // 18..31 are implied in range usage
  98     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
  99     fpu_stateH_end,
 100     r15_off, r15H_off,
 101     r14_off, r14H_off,
 102     r13_off, r13H_off,
 103     r12_off, r12H_off,
 104     r11_off, r11H_off,
 105     r10_off, r10H_off,
 106     r9_off,  r9H_off,
 107     r8_off,  r8H_off,
 108     rdi_off, rdiH_off,
 109     rsi_off, rsiH_off,
 110     ignore_off, ignoreH_off,  // extra copy of rbp
 111     rsp_off, rspH_off,
 112     rbx_off, rbxH_off,
 113     rdx_off, rdxH_off,
 114     rcx_off, rcxH_off,
 115     rax_off, raxH_off,
 116     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 117     align_off, alignH_off,
 118     flags_off, flagsH_off,
 119     // The frame sender code expects that rbp will be in the "natural" place and
 120     // will override any oopMap setting for it. We must therefore force the layout
 121     // so that it agrees with the frame sender code.
 122     rbp_off, rbpH_off,        // copy of rbp we will restore
 123     return_off, returnH_off,  // slot for return address
 124     reg_save_size             // size in compiler stack slots
 125   };
 126 
 127  public:
 128   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
 129   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 130 
 131   // Offsets into the register save area
 132   // Used by deoptimization when it is managing result register
 133   // values on its own
 134 
 135   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 136   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 137   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 138   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 139   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 140 
 141   // During deoptimization only the result registers need to be restored,
 142   // all the other values have already been extracted.
 143   static void restore_result_registers(MacroAssembler* masm);
 144 };
 145 
 146 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
 147   int off = 0;
 148   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 149   if (UseAVX < 3) {
 150     num_xmm_regs = num_xmm_regs/2;
 151   }
 152 #if defined(COMPILER2) || INCLUDE_JVMCI
 153   if (save_vectors) {
 154     assert(UseAVX > 0, "up to 512bit vectors are supported with EVEX");
 155     assert(MaxVectorSize <= 64, "up to 512bit vectors are supported now");
 156   }
 157 #else
 158   assert(!save_vectors, "vectors are generated only by C2 and JVMCI");
 159 #endif
 160 
 161   // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated
 162   int frame_size_in_bytes = round_to(reg_save_size*BytesPerInt, num_xmm_regs);
 163   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 164   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 165   // CodeBlob frame size is in words.
 166   int frame_size_in_words = frame_size_in_bytes / wordSize;
 167   *total_frame_words = frame_size_in_words;
 168 
 169   // Save registers, fpu state, and flags.
 170   // We assume caller has already pushed the return address onto the
 171   // stack, so rsp is 8-byte aligned here.
 172   // We push rpb twice in this sequence because we want the real rbp
 173   // to be under the return like a normal enter.
 174 
 175   __ enter();          // rsp becomes 16-byte aligned here
 176   __ push_CPU_state(); // Push a multiple of 16 bytes
 177 
 178   // push cpu state handles this on EVEX enabled targets
 179   if (save_vectors) {
 180     // Save upper half of YMM registers(0..15)
 181     int base_addr = XSAVE_AREA_YMM_BEGIN;
 182     for (int n = 0; n < 16; n++) {
 183       __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n));
 184     }
 185     if (VM_Version::supports_evex()) {
 186       // Save upper half of ZMM registers(0..15)
 187       base_addr = XSAVE_AREA_ZMM_BEGIN;
 188       for (int n = 0; n < 16; n++) {
 189         __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n));
 190       }
 191       // Save full ZMM registers(16..num_xmm_regs)
 192       base_addr = XSAVE_AREA_UPPERBANK;
 193       off = 0;
 194       int vector_len = Assembler::AVX_512bit;
 195       for (int n = 16; n < num_xmm_regs; n++) {
 196         __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len);
 197       }
 198     }
 199   } else {
 200     if (VM_Version::supports_evex()) {
 201       // Save upper bank of ZMM registers(16..31) for double/float usage
 202       int base_addr = XSAVE_AREA_UPPERBANK;
 203       off = 0;
 204       for (int n = 16; n < num_xmm_regs; n++) {
 205         __ movsd(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n));
 206       }
 207     }
 208   }
 209   if (frame::arg_reg_save_area_bytes != 0) {
 210     // Allocate argument register save area
 211     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 212   }
 213 
 214   // Set an oopmap for the call site.  This oopmap will map all
 215   // oop-registers and debug-info registers as callee-saved.  This
 216   // will allow deoptimization at this safepoint to find all possible
 217   // debug-info recordings, as well as let GC find all oops.
 218 
 219   OopMapSet *oop_maps = new OopMapSet();
 220   OopMap* map = new OopMap(frame_size_in_slots, 0);
 221 
 222 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x))
 223 
 224   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 225   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 226   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 227   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 228   // rbp location is known implicitly by the frame sender code, needs no oopmap
 229   // and the location where rbp was saved by is ignored
 230   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 231   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 232   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 233   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 234   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 235   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 236   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 238   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 240   // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 241   // on EVEX enabled targets, we get it included in the xsave area
 242   off = xmm0_off;
 243   int delta = xmm1_off - off;
 244   for (int n = 0; n < 16; n++) {
 245     XMMRegister xmm_name = as_XMMRegister(n);
 246     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 247     off += delta;
 248   }
 249   if(UseAVX > 2) {
 250     // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 251     off = zmm16_off;
 252     delta = zmm17_off - off;
 253     for (int n = 16; n < num_xmm_regs; n++) {
 254       XMMRegister zmm_name = as_XMMRegister(n);
 255       map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg());
 256       off += delta;
 257     }
 258   }
 259 
 260 #if defined(COMPILER2) || INCLUDE_JVMCI
 261   if (save_vectors) {
 262     off = ymm0_off;
 263     int delta = ymm1_off - off;
 264     for (int n = 0; n < 16; n++) {
 265       XMMRegister ymm_name = as_XMMRegister(n);
 266       map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4));
 267       off += delta;
 268     }
 269   }
 270 #endif // COMPILER2 || INCLUDE_JVMCI
 271 
 272   // %%% These should all be a waste but we'll keep things as they were for now
 273   if (true) {
 274     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 275     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 276     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 277     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 278     // rbp location is known implicitly by the frame sender code, needs no oopmap
 279     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 280     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 281     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 282     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 283     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 284     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 285     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 286     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 287     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 288     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 289     // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 290     // on EVEX enabled targets, we get it included in the xsave area
 291     off = xmm0H_off;
 292     delta = xmm1H_off - off;
 293     for (int n = 0; n < 16; n++) {
 294       XMMRegister xmm_name = as_XMMRegister(n);
 295       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
 296       off += delta;
 297     }
 298     if (UseAVX > 2) {
 299       // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 300       off = zmm16H_off;
 301       delta = zmm17H_off - off;
 302       for (int n = 16; n < num_xmm_regs; n++) {
 303         XMMRegister zmm_name = as_XMMRegister(n);
 304         map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next());
 305         off += delta;
 306       }
 307     }
 308   }
 309 
 310   return map;
 311 }
 312 
 313 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 314   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 315   if (UseAVX < 3) {
 316     num_xmm_regs = num_xmm_regs/2;
 317   }
 318   if (frame::arg_reg_save_area_bytes != 0) {
 319     // Pop arg register save area
 320     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 321   }
 322 
 323 #if defined(COMPILER2) || INCLUDE_JVMCI
 324   if (restore_vectors) {
 325     assert(UseAVX > 0, "up to 512bit vectors are supported with EVEX");
 326     assert(MaxVectorSize <= 64, "up to 512bit vectors are supported now");
 327   }
 328 #else
 329   assert(!restore_vectors, "vectors are generated only by C2");
 330 #endif
 331 
 332   // On EVEX enabled targets everything is handled in pop fpu state
 333   if (restore_vectors) {
 334     // Restore upper half of YMM registers (0..15)
 335     int base_addr = XSAVE_AREA_YMM_BEGIN;
 336     for (int n = 0; n < 16; n++) {
 337       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16));
 338     }
 339     if (VM_Version::supports_evex()) {
 340       // Restore upper half of ZMM registers (0..15)
 341       base_addr = XSAVE_AREA_ZMM_BEGIN;
 342       for (int n = 0; n < 16; n++) {
 343         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32));
 344       }
 345       // Restore full ZMM registers(16..num_xmm_regs)
 346       base_addr = XSAVE_AREA_UPPERBANK;
 347       int vector_len = Assembler::AVX_512bit;
 348       int off = 0;
 349       for (int n = 16; n < num_xmm_regs; n++) {
 350         __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len);
 351       }
 352     }
 353   } else {
 354     if (VM_Version::supports_evex()) {
 355       // Restore upper bank of ZMM registers(16..31) for double/float usage
 356       int base_addr = XSAVE_AREA_UPPERBANK;
 357       int off = 0;
 358       for (int n = 16; n < num_xmm_regs; n++) {
 359         __ movsd(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)));
 360       }
 361     }
 362   }
 363 
 364   // Recover CPU state
 365   __ pop_CPU_state();
 366   // Get the rbp described implicitly by the calling convention (no oopMap)
 367   __ pop(rbp);
 368 }
 369 
 370 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 371 
 372   // Just restore result register. Only used by deoptimization. By
 373   // now any callee save register that needs to be restored to a c2
 374   // caller of the deoptee has been extracted into the vframeArray
 375   // and will be stuffed into the c2i adapter we create for later
 376   // restoration so only result registers need to be restored here.
 377 
 378   // Restore fp result register
 379   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 380   // Restore integer result register
 381   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 382   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 383 
 384   // Pop all of the register save are off the stack except the return address
 385   __ addptr(rsp, return_offset_in_bytes());
 386 }
 387 
 388 // Is vector's size (in bytes) bigger than a size saved by default?
 389 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 390 bool SharedRuntime::is_wide_vector(int size) {
 391   return size > 16;
 392 }
 393 
 394 size_t SharedRuntime::trampoline_size() {
 395   return 16;
 396 }
 397 
 398 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
 399   __ jump(RuntimeAddress(destination));
 400 }
 401 
 402 // The java_calling_convention describes stack locations as ideal slots on
 403 // a frame with no abi restrictions. Since we must observe abi restrictions
 404 // (like the placement of the register window) the slots must be biased by
 405 // the following value.
 406 static int reg2offset_in(VMReg r) {
 407   // Account for saved rbp and return address
 408   // This should really be in_preserve_stack_slots
 409   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 410 }
 411 
 412 static int reg2offset_out(VMReg r) {
 413   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 414 }
 415 
 416 // ---------------------------------------------------------------------------
 417 // Read the array of BasicTypes from a signature, and compute where the
 418 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 419 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 420 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 421 // as framesizes are fixed.
 422 // VMRegImpl::stack0 refers to the first slot 0(sp).
 423 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 424 // up to RegisterImpl::number_of_registers) are the 64-bit
 425 // integer registers.
 426 
 427 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 428 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 429 // units regardless of build. Of course for i486 there is no 64 bit build
 430 
 431 // The Java calling convention is a "shifted" version of the C ABI.
 432 // By skipping the first C ABI register we can call non-static jni methods
 433 // with small numbers of arguments without having to shuffle the arguments
 434 // at all. Since we control the java ABI we ought to at least get some
 435 // advantage out of it.
 436 
 437 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 438                                            VMRegPair *regs,
 439                                            int total_args_passed,
 440                                            int is_outgoing) {
 441 
 442   // Create the mapping between argument positions and
 443   // registers.
 444   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 445     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 446   };
 447   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 448     j_farg0, j_farg1, j_farg2, j_farg3,
 449     j_farg4, j_farg5, j_farg6, j_farg7
 450   };
 451 
 452 
 453   uint int_args = 0;
 454   uint fp_args = 0;
 455   uint stk_args = 0; // inc by 2 each time
 456 
 457   for (int i = 0; i < total_args_passed; i++) {
 458     switch (sig_bt[i]) {
 459     case T_BOOLEAN:
 460     case T_CHAR:
 461     case T_BYTE:
 462     case T_SHORT:
 463     case T_INT:
 464       if (int_args < Argument::n_int_register_parameters_j) {
 465         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 466       } else {
 467         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 468         stk_args += 2;
 469       }
 470       break;
 471     case T_VOID:
 472       // halves of T_LONG or T_DOUBLE
 473       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 474       regs[i].set_bad();
 475       break;
 476     case T_LONG:
 477       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 478       // fall through
 479     case T_OBJECT:
 480     case T_ARRAY:
 481     case T_ADDRESS:
 482       if (int_args < Argument::n_int_register_parameters_j) {
 483         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 484       } else {
 485         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 486         stk_args += 2;
 487       }
 488       break;
 489     case T_FLOAT:
 490       if (fp_args < Argument::n_float_register_parameters_j) {
 491         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 492       } else {
 493         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 494         stk_args += 2;
 495       }
 496       break;
 497     case T_DOUBLE:
 498       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 499       if (fp_args < Argument::n_float_register_parameters_j) {
 500         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 501       } else {
 502         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 503         stk_args += 2;
 504       }
 505       break;
 506     default:
 507       ShouldNotReachHere();
 508       break;
 509     }
 510   }
 511 
 512   return round_to(stk_args, 2);
 513 }
 514 
 515 // Patch the callers callsite with entry to compiled code if it exists.
 516 static void patch_callers_callsite(MacroAssembler *masm) {
 517   Label L;
 518   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 519   __ jcc(Assembler::equal, L);
 520 
 521   // Save the current stack pointer
 522   __ mov(r13, rsp);
 523   // Schedule the branch target address early.
 524   // Call into the VM to patch the caller, then jump to compiled callee
 525   // rax isn't live so capture return address while we easily can
 526   __ movptr(rax, Address(rsp, 0));
 527 
 528   // align stack so push_CPU_state doesn't fault
 529   __ andptr(rsp, -(StackAlignmentInBytes));
 530   __ push_CPU_state();
 531 
 532   // VM needs caller's callsite
 533   // VM needs target method
 534   // This needs to be a long call since we will relocate this adapter to
 535   // the codeBuffer and it may not reach
 536 
 537   // Allocate argument register save area
 538   if (frame::arg_reg_save_area_bytes != 0) {
 539     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 540   }
 541   __ mov(c_rarg0, rbx);
 542   __ mov(c_rarg1, rax);
 543   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 544 
 545   // De-allocate argument register save area
 546   if (frame::arg_reg_save_area_bytes != 0) {
 547     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 548   }
 549 
 550   __ pop_CPU_state();
 551   // restore sp
 552   __ mov(rsp, r13);
 553   __ bind(L);
 554 }
 555 
 556 
 557 static void gen_c2i_adapter(MacroAssembler *masm,
 558                             int total_args_passed,
 559                             int comp_args_on_stack,
 560                             const BasicType *sig_bt,
 561                             const VMRegPair *regs,
 562                             Label& skip_fixup) {
 563   // Before we get into the guts of the C2I adapter, see if we should be here
 564   // at all.  We've come from compiled code and are attempting to jump to the
 565   // interpreter, which means the caller made a static call to get here
 566   // (vcalls always get a compiled target if there is one).  Check for a
 567   // compiled target.  If there is one, we need to patch the caller's call.
 568   patch_callers_callsite(masm);
 569 
 570   __ bind(skip_fixup);
 571 
 572   // Since all args are passed on the stack, total_args_passed *
 573   // Interpreter::stackElementSize is the space we need. Plus 1 because
 574   // we also account for the return address location since
 575   // we store it first rather than hold it in rax across all the shuffling
 576 
 577   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 578 
 579   // stack is aligned, keep it that way
 580   extraspace = round_to(extraspace, 2*wordSize);
 581 
 582   // Get return address
 583   __ pop(rax);
 584 
 585   // set senderSP value
 586   __ mov(r13, rsp);
 587 
 588   __ subptr(rsp, extraspace);
 589 
 590   // Store the return address in the expected location
 591   __ movptr(Address(rsp, 0), rax);
 592 
 593   // Now write the args into the outgoing interpreter space
 594   for (int i = 0; i < total_args_passed; i++) {
 595     if (sig_bt[i] == T_VOID) {
 596       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 597       continue;
 598     }
 599 
 600     // offset to start parameters
 601     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 602     int next_off = st_off - Interpreter::stackElementSize;
 603 
 604     // Say 4 args:
 605     // i   st_off
 606     // 0   32 T_LONG
 607     // 1   24 T_VOID
 608     // 2   16 T_OBJECT
 609     // 3    8 T_BOOL
 610     // -    0 return address
 611     //
 612     // However to make thing extra confusing. Because we can fit a long/double in
 613     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 614     // leaves one slot empty and only stores to a single slot. In this case the
 615     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 616 
 617     VMReg r_1 = regs[i].first();
 618     VMReg r_2 = regs[i].second();
 619     if (!r_1->is_valid()) {
 620       assert(!r_2->is_valid(), "");
 621       continue;
 622     }
 623     if (r_1->is_stack()) {
 624       // memory to memory use rax
 625       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 626       if (!r_2->is_valid()) {
 627         // sign extend??
 628         __ movl(rax, Address(rsp, ld_off));
 629         __ movptr(Address(rsp, st_off), rax);
 630 
 631       } else {
 632 
 633         __ movq(rax, Address(rsp, ld_off));
 634 
 635         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 636         // T_DOUBLE and T_LONG use two slots in the interpreter
 637         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 638           // ld_off == LSW, ld_off+wordSize == MSW
 639           // st_off == MSW, next_off == LSW
 640           __ movq(Address(rsp, next_off), rax);
 641 #ifdef ASSERT
 642           // Overwrite the unused slot with known junk
 643           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 644           __ movptr(Address(rsp, st_off), rax);
 645 #endif /* ASSERT */
 646         } else {
 647           __ movq(Address(rsp, st_off), rax);
 648         }
 649       }
 650     } else if (r_1->is_Register()) {
 651       Register r = r_1->as_Register();
 652       if (!r_2->is_valid()) {
 653         // must be only an int (or less ) so move only 32bits to slot
 654         // why not sign extend??
 655         __ movl(Address(rsp, st_off), r);
 656       } else {
 657         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 658         // T_DOUBLE and T_LONG use two slots in the interpreter
 659         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 660           // long/double in gpr
 661 #ifdef ASSERT
 662           // Overwrite the unused slot with known junk
 663           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 664           __ movptr(Address(rsp, st_off), rax);
 665 #endif /* ASSERT */
 666           __ movq(Address(rsp, next_off), r);
 667         } else {
 668           __ movptr(Address(rsp, st_off), r);
 669         }
 670       }
 671     } else {
 672       assert(r_1->is_XMMRegister(), "");
 673       if (!r_2->is_valid()) {
 674         // only a float use just part of the slot
 675         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 676       } else {
 677 #ifdef ASSERT
 678         // Overwrite the unused slot with known junk
 679         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 680         __ movptr(Address(rsp, st_off), rax);
 681 #endif /* ASSERT */
 682         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 683       }
 684     }
 685   }
 686 
 687   // Schedule the branch target address early.
 688   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 689   __ jmp(rcx);
 690 }
 691 
 692 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 693                         address code_start, address code_end,
 694                         Label& L_ok) {
 695   Label L_fail;
 696   __ lea(temp_reg, ExternalAddress(code_start));
 697   __ cmpptr(pc_reg, temp_reg);
 698   __ jcc(Assembler::belowEqual, L_fail);
 699   __ lea(temp_reg, ExternalAddress(code_end));
 700   __ cmpptr(pc_reg, temp_reg);
 701   __ jcc(Assembler::below, L_ok);
 702   __ bind(L_fail);
 703 }
 704 
 705 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 706                                     int total_args_passed,
 707                                     int comp_args_on_stack,
 708                                     const BasicType *sig_bt,
 709                                     const VMRegPair *regs) {
 710 
 711   // Note: r13 contains the senderSP on entry. We must preserve it since
 712   // we may do a i2c -> c2i transition if we lose a race where compiled
 713   // code goes non-entrant while we get args ready.
 714   // In addition we use r13 to locate all the interpreter args as
 715   // we must align the stack to 16 bytes on an i2c entry else we
 716   // lose alignment we expect in all compiled code and register
 717   // save code can segv when fxsave instructions find improperly
 718   // aligned stack pointer.
 719 
 720   // Adapters can be frameless because they do not require the caller
 721   // to perform additional cleanup work, such as correcting the stack pointer.
 722   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 723   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 724   // even if a callee has modified the stack pointer.
 725   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 726   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 727   // up via the senderSP register).
 728   // In other words, if *either* the caller or callee is interpreted, we can
 729   // get the stack pointer repaired after a call.
 730   // This is why c2i and i2c adapters cannot be indefinitely composed.
 731   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 732   // both caller and callee would be compiled methods, and neither would
 733   // clean up the stack pointer changes performed by the two adapters.
 734   // If this happens, control eventually transfers back to the compiled
 735   // caller, but with an uncorrected stack, causing delayed havoc.
 736 
 737   // Pick up the return address
 738   __ movptr(rax, Address(rsp, 0));
 739 
 740   if (VerifyAdapterCalls &&
 741       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 742     // So, let's test for cascading c2i/i2c adapters right now.
 743     //  assert(Interpreter::contains($return_addr) ||
 744     //         StubRoutines::contains($return_addr),
 745     //         "i2c adapter must return to an interpreter frame");
 746     __ block_comment("verify_i2c { ");
 747     Label L_ok;
 748     if (Interpreter::code() != NULL)
 749       range_check(masm, rax, r11,
 750                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 751                   L_ok);
 752     if (StubRoutines::code1() != NULL)
 753       range_check(masm, rax, r11,
 754                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 755                   L_ok);
 756     if (StubRoutines::code2() != NULL)
 757       range_check(masm, rax, r11,
 758                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 759                   L_ok);
 760     const char* msg = "i2c adapter must return to an interpreter frame";
 761     __ block_comment(msg);
 762     __ stop(msg);
 763     __ bind(L_ok);
 764     __ block_comment("} verify_i2ce ");
 765   }
 766 
 767   // Must preserve original SP for loading incoming arguments because
 768   // we need to align the outgoing SP for compiled code.
 769   __ movptr(r11, rsp);
 770 
 771   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 772   // in registers, we will occasionally have no stack args.
 773   int comp_words_on_stack = 0;
 774   if (comp_args_on_stack) {
 775     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 776     // registers are below.  By subtracting stack0, we either get a negative
 777     // number (all values in registers) or the maximum stack slot accessed.
 778 
 779     // Convert 4-byte c2 stack slots to words.
 780     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 781     // Round up to miminum stack alignment, in wordSize
 782     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 783     __ subptr(rsp, comp_words_on_stack * wordSize);
 784   }
 785 
 786 
 787   // Ensure compiled code always sees stack at proper alignment
 788   __ andptr(rsp, -16);
 789 
 790   // push the return address and misalign the stack that youngest frame always sees
 791   // as far as the placement of the call instruction
 792   __ push(rax);
 793 
 794   // Put saved SP in another register
 795   const Register saved_sp = rax;
 796   __ movptr(saved_sp, r11);
 797 
 798   // Will jump to the compiled code just as if compiled code was doing it.
 799   // Pre-load the register-jump target early, to schedule it better.
 800   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
 801 
 802 #if INCLUDE_JVMCI
 803   if (EnableJVMCI || UseAOT) {
 804     // check if this call should be routed towards a specific entry point
 805     __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 806     Label no_alternative_target;
 807     __ jcc(Assembler::equal, no_alternative_target);
 808     __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 809     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 810     __ bind(no_alternative_target);
 811   }
 812 #endif // INCLUDE_JVMCI
 813 
 814   // Now generate the shuffle code.  Pick up all register args and move the
 815   // rest through the floating point stack top.
 816   for (int i = 0; i < total_args_passed; i++) {
 817     if (sig_bt[i] == T_VOID) {
 818       // Longs and doubles are passed in native word order, but misaligned
 819       // in the 32-bit build.
 820       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 821       continue;
 822     }
 823 
 824     // Pick up 0, 1 or 2 words from SP+offset.
 825 
 826     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 827             "scrambled load targets?");
 828     // Load in argument order going down.
 829     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 830     // Point to interpreter value (vs. tag)
 831     int next_off = ld_off - Interpreter::stackElementSize;
 832     //
 833     //
 834     //
 835     VMReg r_1 = regs[i].first();
 836     VMReg r_2 = regs[i].second();
 837     if (!r_1->is_valid()) {
 838       assert(!r_2->is_valid(), "");
 839       continue;
 840     }
 841     if (r_1->is_stack()) {
 842       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 843       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 844 
 845       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 846       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 847       // will be generated.
 848       if (!r_2->is_valid()) {
 849         // sign extend???
 850         __ movl(r13, Address(saved_sp, ld_off));
 851         __ movptr(Address(rsp, st_off), r13);
 852       } else {
 853         //
 854         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 855         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 856         // So we must adjust where to pick up the data to match the interpreter.
 857         //
 858         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 859         // are accessed as negative so LSW is at LOW address
 860 
 861         // ld_off is MSW so get LSW
 862         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 863                            next_off : ld_off;
 864         __ movq(r13, Address(saved_sp, offset));
 865         // st_off is LSW (i.e. reg.first())
 866         __ movq(Address(rsp, st_off), r13);
 867       }
 868     } else if (r_1->is_Register()) {  // Register argument
 869       Register r = r_1->as_Register();
 870       assert(r != rax, "must be different");
 871       if (r_2->is_valid()) {
 872         //
 873         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 874         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 875         // So we must adjust where to pick up the data to match the interpreter.
 876 
 877         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 878                            next_off : ld_off;
 879 
 880         // this can be a misaligned move
 881         __ movq(r, Address(saved_sp, offset));
 882       } else {
 883         // sign extend and use a full word?
 884         __ movl(r, Address(saved_sp, ld_off));
 885       }
 886     } else {
 887       if (!r_2->is_valid()) {
 888         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 889       } else {
 890         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 891       }
 892     }
 893   }
 894 
 895   // 6243940 We might end up in handle_wrong_method if
 896   // the callee is deoptimized as we race thru here. If that
 897   // happens we don't want to take a safepoint because the
 898   // caller frame will look interpreted and arguments are now
 899   // "compiled" so it is much better to make this transition
 900   // invisible to the stack walking code. Unfortunately if
 901   // we try and find the callee by normal means a safepoint
 902   // is possible. So we stash the desired callee in the thread
 903   // and the vm will find there should this case occur.
 904 
 905   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 906 
 907   // put Method* where a c2i would expect should we end up there
 908   // only needed becaus eof c2 resolve stubs return Method* as a result in
 909   // rax
 910   __ mov(rax, rbx);
 911   __ jmp(r11);
 912 }
 913 
 914 // ---------------------------------------------------------------
 915 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 916                                                             int total_args_passed,
 917                                                             int comp_args_on_stack,
 918                                                             const BasicType *sig_bt,
 919                                                             const VMRegPair *regs,
 920                                                             AdapterFingerPrint* fingerprint) {
 921   address i2c_entry = __ pc();
 922 
 923   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 924 
 925   // -------------------------------------------------------------------------
 926   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
 927   // to the interpreter.  The args start out packed in the compiled layout.  They
 928   // need to be unpacked into the interpreter layout.  This will almost always
 929   // require some stack space.  We grow the current (compiled) stack, then repack
 930   // the args.  We  finally end in a jump to the generic interpreter entry point.
 931   // On exit from the interpreter, the interpreter will restore our SP (lest the
 932   // compiled code, which relys solely on SP and not RBP, get sick).
 933 
 934   address c2i_unverified_entry = __ pc();
 935   Label skip_fixup;
 936   Label ok;
 937 
 938   Register holder = rax;
 939   Register receiver = j_rarg0;
 940   Register temp = rbx;
 941 
 942   {
 943     __ load_klass(temp, receiver);
 944     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 945     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
 946     __ jcc(Assembler::equal, ok);
 947     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 948 
 949     __ bind(ok);
 950     // Method might have been compiled since the call site was patched to
 951     // interpreted if that is the case treat it as a miss so we can get
 952     // the call site corrected.
 953     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 954     __ jcc(Assembler::equal, skip_fixup);
 955     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 956   }
 957 
 958   address c2i_entry = __ pc();
 959 
 960   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 961 
 962   __ flush();
 963   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 964 }
 965 
 966 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 967                                          VMRegPair *regs,
 968                                          VMRegPair *regs2,
 969                                          int total_args_passed) {
 970   assert(regs2 == NULL, "not needed on x86");
 971 // We return the amount of VMRegImpl stack slots we need to reserve for all
 972 // the arguments NOT counting out_preserve_stack_slots.
 973 
 974 // NOTE: These arrays will have to change when c1 is ported
 975 #ifdef _WIN64
 976     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 977       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 978     };
 979     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 980       c_farg0, c_farg1, c_farg2, c_farg3
 981     };
 982 #else
 983     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 984       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 985     };
 986     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 987       c_farg0, c_farg1, c_farg2, c_farg3,
 988       c_farg4, c_farg5, c_farg6, c_farg7
 989     };
 990 #endif // _WIN64
 991 
 992 
 993     uint int_args = 0;
 994     uint fp_args = 0;
 995     uint stk_args = 0; // inc by 2 each time
 996 
 997     for (int i = 0; i < total_args_passed; i++) {
 998       switch (sig_bt[i]) {
 999       case T_BOOLEAN:
1000       case T_CHAR:
1001       case T_BYTE:
1002       case T_SHORT:
1003       case T_INT:
1004         if (int_args < Argument::n_int_register_parameters_c) {
1005           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
1006 #ifdef _WIN64
1007           fp_args++;
1008           // Allocate slots for callee to stuff register args the stack.
1009           stk_args += 2;
1010 #endif
1011         } else {
1012           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1013           stk_args += 2;
1014         }
1015         break;
1016       case T_LONG:
1017         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1018         // fall through
1019       case T_OBJECT:
1020       case T_ARRAY:
1021       case T_ADDRESS:
1022       case T_METADATA:
1023         if (int_args < Argument::n_int_register_parameters_c) {
1024           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
1025 #ifdef _WIN64
1026           fp_args++;
1027           stk_args += 2;
1028 #endif
1029         } else {
1030           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1031           stk_args += 2;
1032         }
1033         break;
1034       case T_FLOAT:
1035         if (fp_args < Argument::n_float_register_parameters_c) {
1036           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
1037 #ifdef _WIN64
1038           int_args++;
1039           // Allocate slots for callee to stuff register args the stack.
1040           stk_args += 2;
1041 #endif
1042         } else {
1043           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1044           stk_args += 2;
1045         }
1046         break;
1047       case T_DOUBLE:
1048         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1049         if (fp_args < Argument::n_float_register_parameters_c) {
1050           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
1051 #ifdef _WIN64
1052           int_args++;
1053           // Allocate slots for callee to stuff register args the stack.
1054           stk_args += 2;
1055 #endif
1056         } else {
1057           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1058           stk_args += 2;
1059         }
1060         break;
1061       case T_VOID: // Halves of longs and doubles
1062         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1063         regs[i].set_bad();
1064         break;
1065       default:
1066         ShouldNotReachHere();
1067         break;
1068       }
1069     }
1070 #ifdef _WIN64
1071   // windows abi requires that we always allocate enough stack space
1072   // for 4 64bit registers to be stored down.
1073   if (stk_args < 8) {
1074     stk_args = 8;
1075   }
1076 #endif // _WIN64
1077 
1078   return stk_args;
1079 }
1080 
1081 // On 64 bit we will store integer like items to the stack as
1082 // 64 bits items (sparc abi) even though java would only store
1083 // 32bits for a parameter. On 32bit it will simply be 32 bits
1084 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1085 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1086   if (src.first()->is_stack()) {
1087     if (dst.first()->is_stack()) {
1088       // stack to stack
1089       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1090       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1091     } else {
1092       // stack to reg
1093       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1094     }
1095   } else if (dst.first()->is_stack()) {
1096     // reg to stack
1097     // Do we really have to sign extend???
1098     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1099     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1100   } else {
1101     // Do we really have to sign extend???
1102     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1103     if (dst.first() != src.first()) {
1104       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1105     }
1106   }
1107 }
1108 
1109 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1110   if (src.first()->is_stack()) {
1111     if (dst.first()->is_stack()) {
1112       // stack to stack
1113       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1114       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1115     } else {
1116       // stack to reg
1117       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1118     }
1119   } else if (dst.first()->is_stack()) {
1120     // reg to stack
1121     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1122   } else {
1123     if (dst.first() != src.first()) {
1124       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1125     }
1126   }
1127 }
1128 
1129 // An oop arg. Must pass a handle not the oop itself
1130 static void object_move(MacroAssembler* masm,
1131                         OopMap* map,
1132                         int oop_handle_offset,
1133                         int framesize_in_slots,
1134                         VMRegPair src,
1135                         VMRegPair dst,
1136                         bool is_receiver,
1137                         int* receiver_offset) {
1138 
1139   // must pass a handle. First figure out the location we use as a handle
1140 
1141   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1142 
1143   // See if oop is NULL if it is we need no handle
1144 
1145   if (src.first()->is_stack()) {
1146 
1147     // Oop is already on the stack as an argument
1148     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1149     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1150     if (is_receiver) {
1151       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1152     }
1153 
1154     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1155     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1156     // conditionally move a NULL
1157     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1158   } else {
1159 
1160     // Oop is in an a register we must store it to the space we reserve
1161     // on the stack for oop_handles and pass a handle if oop is non-NULL
1162 
1163     const Register rOop = src.first()->as_Register();
1164     int oop_slot;
1165     if (rOop == j_rarg0)
1166       oop_slot = 0;
1167     else if (rOop == j_rarg1)
1168       oop_slot = 1;
1169     else if (rOop == j_rarg2)
1170       oop_slot = 2;
1171     else if (rOop == j_rarg3)
1172       oop_slot = 3;
1173     else if (rOop == j_rarg4)
1174       oop_slot = 4;
1175     else {
1176       assert(rOop == j_rarg5, "wrong register");
1177       oop_slot = 5;
1178     }
1179 
1180     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1181     int offset = oop_slot*VMRegImpl::stack_slot_size;
1182 
1183     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1184     // Store oop in handle area, may be NULL
1185     __ movptr(Address(rsp, offset), rOop);
1186     if (is_receiver) {
1187       *receiver_offset = offset;
1188     }
1189 
1190     __ cmpptr(rOop, (int32_t)NULL_WORD);
1191     __ lea(rHandle, Address(rsp, offset));
1192     // conditionally move a NULL from the handle area where it was just stored
1193     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1194   }
1195 
1196   // If arg is on the stack then place it otherwise it is already in correct reg.
1197   if (dst.first()->is_stack()) {
1198     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1199   }
1200 }
1201 
1202 // A float arg may have to do float reg int reg conversion
1203 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1204   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1205 
1206   // The calling conventions assures us that each VMregpair is either
1207   // all really one physical register or adjacent stack slots.
1208   // This greatly simplifies the cases here compared to sparc.
1209 
1210   if (src.first()->is_stack()) {
1211     if (dst.first()->is_stack()) {
1212       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1213       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1214     } else {
1215       // stack to reg
1216       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1217       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1218     }
1219   } else if (dst.first()->is_stack()) {
1220     // reg to stack
1221     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1222     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1223   } else {
1224     // reg to reg
1225     // In theory these overlap but the ordering is such that this is likely a nop
1226     if ( src.first() != dst.first()) {
1227       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1228     }
1229   }
1230 }
1231 
1232 // A long move
1233 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1234 
1235   // The calling conventions assures us that each VMregpair is either
1236   // all really one physical register or adjacent stack slots.
1237   // This greatly simplifies the cases here compared to sparc.
1238 
1239   if (src.is_single_phys_reg() ) {
1240     if (dst.is_single_phys_reg()) {
1241       if (dst.first() != src.first()) {
1242         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1243       }
1244     } else {
1245       assert(dst.is_single_reg(), "not a stack pair");
1246       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1247     }
1248   } else if (dst.is_single_phys_reg()) {
1249     assert(src.is_single_reg(),  "not a stack pair");
1250     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1251   } else {
1252     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1253     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1254     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1255   }
1256 }
1257 
1258 // A double move
1259 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1260 
1261   // The calling conventions assures us that each VMregpair is either
1262   // all really one physical register or adjacent stack slots.
1263   // This greatly simplifies the cases here compared to sparc.
1264 
1265   if (src.is_single_phys_reg() ) {
1266     if (dst.is_single_phys_reg()) {
1267       // In theory these overlap but the ordering is such that this is likely a nop
1268       if ( src.first() != dst.first()) {
1269         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1270       }
1271     } else {
1272       assert(dst.is_single_reg(), "not a stack pair");
1273       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1274     }
1275   } else if (dst.is_single_phys_reg()) {
1276     assert(src.is_single_reg(),  "not a stack pair");
1277     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1278   } else {
1279     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1280     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1281     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1282   }
1283 }
1284 
1285 
1286 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1287   // We always ignore the frame_slots arg and just use the space just below frame pointer
1288   // which by this time is free to use
1289   switch (ret_type) {
1290   case T_FLOAT:
1291     __ movflt(Address(rbp, -wordSize), xmm0);
1292     break;
1293   case T_DOUBLE:
1294     __ movdbl(Address(rbp, -wordSize), xmm0);
1295     break;
1296   case T_VOID:  break;
1297   default: {
1298     __ movptr(Address(rbp, -wordSize), rax);
1299     }
1300   }
1301 }
1302 
1303 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1304   // We always ignore the frame_slots arg and just use the space just below frame pointer
1305   // which by this time is free to use
1306   switch (ret_type) {
1307   case T_FLOAT:
1308     __ movflt(xmm0, Address(rbp, -wordSize));
1309     break;
1310   case T_DOUBLE:
1311     __ movdbl(xmm0, Address(rbp, -wordSize));
1312     break;
1313   case T_VOID:  break;
1314   default: {
1315     __ movptr(rax, Address(rbp, -wordSize));
1316     }
1317   }
1318 }
1319 
1320 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1321     for ( int i = first_arg ; i < arg_count ; i++ ) {
1322       if (args[i].first()->is_Register()) {
1323         __ push(args[i].first()->as_Register());
1324       } else if (args[i].first()->is_XMMRegister()) {
1325         __ subptr(rsp, 2*wordSize);
1326         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1327       }
1328     }
1329 }
1330 
1331 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1332     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1333       if (args[i].first()->is_Register()) {
1334         __ pop(args[i].first()->as_Register());
1335       } else if (args[i].first()->is_XMMRegister()) {
1336         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1337         __ addptr(rsp, 2*wordSize);
1338       }
1339     }
1340 }
1341 
1342 
1343 static void save_or_restore_arguments(MacroAssembler* masm,
1344                                       const int stack_slots,
1345                                       const int total_in_args,
1346                                       const int arg_save_area,
1347                                       OopMap* map,
1348                                       VMRegPair* in_regs,
1349                                       BasicType* in_sig_bt) {
1350   // if map is non-NULL then the code should store the values,
1351   // otherwise it should load them.
1352   int slot = arg_save_area;
1353   // Save down double word first
1354   for ( int i = 0; i < total_in_args; i++) {
1355     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1356       int offset = slot * VMRegImpl::stack_slot_size;
1357       slot += VMRegImpl::slots_per_word;
1358       assert(slot <= stack_slots, "overflow");
1359       if (map != NULL) {
1360         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1361       } else {
1362         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1363       }
1364     }
1365     if (in_regs[i].first()->is_Register() &&
1366         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1367       int offset = slot * VMRegImpl::stack_slot_size;
1368       if (map != NULL) {
1369         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1370         if (in_sig_bt[i] == T_ARRAY) {
1371           map->set_oop(VMRegImpl::stack2reg(slot));;
1372         }
1373       } else {
1374         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1375       }
1376       slot += VMRegImpl::slots_per_word;
1377     }
1378   }
1379   // Save or restore single word registers
1380   for ( int i = 0; i < total_in_args; i++) {
1381     if (in_regs[i].first()->is_Register()) {
1382       int offset = slot * VMRegImpl::stack_slot_size;
1383       slot++;
1384       assert(slot <= stack_slots, "overflow");
1385 
1386       // Value is in an input register pass we must flush it to the stack
1387       const Register reg = in_regs[i].first()->as_Register();
1388       switch (in_sig_bt[i]) {
1389         case T_BOOLEAN:
1390         case T_CHAR:
1391         case T_BYTE:
1392         case T_SHORT:
1393         case T_INT:
1394           if (map != NULL) {
1395             __ movl(Address(rsp, offset), reg);
1396           } else {
1397             __ movl(reg, Address(rsp, offset));
1398           }
1399           break;
1400         case T_ARRAY:
1401         case T_LONG:
1402           // handled above
1403           break;
1404         case T_OBJECT:
1405         default: ShouldNotReachHere();
1406       }
1407     } else if (in_regs[i].first()->is_XMMRegister()) {
1408       if (in_sig_bt[i] == T_FLOAT) {
1409         int offset = slot * VMRegImpl::stack_slot_size;
1410         slot++;
1411         assert(slot <= stack_slots, "overflow");
1412         if (map != NULL) {
1413           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1414         } else {
1415           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1416         }
1417       }
1418     } else if (in_regs[i].first()->is_stack()) {
1419       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1420         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1421         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1422       }
1423     }
1424   }
1425 }
1426 
1427 
1428 // Check GCLocker::needs_gc and enter the runtime if it's true.  This
1429 // keeps a new JNI critical region from starting until a GC has been
1430 // forced.  Save down any oops in registers and describe them in an
1431 // OopMap.
1432 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1433                                                int stack_slots,
1434                                                int total_c_args,
1435                                                int total_in_args,
1436                                                int arg_save_area,
1437                                                OopMapSet* oop_maps,
1438                                                VMRegPair* in_regs,
1439                                                BasicType* in_sig_bt) {
1440   __ block_comment("check GCLocker::needs_gc");
1441   Label cont;
1442   __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
1443   __ jcc(Assembler::equal, cont);
1444 
1445   // Save down any incoming oops and call into the runtime to halt for a GC
1446 
1447   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1448   save_or_restore_arguments(masm, stack_slots, total_in_args,
1449                             arg_save_area, map, in_regs, in_sig_bt);
1450 
1451   address the_pc = __ pc();
1452   oop_maps->add_gc_map( __ offset(), map);
1453   __ set_last_Java_frame(rsp, noreg, the_pc);
1454 
1455   __ block_comment("block_for_jni_critical");
1456   __ movptr(c_rarg0, r15_thread);
1457   __ mov(r12, rsp); // remember sp
1458   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1459   __ andptr(rsp, -16); // align stack as required by ABI
1460   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1461   __ mov(rsp, r12); // restore sp
1462   __ reinit_heapbase();
1463 
1464   __ reset_last_Java_frame(false);
1465 
1466   save_or_restore_arguments(masm, stack_slots, total_in_args,
1467                             arg_save_area, NULL, in_regs, in_sig_bt);
1468 
1469   __ bind(cont);
1470 #ifdef ASSERT
1471   if (StressCriticalJNINatives) {
1472     // Stress register saving
1473     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1474     save_or_restore_arguments(masm, stack_slots, total_in_args,
1475                               arg_save_area, map, in_regs, in_sig_bt);
1476     // Destroy argument registers
1477     for (int i = 0; i < total_in_args - 1; i++) {
1478       if (in_regs[i].first()->is_Register()) {
1479         const Register reg = in_regs[i].first()->as_Register();
1480         __ xorptr(reg, reg);
1481       } else if (in_regs[i].first()->is_XMMRegister()) {
1482         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1483       } else if (in_regs[i].first()->is_FloatRegister()) {
1484         ShouldNotReachHere();
1485       } else if (in_regs[i].first()->is_stack()) {
1486         // Nothing to do
1487       } else {
1488         ShouldNotReachHere();
1489       }
1490       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1491         i++;
1492       }
1493     }
1494 
1495     save_or_restore_arguments(masm, stack_slots, total_in_args,
1496                               arg_save_area, NULL, in_regs, in_sig_bt);
1497   }
1498 #endif
1499 }
1500 
1501 // Unpack an array argument into a pointer to the body and the length
1502 // if the array is non-null, otherwise pass 0 for both.
1503 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1504   Register tmp_reg = rax;
1505   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1506          "possible collision");
1507   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1508          "possible collision");
1509 
1510   __ block_comment("unpack_array_argument {");
1511 
1512   // Pass the length, ptr pair
1513   Label is_null, done;
1514   VMRegPair tmp;
1515   tmp.set_ptr(tmp_reg->as_VMReg());
1516   if (reg.first()->is_stack()) {
1517     // Load the arg up from the stack
1518     move_ptr(masm, reg, tmp);
1519     reg = tmp;
1520   }
1521   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1522   __ jccb(Assembler::equal, is_null);
1523   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1524   move_ptr(masm, tmp, body_arg);
1525   // load the length relative to the body.
1526   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1527                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1528   move32_64(masm, tmp, length_arg);
1529   __ jmpb(done);
1530   __ bind(is_null);
1531   // Pass zeros
1532   __ xorptr(tmp_reg, tmp_reg);
1533   move_ptr(masm, tmp, body_arg);
1534   move32_64(masm, tmp, length_arg);
1535   __ bind(done);
1536 
1537   __ block_comment("} unpack_array_argument");
1538 }
1539 
1540 
1541 // Different signatures may require very different orders for the move
1542 // to avoid clobbering other arguments.  There's no simple way to
1543 // order them safely.  Compute a safe order for issuing stores and
1544 // break any cycles in those stores.  This code is fairly general but
1545 // it's not necessary on the other platforms so we keep it in the
1546 // platform dependent code instead of moving it into a shared file.
1547 // (See bugs 7013347 & 7145024.)
1548 // Note that this code is specific to LP64.
1549 class ComputeMoveOrder: public StackObj {
1550   class MoveOperation: public ResourceObj {
1551     friend class ComputeMoveOrder;
1552    private:
1553     VMRegPair        _src;
1554     VMRegPair        _dst;
1555     int              _src_index;
1556     int              _dst_index;
1557     bool             _processed;
1558     MoveOperation*  _next;
1559     MoveOperation*  _prev;
1560 
1561     static int get_id(VMRegPair r) {
1562       return r.first()->value();
1563     }
1564 
1565    public:
1566     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1567       _src(src)
1568     , _src_index(src_index)
1569     , _dst(dst)
1570     , _dst_index(dst_index)
1571     , _next(NULL)
1572     , _prev(NULL)
1573     , _processed(false) {
1574     }
1575 
1576     VMRegPair src() const              { return _src; }
1577     int src_id() const                 { return get_id(src()); }
1578     int src_index() const              { return _src_index; }
1579     VMRegPair dst() const              { return _dst; }
1580     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1581     int dst_index() const              { return _dst_index; }
1582     int dst_id() const                 { return get_id(dst()); }
1583     MoveOperation* next() const       { return _next; }
1584     MoveOperation* prev() const       { return _prev; }
1585     void set_processed()               { _processed = true; }
1586     bool is_processed() const          { return _processed; }
1587 
1588     // insert
1589     void break_cycle(VMRegPair temp_register) {
1590       // create a new store following the last store
1591       // to move from the temp_register to the original
1592       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1593 
1594       // break the cycle of links and insert new_store at the end
1595       // break the reverse link.
1596       MoveOperation* p = prev();
1597       assert(p->next() == this, "must be");
1598       _prev = NULL;
1599       p->_next = new_store;
1600       new_store->_prev = p;
1601 
1602       // change the original store to save it's value in the temp.
1603       set_dst(-1, temp_register);
1604     }
1605 
1606     void link(GrowableArray<MoveOperation*>& killer) {
1607       // link this store in front the store that it depends on
1608       MoveOperation* n = killer.at_grow(src_id(), NULL);
1609       if (n != NULL) {
1610         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1611         _next = n;
1612         n->_prev = this;
1613       }
1614     }
1615   };
1616 
1617  private:
1618   GrowableArray<MoveOperation*> edges;
1619 
1620  public:
1621   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1622                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1623     // Move operations where the dest is the stack can all be
1624     // scheduled first since they can't interfere with the other moves.
1625     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1626       if (in_sig_bt[i] == T_ARRAY) {
1627         c_arg--;
1628         if (out_regs[c_arg].first()->is_stack() &&
1629             out_regs[c_arg + 1].first()->is_stack()) {
1630           arg_order.push(i);
1631           arg_order.push(c_arg);
1632         } else {
1633           if (out_regs[c_arg].first()->is_stack() ||
1634               in_regs[i].first() == out_regs[c_arg].first()) {
1635             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1636           } else {
1637             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1638           }
1639         }
1640       } else if (in_sig_bt[i] == T_VOID) {
1641         arg_order.push(i);
1642         arg_order.push(c_arg);
1643       } else {
1644         if (out_regs[c_arg].first()->is_stack() ||
1645             in_regs[i].first() == out_regs[c_arg].first()) {
1646           arg_order.push(i);
1647           arg_order.push(c_arg);
1648         } else {
1649           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1650         }
1651       }
1652     }
1653     // Break any cycles in the register moves and emit the in the
1654     // proper order.
1655     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1656     for (int i = 0; i < stores->length(); i++) {
1657       arg_order.push(stores->at(i)->src_index());
1658       arg_order.push(stores->at(i)->dst_index());
1659     }
1660  }
1661 
1662   // Collected all the move operations
1663   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1664     if (src.first() == dst.first()) return;
1665     edges.append(new MoveOperation(src_index, src, dst_index, dst));
1666   }
1667 
1668   // Walk the edges breaking cycles between moves.  The result list
1669   // can be walked in order to produce the proper set of loads
1670   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1671     // Record which moves kill which values
1672     GrowableArray<MoveOperation*> killer;
1673     for (int i = 0; i < edges.length(); i++) {
1674       MoveOperation* s = edges.at(i);
1675       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1676       killer.at_put_grow(s->dst_id(), s, NULL);
1677     }
1678     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1679            "make sure temp isn't in the registers that are killed");
1680 
1681     // create links between loads and stores
1682     for (int i = 0; i < edges.length(); i++) {
1683       edges.at(i)->link(killer);
1684     }
1685 
1686     // at this point, all the move operations are chained together
1687     // in a doubly linked list.  Processing it backwards finds
1688     // the beginning of the chain, forwards finds the end.  If there's
1689     // a cycle it can be broken at any point,  so pick an edge and walk
1690     // backward until the list ends or we end where we started.
1691     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1692     for (int e = 0; e < edges.length(); e++) {
1693       MoveOperation* s = edges.at(e);
1694       if (!s->is_processed()) {
1695         MoveOperation* start = s;
1696         // search for the beginning of the chain or cycle
1697         while (start->prev() != NULL && start->prev() != s) {
1698           start = start->prev();
1699         }
1700         if (start->prev() == s) {
1701           start->break_cycle(temp_register);
1702         }
1703         // walk the chain forward inserting to store list
1704         while (start != NULL) {
1705           stores->append(start);
1706           start->set_processed();
1707           start = start->next();
1708         }
1709       }
1710     }
1711     return stores;
1712   }
1713 };
1714 
1715 static void verify_oop_args(MacroAssembler* masm,
1716                             const methodHandle& method,
1717                             const BasicType* sig_bt,
1718                             const VMRegPair* regs) {
1719   Register temp_reg = rbx;  // not part of any compiled calling seq
1720   if (VerifyOops) {
1721     for (int i = 0; i < method->size_of_parameters(); i++) {
1722       if (sig_bt[i] == T_OBJECT ||
1723           sig_bt[i] == T_ARRAY) {
1724         VMReg r = regs[i].first();
1725         assert(r->is_valid(), "bad oop arg");
1726         if (r->is_stack()) {
1727           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1728           __ verify_oop(temp_reg);
1729         } else {
1730           __ verify_oop(r->as_Register());
1731         }
1732       }
1733     }
1734   }
1735 }
1736 
1737 static void gen_special_dispatch(MacroAssembler* masm,
1738                                  methodHandle method,
1739                                  const BasicType* sig_bt,
1740                                  const VMRegPair* regs) {
1741   verify_oop_args(masm, method, sig_bt, regs);
1742   vmIntrinsics::ID iid = method->intrinsic_id();
1743 
1744   // Now write the args into the outgoing interpreter space
1745   bool     has_receiver   = false;
1746   Register receiver_reg   = noreg;
1747   int      member_arg_pos = -1;
1748   Register member_reg     = noreg;
1749   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1750   if (ref_kind != 0) {
1751     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1752     member_reg = rbx;  // known to be free at this point
1753     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1754   } else if (iid == vmIntrinsics::_invokeBasic) {
1755     has_receiver = true;
1756   } else {
1757     fatal("unexpected intrinsic id %d", iid);
1758   }
1759 
1760   if (member_reg != noreg) {
1761     // Load the member_arg into register, if necessary.
1762     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1763     VMReg r = regs[member_arg_pos].first();
1764     if (r->is_stack()) {
1765       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1766     } else {
1767       // no data motion is needed
1768       member_reg = r->as_Register();
1769     }
1770   }
1771 
1772   if (has_receiver) {
1773     // Make sure the receiver is loaded into a register.
1774     assert(method->size_of_parameters() > 0, "oob");
1775     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1776     VMReg r = regs[0].first();
1777     assert(r->is_valid(), "bad receiver arg");
1778     if (r->is_stack()) {
1779       // Porting note:  This assumes that compiled calling conventions always
1780       // pass the receiver oop in a register.  If this is not true on some
1781       // platform, pick a temp and load the receiver from stack.
1782       fatal("receiver always in a register");
1783       receiver_reg = j_rarg0;  // known to be free at this point
1784       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1785     } else {
1786       // no data motion is needed
1787       receiver_reg = r->as_Register();
1788     }
1789   }
1790 
1791   // Figure out which address we are really jumping to:
1792   MethodHandles::generate_method_handle_dispatch(masm, iid,
1793                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1794 }
1795 
1796 // ---------------------------------------------------------------------------
1797 // Generate a native wrapper for a given method.  The method takes arguments
1798 // in the Java compiled code convention, marshals them to the native
1799 // convention (handlizes oops, etc), transitions to native, makes the call,
1800 // returns to java state (possibly blocking), unhandlizes any result and
1801 // returns.
1802 //
1803 // Critical native functions are a shorthand for the use of
1804 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1805 // functions.  The wrapper is expected to unpack the arguments before
1806 // passing them to the callee and perform checks before and after the
1807 // native call to ensure that they GCLocker
1808 // lock_critical/unlock_critical semantics are followed.  Some other
1809 // parts of JNI setup are skipped like the tear down of the JNI handle
1810 // block and the check for pending exceptions it's impossible for them
1811 // to be thrown.
1812 //
1813 // They are roughly structured like this:
1814 //    if (GCLocker::needs_gc())
1815 //      SharedRuntime::block_for_jni_critical();
1816 //    tranistion to thread_in_native
1817 //    unpack arrray arguments and call native entry point
1818 //    check for safepoint in progress
1819 //    check if any thread suspend flags are set
1820 //      call into JVM and possible unlock the JNI critical
1821 //      if a GC was suppressed while in the critical native.
1822 //    transition back to thread_in_Java
1823 //    return to caller
1824 //
1825 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1826                                                 const methodHandle& method,
1827                                                 int compile_id,
1828                                                 BasicType* in_sig_bt,
1829                                                 VMRegPair* in_regs,
1830                                                 BasicType ret_type) {
1831   if (method->is_method_handle_intrinsic()) {
1832     vmIntrinsics::ID iid = method->intrinsic_id();
1833     intptr_t start = (intptr_t)__ pc();
1834     int vep_offset = ((intptr_t)__ pc()) - start;
1835     gen_special_dispatch(masm,
1836                          method,
1837                          in_sig_bt,
1838                          in_regs);
1839     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1840     __ flush();
1841     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1842     return nmethod::new_native_nmethod(method,
1843                                        compile_id,
1844                                        masm->code(),
1845                                        vep_offset,
1846                                        frame_complete,
1847                                        stack_slots / VMRegImpl::slots_per_word,
1848                                        in_ByteSize(-1),
1849                                        in_ByteSize(-1),
1850                                        (OopMapSet*)NULL);
1851   }
1852   bool is_critical_native = true;
1853   address native_func = method->critical_native_function();
1854   if (native_func == NULL) {
1855     native_func = method->native_function();
1856     is_critical_native = false;
1857   }
1858   assert(native_func != NULL, "must have function");
1859 
1860   // An OopMap for lock (and class if static)
1861   OopMapSet *oop_maps = new OopMapSet();
1862   intptr_t start = (intptr_t)__ pc();
1863 
1864   // We have received a description of where all the java arg are located
1865   // on entry to the wrapper. We need to convert these args to where
1866   // the jni function will expect them. To figure out where they go
1867   // we convert the java signature to a C signature by inserting
1868   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1869 
1870   const int total_in_args = method->size_of_parameters();
1871   int total_c_args = total_in_args;
1872   if (!is_critical_native) {
1873     total_c_args += 1;
1874     if (method->is_static()) {
1875       total_c_args++;
1876     }
1877   } else {
1878     for (int i = 0; i < total_in_args; i++) {
1879       if (in_sig_bt[i] == T_ARRAY) {
1880         total_c_args++;
1881       }
1882     }
1883   }
1884 
1885   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1886   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1887   BasicType* in_elem_bt = NULL;
1888 
1889   int argc = 0;
1890   if (!is_critical_native) {
1891     out_sig_bt[argc++] = T_ADDRESS;
1892     if (method->is_static()) {
1893       out_sig_bt[argc++] = T_OBJECT;
1894     }
1895 
1896     for (int i = 0; i < total_in_args ; i++ ) {
1897       out_sig_bt[argc++] = in_sig_bt[i];
1898     }
1899   } else {
1900     Thread* THREAD = Thread::current();
1901     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1902     SignatureStream ss(method->signature());
1903     for (int i = 0; i < total_in_args ; i++ ) {
1904       if (in_sig_bt[i] == T_ARRAY) {
1905         // Arrays are passed as int, elem* pair
1906         out_sig_bt[argc++] = T_INT;
1907         out_sig_bt[argc++] = T_ADDRESS;
1908         Symbol* atype = ss.as_symbol(CHECK_NULL);
1909         const char* at = atype->as_C_string();
1910         if (strlen(at) == 2) {
1911           assert(at[0] == '[', "must be");
1912           switch (at[1]) {
1913             case 'B': in_elem_bt[i]  = T_BYTE; break;
1914             case 'C': in_elem_bt[i]  = T_CHAR; break;
1915             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1916             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1917             case 'I': in_elem_bt[i]  = T_INT; break;
1918             case 'J': in_elem_bt[i]  = T_LONG; break;
1919             case 'S': in_elem_bt[i]  = T_SHORT; break;
1920             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1921             default: ShouldNotReachHere();
1922           }
1923         }
1924       } else {
1925         out_sig_bt[argc++] = in_sig_bt[i];
1926         in_elem_bt[i] = T_VOID;
1927       }
1928       if (in_sig_bt[i] != T_VOID) {
1929         assert(in_sig_bt[i] == ss.type(), "must match");
1930         ss.next();
1931       }
1932     }
1933   }
1934 
1935   // Now figure out where the args must be stored and how much stack space
1936   // they require.
1937   int out_arg_slots;
1938   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1939 
1940   // Compute framesize for the wrapper.  We need to handlize all oops in
1941   // incoming registers
1942 
1943   // Calculate the total number of stack slots we will need.
1944 
1945   // First count the abi requirement plus all of the outgoing args
1946   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1947 
1948   // Now the space for the inbound oop handle area
1949   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1950   if (is_critical_native) {
1951     // Critical natives may have to call out so they need a save area
1952     // for register arguments.
1953     int double_slots = 0;
1954     int single_slots = 0;
1955     for ( int i = 0; i < total_in_args; i++) {
1956       if (in_regs[i].first()->is_Register()) {
1957         const Register reg = in_regs[i].first()->as_Register();
1958         switch (in_sig_bt[i]) {
1959           case T_BOOLEAN:
1960           case T_BYTE:
1961           case T_SHORT:
1962           case T_CHAR:
1963           case T_INT:  single_slots++; break;
1964           case T_ARRAY:  // specific to LP64 (7145024)
1965           case T_LONG: double_slots++; break;
1966           default:  ShouldNotReachHere();
1967         }
1968       } else if (in_regs[i].first()->is_XMMRegister()) {
1969         switch (in_sig_bt[i]) {
1970           case T_FLOAT:  single_slots++; break;
1971           case T_DOUBLE: double_slots++; break;
1972           default:  ShouldNotReachHere();
1973         }
1974       } else if (in_regs[i].first()->is_FloatRegister()) {
1975         ShouldNotReachHere();
1976       }
1977     }
1978     total_save_slots = double_slots * 2 + single_slots;
1979     // align the save area
1980     if (double_slots != 0) {
1981       stack_slots = round_to(stack_slots, 2);
1982     }
1983   }
1984 
1985   int oop_handle_offset = stack_slots;
1986   stack_slots += total_save_slots;
1987 
1988   // Now any space we need for handlizing a klass if static method
1989 
1990   int klass_slot_offset = 0;
1991   int klass_offset = -1;
1992   int lock_slot_offset = 0;
1993   bool is_static = false;
1994 
1995   if (method->is_static()) {
1996     klass_slot_offset = stack_slots;
1997     stack_slots += VMRegImpl::slots_per_word;
1998     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1999     is_static = true;
2000   }
2001 
2002   // Plus a lock if needed
2003 
2004   if (method->is_synchronized()) {
2005     lock_slot_offset = stack_slots;
2006     stack_slots += VMRegImpl::slots_per_word;
2007   }
2008 
2009   // Now a place (+2) to save return values or temp during shuffling
2010   // + 4 for return address (which we own) and saved rbp
2011   stack_slots += 6;
2012 
2013   // Ok The space we have allocated will look like:
2014   //
2015   //
2016   // FP-> |                     |
2017   //      |---------------------|
2018   //      | 2 slots for moves   |
2019   //      |---------------------|
2020   //      | lock box (if sync)  |
2021   //      |---------------------| <- lock_slot_offset
2022   //      | klass (if static)   |
2023   //      |---------------------| <- klass_slot_offset
2024   //      | oopHandle area      |
2025   //      |---------------------| <- oop_handle_offset (6 java arg registers)
2026   //      | outbound memory     |
2027   //      | based arguments     |
2028   //      |                     |
2029   //      |---------------------|
2030   //      |                     |
2031   // SP-> | out_preserved_slots |
2032   //
2033   //
2034 
2035 
2036   // Now compute actual number of stack words we need rounding to make
2037   // stack properly aligned.
2038   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
2039 
2040   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2041 
2042   // First thing make an ic check to see if we should even be here
2043 
2044   // We are free to use all registers as temps without saving them and
2045   // restoring them except rbp. rbp is the only callee save register
2046   // as far as the interpreter and the compiler(s) are concerned.
2047 
2048 
2049   const Register ic_reg = rax;
2050   const Register receiver = j_rarg0;
2051 
2052   Label hit;
2053   Label exception_pending;
2054 
2055   assert_different_registers(ic_reg, receiver, rscratch1);
2056   __ verify_oop(receiver);
2057   __ load_klass(rscratch1, receiver);
2058   __ cmpq(ic_reg, rscratch1);
2059   __ jcc(Assembler::equal, hit);
2060 
2061   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2062 
2063   // Verified entry point must be aligned
2064   __ align(8);
2065 
2066   __ bind(hit);
2067 
2068   int vep_offset = ((intptr_t)__ pc()) - start;
2069 
2070 #ifdef COMPILER1
2071   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
2072   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
2073     inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/);
2074   }
2075 #endif // COMPILER1
2076 
2077   // The instruction at the verified entry point must be 5 bytes or longer
2078   // because it can be patched on the fly by make_non_entrant. The stack bang
2079   // instruction fits that requirement.
2080 
2081   // Generate stack overflow check
2082 
2083   if (UseStackBanging) {
2084     __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
2085   } else {
2086     // need a 5 byte instruction to allow MT safe patching to non-entrant
2087     __ fat_nop();
2088   }
2089 
2090   // Generate a new frame for the wrapper.
2091   __ enter();
2092   // -2 because return address is already present and so is saved rbp
2093   __ subptr(rsp, stack_size - 2*wordSize);
2094 
2095   // Frame is now completed as far as size and linkage.
2096   int frame_complete = ((intptr_t)__ pc()) - start;
2097 
2098     if (UseRTMLocking) {
2099       // Abort RTM transaction before calling JNI
2100       // because critical section will be large and will be
2101       // aborted anyway. Also nmethod could be deoptimized.
2102       __ xabort(0);
2103     }
2104 
2105 #ifdef ASSERT
2106     {
2107       Label L;
2108       __ mov(rax, rsp);
2109       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2110       __ cmpptr(rax, rsp);
2111       __ jcc(Assembler::equal, L);
2112       __ stop("improperly aligned stack");
2113       __ bind(L);
2114     }
2115 #endif /* ASSERT */
2116 
2117 
2118   // We use r14 as the oop handle for the receiver/klass
2119   // It is callee save so it survives the call to native
2120 
2121   const Register oop_handle_reg = r14;
2122 
2123   if (is_critical_native) {
2124     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2125                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2126   }
2127 
2128   //
2129   // We immediately shuffle the arguments so that any vm call we have to
2130   // make from here on out (sync slow path, jvmti, etc.) we will have
2131   // captured the oops from our caller and have a valid oopMap for
2132   // them.
2133 
2134   // -----------------
2135   // The Grand Shuffle
2136 
2137   // The Java calling convention is either equal (linux) or denser (win64) than the
2138   // c calling convention. However the because of the jni_env argument the c calling
2139   // convention always has at least one more (and two for static) arguments than Java.
2140   // Therefore if we move the args from java -> c backwards then we will never have
2141   // a register->register conflict and we don't have to build a dependency graph
2142   // and figure out how to break any cycles.
2143   //
2144 
2145   // Record esp-based slot for receiver on stack for non-static methods
2146   int receiver_offset = -1;
2147 
2148   // This is a trick. We double the stack slots so we can claim
2149   // the oops in the caller's frame. Since we are sure to have
2150   // more args than the caller doubling is enough to make
2151   // sure we can capture all the incoming oop args from the
2152   // caller.
2153   //
2154   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2155 
2156   // Mark location of rbp (someday)
2157   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2158 
2159   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2160   // All inbound args are referenced based on rbp and all outbound args via rsp.
2161 
2162 
2163 #ifdef ASSERT
2164   bool reg_destroyed[RegisterImpl::number_of_registers];
2165   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2166   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2167     reg_destroyed[r] = false;
2168   }
2169   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2170     freg_destroyed[f] = false;
2171   }
2172 
2173 #endif /* ASSERT */
2174 
2175   // This may iterate in two different directions depending on the
2176   // kind of native it is.  The reason is that for regular JNI natives
2177   // the incoming and outgoing registers are offset upwards and for
2178   // critical natives they are offset down.
2179   GrowableArray<int> arg_order(2 * total_in_args);
2180   VMRegPair tmp_vmreg;
2181   tmp_vmreg.set1(rbx->as_VMReg());
2182 
2183   if (!is_critical_native) {
2184     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2185       arg_order.push(i);
2186       arg_order.push(c_arg);
2187     }
2188   } else {
2189     // Compute a valid move order, using tmp_vmreg to break any cycles
2190     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2191   }
2192 
2193   int temploc = -1;
2194   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2195     int i = arg_order.at(ai);
2196     int c_arg = arg_order.at(ai + 1);
2197     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2198     if (c_arg == -1) {
2199       assert(is_critical_native, "should only be required for critical natives");
2200       // This arg needs to be moved to a temporary
2201       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2202       in_regs[i] = tmp_vmreg;
2203       temploc = i;
2204       continue;
2205     } else if (i == -1) {
2206       assert(is_critical_native, "should only be required for critical natives");
2207       // Read from the temporary location
2208       assert(temploc != -1, "must be valid");
2209       i = temploc;
2210       temploc = -1;
2211     }
2212 #ifdef ASSERT
2213     if (in_regs[i].first()->is_Register()) {
2214       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2215     } else if (in_regs[i].first()->is_XMMRegister()) {
2216       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2217     }
2218     if (out_regs[c_arg].first()->is_Register()) {
2219       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2220     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2221       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2222     }
2223 #endif /* ASSERT */
2224     switch (in_sig_bt[i]) {
2225       case T_ARRAY:
2226         if (is_critical_native) {
2227           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2228           c_arg++;
2229 #ifdef ASSERT
2230           if (out_regs[c_arg].first()->is_Register()) {
2231             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2232           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2233             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2234           }
2235 #endif
2236           break;
2237         }
2238       case T_OBJECT:
2239         assert(!is_critical_native, "no oop arguments");
2240         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2241                     ((i == 0) && (!is_static)),
2242                     &receiver_offset);
2243         break;
2244       case T_VOID:
2245         break;
2246 
2247       case T_FLOAT:
2248         float_move(masm, in_regs[i], out_regs[c_arg]);
2249           break;
2250 
2251       case T_DOUBLE:
2252         assert( i + 1 < total_in_args &&
2253                 in_sig_bt[i + 1] == T_VOID &&
2254                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2255         double_move(masm, in_regs[i], out_regs[c_arg]);
2256         break;
2257 
2258       case T_LONG :
2259         long_move(masm, in_regs[i], out_regs[c_arg]);
2260         break;
2261 
2262       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2263 
2264       default:
2265         move32_64(masm, in_regs[i], out_regs[c_arg]);
2266     }
2267   }
2268 
2269   int c_arg;
2270 
2271   // Pre-load a static method's oop into r14.  Used both by locking code and
2272   // the normal JNI call code.
2273   if (!is_critical_native) {
2274     // point c_arg at the first arg that is already loaded in case we
2275     // need to spill before we call out
2276     c_arg = total_c_args - total_in_args;
2277 
2278     if (method->is_static()) {
2279 
2280       //  load oop into a register
2281       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2282 
2283       // Now handlize the static class mirror it's known not-null.
2284       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2285       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2286 
2287       // Now get the handle
2288       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2289       // store the klass handle as second argument
2290       __ movptr(c_rarg1, oop_handle_reg);
2291       // and protect the arg if we must spill
2292       c_arg--;
2293     }
2294   } else {
2295     // For JNI critical methods we need to save all registers in save_args.
2296     c_arg = 0;
2297   }
2298 
2299   // Change state to native (we save the return address in the thread, since it might not
2300   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2301   // points into the right code segment. It does not have to be the correct return pc.
2302   // We use the same pc/oopMap repeatedly when we call out
2303 
2304   intptr_t the_pc = (intptr_t) __ pc();
2305   oop_maps->add_gc_map(the_pc - start, map);
2306 
2307   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2308 
2309 
2310   // We have all of the arguments setup at this point. We must not touch any register
2311   // argument registers at this point (what if we save/restore them there are no oop?
2312 
2313   {
2314     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2315     // protect the args we've loaded
2316     save_args(masm, total_c_args, c_arg, out_regs);
2317     __ mov_metadata(c_rarg1, method());
2318     __ call_VM_leaf(
2319       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2320       r15_thread, c_rarg1);
2321     restore_args(masm, total_c_args, c_arg, out_regs);
2322   }
2323 
2324   // RedefineClasses() tracing support for obsolete method entry
2325   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2326     // protect the args we've loaded
2327     save_args(masm, total_c_args, c_arg, out_regs);
2328     __ mov_metadata(c_rarg1, method());
2329     __ call_VM_leaf(
2330       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2331       r15_thread, c_rarg1);
2332     restore_args(masm, total_c_args, c_arg, out_regs);
2333   }
2334 
2335   // Lock a synchronized method
2336 
2337   // Register definitions used by locking and unlocking
2338 
2339   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2340   const Register obj_reg  = rbx;  // Will contain the oop
2341   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2342   const Register old_hdr  = r13;  // value of old header at unlock time
2343 
2344   Label slow_path_lock;
2345   Label lock_done;
2346 
2347   if (method->is_synchronized()) {
2348     assert(!is_critical_native, "unhandled");
2349 
2350 
2351     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2352 
2353     // Get the handle (the 2nd argument)
2354     __ mov(oop_handle_reg, c_rarg1);
2355 
2356     // Get address of the box
2357 
2358     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2359 
2360     // Load the oop from the handle
2361     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2362 
2363     if (UseBiasedLocking) {
2364       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2365     }
2366 
2367     // Load immediate 1 into swap_reg %rax
2368     __ movl(swap_reg, 1);
2369 
2370     // Load (object->mark() | 1) into swap_reg %rax
2371     __ orptr(swap_reg, Address(obj_reg, 0));
2372 
2373     // Save (object->mark() | 1) into BasicLock's displaced header
2374     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2375 
2376     if (os::is_MP()) {
2377       __ lock();
2378     }
2379 
2380     // src -> dest iff dest == rax else rax <- dest
2381     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2382     __ jcc(Assembler::equal, lock_done);
2383 
2384     // Hmm should this move to the slow path code area???
2385 
2386     // Test if the oopMark is an obvious stack pointer, i.e.,
2387     //  1) (mark & 3) == 0, and
2388     //  2) rsp <= mark < mark + os::pagesize()
2389     // These 3 tests can be done by evaluating the following
2390     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2391     // assuming both stack pointer and pagesize have their
2392     // least significant 2 bits clear.
2393     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2394 
2395     __ subptr(swap_reg, rsp);
2396     __ andptr(swap_reg, 3 - os::vm_page_size());
2397 
2398     // Save the test result, for recursive case, the result is zero
2399     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2400     __ jcc(Assembler::notEqual, slow_path_lock);
2401 
2402     // Slow path will re-enter here
2403 
2404     __ bind(lock_done);
2405   }
2406 
2407 
2408   // Finally just about ready to make the JNI call
2409 
2410 
2411   // get JNIEnv* which is first argument to native
2412   if (!is_critical_native) {
2413     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2414   }
2415 
2416   // Now set thread in native
2417   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2418 
2419   __ call(RuntimeAddress(native_func));
2420 
2421   // Verify or restore cpu control state after JNI call
2422   __ restore_cpu_control_state_after_jni();
2423 
2424   // Unpack native results.
2425   switch (ret_type) {
2426   case T_BOOLEAN: __ c2bool(rax);            break;
2427   case T_CHAR   : __ movzwl(rax, rax);      break;
2428   case T_BYTE   : __ sign_extend_byte (rax); break;
2429   case T_SHORT  : __ sign_extend_short(rax); break;
2430   case T_INT    : /* nothing to do */        break;
2431   case T_DOUBLE :
2432   case T_FLOAT  :
2433     // Result is in xmm0 we'll save as needed
2434     break;
2435   case T_ARRAY:                 // Really a handle
2436   case T_OBJECT:                // Really a handle
2437       break; // can't de-handlize until after safepoint check
2438   case T_VOID: break;
2439   case T_LONG: break;
2440   default       : ShouldNotReachHere();
2441   }
2442 
2443   // Switch thread to "native transition" state before reading the synchronization state.
2444   // This additional state is necessary because reading and testing the synchronization
2445   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2446   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2447   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2448   //     Thread A is resumed to finish this native method, but doesn't block here since it
2449   //     didn't see any synchronization is progress, and escapes.
2450   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2451 
2452   if(os::is_MP()) {
2453     if (UseMembar) {
2454       // Force this write out before the read below
2455       __ membar(Assembler::Membar_mask_bits(
2456            Assembler::LoadLoad | Assembler::LoadStore |
2457            Assembler::StoreLoad | Assembler::StoreStore));
2458     } else {
2459       // Write serialization page so VM thread can do a pseudo remote membar.
2460       // We use the current thread pointer to calculate a thread specific
2461       // offset to write to within the page. This minimizes bus traffic
2462       // due to cache line collision.
2463       __ serialize_memory(r15_thread, rcx);
2464     }
2465   }
2466 
2467   Label after_transition;
2468 
2469   // check for safepoint operation in progress and/or pending suspend requests
2470   {
2471     Label Continue;
2472 
2473     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2474              SafepointSynchronize::_not_synchronized);
2475 
2476     Label L;
2477     __ jcc(Assembler::notEqual, L);
2478     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2479     __ jcc(Assembler::equal, Continue);
2480     __ bind(L);
2481 
2482     // Don't use call_VM as it will see a possible pending exception and forward it
2483     // and never return here preventing us from clearing _last_native_pc down below.
2484     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2485     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2486     // by hand.
2487     //
2488     save_native_result(masm, ret_type, stack_slots);
2489     __ mov(c_rarg0, r15_thread);
2490     __ mov(r12, rsp); // remember sp
2491     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2492     __ andptr(rsp, -16); // align stack as required by ABI
2493     if (!is_critical_native) {
2494       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2495     } else {
2496       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2497     }
2498     __ mov(rsp, r12); // restore sp
2499     __ reinit_heapbase();
2500     // Restore any method result value
2501     restore_native_result(masm, ret_type, stack_slots);
2502 
2503     if (is_critical_native) {
2504       // The call above performed the transition to thread_in_Java so
2505       // skip the transition logic below.
2506       __ jmpb(after_transition);
2507     }
2508 
2509     __ bind(Continue);
2510   }
2511 
2512   // change thread state
2513   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2514   __ bind(after_transition);
2515 
2516   Label reguard;
2517   Label reguard_done;
2518   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
2519   __ jcc(Assembler::equal, reguard);
2520   __ bind(reguard_done);
2521 
2522   // native result if any is live
2523 
2524   // Unlock
2525   Label unlock_done;
2526   Label slow_path_unlock;
2527   if (method->is_synchronized()) {
2528 
2529     // Get locked oop from the handle we passed to jni
2530     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2531 
2532     Label done;
2533 
2534     if (UseBiasedLocking) {
2535       __ biased_locking_exit(obj_reg, old_hdr, done);
2536     }
2537 
2538     // Simple recursive lock?
2539 
2540     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2541     __ jcc(Assembler::equal, done);
2542 
2543     // Must save rax if if it is live now because cmpxchg must use it
2544     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2545       save_native_result(masm, ret_type, stack_slots);
2546     }
2547 
2548 
2549     // get address of the stack lock
2550     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2551     //  get old displaced header
2552     __ movptr(old_hdr, Address(rax, 0));
2553 
2554     // Atomic swap old header if oop still contains the stack lock
2555     if (os::is_MP()) {
2556       __ lock();
2557     }
2558     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
2559     __ jcc(Assembler::notEqual, slow_path_unlock);
2560 
2561     // slow path re-enters here
2562     __ bind(unlock_done);
2563     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2564       restore_native_result(masm, ret_type, stack_slots);
2565     }
2566 
2567     __ bind(done);
2568 
2569   }
2570   {
2571     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2572     save_native_result(masm, ret_type, stack_slots);
2573     __ mov_metadata(c_rarg1, method());
2574     __ call_VM_leaf(
2575          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2576          r15_thread, c_rarg1);
2577     restore_native_result(masm, ret_type, stack_slots);
2578   }
2579 
2580   __ reset_last_Java_frame(false);
2581 
2582   // Unpack oop result
2583   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2584       Label L;
2585       __ testptr(rax, rax);
2586       __ jcc(Assembler::zero, L);
2587       __ movptr(rax, Address(rax, 0));
2588       __ bind(L);
2589       __ verify_oop(rax);
2590   }
2591 
2592   if (CheckJNICalls) {
2593     // clear_pending_jni_exception_check
2594     __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2595   }
2596 
2597   if (!is_critical_native) {
2598     // reset handle block
2599     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2600     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2601   }
2602 
2603   // pop our frame
2604 
2605   __ leave();
2606 
2607   if (!is_critical_native) {
2608     // Any exception pending?
2609     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2610     __ jcc(Assembler::notEqual, exception_pending);
2611   }
2612 
2613   // Return
2614 
2615   __ ret(0);
2616 
2617   // Unexpected paths are out of line and go here
2618 
2619   if (!is_critical_native) {
2620     // forward the exception
2621     __ bind(exception_pending);
2622 
2623     // and forward the exception
2624     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2625   }
2626 
2627   // Slow path locking & unlocking
2628   if (method->is_synchronized()) {
2629 
2630     // BEGIN Slow path lock
2631     __ bind(slow_path_lock);
2632 
2633     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2634     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2635 
2636     // protect the args we've loaded
2637     save_args(masm, total_c_args, c_arg, out_regs);
2638 
2639     __ mov(c_rarg0, obj_reg);
2640     __ mov(c_rarg1, lock_reg);
2641     __ mov(c_rarg2, r15_thread);
2642 
2643     // Not a leaf but we have last_Java_frame setup as we want
2644     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2645     restore_args(masm, total_c_args, c_arg, out_regs);
2646 
2647 #ifdef ASSERT
2648     { Label L;
2649     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2650     __ jcc(Assembler::equal, L);
2651     __ stop("no pending exception allowed on exit from monitorenter");
2652     __ bind(L);
2653     }
2654 #endif
2655     __ jmp(lock_done);
2656 
2657     // END Slow path lock
2658 
2659     // BEGIN Slow path unlock
2660     __ bind(slow_path_unlock);
2661 
2662     // If we haven't already saved the native result we must save it now as xmm registers
2663     // are still exposed.
2664 
2665     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2666       save_native_result(masm, ret_type, stack_slots);
2667     }
2668 
2669     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2670 
2671     __ mov(c_rarg0, obj_reg);
2672     __ mov(c_rarg2, r15_thread);
2673     __ mov(r12, rsp); // remember sp
2674     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2675     __ andptr(rsp, -16); // align stack as required by ABI
2676 
2677     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2678     // NOTE that obj_reg == rbx currently
2679     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2680     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2681 
2682     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2683     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2684     __ mov(rsp, r12); // restore sp
2685     __ reinit_heapbase();
2686 #ifdef ASSERT
2687     {
2688       Label L;
2689       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2690       __ jcc(Assembler::equal, L);
2691       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2692       __ bind(L);
2693     }
2694 #endif /* ASSERT */
2695 
2696     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2697 
2698     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2699       restore_native_result(masm, ret_type, stack_slots);
2700     }
2701     __ jmp(unlock_done);
2702 
2703     // END Slow path unlock
2704 
2705   } // synchronized
2706 
2707   // SLOW PATH Reguard the stack if needed
2708 
2709   __ bind(reguard);
2710   save_native_result(masm, ret_type, stack_slots);
2711   __ mov(r12, rsp); // remember sp
2712   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2713   __ andptr(rsp, -16); // align stack as required by ABI
2714   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2715   __ mov(rsp, r12); // restore sp
2716   __ reinit_heapbase();
2717   restore_native_result(masm, ret_type, stack_slots);
2718   // and continue
2719   __ jmp(reguard_done);
2720 
2721 
2722 
2723   __ flush();
2724 
2725   nmethod *nm = nmethod::new_native_nmethod(method,
2726                                             compile_id,
2727                                             masm->code(),
2728                                             vep_offset,
2729                                             frame_complete,
2730                                             stack_slots / VMRegImpl::slots_per_word,
2731                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2732                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2733                                             oop_maps);
2734 
2735   if (is_critical_native) {
2736     nm->set_lazy_critical_native(true);
2737   }
2738 
2739   return nm;
2740 
2741 }
2742 
2743 // this function returns the adjust size (in number of words) to a c2i adapter
2744 // activation for use during deoptimization
2745 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2746   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2747 }
2748 
2749 
2750 uint SharedRuntime::out_preserve_stack_slots() {
2751   return 0;
2752 }
2753 
2754 //------------------------------generate_deopt_blob----------------------------
2755 void SharedRuntime::generate_deopt_blob() {
2756   // Allocate space for the code
2757   ResourceMark rm;
2758   // Setup code generation tools
2759   int pad = 0;
2760 #if INCLUDE_JVMCI
2761   if (EnableJVMCI || UseAOT) {
2762     pad += 512; // Increase the buffer size when compiling for JVMCI
2763   }
2764 #endif
2765   CodeBuffer buffer("deopt_blob", 2048+pad, 1024);
2766   MacroAssembler* masm = new MacroAssembler(&buffer);
2767   int frame_size_in_words;
2768   OopMap* map = NULL;
2769   OopMapSet *oop_maps = new OopMapSet();
2770 
2771   // -------------
2772   // This code enters when returning to a de-optimized nmethod.  A return
2773   // address has been pushed on the the stack, and return values are in
2774   // registers.
2775   // If we are doing a normal deopt then we were called from the patched
2776   // nmethod from the point we returned to the nmethod. So the return
2777   // address on the stack is wrong by NativeCall::instruction_size
2778   // We will adjust the value so it looks like we have the original return
2779   // address on the stack (like when we eagerly deoptimized).
2780   // In the case of an exception pending when deoptimizing, we enter
2781   // with a return address on the stack that points after the call we patched
2782   // into the exception handler. We have the following register state from,
2783   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2784   //    rax: exception oop
2785   //    rbx: exception handler
2786   //    rdx: throwing pc
2787   // So in this case we simply jam rdx into the useless return address and
2788   // the stack looks just like we want.
2789   //
2790   // At this point we need to de-opt.  We save the argument return
2791   // registers.  We call the first C routine, fetch_unroll_info().  This
2792   // routine captures the return values and returns a structure which
2793   // describes the current frame size and the sizes of all replacement frames.
2794   // The current frame is compiled code and may contain many inlined
2795   // functions, each with their own JVM state.  We pop the current frame, then
2796   // push all the new frames.  Then we call the C routine unpack_frames() to
2797   // populate these frames.  Finally unpack_frames() returns us the new target
2798   // address.  Notice that callee-save registers are BLOWN here; they have
2799   // already been captured in the vframeArray at the time the return PC was
2800   // patched.
2801   address start = __ pc();
2802   Label cont;
2803 
2804   // Prolog for non exception case!
2805 
2806   // Save everything in sight.
2807   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2808 
2809   // Normal deoptimization.  Save exec mode for unpack_frames.
2810   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2811   __ jmp(cont);
2812 
2813   int reexecute_offset = __ pc() - start;
2814 #if INCLUDE_JVMCI && !defined(COMPILER1)
2815   if (EnableJVMCI && UseJVMCICompiler) {
2816     // JVMCI does not use this kind of deoptimization
2817     __ should_not_reach_here();
2818   }
2819 #endif
2820 
2821   // Reexecute case
2822   // return address is the pc describes what bci to do re-execute at
2823 
2824   // No need to update map as each call to save_live_registers will produce identical oopmap
2825   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2826 
2827   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2828   __ jmp(cont);
2829 
2830 #if INCLUDE_JVMCI
2831   Label after_fetch_unroll_info_call;
2832   int implicit_exception_uncommon_trap_offset = 0;
2833   int uncommon_trap_offset = 0;
2834 
2835   if (EnableJVMCI || UseAOT) {
2836     implicit_exception_uncommon_trap_offset = __ pc() - start;
2837 
2838     __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2839     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD);
2840 
2841     uncommon_trap_offset = __ pc() - start;
2842 
2843     // Save everything in sight.
2844     RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2845     // fetch_unroll_info needs to call last_java_frame()
2846     __ set_last_Java_frame(noreg, noreg, NULL);
2847 
2848     __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())));
2849     __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1);
2850 
2851     __ movl(r14, (int32_t)Deoptimization::Unpack_reexecute);
2852     __ mov(c_rarg0, r15_thread);
2853     __ movl(c_rarg2, r14); // exec mode
2854     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2855     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2856 
2857     __ reset_last_Java_frame(false);
2858 
2859     __ jmp(after_fetch_unroll_info_call);
2860   } // EnableJVMCI
2861 #endif // INCLUDE_JVMCI
2862 
2863   int exception_offset = __ pc() - start;
2864 
2865   // Prolog for exception case
2866 
2867   // all registers are dead at this entry point, except for rax, and
2868   // rdx which contain the exception oop and exception pc
2869   // respectively.  Set them in TLS and fall thru to the
2870   // unpack_with_exception_in_tls entry point.
2871 
2872   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2873   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2874 
2875   int exception_in_tls_offset = __ pc() - start;
2876 
2877   // new implementation because exception oop is now passed in JavaThread
2878 
2879   // Prolog for exception case
2880   // All registers must be preserved because they might be used by LinearScan
2881   // Exceptiop oop and throwing PC are passed in JavaThread
2882   // tos: stack at point of call to method that threw the exception (i.e. only
2883   // args are on the stack, no return address)
2884 
2885   // make room on stack for the return address
2886   // It will be patched later with the throwing pc. The correct value is not
2887   // available now because loading it from memory would destroy registers.
2888   __ push(0);
2889 
2890   // Save everything in sight.
2891   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2892 
2893   // Now it is safe to overwrite any register
2894 
2895   // Deopt during an exception.  Save exec mode for unpack_frames.
2896   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2897 
2898   // load throwing pc from JavaThread and patch it as the return address
2899   // of the current frame. Then clear the field in JavaThread
2900 
2901   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2902   __ movptr(Address(rbp, wordSize), rdx);
2903   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2904 
2905 #ifdef ASSERT
2906   // verify that there is really an exception oop in JavaThread
2907   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2908   __ verify_oop(rax);
2909 
2910   // verify that there is no pending exception
2911   Label no_pending_exception;
2912   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
2913   __ testptr(rax, rax);
2914   __ jcc(Assembler::zero, no_pending_exception);
2915   __ stop("must not have pending exception here");
2916   __ bind(no_pending_exception);
2917 #endif
2918 
2919   __ bind(cont);
2920 
2921   // Call C code.  Need thread and this frame, but NOT official VM entry
2922   // crud.  We cannot block on this call, no GC can happen.
2923   //
2924   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2925 
2926   // fetch_unroll_info needs to call last_java_frame().
2927 
2928   __ set_last_Java_frame(noreg, noreg, NULL);
2929 #ifdef ASSERT
2930   { Label L;
2931     __ cmpptr(Address(r15_thread,
2932                     JavaThread::last_Java_fp_offset()),
2933             (int32_t)0);
2934     __ jcc(Assembler::equal, L);
2935     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2936     __ bind(L);
2937   }
2938 #endif // ASSERT
2939   __ mov(c_rarg0, r15_thread);
2940   __ movl(c_rarg1, r14); // exec_mode
2941   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2942 
2943   // Need to have an oopmap that tells fetch_unroll_info where to
2944   // find any register it might need.
2945   oop_maps->add_gc_map(__ pc() - start, map);
2946 
2947   __ reset_last_Java_frame(false);
2948 
2949 #if INCLUDE_JVMCI
2950   if (EnableJVMCI || UseAOT) {
2951     __ bind(after_fetch_unroll_info_call);
2952   }
2953 #endif
2954 
2955   // Load UnrollBlock* into rdi
2956   __ mov(rdi, rax);
2957 
2958   __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
2959    Label noException;
2960   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
2961   __ jcc(Assembler::notEqual, noException);
2962   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2963   // QQQ this is useless it was NULL above
2964   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2965   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
2966   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2967 
2968   __ verify_oop(rax);
2969 
2970   // Overwrite the result registers with the exception results.
2971   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2972   // I think this is useless
2973   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
2974 
2975   __ bind(noException);
2976 
2977   // Only register save data is on the stack.
2978   // Now restore the result registers.  Everything else is either dead
2979   // or captured in the vframeArray.
2980   RegisterSaver::restore_result_registers(masm);
2981 
2982   // All of the register save area has been popped of the stack. Only the
2983   // return address remains.
2984 
2985   // Pop all the frames we must move/replace.
2986   //
2987   // Frame picture (youngest to oldest)
2988   // 1: self-frame (no frame link)
2989   // 2: deopting frame  (no frame link)
2990   // 3: caller of deopting frame (could be compiled/interpreted).
2991   //
2992   // Note: by leaving the return address of self-frame on the stack
2993   // and using the size of frame 2 to adjust the stack
2994   // when we are done the return to frame 3 will still be on the stack.
2995 
2996   // Pop deoptimized frame
2997   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2998   __ addptr(rsp, rcx);
2999 
3000   // rsp should be pointing at the return address to the caller (3)
3001 
3002   // Pick up the initial fp we should save
3003   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3004   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3005 
3006 #ifdef ASSERT
3007   // Compilers generate code that bang the stack by as much as the
3008   // interpreter would need. So this stack banging should never
3009   // trigger a fault. Verify that it does not on non product builds.
3010   if (UseStackBanging) {
3011     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3012     __ bang_stack_size(rbx, rcx);
3013   }
3014 #endif
3015 
3016   // Load address of array of frame pcs into rcx
3017   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3018 
3019   // Trash the old pc
3020   __ addptr(rsp, wordSize);
3021 
3022   // Load address of array of frame sizes into rsi
3023   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3024 
3025   // Load counter into rdx
3026   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3027 
3028   // Now adjust the caller's stack to make up for the extra locals
3029   // but record the original sp so that we can save it in the skeletal interpreter
3030   // frame and the stack walking of interpreter_sender will get the unextended sp
3031   // value and not the "real" sp value.
3032 
3033   const Register sender_sp = r8;
3034 
3035   __ mov(sender_sp, rsp);
3036   __ movl(rbx, Address(rdi,
3037                        Deoptimization::UnrollBlock::
3038                        caller_adjustment_offset_in_bytes()));
3039   __ subptr(rsp, rbx);
3040 
3041   // Push interpreter frames in a loop
3042   Label loop;
3043   __ bind(loop);
3044   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3045   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3046   __ pushptr(Address(rcx, 0));          // Save return address
3047   __ enter();                           // Save old & set new ebp
3048   __ subptr(rsp, rbx);                  // Prolog
3049   // This value is corrected by layout_activation_impl
3050   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3051   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3052   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3053   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3054   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3055   __ decrementl(rdx);                   // Decrement counter
3056   __ jcc(Assembler::notZero, loop);
3057   __ pushptr(Address(rcx, 0));          // Save final return address
3058 
3059   // Re-push self-frame
3060   __ enter();                           // Save old & set new ebp
3061 
3062   // Allocate a full sized register save area.
3063   // Return address and rbp are in place, so we allocate two less words.
3064   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3065 
3066   // Restore frame locals after moving the frame
3067   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3068   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3069 
3070   // Call C code.  Need thread but NOT official VM entry
3071   // crud.  We cannot block on this call, no GC can happen.  Call should
3072   // restore return values to their stack-slots with the new SP.
3073   //
3074   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3075 
3076   // Use rbp because the frames look interpreted now
3077   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3078   // Don't need the precise return PC here, just precise enough to point into this code blob.
3079   address the_pc = __ pc();
3080   __ set_last_Java_frame(noreg, rbp, the_pc);
3081 
3082   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3083   __ mov(c_rarg0, r15_thread);
3084   __ movl(c_rarg1, r14); // second arg: exec_mode
3085   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3086   // Revert SP alignment after call since we're going to do some SP relative addressing below
3087   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3088 
3089   // Set an oopmap for the call site
3090   // Use the same PC we used for the last java frame
3091   oop_maps->add_gc_map(the_pc - start,
3092                        new OopMap( frame_size_in_words, 0 ));
3093 
3094   // Clear fp AND pc
3095   __ reset_last_Java_frame(true);
3096 
3097   // Collect return values
3098   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3099   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3100   // I think this is useless (throwing pc?)
3101   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3102 
3103   // Pop self-frame.
3104   __ leave();                           // Epilog
3105 
3106   // Jump to interpreter
3107   __ ret(0);
3108 
3109   // Make sure all code is generated
3110   masm->flush();
3111 
3112   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3113   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3114 #if INCLUDE_JVMCI
3115   if (EnableJVMCI || UseAOT) {
3116     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
3117     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
3118   }
3119 #endif
3120 }
3121 
3122 #ifdef COMPILER2
3123 //------------------------------generate_uncommon_trap_blob--------------------
3124 void SharedRuntime::generate_uncommon_trap_blob() {
3125   // Allocate space for the code
3126   ResourceMark rm;
3127   // Setup code generation tools
3128   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3129   MacroAssembler* masm = new MacroAssembler(&buffer);
3130 
3131   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3132 
3133   address start = __ pc();
3134 
3135   if (UseRTMLocking) {
3136     // Abort RTM transaction before possible nmethod deoptimization.
3137     __ xabort(0);
3138   }
3139 
3140   // Push self-frame.  We get here with a return address on the
3141   // stack, so rsp is 8-byte aligned until we allocate our frame.
3142   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3143 
3144   // No callee saved registers. rbp is assumed implicitly saved
3145   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3146 
3147   // compiler left unloaded_class_index in j_rarg0 move to where the
3148   // runtime expects it.
3149   __ movl(c_rarg1, j_rarg0);
3150 
3151   __ set_last_Java_frame(noreg, noreg, NULL);
3152 
3153   // Call C code.  Need thread but NOT official VM entry
3154   // crud.  We cannot block on this call, no GC can happen.  Call should
3155   // capture callee-saved registers as well as return values.
3156   // Thread is in rdi already.
3157   //
3158   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3159 
3160   __ mov(c_rarg0, r15_thread);
3161   __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap);
3162   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3163 
3164   // Set an oopmap for the call site
3165   OopMapSet* oop_maps = new OopMapSet();
3166   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3167 
3168   // location of rbp is known implicitly by the frame sender code
3169 
3170   oop_maps->add_gc_map(__ pc() - start, map);
3171 
3172   __ reset_last_Java_frame(false);
3173 
3174   // Load UnrollBlock* into rdi
3175   __ mov(rdi, rax);
3176 
3177 #ifdef ASSERT
3178   { Label L;
3179     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
3180             (int32_t)Deoptimization::Unpack_uncommon_trap);
3181     __ jcc(Assembler::equal, L);
3182     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
3183     __ bind(L);
3184   }
3185 #endif
3186 
3187   // Pop all the frames we must move/replace.
3188   //
3189   // Frame picture (youngest to oldest)
3190   // 1: self-frame (no frame link)
3191   // 2: deopting frame  (no frame link)
3192   // 3: caller of deopting frame (could be compiled/interpreted).
3193 
3194   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3195   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3196 
3197   // Pop deoptimized frame (int)
3198   __ movl(rcx, Address(rdi,
3199                        Deoptimization::UnrollBlock::
3200                        size_of_deoptimized_frame_offset_in_bytes()));
3201   __ addptr(rsp, rcx);
3202 
3203   // rsp should be pointing at the return address to the caller (3)
3204 
3205   // Pick up the initial fp we should save
3206   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3207   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3208 
3209 #ifdef ASSERT
3210   // Compilers generate code that bang the stack by as much as the
3211   // interpreter would need. So this stack banging should never
3212   // trigger a fault. Verify that it does not on non product builds.
3213   if (UseStackBanging) {
3214     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3215     __ bang_stack_size(rbx, rcx);
3216   }
3217 #endif
3218 
3219   // Load address of array of frame pcs into rcx (address*)
3220   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3221 
3222   // Trash the return pc
3223   __ addptr(rsp, wordSize);
3224 
3225   // Load address of array of frame sizes into rsi (intptr_t*)
3226   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
3227 
3228   // Counter
3229   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
3230 
3231   // Now adjust the caller's stack to make up for the extra locals but
3232   // record the original sp so that we can save it in the skeletal
3233   // interpreter frame and the stack walking of interpreter_sender
3234   // will get the unextended sp value and not the "real" sp value.
3235 
3236   const Register sender_sp = r8;
3237 
3238   __ mov(sender_sp, rsp);
3239   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
3240   __ subptr(rsp, rbx);
3241 
3242   // Push interpreter frames in a loop
3243   Label loop;
3244   __ bind(loop);
3245   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3246   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3247   __ pushptr(Address(rcx, 0));     // Save return address
3248   __ enter();                      // Save old & set new rbp
3249   __ subptr(rsp, rbx);             // Prolog
3250   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3251             sender_sp);            // Make it walkable
3252   // This value is corrected by layout_activation_impl
3253   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3254   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3255   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3256   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3257   __ decrementl(rdx);              // Decrement counter
3258   __ jcc(Assembler::notZero, loop);
3259   __ pushptr(Address(rcx, 0));     // Save final return address
3260 
3261   // Re-push self-frame
3262   __ enter();                 // Save old & set new rbp
3263   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3264                               // Prolog
3265 
3266   // Use rbp because the frames look interpreted now
3267   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3268   // Don't need the precise return PC here, just precise enough to point into this code blob.
3269   address the_pc = __ pc();
3270   __ set_last_Java_frame(noreg, rbp, the_pc);
3271 
3272   // Call C code.  Need thread but NOT official VM entry
3273   // crud.  We cannot block on this call, no GC can happen.  Call should
3274   // restore return values to their stack-slots with the new SP.
3275   // Thread is in rdi already.
3276   //
3277   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3278 
3279   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3280   __ mov(c_rarg0, r15_thread);
3281   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3282   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3283 
3284   // Set an oopmap for the call site
3285   // Use the same PC we used for the last java frame
3286   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3287 
3288   // Clear fp AND pc
3289   __ reset_last_Java_frame(true);
3290 
3291   // Pop self-frame.
3292   __ leave();                 // Epilog
3293 
3294   // Jump to interpreter
3295   __ ret(0);
3296 
3297   // Make sure all code is generated
3298   masm->flush();
3299 
3300   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3301                                                  SimpleRuntimeFrame::framesize >> 1);
3302 }
3303 #endif // COMPILER2
3304 
3305 
3306 //------------------------------generate_handler_blob------
3307 //
3308 // Generate a special Compile2Runtime blob that saves all registers,
3309 // and setup oopmap.
3310 //
3311 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3312   assert(StubRoutines::forward_exception_entry() != NULL,
3313          "must be generated before");
3314 
3315   ResourceMark rm;
3316   OopMapSet *oop_maps = new OopMapSet();
3317   OopMap* map;
3318 
3319   // Allocate space for the code.  Setup code generation tools.
3320   CodeBuffer buffer("handler_blob", 2048, 1024);
3321   MacroAssembler* masm = new MacroAssembler(&buffer);
3322 
3323   address start   = __ pc();
3324   address call_pc = NULL;
3325   int frame_size_in_words;
3326   bool cause_return = (poll_type == POLL_AT_RETURN);
3327   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3328 
3329   if (UseRTMLocking) {
3330     // Abort RTM transaction before calling runtime
3331     // because critical section will be large and will be
3332     // aborted anyway. Also nmethod could be deoptimized.
3333     __ xabort(0);
3334   }
3335 
3336   // Make room for return address (or push it again)
3337   if (!cause_return) {
3338     __ push(rbx);
3339   }
3340 
3341   // Save registers, fpu state, and flags
3342   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3343 
3344   // The following is basically a call_VM.  However, we need the precise
3345   // address of the call in order to generate an oopmap. Hence, we do all the
3346   // work outselves.
3347 
3348   __ set_last_Java_frame(noreg, noreg, NULL);
3349 
3350   // The return address must always be correct so that frame constructor never
3351   // sees an invalid pc.
3352 
3353   if (!cause_return) {
3354     // overwrite the dummy value we pushed on entry
3355     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3356     __ movptr(Address(rbp, wordSize), c_rarg0);
3357   }
3358 
3359   // Do the call
3360   __ mov(c_rarg0, r15_thread);
3361   __ call(RuntimeAddress(call_ptr));
3362 
3363   // Set an oopmap for the call site.  This oopmap will map all
3364   // oop-registers and debug-info registers as callee-saved.  This
3365   // will allow deoptimization at this safepoint to find all possible
3366   // debug-info recordings, as well as let GC find all oops.
3367 
3368   oop_maps->add_gc_map( __ pc() - start, map);
3369 
3370   Label noException;
3371 
3372   __ reset_last_Java_frame(false);
3373 
3374   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3375   __ jcc(Assembler::equal, noException);
3376 
3377   // Exception pending
3378 
3379   RegisterSaver::restore_live_registers(masm, save_vectors);
3380 
3381   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3382 
3383   // No exception case
3384   __ bind(noException);
3385 
3386   // Normal exit, restore registers and exit.
3387   RegisterSaver::restore_live_registers(masm, save_vectors);
3388 
3389   __ ret(0);
3390 
3391   // Make sure all code is generated
3392   masm->flush();
3393 
3394   // Fill-out other meta info
3395   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3396 }
3397 
3398 //
3399 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3400 //
3401 // Generate a stub that calls into vm to find out the proper destination
3402 // of a java call. All the argument registers are live at this point
3403 // but since this is generic code we don't know what they are and the caller
3404 // must do any gc of the args.
3405 //
3406 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3407   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3408 
3409   // allocate space for the code
3410   ResourceMark rm;
3411 
3412   CodeBuffer buffer(name, 1000, 512);
3413   MacroAssembler* masm                = new MacroAssembler(&buffer);
3414 
3415   int frame_size_in_words;
3416 
3417   OopMapSet *oop_maps = new OopMapSet();
3418   OopMap* map = NULL;
3419 
3420   int start = __ offset();
3421 
3422   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3423 
3424   int frame_complete = __ offset();
3425 
3426   __ set_last_Java_frame(noreg, noreg, NULL);
3427 
3428   __ mov(c_rarg0, r15_thread);
3429 
3430   __ call(RuntimeAddress(destination));
3431 
3432 
3433   // Set an oopmap for the call site.
3434   // We need this not only for callee-saved registers, but also for volatile
3435   // registers that the compiler might be keeping live across a safepoint.
3436 
3437   oop_maps->add_gc_map( __ offset() - start, map);
3438 
3439   // rax contains the address we are going to jump to assuming no exception got installed
3440 
3441   // clear last_Java_sp
3442   __ reset_last_Java_frame(false);
3443   // check for pending exceptions
3444   Label pending;
3445   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3446   __ jcc(Assembler::notEqual, pending);
3447 
3448   // get the returned Method*
3449   __ get_vm_result_2(rbx, r15_thread);
3450   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3451 
3452   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3453 
3454   RegisterSaver::restore_live_registers(masm);
3455 
3456   // We are back the the original state on entry and ready to go.
3457 
3458   __ jmp(rax);
3459 
3460   // Pending exception after the safepoint
3461 
3462   __ bind(pending);
3463 
3464   RegisterSaver::restore_live_registers(masm);
3465 
3466   // exception pending => remove activation and forward to exception handler
3467 
3468   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3469 
3470   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3471   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3472 
3473   // -------------
3474   // make sure all code is generated
3475   masm->flush();
3476 
3477   // return the  blob
3478   // frame_size_words or bytes??
3479   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3480 }
3481 
3482 
3483 //------------------------------Montgomery multiplication------------------------
3484 //
3485 
3486 #ifndef _WINDOWS
3487 
3488 #define ASM_SUBTRACT
3489 
3490 #ifdef ASM_SUBTRACT
3491 // Subtract 0:b from carry:a.  Return carry.
3492 static unsigned long
3493 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3494   long i = 0, cnt = len;
3495   unsigned long tmp;
3496   asm volatile("clc; "
3497                "0: ; "
3498                "mov (%[b], %[i], 8), %[tmp]; "
3499                "sbb %[tmp], (%[a], %[i], 8); "
3500                "inc %[i]; dec %[cnt]; "
3501                "jne 0b; "
3502                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3503                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3504                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3505                : "memory");
3506   return tmp;
3507 }
3508 #else // ASM_SUBTRACT
3509 typedef int __attribute__((mode(TI))) int128;
3510 
3511 // Subtract 0:b from carry:a.  Return carry.
3512 static unsigned long
3513 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
3514   int128 tmp = 0;
3515   int i;
3516   for (i = 0; i < len; i++) {
3517     tmp += a[i];
3518     tmp -= b[i];
3519     a[i] = tmp;
3520     tmp >>= 64;
3521     assert(-1 <= tmp && tmp <= 0, "invariant");
3522   }
3523   return tmp + carry;
3524 }
3525 #endif // ! ASM_SUBTRACT
3526 
3527 // Multiply (unsigned) Long A by Long B, accumulating the double-
3528 // length result into the accumulator formed of T0, T1, and T2.
3529 #define MACC(A, B, T0, T1, T2)                                  \
3530 do {                                                            \
3531   unsigned long hi, lo;                                         \
3532   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
3533            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3534            : "r"(A), "a"(B) : "cc");                            \
3535  } while(0)
3536 
3537 // As above, but add twice the double-length result into the
3538 // accumulator.
3539 #define MACC2(A, B, T0, T1, T2)                                 \
3540 do {                                                            \
3541   unsigned long hi, lo;                                         \
3542   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \
3543            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"           \
3544            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3545            : "r"(A), "a"(B) : "cc");                            \
3546  } while(0)
3547 
3548 // Fast Montgomery multiplication.  The derivation of the algorithm is
3549 // in  A Cryptographic Library for the Motorola DSP56000,
3550 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
3551 
3552 static void __attribute__((noinline))
3553 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
3554                     unsigned long m[], unsigned long inv, int len) {
3555   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3556   int i;
3557 
3558   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3559 
3560   for (i = 0; i < len; i++) {
3561     int j;
3562     for (j = 0; j < i; j++) {
3563       MACC(a[j], b[i-j], t0, t1, t2);
3564       MACC(m[j], n[i-j], t0, t1, t2);
3565     }
3566     MACC(a[i], b[0], t0, t1, t2);
3567     m[i] = t0 * inv;
3568     MACC(m[i], n[0], t0, t1, t2);
3569 
3570     assert(t0 == 0, "broken Montgomery multiply");
3571 
3572     t0 = t1; t1 = t2; t2 = 0;
3573   }
3574 
3575   for (i = len; i < 2*len; i++) {
3576     int j;
3577     for (j = i-len+1; j < len; j++) {
3578       MACC(a[j], b[i-j], t0, t1, t2);
3579       MACC(m[j], n[i-j], t0, t1, t2);
3580     }
3581     m[i-len] = t0;
3582     t0 = t1; t1 = t2; t2 = 0;
3583   }
3584 
3585   while (t0)
3586     t0 = sub(m, n, t0, len);
3587 }
3588 
3589 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
3590 // multiplies so it should be up to 25% faster than Montgomery
3591 // multiplication.  However, its loop control is more complex and it
3592 // may actually run slower on some machines.
3593 
3594 static void __attribute__((noinline))
3595 montgomery_square(unsigned long a[], unsigned long n[],
3596                   unsigned long m[], unsigned long inv, int len) {
3597   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3598   int i;
3599 
3600   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3601 
3602   for (i = 0; i < len; i++) {
3603     int j;
3604     int end = (i+1)/2;
3605     for (j = 0; j < end; j++) {
3606       MACC2(a[j], a[i-j], t0, t1, t2);
3607       MACC(m[j], n[i-j], t0, t1, t2);
3608     }
3609     if ((i & 1) == 0) {
3610       MACC(a[j], a[j], t0, t1, t2);
3611     }
3612     for (; j < i; j++) {
3613       MACC(m[j], n[i-j], t0, t1, t2);
3614     }
3615     m[i] = t0 * inv;
3616     MACC(m[i], n[0], t0, t1, t2);
3617 
3618     assert(t0 == 0, "broken Montgomery square");
3619 
3620     t0 = t1; t1 = t2; t2 = 0;
3621   }
3622 
3623   for (i = len; i < 2*len; i++) {
3624     int start = i-len+1;
3625     int end = start + (len - start)/2;
3626     int j;
3627     for (j = start; j < end; j++) {
3628       MACC2(a[j], a[i-j], t0, t1, t2);
3629       MACC(m[j], n[i-j], t0, t1, t2);
3630     }
3631     if ((i & 1) == 0) {
3632       MACC(a[j], a[j], t0, t1, t2);
3633     }
3634     for (; j < len; j++) {
3635       MACC(m[j], n[i-j], t0, t1, t2);
3636     }
3637     m[i-len] = t0;
3638     t0 = t1; t1 = t2; t2 = 0;
3639   }
3640 
3641   while (t0)
3642     t0 = sub(m, n, t0, len);
3643 }
3644 
3645 // Swap words in a longword.
3646 static unsigned long swap(unsigned long x) {
3647   return (x << 32) | (x >> 32);
3648 }
3649 
3650 // Copy len longwords from s to d, word-swapping as we go.  The
3651 // destination array is reversed.
3652 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
3653   d += len;
3654   while(len-- > 0) {
3655     d--;
3656     *d = swap(*s);
3657     s++;
3658   }
3659 }
3660 
3661 // The threshold at which squaring is advantageous was determined
3662 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
3663 #define MONTGOMERY_SQUARING_THRESHOLD 64
3664 
3665 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
3666                                         jint len, jlong inv,
3667                                         jint *m_ints) {
3668   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
3669   int longwords = len/2;
3670 
3671   // Make very sure we don't use so much space that the stack might
3672   // overflow.  512 jints corresponds to an 16384-bit integer and
3673   // will use here a total of 8k bytes of stack space.
3674   int total_allocation = longwords * sizeof (unsigned long) * 4;
3675   guarantee(total_allocation <= 8192, "must be");
3676   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3677 
3678   // Local scratch arrays
3679   unsigned long
3680     *a = scratch + 0 * longwords,
3681     *b = scratch + 1 * longwords,
3682     *n = scratch + 2 * longwords,
3683     *m = scratch + 3 * longwords;
3684 
3685   reverse_words((unsigned long *)a_ints, a, longwords);
3686   reverse_words((unsigned long *)b_ints, b, longwords);
3687   reverse_words((unsigned long *)n_ints, n, longwords);
3688 
3689   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
3690 
3691   reverse_words(m, (unsigned long *)m_ints, longwords);
3692 }
3693 
3694 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
3695                                       jint len, jlong inv,
3696                                       jint *m_ints) {
3697   assert(len % 2 == 0, "array length in montgomery_square must be even");
3698   int longwords = len/2;
3699 
3700   // Make very sure we don't use so much space that the stack might
3701   // overflow.  512 jints corresponds to an 16384-bit integer and
3702   // will use here a total of 6k bytes of stack space.
3703   int total_allocation = longwords * sizeof (unsigned long) * 3;
3704   guarantee(total_allocation <= 8192, "must be");
3705   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3706 
3707   // Local scratch arrays
3708   unsigned long
3709     *a = scratch + 0 * longwords,
3710     *n = scratch + 1 * longwords,
3711     *m = scratch + 2 * longwords;
3712 
3713   reverse_words((unsigned long *)a_ints, a, longwords);
3714   reverse_words((unsigned long *)n_ints, n, longwords);
3715 
3716   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3717     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
3718   } else {
3719     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
3720   }
3721 
3722   reverse_words(m, (unsigned long *)m_ints, longwords);
3723 }
3724 
3725 #endif // WINDOWS
3726 
3727 #ifdef COMPILER2
3728 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3729 //
3730 //------------------------------generate_exception_blob---------------------------
3731 // creates exception blob at the end
3732 // Using exception blob, this code is jumped from a compiled method.
3733 // (see emit_exception_handler in x86_64.ad file)
3734 //
3735 // Given an exception pc at a call we call into the runtime for the
3736 // handler in this method. This handler might merely restore state
3737 // (i.e. callee save registers) unwind the frame and jump to the
3738 // exception handler for the nmethod if there is no Java level handler
3739 // for the nmethod.
3740 //
3741 // This code is entered with a jmp.
3742 //
3743 // Arguments:
3744 //   rax: exception oop
3745 //   rdx: exception pc
3746 //
3747 // Results:
3748 //   rax: exception oop
3749 //   rdx: exception pc in caller or ???
3750 //   destination: exception handler of caller
3751 //
3752 // Note: the exception pc MUST be at a call (precise debug information)
3753 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3754 //
3755 
3756 void OptoRuntime::generate_exception_blob() {
3757   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3758   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3759   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3760 
3761   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3762 
3763   // Allocate space for the code
3764   ResourceMark rm;
3765   // Setup code generation tools
3766   CodeBuffer buffer("exception_blob", 2048, 1024);
3767   MacroAssembler* masm = new MacroAssembler(&buffer);
3768 
3769 
3770   address start = __ pc();
3771 
3772   // Exception pc is 'return address' for stack walker
3773   __ push(rdx);
3774   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3775 
3776   // Save callee-saved registers.  See x86_64.ad.
3777 
3778   // rbp is an implicitly saved callee saved register (i.e., the calling
3779   // convention will save/restore it in the prolog/epilog). Other than that
3780   // there are no callee save registers now that adapter frames are gone.
3781 
3782   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3783 
3784   // Store exception in Thread object. We cannot pass any arguments to the
3785   // handle_exception call, since we do not want to make any assumption
3786   // about the size of the frame where the exception happened in.
3787   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3788   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3789   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3790 
3791   // This call does all the hard work.  It checks if an exception handler
3792   // exists in the method.
3793   // If so, it returns the handler address.
3794   // If not, it prepares for stack-unwinding, restoring the callee-save
3795   // registers of the frame being removed.
3796   //
3797   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3798 
3799   // At a method handle call, the stack may not be properly aligned
3800   // when returning with an exception.
3801   address the_pc = __ pc();
3802   __ set_last_Java_frame(noreg, noreg, the_pc);
3803   __ mov(c_rarg0, r15_thread);
3804   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3805   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3806 
3807   // Set an oopmap for the call site.  This oopmap will only be used if we
3808   // are unwinding the stack.  Hence, all locations will be dead.
3809   // Callee-saved registers will be the same as the frame above (i.e.,
3810   // handle_exception_stub), since they were restored when we got the
3811   // exception.
3812 
3813   OopMapSet* oop_maps = new OopMapSet();
3814 
3815   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3816 
3817   __ reset_last_Java_frame(false);
3818 
3819   // Restore callee-saved registers
3820 
3821   // rbp is an implicitly saved callee-saved register (i.e., the calling
3822   // convention will save restore it in prolog/epilog) Other than that
3823   // there are no callee save registers now that adapter frames are gone.
3824 
3825   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3826 
3827   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3828   __ pop(rdx);                  // No need for exception pc anymore
3829 
3830   // rax: exception handler
3831 
3832   // We have a handler in rax (could be deopt blob).
3833   __ mov(r8, rax);
3834 
3835   // Get the exception oop
3836   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3837   // Get the exception pc in case we are deoptimized
3838   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3839 #ifdef ASSERT
3840   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
3841   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
3842 #endif
3843   // Clear the exception oop so GC no longer processes it as a root.
3844   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
3845 
3846   // rax: exception oop
3847   // r8:  exception handler
3848   // rdx: exception pc
3849   // Jump to handler
3850 
3851   __ jmp(r8);
3852 
3853   // Make sure all code is generated
3854   masm->flush();
3855 
3856   // Set exception blob
3857   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3858 }
3859 #endif // COMPILER2